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Abstract 

Estimating the safety effects of emerging or future technology based on expert acquisitions is 

challenging, because the accumulated judgment is at risk to be biased and imprecise. Therefore, 

this semi-quantitative study is proposing and demonstrating an upgraded bowtie analysis for 

safety effect assessments that can be performed without the need for expert acquisition. While 

bowtie analysis is commonly used in the field of for example process engineering, it is novel in 

road traffic safety. Four crash case studies are completed using bowtie analysis while letting the 

input parameters sequentially vary over the entire range of possible expert opinions. The results 

suggest the following. Only proactive safety measures estimated to decrease the probability of 

specific crash risk factors to at least ‘very improbable’, are able to perceptibly decrease crash 

probability. Further, the success probability of a reactive measure must be at least ‘moderately 
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probable’ to reduce the probability of a serious or fatal crash by half or more. This upgraded 

bowtie approach allows the identification of: (a) the sensitivity of the probability of crash 

occurrence and its associated consequences to expert judgment used inside the bowtie model, 

and (b) the necessary safety effectiveness of a chosen safety measure allowing adequate changes 

in the probability of crash occurrence and its consequences. 

Keywords: Bowtie; Fuzzy sets; Expert judgment; Safety effect; Cooperative intelligent transport 

systems 

Introduction 

Cooperative intelligent transport systems (C-ITS) are an emerging technology in the field of 

automotive and transportation engineering, and expectations are high that their application will 

positively influence road traffic safety, among other transport related issues. As with any other 

new or future technology, it is challenging to reliably estimate the effects and impacts this 

technology might have. Facing this uncertainty concerning the future, and involving a lack of 

knowledge, research is often based on expert judgment. Unfortunately, this form of data, its 

elicitation as well as interpretation, has been found to be prone to a large number of biases for 

various reasons (e.g. Eddy 1982; Meyer and Booker 1991; Tetlock 2005; Kirkebøen 2009; 

Kahneman 2011; Lees 2012; Morgan 2014). For instance, Kassin et al. (2013) provided a 

comprehensive overview of recent research indicating the not uncommon existence of 

confirmation bias among experts in various disciplines of forensic science. Confirmation bias is a 

psychological phenomenon “by which people tend to seek, perceive, interpret, and create new 

evidence in ways that verify their preexisting beliefs” (Kassin et al. 2013). In the context of 

expert judgment in traffic safety, additional types of bias can be problematic, e.g. hindsight bias 

and publication bias (Shinar 2017). Hindsight bias, also called knew-it-all-along effect, is the 
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tendency of people to increase the perceived likelihood of an event or its outcome after the event 

has in fact occurred. This bias embodies “beliefs about events’ objective likelihoods, or 

subjective beliefs about one’s own prediction abilities” (Roese and Vohs 2012), and thus can be 

problematic in the reconstruction and causation analysis of crashes (Dilich et al. 2006). 

Publication bias is the tendency to not publish ‘negative’ results which seems likely to also have 

an impact on the judgment of experts. Overviews on bias-reducing strategies and techniques that 

aim for high accuracy in expert judgment are provided in a number of publications, e.g. Meyer 

and Booker (1991), Kirkebøen (2009), or Morgan (2014). For example, the use of explicit 

decision rules like the Bayes theorem and the training for it, or incorporating specific group 

decision processes, have been shown to reduce bias (e.g. Meyer and Booker 1991; Rowe and 

Wright 2001; Surowiecki 2004). Plus, in the absence of empirical data, the use of data 

accumulated in expert acquisitions seems to be the only data on which research can possibly be 

based on. However, not even the best expert could exactly forecast the future performance of a 

specific novel system, its effects, and their likelihood. 

Another challenge evolves when estimating the actual safety effects of cooperative intelligent 

transport systems (C-ITS) in terms of their influence on crashes. Apart from the possibility to 

implement various C-ITS with different levels of maturity in many different ways, long periods 

of exposure to real traffic are necessary to collect a significant level of crash data. The majority 

of C-ITS are still in their test phase. Even applications, whose deployment has already been 

started to a limited extend, are far from providing enough real traffic and crash data in order to 

be able to estimate safety effects in a statistically reliable manner. Further, a substantial portion 

of vehicles will have to be equipped with C-ITS before the anticipated and actual safety effect 

would show. Due to this current lack of empirical data, research has been based on “by proxy” or 
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surrogate methods to assess the effects of safety-related C-ITS that are not yet implemented in 

real traffic, or have been implemented for a relatively short time. “By proxy” or surrogate 

methods can be in-depth analyses of crash reports (Virtanen et al. 2006), ex-ante estimate studies 

based on e.g. crash data and statistics (Wilmink et al. 2008; Schirokoff et al. 2012), traffic 

simulation modelling, driving simulator and field test studies, or a combination of those (Harding 

et al. 2014). Ex-ante estimate studies are based on in-depth investigations of crashes, and analyze 

whether crashes or fatalities could have possibly been prevented if a specific safety measure 

would have been used (e.g. Vaa et al. 2014). These studies usually involve numerous 

assumptions regarding vehicle fleet penetration rates and infrastructure coverage, future trends, 

anticipated driver behavior, and the functional and technological features of the system under 

research. Hardly any of the found surrogate evaluation methods allows a practical and fast safety 

effect estimation of new or future C-ITS while allowing for the various factors that are 

associated with crash occurrence and its consequences. Moreover, surrogate methods have one 

important disadvantage. Crash risk is not measured directly. Instead, road safety is measured 

indirectly through performance indicators, such as speed or driver behavior. Although their 

relation or even correlation to crashes and their consequences is known to some extent, the true 

effects of ITS on driver behavior particularly are still unsolved – especially the long term effects. 

