

RAIL: A Domain-Specific Language For Generating NPC

Behaviors In Action/Adventure Game

Meng Zhu1*[0000-0001-6639-8283] and Alf Inge Wang1[0000-0002-5502-1138]
1Norwegian University of Science and Technology, Sem Sælandsvei 7-9, NO-7491, Trondheim,

Norway

zhumeng@idi.ntnu.no, alfw@idi.ntnu.no

ABSTRACT. Domain-Specific Modeling (DSM) has shown its effectiveness of

improving software productivity in many software domains [1], where Domain

Specific Language (DSL) plays a key role. Also in the domain of video games,

researchers have proposed various DSLs for developing different aspects of several

game genres. This paper presents a DSL named RAIL for generating Non-Playable

Character (NPC) behaviors in Action/Adventure Games. Our DSL borrows concepts

from State Machines and adds some features to better suit the target domain.

Further, we have implemented a tool-chain for RAIL using the Eclipse language

workbench, and the tool-chain has been integrated with the level editor of the

Torque2D game engine. To evaluate the DSL, we developed a prototype game and

collected data regarding the development time and code lines. The results showed

that RAIL significantly improves the productivity of developing NPC behaviors in

the target game with a reasonable associated cost. In addition, the integration of the

RAIL and the Torque 2D tool-chains provides a smooth development workflow.

Keywords: Game Development; Domain Specific Language; NPC Behavior.

1 Introduction

Domain-Specific Modeling (DSM) is an emerging software development methodology,

which uses modeling languages specifically developed for a relatively narrow domain to

model the problems within the domain. Further, either the solution is generated from the

models, or the models are executable as (part of) the solution itself. In DSM, the Domain-

Specific Language (DSL) plays a key role, which raises the language concepts to a higher

abstraction level than General Purpose Languages (GPL) such as Java or UML, thus

making the modeled solution simpler than using GPL.

mailto:zhumeng@idi.ntnu.no

Games are difficult to develop [2], and DSM can potentially reduce the complexity and

cost of the development activities. DSM has shown its usefulness in developing software

for many application domains [1], and we believe it also has special advantages for game

domain, such as: higher abstraction level of models helps communication between

technical and non-technical people in the cross-disciplinary team; DSLs use problem

domain concepts thus allow game designers to implement gameplay without going

through programmers; and DSM enables fast prototyping which is important in game

development. Researchers have proposed some approaches adapting DSM to computer

game domain, such as [3-5].

Note that “computer game” is a broad software domain, ranging from simple card

games to massively multiplayer online games. It is impractical to create a DSL that

supports all computer games simply because the number of language concepts will

explode. Most of the existing DSM approaches have narrowed down the target domain to

one game genre, e.g. Tower Defense [4] and 2D Platformer [6]. Some approaches further

narrow down the scope to a game family or even a single game project, e.g. [7, 8]. Our

DSL presented in this paper also targets specifically the Action/Adventure game genre.

Moreover, it only focuses on the NPC behavior part of the entire game, which further

narrows down the scope of the DSL.

Our DSL is named Reactive AI Language (RAIL), and it has borrowed the basic

concepts from State Machines with some additional domain-specific features. We have

implemented a tool chain for RAIL and integrated the tool chain with Torque 2D game

engine. To evaluate the DSL and the tool chain, a prototype was developed and data on

development effort was collected. The results showed that RAIL significantly improved

the productivity in developing the prototype with an acceptable associated cost, and the

integration of the RAIL and Torque 2D tool chains offers a smooth workflow.

The rest of the paper is organized as follows: Section 2 discusses related work; Section

3 presents the essential concepts of RAIL; Section 4 describes the design and

implementation of RAIL and its tool chain; Section 5 presents the prototype to validate

RAIL and discuss the results. Section 6 concludes the paper.

2 Related Work

Researchers have been exploring the potentials of DSM in game development in the

recent years, and more and more model-driven approaches have been proposed in

literature, such as [3, 16-19]. The major differences of the RAIL-based approach from

the related work are on the target domain and the game engine-interoperability.

Some existing approaches ignore the game engine while they tend to generate code

directly based on the OS or some kinds of graphics SDK, for example [20, 21].

