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Abstract

A Lagrangian model has been derived that describes the size, species composition and velocity of an in-

dividual gas bubble as it ascends through a vertical column with stagnant liquid and exchanges mass with the

other phase. Various correlations for the liquid-side mass transfer coefficient for laminar flow have been im-

plemented in the Lagrangian model and the predictions are compared with available experimental data in the

literature. The predictability of the Lagrangian model is in general not acceptable due to the limitations of the

available theoretical framework employed for deriving the existing correlations for the mass transfer coefficient.

The various mass transfer coefficients give very different simulation results, and furthermore, the experimental

data show a transient behavior in the change of bubble size due to mass transfer which is not captured by the

Lagrangian model. An over- or underestimation of the interface mass transfer flux will give an erroneous change

of bubble size, which may have significant influence on the predicted bubble rise velocity - in particular if the

drag coefficient is very sensitive to the size of the bubble. It is emphasized that the cause of discrepancy between

the simulation results and experimental data is not due to the Lagrangian model but mainly caused by the lack

of good models for the mass transfer coefficient.

Keywords:

Lagrangian model; mass transfer coefficient; bubbles; interface mass transfer

1 Introduction

Many industrial processes depend on interface gas–liquid mass transfer to or from gas bubbles rising in liq-

uids. Distillation, fermentation, sewage treatment, and chemical reactors such as the bubble column and slurry

column are examples. Much research on gas–liquid mass transfer has been performed in bubble swarms and

concentrated on the establishment of correlations for the volumetric mass transfer coefficient, kLa. Many phys-

ical and mechanical factors contribute to the mass transfer coefficient kL and the specific bubble surface area

a, and their combined effect in the volumetric mass transfer coefficient cannot be easily predicted. To better

understand the phenomena involved, researchers have thus suggested to perform the mass transfer experiments

of bubble swarms by measuring changes in bulk liquid concentration during which also the average bubble size

is determined (Alves et al., 2004; Calderbank and Moo-Yong, 1961; Sardeing et al., 2006). As an alternative to

1



the experimental study of mass transfer in bubble swarm systems, the phenomena of mass transfer can be studied

by performing measurements on individual bubbles in a liquid column. Basically, two experimental approaches

have been used in mass transfer experiments of individual bubbles: (i) the bubble is rising in a column with

stagnant liquid (Baird and Davidson, 1962; Barnett et al., 1966; Bischof et al., 1991; Calderbank et al., 1970;

Calderbank and Lochiel, 1964; Davenport et al., 1967; Deindoerfer and Humphrey, 1961; Garbarini and Tien,

1969; Hosoda et al., 2014; Koide et al., 1976, 1974; Leonard and Houghton, 1963; Mortarjemi and Jameson,

1978; Raymond and Zieminski, 1971; Redfield and Houghton, 1965; Zieminski and Raymond, 1968) and (ii)

the bubble is released in a counter-current liquid flow and held stationary by balancing the buoyancy with the

downward liquid flow (Alves et al., 2005, 2006; Hosoda et al., 2014; Olsen et al., 2017; Vasconcelos et al.,

2002). The second approach is favorable for cases where the mass transfer is slow so that the bubble needs to be

monitored over a long time frame (see e.g. Olsen et al., 2017). This work will consider the first approach only.

Table 1 provides an overview of the experimental studies in approach (i).

In general, the experimental approaches for mass transfer of single bubbles rising in a column with stagnant

liquid are divided into the photographic-, pressure- and concentration based techniques (Bischof et al., 1991;

Calderbank and Lochiel, 1964; Deindoerfer and Humphrey, 1961; Garbarini and Tien, 1969). In the photo-

graphic methods, the history of bubble size and position as it rises in the column is recorded and the data can be

used to compute kL. For example, the quatities obtained from images for computing kL in the work by Garbarini

and Tien (1969) were bubble volumn, bubble location, their time derivatives, and bubble surface area. In the

pressure based techniques, the experimental set-up is designd to allow record of the pressure changes caused by

the change in bubble size (Calderbank and Lochiel, 1964). Gas chromatography has been used in the concentra-

tion based techniques to determine the change in gas mixture-composition of a gas volume-sample made from

bubbles of known size (Bischof et al., 1991).

Most of the single-bubble mass-transfer experiments have determined kL as function of bubble size and

analysed its sensitivity to bubble age and surface-active materials (e.g., Baird and Davidson, 1962; Calderbank

and Lochiel, 1964; Deindoerfer and Humphrey, 1961; Koide et al., 1976, 1974). Only a fraction of the limited

number of studies on single-bubble mass transfer have compared experimentally determined kL-values with

predictions of theoretical models (Baird and Davidson, 1962; Deindoerfer and Humphrey, 1961; Mortarjemi

and Jameson, 1978). Such analyses have been limited to graphs with experimental values for kL as function of

bubble diameter and with one or few theoretical model predictions.

In the present study, a number of theoretical models for kL have been analyzed using a Lagrangian model

description of a single bubble rising in a column with non-flowing liquid. The Lagrangian model predicts the

change in bubble volume and – for multicomponent systems – gas mixture composition as it rises through the

column due to buoyancy and exposes to the mass transfer phenomenon and the hydrostatic pressure gradient.

The numerical results of the Lagrangian model have been compared to experimental data from the literature. The

approach of using a Lagrangian model have not previously been employed in such examination of the theoretical

models for kL.
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2 Theory and modeling

First, the theoretical concept for interface bubble–liquid mass transfer is presented. Thereafter, a Lagrangian

model describing the mass transfer of a bubble rising in stagnant liquid is derived.

2.1 Interface bubble–liquid mass transfer

In figure 1, the liquid- and gas phase are separated by a gas–liquid interface. The volumetric rate of mass transfer

of species c from the gas-phase bulk to the gas-side interface is

NG,c = kG,ca(CG,c − CG,I,c) (1a)

and the volumetric rate of mass transfer of species c from the liquid-side interface to the liquid-phase bulk is

NL,c = kL,ca(CL,I,c − CL,c) (1b)

At steady state there is no accumulation of species c at the interface. Any species c transported through the

liquid-side interface must also be transported through the gas-side interface. Hence, NG,c = NL,c = Nc. To

avoid problems with determining interface concentrations, the we assume that equilibrium will be attained at the

interface:

CG,I,c = HcCL,I,c (2)

Relation (2) is substituted into (1a) and (1b):

Nc = kG,ca(CG,c −HcCL,I,c) (3a)

Nc = kL,ca(
CG,I,c

Hc
− CL,c) (3b)

Equation (1b) is multiplied by Hc and the resulting equation is added to (3a). The result can be written as

Nc =

(
1

kG,ca
+

Hc

kL,ca

)−1
(CG,c −HcCL,c) = KG,ca(CG,c −HcCL,c) (4)

where the overall mass transfer coefficient KG,c is defined by

1

KG,ca
=

1

kG,ca
+

Hc

kL,ca
(5)

Similarly, equation (1a) is multiplied by 1/Hc and the resulting equation is added to (3b):

Nc =

(
1

HckG,ca
+

1

kL,ca

)−1(
CG,c

Hc
− CL,c

)
= KL,ca

(
CG,c

Hc
− CL,c

)
(6)
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where the overall mass transfer coefficient KL,c is defined by

1

KL,ca
=

1

HckG,ca
+

1

kL,ca
(7)

We observe that the interface concentrations have been eliminated from the expressions for Nc in (4) and (6).

gas
phase

liquid
phase

CL,c

CG,c

CL,I,c

CG,I,c

mass flux of c

Figure 1: Mass transfer across a gas–liquid interface.

