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A B S T R A C T

This study presents a dynamic forecast combination approach adapted to incorporate multiple sources of pre-
cipitation. Dynamic combination serves to utilise the varying merit each data source exhibits with time. The
dynamic model combination framework presented merges a nonparametric k-nearest neighbour (k-nn) esti-
mation of radar precipitation with Thin Plate Spline (TPS) interpolated gauge precipitation. Since air tem-
perature is an essential variable to discriminate the phase of the precipitation in cold climates, this study uses
radar precipitation and air temperature as the two variables in the dynamic combination algorithm. The merging
of k-nn and TPS estimates is shown to reduce the RMSE by 25% compared to the original radar precipitation
rates. The usefulness of air temperature is found not to be as significant in the combination as it is in the
formulation of the nonparametric radar precipitation fields for cold incident temperatures.

1. Introduction

Continuous simulations of streamflow and catchment water storage
using distributed hydrological models require accurate precipitation
input at high spatial resolution (Syed et al., 2003; Smith et al., 2004;
Beven, 2012). It is often shown that existing precipitation networks in
many places are not dense enough to capture the spatial variation of
precipitation events (Kirchner, 2009; Hwang et al., 2012). Precipitation
measurement by remote sensing has a great potential to fulfill the need
for distributed input data measured at a catchment scale (Krajewski and
Smith, 2002; Woldemeskel et al., 2013). Presently, weather radars
provide precipitation estimates with high spatial (at a standard re-
solution of 1 km× 1 km) and temporal (hourly and sub-hourly) re-
solution. However, weather radar measures precipitation indirectly
using remote sensing techniques and measurements are subject to
several sources of errors and uncertainties (Chumchean et al., 2006b;
Villarini and Krajewski, 2010; Berne and Krajewski, 2013; Abdella,
2016).

Weather radar transmits electromagnetic waves and measures the
energy backscattered by the hydrometeors in the atmosphere as re-
flectivity. The reflectivity is then converted to ground precipitation
rates. Typically, parametric power law relationship often called as Z - R
equation ( =Z aRb) is used in the conversion of radar reflectivity (Z) to
ground precipitation rates (R). The constant values of a= 200 and

b=1.6 derived by Marshall and Palmer (1948) for rain are generally
used regardless of climate region. However, these parameters are not
constant (Wilson and Brandes, 1979) and they are related to drop size
distribution of hydrometeors in the atmosphere. Drop size distribution
varies with the type and phase of the precipitation (Joss et al., 1990;
Uijlenhoet, 2001; Chumchean et al., 2008). Due to errors and un-
certainties in the measurement of reflectivity as well as in the conver-
sion of reflectivity to ground precipitation, advances and advantages of
radar precipitation data are not fully used in widespread hydrological
applications so far (Chumchean et al., 2003; Berne and Krajewski,
2013).

To model radar rainfall uncertainty, Ciach et al. (2007) used the
nonparametric kernel regression method. Such nonparametric ap-
proaches can be more effective than parametric alternatives as fewer
assumptions about the processes being modelled needs invoking while
sufficient observational data exist (Silverman, 1986; Mehrotra and
Sharma, 2006). While ability to adapt to the data locally is a strength of
the nonparametric approaches, they can result in local biases due to
outliers. Villarini et al. (2008) compared their nonparametric approach
with a copula based method and found that the performance was as
equal or higher than copula. Hasan et al. (2016b) presented a kernel
based nonparametric method to improve radar rainfall estimates using
the conditional probability distribution of past observed reflectivity and
gauged rainfall. Sivasubramaniam et al. (2018) extended the Hasan
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et al. (2016b) univariate nonparametric approach of radar precipitation
estimates to bivariate with the use of near surface air temperature as a
covariate to improve the radar precipitation estimates in cold climates.

Accurate estimates of precipitation data are required for en-
gineering design and management in small basins, particularly with the
intense local rainfall events where the hydrological processes impelled
by rainfall rates play a relatively higher role than the hydraulic pro-
cesses of flood wave propagation (Krajewski and Smith, 2002). Weather
radar with its extended spatial coverage can monitor many small
catchments that otherwise remain ungauged without any precipitation
observations (Berne and Krajewski, 2013). Moreover, as precipitation is
an intermittent variable and various difficulties in measuring pre-
cipitation precisely, accurate estimation of spatial distribution of pre-
cipitation in the river basin using sparse gauge network alone is a
challenging task (Hwang et al., 2012). As a result, distributed and
physically based hydrological models are often limited by the accurate
spatial variability of precipitation input data (Syed et al., 2003).

To obtain the spatial distribution of precipitation in a catchment
from available gauges which are often unevenly distributed, spatial
interpolation techniques are required. A range of spatial interpolation
techniques are available in the literature, from simple methods (e.g.
arithmetic mean, nearest neighbour, Thiessen polygon and inverse
distance weighting) to advanced and more complex approaches (e.g.
multiple linear regression, thin plate smoothing splines, kriging, genetic
algorithms, conditional bias penalized kriging and Copula). A review of
different interpolation methods is presented by Hwang et al. (2012)
where the gauge is a single sensor of precipitation. Even with the use of
advanced spatial interpolation techniques, it is a challenging task to get
a distributed precipitation field in a sparsely gauged area.

It is often shown that compared to gauges, radars capture the spatial
variation of precipitation relatively well despite errors in their quanti-
tative information. Several studies (Chumchean et al., 2006a;
Haberlandt, 2007; Goudenhoofdt and Delobbe, 2009) have shown that
merging of radar precipitation estimates with gauge precipitation can
improve precipitation estimates. The merging approach is as old as the
arrival of weather radar data for hydrological applications. The focus of
earlier studies has been to correct the bias in the radar precipitation
estimation using gauge observations. Mean Field Bias (MFB) correction
is a simple bias correction method that is broadly used. The MFB
method assumes a uniform multiplicative error in the radar estimates
and it estimates the ratio of the accumulated radar precipitation and
accumulated gauge precipitation from a number of radar-gauge pairs as
a multiplicative adjustment factor. Brandes (1975) proposed a correc-
tion factor at each gauge location with subsequent interpolation over
the radar field. Chumchean et al. (2006a) applied Kalman filter to
improve the MFB estimates.

Subsequent focus on merging radar and gauge data has utilised the
spatial variability of the radar to further improve the spatial inter-
polation of gauges. Several merging methods with the use of geosta-
tistical techniques with different degree of complexity have been pro-
posed. Some of the geostatistical merging methods in literature are
cokriging (Krajewski, 1987), kriging with external drift (KED) (Berndt
et al., 2014), conditional merging (Sinclair and Pegram, 2005) and
copula-based assimilation (Vogl et al., 2012). The geostatistical
methods generally consider gauge as a primary source and radar as
secondary source for the merging (Goudenhoofdt and Delobbe, 2009);
however, Rabiei and Haberlandt (2015) showed that quality of the
quantitative radar data is still important factor in conditional merging.