Without the support from game engines, is it hard to support scalable game

development. Other approaches use run-time game engines as domain frameworks,

such as [22] and [23] use Microsoft XNA, and [24] uses the Corona SDK. Some

approaches further modify game engines to promote them to a domain framework as

suggested in [25], such as [26-28], [25, 29], and [30]. However, the game engine tools

(world editor for example) have been ignored, thus they failed to take the full

advantage of the game engines. The RAIL-based approach emphasizes the

cooperation of game engine tools and MDD tools, making the non-technical game

developers easier to work with, which is an important contribution of our work. Pleuß

and Hußmann's approach [31-33] is the closest to our approach. They integrate MDD

with authoring tools, more specifically Adobe Flash. In their approach, two kinds of

artifacts are generated: script code (ActionScript) and media objects (FLA files). The

script code implements the game logic and the media objects can be edited with

Adobe Flash tool. Our paper discusses the integration with commercial game engines

instead of general media tools, which further reduces the gap between MDD and

commercial game development.

Regarding the target domain, many game genres have been explored by model-

driven game development community, e.g. Platformer [6], RPG [34], Point & Click

Adventure [5], and Pervasive Games [35]. Our approach focused on

Action/Adventure which is not addressed in related work to our best knowledge.

More importantly, we not only defined the genre of the target games, but also

specified which part of the game is to be modeled. The target domain definition is

therefore more systematic than most of the existing work.

State machines have been used as basis in several existing DSLs. E.g. it was used

in [36] for modeling UI interaction, in [3] for modeling entity behaviors. [37] extends

the general State Machine with adding domain-specific features such as hierarchical

structure, parallel structure, and multi-interaction node for modeling narrative aspects

of games. Our modification to the state machine is mainly adding trigger concept,

which was proved effective in our prototyping.

4

3 RAIL: The Essential Concepts

RAIL is a behavioral DSL aiming at modeling the high-level AI of characters in

action/adventure games. The behaviors to be modeled follow an event-reaction

pattern, for example, the behavior of the Ghost (enemy actor) in Pac-Man (Namco,

1980). The Ghost behavior can be regarded as a state machine: The default state of

the Ghosts is Patrol, where they randomly move around the map. If they receive an

event that the player comes close, they will enter the Chase state, where they try to

catch the player by running to him. While the player obtains a power-up anytime, he

will have limited time to eat the Ghost. When the Ghosts receive the event about this,

they will enter the Flee state and try their best to run away from the player.

We can identify some major concepts from the above description:

• AI Pattern: A specific kind of characters usually follows a behavioral pattern,

determining what they are going to do when a given event is received in different

conditions. We use the AI Pattern concept to denote such patterns, and each

character in the target game is “controlled” by one AI Pattern.

• AI Pattern State: A specific event can trigger different behaviors for the same

character when it is in different conditions. The “AI Pattern State” concept is the

abstraction of the condition of the NPC at a moment. Typical examples of state

include “chase” and “flee” in Pac-Man.

• Action: a meaningful character behavior consists of a sequence of moves, and each

move completes a basic task. We use Action to denote the basic moves. Examples

of Actions include “move to a location”, “flee from the player”, etc.

• Event: The action of characters is triggered by an event or an event composite, e.g.

“the player enters vision”, “the player becomes invisible”, “the light is off”. An

event can trigger an action, and/or other events, and the event-action chain is the

building block for complex behaviors.

RAIL is intended to support the modeling of the reactive AI in terms of the above

concepts. Note that RAIL is built on top of the previous introduced concepts, while

the internal details of the concepts is out of the language scope. E.g. given the Action

“Walk to a place”, it can be used as a building block in models, but how a NPC walk

to a location involves a lot of low-level technologies such as path-finding, animation

playback, which will not be modeled with RAIL. In another word, the problem

domain of RAIL is restricted to the high-level AI of Action/Adventure games, and

low-level technologies still must be implemented using traditional methods. Although

the target domain sounds narrow, it is still valuable for practical development,

because the high-level behavior is game-specific, and it is very difficult or even

impossible to generalize it for various games. Implementation of the high-level

behavior thus must be done in each individual project, which can take much of

development resources. To address this problem, game engines provide scripting

languages with some domain-specific support; for example, Unreal script supports the

5

“state” concept at the language level. However, RAIL as a dedicated DSL can further

raise the abstraction level and make the solution even simpler.

