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Abstract 

Acoustic transversely isotropic models are widely used in seismic exploration for P-wave 

processing and analysis. In isotropic acoustic media only P-wave can propagate, while in an 

acoustic transversely isotropic medium both P- and S-waves propagate. In this paper, we focus 

on kinematic properties of S-wave in acoustic transversely isotropic media. We define new 

parameters better suited for S-wave kinematics analysis. We also establish the traveltime and 

relative geometrical spreading equations and analyse their properties. To illustrate the 

behaviour of the S-wave in multi-layered acoustic transversely isotropic media, we define the 

Dix-type equations that are different from the ones widely used for the P-wave propagation. 
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Introduction 

For an elastic transversely isotropic medium with vertical symmetry axis (VTI), the qP- and 

qSV-wave parameters are defined by Thomsen (1986): the vertical P- and S-wave phase 

velocities 0Pv  and 0Sv  and two anisotropy parameters   and  . Later, Tsvankin and Thomsen 

(1994), Alkhalifah and Tsvankin (1995) and Alkhalifah (1998) showed that qP-wave 

kinematical property is insensitive to the parameter 0Sv  with practical weak anelliptic 

parameter defined as ( ) / (1 2 )      . Thus, assuming 0 0Sv   reduces the variables and 

facilitates the analysis of qP-wave kinematic properties. That results in a new parameterization 

including vertical and NMO P-wave velocities 0Pv  and 0 1 2Pn Pv v    and anelliptic 

parameter  (Alkhalifah and Tsvankin 1995). The medium defined by this set of parameters is 

called the acoustic VTI medium (Alkhalifah 1998). 

However, in acoustic VTI medium, there is also the diamond shaped S-wave that propagates 

(Fig. 1), which can be considered as unwanted artifacts (Grechka, Zhang and Rector III 2004). 

In order to eliminate this artifact in seismic modelling, Alkhalifah (2000) proposed to add an 

isotropic acoustic medium as the top layer. Nevertheless, this method brings redundant 

multiples, and geophysicists further proposed various procedures to get rid of these 

concomitants in modelling of P-wave (Zhang, Rector III and Hoversten 2003; Han and Wu 

2005; Zhou, Zhang and Bloor 2006; Hestholm 2009). Grechka et al. (2004) pointed out that the 

acoustic VTI medium can also be defined as an effective medium from the upscaling of the 

stack of isotropic or VTI layers if one or more layers are fluid ones. The corresponding effective 

medium defined by Backus averaging (Backus 1962) has the S-wave vertical phase velocity 

0 0Sv   and turns out be a physical acoustic VTI medium (Appendix D). Another example of 

an anisotropic fluid is a liquid crystal (Chandrasekhar 1992).  
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In this paper, we revisit the acoustic VTI medium and focus on the kinematical properties of S-

wave. In elastic VTI medium, equations for slowness surfaces of qP- and qSV-waves are 

coupled. Setting 0 0Sv   results in decoupling of these equations, and remained equation is 

typically used to describe P-wave propagation only. We show that this equation also describes 

S-wave but is defined in a completely different range of horizontal slowness. The new 

parameterization for S-wave is defined based on the slowness surface branch corresponding to 

S-wave. The traveltime and relative geometrical spreading equations are also derived for S-

wave in acoustic VTI medium. An extension to the multi-layered medium is defined by 

applying the Dix-type equations, that are different from those defined for P-wave. 

The slowness surface in acoustic VTI media 

For elastic VTI media with the S-wave vertical phase velocity 0 0Sv  , the vertical slowness q 

for qP- and qSV-waves can be found from the solution of Christoffel equation as a function of 

horizontal slowness p (Appendix A), 
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Equation (1) is coupled, and positive and negative signs correspond to qSV- and qP-waves, 

respectively. The qP-wave horizontal slowness range is given by(Appendix A) 
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If there is no qSV-wave horizontal triplication, the range of horizontal slowness for qSV-wave 

can be written as (Appendix A) 

0

1
0

S

p
v

  .                                                      (4) 

The qSV-wave horizontal slowness can be larger than 01 / Sv  if the horizontal triplication exists 

(Appendix A). 

For the acoustic VTI medium, 0 0Sv   and 0   (a stability criteria (Alkhalifah 2000)), the P- 

and S-waves slowness surface equation is given by (Appendix A), 
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Equation (5) is widely used for P-wave propagation in acoustic VTI media (Alkhalifah 1998), 

and P-wave horizontal slowness range is also given by equation (3). However, equation (5) also 

describes the S-wave propagation within the range of horizontal slowness (Appendix A), 

1

2Pn

p
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   .                                                        (6) 

The slowness surface given by equation (5) is shown in Fig. 2 with separated branches 

corresponding to P- and S-waves. The P-wave slowness surface in the acoustic case is very 

similar to the elastic one of the quasi-elliptical shape. The S-wave slowness surface in the 

acoustic case is quasi-hyperbolic with two asymptotes given by (Appendix A) 
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The P- and S-waves group angles (taken from the vertical direction) as functions of horizontal 

slowness are given in equation (B4) with distinctive horizontal slowness ranges as in equations 

(3) and (6). We plot P- and S-wave phase angle — group angle relationships for an acoustic 