Hasan et al. (2016a,b), argue that if errors associated with the
precipitation field derived from radar and gauge can be quantified
correctly, the two data sources can be merged without abandoning the
quantitative information from the radar. This approach can be pro-
mising in sparsely gauged regions because intensity information from
radar is to be extracted by extending the error structure identified from
gauged regions to ungauged regions. Combination of two sources of
information using error variance has its basis in economic forecast

combination (Bates and Granger, 1969). When two set of forecasts are
combined, the resulting forecast can have lower mean square error than
both original forecasts (Bates and Granger, 1969). The forecast com-
bination approach has been applied in hydrometeorology (Wasko et al.,
2013) along with other areas.

The forecast combination methodology is prevalent in combining
seasonal forecasts from multiple climate models. These studies have
reported the usefulness of dynamic weighting in combination instead of
simple static combination (Chowdhury and Sharma, 2009, 2011;
Devineni and Sankarasubramanian, 2010; Khan et al., 2014; Kim et al.,
2016). In the dynamic combination, the combination weights change
over time to capture temporal variation locally. Hasan et al. (2016a)
evaluated different combination approaches in the context of merging
radar and gauge rainfall data. They found that covariance-based
methods gave better results compared to non-covariance based methods
and showed the usefulness of dynamic approach. Hasan et al. (2016b)
presented a covariance based dynamic model combination framework
to combine radar and gauge rainfall data sources. In their study, a
kernel based nonparametric approach was used to estimate rainfall
estimates and then nonparametric radar rainfall estimates were merged
with copula based spatially interpolated rainfall field for a tropical
climate. In the dynamic model combination, similar events were iden-
tified using a k-nearest neighbour approach with reflectivity as a single
variable to estimate the error covariance matrix and weights.

In cold climates, precipitation occurs with different phases (snow,
rain or a mixture of snow and rain) and similar events can be specified
not only based on the intensity information but also the phase of the
precipitation. Several studies have shown that air temperature is in-
trinsic to the phase of the precipitation (Auer Jr, 1974; Killingtveit,
1976; Rohrer, 1989; Fassnacht et al., 2001). Air temperature is an es-
sential variable to differentiate two similar events with different phase
(snow or rain), but the same intensity (Al-Sakka et al., 2013). Fassnacht
et al. (1999, 2001) used the near surface air temperature observations
to adjust the radar precipitation estimation. Sivasubramaniam et al.
(2018) showed that the use of air temperature as a second covariate in
the k-nearest neighbour (k-nn) nonparametric model reduces the root
mean squared error significantly and improves the radar precipitation
estimates in colder temperatures. As similar to the Sivasubramaniam
et al. (2018) approach, air temperature can also be used as an addi-
tional variable to identify similar events within the dynamic model
combination framework to further improve the combination estimates
in cold climates.

The overall objective of this study is to improve the precipitation
estimates with high spatiotemporal resolution. The primary focus is to
merge radar precipitation field with existing gauge observations to
generate improved continuous hourly precipitation field for the region.
For that, first, we adjust the hourly radar precipitation rates using the k-
nearest neighbour nonparametric method and then we use the dynamic
model combination framework to merge the nonparametric estimates
with spatially interpolated precipitation gauge data using thin plate
spline (TPS) interpolation. We evaluate whether the use of air tem-
perature as an additional variable can be useful for dynamic model
combination as is found for the nonparametric estimation.

2. Material and methods

2.1. Study area

The study area for the current research is 100 km radius from
Hurum radar station in Norway (an area of about 31000 km2) as shown
in Fig. 1. The Hurum radar station is located at 59.63∘ N latitude and
10.56∘ E longitude and it is about 30 km from the Norwegian capital
city, Oslo. It is a C band installation with a wavelength of 5.319 cm and
a coverage radius of approximately 240 km. The Hurum radar has been
in operation since November 2010 and monitors the southeastern part
of Norway and part of Sweden; the coverage area consists of six
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Norwegian counties where nearly 40% of the population live.
Within the study area, 94 precipitation gauges are in operation with

available hourly precipitation data for the study. The precipitation
gauges are tipping bucket gauges (most of them are Lambrecht and
Nivus RM-202 brands) and weighing gauges (Geonor brand) with an
“Alter” windshield. Fig. 1 shows the precipitation gauge locations
overlaid on the topography of the study area. Seven-gauges were left
from the computations in order to verify the approach at ungauged
pixels. In Fig. 1, the 87 gauges which were used in the computation are
displayed with blue circles and the 7 gauges with red. Looking at Fig. 1,
precipitation gauges are not evenly distributed. A relatively dense
network of gauges exists near urban areas along the coast and a sparse
network of gauges exist in the rest of the area. Further, it can be seen
that the inland mountainous areas remain mostly ungauged without
precipitation gauges with hourly measurements.

Mean annual precipitation in the study area is between 1000 and
1500mm based on the climatology for the period 1961 to 2017 (http://
www.senorge.no/). The precipitation in the study region can broadly be
divided into three categories: frontal, orographic and convective pre-
cipitation. The convective precipitation is most dominant during the
warmer summer months. The annual mean temperature is in the range
of 2∘ - 10∘ C in the study region. The January mean is near freezing at
the coast and down to −10∘ - −15∘ C inland. The maximum summer
temperature is mostly in the 20∘ - 25∘ C range.

2.2. Data

At present, the Norwegian Meteorological Institute (met.no) oper-
ates nine C-band Doppler weather radar installations including the
Hurum radar station. The Norwegian radar network covers the entire
land surface of Norway and they scan the atmosphere with a 7.5 min
temporal resolution, with this resolution being 15min until June 2013.
The raw radar volume scan from the radar stations are processed and
quality controlled by met.no, and then met.no generates and distributes
various radar products to end users (Elo, 2012). One of the products
from met.no is Surface Rainfall Intensity (SRI). The mosaics of nine
radars' SRI data covering entire Norway are available for the public to
use in practical applications.

The quality of the measured reflectivity can vary from pixel to pixel
due to the nature of remote sensing measurements. Topography and

distance from the radar station affect the radar measurement of pre-
cipitation and introduce errors; these include anomalous propagation,
ground clutter, beam blocking and attenuation (Germann and Joss,
2004). In a mountainous region like Norway, the mountains can cause
partial or total beam blocking. Abdella et al. (2012) reported that beam
blockage for Hurum radar affects the eastern and south-eastern part of
its coverage (Fig. 1) and the beam blockage is up to 30%. Moreover, in
high latitude cold climates, non-uniform vertical profile of reflectivity
(VPR) and bright band effects in the VPR introduce major uncertainties
in the radar precipitation estimation (Abdella, 2016; Koistinen and
Pohjola, 2014).

