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ABSTRACT Today, most research studies that aim to predict the remaining useful life (RUL) of industrial
components based on deep learning techniques are using piecewise linear (PwL) run-to-failure targets to
model the degradation process. However, this PwL degradation model assumes a constant initial RUL value
in which only time is needed to model normal operating conditions. Thus, it ignores the entire diagnostics
aspect. To provide high and reliable RUL prediction accuracy, a prognostics algorithm must incorporate
diagnostics information. This paper will provide the Prognostics and Health Management Community an
empirical study that validates the PwL degradation model against other, more recent data-driven labeling
approaches. We compare three different data-driven labeling approaches for RUL predictions. First, an unsu-
pervised reconstruction-based fault detection algorithm is used to provide valuable diagnostics information.
Then, optimized initial RUL values are calculated based on this information. Finally, these values are used to
construct PwL, descriptive statistics, and anomaly score function run-to-failure targets for subset FD001 in
the popular and publicly available C-MAPSS data set. A deep network structure is proposed and trained on
the three different run-to-failure targets in order to predict the RUL. During the training process, a genetic
algorithm approach is used to tune a selected search space of hyper-parameters. The results suggest that the
network trained on PwL run-to-failure targets with the optimized initial RUL values performs the best and
provides the most reliable RUL prediction accuracy. This network also outperforms the most robust results
in the literature.

INDEX TERMS Data-driven labeling approaches, deep learning, fault detection, prognostics and health
management, remaining useful life.

I. INTRODUCTION
Data-driven Prognostics and Health Management (PHM)
applications use algorithms built on sensor measurements to
perform fault detection, condition assessment, and remain-
ing useful life (RUL) predictions [1]. Prognostics algorithms
predict the progression of faults. Thus, the associated RUL
predictions tend to achieve the ideal maintenance policy
through predictions of the available time until failure after a
fault is detected within the component [2]. In this way, PHM
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applications have the potential to prevent failures before they
occur, and hence, considerably increase operational availabil-
ity, reliability, and life expectancy of industrial systems.

During the last three years, state-of-the-art deep
learning (DL) techniques have outperformed traditional
data-driven prognostics algorithms in RUL predictions for
engine degradation [3]–[5]. Researchers have typically used
the publicly available Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) data set, produced and pro-
vided by NASA [6], to train and evaluate the proposed DL
approaches. The C-MAPSS data set consists of numerous
time series of aircraft gas turbine engines where the engines
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FIGURE 1. An overview of the complete training structure.

are subjected to a varying number of time steps and different
degrees of degradation. Within the PHM research field, the
C-MAPSS data set is acknowledged as the benchmark data
set for data-driven prognostics algorithms.

Today, DL techniques that aim to predict RUL still depend
on large amounts of run-to-failure targets in order to model
the degradation process in the supervised training proce-
dure. Hence, most studies construct run-to-failure targets
based on the piece-wise linear (PwL) degradation model,
which Heimes [7] proposed in 2008. This degradation model
assumes a constant initial RUL (Ri) value when the engines
operate in normal conditions. Then, the model degrades lin-
early until failure after the engines are subjected to a fault,
namely, after the fault time step. A subsequent assumption is
that all engines utilize the same constant Ri value. In other
words, the constructed run-to-failure targets depend on the
total number of time steps in each engine and not on the actual
degradation process. By the latter assumption, the entire diag-
nostics aspect is ignored. In real-life PHM applications, any
supervised prognostics algorithm should depend on an accu-
rate fault detection algorithm in order to construct reliable
run-to-failure targets. Then, the prognostics algorithm is able
to model the true degradation process and potentially achieve
higher andmore reliable RUL prediction accuracy. Therefore,
it would be highly beneficial for the PHM community to pos-
sess a study that validates the PwL degradation model against
other and more recent data-driven labeling approaches.

The objective of this paper is to make a thorough com-
parison of three different data-driven labeling approaches,
based on accurate fault detection, for RUL predictions. First,
raw normalized engine data will act as the input for an
unsupervised reconstruction-based fault detection algorithm
in order to predict the fault time step for each engine [8].
Next, an optimized Ri value for each engine can be obtained.
These values are then used to construct PwL, descriptive
statistics (DS) [9], in order to model degradation by finding
some consistency in the phenomenon leading to failure, and
anomaly score function (ASF), which is obtained from the
unsupervised reconstruction-based fault detection algorithm,

run-to-failure targets for subset FD001 in the C-MAPSS
data set. Additionally, this paper proposes a deep network
structure for RUL predictions, which will be trained on the
three different data-driven labeling approaches. A Genetic
Algorithm (GA) approach [5] will also be used to tune
hyper-parameters during the supervised training process
since each labeling approach requires different values of
hyper-parameters within the deep network structure in order
to perform with the highest RUL prediction accuracy possi-
ble. A flow chart of the complete training structure, where
the final RUL prediction incorporates valuable diagnostics
information is shown in Figure 1. Finally, the proposed deep
network structure trained on the run-to-failure targets with
the highest RUL prediction accuracy will be compared to the
most robust results in the literature. This is done to demon-
strate that prognostics algorithms achieve higher RUL predic-
tion accuracy when trained on run-to-failure targets based on
accurate fault detection. This study’s main contributions are
as follows:
• A comprehensive comparison between PwL, DS, and
ASF run-to-failure targets with optimized Ri values is
conducted.