Ehlers et al. (2017) proposed bowtie analysis (BTA) as a probabilistic risk assessment method to 

the field of road traffic safety to allow the estimation of the safety effects of C-ITS before their 

introduction or wide deployment. The authors consider bowtie analysis a valuable method to 

systematically and quantitatively assess the effects of safety measures, such as safety-related C-

ITS. In detail, bowtie analysis showed to be applicable when assessing the change in the 

probability of both crash occurrence and the related consequences, due to the use of proactive or 
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reactive safety measures. Proactive safety measures are hereby understood as measures that 

intend to reduce the probability of crash occurrence, while reactive safety measures are supposed 

to reduce the probability of severe crash consequences. The proposed bowtie analysis was based 

on exemplary expert estimates, which was created and applied solely for demonstration 

purposes. In detail, those expert estimations were generated for the occurrence and success 

probability of specific events as fuzzy sets using linguistic terms, such as ‘highly improbable’ or 

‘moderately probable’.   

This study is an extension of the study by Ehlers et al. (2017) and attempts to demonstrate an 

upgraded bowtie analysis, by eliminating its dependency on expert acquisitions, and thereby 

subjective expert opinions. Instead of involving experts, bowtie analysis is conducted for four 

cases by letting the input parameters sequentially vary over the entire range of possible expert 

opinions. The results of these four case studies are then compared to a base case, whose input 

parameters should ideally be based on existing knowledge and empirical evidence, such as crash 

statistics, in-depth and meta-analyses. This allows the identification of (a) the sensitivity of the 

probability of crash occurrence and its associated consequences to expert judgment; and (b) the 

necessary safety effectiveness of a C-ITS allowing for adequate changes in the probability of 

crash occurrence as well as its consequences. Thereby, a method is created that aims to support 

public decision makers such as road authorities to identify the minimum safety effectiveness 

required for emerging C-ITS or other future safety measures without the need for conducting 

expert acquisitions. 

C-ITS are created by placing information and communication technologies at the roadside and 

inside vehicles in order to collect, process, transfer and deploy traffic- and safety-related data. 

Wireless short range radio communication between the road infrastructure, vehicles and personal 



6 

electronic devices allows a utilization of the following interactions: vehicle-to-vehicle 

communication (V2V), and vehicle-to-infrastructure communication (V2I). These information 

and communication links can be one-way or two-way. Cooperative vehicles (V2V) would be 

able “to see” one another through wireless high-speed, real-time communication, and would 

receive relevant data, such as position, speed, course and type of the other vehicles. Compared to 

non-cooperative vehicles and transport systems, the information and warning timing would be 

improved. System users would be able to receive information and warnings in real time, 

enhancing the situation awareness of the drivers, providing them with additional reaction time. In 

addition, V2V-systems could augment existing sensor-based intelligent transport systems, 

thereby improving accuracy, and support vehicle control (OECD 2003; Bayly et al. 2007; 

Harding et al. 2014).  

The focus of this study is on C-ITS that are expected to directly improve road traffic safety by 

reducing the probability of crashes and their consequences, hereafter called safety-related C-ITS. 

Examples of (potential) safety-related C-ITS applications include intelligent speed adaptation, 

emergency call systems, and various incident detection and warning systems such as local danger 

warning, red light violation warning or curve speed warning, and many more. The ‘road traffic 

safety problem’, i.e. the number of injuries and fatalities resulting from crashes, can be 

understood as a function of the three variables exposure, crash risk and injury consequence; see 

Equation 1 (Nilsson 2004). In this equation, the word ‘accident’ is synonymous with ‘crash’. 

        Risk               Consequence 

	 	 	 	 	 	

	 	
     (1) 

Exposure to the risk of traffic accidents is for example expressed in person or vehicle kilometers 

travelled. Accident rate is understood as the risk of a traffic accident per unit of exposure, thus 
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often referred to as accident risk. The above mentioned concept of risk in road traffic safety 

should not be confused with the traditional definition of risk = probability * consequence, which 

is usually used in risk assessment and therefore further in this article.  

After this introduction, the background of this study will be covered with a short review of the 

theories behind bowtie analysis and fuzzy set theory. Crash scenarios, the base case and 

additional assumptions taken from former research will be described as well. The next part will 

provide the framework used in this study. The case studies will be carried out subsequently. 

Finally, the results of all bowtie analyses and their implication will be discussed; and the 

conclusions of this study will be presented. 