The reflectivity measurements go through a chain of processes to
address the above-mentioned errors and uncertainties. The process at
met.no first removes clutter and other non-meteorological echoes from
the radar scan and then, gaps in the data caused by clutter are re-
constructed. After that, volumetric reflectivity data are segmented as a
convective or stratiform type of precipitation. Next, the processing al-
gorithm computes VPR according to the precipitation type. To generate
SRI product, met.no uses the lowest Plan Position Indicator (PPI). Here,
the aloft reflectivity data is projected down to a reference height (1 km)
near to the ground and the projection, known as VPR correction that
takes variability in the vertical profile of reflectivity (VPR) and bright
band effect into account (Elo, 2012). The met.no applies a single Z - R
relationship (Marshall and Palmer (1948) relationship, =Z R200 1.6) to
convert the 7.5min (or 15min before June 2013) reflectivities into
precipitation rates. The precipitation rates are then accumulated to
hourly and distributed as end user hourly radar precipitation rate (SRI)
product. The accumulated hourly radar precipitation rate product (SRI
product) was used in the present study.

The gauged precipitation data, used in the study, are from the
gauges operated by met.no. The met.no undertakes the calibration of
gauges and essential measures to reduce the uncertainty in the mea-
surements. Further, met.no performs routine quality control before
being released to the data portal for the public. However, met.no does
not correct the precipitation data for wind induced undercatch. The
precipitation measurements from the gauges are available with varying
length as some gauges have been operated since 2013 or later and there
are missing values during their operation as well.

Gridded air temperature and wind speed datasets covering Norway
are available from met.no. Lussana et al. (2016b) spatially interpolated
the past temperature observations from the Norwegian meteorological
stations using an Optimal Interpolation in a Bayesian setting to develop
a temperature dataset for Norway. The gridded hourly wind speed
dataset was derived by statistical downscaling from the 10 km numer-
ical dataset NORA10 combined with the AROME 2.5 km numerical
dataset. A local quantile regression method was used for this statistical
downscaling. The wind speed data were required in this study to correct
wind induced undercatch of gauge precipition.

The datasets for the study were downloaded and prepared as fol-
lows. Radar and gauge precipitation and meteorological data (air
temperature and wind speed) for the period from January 2011 to May
2015 were used for this study. The gridded hourly radar precipitation
rates, air temperature and wind speed data with 1 km× 1 km spatial
resolution for the study area were downloaded from met.no's thredds
server (http://thredds.met.no/). The gridded data are in netCDF file
format in UTM33N projection. The hourly precipitation gauge mea-
surements and gauges meta information were obtained from met.no's
data portal “eKlima” (http://eklima.met.no).

The gauge locations were overlaid on the 1 km× 1 km regular grids
of the gridded data and the pixel of 1 km2 overlapping each gauge was
located. One location near Oslo has three gauges within a 1 km× 1 km
pixel but except for that, all pixels consist of a single gauge. The pixel
value for each hour was extracted and continuous hourly time series of
radar precipitation rate, air temperature and wind speed for all gauges
were generated.

Solid precipitation exhibits significant undercatch due to high wind

Fig. 1. The Hurum radar station (purple star mark) and its coverage of radius
100 km (black stippled line) and precipitation gauge locations overlaid on the
topography of the study area, Oslo region of Norway. The gauges used in the
computation (blue circles) and left for verification (red circles). (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)
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conditions in high latitude and mountainous regions (Wolff et al.,
2015). In this study, gauged precipitation data were corrected for wind
induced undercatch by using the Nordic precipitation undercatch cor-
rection model (Førland et al., 1996). The correction model classifies the
precipitation phase as solid, liquid and a mixture of two phases using
air temperature and the model uses two sets of equations, one for the
solid precipitation and other for the liquid precipitation. An average
value of the two equations is used for the mixed precipitation. These
equations require wind speed and air temperature at gauge location. In
this study, the gridded hourly wind speed and air temperature data
were used for the undercatch correction. Hereafter, gauge precipitation
refers to undercatch corrected precipitation throughout the study.

The precipitation intensities in the study area are relatively low,
consistent with intensities in high latitude boreal climates
(Sivasubramaniam et al., 2018). A study of statistical properties of
precipitation intensities in mid-Norway showed that precipitation rates
less than 6 mm h 1 yields 88% of the total precipitation volume while
less than 1.76 mm h 1 yields 50%. Moreover, the same analysis found
that precipitation rates below 0.1 mm h 1 contributes little to the total
precipitation volume and might be regarded as zero precipitation
(Engeland et al., 2014). In this study, gauge precipitation and radar
precipitation rate less than 0.1mmh−1 were assumed as zero pre-
cipitation. At each gauge location, the timesteps with gauge precipita-
tion or radar precipitation rate less than 0.1 mm h 1 were removed, and
an observed dataset of hourly gauge precipitation and corresponding
radar precipitation rate and air temperature was prepared. It can be
noted that the length of dataset at each gauge location can vary due to
the availability of gauge precipitation records.

To analyse the distribution of gauge and radar precipitation used in
this study, observed datasets (gauge and radar precipitation and air
temperature) at gauge locations were pooled and histograms were
plotted as shown in Fig. 2. Looking at Fig. 2, it is visible that radar
underestimates the precipitation compared to gauge observation.
Moreover, for intense events, radar precipitation rates show a con-
siderable negative bias for both temperatures colder than and warmer

than 10∘ C. It can be noted that high-intensity hourly precipitation
events are rare in the study region. Only 0.03% of the total gauge hours
used in the analysis have gauge precipitation intensity above
20mmh−1 while 0.31% have intensity above 10mmh−1.

In the pooled dataset from the gauge locations, the maximum ob-
served gauge precipitation was 45mmh−1 while maximum radar pre-
cipitation rate was 35mmh−1. However, analysis of radar precipitation
rates from the entire set of pixels (46656) showed that there are radar-
pixels with extremely high intensity values. A histogram showing the
distribution of radar precipitation rates pooled from the entire set of
radar-pixels is available in the Supplement (Fig. S1). The intensive
values above 50mmh−1 are likely due to hail, or a mixture of very
heavy precipitation and hail.

2.3. Methodology

2.3.1. Framework
The two sources of quantitative precipitation from the radar and

gauges are combined within a dynamic model combination framework.
As an overall description, the flow diagram in Fig. 3 illustrates the data
used and the methods applied in the merging process. Merging with
gauge precipitation must be applied as the last step in radar pre-
cipitation estimation process and all possible corrections should be
applied first to improve the radar precipitation estimates before mer-
ging (Goudenhoofdt and Delobbe, 2009). The hourly radar precipita-
tion rates were first adjusted within a nonparametric framework using
gauge precipitation and air temperature observations
(Sivasubramaniam et al., 2018). Since the gauge precipitation data are
at gauge locations, a spatial interpolation was applied to get pre-
cipitation values at grids. Precipitation values at grids from the two
sources were then merged using the estimated combination weights
within dynamic model combination framework. Each of the methods is
described in detail in the following subsections.

2.3.2. k-nearest neighbour (k-nn) estimation
For the nonparametric estimation, this study adopted the method

presented by Sivasubramaniam et al. (2018) for the cold climatological
setting where k-nearest neighbour (k-nn) nonparametric model with
radar precipitation rate and air temperature as two covariates is used.