VTI medium in Fig. 3a. The model parameters are listed in Table 1. One can note that the P-

wave group angle increases with the phase angle. When the horizontal slowness 0p  , the P-

wave phase angle and group angle are both zero. When the horizontal slowness 

1/ ( 1 2 )Pnp v   , the P-wave phase angle and group angle are 90 degree. However, the S-

wave group angle decreases with the increase of its phase angle. The lower limit of horizontal 

slowness ( 1/ ( 2 )Pnp v  ) corresponds zero phase angle and 90 degree group angle, and the 

upper limit ( p   ) is related to S-wave ray in the vertical direction with phase angle being 

90 degree. We also calculate P- and S-waves polarization angles (taken from the vertical 

direction) as the functions of horizontal slowness (equation (A30)). For the model with 

parameters listed in Table 1, the P- and S-waves polarization angle – group angle relationships 

are demonstrated in Fig. 3b. One can see their polarization angles both increase with the group 

angle. Particularly, in the vertical or horizontal direction, the S-wave polarization angle is same 

with that for P-wave, and this is in consistence with the results in Grechka et al. (2004).  

If   is zero, the S-wave does not exist with P-wave parameterization. Since 0  , S-wave and 

P-wave slowness surfaces are not overlapped and have a gap in the horizontal slowness range 

given by (Appendix A; Fig. 2) 

1 1
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p
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Since the evanescent waves are ignored in this paper, for acoustic transversely isotropic media 

with vertical symmetry axis, in practice there is no wave mode conversion between 

reflected/transmitted P- and S-waves at the interface between two acoustic VTI layers (

, ,1 2 2Pn j j Pn k kv v   , where j and k indicate the layer indices). 

S-wave parameterization in an acoustic VTI medium 

The vertical and horizontal S-wave group velocities 0SV and SXV  in acoustic VTI medium can 

be defined as (Appendix B),  

0 0
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.                                    (10) 

Therefore, the new set of parameters suitable to describe the S-wave propagation is the 

following: 0SV , SXV  and  . Substituting S-wave parameters given in equation (10) into 

equation (5) results in a new equation for slowness surface in the acoustic VTI medium, 
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Note that the functional form of equations (5) and (11) is exactly the same. The S-wave 

horizontal slowness range can be defined from equation (11) as  

1
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p
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When 0  , equation (11) reduces to 
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Equation (13) provides a reference medium for the S-wave propagation. It might be a little 

confusing that the 0   leads 0SV and SXV  in equation (10) to be zero, but what should be noted 

is that equations (11) and (13) are functions of the newly defined S-wave parameters ( 0SV , SXV  

and  ) instead of the previous P-wave parameters ( 0Pv , Pnv  and  ) in equation (5). The two 

sets of parameters should not be mixed. 

The S-wave group velocity surface 

The S-wave group velocity GV  and group angle   (taken from the vertical symmetry axis) can 

be defined from the slowness surface as (Appendix B) 

2

1
,   tan .

1 ( )G

dq
q p

dqdp
V dpdq

dp




  


                                    (14) 

Substituting equation (11) into equation (14) gives the quasi-astroidal form group velocity 

surface (Fig. 1; Fig. 4a). One can note although the S-wave phase velocity is zero in the vertical 

and horizontal directions, its group velocity is non-zero for arbitrary group angle. In order to 

analyze the reference medium ( 0  ), we substitute equation (13) into equation (14) and derive 

the explicit equation for group velocity surface given by the astroidal shape (Appendix B), 

2/3 2/3 2/3

0

2/3 2/3s1 sin co

G SX SV V V

 
 .                                            (15) 

The group velocity surfaces for P- and S-waves for a homogeneous acoustic VTI medium are 

shown in Fig. 4a. The medium parameters used in computation are listed in Table 1. The group 

velocity surfaces for P- and S-waves in case of 0   are also shown in Fig. 4a for comparison. 

Note the difference between P- and S-waves with corresponding parameterizations in case of 
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0  . The group velocity surfaces for P- and S-waves have elliptical and astroidal shapes, 

respectively. With increasing , the P-wave group velocity decreases, while the S-wave group 

velocity increases. 

The S-wave group velocity surface is given by continuous function with cusps located at both 

symmetry axes. The P- and S-wave group velocity surfaces are respectively convex and 

concave functions, 

2
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P- and S-wave group velocity surfaces have the curvatures of different signs, and this indicates 

S-wave traveltime is represented by one branch of a triplication (Appendix B). 

The S-wave traveltime equation 

We first derive the S-wave traveltime equation in a homogeneous acoustic VTI medium with 

the new parameterization, followed by an extension to the multi-layered medium. In a 

homogeneous acoustic VTI medium, the S-wave source-receiver offset and two-way traveltime 

parametric equations are given by (Stovas and Fomel 2012) 

( ) 2 ,

( ) 2 ,

dq
x p z

dp

t p px qz

 

 

                                                       (17) 

where z  is the thickness of the layer. The limited series for traveltime in power of 2/3 as a 

function of offset can be computed from equation (17) (Appendix C), 

2/3 2/3 32 43 /
0

/ 2
(( ) 1 )

3
...St x t x x    ,                                          (18) 
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where the zero offset two-way traveltime 0 02 /S St z V , the S-wave normalized offset 

0/ ( )S Snx x t V , the S-wave NMO velocity  

1 2 2 (1 2 )Sn SX PnV V v     .                                                   (19) 

For the reference medium with 0  , equation (18) reduces to the simple moveout equation 

2/3 2/3 2/3
0 (1) )( St x t x   ,                                                             (20) 

and this can also be obtained directly from the reference medium group velocity surface as in 

equation (15). 