Background 

Bowtie analysis and fuzzy set theory 

Bowtie analysis (BTA) is a method just recently proposed to the field of road traffic safety 

(Ehlers et al. 2017), but commonly used in probabilistic risk assessment to qualitatively and 

quantitatively identify causes and consequences of a risk or hazardous event (Dianous and 

Fiévez 2006; Duijm 2009; IEC/ISO 31010 2009; Jacinto and Silva 2010; Ferdous et al. 2012, 

2013). It combines the two well-established risk assessment techniques fault tree analysis and 

event tree analysis, but also includes safety barrier, or safety measure elements. The focus of this 

method also lies on the effectiveness evaluation of both proactive and reactive safety measures 

used to reduce or prevent the risk, or to mitigate its consequences. 

More specifically, a bowtie model and its diagram consist of the following events and safety 

measures. They are also applied in this study: 

a) Causal (root) factors, called basic events (BE), initiating or contributing to the malfunction of 

the system 
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b) Malfunctions, errors or other faults and causes, called intermediate events (IE), causing the 

undesired critical event 

c) Proactive countermeasures implemented, or planned to be implemented, here called proactive 

safety measures (PSM) 

d) The critical event (CE) 

e) Reactive countermeasures implemented, or planned to be implemented, here called reactive 

safety measures (RSM) 

f) Consequences of the critical event, called outcome events (OE) 

In the quantitative BTA, the occurrence probability of the basic events and intermediate events is 

acting as quantitative input together with the success probability of the safety measures. The 

occurrence probability of the critical event as well as outcome events represents the quantitative 

output and result of the analysis. In an ideal world, all input data would be known with high 

accuracy. In real life however, lacking or limited input data necessitates the assignment of expert 

judgment, which tends to be subjective and possibly imprecise. Ferdous et al. (2012) presented a 

framework for handling both types of uncertainty in BTA by means of fuzzy set theory which is 

adapted and applied in this study. 

The application of fuzzy set theory has been proven to be efficient when handling subjective, 

imprecise information and non-crisp data such as lingual expert judgment (e.g. Zadeh 1965; 

Bouchon-Meunier et al. 1999; Ayyub and Klir 2006; Markowski et al. 2009; Ferdous et al. 

2012). For example, experts may use the following term set for probability to estimate the 

occurrence probability of events and the success probability of safety measures, as in this study: 

highly improbable (HI), very improbable (VI), improbable (I), moderately probable (MP), 

probable (P), very probable (VP) or highly probable (HP). Such linguistic terms can then be 
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converted to fuzzy numbers, for example triangular fuzzy numbers (TFN) ∈ , to represent the 

membership functions (for further details, please see Bouchon-Meunier et al. 1999; or Ayyub 

and Klir 2006). These describe in what degree a number belongs to a set by using a numerical 

relationship, see Fig. 1. Each fuzzy number P is then described as a vector pL, pm, pU that is 

represented by the lower boundary, the most likely value (i.e. at the mode) and the upper 

boundary of the TFN P. Multiple and possibly inconsistent expert knowledge can be aggregated 

by applying the weighted average method (e.g. Ayyub and Klir 2006). After the input variables 

are assigned with the probabilities using TFNs, fuzzy arithmetic operations can be used to 

perform the bowtie analysis (Ferdous et al. 2012). These fuzzy arithmetic operations and 

equations are based on the traditional equations from fault and event tree analysis, see e.g. IEC 

61025 (2006) and IEC 62502 (2010). 

Crash occurrence assumptions and crash scenarios 

Although crashes are rare and random in their occurrence, in this study the crash is assumed to 

occur, i.e. the crash occurrence probability is close to one. This approach, with one specific crash 

and its ‘causal chain’, is chosen because of the illustrative and demonstrative purpose of this 

study, and should not be confused with the actual probability or frequency of a specific crash 

type, which would have to be based on crash data. 

Ehlers et al. (2017) chose three illustrative crash scenarios, which are also used in the case 

studies hereafter. The following assumptions, valid for all three crash scenarios, were made for 

the crash assumed to occur at an example road section. The critical event was defined as the 

occurrence of a run-off-road collision of a single passenger car. More specifically, a single 

passenger car with one vehicle occupant is leaving the roadway at a section, where a rock cut is 

located at the roadside. The speed limit of this road section is 80 km/h. It is presumed that the 
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vehicle occupant, i.e. the driver, wears a seat belt, and that the vehicle collides with a guardrail 

meant to shield the rock cut beside the road. The case studies were based on three different 

applications of safety measures, which can be distinguished as proactive or reactive in relation to 

the crash occurrence, see Fig. 2. The first crash scenario was understood as the baseline scenario, 

where two traditional safety measures, are applied. The other two crash scenarios have been an 

extension of the baseline scenario, applying either a proactive or reactive cooperative safety 

measure in addition to the traditional ones. Several basic and intermediate events, listed in Table 

1, were chosen as parameters with the potential to initiate and cause the crash. That means at 

least one basic event has been assumed to initiate the crash, possibly in combination with at least 

one other basic event. The outcome events were defined using different levels of injury severity, 

following a classification according to the Maximum Abbreviated Injury Scale (MAIS 1-6). For 

example, MAIS 1 has been defined a minor injury that requires a short term medical treatment, 

such as stiches, while MAIS 6 has been defined representing a fatal injury. 