• A deep network structure for RUL predictions is pro-
posed.

• The network trained on PwL run-to-failure targets with
optimized Ri values outperforms both the networks
trained on DS and ASF run-to-failure targets, as well as,
the most robust results in the literature with respect to
RUL predictions on subset FD001 in the C-MAPSS data
set.

The overall organization of the paper is as follows.
Section II introduces recent and related work on subset
FD001. Section III introduces the necessary background on
Feed-forward Neural Network (FNN), Convolutional Neural
Network (CNN), Long-Short Term Memory (LSTM), and
the proposed deep network structure. The experimental study
is elaborated in Section IV. Section V, considers important
experimental results and discussions. Finally, Section VI con-
cludes the paper and provides directions for future work.
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II. RELATED WORK
Subset FD001 in the C-MAPSS data set has been frequently
used to evaluate most DL approaches proposed for RUL
predictions in recent years. In data-driven PHM applications,
time series data is the standard input format. The LSTM [10]
is a well-established DL technique that essentially was
designed to process time series data. Zheng et al. [11] stacked
two LSTM layers, two FNN layers, and a final output layer
in order to provide RUL predictions. The proposed approach
achieved higher RUL prediction accuracy compared to the
Hidden Markov Model and a traditional Recurrent Neural
Network (RNN).

A Deep Belief Network (DBN) [12] consists of stacked
Restricted Boltzmann Machines (RBMs). Zhang et al. [3]
proposed a multiple objective evolutionary ensemble learn-
ing frameworks for the DBN training process. Conse-
quently, the proposed approach constructs multiple DBNs
of varying accuracy and diversity before the evolved DBNs
are combined to perform RUL predictions. The proposed
approach outperformed several traditional machine learning
algorithms, such as Support Vector Machine and Multilayer
Perceptron.

During the past decade, CNNs have outperformed more
traditional approaches in several domains, including object
recognition [13] and face recognition [14]. However, CNNs
have also more recently performed excellently on prognostics
problems. Li et al. [4] proposed a newCNN approach in order
to provide RUL predictions. In this approach, all convolution
operations are performed in one dimension. Thus, the CNN
extracts and learns low-level to high-level representations of
each raw sensor measurement from the very start rather than
learning the spatial relationship between the sensor measure-
ments and then extracting prognostics information.

Yoon et al. [15] used a semi-supervised learning approach
to predict the RUL. Their approach included an embedding
network obtained from a Variational Autoencoder (VAE) fol-
lowed by an RNNwhich was trained based on the latent space
defined by the VAE. However, the main goal of this study was
to show high RUL prediction accuracy with limited run-to-
failure targets in the training procedure.

Ellefsen et al. [5] also used a semi-supervised learning
approach to predict the RUL. An initial RBM layer was used
as an unsupervised pre-training stage in order to initialize
the weights in a region near a good local minimum before
supervised fine-tuning of the whole network was conducted.
The remaining layers of their network consisted of two LSTM
layers, one FNN layer, and a final output layer to perform
RUL predictions. Additionally, a GA approach was used to
tune a big search space of hyper-parameters.

All above-mentioned studies utilize the PwL degradation
model with the same constant Ri value for all engines.
Even though the constant Ri value varies among different
studies, the diagnostics aspect is ignored in these studies.
However, one study uses a different degradation model to
predict the RUL.Malhotra et al. [16] used an LSTM encoder-
decoder (LSTM-ED) approach to reconstruct the engines.

A reconstruction error was then used to compute a health
index (HI) curve for both the training and test set. Then, theHI
curves were subjected to normalization and linear regression.
Finally, RUL estimations were performed by matching the HI
curves. Similar to [16], this study also utilizes a reconstruc-
tion error at each time step for each engine to construct an
ASF [8]. The ASF will both be used to predict an optimized
Ri value for each engine and to create run-to-failure targets as
one of the data-driven labeling approaches compared in this
study.

III. BACKGROUND
This section will introduce the necessary background on the
proposed deep network. First, FNN and the main DL tech-
niques, 1D CNN and LSTM, are defined. Finally, the pro-
posed deep network structure is elaborated.

A. FEED-FORWARD NEURAL NETWORK
FNNs form the basis of the DL techniques used in this
study. The objective of this network is to approximate a
function f ∗ by mapping an input x to a target y, that is,
y = f ∗(x). An FNN defines a mapping y = f (x; θ ) and
learns the value of the parameters θ (weights and biases)
through the back-propagation algorithm [17]. FNNs are typ-
ically called networks since they are represented by stacking
several layers [18]. Each unit in layer l computes its own
activation value:

alj = σ (z
l
j) (1)

where σ is the activation function and the argument is the
weighted sum

zlj = blj +
∑
k

wljka
l−1
k (2)

of the output al−1k from unit k in the previous layer l−1. blj is
the bias andwljk are the weight factors. In the first hidden layer
l = 1, the input is a0j = xj, where xj, j = 1 . . . n, are the inputs
to the FNN. As each layer is fully connected, the weighted
sum of the outputs of layer l − 1 is over all units k .