The P-wave traveltime series is given by (Alkhalifah and Tsvankin 1995) 

2 2 2 4
0(1 2 .( ) )..P p pt t x xx      ,                                                  (21) 

where the P-wave normalized offset 0/ ( )p P Pnx x t v . By the comparison of equations (18) and 

(21), they are identical in terms of the first and second terms coefficients with corresponding 

parameters, and the third term coefficient is negative in P-wave traveltime equation ( 2 ) but 

positive in S-wave traveltime equation ( 2 / 3 ). So if the zero offset traveltime and NMO 

velocity are fixed, increasing   induces increase for the S-wave traveltime but decrease for the 

P-wave traveltime (Fig. 4b).  

The S-wave traveltime derivatives are not defined at zero offset, 

0

,  1,2,...
n

n

x

d t
n

dx


   ,                                                   (22) 

which implies that there is a cusp at this position (Fig. 4c) and corresponds to the group velocity 

surface at the vertical direction. 
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For a multi-layered model with parameters shown in Table 2, we plot the once reflected S-wave 

traveltime curves shown as Fig. 5a. Note that there are not any events crossing even at the large 

offset. It indicates the S-wave reflected from deeper interface always arrives later than that 

reflected from shallower interface, no matter the deeper layers have larger or smaller velocities. 

We illustrate this phenomenon in terms of the slowness surface. Since the horizontal slowness 

is preserved for incident and reflected waves, the effective slowness surface can be defined as 

1

1

( )
( )

n

i i
i

eff n

i
i

q p z
q p

z









,                                                             (23) 

where i is the layer index, iz  and ( )iq p  are respectively the thickness and slowness surface 

equation in layer i. Taking equation (23) in equation (17), we can estimate the traveltime and 

offset for multi-layered models with the effective slowness surface. Thus, the P-wave moveout 

slope at large offset is determined by the upper limit of the effective horizontal slowness, and 

the S-wave moveout slope at large offset is determined by the lower limit of the effective 

horizontal slowness. The effective horizontal slowness range is determined by the intersection 

of the individual horizontal slowness range in each layer. For simplicity, we use a two-layered 

model for illustration. Figure 5b shows the typical slowness surfaces for P- and S-waves in 

layer 1 (blue curves), layer 2 (orange curves) and their effective counterparts (red curves). At 

large offset, the effective horizontal slowness is 

1 2min{ ,  }P P P
effp p p                                                          (24) 

for P-wave and  

1 2max{ ,  }S S S
effp p p                                                          (25) 
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for S-wave, where 1
Pp  and 2

Pp  are respectively the upper limits for P-wave horizontal slowness 

range (equation (3)) in layers 1 and 2, and 1
Sp  and 2

Sp  are respectively the lower limits for S-

wave horizontal slowness range (equation (12)) in layers 1 and 2. Equations (24) and (25) can 

be extended to arbitrary number of acoustic VTI layers at large offset as follows, 

min{ }P P
eff ip p                                                   (26) 

for P-wave and  

max{ }S S
eff ip p                                                    (27) 

for S-wave, where 1,2,...,i n  and n  is the layers number. The horizontal slowness represents 

the slope of the traveltime versus offset. Thus, S-wave in acoustic VTI medium avoids the 

intractable events crossing at the large offset, and this benefits the AVO analysis, velocity 

analysis and so on.  

Dix-type equations 

For S-wave in multi-layered acoustic VTI media, the Dix-type equations are defined by 

(Appendix C) 

0, 0,0 0
0 0, 2 2 4 4

, ,

(3 8 )(3 8 )
,

( ) ( )
S j S j jS S S

S S j
j j jSn Sn j Sn Sn j

t tt t
t t

V V V V

  


 


     ,              (28) 

where 0St
 , SnV   and S

  are respectively the S-wave effective zero offset traveltime, NMO 

velocity and anellipticity, and the effective vertical group velocity 0 0, 0, 0( ) /S S j S j S
j

V t V t   . The 

subscript j corresponds to layer number. It is noted that the P-wave effective NMO velocity 

squared 2( )PnV   is an arithmetic mean of the individual 2
,Pn jV  in each layer with the zero offset 

interval traveltime being the weight coefficient (equation C11), while the S-wave effective 
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NMO velocity squared 2( )SnV   is a result of the harmonic mean of the individual 2
,Sn jV  in each 

layer with the weight coefficient being 0,S jt . 