The base case and its bowtie analysis (BTA1) 

Ehlers et al. (2017) performed bowtie analyses for five case studies. The initial case study, thus 

initial bowtie analysis (BTA1), should be understood as the base case to which the results of this 

study are compared to.   

The base case was based on crash scenario 1, i.e. the baseline scenario, where the two traditional 

and non-cooperative safety measures seat belt and guardrail are applied. Fig. 3 shows the bowtie 

diagram that was developed for the base case and its bowtie analysis (BTA1). The proactive 

safety measure (PSM) is additionally applied later on in BTA2, and is not part of BTA1. A short 

description of the input and output events of BTA1 is given in Table 2. The crash outcomes, thus 

resulting injury severities, were chosen based on the crash scenario and its underlying 
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assumptions. It was assumed the driver sustains injuries in each crash outcome, due to the 

sudden and significant change in velocity, given the speed limit of 80 km/h. 

The probabilities of the input events for the quantitative bowtie analysis should ideally be based 

on existing knowledge and empirical data. For example, the success probability of the reactive 

safety measures seat belt and guardrail was chosen from a literature source (Elvik et al. 2009) as 

fuzzy numbers: the probability of success of the driver’s seat belt in a passenger car is (0.230, 

0.280, 0.330); and the one of a guardrail is (0.365, 0.455, 0.530). However, it is important to note 

that the occurrence probabilities of the basic events were generated as example expert data, due 

to the purpose to demonstrate bowtie. In future research, it should be possible to use the actual 

approximate occurrence probability of the most representative basic events through crash 

statistics, under the thorough consideration of the crash type, in-depth crash study results and 

more. Ideally, the probabilities of the basic events would be chosen from an existing crash 

causation assessment study. Table 3 shows the generated occurrence probabilities and the chosen 

success probabilities of the input events in fuzzy scale.  

Based on these input probabilities, the fuzzy based probabilities of the critical event (CE) and the 

different crash outcome events (OE) were calculated using fuzzy arithmetic operations for 

bowtie analysis, see Table 4. The calculated probability of the critical event was (0.839-0.998). 

Further, a crash with a critical or fatal injury (MAIS 5-6), was the most likely outcome 

calculated. This is because a combined failure of the two traditional safety measures seat belt and 

guardrail, whose success probability is judged to be relatively high, would have serious 

consequences. Success of a safety measure means thereby that the safety measure in question 

fulfills its tasks and performs as planned, under the assumption that it is provided and used as 
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intended. The probability of the other crash outcomes was found to decrease with decreasing 

injury severity. 

Framework used in this study 

In this study, a framework adapted from Ferdous et al. (2012) and Ehlers et al. (2017) is applied 

to perform bowtie analysis, covering the full range of expert opinions on event probability, as 

conceptual approach for evaluating the safety effects of C-ITS, see Fig. 4. The quantitative 

bowtie analysis includes a fuzzy based approach with the following steps in the following order: 

1. Generation of full-range expert opinion in form of linguistic terms, covering the whole range 

of possible event probability (e.g. from ‘highly improbable’ to ‘highly probable’) to define the 

changed probability of the input events due to the application of a new safety measure 

2. Transformation of linguistic terms into triangular fuzzy numbers 

3. Aggregation of fuzzy numbers in case of opinions from multiple experts 

4. Determination of the probability of the critical event and outcome events by applying the 

modified fuzzy arithmetic operations  

Probability assessments based on bowtie analysis using expert knowledge usually provide an 

approximate quantification of the occurrence likelihood of a critical event and its outcome events 

without considering the whole spectrum of possible expert judgments. For example, if another 

expert holds an oppositional belief compared to the expert judgment acquired before, the 

judgment of all experts would be aggregated and averaged by applying for example the weighted 

average method. Furthermore, although a fuzzy based approach allows the handling of subjective 

and imprecise expert judgment to a certain extent, it cannot cover all parameter uncertainty of 

these types in the estimated input data. Therefore, this study uses a systematic approach, where 

the parameters of the input data is simulated to sequentially vary over the entire range of possible 
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event probability – i.e. from ‘highly improbable’ to ‘highly probable’ in linguistic terms. 

Thereby the effect of changing input parameters on the analysis results can be studied and 

evaluated. In detail, this approach provides the lower and upper boundaries within which the 

occurrence probability of the crash and its outcome events (i.e. consequences) may lie, when the 

parameters of the input events vary over the entire range of probability. 

Case study 2 (BTA2) and 3 (BTA3): simulated variation of expert judgement on the 

occurrence probability of the basic events (fault tree) 

While the input data of the base case should ideally be, and is already partially based on 

empirical knowledge, the additional four case studies are based on full-range expert opinions. 

This means, instead of using a specific, thus limited spectrum of expert judgment, the probability 

of all input events is simulated to sequentially vary from ‘highly improbable’ to ‘highly 

probable’. This means, no data from expert acquisitions is used in this study. Finally, the 

probability of the output events in the initial base case can be compared to the one in the other 

study cases, which allows a safety effect assessment of the new safety measures applied in 

addition to the traditional ones. 