A conventional notation used is to letHcCL,c in (4) be denoted byC∗G,c and letCG,c/Hc in (6) be denoted by

C∗L,c. The molar based Henry’s law Cg,c = HcCl,c can be expressed in terms of mass density by multiplication

with molecular mass on both sides of equality, which yields ρg,c = Hcρl,c. If species c is poorly soluble in the

liquid, the liquid-phase mass transfer resistance dominates and kG,ca is much larger than kL,ca. From relation

(7), this means that KL,ca is approximated by kL,ca. For the case where species c is largely soluble in the liquid

phase so that kL,ca� kG,ca, KG,ca is approximated by kG,ca from relation (5). Hence, for the case where the

main resitance to mass transfer is mainly due to the gas-side interface we have

Nc = kG,ca(CG,c − C∗G,c) (8a)

Hence, for the cases where the main resistance to mass transfer is mainly due to the liquid-side interface we can

write

Nc = kL,ca(C∗L,c − CL,c) (8b)

Appendix A outlines theoretical concepts for the mass transfer coefficient kL.

2.2 A Lagrangian model for mass transfer between liquid and a single bubble

A material control volume holds a collection of matter of fixed identity within its control surface. The model

framework for analysis of motion of a material control volume is termed Lagrangian. In the following, a La-

grangian model is derived for a single bubble rising in a stagnant liquid column (see figure 2). Here, the bubble–

liquid interface defines the surface to the material control volume. The bubble interacts with its surroundings

such that the momentum balance of the bubble is influenced by the hydrostatic- pressure-, gravity-, and drag

forces. Furthermore, the total mass of the bubble, as well as the species composition in the case of a multi-

component system, change due to the mass transfered across the gas–liquid interface. The resulting Lagrangian
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model of the single bubble constitutes a set of ordinary differential equations (and closure laws), which in the

present work has been solved using the build-in ode15s-solver in MATLAB (2017a). The following model

derivation make use of the Leibniz and Gauss theorems which are provided in Appendix B.

z
z′

stagnant
liquid

gas
bubble

nozzle

gas feed

Figure 2: Single bubble rise in a vertical column with stagnant liquid.

2.2.1 Bubble size

In this work, we are interested in the change of bubble size due to hydrostatic pressure and mass transfer across

the gas–liquid interface. The size of the bubble can be determined from the total mass balance.

In the Lagrangian model framework, the total mass of a bubble is formulated as

mb(t) =

∫
Vb(t)

ρg(r, t) dv (9)

The differentiation of (9) with time is written as

dmb

dt
=

d

dt

∫
Vb

ρg dv (10)

Applying the Leibniz rule to the RHS of (10) results in (Morel, 2015, Eq. 2.66)

d

dt

∫
Vb(t)

ρg dv =

∫
Vb(t)

∂ρg
∂t

dv +

∮
Sb(t)

ρgug · ng ds+

∮
Sb(t)

ρg(uI − ug) · ng ds (11)

The Gauss theorem is used to rewrite the first surface integral of (11) into a volume integral and the resulting

equation is substituted into (10), which results in

dmb

dt
=

∫
Vb(t)

[
∂ρg
∂t

+∇ · (ρgug)

]
dv +

∮
Sb(t)

ρg(uI − ug) · ng ds (12)

The conservation principle of mass (13) governs inside the bubble volume, hence the volume integral on the
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RHS of (12) vanishes.

∂ρg
∂t

+∇ · (ρgug) = 0 (13)

Let us define the quantity ṁ as the mass gain for the bubble per unit surface and time (Morel, 2015, Eg. 2.17):

ṁ = ρg(uI − ug) · ng (14)

Here, we model the interface coupling term ρg(uI − ug) · ng as (i.e. make a closure law)

ρg(uI − ug) · ng :=
∑
c

kL,c(ρl,c − ρ∗l,c) =
∑
c

kL,c(ρl,c − ρg,c/Hc) (15)

where ρ∗l,c = ρg,c/Hc assumes a spherical bubble. Table 3 provides the Henry’s constant for CO2, N2 and O2 at

298K and 1 atm. With the assumption of an uniform mass transfer condition over the entire bubble surface, we

have∮
Sb(t)

ṁ ds = ṁSb (16)

where Sb = πd2b . In terms of (13), (14) and (16), equation (12) can be written as

dmb

dt
= ṁSb (17)

Assuming that there is no mass density gradient in the bubble, then the total mass of the bubble is related with

the bubble volume through the relation mb = ρgVb. Hence, (17) can be expressed in terms of bubble volume

instead of bubble mass as

d

dt
(ρgVb) = Vb

dρg
dt

+ ρg
dVb
dt

= ṁSb

⇒ dVb
dt

= −Vb
ρg

dρg
dt

+
ṁSb

ρg

(18)

The bubble is assumed spherical so that the volume and diameter are related by Vb = (π/6)d3b .

Please also consult appendix C.

2.2.2 Bubble velocity

The bubble rise velocity can be determined from the bubble momentum balance. In the Lagrangian framework,

the conservation of momentum of the bubble can be written as

mb(t)wb(t) =

∫
Vb(t)

ρg(r, t)vb(r, t) dv (19)
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where wb is the center of mass velocity of the bubble. The differentiation of (19) is given as

d

dt
(mbwb) =

d

dt

∫
Vb(t)

ρgvb dv (20)

Leibniz RHS of (20) (Morel, 2015, Eq. 2.68)

d

dt

∫
Vb(t)

ρgvb dv =

∫
Vb(t)

∂

∂t
(ρgug) dv +

∮
Sb(t)

ρgugug · ng ds+

∮
Sb(t)

ρgug(uI − ug) · ng ds (21)

The Gauss theorem is applied to transform the first surface integral of (21) into a volume integral. Equation (20)

can thus be expressed as

d

dt
(mbwb) =

∫
Vb(t)

[
∂

∂t
(ρgug) +∇ · (ρgugug)

]
dv +

∮
Sb(t)

ρgug(uI − ug) · ng ds (22)

where the surface integral of (22) can be expressed in terms of ṁ defined by (14). Furthermore, the equation of

momentum (23) governs in the bubble volume, and the LHS of (23) is recognized as the integrand of the volume

integral of (22).

∂

∂t
(ρgug) +∇ · (ρgugug) = −∇

(
phydrostat + pdyn

)
−∇ · σ − ρggez (23)

The hydrostatic force is given as (Crowe et al., 1998, sec. 4.3.2)

Fhydrostat =

∮
Sb(t)

−phydrostatng ds =

∫
Vb(t)

−∇phydrostat dv (24)

where the Gauss theorem is used in the latter equality. By assuming the pressure gradient is constant over the

bubble volume, (24) simplifies to Fhydrostat = −∇phydrostatVb. Furthermore, let the pressure gradient be produced

by the hydrostatic pressure, i.e. ∇phydrostat = −ρlgez , then we obtain

Fhydrostat = ρlgVbez (25)

Hence, the force is equal to the weight of liquid displaced by the bubble volume (i.e., the Archimedes principle).