In a homogeneous VTI medium, the P-wave parameters ( 0Pv , Pnv , ) are related to the S-wave 

parameters ( 0SV , SnV  (or SXV ),  ) by equations (10) and (19). However, in equation (28) the S-

wave effective kinematical parameters are differently defined from those for P-wave 

(Alkhalifah 1997; Appendix C). To illustrate that, we use a two-layered model with parameters 

listed in Table 3 to test the validity of equations (10) and (19) for multi-layered acoustic VTI 

medium. The two acoustic layers have the same 0Pv  and Pnv  but different values for  . Four 

sets of parameters are calculated as the function of the layer 2 volume fraction (Fig. 6). ( )
0

P
PV  , 

( )P
PnV  and P

  are respectively the P-wave effective vertical velocity, NMO velocity and 

anellipticity of the two-layered model calculated by equation (C11). ( )
0

P
SV   and ( )P

SnV   are the S-

wave effective vertical group velocity and NMO velocity, and the superscript “P” indicates that 

they are calculated from ( )
0

P
PV  , ( )P

PnV   and P
  by equations (10) and (19). ( )

0
S

SV  , ( )S
SnV  and S

  

are respectively the S-wave effective vertical group velocity, NMO velocity and anellipticity of 

the two-layered model calculated by equation (28). ( )
0

S
PV   and ( )S

PnV   are the P-wave effective 

vertical velocity and NMO velocity, and the superscript “S” means that they are calculated from 

( )
0

S
SV  , ( )S

SnV   and S
  by equations (10) and (19). 

For P-wave,  

( ) ( )
0 0

P S
P PV V   and ( ) ( )P S

Pn PnV V  .                                    (29) 

For S-wave,  

( ) ( )
0 0

P S
S SV V   and ( ) ( )P S

Sn SnV V  .                                   (30) 
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The value of P
  is bounded by the values of  in each layer, while the S

  is more complex 

and can exceed the maximum value of  in each layer (Fig. 6c). Therefore, equations (10) and 

(19) are not valid for effective parameters in multi-layered acoustic VTI medium, and the two 

sets of parameters characterize different effective media corresponding to P- and S-waves. It 

also means that applying Dix-type equations (in P- and S-waves versions) results in different 

effective media. 

Relative geometrical spreading 

Estimating the relative geometrical spreading is important for the true amplitude processing 

(Cerveny 2005; Stovas and Ursin 2009). For the pure mode wave, the relative geometrical 

spreading equation for a VTI medium is given by (Ursin and Hokstad 2003) 

nL L  ,                                                            (31) 

where the radiation pattern 

cos  ,                                                           (32) 

and the geometrical spreading factor nL  is given by 

1/2

n
x dx

L
p dp

 .                                                         (33) 

Expanding nL  in series with respect to normalized offset gives the geometrical spreading factor 

for S-wave (Appendix C), 

8/3
2 4/3

0 4/3

(3 4 )
[ 3 ...]

3S Snn
x

t V xL
 

  
 .                                 (34) 
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One can see that at zero offset, 0nL  . Figure 7 shows the P- and S-waves relative geometrical 

spreading for the medium with parameters in Table 1. The relative geometrical spreading 

functions increase with offset for both P- and S-waves. Note the intercept of S-wave relative 

geometrical spreading function is zero, and it indicates a cusp point at zero offset. 

For a homogeneous acoustic VTI medium, the S-wave relative geometrical spreading factor at 

the infinite offset limit goes to infinity, although there is a cusp point at the horizontal symmetry 

axis (Appendix C). For S-wave in multi-layered acoustic VTI medium, the group angle   in 

equation (32) corresponds to that in the top layer at the source and receiver points, and 0St , SnV  

and   in equation (34) are replaced by the effective values in equation (28). 

Conclusions 

The acoustic anisotropic medium can be practical from the upscaling point of view, and this 

case can make   a large value and even infinite (Appendix D). We show that the P- and S-

waves are defined by the same slowness surface equation in acoustic VTI medium having the 

different horizontal slowness ranges, and this practically avoids the mode conversion for 

reflected/transmitted waves at the interface between two acoustic VTI media. From the branch 

of the slowness surface corresponding to S-wave, the new parameters are defined from two 

asymptotes. Revising the slowness surface equation by newly defined parameters, the shape of 

the S-wave group velocity surface is estimated to be quasi-astroid shaped. The traveltime 

equation is derived, together with the Dix-type equations valid for S-wave in multi-layered 

acoustic VTI model. The traveltime derivatives are not defined at zero offset, which represents 

a cusp point. By a two-layered acoustic VTI model, we demonstrate that the once reflected 

events for S-wave do not cross at large offset. The relative geometrical spreading equation is 

also derived, and the cusp point at zero offset induces the S-wave relative geometrical spreading 

to be zero. 
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Appendix A  

The P- and S-wave slowness surface equation in acoustic VTI media 

The Christoffel equation for VTI media is given by (Tsvankin, 2001) 

2 2 2
11 55 13 55 1

2 2 2
66 55 2

2 2 2
13 55 55 33 3

sin cos 0 ( )sin cos

0 sin cos 0 0

( )sin cos 0 sin cos

c c v c c U

c c v U

c c c c v U

    
  

    

     
        
        

,   

(A1) 

where 11c , 13c , 33c , 55c and 66c  are the five non-zero stiffness coefficients for VTI media, 1U , 

2U  and 3U  are polarization vectors,   is the phase angle taken from the vertical symmetry axis, 

  is the density and v  is the wave phase velocity. For the coupled qP- and qSV-waves 

polarized in the vertical symmetry plane, their phase velocities and polarization vectors are 

determined by  

2 2 2
111 55 13 55

2 2 2
213 55 55 33

sin cos ( )sin cos
0

( )sin cos sin cos

Uc c v c c

Uc c c c v

    
    