In case study 2 (BTA2), a cooperative proactive safety measure is applied in addition to the two 

traditional ones, as visualized in the crash scenario 2. A local danger warning system is chosen as 

proactive C-ITS as an example. Its application is assumed to positively influence the occurrence 

probability of six of the 18 basic events: three driver-related and three road-related, see Fig. 3. 

The occurrence probability of the other 12 basic events remains unchanged. A short description 

of the input and output events of this crash scenario is provided in Table 5. Theoretically, experts 

could be asked the following question in order to acquire their opinions on the effect of the 

chosen C-ITS on the occurrence probability of the six basic events: “Given a successful 
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application of the stated proactive safety measure, how probable (likely) is it that this specific 

basic event, possibly in combination with other basic events, still occurs and initiates the 

crash?” But instead of involving experts, the occurrence probability of the six basic events is 

now assigned with lingual terms that cover the whole range of probability from ‘highly 

improbable’ to ‘highly probable’. Thereby, the probability of the six basic events varies 

simultaneously. The occurrence probability of the other basic events and the success probability 

of the reactive safety measures remain the same as in the base case (BTA1).  

Fig. 5 visualizes the results of BTA2. The vertical lines in the following figures represent the 

triangular fuzzy numbers (TFN) of the likelihoods of occurrence of the regarding event. The 

upper end of each vertical line represents the upper boundary value of the TFN (i.e. the right 

value of the TFN), while the lower end of the line represents the lower boundary value (i.e. the 

left value of the TFN). The actual data point, between the lower and upper boundary value, is the 

most likely value (i.e. the modal value of the TFN) of the occurrence likelihood of the event 

under analysis. The dotted horizontal lines represent the probabilities of the critical event (CE) 

and outcome events (OEs) of the base case in BTA1, with which the new probabilities of BTA2 

are compared. The results show that the occurrence probability of all output events starts to 

decrease, when the occurrence probability of the six basic events in question is estimated to be at 

least ‘improbable’. Further, the application of a proactive safety measure, that is estimated to 

increase the occurrence probability of the six basic events compared to the base case, tends to 

slightly increase the likelihood of a crash as well as its outcome events. 

In case study 3 (BTA3), variable linguistic terms are assigned to the occurrence probability of all 

basic events. Thereby, the occurrence probability of all basic events is simulated to vary 

simultaneously from ‘highly improbable’ to ‘highly probable’. This is supposed to simulate a 
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full-range expert opinion on the effect of a cooperative proactive safety measure on the 

occurrence probability of all basic events. In addition, the effect of a varying occurrence 

probability of the basic events on the quantitative bowtie analysis results can be studied. Again, 

the success probability of the two traditional reactive safety measures, seat belt and guardrail, 

remains the same as in the base case (BTA1). Fig. 6 visualizes the results of BTA3, which also 

reflect the results of BTA2. The occurrence probability of the critical event becomes 1, when the 

occurrence probability of all basic events is estimated as at least moderately probable. The 

results show that the likelihood of a crash and its related outcome events decreases together with 

the occurrence probability of the basic events. Further, a crash is almost unavoidable, even if the 

occurrence probability of all basic events would be estimated as very improbable. Only if the 

occurrence of all basic events would be estimated as highly improbable, the crash probability 

could be reduced by more than half. The reason for this lies in the assumption made for the 

bowtie analyses: it is assumed that at least one factor will occur that will initiate or contribute to 

a malfunction of the system leading to a crash. For example, the occurrence probability of the 

crash would be close to 1, even if the occurrence probability of all basic events, except for one, 

would be estimated being highly improbable – given that the occurrence probability of this one 

basic event would be estimated as highly probable. Again, the probability of crash occurrence 

would decrease with a decreasing probability of that one basic event. 

An additional effect is found regarding the amount of basic events, thus crash risk factors. If their 

number would be reduced, the calculated likelihood of crash occurrence would also reduce, 

which reflects the arithmetic in the bowtie model. 

Case study 4 (BTA4) and 5 (BTA5): simulated variation of expert judgment on the success 

probability of the reactive safety measures (event tree) 
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In case study 4 (BTA4), variable linguistic terms are assigned to the success probability of the 

two traditional reactive safety measures seat belt and guardrail. Though the actual success 

probability of these measures is known and taken from a credible literature source (Elvik et al. 

2009), its effect on the output data while letting it vary is of interest. The occurrence probability 

of all basic events remains the same as in the base case (BTA1), and so does the bowtie diagram. 

The results show that, if highly ineffective reactive safety measures are applied, a crash with ‘a 

critical or fatal injury’ (OE4) would be extremely likely, see Fig. 7. In contrast, if highly 

effective safety measures are applied, the outcome would tend to be ‘a minor to serious injury’ 

(OE1). This means, the application of highly ineffective reactive safety measures would tend to 

worsen the outcome and vice versa. The occurrence probability of a crash with a minor to serious 

injury as outcome increases with a decreasing occurrence probability of a crash with a critical or 

fatal injury as outcome. If the success probability of all reactive safety measures is estimated to 

be moderately probable, the occurrence probability is calculated to be the same for all outcome 

events.  