The hydrodynamic force is defined by (Jakobsen, 2014, Eq. 5.6)

Fhydrodyn = −
∮

Sb(t)

(
pdynI + σ

)
· ng ds (26)

The hydrodynamic force is composed of contributions such as steady drag, history, lift and virtual mass forces

(Jakobsen, 2014, Eq. 5.7):

Fhydrodyn = FD + Fhist + FL + FV (27)

7



Here, we will only consider the steady drag force defined as (Crowe et al., 1998, sec. 4.36)

FD =
1

2
ρlCDA

p
b |wl −wb|(wl −wb) (28)

where Ap
b = Sb/4 is the projected area of the bubble. Equation (22) can thus be expressed as

d

dt
(mbwb) = ρlgVbez −mbgez +

1

2
ρlCDA

p
b |wl −wb|(wl −wb) + ṁugSb (29)

Introducing the assumptions of a stagnant liquid phase, uniform gas velocity in the bubble volume wb = ug ,

and bubble motion in only the z-direction. Equation (29) can thus be written as

d

dt
(mbug,z) = ρlgVb −mbg −

1

2
ρlCDA

p
b |ug,z|ug,z + ṁug,zSb (30)

Table 4 provides the drag correlations proposed by Tomiyama et al. (1998) for bubbles in clean-, partly contaminated-

, and contaminated water systems.

2.2.3 Bubble pressure

The Young-Laplace equation gives the phase pressure difference across bubble interface (Probstein, 1994, Eq.

10.1.6):

∆p = pg − pl =
−4σ

db
(31)

For the bubble-liquid systems of interest in the present study, the interface tension term is negligible compared

to the liquid pressure. Hence,

pg = pl +
−4σ

db
≈ pl (32)

2.2.4 Bubble species mass balances

The species mass balance is required if the bubble is composed of a gas mixture. The mass of species c in the

bubble is

mb,c(t) =

∫
Vb(t)

ρg,c(r, t) dv (33)
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Equation (33) is differentiated with time:

dmb,c

dt
=

d

dt

∫
Vb(t)

ρg,c dv

=

∫
Vb(t)

∂ρg,c
∂t

dv +

∮
Sb(t)

ρg,cug,c · ng ds+

∮
Sb(t)

ρg,c(uI − ug,c) · ng ds

=

∫
Vb(t)

[
∂ρg,c
∂t

+∇ ·
(
ρg,cug,c

)]
dv +

∮
Sb(t)

ρg,c(uI − ug,c) · ng ds

=

∮
Sb(t)

ρg,c[(uI − ug)−Ug,c] · ng ds

=

∮
Sb(t)

[ρg,c(uI − ug) · ng − Jg,c · ng] ds

(34)

Here, it is used that ∂ρg,c/∂t +∇ ·
(
ρg,cug + Jg,c

)
= ∂ρg,c/∂t +∇ · (ρg,cug,c) = 0 as there is no chemical

reactions in the bubble volume. Furthermore, the species velocity is the sum of mass average velocity and

diffusion velocities, i.e. ug,c = ug + Ug,c. We continue the derivation by introducing the quantity ṁc as the

mass gain of species c for the bubble per unit surface and time (Jakobsen, 2014, Eq. 3.93):

ṁc = ρg,c(uI − ug) · ng − Jg,c · ng

= kL,c

(
ρl,c − ρ∗l,c

)
= kL,c

(
ρl,c − ρg,c/Hc

) (35)

where (see Eq. 14)

ṁ =
∑
c

ṁc (36)

Hence, equation (34) can be written as

dmb,c

dt
= ṁcSb (37)

The latter equation can alternatively be rewritten using the relation mb,c = Vbρgωg,c:

d

dt

(
Vbρgωg,c

)
= Vbρg

dωg,c

dt
+ ωg,c

d

dt

(
Vbρg

)
= ṁcSb

⇒ dωg,c

dt
=
ṁcSb

Vbρg
− ωg,cṁSb

Vbρg

(38)

where (18) has been used.
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2.2.5 Liquid phase pressure

The momentum equation of the liquid phase is deduced from the gross-scale averaged Euler-Euler model (Jakob-

sen, 2014, Eq. 3.502):

−αl
dpl
dz

+ αlgzρl = 0 (39)

where αl ≈ 1. Equation (39) is integrated:

pl(z) = pa + gρl(L− z) (40)

where pa = pl(z = L) is the atmospheric pressure.

2.2.6 Liquid phase species mass balances

We assume that the change in the liquid phase composition is negligible during the mass transfer process of a

single rising bubble. Hence a constant value for ρlωl,c is specified for the system.

2.2.7 Other relations

The ideal gas law mbRTg = VbM̄gpg is differentiated as follows (for constant temperature system)

dρg
dt

=
d

dt

(
M̄gpg
RTg

)
=

M̄g

RTg

dpg
dt

+
pg
RTg

dM̄g

dt
(41)

The derivative dz/dt is identified as the instantaneous bubble velocity (Garbarini and Tien, 1969):

dz

dt
= ug (42)

Hence, equation (42) is used to relate the velocity of the rising bubble with its position in the liquid column.

Expressions for the derivatives dpg/dt and dM̄g/dt on the RHS of (41) are given as, respectively (Deindoerfer

and Humphrey, 1961)

dpg
dt

=
d

dt

(
pa + gρl[L− z(t)]

)
= −gρl

dz

dt
= −gρlug (43)

(where (40) and (42) are used) and

dM̄g

dt
=
∑
c

Mc
dωg,c

dt
(44)

The following dimensionless groups are used in the present modeling study. The bubble Reynolds number

gives the ratio between the inertial resistance to viscous resistance for a flowing fluid:

Re =
ρl|urel|db

µl
(45)

10



The Schmidt number is defined as the ratio of momentum diffusivity (kinematic viscoisty) and mass diffusivity:

Sc =
µl

ρlD
(46)

The Eötvös number gives the ratio between the gravitational and surface tension forces:

Eo =
(ρl − ρb)gd2b

σ
(47)

The Galilei number gives the gravitational over viscous forces:

Ga =
ρ2l gd

3
b

µ2
l

(48)

The Grashof number is the ratio of buoyancy to viscous force (Calderbank and Moo-Yong, 1961):

Gr =
d3bρl∆ρg

µ2
l

(49)

The Sherwood number is expressed in terms of the mass transfer coefficient as

Sh =
kLdb
D

(50)

In mass transfer problems, the Sherwood number often depends on dimensionless groups such as the Reynolds

number and Schmidt number; Sh = φ(Re,Sc), the Galilei number and Schmidt number; Sh = φ(Ga,Sc), or the

Grashof number and Schmidt number; Sh = φ(Gr,Sc) (see Table 5).

2.2.8 Model assumptions

The experiments by Garbarini and Tien (1969) and Deindoerfer and Humphrey (1961) consider bubbles of pure

CO2-gas. In both of these experiments it is assumed that the CO2-concentration in the liquid-phase is negligible.

The liquid was degassed in the work by Garbarini and Tien (1969), hence the balance of mass in the Lagrangian

model is limited to the total continuity equation only. Deindoerfer and Humphrey (1961) saturated the liquid

with helium before the bubbles was injected, hence a consistent Lagrangian model should include species mass

balances for CO2 and helium. In addition to mass transfer of CO2 from bubble to liquid, helium might also be

transferred from liquid to bubble. It is reasonable to assume that the concentration of helium in the liquid is

equal to the maximum concentration of helium that can be dissolved.

The experiment by Bischof et al. (1991) considers a binary gas mixture of oxygen and nitrogen (air bubbles).

In this case the Lagrangian model must include the species mass balances for these components. The liquid

was saturated with nitrogen before the bubbles were injected, hence the liquid concentration of nitrogen in the

Lagrangian model was set equal to the maximum concentration of nitrogen that can be dissolved in the medium.

