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Summary

Over the past few years, a small group of Linux core developes have worked
on a project known as the realtime-preempt patch, that incorporates real-time
capabilities into the Linux kernel. The realtime-preempt patch incorporates a
fully preemptible kernel, high resolution timers and dynamic ticks. However,
the patch supports a limited number of architectures, excluding the AVR32 ar-
chitecture among others.

In this thesis, the real-time capabilities of the AVR32 Linux kernel have
been improved. This were done by implementing techniques adopted from the
realtime-preempt patch. The AVR32 time related code has been reworked to
support preliminary subsystems such as generic time-of-day and clock events, for
high resolution timers and dynamic ticks solution. Thus, high resolution timers
and dynamic ticks have been successfully ported in its entirety to AVR32 Linux
2.6.21.

The preemptibility of the AVR32 Linux has been improved. Many of the
architecture-dependent changes required by a fully preemptible kernel are im-
plemented. However, in the process of transforming AVR32 Linux to a fully
preemptible kernel, the investigation identified the need of a more advanced in-
terrupt controller for the AVR32 architecture. With the current controller, hard
interrupts cannot be converted into kernel threads.

Benchmark results are provided for the verification of performance for the
AVR32 supported high resolution timers and dynamic ticks. The results shows
a significant improvement in timer latencies over the standard AVR32 Linux
kernel.

With high-resolution timers, applications can utilize time driven and event
driven events with microsecond accuracy, allowing more efficient use of CPU
resources and finer grained control of the system.
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Chapter 1

Introduction

Linux is a portable general purpose operating system that supports a wide range
of computer architectures, including the AVR32 architecture provided by Atmel.
Over the past few years, a small group of Linux core developers, led by Ingo Mol-
nar, have worked on a project that incorporates real-time capabilities into the
kernel. The work is distributed in a patch, referred to as the RT-preempt patch
in this document. As the RT-preempt patch develops, several of its methods
are incorporated into the upstream kernel. However, the patch requires changes
in the architecture-dependent source code to fully utilize its functionality. The
AVR32 architecture lacks such support1. However, as being a embedded archi-
tecture, better real-time capabilities desirable. Hence, the topic of this Master
of Science thesis is improving the real-time capabilities for the AVR32 Linux by
incorporate mechanisms used in the RT-preempt patch to this architecture.

1.1 Motivation

Many embedded applications need predictable and deterministic behavior in
order to meet real-time requirements, while others have such requirements only
for a small part of the overall system. Therefore, to meet the demands from a
wide range of embedded applications, the operating system must create such a
behavior. The primary purpose of the operating system is not to increase the
speed of the application, or lower the latency between an action and response
unconditionally, but provide a system which can operate under any given load
with deterministic results. However, increasing performance and minimizing
latency improves the quality of the system, as long as deterministic behaviour
is retained.

The official Linux kernel available at http://www.kernel.org is a general pur-
pose operating system. One of the goal of such operating systems is to maximize
throughput and minimize response time. These objectives are often conflicting
because minimizing latency requires more context switching. This means more

1At the time of this writing, the 2.6.21 RT-preempt patch set supports; ARM/StrongARM,

Intel x86, IA-64, MIPS, PowerPC, Hitachi SH, and x86-64.
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2 Introduction

overhead, which can decrease throughput. In addition, the scheduler attempts
to make scheduling decisions to meet the total set of requirements. In Linux,
the scheduler makes these decisions dynamically to ensure efficient scheduling.

Soft real-time systems may have their requirements satisfied by general pur-
pose operating systems. Such operating systems strive to have a good average
performance and high throughput. However, hard real-time systems require
guarantees in correct timing beyond that general purpose operating systems
usually provide. Such facilities are provided by real-time operating systems.
An real-time operating system objective is to minimize interrupt latency and
predictable scheduling. An RTOS does not necessary have high throughput
compared with general purpose operating systems.

In spite of the aforementioned, Linux is attractive for embedded and real-
time applications because of its low cost, adaptability, configurability, and porta-
bility. Linux is used in embedded products such as PDAs and handhelds, cell
phones and audio/video devices (Mosnier, 2005). Further, Linux based operat-
ing systems are used in robots and in the vehicle industry. Nevertheless, the
real-time capabilities of Linux is a reason for not to use Linux in embedded
applications.

The 2.6 Linux kernel is preemptive. That is, in brief, when a process becomes
runnable, the kernel checks whether its priority is higher than the priority of the
currently running process in kernel mode. If it is, the scheduler is invoked to
preempt the currently executing process and replace it with the newly runnable
process. Kernel preemption has improved reaction time and lowered latencies.
However, the current implementation contains code where kernel preemption is
disabled. A low priority process is not preempted by a high priority process
while it is in a critical section. Moreover, preemption are disabled when the
kernel is executing an interrupt service routine or the deferred portion of the
interrupt processing. For embedded application with real-time requirements,
this is unacceptable. The goal of the RT-preempt patch is to minimize the
amount of kernel code that is non-preemptible. With the patch included, nearly
all kernel code is preemptive, with the exception of a few very small regions of
code.

Standard Linux can provide a maximum resolution of 1 millisecond. In a
wide range of embedded applications, it is desirable to achieve a higher resolu-
tion, i.e. high resolution timers.

In the beginning, the RT-preempt patch was not accepted into mainline
Linux by the kernel maintainers. The problem was that large intrusive changes
were made throughout the kernel without correlation to the mainline develop-
ment. However, Ingo Molnar, as a kernel maintainer, noticed the beneficial part
of the RT-preempt patch for Linux. Therefore, he began to incorporate methods
from the RT-preempt patch into the kernel in small steps. Since then, several
major features of the RT-preempt patch have already been incorporated into
the mainline kernel.

The AVR32 processor by Atmel targets embedded multimedia systems de-
veloped in cell phones, digital cameras, PDAs, automotive infotainment, as well
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as network switches and routers. As already mentioned, such systems may have
real-time requirements which the mainline kernel fail to comply. In sum, two
broad arguments justifies porting the RT-preempt patch to the AVR32 archi-
tecture:

• First, the architecture may be capable to utilize the features already in-
corporated into the mainline kernel by the patch.

• Second, the architecture may be capable to meet stricter real-time de-
mands, and, hence, be more attractive for the embedded market.

1.2 The approaches to real-time Linux

The RT-preempt patch incorporates three different categories:

1. Fully preemptible kernel – By transforming spin locks into mutexes that
support priority inheritance, and converting interrupt service routines into
threads, nearly all of the kernel is preemptible, with the exception of a very
small regions of code.

2. High resolution timers – By separating timers from timeouts and intro-
ducing a new clock event manager, the clock event resolution is no longer
bounded to jiffies, but to the underlining hardware itself.

3. Dynamic ticks – By reprogramming the clock event manager to trigger
on the next expiring timer or on the completion of an I/O operation, the
clock event frequency is no longer bounded to be periodic.

Although the components are implemented with minimum of architecture de-
pendence, they require changes in architecture-dependent source code.

The fully preemptible kernel feature differs notably from the others. Indeed,
the high resolution timers and dynamic ticks patch, referred to as the HRT
patch in this thesis, is independently maintained under the leadership of Thomas
Gleixner. However, the RT-preempt patch pulls the HRT patch regularly.

The steps towards a fully preemptible kernel, and previous approaches to
implement high-resolution timers and dynamic ticks for Linux will be discussed
in the rest of this section. Subsequently, a section giving a brief overview of
commercial Linux distributions and vendors is included. The Chapter finishes
off by giving an overview of the contribution of this thesis, and an overview of
material covered in this thesis.

1.2.1 Fully preemptive kernel

Linux was originally designed as a non-preemptible kernel, and hence not very
suited for real-time applications. One of the earliest attempts of improving
kernel preemption was introduced as a patch by MonteVista (Anzinger and
Gamble, 2000). This approach allows the scheduler to reschedule a task while
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it is in the kernel, except while the kernel handles interrupts, executes deferred
interrupt handling, holds a spin lock, or executes the scheduler itself. In the
development of the 2.5 kernel, the patch was adopted by the Linux kernel project
as a mainline feature (Gamble, 2001). However, long latencies are produced
when spin locks were held for a long time. Some of the longest critical sections
have been cut into smaller non-preemptible sections by using the approach used
by Low-Latency Linux (Morton, 2001). In Linux 2.6 the preemptible kernel has
been integrated as a kernel configuration option.

In the work of Heursch et al. (2004), two concepts to increase the preemptibil-
ity of the Linux kernel are developed. First, spin locks are converted into mu-
texes. Since mutexes might sleep, they can cause priority inversion. To avoid
priority inversion situations, a priority inheritance protocol is implemented un-
der the GPL license. Second, all interrupt service routines besides the timer
interrupt is handled as kernel threads. Similar concepts to increase the pre-
emptiability of the kernel is also reported in (Yang et al., 2005). However, the
problem with the implemetaions were that large intrusive changes were made
throughout the kernel without correlation to the mainline development. How-
ever, Ingo Molnar, as a kernel maintainer, noticed the beneficial part of the
RT-preempt patch for Linux. Therefore, he began to incorporate methods from
the RT-preempt patch into the kernel in small steps. His work is documented
in (McKenney, 2005a) and (Rostedt and Hart, 2007).

1.2.2 High-resolution timers

The first approach to implementing high-resolution timers in Linux is the UTIME
component of the Kansas University Real-Time project (KURT)2. These ex-
tensions provide on-demand, microsecond resolution and real-time scheduling
capabilities to standard Linux, version 2.0 to 2.4 (Niehaus et al., 1998, 2005).
The approach is based on the observation that even though real-time tasks are
scheduled with microsecond level deadlines, events are rarely scheduled to occur
every microsecond. Thus, UTIME implements a mechanism by which allows the
timer interrupts to occur at any microsecond, not necessary every microsecond.

In order to achieve microsecond accuracy, a fractional expiration field is
added in the timer data structure. This structure already holds the timeout
value of the timer specified by the expiration field. Now, the fractional expi-
ration value specifies the microsecond within the expiration value at which the
timer will expire. Hence, this field allows the user to specify how many mi-
croseconds after the expiration value the timer should expire. This mechanism
for having microseconds accuracy is designed and implemented into the existing
timer manager while maintaining compatibility (Niehaus et al., 1998, chap. 3)3.
Results. The UTIME implementation is restricted and nanosleep and itimers
only.

2Home page http://www.ittc.ku.edu/kurt/
3Doubly linked list sorted in ascending order of time. In newer versions of the kernel, the

timer is now a heap based data structure. The change introduces no logical changes of the

time-handling functions in UTIME
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The approach of supporting POSIX high-resolution timers is introduced by
the High-Resolution Timers project 4, hereafter referred to as HRT. The design
of HRT was extended from the design used by UTIME, thus, the high-resolution
part of the timer has its own field in the timer structure. Moreover, the high-
resolution timers are kept in the timer manager until they reach the value of their
expiration field (Dietrich and Walker, 2005). Then, however, on expiry they are
moved to a separate list for high-resolution timers. A separate timer interrupt
is used to trigger the timers in the high-resolution timer list. In other words,
the HRT introduces a separate interrupt to maintain microsecond resolution.