In case study 5 (BTA5), the varying linguistic terms are only assigned to the estimated success 

probability of the cooperative reactive safety measure that is additionally applied as illustrated in 

crash scenario 3. These linguistic terms would be assumed to be given as expert opinions when 

asking the following question: “Given a crash under the defined settings, how probable (likely) 

is a success of the applied novel reactive safety measure?” Again, the expert opinion is 

simulated to vary over the entire range of success probability. The emergency call system eCall 

is chosen as cooperative reactive measure that automatically calls and notifies the nearest 

emergency center, right after the vehicle sensors have detected the crash. Saving emergency 

response time, thus possibly lives, is expected from equipping all new cars with the eCall 
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technology (EC 2016). The probability of the other input events remains the same as in BTA1. 

Fig. 8 illustrates the event tree for BTA5 applying the cooperative eCall system as additional 

reactive safety measure. Table 6 lists all the events and measures that are involved. It is assumed 

that the eCall system is neither affecting the least, nor the worst crash outcome. 

Fig. 9 illustrates the results of BTA5 compared to the base case in BTA1. Fig. 10 displays the 

results for the outcome events OE2 to OE5 in detail. The occurrence probabilities of BTA1 are 

again plotted as horizontal dotted lines. The sum of the probabilities of OE2 and OE3 is 

equivalent to the probability of OE2 in the base case (OE2base); see Fig. 10(a). This is because of 

the formulae used in the event tree analysis (i.e. right side of the bowtie diagram), and because 

the least and worst outcome are assumed to be not affected by the application of the eCall 

system. The same occurs for the sum of OE4 and OE5, being equivalent to the probability of 

OE3 in the base case (OE3base); see Fig. 10(b). The occurrence probability of the CE remains 

unchanged. The same applies for the occurrence probability of the least outcome OE1 (i.e. minor 

to serious injury crash with MAIS 1-3), and worst outcome OE6 (i.e. critical or fatal injury crash 

with MAIS 5-6). Thereby OE6 represents the former OE4 from the base case (OE4base). 

However, the probability of the other outcomes changes depending on the estimated success 

probability of the eCall. Both, the probability of a serious to critical injury crash (i.e. OE3, 

former OE2base) and the probability of a severe to fatal injury crash (i.e. OE5, former OE3base), is 

decreasing with increasing success likelihood of the additional safety measure. The success 

probability of the eCall system needs to be judged as at least ‘moderately probable’ in order to 

reduce the probability of a serious to critical injury crash, as well as the probability of a severe to 

fatal injury crash, by half or more compared to the base case. 

Discussion 
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There is a need for methods that allow assessing the direct safety effects of emerging or future 

cooperative intelligent transport systems (C-ITS) to be applied in the field of automotive or 

transportation engineering. Ehlers et al. (2017) proposed bowtie analysis as safety effect 

assessment tool to be used in the field of road traffic safety. Performing bowtie analysis with 

simulated varying expert judgment as proposed and demonstrated in this paper is upgrading the 

bowtie analysis approach. It allows estimating the safety effect of a specific safety measure, 

independently of expert judgment on the safety measure’s effectiveness. In other words, this 

upgraded approach simulates the entire range of possible expert answers (i.e. probabilities) by 

altering the input data that usually comes from expert acquisitions, which are at risk for several 

types of bias and uncertainties. Fig. 11 provides a flowchart of the proposed bowtie approach. 

Under the assumptions made for this study, the results of the second and third bowtie analysis 

(i.e. simulated variation of expert opinion on the occurrence probability of the basic events) 

suggest the following. Only proactive C-ITS that are estimated to decrease the occurrence 

probability of the specific crash risk factors (i.e. the ones that are representative for the crash 

type in question) to at least ‘very improbable’, are able to perceptibly decrease the occurrence 

probability of a crash. Otherwise, the crash would be highly likely. Obviously, an ideal proactive 

C-ITS would be able to decrease the occurrence probability of all basic events, thus crash risk 

factors, down to ‘highly improbable’. That means, the occurrence of a crash would very likely be 

prevented, given: (a) the application of a proactive safety measure that is able to timely inform 

and warn the driver about all potential driving errors, vehicle or infrastructure malfunctions and 

environmental anomalies, and (b) a prompt and adequate reaction of the driver according to the 

received warning.   
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Regarding the bowtie model, its arithmetic yields a decrease in the calculated likelihood of crash 

occurrence with a decreasing number of basic events. This may suggest a careful deliberation, 

whether basic events, whose occurrence is highly improbable, need to be included in the final 

fault tree model, or not. When two similar proactive C-ITS are to be compared, the following 

applies. The more basic events are positively influenced, the better. This means, the system able 

to decrease the occurrence probability of the basic events qualitatively and quantitatively the 

most can be assumed to have the bigger safety effect. 

The results of the fourth and fifth bowtie analysis (i.e. simulated variation of expert opinion on 

the success probability of the reactive safety measure) indicate the following. Under the 

assumptions made for this study, the probability of a serious to critical injury crash, and the 

probability of a severe to fatal injury crash can be reduced by half or more, if the success 

probability of the chosen reactive C-ITS eCall is estimated at least ‘moderately probable’. In fact, 

it is the application of any additional reactive safety measure that positively affects the crash 

outcomes, because its application yields an even more fragmented classification of the injury 

severity – given that it works as successful as assumed in the qualitative consequence analysis. 