Furthermore, it is assumed that the oxygen content in the liquid-phase can be neglected compared to that in the

gas-phase.
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3 Results and discussion

3.1 Mass transfer correlations

Both bubble rise velocity and interface mass transfer between bubble and surrounding liquid depend on water

purity. According to Olsen et al. (2017), only distilled water usually qualifies as a clean condition. Contaminated

water may contain surface-active components; known as surfactants, which affect (i.e. reduce) the bubble surface

mobility. The intermediate impurity condition is commonly referred to as partly contaminated.

The bubble Reynolds number is required in the kL-correlations (Tab. 5) by Higbie (1935) (K1), Frössling

(1938) (K2), Hughmark (1967) (K5), Brauer (1979) (K7), Bird et al. (1960) (K8), and Clift et al. (1978) (K9).

On the other hand, the kL-correlations by Calderbank and Moo-Yong (1961) (K3), Baird and Davidson (1962)

(K4), and Clift et al. (1978) (K6) do not depend on the bubble Reynold number and consequently the prediction

of interface mass transfer flux by these models is insensitive to the bubble hydrodynamics (i.e. bubble rise

velocity). The correlations for mass transfer listed in Tab. 5 are plotted in Figure 3 as function of bubble

diameter. In particular, for correlations K1, K2, K5, and K7–K9, which depends on the bubbly hydrodynamics,

the bubble Reynolds number (45) is computed from the terminal bubble velocity obtained from Eq. (51) with

the Tomiyama et al. (1998) drag coefficient for (i) clean water and (ii) contaminated water (D1 and D3 in Tab.

4, respectively). Partly contaminated water (drag coefficient D2 in Tab. 4) is not shown in Figure 3 but the

kL-correlations K1, K2, K5, and K7–K9 takes values in between the limits of (i) and (ii) (notice the similar

terminal velocity of clean and partly contaminated condition in Figure 8).
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Figure 3: Plot of the mass transfer correlations in Tab. 5. kL-correlations indepen-
dent of Reynolds number (left), terminal velocity and drag coefficient
for clean system (middle), and terminal velocity and drag coefficient for
contaminated system (right).

The kL-coefficient is a function of bubble rigidity. The upper values of kL occur for a bubble with a totally

mobile surface (i.e. clean condition) and the lower values of kL occur for a bubble with totally rigid surface

(i.e. contaminated condition) (Alves et al., 2005). In partly contaminated conditions, small bubbles will behave
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as bubbles with a rigid interface and large bubbles will behave as bubbles with a mobile interface (Olsen et al.,

2017). This phenomena occurs because the impurities are present in relatively small concentrations such that

fast rising bubbles; which are typically the large bubbles, are able to shed the surrounding layer of contaminated

conditions and thus keep the interface relatively mobile (Olsen et al., 2017).

The kL-correlation by Higbie (1935) is derived for totally mobile interfaces (i.e. clean condition) (Alves

et al., 2005). This coincide with Figure 3 where K1 predicts an upper limit among the plotted kL-correlations. A

consistent implementation of the Lagrangian model should therefor combine the Higbie (1935) (K1) correlation

with the drag coefficient for clean systems (i.e. D1 in Tab. 4).

From Figure 3, the kL-correlations by Calderbank and Moo-Yong (1961) (K3), Brauer (1979) (K7) and Clift

et al. (1978) (K9) predict lower kL-values for smaller bubbles and higher kL-values for larger bubbles. These

kL-correlations are thus suitable for partly contaminated conditions. Correlations K3, K7 and K9 should be

combined with the drag coefficient for partly contaminated system (i.e. D2 in Tab. 4) to obtain a consistent

Lagrangian model.

Frössling (1938) derived a kL-correlation for rigid interfaces (i.e. contaminated conditions) (Alves et al.,

2004). From Figure 3 we observe that K2 predicts a lower value for the mass transfer coefficient. Similar

predictions of the kL-value is obtained with the kL-correlations by Hughmark (1967) (K5), Clift et al. (1978)

(K6) and Bird et al. (1960) (K8). A consistent Lagrangian model should thus combine the drag coefficient for

contaminated conditions (D3 in Tab. 4) with either K2, K5, K6, or K8.

The kL-correlation by Baird and Davidson (1962) (K4) is strictly valid only for bubble diameters in between

14 and 73 mm. The range of validity of K4 explains its different prediction of the kL-coefficient compared to

the other kL-correlations for the smaller bubble sizes in Figure 3.

There is a general trend in Figure 3 that those models with a dependency as Sc1/2 apply to free-slip on

the bubble surface, i.e. clean systems, whilst those models with a dependency as Sc1/3 apply to no-slip on the

bubble surface, i.e. interface with impurities (i.e. partly- and contaminated conditions). See also Tables 5 and 6.

The discussion above is summarized in Table 6.

3.2 Lagrangian model prediction versus experimental data

The numerical solution of the Lagrangian model presented previously has been compared with available sets of

experimental data for individual bubbles exposed to mass transfer as they rise in a column with stagnant liquid.

3.2.1 Experimental data by Bischof et al. (1991)

Bischof et al. (1991) studied mass transfer from individual air bubbles into water of different quality. The bubbles

were released at the bottom of a column and collected at different heights in a diver and the gas composition was

analyzed by gas chromatography. Before the bubbles were fed into the column, the liquid was deoxygenated

by aerating the column with nitrogen such that the liquid was completely saturated with nitrogen. Hence, in

addition to mass transfer of oxygen from the bubble into the liquid, there may have also been mass transfer of

nitrogen from the liquid into the bubble as the nitrogen concentration in the water is very high compared to that

inside the bubble.
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The relative amount of oxygen transferred from an air bubble to the liquid (distilled water) is shown in figure

4 for two bubble sizes: 0.9 and 2.0 mm. It is observed from the experimental data of Bischof et al. (1991) that

the mass transfer flux of oxygen depends on the initial bubble size for the two size classes presented. We also

notice that the correlations for the mass transfer coefficient kL in table 5 depend on the bubble size (see also

Fig. 3). The kL-correlations listed in table 5 are implemented in the present Lagrangian model and compared

to the experimental data. In general, the various kL-correlations give very different predictions of the mass

transfer phenomena. For the smaller initial bubble size, the kL-correlations by Baird and Davidson (1962) (K4)

and Brauer (1979) (K7) predict the experimental data best. For the larger initial bubble size, the best model

prediction is obtained with the kL-correlations by Higbie (1935) (K1) and Clift et al. (1978) (K9). For the

smaller initial bubble size, the model predictions with the various kL-correlations are in the range of about 20–

80% transferred oxygen from the bubble when it reaches the top of the column, while it is in the range of 5–35%

for the larger initial bubble size. The experimental values are 42% and 38%, respectively.

In figure 5, bubbles with initial diameter of 1.3 mm are analyzed in liquids of different quality. Figure 5

shows that the liquid purity (distilled- and waste water) influences significantly on the amount of transferred

oxygen from bubble to liquid. Among the kL-correlations in table 5, the best model prediction in the case of

distilled water is obtained with the correlations by Higbie (1935) (K1) and Clift et al. (1978, Eq. 5-37) (K9),

and the correlation by Hughmark (1967) (K5) gives the best model prediction in the case of waste water. These

simulation results are in agreement with the textcolorMyColorpreviously discussed classification of the kL-

correlations according to clean, partly contaminated and contaminated systems (see Fig. 3). We also notice that

the best model prediction of the mass transfer experiments for 1.3 mm initial bubble diameter (Fig. 5) and 2 mm

initial bubble diameter (Fig. 4) in distilled water, are obtained with the K1-correlation for fully mobile bubble

interface and the K9-correlation for partly contaminated system. On the other hand, for 0.9 mm initial bubble

diameter in distilled water (Fig. 4), the K1-correlation significantly over-predicts the mass transfer process.