The implementation of high-resolution timers in UTIME and HRT are tightly
bounded to the timer management of the longer-term generic timers. As pointed
out in (Gleixner and Niehaus, 2006), the conclusions drawn from both projects
demonstrated that the timer management trying to integrate high-resolution
timers into the existing framework introduced significant overhead, and variable
latencies. Moreover, the necessary changed in the affected code were scattered
and unreliable. Hence, the authors conclude that a separate support for high-
resolution timers and longer-term generic timers is necessary. In (Gleixner and
Molnar, 2005), such an approach for implementing high-resolution timers is de-
scribed. The approach, known as Ktimers, introduces a new subsystem for the
high-resolution timers that does not interact with the existing timer manage-
ment for reasons already mentioned. Ktimers are entierly based on nanoseconds
timeouts specifications, since the primary users of high-resolution timers are
user-space applications which request for timeouts in some form of human time
unit. Like HRT, Ktimers uses it’s own interrupt to triggers times. However,
since the subsystem uses the existing timer interrupt and not utilizes an inde-
pendent high-resolution clock source, Ktimers does not provide better resolution
than previous timers.

Clock source management, clock synchronization, time-of-day representation
(Stultz et al., 2005). Ktimers does not rely on work provided by Stultz et al.
(2005), but the usage is simpler with the work in place.

Later, in (Gleixner and Niehaus, 2006), the work of Ktimers, now called
hrtimers, are extended. A new component called clock events is described.
Together with the new time-of-day approach proposed by Stultz et al. (2005),
this component provides a base for high-resolution timer support for hrtimers.
In order to achieve better resolution than existing timers, the interrupt that
triggers the high-resolutions timers is separated from the existing tick bound
timer interrupt. Hence, if the system has necessary hardware support, high-
resolution timers is achieved.

1.2.3 Dynamic ticks

A work which can be characterized as dynamic ticks is announced in Anzinger
(2003). This patch called Variable Scheduling Timeouts (VST), provides the
suppression of timer ticks during idle periods. When the system goes into idle

4Home page http://sourceforge.net/projects/high-res-timers
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state, the strategy is to find the next expiring timer, and if it is reasonable far
into the future, turn off the periodic timer interrupt. Then, the timer interrupt
is reprogrammed to trigger at this timer’s expiration time. On the next inter-
rupt which could be either the reprogrammed timer interrupt or some other
interrupt, the periodic timer interrupt is restarted and the elapsed time is prop-
erly accounted for. The patch is closely related to and depending on HRT, and
supports Intel x86 platforms.

The Dynamic Ticks patch (Kalivas, 2005) is an implementation similar to the
VST patch, but does not depend on other patches. Since the implementation
contains some Intel x86 architecture specific bits, it is tightly bound to this
platform.

1.3 Commercial real-time Linux distributions

Commercial real-time Linux distributions adopt one of the following two ap-
proaches (Marchesotti et al., 2006):

1. Modifying and patch mainline Linux to provide the behavior close of a
full-fledged real-time kernel.

2. Modifying and patch mainline Linux to cooperate with a hard real-time
sub-kernel. The sub-kernel controls the system and schedules all the hard
real-time tasks, while Linux runs as one low-priority process of the real-
time kernel, and takes care of non real-time tasks.

MontaVista Software’s real-time Linux solution is an example of the first ap-
proach. As seen, their solutions are jointly developed with the Open Source com-
munity. In 1999, the MontaVista Preemptible Linux Kernel patch was adopted
as a mainstream Linux feature. In addition, in 2002, MontaVista introduced
High Resolution Timers for better timing resolution than the standard Linux,
that time, 10 milliseconds timebase.

The second approach is used by solutions such as RTAI5, BlueCat Linux by
Lynxworks6, and Xenomai7.

1.4 Contribution of this thesis

The main contribution achieved and reported in this thesis is the incorpora-
tion of high resolution timers and dynamic ticks for AVR32 Linux. Secondly,
the thesis starts the work of converting the AVR32 Linux kernel into a fully
preemptible kernel.

5http://www.rtai.org/
6http://www.lynuxworks.com/
7http://www.xenomai.org/
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1.5 An overview of the content

Chapters 2–5 provide necessary background to understand the RT-preempt
patch and a thorough treatment of the implementation of the RT-preempt
patch on the AVR32 architecture. Chapter 2 investigates the current implemen-
tation of the preemptive kernel as regard process preemption, interrupt service
routine, and deferred interrupt handling. Then, Chapter 3 provides implemen-
tation details concerning improved AVR32 Linux kernel preemptibility.

The Linux timer management and kernel timers are treated in Chapter 4, be-
fore the components of hrtimers are investigated in details in chapter 5. Since the
implementation is architecture dependent, this chapter describes the required
changes in source architecture-dependent code to implement high-resolution
timers on and dynamic ticks for AVR32 Linux.

Chapter 6 provides experimental results to demonstrate the level of improve-
ment. The discussion is found in Chapter 7. Conclusion drawn from the project
is present in Chapter 8, and potential future work is described in Chapter 9.
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Chapter 2

Preemptive Kernel

This chapter introduces all the essential concepts about the preemptive Linux
kernel. In these pages, scheduling latency caused by non-preemptable sections in
the kernel or in the drivers is described. This latency includes critical sections,
interrupts service handlers and other kernel constructs such as bottom halves
and tasklets. Understanding the concept of preemptivity in the mainline kernel
is an essential foundation to understand the extension done by the RT-preempt
patch.

2.1 Process scheduling

In Linux, a process is one of the fundamental abstraction besides files. A process
is a program in execution, i.e. running program code. However, a process also
includes a set of resources, internal kernel data, processor state, an address
space, one or more threads of execution, and a data section containing global
variables (Love, 2005, chap. 3).

Linux provides a priority-based scheduling. Hence, processes with a higher
priority runs before those with lower priority. Moreover, the scheduling scheme
is dynamic. Processes begin with an initial base priority and then the scheduler
is enable to increase or decrease the priority dynamically to fulfill scheduling
objectives, i.e. high throughput and low latency.

The kernel schedules individual threads, not processes. This is done by in-
voking the schedule() function defined in kernel/sched.c. The scheduler
algorithm and supporting code were rewritten during the 2.5 kernel develop-
ment series. The new scheduler implements fully O(1) scheduling, that is, the
scheduler is constant in execution time with respect to number of processes.
This is essential for real-time applications, since the O(1) algorithm provides
deterministic performance.

Linux processes are preemptable. When a process enters the TASK_RUNNING

state1, the kernel checks whether its priority is higher than the priority of
the currently running process. If it is, the execution of the current process is

1Each process on the system is in exactly one of the following five states: TASK_RUNNING,

9



10 Preemptive Kernel

interrupted and the scheduler is invoked to select another process to run. This
is usually the newly runnable process.

The kernel provides a TIF_NEED_RESCHED flag to notify the kernel that a
reschedule should be performed. The flag is stored in the flag field of the
thread_info structure. The flag signify the kernel that the scheduler must
be invoked as soon as possible because another process deserves to run. The
scheduler is invoked when the kernel knows it is in a safe quiescent state.

The TIF_NEED_RESCHED flag is checked before returning to user-space either
from a system call or from an interrupt handler. If it is set, the scheduler is
invoked to perform a reschedule, and an user preemption has occurred. Both
return paths for returning from kernel space and interrupt are architecture de-
pendent, and implemented in assembly in arch/avr32/kernel/entry-avr32b

.S for the AVR32 architecture.
Prior to version 2.5, the kernel was non-preemptible. Kernel code ran until

it was finished or explicitly blocked. During the 2.5 kernel development se-
ries, the kernel became preemptible. In the mainline 2.6 kernel, the kernel is
preemptive when the kernel is executing in process context and does not hold
a lock. The acquired locks are accounted for in a preemption counter field,
preempt_count, in each process’s thread_info structure. The counter is ini-
tialized at zero and is incremented once for each lock that is acquired and is
decremented once for each lock that is released. When the counter is zero, the
kernel is preemptible. Upon returning to kernel-space from an interrupt han-
dler, the kernel checks the value of TIF_NEED_RESCHED flag and preempt_count.
If the flag is set and preempt_count is zero, the scheduler is invoked to perform
a reschedule. If the preempt_count is nonzero, the current process holds a lock
and it is unsafe to reschedule. When the current process releases its last lock
and its preempt_count returns to zero, the unlock code checks whether the
TIF_NEED_RESCHED flag is set. If it is, the scheduler is invoked.

In sum, kernel preemption can occur

• When returning from an interrupt handler to kernel-space.

• When preempt_count is zero.

• If a process in the kernel explicitly calls schedule().

• If a process in the kernel blocks which results in explicit call to schedule.

2.2 Scheduling latency

Consider a task τ enters its TASK_RUNNING state at time t. If preemption is
disabled for some reason, τ will not be scheduled until preemption is re-enabled
at time t′. Hence, τ experiences a scheduling latency equal t′ − t, caused by
non-preemptable sections in the kernel or in the drivers. Such sources of non-
preemptable include;

TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE, TASK_ZIMBIE, or TASK_STOPPED.
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• interrupt handlers,

• bottom halves and deferring work,

• critical sections, and

• code sequences where interrupts are disabled.

In the following, each of the sources listed above are examined in order to
identify their impact on scheduling latency and kernel preemption.

2.3 Interrupts and interrupt handlers

An interrupt is simply a signal that the hardware can generate when it wants
the processor’s attention. The function the kernel runs in response to a specific
interrupt is called an interrupt handler or interrupt service routine (ISR). Be-
cause an interrupt can occur at any time, interrupt handlers by their nature, run
concurrently with other code. To resume execution of the interrupted code as
soon as possible, it is desirable that the handler runs quickly. However, interrupt
handlers have often a large amount of work to perform. The goals of executing
quickly and perform a large amount of work are in conflict. Linux resolves this
problem by dividing the processing of interrupts into two halves; top half and
bottom half. The top half performs the time-critical, hardware-specific work
immediately upon receipt of an interrupt. The bottom half performs work that
may be delayed for a time without affecting the kernel operations. Non-critical
deferrable work are discussed in the later Section 2.4 on page 13.

2.3.1 Interrupt context

When executing an interrupt handler, the kernel is in interrupt context. This
context is not associated with a process, and therefore, suffers some restric-
tions on what it can do. Most importantly, handlers cannot call any function
that might sleep, because the handlers should be quick and simple. Secondly,
handlers cannot block or otherwise invoke the scheduler.

2.3.2 Interrupt handling in the AVR32 architecture

The implementation of the interrupt handling system in Linux is architec-
ture dependent. This section examines the internals of hardware and software
AVR32 32 interrupt handling.