4 DSL Design and Implementation

The abstract syntax and static semantics of RAIL are defined with a meta-model,

which is specified using the Ecore meta-language provided by Eclipse Modeling

Framework (EMF). We use the tree-view as the concrete syntax for RAIL, whose

implementation, i.e. a RAIL model editor can be generated almost directly from EMF

tools. Moreover, a code generator has been created using Acceleo, which is an eclipse

based tool for code generation. Finally, the above RAIL tools are integrated with

Torque2D game engine following the Engine Cooperative Game Modeling(ECGM)

methodology [9]. ECGM is a model-driven game development methodology which

emphasizes the interoperability of game engine tools and model-driven tools through

model-transformations. We will detail the design and implementation of RAIL in the

rest of this section.

4.1 RAIL Meta-Model

Figure 1 shows an excerpt of the RAIL meta-model, and some low-level details are

omitted to fit it the page format.

6

Fig. 1. RAIL Meta-Model

The top-level RAIL construct is Game, which is the container of all AIPatterns in a

game. Each computer game to be modeled should have one and only one instance of

Game. AIPattern is the central construct of RAIL models that corresponds to the AI

Pattern concept as described earlier. Modeling with RAIL is mainly about creating

various AIPattern instances, each of which defines a kind of NPC behavior. AIPattern

is stateful, meaning that the reactions of NPCs to events are influenced by the state

that the NPC is in at a moment. Here we borrowed concepts from state machines. The

State construct denotes the state of AI Patterns. Each AIPattern possesses a group of

States, but an AIPattern can only have one “Active State” at a given moment, and the

initial Active State is the “default” state. A special case of AIPattern is that it has only

one state, then the state can be omitted and the Triggers (described later) will be

directly connected to the AIPattern.

A State has a group of triggers, which defines the actions to be performed in

reaction to a stimulus that is typically an event or a composite of events. For example,

a trigger can be:

7

Event(“See Player”) -> Action(“Move to The Player”)

Example 1

or be more complex as:

Event(“See Player”) OR Event(“Hear Player”) -> Action(“Alert Alliance”) AND

Action(“Move to The Player”)

Example 2

The Event construct can be further elaborated with vision events, input events, AI

interactive events, etc. The stimulus can also be something other than the Events, for

example, state change, pattern initialization, and a group of basic stimuli connected

with logic operations.

The Action construct encapsulates the actual actions to be performed by the AI

pattern as the result of the stimulus. A common kind of actions is the IssueCommand,

which will in effect send a specific command to the NPC controlled by the AI pattern,

such as “Move to A Location”, “Attack A Target”, and “Look at A Place”. Another

kind of action is the Pattern Controller, which provides a way to manipulate the

AIPattern at run-time, e.g. “Go to State” action sets the current State of the AI pattern

to the one specified in the Action parameters.

The Triggers cannot only connect to States, but also directly associate with

AIPatterns, and then they become “Default Triggers”. The Default Triggers will take

effect in any State, and if they conflict with the State-owned triggers, they have the

priority.

RAIL is a DSL similar to a State Machine, which is a widely used design pattern

[10] in gameplay programming. RAIL borrowed some concepts from the state

machine, and made some important modifications to better fit it to the game modeling

domain, such as:

• Defined domain-specific constructs to describe game domain concepts, such as

Actions and Events.

• Provided Trigger concept, which can represent the reaction-based behaviors in a

natural way.

• Supported global behavioral rules that will take effect in any state.

• Supported compact version of AIPattern with no state.

Note that RAIL is not intended to be a unified solution for modeling the gameplay of

all the action/adventure games. Instead, it should be customized for each game

families or even a single game project. But the high-level structure of the language,

i.e. the constructs showed in Figure 1 should be reused without major modifications.

8

4.2 Tool Chain Implementation

The concrete syntax of RAIL is based on a tree-view. We choose this form because

the AIPattern-State-Trigger-Action/Event hierarchy naturally follows a tree structure.

Figure 2 shows a RAIL model example within the Eclipse-based model editor.

Fig. 2. A RAIL Model in Eclipse-Based Editor

With the Eclipse Modelling Framework (EMF), the model editor can be automatically

generated from the meta-model. The code of the generated model editor is in java,

and is deployed as an Eclipse plug-in, so that the tool is integrated with the Eclipse

IDE. The java code can be modified for customization purposes, for example,

changing the appearance of the language constructs, and optimizing the user interface.

The default concrete syntax that the generated model editor provides is the Tree

View, which is a perfect match for the structure of RAIL.

The code generator, on the other hand, requires much more work to create.