This observation is surprising considering that the same water quality (i.e. distilled) is expected in both the

experimental runs with the 0.9 and 2 mm initial diameter bubbles.

The kL-correlation by Baird and Davidson (1962) (K4) predicts the mass transfer process well for the 0.9

mm initial bubble diameter in Figure 4. This is surprising considering that this kL-correlation is developed for

large bubble diameters (i.e. 14–73 mm). Furthermore, K4 shows an increasing value of the kL-coefficient with

decreasing bubble size (see Fig. 3) which is contradictory to the behavior of the other kL-correlations and also

in conflict with the generally accepted literature that smaller bubbles are rigid which reduces the kL-coefficient

(Doran, 2013).

There is a significant limitation in the experimental data set provided by Bischof et al. (1991) for proper

validation of the present Lagrangian model due to the fact that the kL-correlations quantifies how fast species

are moving across an interface. That is, in these experiments the amount of oxygen transferred from the bubble to

the liquid is only given as function of position in the vertical column. The total mass of oxygen transferred from

the bubble to the liquid is not only determined by the total mass transferred but also affected by the residence

time of the bubble in the liquid (i.e. bubble rise velocity). Information on the time taken for a bubble to rise

through the vertical liquid column, i.e., the position of bubble in the column as function of time, is required in

order to analyze the bubble hydrodynamics which determines the available time for mass to move across the
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interface during the experiments. This time consideration of single bubble mass transfer experiments is included

in the data sets provided by Garbarini and Tien (1969) and Deindoerfer and Humphrey (1961) discussed in the

following.
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Figure 4: O2 transferred from a bubble with initial bubble diameters of 0.9 mm
(left) and 2 mm (right) in distilled water. Experimental data by Bischof
et al. (1991, Fig. 5). Left figure: K6 and K8 (and K3) overlap. Right
figure: K2, K3 and K6 overlap.

3.2.2 Experimental data by Garbarini and Tien (1969)

Garbarini and Tien (1969) investigated mass transfer from single CO2 bubbles rising through degassed water.

Both photographic- and pressure based methods were analyzed.

In figure 6, the change of bubble size (with initial diameter of 5.2 mm) is given along with the information

on bubble position in the vertical column as well as the time taken from the release of the bubble. Here, a

representative selection of the kL-correlations in table 5 is presented. The experimental data for the change in

the bubble diameter shows a significant larger gradient the first second after the bubble release. This dynamic is

not captured by the Lagrangian model, which predicts a linear reduction of the bubble diameter with time. The

effect of bubble age on experimentally determined kL-values are discussed in the literature (Alves et al., 2004;

Deindoerfer and Humphrey, 1961) but remains to be further elaborated.

There are large differences in the predicted bubble diameter at the outlet of the vertical column, i.e. between

0 and 4.8 mm, for the various kL-correlations analyzed, while it is 2.45 mm in the experimental measurement

(see fig. 6). Although there are significant differences in the predicted bubble size by the Lagrangian model

as shown in Fig. 6, the variations have minor influence on the bubble rise velocity. Figure 6 shows that the

Lagrangian model prediction of the vertical bubble position with time agrees very well with the experimental
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Figure 6: Change in size and axial position for a CO2-bubble rising in stagnant
distilled water. (Garbarini and Tien, 1969, Figs. 4 and 5).

3.2.3 Experimental data by Deindoerfer and Humphrey (1961)

Deindoerfer and Humphrey (1961) designed the equipment to permit determination of bubble size and liquid
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head by photographing a single CO2 gas bubble as it ascended through a vertical column filled with water.

The sketch of the experimental set-up indicated that the water was saturated with helium before the bubble

experiments, hence the measured bubble size might have been influenced by mass transfer of helium from the

liquid phase to the gas phase. However, as the solubility of helium is low, i.e. 0.0015 gram helium per kg

water at 25 degree Celsius, the predictions of the mass transfer process by the Lagrangian model showed minor

differences between the two cases of completely degassed water and water saturated with helium.

Deindoerfer and Humphrey (1961) did not provide any information on the quality of the water used in

their mass transfer experiments. Hence, the drag coefficient by Tomiyama et al. (1998) for both clean and

contaminated systems were implemented in the Lagrangian model and analyzed.

Figure 7 shows that the changes in bubble size and bubble liquid head with time can be fairly predicted only

the first two seconds after the bubble is released in the water. In contrast to the results in figure 6 (Garbarini and

Tien, 1969), there are significant deviations between the Lagrangian model predictions and experimental data for

the vertical bubble position in the column. An explanation for this can be given based on figure 8. Here, the drag

coefficient correlations by Tomiyama et al. (1998) (tab. 4) are plotted along with the resulting terminal velocities.

The terminal velocities plotted in figure 8 are computed from force balances including gravity, buoyancy and

drag, which results in (Olsen et al., 2017)

ut = [4gdb(ρl − ρg)/(3CDρl)]
(1/2) (51)

The terminal velocity of this equation is obtained in an iterative manner together with the expression for drag

coefficient (see table 4). In figure 7, the experimental bubble diameter is 2.7 mm at the release point and it

reduces to 1.2 mm at the top of the vertical column. Figure 8 reveals that there are significant gradients in the

drag coefficients and terminal velocities for this bubble size range. In contrast, such large gradients are not

present for larger bubble diameters such as in the case of figure 6 (Garbarini and Tien, 1969) which give better

agreement with the experimental data for the bubble rise velocity.

Figure 7 (Deindoerfer and Humphrey, 1961) supports the observation made previously in figure 6 (Gar-

barini and Tien, 1969) that there are in general week agreements between experimental data for bubble size and

Lagrangian model predictions. Furthermore, also for this case the various kL-correlations implemented in the

Lagrangian model give very different predictions of the experimental data.

3.2.4 Dynamic trend in the data by Garbarini and Tien (1969) and Deindoerfer and Humphrey

(1961)

In both the experimental data by Garbarini and Tien (1969) and Deindoerfer and Humphrey (1961) there is a

dynamic trend in the bubble size as function of time, i.e. there is a greater gradient of bubble size reduction

just after bubble injection than it is observed for the bubble when it has traveled further up in the water column.

None of the kL-correlations in Table 5 capture this dynamics. The kL-coefficient strongly depends on whether

contaminants are present or not (see Fig. 5).

According to the discussion by Alves et al. (2004), experiments have shown that a bubble surface may be

free of surfactants when formed but its behavior changes in time as contaminants accumulate at the interface,
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and this may explain why kL depends on time. These authors also point out that larger bubbles remain mobile

for a longer period, because they are slower to accumulate enough impurities for transition to rigidity and may

be a reason why larger bubbles tend to be mobile while smaller bubbles tend to be rigid. Alves et al. (2005)

highlighted that there exist few experimental studies on the simultaneous decrease in mass transfer and terminal

velocity as a bubble gets contaminated.