Interrupt controller

A peripheral issues an interrupt by sending an electrical signal over its inter-
rupt request line to the interrupt controller. The interrupt controller collects
the requests, prioritizes them, and delivers an interrupt request to the proces-
sor. The AVR32 architecture supports four priority levels for regular, maskable
interrupts, and a Non-Maskable Interrupt (NMI).
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Figure 2.1 gives an overview of the interrupt controller in the AVR32 ar-
chitecture (Atmel, 2006, chap. 13). The interrupt controller supports up to 64
groups of interrupts. Each group has an Interrupt Request Register (IRR) and
an Interrupt Priority Register (IPR). The IRR register has 32 bits, that is 32
interrupt request lines, used to identify active interrupt requests within each
group. Consequently, the AVR32 supports a total of 2048 possible interrupt
lines. The IPR are used to assign a priority level and an autovector to each
group. The priority level is from INT0 to INT3, and the autovector specifies
the address offset of the interrupt handler.

CPU

Prioritize 

Request
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IRQ2
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IRQ31
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SREG 
masks
I[3-0]M

GM

OR

IRQ32

IRQ34
IRQ33

IRQ63

IRR1

ReqLine2

OR

IRRn

ReqLineN

IPR2

ValidReqLine2

IPRn

ValidReqLineN

NMIREQ

Masks

Autovector

Intlevel

Figure 2.1: Interrupt controller (Atmel, 2006).

All of the incoming interrupt requests are sampled into the corresponding
IRR. In each group, the IRR bits are logically-ORed together to form a group re-
quest line. This line indicates if there is a pending interrupt in the corresponding
group.

The Request Masking hardware maps each group request line to a priority
level from INT0 to INT3 specified by the corresponding IPR register. Then,
the request line is masked by the interrupt level mask bit associated with its
priority level, and the global interrupt mask (GM) bit. When a request line is
masked, all interrupt delivery on this line is disabled for the entire processor.
These bits are part of the processor’s status register. Since AVR32 supports
four different priority levels, there are four interrupt level masks: I0M to I3M.
An interrupt request is masked if either the GM or the corresponding I[3-0]M
bit is set. The Request Masking hardware asserts the valid request line to the
pending interrupt if its priority level is not masked by the CPU status register.

The Prioritize hardware selects the pending interrupt of the highest priority
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based on the valid request lines and the priority level in the IPRs. If a NMI
interrupt is pending, it automatically gets highest priority of any pending inter-
rupt. The interrupt level and the handler autovector of the selected interrupt
is transmitted to the CPU for further interrupt handling.

Software interrupt handling

Consider Figure 2.2, which shows the basic actions an interrupt takes through
the kernel. An interrupt triggers at t1. Unless interrupts are disabled in the
processor, the kernel is interrupted and jumps to the predefined entry point for
interrupt handlers found in arch/avr32/kernel/entry-avr32b.S. On AVR32 ,
there are four entry points defined as irq_level0, irq_level1, irq_level2,
and irq_level3. On the AVR32 architecture, all interrupts are initialized to
level 0, that is lowest priority. Further, The kernel is now in interrupt context
of operation.

Interrupt Context

Process Context

Interrupt Context
Entering IRQ ISR Leaving IRQ

INT

t1 t2 t3 t4

Figure 2.2: Interrupt handling

The initial entry point saves the interrupt number and the current registers
values which belongs to the interrupted process, on the stack. Then, the kernel
calls do_IRQ() defined in arch/avr32/mach-at32ap/intc.c. First, do_IRQ()
disable interrupts on the processor. This ensures that the consecutive sequence
of kernel code is treated as a critical section. Next, do_IRQ() calls the generic
interrupt handler for this interrupt line. On the AVR32 architecure, all in-
terrupts are handled through the handle_simple_irq() function declared in
kernel/irq/chip.c. This function runs the installed interrupt handler for the
line. Back in do_IRQ(), the function cleans up and returns to the initial entry
point, which then terminate the the interrupt.

The termination phase of interrupts are written in assembly in arch/avr32/

kernel/entry-avr32b.S. Here, schedule() is called only if the preempt_count
is zero and a reschedule is pending. At last, the initial registers are restored

and the kernel resumes whatever was interrupted.

2.4 Bottom halves and deferring work

Bottom halves are responsible to perform any interrupt-related work not per-
formed by the interrupt handler itself. Recall from 2.3 that interrupts are dis-
abled during interrupt handling. Bottom halves run with all interrupts enabled.
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The Linux provides three mechanisms that may be used to implement bottom-
half processing: softirqs, tasklets, and work queues. In the following, the indi-
vidual mechanisms are briefly introduced.

2.4.1 Softirqs

Softirqs runs in interrupt context, and therefore cannot sleep. In the current
kernel, softirqs are used for the most timing-critical and important bottom-half
processing on the system.

In the mainline kernel, pending softirqs are checked for and executed in the
following places:

• In the return from hardware interrupt code.

• In the ksoftirqd per-processor kernel thread.

• In any code that explicitly checks for and executes pending softirqs.

The softirq execute in threaded context only if the ksoftirqd method is used
for invocation. The kernel thread helps in processing softirqs when the system
is overwhelmed with softirqs. However, regardless of method of invocation, the
pending softirqs are executed in do_softirq(). In this function, the pending
softirqs’ handlers are invoked in a loop until there are no more pending softirqs,
and the work is done. Consequently, a softirq never preempts another softirq.
Since softirqs runs in interrupt context with interrupt enable, only an interrupt
handler can preempt a softirq.

2.4.2 Tasklets

Tasklets builds on top of softirqs, and hence are softirqs. They have, however,
a simpler interface and are, compared to softirqs, a much more common form
of bottom half.

2.4.3 Work queue

Work queues defer work into a kernel thread. Thus, this mechanism benefits
of process context and can therefore be scheduled and preempted as normal
processes.

A kernel thread called the worker thread, handles deferred work that is
queued from elsewhere. By default, one worker thread is created per processor,
called the event/n where n is the processor number. However, the work queue
subsystem supports more than one worker threads per processor. Processor-
intense and performance-critical work might benefit from its own thread.

2.5 Kernel synchronization methods

The kernel has shared resources that require proper protection from concurrent
access from multiple threads of execution. Otherwise, threads may overwrite
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each other’s changes. This would produce incorrent results or data might be
accessed when it is in an inconsistent state. A sequence of code that access and
manipulate shared data is called a critical section. If two threads of execution
are simultaneously in the same critical section, a race condition is said to occur.
The synchronization required to protext a critical section from race conditions
is known as mutual exclusion.

In a uniporcessor Linux system, there are numerous sources of concurrency,
and therefore, possible race conditions. They are (Love, 2005, chap. 8)

• Interrupts – An interrupt can occur asynchronously at any time unless
interrupts are explicity disabled, and therefore at any point in the currently
executing code.

• Softirqs and tasklets – The kernel can raise or schedule a softirq or tasklets
at any time unless the kernel already handles an interrupt, and therefore
at any point in the currently executing code.

• Kernel preemption – Because the kernel is preemptive,

• Sleeping and synchroization with user-space – A task in the kernel can
sleep and invoke the scheduler.

Linux implements a large number of synchronizations methods. In the fol-
lowing, two of the most common methods used in the kernel, spin locks and
semaphores, are described. In addition, the kernel implements more special-
ized locking methods like atomic actions, completion variables and seq locks.
Further, the big kernel lock (BKL), preemption disable and tacklet barriers
completes the list.

2.5.1 Spin lock

Spin locks are shared variables acting as flags. When a thread of execution en-
ters a critical section, it attemps to acquire the lock. If the lock is not contended,
that is not already held, the thread immendiatly acquire the lock and continues.
If the lock is contented, the thread loops around and recheck the lock. This
is busy waiting, also known as spinning and hence the name spin lock. When
the thread that first acquired the lock leaves the critical section, the spin lock
is released. Then, the spinning thread can acquire it and enter the section.
Thus, the spinning prevents more than one thread of execution to be simul-
taneously in the same critical section. This provides the necessary protection
from concurrency on multiprocessing machines. A uniprocessor system running
a preemptive kernel behaves like multiprocessor systems, as far as concurrency
is conserned. Therefore, on uniprocessor machines, spin locks simply disable
and enable kernel preemption when acquired and released. Consequently, the
duration that spin locks are contended is equivalent to the scheduling latency
of the system.
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In Linux, each spin lock is represented by a spinlock_t structure defined
in <linux/spinlock_types.h>. Table 2.1 gives a list of standard spin lock
methods.

Table 2.1: Listing of spin lock methods
Method Description
spin_lock_init() Dynamically initializes given spin lock.
spin_lock() Acquires given lock.
spin_lock_irq() Disable local interrupts and acquires given lock.
spin_lock_irqsave() Saves current state of local interrupts, disable

local interrupts and acuires given lock.
spin_unlock() Releases given lock.
spin_unlock_irq() Releases given lock and enables local interrupts.
spin_unlock_irqrestore() Releases given lock and restores local interrupts

to given previous state.
spin_trylock() Tries to acquire given lock; if unavailable, re-

turns nonzero.
spin_is_locked() Returns nonzero if the given lock is currently

acquired; otherwise returns zero.

2.5.2 Semaphore

Semaphores are sleeping lock in Linux. When a thread attempts to acquire a
resource already held by a semaphore, the thread is suspended. It becomed
runnable again when the resource is released. Since the thread of execution
sleeps on lock contention, semaphores can only be obtained in process context.
Therefore, interrupt handlers and deferred functions that execute in interrupt
context cannot use them. Unlike spin locks, semaphores do not disable kernel
preemtion. Consequently, the duration that semaphores are contended does not
affect scheduling latency.

Semaphores allow for an arbitrary number of simultaneous lock holders. At
declaration time, the number of simultaneous lock holders that are permitted
is specified in a count variable. Usually, the count value is set to 1 or 0, that
is, a free resource with exclusive access or busy resource with exclusive access
currently grated to the thread that initialize the semaphore. In such cases, the
semaphores is called either a binary semaphore or a mutex. Alternatively, the
semaphore can be initialized with a count nonzero value greater than one. Such
general semaphores are often called counting semaphores. Counting semaphores
allow multiple threads of execution to be in the critical section at once. Hence,
they do not enforce mutual exclusion, but are used for enforce limits in certain
code.

Semaphores are represented by a semaphore structure defined in the architecture-
dependent <asm/semaphore.h>. Table 2.2 gives a list of standard semaphore
methods.
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Table 2.2: Listing of semaphore methods
Method Description
sema_init(struct semaphore *, int) Initializes the dynamically cre-

ated semaphore to the given
count.

init_MUTEX(struct semaphore *) Initializes the dynamically cre-
ated semaphore with a count of
one.

init_MUTEX_LOCKED(struct semaphore *) Initializes the dynamically cre-
ated semaphore with a count of
zero.

down_interruptible(struct semaphore *) Tries to acquire the given
semaphore and enter interrupt-
ible sleep if it is contended.

down(struct semaphore *) Tries to acquire the given
semaphore and enter uninter-
ruptible sleep if it is contended.

down_trylock(struct semaphore *) Tries to acquire the given
semaphore and immediately re-
turn nonzero if it is contended.

up(struct semaphore *) Releases the given semaphore
and wakes a waiting task, if any.
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Chapter 3

Real-Time Preemptive

Kernel

This chapter delves into the fully preemptible kernel proposed by the RT-
preempt patch. The techniques used by the patch are explained in detail and
why they matter. Throughout the chapter, code fragments are presented to
show how the AVR32 Linux kernel adopt these techniques.