Here, a summary of the k-nn method with air temperature as an
additional covariate is presented for brevity. More details of the k-nn
method of radar precipitation estimation can be found in
Sivasubramaniam et al. (2018). Readers are referred to Sharma and
Mehrotra (2014); Sharma et al. (2016); Hasan et al. (2016b); Mehrotra
and Sharma (2006) for a description of the nonparametric framework.

Conditional estimation of ground precipitation R t( ( ))est for a given
observed pair of radar precipitation rate R t( ( ))) and air temperature
T t( ( )) using past observed dataset of radar precipitation rate and air
temperature and corresponding gauge precipitation within a k-nn re-
gression model is written as follows (Sivasubramaniam et al., 2018).

= = =E R t R t T t( ( )|[ ( ), ( )])est
k

K g
k

j
K

j1 1
1

k

(1)
In Eq. (1), k denotes the number of past observations (radar pre-

cipitation rate and air temperature pairs) which are considered similar
to the current observation [R, T] and gk denotes the gauge precipitation
corresponding to the kth neighbour in the past observations. K is a
maximum number of nearest neighbours permissible and it is taken as
equal to the square root of the sample size as recommended by Lall and
Sharma (1996). The order of K neighbours is ascertained using a
weighted Euclidean distance metric as expressed below.

= +R r
s

T t
s

( ) ( )
i

R i

R

T i

T

2
2 2
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Where, i is the distance of the current observed pair [R, T] to the ith

Fig. 2. Histogram representing the distribution of precipitation intensities of
gauge and radar precipitation for different threshold precipitation intensities
(Prec) of gauge precipitation (0.1, 1.0, 10.0, 20.0mmh−1) for temperatures
colder than and warmer than 10∘ C. Total gauge hours are nearly 135000 and
bin width is 1.0 mmh−1.
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data point r t( , )i i in the past observed dataset in a two-dimensional
space. sR and sT denote sample standard deviations of the two predictors
and R and T are partial weights of predictors and their summation is
equal to one. Readers are referred to Sivasubramaniam et al. (2018) for
further details about the use of partial weights in k-nn estimation.

The k-nn regression estimator available in the NPRED, R package
(Sharma et al., 2016) available for downloading from http://www.
hydrology.unsw.edu.au/download/software/npred was used for the
nonparametric k-nn estimation in this study. An average partial weight
of = =( 0.68, 0.32)R T , recommended by Sivasubramaniam et al.
(2018) for the study region was used.

A continuous time series of radar precipitation rate and air tem-
perature are on the regular 1 km× 1 km grids. For the k-nn estimation
at each pixel (grid) location, the observed dataset (gauge precipitation,
radar precipitation rate and air temperature) from the three nearest
gauges were pooled and used as past observations with the k-nn re-
gression to estimate precipitation (k-nn estimate). For the timesteps
with radar precipitation rate less than 0.1mmh−1, the k-nn estimates
were set as zero.

2.3.3. Thin plate spline (TPS) interpolation
Merging of radar precipitation field with gauges spatially in a reg-

ular grid require spatial interpolation of point gauge data. For this
study, Thin Plate Splines (TPS) was chosen for the spatial interpolation
of gauge precipitation data. It can be noted that for spatially inter-
polated gauge precipitation to use in the combination method, any of
the interpolation techniques as listed in section 1 can be used if the
estimates of variance in the fitted precipitation surface are available
(Hasan et al., 2016b).

The TPS interpolation is a data driven nonparametric approach of
locally weighted polynomial method. The optimal number of neigh-
bours around each target is determined using general cross validation
(GCV) statistics (Hwang et al., 2012). A number of studies (Hutchinson,
1998a, b; Tait et al., 2006; Woldemeskel et al., 2013) have reported the
application of TPS method for spatial interpolation of gauge pre-
cipitation. “Tps” from the R package (library) “fields v9.0” (Nychka
et al., 2017) available on the Comprehensive R Archive Network
(CRAN) was used to fit a thin plate spline precipitation surface from
precipitation gauges in this study. A description of the “Tps” can be
found in the R documentation (https://www.rdocumentation.org/
packages/fields/versions/9.0/topics/Tps). In the “Tps”, the smoothing
parameter is chosen by generalized cross validation.

2.3.4. Dynamic model combination
At each pixel (1 km× 1 km grid), we have spatially estimated k-nn

radar precipitation estimates using a model with radar precipitation
rate and air temperature as two predictor variables (k-nn) for each
hourly timestep. We also interpolated gauge precipitation using TPS to
provide an alternate estimate that uses a different data source. As a
result, all 46656 pixels in the study area have continuous time series of
k-nn and TPS estimates.

The k-nn and TPS estimates have different estimation accuracy. The
estimation accuracy varies spatially from one pixel location to another

as well as temporally at a given pixel location. Within a model com-
bination framework, the two estimates can be combined by weighting
each method according to their past observed estimation accuracy
(Bates and Granger, 1969; Wasko et al., 2013; Hasan et al., 2016b).

In this study, the combination weight of each method is calculated
from the error covariance matrix using residual errors corresponding to
past observations. To calculate the error, we need a true observation of
the estimated precipitation value. At pixel locations coinciding with
gauges, corresponding gauge precipitation was taken as the true pre-
cipitation and k-nn and TPS errors were calculated. This study used the
leave one out cross validation (LOOCV) procedure to calculate these
errors. The k-nn error at a gauge location was calculated by leaving out
one observed response (gauge precipitation) from the k-nn regression
and estimating the expected response value for that observed response
to obtain the error for each observation. A matrix of observed gauge
precipitation and corresponding precipitation rate and air temperature
and k-nn error e( )k nn was generated at each gauge location.

TPS error was calculated using spatial LOOCV whereby leaving a
gauge from spatial interpolation and estimating the TPS response for
each observed precipitation value allowed TPS error to be calculated
with reference to the observed precipitation value. TPS error matrix
with observed precipitation and corresponding TPS error e( )TPS was
generated. The k-nn error matrix and TPS error matrix were next
merged to obtain an error matrix of radar precipitation rate and air
temperature and corresponding k-nn error e( )k nn and TPS error e( )TPS at
87 gauge locations.

To merge the TPS and k-nn estimates, combination weights were
calculated at each pixel (grid) location (x, y) for each hourly time step
(t) as described follows. Each pixel can be associated with a radar
precipitation rate R t( ( ))x y, , air temperature T t( ( ))x y, and corresponding
precipitation estimates using TPS P t( ( ))TPS x y, , and k-nn P t( ( ))k nn x y, , . To
estimate the combination weight, error matrices from three nearest
gauges for this pixel were pooled. The pooled error matrix=Y R T e e[ , , , ]x y x y k nn x y TPS x y, , , , , , consist of radar precipitation rate, air
temperature and corresponding estimated k-nn and TPS error from past
observations.