Although distilled water (and thus presumable contaminated-free system) was used in the experiments by

Garbarini and Tien (1969), the effect of accumulation of contaminates on the bubble surface (as discussed by

Alves et al. (2004)) seems to have taken place in these experiments. In this context, it is interesting to note

that the bubble-size data by Garbarini and Tien (1969) in Figure 6 for times larger than one second have about

the same gradient as the kL-correlations K2 (Frössling, 1938) and K5 (Hughmark, 1967) for rigid bubbles,

or contaminated conditions. On the other hand, for the initial times less than one second, none of the kL-

correlations for nor clean, partly-contaminated or contaminaded conditions capture the slope of the bubble-size

change. In the experiments by Deindoerfer and Humphrey (1961) provided in Figure 7, the kL-correlation by

Brauer (1979) (K7) capture the gradient of the bubble-size change the first four seconds after bubble release.

The K7-correlation is for partly contaminated conditions. The bubble size change after four seconds has about

the same gradient as that of the kL-correlations by Bird et al. (1960) (K8) for contaminated systems, but with a

different starting point for the bubble size.

3.2.5 The Lagrangian model

The interface mass transfer process is complex and affected by time and space dependent key factors such as

interface diffusion and convection, surrounding flow field of the bubble, interface impurities, as well as bubble

surface deformations. For a bubble rising in a stagnant liquid, the conditions for mass transfer may differ

significantly between the top and bottom regions of the bubble surface.

In the Lagrangian model, a set of ordinary differential equations are used to describe the evolution of bubble

volume, bubble rise velocity, and species composition of the bubble in a multicomponent system. The phe-

nomena taking place in the mass transfer process between the bubble and surrounding liquid is lumped into

the kL-coefficient, which is the governing parameter when estimating the mass transfer rate. Furthermore, the

bubble dynamics is described in terms of interface forces such as the drag force.

The present study shows that the correlations for kL predicts the interface mass transfer insufficiently even

in the case where the bubble hydrodynamics (i.e. bubble rise velocity) is accurately captured by the model. The

Lagrangian model provides a sufficiently accurate mathematical framework to draw the conclusion that there are

severe limitations of the kL-correlations (for prediction of the present experimental data). The complexity of the

mass transfer process discussed in the start of Section 3.2.5, is not well lumped into the kL-coefficient.

4 Concluding remarks

This paper presents a Lagrangian model of a single bubble rising in a vertical column with stagnant liquid.

The bubble size changes as the bubble ascends along its vertical path due to hydrostatic pressure and mass

exchange between the two phases. An important parameter in the Lagrangian model is the liquid-side mass
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transfer coefficient kL in the interface mass flux term. When implementing various kL-correlations for laminar

flow and analyze the results of the Lagrangian model, not acceptable predictions of experimental data available

in the literature are obtained. It is know from existing literature that the proposed kL-correlations may give

very different predictions. However, it is surprising that the existing correlations for kL cannot be used to

predict the simplest experimental flow situation denoting an individual bubble rising in a stagnant liquid with

interface mass transfer. One may make a critical statement to the available theoretical framework employed

for deriving the existing correlations for the mass transfer coefficient. The drag coefficient is identified as

another critical parameter in the Lagrangian model. For the experimental data available in the literature, it is,

however, more crucial for the Lagrangian model prediction that improved correlations for kL are developed.

That is, for a particular data set (Garbarini and Tien, 1969) the Lagrangian model predicted very well the bubble

hydrodynamics (i.e. rise velocity), but the mass transfer flux deviated significantly from that of the experimental
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Figure 7: Change in bubble size (left) and liquid head of bubble (right) with
time (Deindoerfer and Humphrey, 1961, Fig. 1). Drag coefficients by
Tomiyama et al. (1998) for clean- (top) and contaminated (bottom) sys-
tems are implemented in the Lagrangian model.
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results.

The existing experimental data on mass transfer from individual bubbles rising in a stagnant liquid are old

and not extensive. For the present study, data sets from three studies in the 60’s and early 90’s could be used

to evaluate the present Lagrangian model (Bischof et al., 1991; Deindoerfer and Humphrey, 1961; Garbarini

and Tien, 1969). One may rise doubt about the accuracy of these data sets as the statistics of experiments are

hardly discussed. Furthermore, because of the water quality has a pronounce influence on bubble rigidity, it is

also important that experimental data are provided along with details on the water contamination. As significant

technological developments have taken place the last few years, there is a significant potential for new studies to

provide new and extensive sets of experimental data with higher accuracy.

The experimental data by Garbarini and Tien (1969) and Deindoerfer and Humphrey (1961) appear to be

influenced by contaminants in the way that the interface is mobile at bubble release but contaminants accu-

mulate with time and make the interface rigid as it rise through the water column. The general trend is that

kL-correlations for clean or partly contaminated conditions best describe the bubble size change the first time

after bubble release, thereafter the gradient in the bubble size can be better captured with the kL-correlations for

contaminated systems. Further research needs to account for the absorption kinetics of contaminates or experi-

ments need to be devised and implemented carefully to exclude the effect of accumulating contaminates at the

interface.

The present study conclude that the cause of discrepancy between experimental data and simulation results

is not due to the Lagrangian model, but mainly caused by the lack of good models for the kL-coefficient.

It is crucial to understand the fundamental principles of interface mass transfer in simple systems such as

single bubbles rising in a stagnant liquid before more complex systems including for example turbulent flow can
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be understood. The present Lagrangian model serves as a good tool for validation of kL-correlations for laminar

flow. However, new model developments for kL must be supported with new and extensive sets of experimental

data.
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Table 1: Experimental mass transfer studies of single bubbles rising in a

column with stagnant liquid.

Reference Comments

Deindoerfer and Humphrey (1961) kL determined by photographic measurement technique; CO2 and

water; 1mm< db <6mm influence of bubble age on mass transfer;

time-dependent factors are important in mass transfer

Baird and Davidson (1962) kLdetermined by photographic measurement technique; CO2 in wa-

ter; effect of surface-active agents; 8mm< db <42mm; influence of

bubble age on mass transfer

Leonard and Houghton (1963) He, C2H4, N2 and N2O gases; 3mm< db <19mm, dilatometric and

photoelectric determination of mass transfer

Calderbank and Lochiel (1964) CO2; 4mm< db <31mm; large bubbles; the effect of the instanta-

neous shape of the bubble on the instantaneous transfer coefficient;

kL determined by pressure measurement technique

Redfield and Houghton (1965) CO2 in water and 10 different aqueous solutions of dextrose provid-

ing ranges of viscosity and density variations; 5mm< db <16mm;

dilatometric and photoelectric determination of mass transfer

Barnett et al. (1966) CO2; non-Newtonian liquid (CMC solution); 1.5mm< db <4.5mm;

photographic technique measuring technique for determining kL;

role of bubble-shape transition versus non-Newtonian character

Zieminski and Raymond (1968) 2.6mm< db <5.6mm; CO2 and water; kL determined by photo-

graphic measurement technique; effect of the bubble release time

on the consistency of the kL-value

Garbarini and Tien (1969) CO2 and water; 3mm< db <6mm; comparison between pressure

measurement technique and photographic measurement technique

for determining kL

Calderbank et al. (1970) CO2; Newtonian and non-Newtonian liquids; 2mm< db <60mm;

kL determined by pressure measurement technique

Raymond and Zieminski (1971) CO2 and water; alcohol solutions; kL determined by photographic

measurement technique; 3mm< db <4mm; alcohol solutions have

a pronounced effect on mass transfer as well as drag coefficient of

the rising bubble

Koide et al. (1974) CO2; 4.6mm< db <8.5mm; water and aqueous solutions of n-

propanol, i-butanol, acetic acid and n-octanol; kL determined by

pressure measuring technique; effect of bubble age on kL

Koide et al. (1976) 5.2mm< db <10.2mm; CO2; water and aqueous solutions of n-

hexanol, n-heptanol and n-octanol; effect of surface-active chemi-

cals on kL; kL determined by pressure measuring technique
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Mortarjemi and Jameson (1978) oxygen and water; 0.2mm< db <2mm; kL determined by photo-

graphic technique; optimal bubble diameter for oxygen transfer

Bischof et al. (1991) air bubbles in water; gas chromatography; fraction oxygen trans-

fered to liquid; 0.5mm< db <2.3mm;

Hosoda et al. (2014) 5mm< db <26mm; CO2 and water; stereoscopic image processing;

various tube diameters of bubble rising column
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Table 2: Physical conditions used for the generation of Figs. 8 and 3.
ρg kg/m3 2
ρl kg/m3 998
µl kg/(m·s) 8.91× 10−4

D m2/s 2× 10−9

σ N/m 0.072

Table 3: Henry’s constant and molecular diffusivity at 298K and 1 atm.
Component Hc · 102 Dc · 10−9

[m3·Pa/mol] [m2/s]
CO2 29 1.92
N2 1562.5 2.01
O2 769 2.10
He 2700 6.28
The term Hcρg/(McPg) is dimensionless.