     
        

.              (A2) 

The qP- and qSV-wave phase velocities can be obtained by solving 

            
2 2 2

11 55 13 55
2 2 2

13 55 55 33

sin cos ( )sin cos
0

( )sin cos sin cos

c c v c c

c c c c v

    
    

  


  
,            (A3) 

and the solutions can be written as 

2 2 2 2 2 2
55 33 11 55 33 11 552 3 55

2
1cos sin [( )cos ] s( )sin ( )

2
)

2i
,

n
(

c c c c c c c c c
v

  


 


     


 
 

(A4) 
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where positive and negative signs correspond to qP- and qSV-waves, respectively. Their 

polarization angle P  and SV  taken from the vertical axis are given by 

13 55
2 2 2

11 55

2 2 2
55 33

13 55

( )sin cos
arctan ,

sin cos

sin cos
arctan .

( )sin cos

P
P

SV
SV

c c

c c v

c c v

c c

 
  

  
 


 

 

 




                                     (A5) 

The horizontal slowness p and vertical slowness q can be obtained from phase velocity as 

follows, 

                                         sin / ( ) and cos / ( ).p v q v                                                  (A6) 

Substituting equation (A6) into equation (A4) gives the slowness surface as 

2 2 2 2 2 2 2 2
11 55 33 55 13 55 11 55 55 33( ) ( ) 2( ) [( ) ) ]( 2c c p c c q c c p q c c p c c q         .      (A7) 

One can note that the qP- and qSV-waves slowness surfaces are defined by the normalized 

parameters: 11 /c  , 13 /c  , 33 /c   and 55 /c  . These four parameters can be rewritten by 

2
11

2
33 0

2 2 2 2 2
13 0 0 0 0

2
55 0

/ (1 2 ),

/ ,

/ ( ( 1)( 1) 1),

/ ,

Pn

P

S P S Pn S
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c v

c v

c v v v v v

c v

 







 



   



                        (A8) 

where 0Pv  and 0Sv  are respectively the P- and S-waves vertical phase velocities, 

( ) (1 2 )       is the anelliptic parameter (Alkhalifah and Tsvankin 1995), 

2 2
0 (1 2 )Pn Pv v    is the P-wave NMO velocity,   and   are the Thomsen parameters 

(Thomsen 1986). Substituting equation (A8) into equation (A7) gives the qP- and qSV-waves 

slowness surface equations as follows,  
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4 2 0,aq bq c                                                                  (A9) 

where 

2 2

2 2
0 0

2 2 2 2 2
0 0 0

2 2
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1] 2 1),

( 1)[(1 2 ) 1].

,

[ ( ) (
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S Pn P P Pn

S Pn

a v v

b v v v v v

v

p

c p v
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

   





  

                     (A10) 

In the following, we consider the two cases of elastic VTI media ( 0 0Sv  ) and acoustic VTI 

media ( 0 0Sv  ). 

For elastic VTI media with 0 0Sv   (i.e., 0a  ), the vertical slowness q for qP- and qSV-waves 

as a function of horizontal slowness p is given by 

2

2
,

4

c
q

b b ac




 
                                                             (A11) 

where positive and negative signs respectively correspond to qSV- and qP-waves, and this can 

be verified by the corresponding vertical slowness values when 0p   in the symmetry axis 

direction. Since parameter a  in equation (A9) is positive, different signs of the parameters b  

and c  lead to various solutions of 2q  in equation (A9). Specially, there are six cases as listed 

in Table A1. The sign of the parameter b  can be written as 

2 2 2 2 2
0 0 0

0,   if  ;

0,   if  ;

0,   if  0< ( ) / (2 ), or < S P Pn P Pn

b
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b p p

b p vp 

  


 
    

                   (A12) 

where  
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The sign of the parameter c  is given by 

0

0

0

0,    if  1/  or   1/ ,     

0,    if  1/  or   1/ ,     

0,    if  1/ < 1/ ,                
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c v p v
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                      (A14) 

where 1 2Ph Pnv v    is the P-wave horizontal velocity (Alkhalifah and Tsvankin 1995)).  

Case 1 in Table A1 gives two solutions correspond to the evanescent waves, and it is ignored 

in this paper. Only case 3 with non-negative parameter c  gives the vertical slowness solution 

for P-wave, and the P-wave horizontal slowness range is given by  

0 1/ ( 1 2 )Pnp v    .                                                     (A15) 

The qSV-wave emerges in cases 2-6. Cases 2, 3, and 6 individually gives one solution for qSV-

wave, and the corresponding horizontal slowness has a range given by  

00 1/ Sp v  .                                                               (A16) 

The cases 4 and 5 individually gives two qSV-wave vertical slowness values for a certain 

horizontal slowness. In case 4, two different qSV-wave vertical slowness values indicate the 

presence of horizontal triplication (Thomsen and Dellinger 2003), and the parameter *
bp  in 

Table A1 can be obtained by solving  

*

2 *
0( 4 ) 0 and 1 /

b
b Sp p

b ac p v


   ,                                         (A17) 
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where parameters a, b, c are given in equation (A10) . Since case 4 requires 0b   and 0c  , 

the criteria can be deduced from equations (A12) and (A14) as follows, 

2 2 2
0 0

2
0

2
0

1
 or <

( )