The static combination approach uses entire observations to esti-
mate error covariance matrix at a given pixel location. In contrast, the
dynamic combination identifies a number of similar precipitation
events to estimate error covariance matrix for each timestep at the pixel
location. Here the k-nearest neighbour (k-nn) method with a Euclidean
distance metric was used to ascertain the neighbours and the number of
maximum neighbours was equal to the square root of the sample size as
recommended by Lall and Sharma (1996).

Hasan et al. (2016b) identified similar events using reflectivity as a
single variable. In contrast to their approach, this study uses radar
precipitation rate and air temperature as two variables to identify si-
milar events using k-nearest neighbour technique in the dynamic model
combination algorithm to merge k-nn and TPS estimates. The proposed
combined product of k-nn and TPS is denoted as PCombRT . For compar-
ison, a reference model combination of k-nn and TPS estimates using
radar precipitation rate as a single variable to identify similar events in
the dynamic model combination algorithm, as similar to Hasan et al.

Fig. 3. Flow diagram for the radar and gauge precipitation merging process.
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(2016b) were also developed P( )CombR .
For each time step, for the given radar precipitation rate and air

temperature pair at the pixel location R T t[ , ]( )x y x y, , , k number of similar
R T[ , ] pairs from the past observations in the matrix Y were identified
and hence corresponding k number of k-nn error e( )k nn and TPS error
e( )TPS pairs were selected. In the reference model, for the given radar
precipitation rate R t[ ]( )x y, , k number of similar [R] from the matrix Y
were identified to select k-nn and TPS error pairs.

An error covariance matrix ( e) of the estimation errors was cal-
culated for the selected error pairs e e[ , ]k nn TPS and the covariance
matrix can be written as follows.

=e TPS TPS k nn

TPS k nn k nn

2

2 (3)
Here diagonals are the variance of the errors of each method and off

diagonals represent covariance of the errors from the two methods.
Where, ρ is the correlation between errors from the two estimation
methods.

The dynamic combination weight of the two estimates can be cal-
culated by minimizing the quantity as shown in (4) such that the
weights being constrained to lie between 0 and 1 and their summation
is unity (Khan et al., 2014; Hasan et al., 2016b). For further details of
the derivation of Eq. (4), readers are referred to Khan et al. (2014).

W Wmin
e (4)

Here, =W W W[ , ]TPS k nn and the summation ( +W WTPS k nn) is
equal to 1. WTPS denotes the combination weight associated with TPS
estimates while the weight associated with k-nn is denoted byWk nn.

The combined precipitation estimation P t( ( ))CombRT x y, , is the
weighted summation of k-nn and TPS estimates as follows= +P t W P t W P t( ) ( ) ( )CombRT x y k nn k nn x y TPS TPS x y, , , , , , (5)

At pixel locations coinciding with gauges, the estimates were ob-
tained using leave one out cross validation (LOOCV). The LOOCV en-
sures the modelled outcomes (P P P P, , andk nn TPS CombR CombRT) are ob-
tained from independent of gauge precipitation values those will be
used to evaluate the modelled outcomes. The k-nn estimate was cal-
culated by leaving out the current radar precipitation rate and air
temperature and corresponding gauge precipitation from the past ob-
served dataset in the k-nn regression. The TPS estimate was obtained by
leaving a gauge from spatial interpolation and estimating the TPS re-
sponse on that gauge location. To calculate the weight for each timestep
in the dynamic combination, the error covariance matrix was for-
mulated by excluding the k-nn and TPS error pair corresponding to the
current k-nn and TPS estimates.

2.3.5. Model evaluation criteria
Several performance metrics have been used in literature to assess

the performance of the models and compare them (Villarini et al., 2008;
Hasan et al., 2016b). Some of the metrics are root mean square error
(RMSE), mean absolute error (MAE) and mean error (ME). The RMSE
provides the overall performance measure of a predictive model (Hasan
et al., 2016b). The study primarily used the RMSE as a performance
metric to evaluate the model performance. To strengthen the evalua-
tion, additional performance metrics, MAE and ME, were also used.
Definition of the performance metrics used in this study can be found in
the published literature (Villarini et al., 2008; Bennett et al., 2013;
Hasan et al., 2016b).

3. Results

3.1. Performance of dynamic combination

The performance of the modelled outcomes was evaluated at gauge
locations. For the assessment, we computed performance metrics
(RMSE, MAE and ME) for the k-nn, TPS and the combination estimates
(CombR and CombRT) at 87 gauge locations for the timesteps with
radar precipitation rate and gauge precipitation greater than
0.1 mmh−1. Here, gauge precipitation was taken as a true observed
value to compute the performance metrics. The performance metrics
were also estimated for radar precipitation rates, which was considered
as a benchmark to compare the modelled estimates.

Fig. 4 shows a comparison of performance metrics computed at 87
gauge location for the precipitation estimates using different estimation
methods and for the radar precipitation rates (MP). The Nonparametric
k-nn estimation (k-nn) leads to a considerable decrease in the RMSE in
the radar precipitation estimates. The merging of k-nn and TPS esti-
mates within a dynamic model combination framework reduces the
RMSE in the estimated precipitation field significantly. The mean im-
provement in RMSE for k-nn is 15.0% (from 1.3 to 1.1mmh−1) while it
is over 25% (1.3–0.95mmh−1) for the proposed dynamic model
combination estimation (CombRT) compared to the radar precipitation
rates. Further, almost all gauge locations exhibited clear improvement
in estimates using dynamic combination approach.

Looking at Fig. 4, TPS estimates has a relatively smaller error than
radar precipitation rates (MP). This displays the errors associated with
the radar precipitation. It can be noted that TPS interpolation technique
was the method of choice in this study and the focus of the study was
not to assess the different interpolation methods to select for the model
combination. As shown in Fig. 4 (c), the mean error (ME) of the radar
precipitation rates (MP) which represents the bias in the MP, was ne-
gative for almost all gauge locations. This demonstrates the under-
estimation of radar precipitation compared to gauge precipitation. The
k-nn estimation noticeably reduces the bias (ME) in the radar pre-
cipitation to near zero (from −0.44 to 0.01mmh−1) while reducing
the RMSE and MAE.

Most of the gauge locations showed clear reduction in RMSE and
MAE in the precipitation estimates by merging the two sources than the

Fig. 4. Box plot representing a summary of performance metrics (RMSE, MAE
and ME) at 87 gauge locations for the radar precipitation rates (MP), Thin Plate
Spline interpolation (TPS), k-nearest neighbour estimates (k-nn) and the com-
bination (CombR and CombRT). Mean value of the performance metric for each
model is marked with a red diamond. The values outside 1.5*IQR are re-
presented by the whiskers. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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estimation (k-nn or TPS) using the data from a single sensor (radar or
gauge). However, the ME associated with combination estimation
(mean value of - 0.1 mmh−1) was slightly higher than k-nn estimation
while it is less than the TPS estimates (mean value of - 0.2mmh−1).
The proposed merging method using air temperature as an additional
variable in the dynamic combination algorithm (CombRT) slightly
improves the precipitation estimates compared to the reference model
(CombR). Looking at Fig. 4, the improvement is not very high. How-
ever, more than 80% of the gauge locations, RMSE of CombRT is lower
than CombR.