There exist various frameworks on the Eclipse platform for code generation, such as

Xtend and ATL. We chose Acceleo (https://eclipse.org/acceleo/). Acceleo provides a

template language for creating code generators following the template and meta-

model approach [11]. The code generator for RAIL was then implemented as a couple

of templates, which took RAIL models as input and generated code in Torque script

for Torque 2D game engine that we will discuss in next section. The code generation

templates can be created and executed in the Eclipse platform since Acceleo is an

Eclipse plug-in.

https://eclipse.org/acceleo/

9

4.3 Integration of RAIL with Torque 2D Engine

Torque 2D is a commercial game engine developed by GarageGames

(www.garagegames.com), which supports developing various genres of 2D games.

Torque 2D provides a script language called “Torque Script” for developing game-

specific code, which has a C- style syntax plus some object-based features. Moreover,

Torque 2D engine comes with a powerful world editor: The Torque Game Builder

(TGB). TGB organizes the game world through scenes (levels), and the scenes can be

created in a WYSIWYG way.

There are mainly two steps in the process of integrating RAIL with Torque 2D: 1)

raise the abstraction level of Torque 2D, and 2) implement the generator for script

code and world data.

1. Raise the Abstraction Level of Torque 2D

Since RAIL was designed only for modeling high-level AI of Action/Adventure

games, it targets a narrower domain and lies on a higher abstraction level than Torque

2D APIs. An abstraction layer must be implemented on top of the Torque 2D APIs to

promote Torque 2D to a suitable domain framework [8].

The abstraction layer was implemented as a Torque Script library, where several

concepts were implemented using an Object-Oriented approach. Character is the core

module of the abstraction layer. Character simulates the creature or the machinery in a

game that can perceive surroundings and react to the environment. Character is both

an event source and an event handler: Character detects other objects at every frame,

using the perception simulation algorithm, and generates corresponding perception

events. The events are sent to the AI layer (modeled with RAIL) as the input for

decision-making. On the other hand, a Character is also responsible for performing

the commands sent from the AI layer, like move and attack. Other modules of the

abstraction layer including input handling, event management, and global rules, which

will not be discussed in detail in this paper.

2. Generate Code and World Editor Data for Torque 2D

To integrate RAIL tools with Torque 2D engine tools, two Acceleo projects were

created: 1) Torque Script generator, and 2) TGB data generator.

Each RAIL model includes multiple AIPatterns, each of which defines a specific

type of NPC such as neutral NPC, enemy soldier, and boss. The Torque Script

generator generates a Torque Script class for each pattern, and a couple of member

functions for the states and triggers possessed by the pattern.

The Torque Script code must be associated with the graphical objects in the TGB,

and the code-object relationships were built automatically through a TGB data

generator. The generator is also developed with Acceleo as templates, and the format

of the generated data complies with the TGB extension protocol. The TGB uses an

object palette to manage available scene objects. For each kind of scene object, e.g. a

10

picture, or a sprite animation, there is a visual object in the palette. The TGB

extension protocol allows adding customized object prototypes to the palette of the

world editor. We create one pattern object prototype in the TGB palette for each

AIPattern in the RAIL model. Therefore, the AIPattern is visualized in the TGB as a

graphical object like other built-in scene objects. When creating game scenes,

designers access the AIPattern through the graphical objects in the TGB palette

without knowing the existence of the generated code.

Fig. 3. The Tool Chain Architecture for RAIL Modeling with Torque 2D

4.4 Tool Chain Architecture

Figure 3 shows the tool chain architecture of RAIL. The dotted line between Pattern

A in the object palette and Pattern A in C Script Code implies the association

automatically built by the tool chain. If a user wants to connect Pattern A modeled

with RAIL to character A in a level, he or she can drag Pattern A from the TGB

palette to somewhere near the character in the level. The pattern will automatically

link to the nearest character, and the association is built by the generated code as well

as the domain framework. Figure 4 shows an example of using AIPattern in the TGB

and the RAIL Editor.

11

Fig. 4. Use AIPattern in TGB and RAIL Editor

5 Orc’s Gold: A Prototype Game

To evaluate the RAIL as a game development tool, a prototype game was developed.

The game is a 2D action/adventure game named Orc´s Gold. The game concept is that

a player controls a human character who should steal gold chests from orc´s camps.