Table 4: Drag coefficient correlations.
Model Reference CD Comment

D1 Tomiyama et al. (1998) max
{

min
[
16
Re

(
1 + 0.15Re0.687

)
, 48Re

]
, 83

Eo
Eo+4

}
clean

D2 Tomiyama et al. (1998) max
{

min
[
24
Re

(
1 + 0.15Re0.687

)
, 72Re

]
, 83

Eo
Eo+4

}
partly contaminated

D3 Tomiyama et al. (1998) max
{

24
Re

(
1 + 0.15Re0.687

)
, 83

Eo
Eo+4

}
contaminated

Table 5: Correlations for the mass transfer coefficient in laminar flow.

Model Reference kL [m/s] Bubble diameter range

K1 Higbie (1935) 2π−1/2Re1/2Sc1/2(D/db)

K2 Frössling (1938) 0.6Re1/2Sc1/3(D/db)

K3a Calderbank and Moo-Yong (1961) 0.31Gr1/3Sc1/3(D/db) db < 2.5mm

K3b Calderbank and Moo-Yong (1961) 0.42Gr1/3Sc1/2(D/db) db > 2.5mm

K4 Baird and Davidson (1962) 0.975Ga1/4Sc1/2(D/db) 14mm< db < 73mm

K5 Hughmark (1967)
(
2 + 0.95Re1/2Sc1/3

)
(D/db)

K6 Clift et al. (1978, Eq. 5-26) 0.45Gr0.3Sc1/3(D/d) db > 0.1mm

K7 Brauer (1979) (2 + 0.015Re0.89Sc0.7)(D/db)

K8 Bird et al. (1960)
(
4 + 1.21Re2/3Sc2/3

)1/2
(D/db)

K9 Clift et al. (1978, Eq. 5-37) 2π−1/2
(
1− 2.89/max

[
2.89,

√
Re

])1/2Re1/2Sc1/2(D/db)

The liquid diffusivity, D, for CO2, N2, O2 and He are provided in table 3
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Table 6: Comments to the correlations for mass transfer.
Model Reference Comments
K1 Higbie (1935) Penetration theory

Mobile bubble surface
Clean system
Dependency Sc1/2

K2 Frössling (1938) Boundary layer theory
Rigid bubble
Contaminated system
Dependency Sc1/3

Experimental values of coefficient vary from 0.42 to 0.95 (Alves et al., 2004)
K3a Calderbank and Moo-Yong (1961) Empirical

Small, rigid bubbles
Partly contaminated system
Dependency Sc1/3

K3b Calderbank and Moo-Yong (1961) Empirical
Large, non-rigid bubbles
Partly contaminated system
Dependency Sc1/2

K4 Baird and Davidson (1962) Spherical cap bubbles
Fitted model in wobbling regime
Coefficient between 0.93 and 0.99
Dependency Sc1/2

K5 Hughmark (1967) Contaminated system (Olsen et al., 2017)
Dependency Sc1/3

K6 Clift et al. (1978, Eq. 5-26) Rigid spheres
Fitted model
Contaminated system
Dependency Sc1/3

K7 Brauer (1979) Fitted model between numerical and experimental data
Nonspherical bubbles with stochastic deformation of interface
Partly contaminated system

K8 Bird et al. (1960) Contaminated system (Olsen et al., 2017)
Dependency Sc1/3

K9 Clift et al. (1978, Eq. 5-37) Partly contaminated (Olsen et al., 2017)
Dependency Sc1/2

Penetration theory
Fluid spheres
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Notation

Latin letters

a interfacial area per unit volume, m−1

d diameter, m

e unit vector

f generalized function

f generalized vector or tensor

F force, N

g gravity, m/s2

k mass transfer coefficient, m/s

l film thickness, m

m mass, kg

ṁ mass flux, kg/s·m2

n unit normal vector

p pressure, Pa

r coordinate, vector, m

t time, s

u velocity vector, m/s

w center of mass velocity vector, m/s

z height from bottom of column, m

z′ axial dimension, length from liquid column surface, m

A area or surface, m2

C concentration, mol/m3

CD drag coefficient

D diffusivity, m2/s

H Henry’s constant,

I unit tensor

K overall mass transfer coefficient, m/s

L length of column/height of water, m

M̄ average molecular weight,

N rate of mass transfer, mol/s·m3

R gas constant,

S surface, m2

T temperature, K

Uc diffusion velocity of species c, m/s

V volume, m3

Eo Eötvös number

Gr Grashof number

Ga Galilei number
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Re Reynolds number

Sc Schmidt number

Sh Sherwood number

Greek Letters

αk volume fraction of phase k

β Bunsen absorption coefficient

ρ density, kg/m3

σ interface tension, N/m

σ viscous stress tensor, Pa

τ average exposure time of fluid element, s

γ prefactor

φ generalized function

µ viscosity, kg/(m·s)

Subscripts

b bubble

c species type

g gas phase

l liquid phase

k phase

t terminal

z coordinate, vector component

G gas phase

I interface

L liquid phase

D steady drag

L lift

V virtual mass

dyn dynamic

hist history

hydrodyn hydrodynamic

hydrostat hydrostatic

rel relative

Superscripts

∗ concentrations with Henry’s constant

p projected
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A Theoretical model consepts for the mass transfer coefficient kL

A.1 Film theory

Fig. 9 illustrates the concept of the film theory (Jakobsen, 2014). A stagnant film of thickness l = ll + lg

exists near the phase interface and all resistance to mass transfer across the phase interface resides in the film.

Concentration gradients occur only in the film whereas the concentrations at length ll and lg from the phase

interface is equal to the bulk concentrations in the liquid and gas phases, respectively. The mass transfer flux

across the film is described as a steady diffusion flux. Within this steady-state process the mass flux is constant

as the concentration profile is linear and independent of the diffusion coefficient.

Based on the film theory, the following relations can be derived between the mass transfer- and diffusion

coefficients (Jakobsen, 2014):

kL,c =
DL,c

ll
and kG,c =

DG,c

ll
(A.1)

Hence, the result obtained from the film theory is that the mass transfer coefficient is directly proportional to the

diffusion coefficient. In terms of the Sherwood number Sh = kl/D, the relations in (A.1) can be expressed as

kL,cll
DL,c

= Sh = 1 and
kG,clg
DG,c

= Sh = 1 (A.2)

Hence, the film theory can be expressed as Sh = 1.

liquid-phase film
resistance

gas-phase film
resistance

lgll

gas
phase

liquid
phase

phase interface

CL,c

CG,c

CL,I,c

CG,I,c

Figure 9: Film theory.