In addition, we also evaluated the estimates at the 7 independent
gauge locations to verify the results on ungauged pixel locations. The
gauge precipitation data from those control gauge locations have not
been used in any of the estimations. We found a similar result at these
control gauge locations as for the study gauges. A bar plot representing
these performance metrics at 7 control gauge locations is shown in
Fig. 5.

While Fig. 4 presents the summary of performance metrics for the
87 gauges obtained by using LOOCV procedure, the values of perfor-
mance metrics estimated for each of those 7 control gauges are pre-
sented in Fig. 5. The combination approach reduces the RMSE and MAE
for all seven-gauge locations while it decreases the ME in the radar
precipitation rates for most of them and it resembles the summary re-
sult presented in Fig. 4. Looking at Fig. 5, the magnitude of the per-
formance metrics varies among gauges. We investigated whether they
are due to beam blockage. However, we could not find any spatial
pattern in the magnitude of the errors at gauge locations. Here it can
also be noted that, the data length at each gauge location is not the
same as mentioned in section 2.2.

3.2. Variation with temperature classes

To investigate whether the improvement can vary with temperature
ranges, we computed performance metrics for the datasets with tem-
peratures colder than or equal and warmer than 10∘ C and RMSE and
ME are shown in Fig. 6. Looking at Fig. 6 (a), for temperatures colder
than or equal 10∘ C, radar precipitation (MP) have a higher RMSE than

the TPS interpolation. This shows that the radar performance is poorer
for colder temperatures than warmer. There are relatively higher errors
and uncertainties in the radar measurement of precipitation in cold
temperatures. For temperatures warmer than 10∘ C, the overall RMSE is
higher for TPS than for radar precipitation. This can be due to TPS
spatial interpolation of gauge precipitation using available sparse
gauges resulting in more error. This is turn could be due to such events
being local convective events where radars perform better.

Fig. 6 (b) shows the estimated bias (ME) in the different estimation
for the two temperature classes. Radar precipitation rates (MP) have
substantial negative bias (under estimation) for both colder and warmer
temperatures. It can be noted that met.no uses the single Z - R re-
lationship (Marshall and Palmer (1948) relationship for rain) to convert
the reflectivities to precipitation rates. An inappropriate relationship (Z
- R relationship for rain instead of snow) in the conversion can also
result in phase dependent bias in the estimation for colder tempera-
tures. Similar argument can be valid for the bias in the radar pre-
cipitation for temperatures warmer than 10∘ C, where the single Z - R
relationship cannot be appropriate for different types of rainfall (oro-
graphic or convective) as they have different raindrop size distribution
(Uijlenhoet, 2001). The nonparametric k-nearest neighbour (k-nn) es-
timation reduces the bias in the radar precipitation for both tempera-
ture classes.

Looking at Fig. 6 (b), TPS interpolation of gauge precipitation also
resulted in negative bias at most of the gauge locations, but it is con-
siderably less than the bias in the radar precipitation. For both esti-
mates, the magnitude of the bias is higher for warmer temperatures
than colder; this is because precipitation intensities of colder tem-
peratures are relatively low and the values in the plot is not normalised.
The bias in the merged precipitation (CombR and CombRT) is lower
than TPS estimates; however, it is slightly higher than the k-nn esti-
mates.

The nonparametric k-nearest neighbour model (k-nn) reduces the

Fig. 5. Bar plot representing three performance metrics (RMSE, MAE and ME)
estimated at 7 control gauge locations for the radar precipitation rates (MP), k-
nearest neighbour (k-nn) and the combination estimates (CombR and CombRT).

Fig. 6. Box plot of RMSE and ME (mm h−1) values estimated at 87 gauge lo-
cations for the radar precipitation rates (MP), TPS interpolation (TPS), k-nn
estimation (k-nn) and the combination methods (CombR and CombRT) using
entire data and dataset with temperatures colder than or equal 10∘ C and
warmer than 10∘ C. Mean value of RMSE and ME for each model is marked with
a red diamond. The values outside 1.5*IQR are represented by the whiskers.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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RMSE in the radar precipitation estimation significantly for tempera-
tures colder than 10∘ C. The k-nn estimation still improves the radar
precipitation estimation for warmer temperatures also. Both combina-
tion methods (CombR and CombRT) significantly reduces the RMSE
compared to any of the other estimations for both temperature classes.
For temperatures colder than 10∘ C, the use of air temperature in the
dynamic combination algorithm (CombRT) results in marginal im-
provement compared to the reference model without air temperature
(CombR) and the performance is nearly same for temperatures warmer
than 10∘ C.

3.3. Combination weights

As mentioned earlier, combination weights vary with space and
time. The dynamic assignment of weight ensures the provision of merit
to the best method in the combination at any location for any particular
time step (Hasan et al., 2016b). To comprehend the usefulness of dy-
namic model combination approach, the spatiotemporal variation of
combination weights was scrutinized.

Fig. 7 shows the spatial plot of combination weight associated with
k-nn at 87 gauge locations in the study area. The circles represent the
gauge locations and a discrete filled colour scale is used to show the
combination weights assigned to k-nn estimates. It can be noted that the
summation of weights +W W( )k nn TPS is equal to 1.

It is clearly visible from Fig. 7 that, k-nn gets lower weight (yellow
filled circles) and hence TPS gets more weight at densely gauged lo-
cations while k-nn gets higher weight in the low density regions. The
circles filled with blue colour represents the gauged pixel locations
where the k-nn gets equal or higher weight compared to TPS. In the
northern and western boundary of the study area with sparse gauges,
the highest average weight of more than 0.75 was assigned to the k-nn
estimates. The result is consistent with (Hasan et al., 2016b) where they
used a denser gauge network (282 tipping bucket gauges).

Fig. 7 shows the average combination weight for the entire time-
steps at each gauge location. In addition to spatial variation, at any

pixel location, the combination weights also vary with time. In this
paper, we illustrate the temporal variation for the four-gauge locations
which are marked with “A″, “B″, “C″, “D” in Fig. 7 and the temporal
variation is shown using a box and whisker plot in Fig. 8. The locations
were chosen to represent the four classes of combination weight as
listed in the legend of Fig. 7.

The location “A″ is in a densely gauged area and “B″ is from a less
dense gauged area while “C″ and “D″ are in a sparse gauged region.
Looking at Fig. 8, the resulting combination weights of k-nn are in a
range of values between 0 and 1 for all four locations. For the locations
“A″ and “B″, the average weight of k-nn is less than 0.5, but a number of
hourly events still get a weight above 0.5 for k-nn and vice versa for the
locations “C″ and “D”. The dynamic model combination method assures
the best data source (k-nn or TPS in this case) is chosen in the combi-
nation for each hourly event.