The chests are guarded by orc guards and dragons, and they will try to kill the player

if possible. The player can walk or run. When he is running, he moves faster than the

orc guards so he can take the chests by wisely using the advantage of speed. If a

player successfully steals all the gold chests on the map, he wins the game. Figure 5

shows a screenshot of Orc´s Gold.

12

Fig. 5. An In-Game Screenshot of Orc´s Gold

The game uses four AIPatterns to control the characters, which are Orc Guard,

Dragon, Chest and Tree. The trees are purely decorative objects that almost have

nothing to do with the gameplay, but they will play a “swing” animation when a

player touches them. To evaluate the productivity impact of RAIL modeling, the four

patterns were implemented by the first author using two methods: the manual coding

method and the DSM method. The time used and Lines of Code (LOC) developed for

the two methods are summarized in Table 1, from which we see that the domain

framework including the low-level AI, input handling and other low-level mechanics

took more time and lines of code to develop than the high-level AI Patterns. However,

the domain framework is on a low abstraction level and less relevant to specific

gameplay, it is reusable for future AI Patterns and even in future games.

Table 1. Comparison of Manual Coding and DSM in Developing Orc’s Gold

 Time Used (Hours) LOCs written

Method Domain

Framework

AI

Patterns

Domain

Framework

AI

Patterns

Manual Coding 20.5 9.5 1741 357

MDGD with

RAIL

0.7 0

13

The time spent on the AI Pattern development is 9.5 hours with the traditional manual

coding method, and it is dramatically reduced to 0.7 hours with the RAIL-based

method. Regarding the LOCs, 357 lines of C-script code are used to implement the AI

Patterns, and with MDGD method, all the AI Pattern code is automatically generated

from a RAIL model, and no manual coding is needed. There is a significant

productivity improvement from using RAIL, and the result is also in line with the

reports of DSM from other software domains such as [12-14].

The benefits of DSM are not free, and the initial investment must be made for

developing the DSL and the corresponding tools [15]. The time and LOCs used in

creating RAIL and its tool chain are presented in Table 2.

Table 2. Cost of Developing RAIL and Its Tool-Chain

 Time (Hours) LOCs

RAIL and Its Tool-Chain 4.5 278

As it was discussed in [15], the initial investment on DSM can be paid back by

repetitively use of the DSL and the tools created, and by lowering the technical

threshold for the developers. The more products and variants created with the DSL

tools, the faster the investment is paid back. In the RAIL case, interestingly the

investment is paid back in just one product: if we add the cost of developing RAIL

tools to the cost of developing the prototype, the total cost is still lower than the

manual coding method. This may because of two reasons: 1) the RAIL lies on a

proper abstraction level that can significant improve the productivity while keeps the

language simple for implementation and 2) the use of EMF and Acceleo framework

significantly improved the productivity of developing the DSL tools

By analyzing the logic of the generated code and the manually written code, the

performance of them is expected to be equivalent, because the algorithms and the

mechanics implemented with two methods are identical. The results of a simple

profiling also support the impression.

The RAIL-based modeling method also improves modifiability of the software.

For instance, since the C-script does not fully support object-oriented programming,

the manual code sometimes has duplicated parts spreading among several modules,

and when the duplicated code needs to be changed, the same modifications must be

done several times on different modules. This is an error-prone task. Thanks to the

language features provided by Acceleo, the problem can be solved at the code

generation level in RAIL-based modeling: the duplicated parts of the generated code

can be generated from one code-generator module, and modifying the module will

result in the modifications on all the generated modules with the duplicated parts.

Generally, the language for writing code generator provides an extra means to

compensate the drawbacks of the target language for modularizing the generated code

well.

14

Modern game engines have provided various visual programming tools such as

Unreal Kismet. Comparing to these tools, RAIL-based development requires less

software engineering skills from the users, because the language concepts are closer

to the game domain instead of the programming domain.

6 Conclusion

RAIL as a domain-specific language can specify behavioral aspects of

Action/Adventure games. Prototyping Orc’s Gold showed that RAIL and its tools can

significantly reduce the time and code lines needed. Moreover, the cooperation of

engine tools and MDGD tools offers an efficient workflow, which is benefit from the

ECGM methodology [9].

The initial investment of model-driven development is of general concern. RAIL

maximizes the interoperability of MDD and game engines, which can reduce the

requirements to the MDD tools. The use of language workbench, i.e. EMF and

Acceleo also significantly reduced the initial investment in the practical aspects. The

case study showed that the initial investment on the meta-model and code generator

for RAIL was acceptable, and it was paid back in just one project. Moreover, the tools

can be used for creating many more patterns for extending Orcs´Gold to a real game,

and even be able to be reused in other 2D action/adventure games.