2
S P Pn

P Pn
b

S

v v

v v
p

v

v  
 .                                  (A18) 

The case 5 corresponds to the incipient qSV-wave horizontal triplication. Since case 5 requires 

0b   and 0c  , the criteria can be deduced from equations (A12) and (A14) as follows, 

*

0

1
b b

S

p p
v

  .                                           (A19) 

Taking into account of equations (A13), (A18) and (A19), the criteria for existing qSV-wave 

horizontal triplication (including incipient triplication) is given by  

2 2 2
0 0

2 2
0

( )

2
S S Pn

P Pn

v v v

v v
 
 .                             (A20) 

Therefore, if the model parameters satisfy equation (A20), there is horizontal qSV-wave 

triplication, and the corresponding horizontal slowness has a range given by 

*0 bp p  .                                                                (A21) 

For acoustic VTI media with 0 0Sv   (i.e., 0a  ), equation (A9) reduces to 

2 0,s sb q c                                                                       (A22) 

where  
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and the vertical slowness q for P- and S-waves as a function of horizontal slowness p is given 

by 

s

s

c
q

b


 .                                                                    (A24) 

When the horizontal slowness surface satisfy 

1 1

1 2 2Pn Pn

p
v v 

 


,                                         (A25) 

the radical term in equation (A24) is negative and lead to evanescent waves. 

Since we ignore the evanescent waves, the term / 0s sc b  . Therefore, the range of the 

horizontal slowness surface is 

1
0

1 2Pn

p
v 

 


                                         (A26) 

for P-wave and  

1

2Pn

p
v 

                                                (A27) 

for S-wave. One can note the infinite S-wave horizontal slowness leads to the horizontal 

asymptote given by 

0

1 1 2
,  

2P

p q
v





   .                                       (A28) 

When the S-wave horizontal slowness reaches its lower limit 1/ ( 2 )Pnv  , the vertical 

asymptote can be obtained as follows, 
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The P- and S-wave polarization angles in equation (A5) reduce to 
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(A30) 

where P  and S  are the P- and S-wave polarization angles taken from the vertical axis.  

Appendix B  

The quasi-astroid shaped S-wave group velocity surface  

The group velocity vertical and horizontal components GZV  and GXV  are can be obtained from 

the slowness surfaces as follows (Grechka, Tsvankin and Cohen 1999), 

1 /
  and  

/ /GZ GX

dq dp
V V

q pdq qp q pdq qp


 

 
,                     (B1) 

where p and q are respectively the horizontal and vertical slowness. GZV  and GXV  are also 

defined as the group velocity projections given by 

sin  and cos ,GX G GZ GV V V V                                                 (B2) 

where GV  is the group velocity and   is the group angle taken from the vertical direction. We 

can obtain the velocity GV  and group angle   as follows, 

21 ( / )
  and  tan

/G

dq dp dq
V

q pdq qp dp



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
.                              (B3) 

Taking equation (5) into equation (B3) leads to the P- and S-wave group velocities and group 
angles as the functions of horizontal slowness in acoustic VTI media, 
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         (B4) 

where P- and S-waves have distinctive slowness ranges given by equations (3) and (6), 
respectively. 

Taking the lower limit for S-wave horizontal slowness 1/ ( 2 )Pnp v   into equation (B4) 

leads to / 2  , and the S-wave horizontal group velocity SXV  is given by 

2PSX nvV  .                                                    (B5) 

The upper limit for S-wave horizontal slowness p    gives 0  , and the S-wave vertical 

group velocity 0SV  is given by 

00

2

1 2S PvV



 .                                                        (B6) 

The new S-wave parameters are defined as 0SV , SXV  and  . For S-wave in acoustic VTI 

medium, substituting equation (11) into equation (B3) gives the parametric equations for group 

velocity ( )GV p  and group angle ( )p . The ray velocity projections as the functions of 

horizontal slowness can be obtained by equation (B2). For the reference medium ( 0  ), 

equation (11) reduces to equation (13). Taking into account of the group velocity projections in 

equation (B2), the group velocity surface for S-wave in a reference medium is defined by the 

astroid equation 

2/3 2/3
2/3

0

cossin
( ) )

1
(

SX S GV V V


 .                                      (B7) 

The S-wave vertical slowness is a convex function of the horizontal slowness (Fig. 2). 

Analytically, taking the second order derivative of equation (11) gives  
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for S-wave horizontal slowness range 1
SXV p    . Roganov and Stovas (2010) pointed out 

that the positive values of 2 2d q dp  indicate the presence of triplication for the horizontal 

slowness p, and the zero values refer to the incipient triplication. Therefore, the S-wave 

corresponds to a branch in the triplication. 