The proposed dynamic model combination uses air temperature as
an additional variable to identify similar events to estimate the com-
bination weight. Fig. 9 illustrates the variation of combination weight
assigned to the two estimates for the datasets with temperatures colder
and warmer than 10∘ C at the gauge locations. Looking at Fig. 9, radar
based k-nn estimaton gets a relatively less weight than TPS for air
temperatures colder than 10∘ C. For temperatures warmer than 10∘ C,
the k-nn estimates get a higher average weight than TPS for more than
50% of the gauge locations. The overall aggregated average weight for
k-nn is 0.43 while 0.57 for TPS.

3.4. Analysis of high-intensity storm events

Fig. 10 shows a histogram of radar and gauge precipitation and
resulting estimates (k-nn and combination) for high-intensity hourly
events at the gauge locations. Looking at Fig. 10, nonparametric k-nn
estimation results in lower estimation for the intensive events observed
by gauges. This can be because of lack of data points with intensive
events in the past observed dataset. To ascertain accurate estimates

Fig. 7. Spatial variation of combination weight of k-nn estimates at 87 gauge
locations, overlaid on the coastline and Norway-Sweden border in the study
area. Discrete filled colour represents the weights assigned to k-nn and the
summation of weights is equal to 1 ( + =W W 1k nn TPS ). (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 8. Variation of combination weight of k-nn at four gauge locations, “A″,
“B″, “C″ and “D″ as shown in Fig. 7. Filled colour represents the average weight
range as in the legend of Fig. 7 in which these location's average weight resulted
in. The mean value of the weight is marked with a red diamond. The values
outside 1.5*IQR are represented by the whiskers. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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using a nonparametric method that is based on local regression, enough
number of past observations with similar intensities are required
(Hasan et al., 2016b). The combination improves the precipitation es-
timates; however, combination estimates are also still lower than the
gauge precipitation for higher precipitation rates.

To assess the modelled outcomes for individual storm events,

resulting raster images were made in order to visually inspect the
usefulness and limitations of the different precipitation estimation
methods. The event shown in Fig. 11 was one of the recorded extreme
hourly summer events by the gauging stations in Oslo. The spatial air
temperature in the study area during the hourly event was in the range
of 6° – 19∘ C over the pixels. Looking at Fig. 11, both radar and gauges
(TPS) observed the local extremes and shows pixels with high in-
tensities. Comparing Fig. 11(a) and (b), radar displays several pixels
with intense precipitation while TPS displays extremes at two locations.
Further, radar shows precipitation on the eastern part of the study area
but TPS did not show any precipitation because of very sparse gauges in
this area and they could therefore not capture the event. The advantage
of extended spatial coverage of radar is clearly visible from this event.
Spatial interpolation generally smooths out the spatial variation as it is
visible on Fig. 11(b). Looking at Fig. 11(c), the k-nn did not show any
high intense values (intensity greater than 20 mmh 1). As described
above, if there are no similar intensive events in the past observations,
the k-nn local regression estimation can result in underestimation.

The merging of k-nn and TPS estimates brought the quantitative
information partially from gauges and radar while it reflects the spatial
variation detected by radar in the resulting image of the combination
estimate as shown in Fig. 11 (d). The radar image (Fig. 11 (a)) shows
the pixels with high intense values in the northwest and northeast part
of the study area; however, the resulting image in the combination does
not display them as intense. The more useful information from a radar
is the spatial distribution of precipitation. The usefulness of combina-
tion approach is demonstrated at the eastern part where the combina-
tion resulted in precipitation even though TPS did not show any pre-
cipitation there.

Winter precipitation intensities are relatively low in the study re-
gion, consistent with intensities in boreal climates. To compare the
estimation methods for a winter event, a 6-h winter storm event on 26
March 2015 is selected to present. It can be noted that the gauges ob-
served nearly similar hourly intensities during the 6-h period. The
hourly precipitation estimates using different estimation methods on
1 km× 1 km pixels for the period from 06:00 to 11:00 UTC were ac-
cumulated and displayed in Fig. 12. This winter storm disturbed the
transport and other essential functions in the capital city, Oslo and
neighbouring areas.

Looking at Fig. 12, accumulated radar precipitation was very low.
As shown in the aggregated results in Fig. 4, radar underestimates the
precipitation. However, it shows better the spatial variation in the
precipitation. The TPS interpolation smooths out the spatial variation

Fig. 9. Variation of combination weight assigned to k-nn and TPS estimates at
87 gauge locations for temperatures colder than or equal and warmer than 10∘

C. Mean value of weight is marked with a red diamond. Here, + =W W 1k nn TPS .
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 10. Histogram representing the distribution of gauge and radar pre-
cipitation intensities and the k-nn and combination estimates at gauge locations
for precipitation intensities (Prec) of gauge precipitation above 10mmh−1 and
20mmh−1 for temperatures colder and warmer than 10∘ C. Bin width is
1.0 mmh−1.

Fig. 11. Precipitation estimation for an hourly storm event on 26 June 2014 at
15:00 UTC from a) radar precipitation rates b) TPS, c) k-nn, d) CombRT. The
spatial hourly air temperature was in the range 6∘ C - 19∘ C.
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based on the available gauges observations. The k-nn estimates show
higher precipitation than the TPS interpolated values. The nonpara-
metric k-nn estimation is based on the local regression of past similar
observations. It can be noted that, the k-nn estimation using air tem-
perature as an additional covariate ascertains similar cold events as the
nearest neighbours if such events in the past observations. Fig. 12 (d)
shows the resulting image of the accumulated hourly estimates of the
combination of TPS and k-nn. The combination resembles the spatial
variation shown in the k-nn estimation, however; it did not show higher
precipitation for many pixels as in the k-nn. The dynamic combination
approach provides more weight to the method with less error in the
past estimation. For this winter event, the quantitative estimation from
the radar (k-nn) gets less weight than the estimation derived from
gauges (TPS) on these pixels.

4. Discussion

Water resources engineering and hydrological studies on a catch-
ment scale are often limited by high spatiotemporal precipitation esti-
mates available (Syed et al., 2003; Smith et al., 2004; Hailegeorgis
et al., 2016). In cold climates, precipitation estimation using available
sensors (both gauges and radars) are confronted with an additional
challenge of phase dependent uncertainties (Saltikoff et al., 2015; Wolff
et al., 2015). The precipitation measurements by gauge network and
weather radar have their own merits and shortcomings. It is often
shown that merging the two sources can result in improved precipita-
tion estimates (Haberlandt, 2007; Berndt et al., 2014; Hasan et al.,
2016b). In this study, we combined the two precipitation data sources
by taking advantage of their merits and rectifying their shortcomings.
The combination approach considerably decreased the negative bias in
the radar precipitation while it reduced the mean squared error by one-
fourth of the errors associated with the original hourly radar pre-
cipitation rates. As a result, we generated an improved continuous
hourly time series of gridded (1 km× 1 km) precipitation for the area
with a radar coverage of radius 100 km.