Splitting the low-level AI and the high-level AI is necessary in game modeling.

Script languages or GPLs are appropriate for implementing low-level AI, because

they were just created for solving the problems on this abstraction level. The case

study showed that low-level AI costs a lot of development effort, and this may raise a

question that if RAIL has solved the difficult problems. But the low-level AI is

reusable among patterns, even reusable among games, so the cost does not scale with

the project complexity. The part of game that RAIL addressed can scale, which is

more time-consuming in a real game project.

Further work includes extending RAIL to support larger scale games, and more

game architectures, e.g. client-server, and applying it in more prototypes/games to get

valuable feedback.

References

1. Kelly, S. and J.-P. Tolvanen, Domain-specific modeling: enabling full code

generation. 2008: John Wiley & Sons.
2. Blow, J., Game development: Harder than you think. Queue, 2004. 1(10): p.

28.
3. Hernandez, F.E. and F.R. Ortega. Eberos GML2D: a graphical domain-

specific language for modeling 2D video games. in Proceedings of the 10th
Workshop on Domain-Specific Modeling, Reno, Nevada. 2010.

15

4. Sanchez, K., K. Garces, and R. Casallas. A DSL for rapid prototyping of
cross-platform tower defense games. in 10th Colombian Computing
Conference, 10CCC 2015, September 21, 2015 - September 25, 2015. 2015.
Bogota, Colombia: Institute of Electrical and Electronics Engineers Inc.

5. Walter, R. and M. Masuch. How to integrate domain-specific languages into
the game development process. in Proceedings of the 8th International
Conference on Advances in Computer Entertainment Technology. 2011.
ACM.

6. Reyno, E.M. and J. Carsi Cubel, Automatic prototyping in model-driven game
development. Computers in Entertainment, 2009. 7(2).

7. Van Hoecke, S., et al. Enabling control of 3D visuals, scenarios and non-
linear gameplay in serious game development through model-driven
authoring. in 5th International Conference on Serious Games, Interaction, and
Simulation, SGAMES 2015, September 16, 2015 - September 18, 2015.
2016. Novedrate, Italy: Springer Verlag.

8. Maier, S. and D. Volk. Facilitating language-oriented game development by
the help of language workbenches. in Proceedings of the 2008 Conference
on Future Play: Research, Play, Share. 2008. ACM.

9. Zhu, M., A.I. Wang, and H. Trætteberg, Engine- Cooperative Game Modeling
(ECGM): Bridge Model-Driven Game Development and Game Engine Tool-
chains, in ACE2016 the 13th International Conference on Advances in
Computer 2016: Osaka, Japan.

10. Gamma, E., et al., Design patterns: elements of reusable object-oriented
software. 1994: Pearson Education.

11. Stahl, T., M. Voelter, and K. Czarnecki, Model-Driven Software Development:
Technology, Engineering, Management. 2006: John Wiley \\& Sons.

12. Kieburtz, R.B., et al. A software engineering experiment in software
component generation. in Proceedings of the 18th international conference
on Software engineering. 1996. IEEE Computer Society.

13. Weiss, D.M., Software product-line engineering: a family-based software
development process. 1999.

14. Kelly, S. and J.-P. Tolvanen. Visual domain-specific modeling: Benefits and
experiences of using metaCASE tools. in International Workshop on Model
Engineering, at ECOOP. 2000.

15. Kelly, S. and J.-P. Tolvanen, Domain-Specific Modeling Enabling Full Code
Generation. 2008: John Wiley & Sons, Inc.

16. Furtado, A.W. and A.L. Santos. Using domain-specific modeling towards
computer games development industrialization. in The 6th OOPSLA
Workshop on Domain-Specific Modeling (DSM06). 2006. Citeseer.

17. Guana, V. and E. Stroulia. Phydsl: A code-generation environment for 2d
physics-based games. in 2014 IEEE Games, Entertainment, and Media
Conference (IEEE GEM). 2014.

18. Matallaoui, A., P. Herzig, and R. Zarnekow. Model-driven serious game
development integration of the gamification modeling language GaML with
unity. in 48th Annual Hawaii International Conference on System Sciences,
HICSS 2015, January 5, 2015 - January 8, 2015. 2015. Kauai, HI, United
states: IEEE Computer Society.