 

Appendix C  

The traveltime and relative geometrical spreading equations 

In an acoustic VTI medium, the source-receiver offset and traveltime are defined from the 

slowness surface as (Stovas and Fomel 2012) 

0 0

0 0

,

,

S S

S S

dq
x V t
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t qV t px
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 
                                                      (C1) 

where the zero offset two-way traveltime 0 02 /S St z V , and z  is the thickness of the layer. The 

Taylor expansion of offset and traveltime at the infinite horizontal slowness gives the S-wave 

moveout in the slowness domain as follows, 
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                                             (C2) 

In order to get the direct moveout series in the offset domain, we first apply the series inversion 

for the offset x in equation (C2) and obtain 

1/3 1/3
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Then, substituting series (C3) into the traveltime t in equation (C2) results in the S-wave 

moveout series in offset domain given by 

2/3 2/3 32 43 /
0

/ 2
(( ) .1 )

3
. .Sx tt x x     ,                                          (C4) 

where the normalized offset 0/ ( )S Snx x t V . If 0  , the traveltime equation reduces to 

2/3 2/3 2/3
0 (1) )( St x t x   ,                                                             (C5) 

which can also be obtained directly from the reference medium group velocity surface equation 

(B7). 

The S-wave geometrical spreading factor nL  can be computed from equation (33) by the 

substitution of equation for offset in equation (C2), 
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.                                (C6) 

Equation (C6) estimates the S-wave geometrical spreading in the slowness domain. Taking into 

account equation (C3), the relative geometrical spreading factor can be expanded into series 

about offset, 

8/3
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t V x
 




 
 .                                        (C7) 

At zero offset, the relative geometrical spreading factor 0nL  . 

One can see that at the infinite offset, the relative geometrical spreading factor has the limit as 

1 2
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SnpV
nL

 
 .                                                        (C8) 
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So the S-wave relative geometrical spreading factor value increases with offset and goes to 

infinity at infinite offset limit. 

For the multi-layered case, the effective kinematical parameters can be estimated from the 

effective slowness surface. Since the horizontal slowness is preserved for incident and reflected 

waves, the effective slowness surface can be defined as 
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,                                                 (C9) 

where i is the layer index, iz  and ( )iq p  are respectively the thickness and slowness surface 

equation in layer i. For P-wave, the Dix-type equations can be derived from the averaging of 

the series coefficients for the Taylor expansion of equation (5) at 0p  , 
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That gives 
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                         (C11) 

where 0Pt
 , PnV   and P

  are the P-wave effective zero offset traveltime, NMO velocity and 

anellipticity, and the effective vertical velocity 0 0, 0, 0( ) /P P j P j P
j

V t v t   . 

For S-wave, the similar procedure should also be applied for short offset. Thus, the Taylor 

expansion of equation (11) at infinite horizontal slowness gives 
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The S-wave Dix type equations have the form as 
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                                          (C13) 

where 0SV  , SnV   and S
  are the S-wave effective zero offset traveltime, NMO velocity and 

anellipticity, and the S-wave effective vertical group velocity 0 0, 0, 0( ) /S S j S j S
j

V t V t   . The 

comparison of Dix-type equations for P-wave (equation (C11)) and S-wave (equation (C13)) 

shows that the effective media defined by Dix-type equations for P- and S-waves are different. 

Appendix D  

The acoustic anisotropic media from the thin layering 

This appendix has a brief view of the results in Grechka et al. (2004). According to the “long 

wave equivalent” medium theory (Backus 1962), a stack of thin isotropic or transversely 

isotropic layers can be replaced with an effective medium with parameters defined by 
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where k
ijC  and k  are the stiffness coefficient and density for layer k , and  means 

arithmetic averaging with the layer thickness as a weight factor. If any layer has 44 0kC   (or 

0 0k
Sv  ), corresponding to the fluid layer, the effective coefficient 44C  in equation (D1) turns 

out to be zero, implying that the effective medium is an acoustic VTI medium (Grechka et al. 

2004). Although the acoustic VTI was initially introduced as an artificial model (Alkhalifah 

1998), one can see that this model can also be obtained from the physical principles. This 

practical acoustic VTI medium can be fully described with the vertical P-wave phase velocity 

0Pv  and two Thomsen parameters  ,   or their combination   (Alkhalifah 1995), defined as 
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                                                    (D2) 

We notice the parameter   is differently defined from the notional acoustic VTI case, where 

44C  is usually a non-zero value while the 0Sv  is artificially set to be zero ( 0 44 /Sv C  ). But 

for the finely layered case, both 44C  and 0Sv  are physically zero, making the two sets of 

parameterization equivalent. 

Using a binary medium composed of interlayering plane solid layers ( 3.00 /PV km s ,

2.12 /SV km s , 32.00 /g cm  ) and fluid layers ( 1.50 /PfV km s , 31.00 /f g cm  ), 

we plot  ,   and   as the function of fluid volume fraction   (Fig. A1). One can see that   

and   have different signs and strong magnitudes. In particular, at 0  , 0.5    indicates 

the remaining slip at solid-fluid interface. The anellipticity coefficient   turns out to be infinite 
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when 0   (Fig. A1b), which is an extremely anisotropic case and induces the P-wave 

singularity (Grechka et al. 2004).  

The medium parameters used to plot Fig. A1 are designed to make     when 0  . For the 

general case, when 13C  in equation (D2) is zero, 0.5    and    . For a binary medium 

composed of finely interlayering plane solid isotropic layers and fluid layers, the 13C  in 

equation (D1) is  
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 
,                                                   (D3) 

where the isotropic solid layer is defined by P-wave velocity PV , S-wave velocity SV  and 

density  . The fluid layer is defined by P-wave velocity PfV  and density f .   is the fluid 

layer volume fraction. 