B. CONVOLUTIONAL NEURAL NETWORK
CNNs are a specialized kind of FNNs designed for processing
multiple arrays of 1D, 2D, or 3D grid-like topology data [18].
Examples of a 1D, 2D, and 3D grid are time series data
where each feature is considered as a 1D grid of time steps
at regular time intervals, image data is considered as a 2D
grid of pixels, and video or volumetric images, respectively.
Regardless of the input data, 1D, 2D, and 3D CNNs share
the same key advantages, including convolution operations,
shared weights, pooling, and the use of many layers [19].
However, the main difference is how the kernel (filter) slides
across the data, namely, how the convolution operation is
performed.

Today, sensor data is the most common data type format
for data-driven PHM applications [2]. Subset FD001 contains
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FIGURE 2. An illustration of the 1D convolution operation for multivariate
time series data. The red rectangles represent 1D kernels.

several shorter time series of the overall data, where each
time series (engine) is subjected to several sensor measure-
ments. The spatial relationship between the sensor measure-
ments is not of great importance [4]. Therefore, 1D CNN is
highly suitable and will be used in this study. With respect
to mathematical understanding, the convolution operation is
typically denoted with an asterisk, and hence, the discrete 1D
convolution operation can be defined as [18]:

s(t) = (x ∗ k)(t) =
∑
a

x(t − a)k(a) (3)

where x = [x1 . . . xt ] is a 1D input vector of time steps t ,
and k is a 1D kernel. The kernel is defined by its height kh
and slides through the whole input vector with a stride equal
to one in 1D CNNs. The complete output, s(t), is usually
referred to as the feature map. Figure 2 illustrates the 1D
convolution operation for multivariate time series data. The
height equals the number of time steps, the width is equal to
one, and the amount of channels (depth) equals the number
of input features. Due to the relatively low input dimension
in FD001, pooling will not be used in this study. Like FNNs,
CNNs are also trained by the back-propagation algorithm,
but the reduced number of parameters and shared weights
improve the training efficiency. It should also be noted that
CNNs are capable of handling raw normalized input data.
Hence, data pre-processing is rare.

C. LONG-SHORT TERM MEMORY
In recent times, the original LSTM [10] has been subjected
to adjustments by [20]–[22], and the literature refers to this
as the ‘‘vanilla LSTM.’’ This study utilizes ‘‘vanilla LSTM’’
with no peephole connections. The LSTM introduces a mem-
ory cell that controls the information flow in and out of the
cell. Hence, the memory cell is able to maintain its state over
time, such that it learns long-term dependencies, and this

FIGURE 3. The proposed deep network structure.

feature is its superior strength compared to traditional RNNs.
The memory cell consists of three non-linear gating units that
control and protect the cell state, St [23]:

f t = σ (W f xt + Rf ht−1 + bf ) (4)

it = σ (W i xt + Ri ht−1 + bi) (5)

ot = σ (Wo xt + Ro ht−1 + bo) (6)

where σ is the logistic sigmoid gate activation function,
σ (x) = 1

1+e−x , which provides a scaled value between 0 and
1.W is the input weight,R is the recurrent weight, and b is the
bias weight. The new candidate state values, S̃t , are created
by the tanh layer:

S̃t = tanh(W sxt + Rsht−1 + bs) (7)

The previous cell state, St−1, is updated into the new cell
state, St , by

St = f t ⊗ St−1 + it ⊗ S̃t (8)

where ⊗ indicates element-wise multiplication of two vec-
tors. First, f t decides which historical information the mem-
ory cell should forget. Next, it determines what new informa-
tion in S̃t the memory cell will input and store in St . Finally,
ot decides which parts of St the memory cell will output:

ht = ot ⊗ tanh(St ) (9)

Through these steps, the LSTM has the power to remove or
add information to St , which makes it extremely fit to process
time series data. Like FNNs and CNNs, the LSTM is trained
by the back-propagation algorithm.

D. THE PROPOSED DEEP NETWORK STRUCTURE
The proposed deep network structure is shown in Figure 3.
In the first layer (L1), a 1DCNNwill be utilized to extract and
learn low-level temporal features from each sensor measure-
ment individually [4]. These featuresmight contain important
degradation informationwhichwill then be used to formmore
complex patterns within the next layers. In both the second
and the third layer (L2 and L3), an LSTM layer is used to
reveal hidden information and learn long-term dependencies
within the features obtained from L1 [5], [11]. Next, an FNN
layer is used in both the fourth (L4) and the fifth (L5) layers
in order to map all extracted features. In addition, the well-
proven regularization technique dropout [24] is applied to L5.
Dropout randomly drops units during training. In this way,
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dropout approximately connects an exponential number of
different structures. Thus, the network learns to make gener-
alized representations of the input data, which will prevent
the network from extracting the same degradation features
repeatedly. In the final layer (L6), a time distributed, fully
connected output layer is attached to handle error calculations
and perform RUL predictions.