A.2 Penetration theory

The concept of a stagnant film as assumed in the film theory is unrealistic on the basis of the unstableness of

a gas–liquid interface (Hines and Massox, 1985). The penetration theory was suggested by Higbie (1935) for

more accurate description of the physical process taking place in interfacial mass transfer.
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Figure 10 illustrates the concept of the penetration theory (Jakobsen, 2014). Small fluid elements in the

liquid phase form discrete entities having certain characteristic flow properties. The fluid elements arrive from

the bulk liquid and after residing in contact with the gas phase at the phase interface for a period of time (exposure

time) they are replaced and mixed with the bulk liquid again. During the exposure time mass exchange between

the fluid element in the liquid phase with the gas phase due to diffusion processes. For short contact times,

the diffusion process will be unsteady. It is assumed that the exposure time is equal for all fluid elements.

Furthermore, the bulk of both the liquid and gas phases are assumed well mixed.

Based on the penetration theory, the mass transfer coefficient is proportional to square root of the diffusion

coefficient:

k = 2

√
D

πte
(A.3)

The exposure time of the fluid element, te is a fitting parameter into which details of the fluid dynamics are

lumped (Jakobsen, 2014).

phase interface

gas phase

CG,I,cCG,c

liquid phase

CL,c

fluid
element

well mixed
bulk region

CL,c

CL,I,c

Figure 10: Penetration theory.

A.3 Surface renewal theory

Danckwerts (1951) suggested to improved the penetration theory by replacing the constant exposure time te with

an average exposure time τ determined from a postulated time distribution. The relation between interfacial mass

transfer- and diffusion coefficient can be expressed as (Hines and Massox, 1985; Jakobsen, 2014)

k =

√
D

τ
=
√
Ds (A.4)

where s = 1/τ is the rate of surface renewal. The surface renewal theory intends to provide a better description

of the physical process taking place in interfacial mass transfer. However, the mass transfer coefficient holds

the same dependency on the diffusion coefficient. Furthermore, as in the penetration theory, the surface renewal

theory depends upon an unknown fitting parameter.
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A.4 Mass transfer to the surface of a sphere

Steady-state molecular diffusion to the surface of a sphere in a stagnant fluid can be described by (Clift et al.,

1978; Rousseau, 1987)

Sh =
kd

D
= 2 (A.5)

For creeping flow, a laminar boundary layer exists about the sphere. Based on the boundary layer theory it

can be shown that the mass transport coefficient can be expressed as a function of the Reynolds number and the

Schmidt number: Sh = f(Re,Sc). For laminar boundary layer the correlation can be given as (Jakobsen, 2014)

Sh = γRemScn (A.6)

At low flow rates, the correlation for mass transfer is of a form that assumes contributions of molecular

diffusion and forced convection are additive (Rousseau, 1987):

Sh = 2 + γRemScn (A.7)

B Theorems

B.1 Leibniz theorems

The Leibniz integral theorem gives a formula for differentiation of an integral whose limits are functions of the

differential variable. One of the forms of the Leibniz theorem can be written as (Jakobsen, 2014, Eq. A.8)

D

Dt

∫
V (t)

f(r, t) dv =

∫
V (t)

∂f

∂t
dv +

∫
A(t)

fu · nda (B.1)

Here we notice the operator D/Dt which indicates that the velocity u corresponds to the fluid velocity with re-

spect to the coordinate reference frame. The generalized Leibniz theorem, or the generalized transport theorem,

is given as (Jakobsen, 2014, Eq. A.9)

d

dt

∫
V (t)

f(r, t) dv =

∫
V (t)

∂f

∂t
dv +

∫
A(t)

fu · n da (B.2a)

Here, the interpretation of u is the velocity of the control volume surface with respect to the coordinate reference

frame. Equation (B.2a) can also be formulated for a vector f as follows

d

dt

∫
V (t)

f(r, t) dv =

∫
V (t)

∂f

∂t
dv +

∫
A(t)

fu · nda (B.2b)
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The Leibniz theorem for a surface integral is given as (Morel, 2015, Eq. B.10)

d

dt

∫
AI(t)

ρI da =

∫
AI(t)

(
DIρI
Dt

+ ρI∇I · uI

)
da (B.3)

B.2 Gauss theorems

The Gauss theorem enables a surface integral to be transformed into a volume integral Jakobsen2014. Let f

denote a generalized vector or tensor. The Gauss theorem for single phase is given as∮
A(t)

f · nda =

∫
V (t)

∇ · f dv (B.4)

For two phase flows the interface must be considered and a modified form of the theorem (B.4) is applied:∫
Ak(t)

f · nda+

∫
AI(t)

f · n da =

∫
Vk(t)

∇ · f dv (B.5)

C Two-phase mass balance equation

A two-phase volume is depicted in Figure 11. If we assume this volume to be a material volume, it always

contains the same mass during time. Mathematically, a two-phase material volume can be written as

d

dt

∫
V1(t)

ρ1 dv +
d

dt

∫
V2(t)

ρ2 dv +
d

dt

∫
AI(t)

ρI da = 0 (C.1)

Here, ρk(r, t) denotes the density field of phase k = 1, 2 and ρI(r, t) is the interface density field. Using

the Leibniz rules (B.2a) for the volume integrals and (B.3) for the surface integral, (C.1) can be rewritten into

(Morel, 2015, Eq. 2.13)∫
V1(t)

∂ρ1
∂t

dv +

∫
A1(t)∪AI(t)

ρ1u1 · n1 da+

∫
V2(t)

∂ρ2
∂t

dv +

∫
A1(t)∪AI(t)

ρ2u2 · n2 da

+

∫
AI(t)

[ρ1(uI − u1) · n1 + ρ2(uI − u2) · n2] da+

∫
AI(t)

(
DIρI
Dt

+ ρI∇I · uI

)
da = 0

(C.2)

The surface integrals in (C.2) are rewritten into volume integrals using the Gauss theorem (B.5) (Morel, 2015,

Eq. 2.14):∫
V1(t)

[
∂ρ1
∂t

+∇ · (ρ1u1)

]
dv +

∫
V2(t)

[
∂ρ2
∂t

+∇ · (ρ2u2)

]
dv

+

∫
AI(t)

[{
ρ1(uI − u1) · n1 + ρ2(uI − u2) · n2

}
+

(
DIρI
Dt

+ ρI∇I · uI

)]
da = 0

(C.3)
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The balance (C.3) must be satisfied for any V1, V2 andAI , thus the integrands of the volume and surface integrals

must all independently be equal to zero. Hence, for a local point occupied by phase k we have

∂ρk
∂t

+∇ ·
(
ρkuk

)
= 0 (C.4)

Furthermore, the equation (C.3) gives rise to the following interfacial balance:

∑
k=1,2

ρk(uI − uk) · nk =
DIρI
Dt

+ ρI∇I · uI (C.5)

In major applications, mass accumulation on the interface is neglected:

DIρI
Dt

+ ρI∇I · uI =
∂ρI
∂t

+ vI · ∇IρI + ρI∇I · uI =
∂ρI
∂t

+∇I · (ρIuI) = 0 (C.6)

Hence,

∑
k=1,2

ρk(uI − uk) · nk = 0 (C.7)

where ρk(uI − uk) · nk means the mass gain for phase k.

AIV1 V2

A1 A2

Figure 11: A two-phase volume.
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