If 0  , as long as the solid layer parameters have the following relationship 

2 22P SV V ,                                                                           (D4) 

the binary medium would be extremely anisotropic (   ). 

Grechka et al. (2004) pointed out that the acoustic anisotropic media with lower symmetry than 

acoustic VTI can also be obtained from the upscaling point of view. Interestingly, the 

interlayering of triclinic layers and fluid layers induces the acoustic monoclinic by applying the 

averaging method proposed in Schoenberg and Muir (1989). 

 

 

  



34 

 

 

 

 

0Pv  (km/s) Pnv  (km/s)   
0SV  (km/s) SXV  

(km/s) 
SnV  (km/s) z  (km) 

2.00 2.20 0.50 1.40 2.20 3.11 1.00 
Table 1 Parameters of a homogeneous acoustic VTI medium. 

 

 

layer z  (km)   
0SV  (km/s) SnV  (km/s) 

1 0.30 1.92 1.40 4.8 
2 0.40 2.53 1.63 5.4 
3 0.70 4.06 1.85 7.2 
4 0.60 5.31 1.68 7.8 
5 0.50 3.42 1.60 5.8 

Table 2 Parameters of a multi-layered acoustic VTI medium. 

 

 

layer 0Pv  (km/s) Pnv  (km/s)   
0SV  (km/s) SnV  (km/s) 

1 2.00 2.20 0.10 0.82 1.08 
2 2.00 2.20 0.40 1.34 2.64 

Table 3 Parameters of a two-layered acoustic VTI medium. 
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Cases 
Horizontal 
slowness 

Parameters in 
equation (A11) 

Slowness solution 1 Slowness solution 2 

b c 
Vertical 
slowness Wave type Vertical 

slowness Wave-type 

Case 1 [0, )p   0b   0c   2
1 0q   

evanescent 

wave 

2
2 0q   

evanescent 

wave 

Case 2 1 1
0( , )Ph Sp v v   ( , )   0c   2

1 0q   
evanescent 

wave 

2
2 0q   SV-wave 

Case 3 1[0, ]Php v  0b   0c   2
1 0q   P-wave 2

2 0q   SV-wave 

Case 4 1 * *
0[ , ),  S b b bp v p p p   0b   0c   2

1 0q   SV-wave 2
2 0q   SV-wave 

Case 5 1 *
0S b bp v p p    0b   0c   2

1 0q   SV-wave 2
2 0q   SV-wave 

Case 6 1
0Sp v  0b   0c   2

1 0q   
evanescent 

wave 

2
2 0q   SV-wave 

Table A1 The six cases for the signs of parameters b and c in equation (A11), together with 

the equation solutions and corresponding wave types. 
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Figure 1 The wavefield snapshot for a homogeneous acoustic VTI medium. The exterior 

quasi-elliptical shaped wavefront is the P-wave and the interior quasi-astroid shaped 

wavefront corresponds to the S-wave. 
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Figure 2 The sketch of the slowness surface of P- and S-waves in an acoustic VTI medium. 

0SV  is the S-wave group velocity in the vertical direction, and PXV  and SXV  are respectively 

P- and S-wave group velocities in the horizontal direction. 
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                                     (a)                                                                              (b)                            

Figure 3 The phase angle — group angle (a) and group angle — polarization angle (b) 

relationships for P- and S-waves in a homogeneous acoustic VTI medium. The model 

parameters are listed in Table 1. 
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                                     (a)                                                                              (b)                            

 

  (c) 

Figure 4 The group velocity surfaces (a) and traveltime curves (b) for P- (dashed lines) and 

S- (solid lines) waves in the acoustic VTI medium with parameters in Table 1 (red curves) 

and for the case with 0   (blue curves), together with the numerical modeling data (c) as a 

comparison for the analytical solution (equation 17) for the model with parameters listed in 

Table 1. 
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                                     (a)                                                                              (b)                            

Figure 5 (a) The traveltime (dashed curves) of once reflected S-wave from each layer bottom 

in a multi-layered acoustic VTI medium. Numerical modeling results are overlapped and the 

model parameters are shown in Table 2. (b) Typical slowness surfaces for a two-layered 

acoustic VTI model. ,1PXV  and ,2PXV  are respectively the S-wave horizontal group velocities in 

layer 1 and 2. 
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                        (a)                                                                         (b)                  

 

                                                                         (c)                                                     

Figure 6 The kinematical parameters for P- and S-waves in a two-layered acoustic VTI model 

with parameters shown in Table 3. The P-wave effective kinematical parameters ( )
0

P
PV  , ( )P

PnV  , 

P
  are calculated directly from equation (C11) and converted into the S-wave effective 

parameters ( )
0

P
SV  , ( )P

SnV   by equations (10) and (19). The S-wave effective parameters ( )
0

S
SV  , 

( )S
SnV  , S

  are calculated with equation (28) and converted into the P-wave effective 

parameters ( )
0

S
PV  , ( )S

PnV   by equations (10) and (19).   
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Figure 7 The relative geometrical spreading curves for an acoustic VTI medium with 

parameters shown in Table 1. 
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                                     (a)                                                                              (b)                            

Figure A1 The Thomsen’s parameters  ,   and their combination   as the function of fluid 

volume fraction in a binary medium. 