Note that the fully preemptible kernel is just one out of three mechanisms
used to incorporate real-time capabilities into the Linux kernel. The work con-
cerning high-resolution timers and dynamic ticks are deferred to Chapters 5.

3.1 Overview of the RT-preempt patch

The RT-preempt patch allows nearly all of the kernel to be preempted, with the
exception of a few critical sections. The fully preemptible kernel included in the
RT-preempt patch features:

• Preemptible critical sections.

• Priority inheritance for in-kernel spinlocks and semaphores.

• Preemptible interrupt service routines.

According to (McKenney, 2005b), the amount of architecture-dependent
code inspection required are:

• The low-level interrupt-handling code.

• Any code that disable interrupts.

• Any code that disable preemption.

• Any code that holds a lock, mutex, semaphore, or other resource that is
required by the RT-preempt patch. Further, the code that implements the
lock, mutex, semaphore, or other resources are subject to inspection.

19
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• Any code that manipulates hardware that can stall the bus, delay inter-
rupts, or otherwise interfere with forward progress. Further, it is also
necessary to inspect user-level code that directly manipulates such hard-
ware.

In the following, the techniques from the RT-preempt patch are described
together with code fragments from the AVR32 Linux kernel code. Clearly, the
code needs modifications in order to implement the mechanisms proposed by
the RT-preempt patch . Therefore, the code fragments are coloured to separate
the deleted code from the added code. The red labeled code are deleted, the
blue labeled code are inserted. Code in black are unchanged.

3.1.1 Preemptible critical sections

As seen in Section 2.5.1, the idea behind spin locks, i.e. spinlock_t and
rwlock_t, are to protect short critical sections. A problem with the use of
spin locks in Linux is that they also protect large critical sections. Since the du-
ration that locks are held is equivalent to the scheduling latency of the system,
the unpredictable latencies caused by spin locks becomes a problem for real-time
applications. In the RT-preempt patch, this problem is solved by converting spin
locks into mutexes. Since mutexes are sleeping locks, critical sections within the
kernel protected by spin locks are now preemptible. This preemptibility means
that calls to spin_lock() might block, and, hence, is illegal to acquire with
either preemption or interrupts disabled1. Further, spin_lock_irqsave() does
not disable hardware interrupts when used on a spinlock_t.

There are spin locks in the RT-preempt kernel that must remain a traditional
spin lock, and not converted into a sleeping spin lock. Examples include inside
the scheduler and in the implementation of mutexes themselves. In the RT-
preempt patch, such spin locks need to change their type from spinlock_t

to raw_spinlock_t. When the existing spin lock functions are invoked on a
raw_spinlock_t, the spin lock will act as a traditional spin with preemption
disabled. However, when the functions are invoked in a spinlock_t, the spin
lock will become a mutex.

Consider the following code sequence taken from McKenney (2005a), sup-
plied by Ingo Molnar:

s p i n l o c k t mylock1 ;

s p i n l o c k t mylock2 ;

s p i n l o c k (&mylock1 ) ;

current−>s t a t e = TASK UNINTERRUPTIBLE;

s p i n l o c k (&mylock2 ) ;

foo ( ) ;

sp in un lock (&mylock2 ) ;

sp in un lock (&mylock1 ) ;

1There is one exception to this rule; calls to _trylock variants are permitted with either

preemption or interrupts disabled, unless they are repeatedly invoked in a tight loop (McKen-

ney, 2005a).
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Since the spin_lock(&mylock2) function can sleep, the value of current->

state may change, which might affect the foo() function. Therefore, an ad-
ditional task state was added in the RT-preempt kernel; TASK_RUNNING_MUTEX.
This state is used to allow the scheduler to preserve the prior value of current
->state.

As mentioned, it is illegal to invoke the spin_lock() function while preemp-
tion or interrupts are disabled. However, there are situations were a task cannot
make progress until a spin lock is acquired. In the RT-preempt patch, this has
been solved by deferring the operation requiring the spin_lock() until preemp-
tion has been re-enabled. Therefore, several functions are extended with versions
which end in _delayed. These functions queue up their non-delayed counterpart
calls to be executed at a later time when it is legal to acquire spin locks. For
example put_task_struct_delayed() queues up calls to put_task_struct()

if preemption are disabled and the function acquires a spin lock.
The scheduling may be affected by deferred operations. Say, for example,

that a task preempts a lower-priority task, but cannot make any progress be-
cause it waits for a lock held by the lower-priority task. Thus, the task would
immediately enter block state waiting for the lock to be released. To avoid
such unnecessary preemption, the RT-preempt patch extends this flag field by
a new flag; TIF_NEED_RESCHED_DELAYED. This flag does a reschedule just like
the TIF_NEED_RESCHED flag, but waits until the task is ready to return to user
space, or until the next preempt_check_resched_delayed(), whichever comes
first.

The TIF_NEED_RESCHED_DELAYED flag is defined in include/asm-avr32/

thread_info.h together with a corresponding _TIF_NEED_RESCHED_DELAYED

bit mask:

1 #de f i n e TIF SINGLE STEP 6 /∗ s i n g l e s t ep a f t e r next break ∗/
2 #de f i n e TIF MEMDIE 7

3 #de f i n e TIF RESTORE SIGMASK 8 /∗ r e s t o r e s i g n a l mask in do s i g na l ∗/
4 #de f i n e TIF NEED RESCHED DELAYED 9 /∗ r e s chedu l e on return to use r space ∗/

5 #de f i n e TIF USERSPACE 31 /∗ t rue i f FS s e t s userspace ∗/

6 #de f i n e TIF SINGLE STEP (1 << TIF SINGLE STEP)

7 #de f i n e TIF MEMDIE (1 << TIF MEMDIE)

8 #de f i n e TIF RESTORE SIGMASK (1 << TIF RESTORE SIGMASK)

9 #de f i n e TIF NEED RESCHED DELAYED (1 << TIF NEED RESCHED DELAYED)

arch/avr32/kernel/entry-avr32b.S contains a number of kernel control
paths that checks the TIF_NEED_RESCHED flag. In the RT-preempt patch these
paths must be extended to check the TIF_NEED_RESCHED_DELAYED flag as well.
Since the bld intruction in 3.1 only can check one bit, it cannot check the
TIF_NEED_RESCHED and TIF_NEED_RESCHED_DELAYED flag at the same time. In-
stead, the flags bits are shifted into a unused register. Then, this register is
compared to register r1 which holds the flags.

Code Sequence 3.1: arch/avr32/kernel/entry-avr32b.S
10 cp .w r2 , 0
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11 brne 1b

12 ld .w r1 , r0 [ T I f l a g s ]

13 bld r1 , TIF NEED RESCHED

14 brcc 1b

15 mov r4 , TIF NEED RESCHED | TIF NEED RESCHED DELAYED

16 t s t r1 , r4

17 brne 1b

18 lddsp r4 , sp [REG SR]

19 bld r4 , SYSREG GM OFFSET

20 brcs 1b

The cpu_idle() function in 3.2 is affected by the TIF_NEED_RESCHED_DELAYED
flag. Now, the processor may sleep only is the TIF_NEED_RESCHED and
TIF_NEED_RESCHED_DELAYED flags are not set.

Code Sequence 3.2: arch/avr32/kernel/process.c

21 void cpu i d l e (void )

22 {
23 /∗ end l e s s i d l e loop wi th no p r i o r i t y at a l l ∗/
24 while (1 ) {
25 /∗ TODO: Enter s l e e p mode ∗/
26 whi le ( ! need resched ( ) )

27 whi le ( ! need resched ( ) && ! need re sched de layed ( ) )

28 cpu re l ax ( ) ;

29

30 preempt enable no resched ( ) ;

31 schedu le ( ) ;

32 preempt d i sab le ( ) ;

33 l o c a l i r q d i s a b l e ( ) ;

34 preempt enab l e no re sched ( ) ;

35 s ch edu l e ( ) ;

36 preempt d i sab le ( ) ;

37 l o c a l i r q e n a b l e ( ) ;

38 }
39 }

3.1.2 Priority inheritance for in-kernel spin locks and semaphores

Priority inversion occurs when a higher-priority process is forced to wait on a
lower-priority process (Stallings, 2005). A simple example of priority inversion
occurs when a lower-priority process holds a resource and a higher-priority pro-
cess attempts to lock the same resource. The higher-priority process is blocked
until the lower-priority process is finished with the resource and releases it.
Then, the higher-priority may quickly resume, and acquires the resource.

Unbounded priority inversion occurs when the higher-priority process must
wait an undetermined amount of time for the lower-priority process to release
the resource. Then, the duration of the priority inversion depends not only on
the time required to handle the shared resource, but also on the unpredictable
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actions of other unrelated processes as well. Figure 3.1 shows the sequence that
causes the priority inversion:

t1: T3 begins executing.

t2: T3 enters its critical section and locks semaphore sem.

t3: T1 preempts T3 and begins executing.

t4: T1 attempts to enter critical section, but is blocked because T3 holds semaphore
sem; T3 resumes execution in its critical section.

t5: T2 preempts T3 and begins executing.

t6: T2 is suspended for reasons unrelated to T1 and T3, and T3 resumes exe-
cution.

t7: T3 leaves its critical section and unlock semaphore sem. T1 preempts T3,
locks the semaphore, and enters its critical section.

t8: T1 leaves its critical section, and unlocks the semaphore.

Preempted

Blocked

Preempted

sem unlocked

sem locked

sem locked

sem unlocked

T1

T2

T3

t1 t2 t3 t4 t5 t6 t7 t8 t9

Time

Normal execution Execution in critical section

Figure 3.1: Unbounded priority inversion.

In the current mainline kernel, preemption is disabled when processes pro-
tect share resources with spin locks. This prevents priority inversion to occur.
Thus, T2 cannot preempt the lowest-priority T3 task at t5 in Figure 3.1, and
unbounded priority inversion is avoided. However, because T1 cannot preempt
the T3 at t3, this scheme is inadequate for some real-time workloads, due to the
impact of scheduling latencies. Additionally, unlike spin locks, semaphores does
not suppress preemption because a task might sleep while holding a semaphore.
When another higher-priority process acquires the same semaphore, it goes to
sleep and eventually let the lower-priority process continue. Hence, priority
inversion may occur even in the absence of preemption.

In practical systems, there are two approaches to prevent unbounded pri-
ority inversion and still allow preemption; priority ceiling protocol and priority
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inheritance protocol. In the priority ceiling approach, each resource must knows
the highest priority process that will acquire it. Then, the resources are assigned
priorities one level higher than the priority of its highest-priority user. When a
process acquires a resource, the process is assigned the priority of the resource.
This prevents any other process that might acquire the same resource from pre-
empting the process. Since almost any resource or lock in Linux may be taken by
any process, this approach highly suppress preemption while a shared resource
is held.