IV. EXPERIMENTAL STUDY
In the following experimental study, all experiments are run
on NVIDIA GeForce GTX 1060 6 GB and the Microsoft
Windows 10 operating system. The programming language
is Java 8 and the deep learning library is ‘‘deeplearning4j’’
(DL4J) version 1.0.0-SNAPSHOT [25]. It should be noted
that the DL techniques included in the proposed deep network
structure are optimized by the NVIDIA CUDA Deep Neural
Network library (cuDNN) [26]. cuDNN is a GPU-accelerated
library of primitives for DL techniques. In DL4J, time series
data has the following input shape: [miniBatchSize, input-
Size, timeSeriesLength], where miniBatchSize is the number
of time series in a mini batch, input size is the number of
columns, and timeSeriesLength is the total number of time
steps in the mini batch. If time series in a mini-batch have
variable time step length, the shorter time series are padded
with zeros such that the time step lengths are equal to the
longest among them. Consequently, mask arrays are used
during training. These additional arrays record whether a time
step is really present, or whether it is just padding.

A. SUBSET FD001 IN THE BENCHMARK C-MAPSS DATA
SET
Subset FD001 consists of 100 time series from aircraft gas
turbine engines in both the training and test set. Each engine
starts with different degrees of initial wear andmanufacturing
variation. These initial degradation mechanics are unknown
to the public. All engines operate in normal condition at
the start, then begin to degrade at an unknown time step
during the time series. The degradation in the training set
grows in magnitude, namely with increasing acceleration,
until failure. The degradation in the test set, however, ends
sometime prior to failure. Accordingly, true RUL targets are
provided at the last time step for each engine in the test
set. The data is contaminated with sensor noise and subset
FD001 includes 24 input features: three operational sensor
settings and 21 sensor measurements. Please see [27] for a
detailed description of each input feature. Table 1 summarizes
subset FD001.

B. PERFORMANCE EVALUATIONS
The scoring function (S) provided in [27] and the root mean
square error (RMSE) are used in this study as performance
evaluations for the test set:

S =


n∑
i=1

e(−
di
13 ) − 1, for di < 0

n∑
i=1

e(−
di
10 ) − 1, for di ≥ 0

(10)

TABLE 1. Subset FD001 in the C-MAPSS data set [6].

RMSE =

√√√√1
n

n∑
i=1

d2i (11)

where n is the total number of true RUL targets in the test
set and di = RULpredicted,i − RULtrue,i. In both performance
evaluations, themain objective is to achieve the smallest value
possible, that is, when di = 0. The RMSE gives equal penalty
to early and late RUL predictions, namely, when di < 0 and
di > 0, respectively. In S, however, the penalty for late RUL
predictions is larger. This is because late RUL predictions
are prone to system failures in real-life PHM applications
as maintenance operations will be scheduled too late. On the
other hand, early predictions pose less risk to system failures
since maintenance operations will be scheduled too early.

Previously, both hold-out and k-fold cross-validation
have been used for hyper-parameter tuning on subset
FD001 [5], [11]. However, in this study, the total number of
time steps in the training set is considered large enough to
utilize a hold-out approach, that is, splitting the total training
set into 80 engines for training and 20 engines for cross-
validation, randomly. In addition to S and RMSE , the root
mean square error horizon (RMSEhz) is used in this study
as a performance evaluation for both the training set and the
cross-validation set:

RMSEhz =

√√√√ 1
m

m∑
j=1

d2j (12)

where m is the total number of constructed run-to-failure
targets in both the training set and cross-validation set, and
dj = RULpredicted,j − RULtarget,j. The RMSEhz will be used
to compare the true overall prognostics accuracy of the dif-
ferent labeling approaches. The prognostics horizon is a crit-
ical measurement designed to evaluate the different labeling
approaches with respect to both inherent uncertainties with
the degradation process and potential flaws with the con-
structed run-to-failure targets.

C. DIAGNOSTICS - DETECTING THE FAULT TIME STEP
Ellefsen et al. [8] used an unsupervised reconstruction-based
fault detection algorithm for maritime components. Their
proposed algorithm is also used in this work in order to predict
the fault time step for each engine in FD001. First, a VAE,
with three hidden layers and corresponding hidden units
(28,14,7) in the encoder and three hidden layers with corre-
sponding hidden units (7,14,28) in the decoder, is trained on
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normal operating data in an unsupervised manner. It should
be noted that the selection process of the hidden units, h1, h2,
and h3, is based on the following experience-based formula:

h1 = Z
(
24 · 1.2

)
h2 = Z

(
h1
2

)
h3 = Z

(
h2
2

)
where 24 is the number of input features in FD001. The
initial 25% of each engine is considered normal operating
data. Then, the algorithm estimates a raw anomaly score func-
tion (ASF) by calculating a reconstruction error, the mean
square error (MSE), at each time step for each engine:

MSE =
1
n

n∑
i=1

||ŷi − yi||2 (13)

where n is the number of input features, and ŷi and yi are the ith
predicted and target feature measurement, respectively. Next,
the algorithm creates three sliding windows of length w in
order to smooth the ASF:

w =
Tt
p

(14)

where Tt is the total number of time steps in each engine and p
is a tune-able parameter. First, the three windows slide across
the raw ASF for each time step. A distance equal to w is used
between each sliding window. In order to remove a certain
amount of noise in the raw ASF, the average reconstruction
error is calculated in the three windows. Since p decides
the length of w, it also decides the amount of smoothing
performed on the raw ASF. Thus, p should be tuned carefully
based on the amount of noise in the raw ASF. In this work,
p = 30 is used for all engines in order keep the same
percentage level, that is (1/30) · 100 = 3.33%, on Tt . This p
value will not smooth the rawASF toomuch, and hence, keep
important degradation trends. Second, the velocity between
windows 1 and 2 and between windows 2 and 3 are calcu-
lated. Finally, the acceleration between the two velocities is
estimated. Please see [8] for a more detailed explanation of
the algorithm.

Compared to the data sets used in [8], the nature of degra-
dation is somewhat different in FD001. In this data set,
the degradation grows with increasing acceleration until fail-
ure. Thus, the highest acceleration, which is used as the
fault criterion in [8], is not suitable for FD001. Therefore,
an alternative approach for predicting the fault time step f̂t
is used in this study. First, the highest acceleration in normal
operating data anod is calculated for each engine. anod is
equivalent to the maximum increase in deviation between
the normal operating sensor measurements. Then, a dynamic
acceleration threshold, aTh = 1.15 · anod , is used as the fault
criterion in the remaining data for each engine. In this work,
the value of 1.15 is based on trial an error. However, this
value is a critical parameter and should be tuned carefully
for other applications. This value will depend on the nature
of degradation. Finally, f̂t is estimated when the acceleration
increases aTh. Thus, the algorithm aims to detect the initial
time step where one or several sensor measurements have

TABLE 2. Total time step length Tt , predicted fault time step f̂t , and
corresponding initial RUL value Ri for each engine in FD001.

started to deviate from the normal operating data rapidly.
Table 2 shows Tt , f̂t , and the corresponding Ri for each engine
in FD001.

D. DATA-DRIVEN LABELING APPROACHES
This study compares three different data-driven labeling
approaches for constructing run-to-failure targets. The opti-
mized Ri values in Table 2 are used to construct run-to-failure
targets based on the PwL degradation model, DS, and on the
rawASF obtained from the anomaly detector in Section IV-C.

1) PIECE-WISE LINEAR
In the original PwL degradation model by Heimes [7], all
engines in the training and cross-validation sets utilize the
same Ri value when the engines operate in normal condition.
The major limitation of this assumption is that the fault time
step for each engine depends on Tt and not on the actual
degradation pattern. Actually, each engine has an individ-
ual degradation pattern [5]. Therefore, the PwL degradation
model used in this study utilizes an optimized Ri value for
each engine. These Ri values are dependent on the actual
degradation pattern in each engine. Algorithm 1 shows the
procedure on how to construct PwL run-to-failure targets for
engine i.

2) DESCRIPTIVE STATISTICS
DS [9] aims to find some consistency in the phenomenon
leading to failure. In other words, there are typical values of
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Algorithm 1 Algorithm for Constructing Piece-Wise Linear
Run-to-Failure Targets for Engine i

Input: Tt , f̂t , Ri
Output: PwLi

for t := 0 to Tt do
if (t ≤ f̂t ) then
PwLi← Ri

else
PwLi← (Tt − t)

end if
end for
return PwLi

the sensor measurements at the failure time step (F) for each
engine in both the training set and cross-validation set. Pre-
vious research has proven that sensors 2, 3, 4, 7, 11, 12, and
15 are subjected to a clear degradation trend and that they are
contaminated with less noise than the remaining sensors [28].
This sensor selection process is of high importance for the
degradation precision of the subsequent constructed run-to-
failure targets. First, the mean values of F in the selected
sensors are calculated:

E(X (F)) =
[
E(x2(F)), . . . ,E(x15(F))

]
=

[
1
m

∑
i∈I

x2i (Fi), . . . ,
1
m

∑
i∈I

x15i (Fi)
]

=
[
E2, . . . ,E15] (15)

where m is the number of failures, I is the set of engines that
experienced a failure, Fi is the failure time step of engine
i, and E(X (F)) is the vector of mean values observed at
each failure time step. Second, the mean values are used to
construct run-to-failure targets at any time t up until failure
for engine i:

Yi(t) = Xi(t)− E(X (F))

=

[(
x2i (t)− E

2)2
+ · · · +

(
x15i (t)− E15)2] 1

2

(16)

where Yi(t) is the raw run-to-failure targets. Third, the raw
run-to-failure targets are scaled according to the Ri value
obtained from Table 2 for each engine:

DSi(t) =
Ri · (Yi(t)− Yi(Tt ))
Yi(t1)− Yi(Tt )

(17)

where Yi(t) is the current raw run-to-failure target, Yi(Tt ) is
the last raw run-to-failure target, and Yi(t1) is the first raw run-
to-failure target. Finally, polynomial regression is performed
on DSi(t) in order to remove noise. It should be noted that
the polynomial regression used in this study performs a QR
decomposition of the underlying Vandermonde matrix and
the degree of the polynomial is 2. Figure 4 compares the raw
DS targets and DS targets with polynomial regression.