This study has formulated a framework which adopted a nonpara-
metric estimation model and a dynamic model combination approach
to merge radar and gauge precipitation in cold climates. In a typical
radar-gauge merging process, radar precipitation rates from the pro-
cessing chain (clutter cancellation, VPR correction and Z - R conver-
sion) are directly used for merging. Analysis of data showed that the
radar precipitation rates have a noticeable bias, including phase de-
pendent bias. In contrast to the traditional approach, this study first

adjusts the radar precipitation rates using the nonparametric k-nn
method before merging with gauge precipitation, otherwise the bias
could remain in the merged precipitation estimates.

We employed the nonparametric k-nn method with air temperature
as an additional covariate to adjust the radar precipitation for colder
temperature conditions, and then also for use within the dynamic
model combination. The use of air temperature in the dynamic model
combination algorithm did not result in an improvement similar to the
nonparametric estimation in Sivasubramaniam et al. (2018). However,
the proposed method marginally improved the estimates compared to
the combination using radar precipitation rate alone. When gridded air
temperature data are available, the use of air temperature in the dy-
namic model combination algorithm is inexpensive and that results in
added value to the resulting precipitation estimates in cold climates.

Geostatistical merging methods consider radar precipitation as a
secondary information to improve spatially interpolated gauges
(Goudenhoofdt and Delobbe, 2009; Rabiei and Haberlandt, 2015). In
contrast to those merging methods, the dynamic variation of the weight
in the model combination takes intensity information from radar pre-
cipitation as a potential source of equal importance to gauge pre-
cipitation. The model combination approach can be more useful for a
relatively less dense gauged area where quantitative information from
the radar can be more accurate than the interpolated gauge value.

The results of the dynamic model combination found are compar-
able with the results of Hasan et al. (2016b). In this study, the dynamic
model combination framework of Hasan et al. (2016b) for a tropical
setting was extended to a Norwegian cold climatological context.
Compared to Hasan et al. (2016b) univariate (radar reflectivity as a
single variable) kernel based nonparametric estimates, this study em-
ployed a bivariate nonparametric k-nearest neighbour model with radar
precipitation rate and air temperature as two covariates to adjust the
radar precipitation rates first. Further, a Thin Plate Spline (TPS) was
applied to spatially interpolate the gauge precipitation data to regular
grids. Finally, air temperature was used as an additional variable to find
similar events to estimate the dynamic combination weights. However,
in contrast to Hasan et al. (2016b), this study aims to generate con-
tinuous hourly time series of improved radar based precipitation field
for the region, which can be readily useable with hydrological models.

Hasan et al. (2016b) tested the combination method over the
Sydney region in Australia and reported that the nonparametric esti-
mation reduced the RMSE in rainfall estimates by 10% and the model
dynamic combination reduced by 20% compared to radar as a single
sensor using a parametric Z - R relationship. In this study, nonpara-
metric k-nn estimation resulted in a mean reduction in RMSE of 15%
while a mean reduction in RMSE of 25% was obtained using the dy-
namic combination method. Further, Hasan et al. (2016b) reported that
the bias in parametric and nonparametric estimation was the same. In
contrast, k-nn estimation in this study resulted in a considerable re-
duction in bias. The reason can be due to that Hasan et al. (2016b) used
a gauge adjusted parametric relationship for the study region and
compared with nonparametric estimation, while precipitation rates
used in this study were estimated by met.no using Marshall and Palmer
(1948) relationship without any gauge adjustment.

Work at the Norwegian Meteorological Institute (met.no) with the
same objective is currently underway. An experimental release from
met.no on this work reported merging of hourly radar precipitation
rates with disaggregated daily gauged precipitation to hourly data using
an optimal interpolation method (Lussana et al., 2016a). In contrast,
the present study merged the nonparametric estimation of radar pre-
cipitation with interpolated hourly gauge precipitation. The findings
from the present study can be an input for the ongoing Norwegian
national project of developing gridded radar-based precipitation field.

The improved continuous hourly precipitation field obtained
through the combination process can be a readily available data source
for hydrological applications. Radar precipitation data have relatively
smaller number of missing observations; in addition radar covers a

Fig. 12. Precipitation estimation for a 6-h winter storm event on 26 March
2015 from 06:00 to 11:00 UTC. Accumulated hourly estimates using a) radar
precipitation rates b) TPS, c) k-nn, and d) CombRT. The spatial average air
temperature was in the range −10∘ C - 1∘ C.
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large geographical area. However, the radar precipitation field has re-
latively high errors; these errors can potentially bias the calibration of
hydrological models and water balances computations (Oke et al.,
2009). The current study exploited the advantages inherited in the
radar data while it reduced the root mean squared error as well as the
negative bias in the original radar precipitation field. As a result, im-
proved continuous precipitation data are becoming available on the
catchment scale for many small catchments. The high spatial pre-
cipitation field could solve issues related to precipitation re-
presentativity of catchment scale hydrological modelling (Syed et al.,
2003; Smith et al., 2004; Kirchner, 2009). Further, the resulting long-
term continuous precipitation estimates can be led for deriving radar-
based climatology of precipitation for the region as similar to Overeem
et al. (2009). The use of data with hydrological models to simulate the
river flow and snow accumulations and reconstruct the extreme events
would be an immediate and interesting next step for this work.

5. Conclusions

The study developed a method to merge the radar and gauge pre-
cipitation observations, further, investigated the usefulness of air tem-
perature as an additional factor in the combination process in cold
climates.

An improvement of 25% in the root mean squared error was ob-
tained using the dynamic model combination method compared to the
original radar precipitation rates. Almost all gauge locations, where we
evaluated the modelled outcomes, showed a significant improvement in
the precipitation estimation. Air temperature as an additional variable
in the combination algorithm marginally improve the precipitation
estimates compared to the algorithm without air temperature.
However, the improvement was not high as it yielded for the non-
parametric estimation in cold climates.

Given the need for high spatiotemporal precipitation data on the
catchment scale and the availability of resulting data in remote areas in
a continuous setting because of radar's extended coverage, the above
finding could be useful for practical hydrology.

Software and data availability

Radar precipitation rate data used in the study are available in the
Norwegian Meteorological Institute's (met.no) thredds server (http://
thredds.met.no/thredds/catalog/remotesensingradaraccr/catalog.
html). Gauge precipitation data and gauges' meta information can be
obtained from met.no's web portal eKlima (http://eklima.met.no) and
access to the web portal is available upon request. Gridded hourly air
temperature and wind speed data are obtained from met.no's thredds
server (http://thredds.met.no/thredds/catalog.html). NPRED pro-
gramming tool is available as R package and it can be downloadable
from the following link as follows: http://www.hydrology.unsw.edu.
au/download/software/npred. The R package “fields v9.0″ is available
on the Comprehensive R Archive Network (CRAN) to install.
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