19. Reyno, E.M. and J.A.C. Cubel. Model-driven game Development: 2D platform
game prototyping. in 9th International Conference on Intelligent Games and

16

Simulation, GAME-ON 2008, November 17, 2008 - November 19, 2008.
2008. Valencia, Spain: EUROSIS.

20. Reyno, E.M., et al., Automatic prototyping in model-driven game
development. Comput. Entertain., 2009. 7(2): p. 1-9.

21. Reyno, E.M. and J.A.C. Cubel, Model-Driven Game Development: 2D
Platform Game Prototyping, in Game-On 2008, 9th Int’l Conf. Intelligent
Games and Simulation, EUROSIS. 2008.

22. Hernandez, F.E. and F.R. Ortega, Eberos GML2D: a graphical domain-
specific language for modeling 2D video games, in Proceedings of the 10th
Workshop on Domain-Specific Modeling. 2010, ACM: Reno, Nevada. p. 1-1.

23. Walter, R. and M. Masuch, How to integrate domain-specific languages into
the game development process, in Proceedings of the 8th International
Conference on Advances in Computer Entertainment Technology. 2011,
ACM: Lisbon, Portugal. p. 1-8.

24. Marques, E., et al., The RPG DSL: a case study of language engineering
using MDD for generating RPG games for mobile phones, in Proceedings of
the 2012 workshop on Domain-specific modeling. 2012, ACM: Tucson,
Arizona, USA. p. 13-18.

25. Furtado, A.W.B., et al., Improving Digital Game Development with Software
Product Lines. Software, IEEE, 2011. 28(5): p. 30-37.

26. Furtado, A.W.B. and A.L.M. Santos, Using Domain-Specific Modeling towards
Computer Games Development Industrialization, in 6th OOPSLA Workshop
on Domain-Specific Modeling (DSM’06). 2006.

27. Furtado, A.W.B. and A.L.M. Santos, Extending Visual Studio .NET as a
Software Factory for Computer Games Development in the .NET Platform, in
2nd International Conference on Innovative Views of .NET Technologies
(IVNET06). 2007.

28. Furtado, A.W.B., A.L.M. Santos, and G.L. Ramalho, A Computer Games
Software Factory and Edutainment Platform for Microsoft .NET, in SB Games
2007. 2007.

29. Furtado, A.W.B., A.L.M. Santos, and G.L. Ramalho, SharpLudus revisited:
from ad hoc and monolithic digital game DSLs to effectively customized DSM
approaches, in Proceedings of the compilation of the co-located workshops
on DSM'11, TMC'11, AGERE!'11, AOOPES'11, NEAT'11, & VMIL'11.
2011, ACM: Portland, Oregon, USA. p. 57-62.

30. Sarinho, V.T., et al. A Generative Programming Approach for Game
Development. in Games and Digital Entertainment (SBGAMES), 2009 VIII
Brazilian Symposium on. 2009.

31. Pleu\, A., et al., Integrating authoring tools into model-driven development of
interactive multimedia applications, in Proceedings of the 12th international
conference on Human-computer interaction: interaction design and usability.
2007, Springer-Verlag: Beijing, China. p. 1168-1177.

32. Pleuss, A. MML: a language for modeling interactive multimedia applications.
in Multimedia, Seventh IEEE International Symposium on. 2005.

33. Pleuß, A., Modeling the User Interface of Multimedia Applications
Model Driven Engineering Languages and Systems, L. Briand and C.
Williams, Editors. 2005, Springer Berlin / Heidelberg. p. 676-690.

34. Cutumisu, M., et al., Generating ambient behaviors in computer role-playing
games. IEEE Intelligent Systems, 2006. 21(5): p. 19-27.

17

35. Guo, H., et al., Realcoins: A case study of enhanced model driven
development for pervasive games. International Journal of Multimedia and
Ubiquitous Engineering, 2015. 10(5): p. 395-411.

36. Pleuss, A. Modeling the user interface of multimedia applications. in 8th
International Conference on Model Driven Engineering Languages and
Systems, MoDELS 2005, October 2, 2005 - October 7, 2005. 2005. Montego
Bay, Jamaica: Springer Verlag.

37. Marchiori, E.J., et al., A visual language for the creation of narrative
educational games. Journal of Visual Languages & Computing, 2011. 22(6):
p. 443-452.