Bowtie analysis holds a limitation that is apparent when applied to the field of transportation 

safety. That is the assumption of statistical independency between the input factors. In real life, 

interdependencies and correlations between crash risk factors are evident. Further, crash risk 

factors are known to have an influence on the crash outcome. In bowtie analysis, the probability 

of the risk factors (i.e. basic events) is only considered in the calculation of the critical event 

probability, but not in the calculation of the outcome events. Moreover, direct effects of 

emerging technologies on driver behavior are still unsolved and thus involve a high grade of 

uncertainty. For these reasons, bowtie analysis may be criticized to oversimplify the dynamic 
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and complex behavior of crash occurrence, including its consequences. However, models are 

typically created and applied to simplify reality in order to allow problem solving which 

naturally includes model uncertainty. Other limitations and uncertainties may concern the data 

used in the bowtie model for safety effect estimation purposes. These may involve variations and 

incomplete information in the empirical crash data. Evidently, an increase in the accuracy of the 

input data will strongly improve the quality of the model output, i.e. safety effect estimations. 

Bayesian analyses are one way to model these uncertainties. Through automatized big data 

collection, it might be possible to precisely quantify the occurrence probability of all crash risk 

factors in the future, while taking into account their interrelations and variations. Bowtie analysis 

and its developments are applicable also for this purpose, as it allows for dynamic updates of the 

input parameters given new evidence (e.g. Ferdous et al. 2012; Paltrinieri et al. 2013). Overall, 

crash models can be expected to become more accurate, and shall then also allow the modelling 

of dynamic processes and interdependencies – including human behavior factors.  

Conclusion 

This paper demonstrated the application of an upgraded bowtie approach in a semi-quantitative 

assessment of emerging safety measures potentially used in the field of transportation. Four case 

studies were completed using bowtie analyses, whose input parameters sequentially varied over 

the entire range of possible expert answers. These results were compared with the results of an 

initial base case study, whose input data was partially generated as example, and partially based 

on existing knowledge. This allowed the identification of: (a) the sensitivity of the probability of 

crash occurrence and its associated consequences (i.e. output data) to the whole spectrum of 

expert judgment used inside the bowtie model, and (b) the necessary safety effectiveness of a 
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chosen C-ITS allowing adequate changes in the probability of crash occurrence and its 

consequences. 

Whereas the bowtie approach holds the limitation of assuming independency between the input 

parameters, it allows for a practical assessment of C-ITS and their safety effects necessary to 

achieve adequate changes in the occurrence probability of crashes and their associated 

consequences. By using this method, decision makers such as road authorities can identify the 

minimum safety effectiveness necessary to be achieved by C-ITS or other future safety measures, 

and choose the best investments to support safety. The upgraded bowtie approach demonstrated 

in this study allows for assessments without expert data acquisitions, which usually are at risk for 

uncertainty and bias. Yet, a purposeful communication and interpretation of the potential safety 

effects of these measures is made possible. Future research may address the limitations of bowtie 

analysis such as the assumed independency among input events. For example, the introduction of 

a dependency coefficient could explore different kinds of interdependence. An additional 

sensitivity analysis could determine the most significant contributing input events for the output 

events. This may support the final selection of the basic events for the bowtie model. 
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Figure Captions 

Fig. 1. Linguistic variables on fuzzy scale (Adapted from Ehlers et al. 2017.) 

Fig. 2. The three crash scenarios: (a) Scenario 1: baseline scenario with the application of two 

traditional RSM; (b) Scenario 2: additional application of one cooperative PSM; (c) Scenario 3:  

additional application of one cooperative RSM (Adapted from Ehlers et al. 2017.) 

Fig. 3. Bowtie diagram for BTA1; and for BTA2 with the cooperative proactive safety measure 

additionally applied (Adapted from Ehlers et al. 2017.) 

Fig. 4. Framework for bowtie analysis handling data uncertainty under full-range expert opinion 

(Adapted from Ehlers et al. 2017.) 

Fig. 5. Likelihoods in BTA2 of (a) the critical event CE, (b) the outcome events OE1 and OE2, 

and (c) the outcome events OE3 and OE4 with simultaneously varying likelihood of the six basic 

events affected by the cooperative proactive safety measure in comparison to the base case 

Fig. 6. Probability of occurrence of the critical event with varying likelihood of all basic events 

in BTA3 

Fig. 7. Likelihoods of the critical event CE and the outcome events OEs in BTA4 with varying 

success probability of the applied traditional reactive safety measures seat belt and guardrail 

Fig. 8. Event tree for the application of a cooperative system as reactive safety measure in 

BTA5. (Adapted from Ehlers et al. 2017.) 

Fig. 9. Likelihoods of the critical event CE and outcome events OEs in BTA5 with varying 

estimated success probability of the cooperative reactive safety measure eCall in comparison to 

the base case. CE base=critical event from base case; OEx base=outcome event from base case. 
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Fig. 10. Likelihoods in BTA5 of (a) the outcome events OE2 and OE3, and (b) the outcome 

events OE4 and OE5 with varying estimated success probability of the cooperative reactive 

safety measure eCall in comparison to the base case. OEx base=outcome event from base case. 