The RT-preempt patch implements priority inheritance. The basic idea of
priority inheritance is that lower-priority tasks that are holding shared resources,
temporarily inherits the priority of any higher-priority pending on the same re-
sources. The priority change takes place when the higher-priority task acquired
the resource, and ends when the lower-priority releases the resource. Figure 3.2
shows how the unbounded priority inversion illustrated in Figure 3.1 is solved
by priority inheritance. The sequence is as follows:

t1 T3 begins executing.

t2 T3 enters its critical section and locks semaphore sem.

t3 T1 preempts T3 and begins executing.

t4 T1 attempts to enter critical section, but is blocked because T3 holds semaphore
sem. T3 is temporarily assigned the same priority as T1. T3 resumes execu-
tion in its critical section.

t5 T2 is ready to run, but because T3 has inherited T1’s priority, T2 is unable
to preempt T3.

t6 T3 ends its critical section, and unlocks the semaphore. Then its priority
level is downgraded to its previous default level. T1 preempts T3, locks the
semaphore, and enters its critical section.

t7 T1 leaves its critical section, and unlocks the semaphore.

t8 T1 is suspended unrelated to T2, and T2 begins execution.

Semaphores allow one or more tasks access to a resource, and, hence, semaphores
have no concept of an owner. Therefore, a semaphore is never bounded to a
thread. In Linux, semaphores are often used for maintaining mutual exclusion
to a resource or to coordinate two or more threads. For mutual exclusion, the
ability of a semaphore to handle multiple threads produces an unnecessary over-
head when only acting as a mutex. The RT-preempt patch introduces a new
primitive for the kernel called mutex. Because of its simpler design, the mutex is
much cleaner and slightly faster than a semaphore. In contrast to a semaphore,
the mutex may be owned by one, and only one, thread at a time. This prop-
erty of the mutex is one of the requirements of the priority inversion algorithm
implemented by the RT-preempt patch. Since locks have a one-to-one relation-
ship with its over, the priority inheritance chain stays a single path, and does
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Figure 3.2: Priority inheritance.

not branch with multiple lock owners needing to inherit a priority of a waiting
thread.

3.1.3 Preemptible interrupt handlers

When executing an interrupt handler or bottom half in the mainline kernel,
the kernel is in interrupt context. Although code executed in interrupt context
should be quick and simple, the servicing of low priority devices, for examples
hard-drives, interrupt handling can cause large latencies for all tasks. Generally
speaking, in the mainline kernel a high priority task may be greatly affected by
a low priority task. The RT-preempt patch converts interrupt service routines
into kernel threads to address this issue. Hard vs. soft interrupt.

Kernel threads

Kernel threads are used by the kernel to perform operations in the background.
For example, flushing disk caches and running tasklets are executed intermit-
tently by the pdflush and ksoftirqd kernel thread, respectively. Kernel threads
differs from standard processes that they run only in kernel space, and do not
have an address space. However, they are schedulable and preemptable as normal
processes.

Threaded top halves handlers

A device driver registers an interrupt handler and enables a given interrupt line
for handling by calling request_irq(). The request_irq() calls setup_irq

() to register the struct irqaction. Among other work, setup_irq() calls
start_irq_thread() to create a kernel thread to service the interrupt line. The
thread’s work is implemented in do_irqd(). Only one thread can be created
per interrupt line, and shared interrupts are still handled by a single thread.
Since kernel threads execute in process context, the interrupts handlers are now
preemptable and schedulable.
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Almost all interrupt handlers runs as kernel threads in the RT kernel . How-
ever, there are cases where the handler must be serviced in interrupt context.
By setting the interrupt descriptor flag IRQ_NODELAY, the interrupt handler is
forces to run in interrupt context and not as a thread. An IRQ_NODELAY inter-
rupt can greatly degrade both interrupt and scheduling latencies if the associ-
ated interrupt handler does to much work. The most notable use of this is the
timer interrupt due to its tie to schedule and other core kernel components. On
AVR32 Linux, the timer interrupt is defined in arch/avr32/kernel/time.c:

40 stat ic struct i r q a c t i o n t ime r i r q a c t i o n = {
41 . handler = t imer in t e r rup t ,

42 . f l a g s = IRQF DISABLED,

43 . f l a g s = IRQF DISABLED | IRQF NODELAY,

44 . name = ”timer ” ,

45 } ;

The do_IRQ() declared in arch/avr32/mach-at32ap/intc.c invokes the
function handle_simple_irq(), which in the RT-preempt patch performs the
following work:

1. Acquires the spin lock desc->lock to protect access to the IRQ descriptor.

2. Checks whether the interrupt really must be handled. There are three
cases in which nothing have to be done:

(a) IRQ_DISABLED is set.

(b) IRQ_INPROGRESS is set.

(c) desc->action is NULL.

3. Clears the IRQ_REPLAY, IRQ_WAITING, and IRQ_PENDING flags. Then, sets
the IRQ_INPROCESS flags.

4. Invokes redirect_hardirqs(), which calls wake_up_process() on the
associated thread iff. threaded interrupt are enabled and the current IRQ
is threaded.

5. If wake_up_process() is not called in step 4, i.e. either threaded inter-
rupt are disabled or the current IRQ is flagged IRQ_UNDELAY, releases the
interrupt spin lock. Then, executes the interrupt service routine by invok-
ing handle_IRQ_event(). Next, acquires the spin lock again and clears
the IRQ_INPROGRESS flag.

6. Finally, releases the spin lock.

If an interrupt is redirected in 4, the interrupt will terminate before its inter-
rupt handler is invoked. Therefore, the interrupt line must be masked; otherwise
the interrupt will trigger again. On the AVR32 architecture, only groups of in-
terrupts can be masked either by the GM or the I[3-0]M in the processor’s status
register. Individual interrupt lines cannot be masked. Consequencly, when a
threaded interrupt triggers on the AVR32 architecture, the interrupt triggers in
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loop without being handled. Hence, the processor services this interrupt line
over and over again without any progress.

An interrupt controller for the AVR32 architecture that is capable of masking
specific interrupt lines for the entire processor is the most best solution to this
problem.

Threaded bottom halves and deferring work handlers

As seen in 2.4, bottom halves and deffering work handlers can not assume to be
run in threaded context. In the RT-preempt patch, the softirqs are only handled
in kernel threads. Each handler has its own thread to service them.

3.1.4 Concluding remark

The RT-preempt patch by Ingo Molnar incorporates many logical changes in
mainline Linux and introduces new concepts. The focus in this chapter has been
to describe some of these new consepts and how they affect the architecture-
dependent code. Therefore, the description of the fully preemptible kernel im-
plementaion is not complete, nor the required changes in the AVR32 Linux
kernel. The CD-ROM contains the proposed changes in AVR32 Linux.
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Chapter 4

Timer Management and

Timers

This chapter consists of four parts. The first section describes the hardware
devices used for timing. The next section gives an detailed picture of the Linux
Time System. Then, the AVR32 Linux kernel is transformed to fully support
John Stult’s Generic Time-of-day approach. The last section discusses the timers
in Linux.

4.1 Timer Circuits

The kernel interact with a programmable timer hardware circuit called the sys-
tem timer, that issues an interrupt at a fixed frequency. The interrupt handler
for this timer, called the timer interrupt updates the system time and performs
periodic work.

On the architecture, the system timer functionality is set up by using the
COUNT together with the COMPARE system registers. Both registers can be read
and written by using the privileged mfsr and mtsr instructions. The COUNT

register increments once every clock cycle, and the incrementation can not be
disabled. The COMPARE register holds a value that the COUNT register is compared
against. When the COMPARE and COUNT registers match, a compare interrupt
request is generated. Then, the interrupt request is routed to the Interrupt
Controller (INTC), which forwards the request back to the processor at a priority
level determined by the INTC.

The frequency of the system timer, called the tick rate is programmed on
system boot based on the static preprocessor defined HZ variable. The kernel
defines the value in <asm/param.h>. The value of HZ is architecture dependent,
and in include/asm-avr32/param.h, the AVR32 architecture defines:

#de f i n e HZ 250

Hence, since the period is defined as 1/HZ seconds, the timer interrupt on
AVR32 has a frequency of 250 HZ with a period of 1/250 = 0.004, that is,

29
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every fourth millisecond.
Clearly, an increasing tick rate results in a system timer with a higher res-

olution. Stating with the initial version of Linux, the default frequency of the
timer interrupt was 100 HZ. During the 2.5 development series, the frequency
was raised for some architectures to 1000 HZ. However, the raising caused certain
regressions, and the HZ value was changed to 250 HZ.

4.2 Linux Time System

Linux executes several time-related activities periodically.

• Updates the time of day.

• Determines whether the current process has exceeded its timeslice, and, if
is has, causing a reschedule.

• Checks whether the interval of time associated with each software timer
has expired.

• Updates the system uptime.

• Updates resource usage and processor time statistics.

All time-related activities are triggered by the timer interrupt raised by the
system timer, as seen in Figure 4.1. Some of this work is done on every timer
interrupt, while others functions executes periodically, but only every n timer
interrupts.

Timers

Time Keeping

Timer InterruptHW

System Statistics

Figure 4.1: Linux Time System.

4.2.1 Data Structures of the Time System

The jiffies variable

The global variable jiffies is a counter that holds the number of ticks since
the system booted. It is incremented by one when a timer interrupt occurs, that
is, on every tick. Since the interrupt interval differs between architectures, the
amount of time one jiffy represents is not absolute.

The jiffies variable is decleared in <linux/jiffies.h> as:
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extern unsigned long volat i le j i f f i e s ;

Since the AVR32 is a 32-bit architecture, the unsigned long jiffies variable
is 32 bits in size. With a tick rate of 250 HZ, the jiffies variable wraps around
in approximately 199 days. However, the time management code needs the
real number of system ticks since the system boot, regardless of the overflow of
jiffies. Hence, a 64-bit variable jiffies_64 is defines in linux/jiffies.h

as:

extern u64 j i f f i e s 6 4 ;

With any reasonable HZ value, the jiffies_64 variable will never overflow in
anyone’s lifetime.

The jiffies variable is overlaid the by the linker script to the 32 less
significant bits of the jiffies_64 variable. Thus, any incrementation of the
jiffies_64 also increase the jiffies variable, since the latter correspond to
the lower half of jiffies_64. Moreover, code can access the jiffies vari-
able atomically, but not the jiffies_64. Hence, read and write operations on
the jiffies_64 variable requires synchronization techniques to ensure that the
operations are done atomically. This is done by the xtime_lock seqlock.

The xtime variable

The current time of day, as seen on a wrist-watch is stored in the xtime variable.
It is a structure of type timespec defined in kernel/timer.c:

struct t imespec xtime ;

The timespec data structure is defined in <linux/time.h> as:

struct t imespec {
t ime t t v s e c ; /∗ seconds ∗/
long tv nsec ; /∗ nanoseconds ∗/

}

The xtime.tv_sec value holds the number of seconds that have elapsed since
January 1, 1970 (UTC). This date is called the epoch. The xtime.tv_nsec

value holds the number of nanoseconds that have elapsed in the last second.
The xtime_lock seqlock avoids any race conditions that could occure due

to concurrent access to the xtime variable. The xtime_lock also protects the
jiffies_64 variable.

4.2.2 Timekeeping

A clocksource is a driver-like architecture generic abstraction of a free-running
counter. This code defines the clocksource structure, and provides management
code for registering, selecting, accessing and scaling clocksources.