FIGURE 4. Comparison between raw DS targets and DS targets with
polynomial regression for engine 1.

Algorithm 2 Algorithm for Constructing a Smooth Version
of the Anomaly Score Function for Each Engine i
Input: ASFi(t), ws, Tt
Output: ASFi(t)s

ws← Tt / 1
Creating one sliding window SW of length ws which
slides across ASFi(t) for each time step t.
for t := 0 to Tt do
SW ← ASFi(t)
SWsum← 0
for s := 0 to ws do
SWsum+ = SW (s)

end for
ASFi(t)s←

SWsum
ws

end for
return ASFi(t)s

3) ANOMALY SCORE FUNCTION
First, the raw ASF for each engine ASFi(t)r is scaled
according to the Ri value obtained from Table 2 for each
engine:

ASFi(t) =
Ri · (ASFi(t)r − ASFi(Tt )r )
ASFi(t1)r − ASFi(Tt )r

(18)

where ASFi(t)r is the current raw run-to-failure target,
ASFi(Tt )r is the last raw run-to-failure target, and ASFi(t1)r is
the first raw run-to-failure target. Finally, in order to remove
noise and make a smooth version, an additional sliding win-
dow SW of length ws = Tt/1 is created. This sliding window
slides across ASFi(t) for each time step t . Algorithm 2 shows
the procedure on how to construct the smooth anomaly score
functionASFi(t)s for engine i. Figure 5 compares the rawASF
targets and the smooth ASF targets.

4) SELECTED DATA-DRIVEN LABELING APPROACHES
In the following experiments, the PwL, the DS with poly-
nomial regression, and the smooth ASF targets will be
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FIGURE 5. Comparison between raw ASF targets and smooth ASF targets
for engine 1.

FIGURE 6. Comparison between the selected data-driven labeling
approaches for engine 1.

used as supervised run-to-failure training targets for subset
FD001. Figure 6 compares the selected data-driven labeling
approaches.

E. DATA AUGMENTATION AND NORMALIZATION
Each input measurement xn in the training set is nor-
malized with zero mean and unit variance (z-score)
normalization:

x̂n =
xn − µ
σ

(19)

where µ and σ is the mean and the corresponding standard
deviation of the population, respectively. Then, the normal-
ization statistics obtained from the training set are applied
to both the cross-validation set and the test set. Addition-
ally, to reduce overfitting, random white Gaussian noise, g,
is added to each x̂n in each engine in the training set. Psignal
and Pnoise are the average power of the signal and the noise,
respectively, and defined as follows:

Psignal =
1
Tt

Tt∑
t=1

(√
1
n

(
x̂21 + · · · + x̂

2
n
))

t
(20)

Pnoise =
1
Tt

Tt∑
t=1

(√
1
n

(
(x̂1+g)2+. . .+(x̂n+g)2

))
t

(21)

where Tt is the total time step length of each engine and n is
the number of input features. Then, the signal-to-noise-ratio
(SNR) can be defined as:

SNR(%) =
Psignal
Pnoise

· 100 (22)

In all experiments, 95% SNR is applied to the training
set.

F. NETWORK CONFIGURATION AND TRAINING
Deep networks introduce several hyper-parameters, which
are both challenging and time-consuming to optimize in
the training procedure. Additionally, the proposed deep net-
work structure requires different values of hyper-parameters
for each labeling approach in order to perform with the
highest RUL prediction accuracy possible. Thus, the pro-
posed GA approach in [5] will also be used in this study
in order to optimize the hyper-parameters for the networks
trained on the three labeling approaches in an efficient
manner.

The GA is a metaheuristic inspired by the natural selec-
tion process [29]. It is an effective algorithm for finding a
near-optimal solution in a big search space, in this case,
a big search space of hyper-parameters. However, in order
to slightly reduce the search space, the networks will use
some joint-hyper parameters which previously have shown
great results on subset FD001 [4], [5]. Stochastic gradient
descent (SGD) is the selected optimization algorithm and
adaptive moment estimation (Adam) is the learning rate
method [30]. To better preserve the low-level temporal fea-
tures obtained from the 1D CNN layer, the learning rate in
L1 is lr = 5 · 10−5, while the learning rate in the remaining
layers is lr = 1 · 10−5. Xavier weight initialization [31]
is applied to all layers. The rectified linear unit activation
function [32] is used in both 1D CNN and FNN layers. How-
ever, in the LSTM layers, the tanh activation function is used
in order to push the input and output values between -1 and 1.
The mini-batch size is five engines, as previously optimized
in [5]. The selected joint hyper-parameters are summarized
in Table 3.