Fig. 11. Flowchart of the proposed bowtie approach without expert acquisition 

 
Table 1. Basic and intermediate events used in all case studies  

Basic events Intermediate events 

BE1: Intoxicated driving 
BE2: Speeding; insufficient speed adaptation 
BE3: Inattention 
BE4: Fatigue, falling asleep 
BE5: Avoiding vehicle, bicycle, pedestrian, animal, object on 
driveway 

IE1: Driver error 

BE6: Impaired visibility (in-vehicle) 
BE7: Steering defect 
BE8: Tire defect 
BE9: Brakes defect 
BE10: Suspension defect 
BE11: Anti-lock braking system defect 
BE12: Electronic stability control defect 
BE13: Insecure load 

IE2: Vehicle 
malfunction 

BE14: Dangerous road geometry design features 
BE15: Insufficient road signage or marking 
BE16: Poor road surface 
BE17: Reduced road surface friction 
BE18: Impaired visibility conditions (external)

IE3: Infrastructure 
malfunction or 

environmental anomaly 

Source: Data from Ehlers et al. (2017). 
 
Table 2. Basic events, reactive safety measures and outcome events for BTA1 

Category Code Description
Basic Event BE1–BE18 See Table 1
Safety Measure RSM1 Seatbelt

RSM2 Guardrail
Outcome Event OE1base MAIS 1-3: minor to serious 

OE2base MAIS 3-5: serious to critical 
OE3base MAIS 4-6: severe to fatal 
OE4base MAIS 5-6: critical or fatal 

Source: Data from Ehlers et al. (2017). 
 
Table 3. Generated input data and literature knowledge in fuzzy scale for the input events of 
BTA1 
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Input events 
State  

{F or S}
TFN  

(pL, pm, pU)
BE1 F (0.150, 0.275, 0.400) 
BE2 F (0.250, 0.388, 0.525) 
BE3 F (0.098, 0.199, 0.300) 
BE4 F (0.098, 0.199, 0.300) 
BE5 F (0.150, 0.275, 0.400) 
BE6 F (0.023, 0.074, 0.125) 
BE7 F (0.000, 0.025, 0.050) 
BE8 F (0.098, 0.199, 0.300) 
BE9 F (0.023, 0.074, 0.125) 
BE10 F (0.023, 0.074, 0.125) 
BE11 F (0.000, 0.025, 0.050) 
BE12 F (0.000, 0.025, 0.050) 
BE13 F (0.023, 0.074, 0.125) 
BE14 F (0.250, 0.388, 0.525) 
BE15 F (0.098, 0.199, 0.300) 
BE16 F (0.150, 0.275, 0.400) 
BE17 F (0.150, 0.275, 0.400) 
BE18 F (0.098, 0.199, 0.300) 
RSM1 S (0.230, 0.280, 0.330) 
RSM2 S (0.365, 0.455, 0.530) 

Source: Data from Ehlers et al. (2017). 
Note: BE = basic event; RSM = reactive safety measure; F = failure; S = success; TFN = 
triangular fuzzy number. 
 
 
 
Table 4. Calculated fuzzy based probabilities of the output events in BTA1 

Reference Description 
Likelihood 

Lower bound (pL) Modal value (pm) Upper bound (pU)
CE Crash 0.839 0.977 0.998
OE1base Minor to serious injury 0.070 0.124 0.174
OE2base Serious to critical injury 0.091 0.149 0.209
OE3base Severe to fatal injury 0.205 0.320 0.407
OE4base Critical or fatal injury 0.264 0.383 0.488

Source: Data from Ehlers et al. (2017). 
Note: CE = critical event; OExbase = outcome event from base case. 
 
 
 
 
 
Table 5. Basic events, reactive safety measures and outcome events for the additional 
application of a cooperative system as proactive safety measure in BTA2 
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Category Code Description
Basic event BE1–BE18 See Table 1
Safety measure PSM1 Local danger warning system 

RSM1 Seat belt
RSM2 Guardrail

Outcome event OE1 MAIS 1-3: minor to serious 
OE2 MAIS 3-5: serious to critical 
OE3 MAIS 4-6: severe to fatal 
OE4 MAIS 5-6: critical or fatal 

Source: Data from Ehlers et al. (2017). 
 
Table 6. Basic events, reactive safety measures and outcome events for the application of a 
cooperative eCall system as additional reactive safety measure in BTA5 

Category Code Description
Basic event BE1–BE18 See Table 1
Safety measure RSM1 Seat belt

RSM2 Guardrail
RSM3 eCall

Outcome event OE1 MAIS 1-3: minor to serious 
OE2 MAIS 3-4: serious or severe 
OE3 MAIS 3-5: serous to critical 
OE4 MAIS 4-5: severe or critical 
OE5 MAIS 4-6: severe to fatal 
OE6 MAIS 5-6: critical or fatal 

Source: Data from Ehlers et al. (2017). 