An abstraction layer and associated API are required to establish a com-
mon code framework for managing various clock sources. The centralization
of this functionality allows the system to share significantly more code across
architectures.
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Clock source data structure

The clock source management code specifies a clocksource structure in order
to handle possible clock sources in a uniform way. The structure is defined in
<linux/clocksource.h> as:

struct c l o ck sou r c e {
char ∗name ;

struct l i s t h e a d l i s t ;

int r a t i ng ;

c y c l e t (∗ read ) ( void ) ;

c y c l e t mask ;

u32 mult ;

u32 s h i f t ;

unsigned long f l a g s ;

/∗ t imekeep ing s p e c i f i c data , i gnore ∗/
c y c l e t c y c l e l a s t , c y c l e i n t e r v a l ;

u64 xtime nsec , x t ime i n t e r va l ;

s64 e r r o r ;

#i f d e f CONFIG CLOCKSOURCE WATCHDOG

/∗ Watchdog r e l a t e d data , used by the framework ∗/
struct l i s t h e a d wd l i s t ;

c y c l e t wd last ;

#end i f

} ;

In this structure, the rating field allows the best registered clock source to be
chosen by the clock source management. To avoid rating inflation, the clock
source should be rated according to the list defined in Table 4.1. The clock

Table 4.1: Clock source rating
Rating Description
1-99 Unfit for real use.

Only available for bootup and testing purposes.
100-199 Base level usability.

Functional for real use, but not desired.
200-299 Good.

A correct and usable clocksource.
300-399 Desired.

A reasonably fast and accurate clocksource.
400-499 Perfect.

The ideal clocksource. A must-use where available.

source’s cycle value can be read from the read function pointer. The mask value
ensures that subtraction between counters values from non 64 bit counters do
not need special overflow logic. The mult and shift are used to convert the
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clock source’s period to nanoseconds per cycle. The flags member describes
special properties of the clock source.

Table 4.2: Clock source flags
Value Description
CLOCK_SOURCE_IS_CONTINUOUS Free running counter
CLOCK_SOURCE_MUST_VERIFY The clock source must be for reliability.
CLOCK_SOURCE_WATCHDOG Instead of using hardwired assumptions

of available hardware, a generic verifica-
tion mechanism is provided.

CLOCK_SOURCE_VALID_FOR_HRES The clock source is capable for high res-
olution.

The jiffies based clock source is the lowest common denominator clock
source that should function on all systems. The clocksource structure for the
jiffies clock source is initialized in jiffies.c as:

struct c l o ck sou r c e c l o c k s o u r c e j i f f i e s = {
. name = ” j i f f i e s ” ,

. r a t i ng = 1 , /∗ l owe s t v a l i d r a t i n g ∗/

. read = j i f f i e s r e a d ,

. mask = 0 x f f f f f f f f , /∗32 b i t s ∗/

. mult = NSEC PER JIFFY << JIFFIES SHIFT ,

. s h i f t = JIFFIES SHIFT ,

} ;

Here, the function jiffies_read returns the number of jiffies in terms of
cycle_t. The jiffies clock source uses a simple NSEC_PER_JIFFY multiplier con-
version to specify the nanosecond over cycle ratio, i.e. the shift value should
be 0. This conflics with the Network Time Protocol (NTP) adjustments code
for synchronizing clocks since they are in units of 1/2shift. However, by shifting
the mult and shift values by a chosen constant, the values are compatible with
the NTP adjustments code.

The clocksource_avr32 clock source exploits the hardware timers provided
by the AVR32 architecture. The structure is initialized in arch/avr32/kernel

/time.c as:

stat ic struct c l o ck sou r c e c l o ck sou r c e av r32 = {
. name = ”avr32 ” ,

. r a t i ng = 350 ,

. read = read cyc l e count ,

. mask = CLOCKSOURCE MASK(32) ,

. s h i f t = 16 ,

. f l a g s = CLOCK SOURCE IS CONTINUOUS,

} ;

The clocksource_avr32 has a rating of 350, which is a desired clock source
according to Table 4.1. The function read_cycle_count reads the COUNT system
register:
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stat ic c y c l e t r e ad cyc l e count (void )

{
return ( c y c l e t ) sy s r e g r ead (COUNT) ;

}

Clock source management

The clock source management code provides the interface for clock source regis-
tration and selection. Clock sources are registered by calling clocksource_register
() during kernel initialization or from a kernel module. The former is used for
the jiffies and avr32 clock sources. During registration, the clock source man-
agement code will choose the best clock source available in the system using the
rating field. Alternatively, a sysfs interface allows the user to list registered
clock sources, and manually override the default clock source selection.

4.2.3 The Timer Interrupt

In a uni-processor Linux system, all time-related activities are triggered by the
interrupts raised by the system timer.

Initialization phase

During kernel initialization, the time_init() function is invoked to set up the
necessary time-related infrastructure. On the AVR32 architecture, the following
operations are performed:

1. Initializes the xtime variable. The tv_sec field of the xtime is read from
the Real Time Clock by means of the rtc_get_time() function. Since
the RTC is not supported, the function points to a null_rtc_get_time,
which returns number of seconds since the midnight of January 1, 1970 to
the midnight of January 1, 2004. The tv_nsec is set.

2. Initialize the wall_to_monotonic variable. This variable is of the same
type timespec as xtime, and it stores the number of seconds and nanosec-
onds to be added to xtime on order to get a monotonic flow of time.

3. Calculates the cycles_per_jiffy and invokes the avr32_hpt_init()

function to set up the high precision timer for the first timer interrupt.

4. Calculates the mult member of the avr32 clock source by means of the
clocksource_hz2mult() function. Then, invokes clocksource_register
() to register the avr32 clock source.

5. Invokes setup_irq(0, &timer_irqaction) to set up the interrupt han-
dler corresponding to IRQ0. The timer_irqaction irqaction structure is
defined as:



4.2 Linux Time System 35

stat ic struct i r q a c t i o n t ime r i r q a c t i o n = {
. handler = t imer in t e r rup t ,

. f l a g s = IRQF DISABLED,

. name = ”timer ” ,

} ;

Now, the timer_interrupt interrupt handler is registered, and, thus, runs
every time the timer interrupt hits.

The timer interrupt handler

Timekeeping

Timer Interrupt Handler

System Statistics

Timers

Architecture-Independent

Process 
accounting

Profiling

Jiffies

Architecture-DependentHW

Timekeeping

Time-of-dayClock Synchr.

Clock Source

System Load

Figure 4.2: Linux Time System.

The timer interrupt is devided into an architecture-dependent part and an
architecture-independent part since its exact job depends on the given architec-
ture. On the system at hand, the interrupt handler is declared in arch/avr32/

kernel/time.c, and does the following work:

1. Acknowledge the current timer interrupt and set the next one by increase
the COMPARE system register by cycles_per_jiffy.

2. Obtain the xtime_lock seqlock by invoking write_seqlock(), to protect
access to jiffies_64 and xtime.

3. Invokes the architecture-independent timer routine, do_timer(), which in
turn performs the following work:

(a) Increments the jiffies_64 by one. This is safe since the xtime_lock
lock is previously obtained in the interrupt handler.

(b) Invokes the update_time() function to update the system date and
time, and to compute the current system load.

4. Releases the xtime_lock seqlock by invoking write_sequnlock().
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5. Invokes the local_timer_interrupt() routine to perform profiling and
process-accounting on a per-CPU basis. This is done by the following
architecture-independent functions:

(a) Invokes the profile_tick() function to profile kernel code.

(b) Invokes the update_process_times() to check how long the current
process has been running.

Updating the time and date

The update_time() function from step 3b in the list on the preceding page, is
defined in timer.c as:

stat ic i n l i n e void update t imes (unsigned long t i c k s )

{
update wal l t ime ( ) ;

c a l c l o ad ( t i c k s ) ;

}

The update_wall_time() function uses the current clock source to increment
the wall time stored in the xtime variable. Each invocations adds 4,000,000
nanoseconds to the xtime.tv_nsec. Then, if the value of xtime.tv_nsec

becomes greater than 999,999,999, the xtime.tv_sec is incremented. The
calc_load() function updates the average system load.

Profiling

Linux includes a code profiler to discover where the kernel spends its time in
Kernel Mode. The profile_tick() function in step 5a in the list on the previ-
ous page collects the data for the code profiler.

Process accounting

The update_process_timers() function in step 5b updates some kernel static-
tics. The run_local_timers() that raises the TIMER_SOFTIRQ softirq is called
from this function. The execution of timers are covered in Section 4.4 on page 39.

4.3 Transforming the AVR32 Linux clock source

related code

The Generic Time-of-day subsystem (GTOD) project (Stultz et al., 2005) adresses
jiffy and architecture independent timekeeping. This subsystem provides an
architecture-independent function timekeeping_init() defined in kernel/timer

.c, which is called at initialization time. Code Sequence 4.1 shows the function.

Code Sequence 4.1: timekeeping_init()
1 void i n i t t imek e ep i ng i n i t (void )

2 {
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3 unsigned long f l a g s ;

4 unsigned long s ec = r e a d p e r s i s t e n t c l o c k ( ) ;

5

6 wr i t e s e q l o c k i r q s a v e (&xt ime lock , f l a g s ) ;

7

8 n tp c l e a r ( ) ;

9

10 c l o ck = c l o ck s ou r c e g e t n ex t ( ) ;

11 c l o c k s o u r c e c a l c u l a t e i n t e r v a l ( c lock , NTP INTERVAL LENGTH) ;

12 c lock−>c y c l e l a s t = c l o ck sou r c e r e ad ( c l o ck ) ;

13

14 xtime . t v s e c = sec ;

15 xtime . tv nsec = 0 ;

16 s e t no rma l i z ed t imespec (&wal l to monotonic ,

17 −xtime . tv sec , −xtime . tv nsec ) ;

18

19 wr i t e s e q un l o c k i r q r e s t o r e (&xt ime lock , f l a g s ) ;

20 }

In Code Sequence 4.1, the lines 14 through 17 initialize the xtime and the
wall_to_monotonic variables. Therefore, Points 1 and 2 in the timer interrupt
initialization phase on page 34 are redundant, and can be removed. The changes
in the arch/avr32/kernel/time.c are shown in Code Sequence Sequence 4.2:

Code Sequence 4.2: Remove
21 unsigned long mult , s h i f t , count hz ;

22 int r e t ;

23

24 xtime . t v s e c = r t c g e t t ime ( ) ;

25 xtime . tv nsec = 0 ;

26

27 s e t no rma l i z ed t imespec (&wal l to monotonic ,

28 −xtime . tv sec , −xtime . tv nsec ) ;

29

30 pr in tk ( ”Before t im e i n i t : count=%08lx , compare=%08lx \n” ,

31 (unsigned long ) s y s r e g r ead (COUNT) ,

32 (unsigned long ) s y s r e g r ead (COMPARE) ) ;

In the architecture-independent code given in Code Sequence 4.1, the xtime

.tv_sec member is initialized by calling the read_persistent_clock() func-
tion. Hence, the null_rtc_get_time() function-name is replaced by the read_persistent_clock
() name as shown in 4.3. In addition, the function is not declared static since
its name should be visible outside of the file in which it is declared.