Table 4 shows the hyper-parameters which the GA
approach optimized for each of the three networks. n is the
number of hidden units in each layer, kh is the kernel height
in L1, and p is the dropout retaining probability of each unit
in L5. A p value of 1.0 is functionally equivalent to zero
dropout, namely, 100% probability of retaining each hidden
unit. First, the GA approach selects random values of each
hyper-parameter. One such set of random hyper-parameters
is called an individual and a set of individuals is called a
population. Each individual in the population is trained on
the training set and evaluated on the cross-validation set.
The RMSEhz, equation 12, is the selected objective function.
To prevent overfitting, early stopping is applied tomonitor the
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TABLE 3. Joint hyper-parameters.

TABLE 4. Selected hyper-parameters in the GA approach.

TABLE 5. Parameters of the GA approach.

performance during the training process of each individual.
If the number of epochs with no reduction on RMSEhz on
the cross-validation set exceeds four, the training process is
terminated. Then, the network, in the epoch with the lowest
RMSEhz, is saved.

To limit the time consumed during the optimization pro-
cess, the population size is restricted to 30 individuals. The
best individual from the population is then kept and used
as the parent for the next generation of hyper-parameters.
Additionally, some random mutation is performed after the
crossover for increasing the exploration of the algorithm. The
population is evolved four times. This results in an average
training time of 13.33 hours for each labeling approach,
where each individual trained for 80 epochs on average
with an average training time per epoch of 5 seconds. The
parameters of the GA approach are shown in Table 5. In the
end, the top five GA individuals for each labeling approach
are evaluated on the test set where both RMSE and S are
calculated. The GA individuals with the best result on the
test set for each labeling approach are shown in Table 6
and the corresponding RUL prediction accuracy are shown
in Table 7.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
The aim of this paper is to make a thorough comparison
of three different data-driven labeling approaches for RUL
predictions. The degradation significance within each of
the constructed run-to-failure targets is extremely important

for the RUL prediction performance of the proposed deep
network structure. First, the GA optimized networks, as seen
in Table 6, for the three labeling approaches are compared
with three different performance evaluations on both the
training set and the cross-validation set. Finally, the net-
work with the highest RUL prediction accuracy on the
test set is compared to the most robust results in the
literature.

A. COMPARISON BETWEEN THE DATA-DRIVEN LABELING
APPROACHES
The RMSEhz accuracy is considered an important perfor-
mance indicator since it evaluates how accurately the net-
works are able to model the true overall degradation process
in both the training set and cross-validation set. In addition,
high RMSEhz accuracy is critical in order to achieve reliable
confidence intervals for the corresponding RUL prediction
in real-life PHM applications. As shown in Table 7, the net-
work trained on PwL targets outperforms both the networks
trained on DS and ASF targets with respect to the RMSEhz
accuracy.

Both the RMSE and S accuracy are important performance
indicators since high and reliable RUL prediction accuracy at
the very end of the engines lifetime have great significance
for real-life PHM applications. Thus, RMSE and S are only
calculated at the last time step for each engine. It should be
noted that both RMSE and S is the overall accuracy of all
engines. In other words, the overall accuracy of 80 engines
in the training set, 20 engines in the cross-validation set,
and 100 engines in the test set. Additionally, to prevent
overfitting, both dropout and random white Gaussian noise
will reduce the accuracy on the training set compared to the
accuracy on the cross-validation set. As shown in Table 7,
the networks trained on PwL and DS targets perform with
satisfactory RMSE and S accuracy. The network trained on
ASF targets, however, performs with unacceptable RMSE
and S accuracy. This is mainly because the run-to-failure
targets decrease with increasing acceleration until failure.
Thus, the network struggles to predict the failure ASF tar-
get for each engine, that is, when RUL = 0 in both the
training set and the cross-validation set. This also indicates
that the predicted ASF targets are prone to late RUL pre-
dictions, namely, when RULpredicted − RULtrue > 0. This
reflects the extremely low S accuracy. Late RUL predic-
tions could cause serious system failures in real-life PHM
applications as maintenance operations will be scheduled too
late.

In Figure 7, engines 2, 21, 52, and 70 in the cross-validation
set are randomly selected for comparison. As previously
mentioned, all three labeling approaches utilize an optimized
Ri value for each engine. The high variance in Ri between
engines in a mini-batch makes it difficult for the networks
to predict the run-to-failure targets when the engines are
operating in normal condition. Additionally, each engine in
a mini-batch has different Tt . Thus, the shorter engines are
padded with zeros such that all Tt are equal. Accordingly,
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TABLE 6. GA individuals.

TABLE 7. The RUL prediction accuracy on subset FD001 for the three
data-driven labeling approaches.

TABLE 8. S and RMSE comparison with the literature on the test set of
subset FD001.

mask arrays are used during the training process in order
not to include the padded zeros in the performance eval-
uations. These masking arrays consist of the same value
for each engine. The values are 82.6, 88.2, and 95.5, for
the networks trained on PwL, DS, and ASF targets, respec-
tively. Each network starts to predict based on its masking
array value so that they do not start predicting on zero for
each engine. Thus, this predicting approach is not optimal
for the engines that are utilizing a Ri value either lower
or higher than the masking array value. This is illustrated
in Figure 7.