Code Sequence 4.3: read_persistent_clock()
33 s t a t i c unsigned long nu l l r t c g e t t im e ( void )

34 unsigned long r e a d p e r s i s t e n t c l o c k ( void )

35 {
36 return mktime (2004 , 1 , 1 , 0 , 0 , 0 ) ;

37 }
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At last, the AVR32 clock source registration is moved out of the time_init

() function to streamline the code and to create a solid foundation for high
resolution timers and dynamic ticks. The required changes are shown in Code
Sequence 4.4, 4.5, and 4.6.

Code Sequence 4.4: Removed code from time_init()

38 count hz = c l k g e t r a t e ( boot cpu data . c l k ) ;

39 s h i f t = c l o ck sou r c e av r32 . s h i f t ;

40 s h i f t = 16 ;

41 mult = c locksource hz2mul t ( count hz , s h i f t ) ;

42 c l o ck sou r c e av r32 . mult = mult ;

43

44 pr in tk ( ”Cycle counter : mult=%lu , s h i f t=%lu \n” , mult , s h i f t ) ;

Code Sequence 4.5: Remove clocksource_register() from time_init()

45 (unsigned long ) s y s r e g r ead (COUNT) ,

46 (unsigned long ) s y s r e g r ead (COMPARE) ) ;

47

48 r e t = c l o c k s o u r c e r e g i s t e r (&c l o ck sou r c e av r32 ) ;

49 i f ( r e t )

50 pr in tk (KERN ERR

51 ”t imer : could not r e g i s t e r c l o ck sou r c e : %d\n” , r e t ) ;

52

53 r e t = s e tup i r q (0 , &t ime r i r q a c t i o n ) ;

54 i f ( r e t )

Code Sequence 4.6: init_avr32_clocksource()

55 s t a t i c i n t i n i t i n i t a v r 3 2 c l o c k s o u r c e ( void )

56 {
57 unsigned long s h i f t , count hz ;

58 i n t r e t ;

59

60 count hz = c l k g e t r a t e ( boot cpu data . c l k ) ;

61 s h i f t = c l o ck sou r c e av r32 . s h i f t ;

62 c l o ck sou r c e av r32 . mult = c locksource hz2mul t ( count hz , s h i f t ) ;

63

64 r e t = c l o c k s o u r c e r e g i s t e r (&c l o ck sou r c e av r32 ) ;

65 i f ( r e t )

66 pr in tk (KERN ERR

67 ”t imer : could not r e g i s t e r c l o ck sou r c e : %d\n” , r e t ) ;

68

69 re turn r e t ;

70 }
71 module in i t ( i n i t a v r 3 2 c l o c k s o u r c e ) ;
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4.4 Timers

In software, a timer allows functions to be invoked at some future moment, after
a certain time interval has elapsed, specified by a expiration value. In Linux,
three types of timers are considered; dynamic timers, hrtimers and interval
timers. The hrtimers subsystem was incorporated into 2.6.16 Linux.

Dynamic timers are used by the kernel to primary manage timeouts (Gleixner
and Molnar, 2005; Gleixner and Niehaus, 2006). Timeouts timers are used to
detect error condition inside the kernel, such as stalled and stuck I/O or network
operation. They are alomst always removed before they expire. Thus, their
demand on resolution are usually low. Hrtimers are used for timers. Timers is
used to force the execution of specific functions upon the specified expiration,
and hence, they usually expire. Timers are mostly related to applications, and
therefore may demand high resolution timing. Interval timers may be created
by processes in user space.

4.4.1 Dynamic timers

Dynamic timers may be dynamically created and destroyed. A dynamic timer
is represented by a struct timer_list structure, which is defined in linux/

timer.h:

struct t i m e r l i s t {
struct l i s t h e a d entry ;

unsigned long exp i r e s ;

void (∗ f unc t i on ) ( unsigned long ) ;

unsigned long data ;

struct t v e c t b a s e s ∗base ;

} ;

The expires field specifies when the timer expires. The expiration time is
expressed in jiffies. The function field contains a pointer of the function to be
executed when the timer expires, and the data field specifies the parameter to
be passed to this function.

The entry field is used to insert the dynamic timer into one of the doubly
linked circular lists that forms the data structure used to organize the timers
according to the value of their expiration field. This algorithm is called the
cascading timer wheel and is described next.

Cascading timer wheel

The cascading timer wheel data structure consists of doubly linked circular lists
that group together dynamic timers based theirs expires values. The wheel
groups timers into five linked lists. Each list represents the set of timers within
a certain region of jiffies, where the size of the regions grow exponentially. Thus,
the further into the future the timer is set to expire, the larger the region of the
list in which it is stored. As the times goes on, the timers may be removed and
reinserted, or cascaded, hence the name, from lists with larger expires values
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to lists with smaller ones. Figure 4.3 illustrates in a schematic way the five
groups of lists.

tv5

tvec_t

CPU0

tvec_bases

tv4

tvec_t

tv3

tvec_t

tv2

tvec_t

tv1

tvec_root_t

Figure 4.3: Linux Dynamic Timers.

Data structure for dynamic timers

The struct tvec_base_t defined in kernel/timer.c, contains all the data
needed to manage the dynamic timers.

typedef struct t v e c t b a s e s {
s p i n l o c k t l ock ;

struct t i m e r l i s t ∗ running t imer ;

unsigned long t i m e r j i f f i e s ;

t v e c r o o t t tv1 ;

t v e c t tv2 ;

t v e c t tv3 ;

t v e c t tv4 ;

t v e c t tv5 ;

} t v e c ba s e t ;

The tv1 field is a structure of type tvec_root_t, which includes an list of 256
list_head elements, where each entry represents a single jiffy. Hence, this list
contains all dynamic timers, if any, that will expire within the next 255 ticks.
The tv2, tv3, t4, and tv5 fields are structures of type tvec_t, which includes
an list of 64 list_head elements. These lists contain all timers that will expire
within the next 214− 1, 220− 1, 226− 1, 232− 1, respectively. The properties of
the different timer categories is summarized in Table 4.3.

Dynamic timer handling

Dynamic timer handling are performed by the run_timer_softirq() deferred
function that is raised by the TIMER_SOFTIRQ softirq. The function essentially
performs the following:

1. Acquires the base->lock spin lock and disables local interrupts.
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Table 4.3: Cascading timer wheel list ranges
List Start Stop Granularity

1 1 28 − 1 20

2 28 214 − 1 28

3 214 220 − 1 214

4 220 226 − 1 220

5 226 232 − 1 226

2. While base->timer_jiffies is smaller or equal than the value of jiffies
, performs the following substeps:

(a) Computes the index of the list in base->t1 that holds the next timer
to expire.

(b) If index is zero, all lists base->t1 in are empty. Then, the timers in
the base->t2 list is cascaded to the proper list of base->t1. If all
base->t2 lists are empty after the cascading, the timers of base->t3
is cascaded into proper list of base->t2, and so on.

(c) Increments the base->timer_jiffies.

(d) For each timers in the base->tv1.vec[index] list, executes the cor-
responding timer function. When all timers are handled, continues
with the next iteration of while loop.

3. Releases the base->lock spin lock and enables local interrupts.

Since softirqs are a form of bottom half, they may be executed a long time after
they have been activated. Therefore, the kernel runs timer functions equal to
or greater than their expiration times. Although the kernel guarantees to run
no timers functions prior to their expiration, there may be a delay in running
timers. For this reason, timers are not appropriate for any sort of hard real-time
processing.

The cascading timer wheel provides O(1) inserting and removing times.
However, when inserting a timer with an expiration time larger than capac-
ity of the first list, the timer has to be cascaded into a lower list at least once.
The cascade operation is time-consuming if a large set of timers have to be
moved. It is done with interrupt disabled, and thus, the cascade operation can
increase the interrupt latency?. The cascading timer wheel has excellent aver-
age performance. However, the worst case performance is unacceptable for high
resolution timers.

4.4.2 Hrtimers

The hrtimer subsystem is optimized for timers with high resolution require-
ments. The primary purpose to separate such timers from the cascading timer
wheel was to eliminating the overhead and variable latency associated with the
wheel (Gleixner and Molnar, 2005).
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Hrtimers uses the xtime variable as its time domain, and hence, is not
bounded to jiffies. Figure 4.4 shows in a schematic way how hrtimers and dy-
namic timers are connected to the timer management. The timers are organized

Timekeeping

Timer Interrupt Handler
Timers

Jiffies

Timekeeping hrtimer

Dynamic 
Timers

Architecture-IndependentArchitecture-Dependent

Figure 4.4: Linux Timers.

into a per-CPU red-black tree. Red-black trees provide O(log(N)) insertion and
removal, i.e. slower than the cascading timer wheel. However, since the major-
ity of timers actually, the cascading penalty is to high for such timers. Further,
red-black trees are considered to be effective enough for high-resolution timers,
as they are already used in other performance critical parts of the kernel.

The hrtimer subsystem was merged into 2.6.16 Linux. The inclusion of
this subsystem does not change the tick based resolution, however. Hrtimers,
together with the Generic Time-of-day subsystem described in Section 4.3 create
a solid foundation for support of high-resolution timers and dynamic ticks.

4.4.3 System calls for POSIX timers

The POSIX 1003.1b standard introduced software timers for user-space appli-
cations. These timers are often reffered to as POSIX timers. Prior to 2.6.16
Linux, the kernel implements the POSIX timers by means of dynamic timers.
After the incorporation of the hrtimer subsystem, however, the POSIX timers
is implemented by using hrtimers.

POSIX timers make use of POSIX clocks, that is, virtual time sources with
predefined resolutions and properties. Hrtimers supports two types of POSIX
clocks:

• CLOCK_REALTIME

• CLOCK_MONOTONIC

System calls for POSIX timers and clocks are given in Table 4.4
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Table 4.4: Cascading timer wheel list ranges
System call Description
clock_settime() Sets the time of a POSIX clock.
clock_gettime() Gets the time of a POSIX clock.
clock_getres() Gets the resolution of a POSIX clock.
clock_nanosleep() Suspends the process.
timer_create() Creates a new POSIX timer based on a POSIX

clock.
timer_settime() Sets the time until the next expiration.
timer_gettime() Gets the time until the specified timer expires.
timer_getoverrun() Gets the time expiration overrun count for the

specific timer.
timer_delete() Destroys a POSIX timer.
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Chapter 5

High Resolution Times and

Dynamic Ticks

This chaper introduces high resolution timers and dynamic ticks for AVR32 Linux.
In Chapter 4, the AVR32 kernel was transformed to fully support John Stult’s
Generic Time-of-day approach. Further, information about the hrtimer im-
plementation was provided. The first part of this chapter covers how a new
component called clock events will complement and complete the hrtimer and
the Generic Time-of-day components to create a foundation for high resolu-
tion timers and dynamic ticks. The clock events component is introduced in
(Gleixner and Niehaus, 2006). Then, the implementation of the clock events
component on AVR32 Linux is covered in details.