Nevertheless, the optimized Ri values are based on the
degradation process rather than the number of time steps.
Hence, the network trained on PwL targets predicts RMSEhz,
RMSE , and S with high accuracy after the predicted fault
time step, that is, in the faulty degradation data of the engines
lifetime. Thus, the optimized Ri values enable this network to

generalize well on data never seen before, namely, the test
set. Based on the superior results on the test set, the PwL
degradation model is able to construct the most reliable run-
to-failure targets for RUL predictions. PwL targets are also
highly suitable if the RUL is to be considered as a time-based
index, e.g., if the RUL decreases by one and the time step
increases by one. This could be highly relevant for real-life
PHM applications.

B. COMPARISON WITH THE LITERATURE
The network trained on PwL targets with optimized Ri values
was able to generalize well, and hence, performed the highest
RUL prediction accuracy on the test set. Thus, this network
is compared with the literature. The authors have tried to
include the most robust and recent results for comparison.
That’s why the well-known RULCLIPPER is also included.
The RULCLIPPER does not utilize any DL techniques to
make RUL predictions. Instead, it predicts the RUL based on
imprecise health indicators modeled by planar polygons and
similarity-based reasoning [33].

In Table 6, the selected studies are arranged in descending
order based on the year they are published. As opposed
to [33], the remaining studies utilize prognostics algorithms
based onDL techniques to predict the RUL. However, most of
these studies do not incorporate diagnostics information since
the algorithms are trained on PwL run-to-failure targets with
the same Ri value for all engines. On the other hand, the pro-
posed deep network in this study is trained on PwL run-
to-failure targets with optimized Ri values for each engine.
Thus, the network takes into account the diagnostics aspect
before making any RUL predictions. The high generalization
towards the test set indicates that the optimized Ri values
enable the network to model the true degradation process
within subset FD001. To the best of the authors’ knowl-
edge, the proposed deep network, when trained on PwL run-
to-failure targets with optimized Ri values, provides higher
RUL prediction accuracy on subset FD001 than any in the
literature.
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FIGURE 7. Cross-validation set comparison. (a) Engine 2 - PwL targets. (b) Engine 2 - DS targets. (c) Engine 2 - ASF targets. (d) Engine 21 - PwL targets.
(e) Engine 21 - DS targets. (f) Engine 21 - ASF targets. (g) Engine 52 - PwL targets. (h) Engine 52 - DS targets. (i) Engine 52 - ASF targets.
(j) Engine 70 - PwL targets. (k) Engine 70 - DS targets. (l) Engine 70 - ASF targets.

VI. CONCLUSION AND FUTURE WORK
This paper has compared three different data-driven label-
ing approaches for constructing run-to-failure targets.
Additionally, a deep network structure has been proposed
for RUL predictions. The experiments are performed on

subset FD001 in the publicly available C-MAPSS data set.
Most research studies that aim to predict the RUL based on
DL approaches are still using the PwL degradation model
to construct run-to-failure targets. This model assumes a
constant Ri value that only depends on time to model normal
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operating conditions. Hence, it neglects the entire diagnostics
aspect. As illustrated in this study, any supervised prognostics
algorithm should consider the diagnostics aspect before mak-
ing any RUL predictions to achieve higher and more reliable
accuracy. Thus, an unsupervised reconstruction-based fault
detection algorithm has been used in this study to predict the
fault time step for each engine. Then, an optimized Ri value
for each engine was obtained. These Ri values were then used
in the construction process of PwL, DS, and ASF run-to-
failure targets. Finally, the proposed deep network structure
was trained on the three different constructed run-to-failure
targets. Additionally, a GA approach was used to tune the
search space of hyper-parameters.

The network trained on PwL run-to-failure targets with
optimized Ri values outperformed both the networks trained
onDS andASF run-to-failure targets with respect to RULpre-
dictions. Additionally, this network outperformed the most
robust results in the literature. The optimized Ri values are
based on the individual degradation process in each engine.
Hence, the network predicts RMSEhz, RMSE , and S with
high accuracy in the faulty degradation data of the engine’s
lifetime. The optimized Ri values enable the network to gen-
eralize well on data never seen before. The strong general-
ization indicates that the network is able to model the true
degradation processes within the data set before making any
RUL predictions. In other words, the diagnostics aspect is
incorporated.

In this work, it was also discovered that the high variance
in Ri between engines in a mini-batch made it difficult for
the networks to predict the run-to-failure targets when the
engines were operating in normal condition. To solve this
issue we propose the following. First, aTh can be further opti-
mized in a more generic way for each engine. Second, the uti-
lization of bigger (more parameters) and possibly deeper
(more layers) networks. Finally, more training data with
more engines with similar degradation processes, namely,
with similar Ri values, would be favorable. Future work will
address these issues.

Subset FD001 only contains one fault mode and one
operating condition. If, however, several operating condi-
tions were introduced in the data set, the unsupervised
reconstruction-based fault detection algorithm could face
some problems since the sensor measurements might differ
strongly between different time steps with different operat-
ing conditions. This issue will also be explored in future
work.
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