5.1 Clock event management

5.1.1 Clock event source

Clock events sources are used to schedule the next event interrupt. As seen in
Section 4.2.3, the current timer interrupt is acknowledged and the next one set
by increasing the COMPARE system register by cycles_per_jiffy. Hence, the
next event is currently defined to be periodic, with a pre-defined frequency of 250
HZ. Further, how much work that is done by the architecture-dependent code
of the timer interrupt differs across architectures. The clock events component
provides a generic solution to manage clock events sources and the time-related
activities in the kernel.

Clock event sources can be registered by the architecture-dependent boot
code or at module insertion time. Based on its property parameters, the clock
events management decides what functionality the clock source is set to support.
On a uni-processor system, this includes per-CPU functionality such as process
accounting, profiling, high resolution timers, dynamic ticks and the traditional
periodic tick based clock events.
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The struct clock_event_device defined in include/linux/clockchips.

h, contains all the element to manage the clock event sources:

struct c l o ck ev en t d ev i c e {
const char ∗name ;

unsigned int f e a t u r e s ;

unsigned long max delta ns ;

unsigned long min de l ta ns ;

unsigned long mult ;

int s h i f t ;

int r a t i ng ;

int i r q ;

cpumask t cpumask ;

int (∗ s e t n ex t ev en t ) ( unsigned long evt ,

struct c l o ck ev en t d ev i c e ∗ ) ;

void (∗ set mode ) (enum c lock event mode mode ,

struct c l o ck ev en t d ev i c e ∗ ) ;

void (∗ event hand le r ) ( struct c l o ck ev en t d ev i c e ∗ ) ;

void (∗ broadcast ) ( cpumask t mask ) ;

struct l i s t h e a d l i s t ;

enum c lock event mode mode ;

kt ime t next event ;

} ;

In Table 5.1.1, the most important fields of the clock_event_decive structure
are described:

Table 5.1: The fields of the clock_event_device structure.
Field name Description
features Bit-field which describes the features of the clock event

source and its preferred usage.
max_delta_ns Maximum event delta (offset into the future) which can

be scheduled.
min_delta_ns Minimum event delta (offset into the future) which can

be scheduled.
mult Multiplier for scaled math conversion from nanoseconds

to clock event source units.
shift Shift factor for scaled math conversion from nanosec-

onds to clock events units.
set_next_event Architecure-dependent function which schedule the next

event.
set_mode Architecture-dependent function which toggles the clock

event source operating mode.
event_handler Architecture-independent function assigned by the

framework to be called bt the low level handler of the
clock event source.
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5.1.2 Clock event distribution

The clock event management provides infrastructure for distributing timer-
related services in the kernel. The management supports periodic and indi-
vidual programmable events. The individual programmable event is used to
implement high resolution timers and dynamic ticks, but only when appropri-
ate a clock event source has been registered. Otherwise, the traditional periodic
tick scheme is used. This ensures that a kernel which is configured for high
resolution timers and/or dynamic ticks can run on a architecture which does
not have the necessary hardware support.

5.2 Transforming AVR32 Linux to use clock events

Enable clock event devices

The generic clock event subsystem needs to be compiled into the kernel. This is
done by adding the config GENERIC_CLOCKEVENTS to /arch/avr32/Kconfig:

Code Sequence 5.1: GENERIC_CLOCKEVENTS
1 c on f i g GENERIC CLOCKEVENTS

2 bool

3 de f au l t y

4

5 c on f i g RWSEM XCHGADD ALGORITHM

6 bool

Clock event device data structure

The clock event source for AVR32 Linux is defined in arch/avr32/kernel/time

.c as hpt_clockevent1. Its clock-specific property parameters and callback
functions are set in Code Sequence 5.2.

Code Sequence 5.2: clock_event_device
7 s t a t i c s t r u c t c l o ck ev en t d ev i c e hpt c l ockevent = {
8 . name = ”avr32 ” ,

9 . f e a t u r e s = CLOCK EVT FEAT PERIODIC | CLOCK EVT FEAT ONESHOT,

10 . set mode = hpt set mode ,

11 . s e t n ex t ev en t = hpt next event ,

12 . s h i f t = 32 ,

13 } ;

Clock event device registration

The hpt_clockevent clock event source is registered in time_init() at boot
time by calling the hpt_enable() function given in Code Sequence 5.3. This
function determines the mult, min_delta_ns, and max_delta_ns fields of the

1h(igh)p(recision)t(imer)_clockevent.
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hpt_clockevent structure by using functions decreared by the clock event
framework. Finally, the clock event structure for AVR32 Linux is registered
by calling clockevents_register_device().

Code Sequence 5.3: hpt_enable()
14 i n t i n i t hpt enable ( void )

15 {
16 unsigned long hpt hz ;

17

18 hpt c l ockevent . cpumask = cpumask of cpu ( 0 ) ;

19

20 hpt hz = c l k g e t r a t e ( boot cpu data . c l k ) ;

21 hpt c l ockevent . mult = d i v s c ( hpt hz , NSEC PER SEC, 32 ) ;

22

23 hpt c l ockevent . max delta ns =

24 c l o ck ev en t de l t a2n s (0x7FFFFFFF, &hpt c lockevent ) ;

25

26 hpt c l ockevent . min de l ta ns =

27 c l o ck ev en t de l t a2n s (0xF , &hpt c lockevent ) ;

28

29 c l o c k e v e n t s r e g i s t e r d e v i c e (&hpt c lockevent ) ;

30

31 re turn 1 ;

32 }

During system boot is it not possible to use the high resolution timer func-
tionality. The initialization of the clock event framework, the clock source
framework and hrtimers itself has to be completed before the kernel can switch
to high resolution timers. Before hrtimers is initialized, the system runs in
periodic mode. Therefore, when calling clockevents_register_device() in
Code Sequence 5.3, the function hpt_clockevent->set_mode=hpt_set_mode()

is called to do necessary work to support periodic mode. The hpt_set_mode

function given in Code Sequence 5.4, the global cycles_per_jiffy variable is
initialized by using scaled mathematics. Then, the COMPARE system register is
set up for the first timer interrupt by calling the avr32_hpt_init() function.

Code Sequence 5.4: hpt_set_mode()
33 s t a t i c void hpt set mode (enum clock event mode mode ,

34 s t r u c t c l o ck ev en t d ev i c e ∗ evt )

35 {
36 unsigned long long de l t a ;

37 unsigned long mult , s h i f t ;

38

39 switch (mode){
40 case CLOCK EVT MODE PERIODIC:

41

42 s h i f t = hpt c l ockevent . s h i f t ;

43 mult = hpt c lockevent . mult ;

44
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45 {
46 de l t a = ( ( u in t64 t ) (NSEC PER SEC/HZ) ) ∗ hpt c l ockevent . mult ;

47 de l t a += hpt c lockevent . mult ;

48 de l t a >>= hpt c lockevent . s h i f t ;

49

50 c y c l e s p e r j i f f y = de l t a ;

51 }
52

53 av r 32 hp t i n i t ( avr32 hpt read ( ) ) ;

54

55 break ;

56

57 case CLOCK EVT MODE ONESHOT:

58 case CLOCK EVT MODE UNUSED:

59 case CLOCK EVT MODE SHUTDOWN:

60 case CLOCK EVT MODE RESUME:

61 break ;

62 }
63 }

The clock source and the clock event framework provide notification func-
tions which informs hrtimer about the timer-related hardware on the system.
Hrtimers validates the registered clock sources and clock event sources before
switching to one-shot mode, i.e. high resolution timers and/or dynamic ticks.

If a timer has its expiration time before the next interrupt is scheduled to
happen in one-shot mode, the event source which triggers the timer interrupt
has to be reprogrammed. Thus the timer is scheduled to run at its expiration
time. Hence, high resolution timers and dynamic ticks support are achieved.

On AVR32 Linux, the event source is reprogrammed with the hpt_next_event
() function given in Code Sequence 5.5.

Code Sequence 5.5: hpt_next_event()

64 s t a t i c i n t hpt next event ( unsigned long de l ta ,

65 s t r u c t c l o ck ev en t d ev i c e ∗ evt )

66 {
67 unsigned long cnt ;

68

69 cnt = sy s r eg r ead (COUNT) ;

70 cnt += de l t a ;

71 s y s r e g w r i t e (COMPARE, cnt ) ;

72

73 re turn ( ( long ) ( sy s r eg r ead (COUNT) − cnt ) > 0) ? −ETIME : 0 ;

74 }

Originally, the time_init() function initialized the cycles_per_jiffy vari-
able by using the clock source and confederated the COMPARE register to trigger
the first timer interrupt. Since this work has been moved to the hpt_set_mode()
function, the code has to be removed from timer_init(). However, as already
mentioned, AVR32 Linux clock event source is registered in time_init() by
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calling hpt_enable().

Code Sequence 5.6: time_init()
75 void i n i t t im e i n i t (void )

76 {
77 unsigned long mult , s h i f t , count hz ;

78 int r e t ;

79

80 count hz = c l k g e t r a t e ( boot cpu data . c l k ) ;

81 s h i f t = 16 ;

82 mult = c locksource hz2mul t ( count hz , s h i f t ) ;

83

84 {
85 u64 tmp ;

86

87 tmp = TICK NSEC;

88 tmp <<= s h i f t ;

89 tmp += mult / 2 ;

90 do div (tmp , mult ) ;

91

92 c y c l e s p e r j i f f y = tmp ;

93 }
94

95 /∗ This s e t s up the high p r e c i s i o n t imer f o r the f i r s t i n t e r r up t . ∗/

96 av r 32 hp t i n i t ( avr32 hpt read ( ) ) ;

97

98 hpt enable ( ) ;

99

100 r e t = s e tup i r q (0 , &t ime r i r q a c t i o n ) ;

101 i f ( r e t )

Timer interrupt

The clock event distribution provides generic functions which allows the associ-
ation of various clock event services such as jiffies tick, process accounting and
profiling to a clock event source. Therefore, such services must be removed from
the AVR32 Linux interrupt handler. However, the current timer interrupt must
still be acknowledged and reprogrammed. The

Code Sequence 5.7: timer_interrupt()
102 stat ic i r q r e t u r n t t ime r i n t e r r up t ( int i rq , void ∗ dev id )

103 {
104 unsigned i n t count ;

105

106 count = avr32 hpt read ( ) ;

107 avr32 t imer ack ( ) ;

108

109 wr i t e s e q l o c k (&xt ime lock ) ;

110 do t imer ( 1 ) ;
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111 wr i t e s equn lock (&xt ime lock ) ;

112

113 l o c a l t im e r i n t e r r u p t ( i rq , dev id ) ;

114 hpt c l ockevent . event hand le r (&hpt c l ockevent ) ;

115

116 return IRQ HANDLED;

117 }

Dynamic ticks

When the next event is more than one tick into the future, the idle tick is
stopped by calling tick_nohz_stop_sched_tick(). This function is either
called from the idle loop in cpu_idle() function defined in arch/avr/kernel

/process.c as shown in Code Sequence 5.8 or from irq_exit() when an idle
period was interrupted by an interrupt which did not cause a reschedule. The
tick_nohz_stop_sched_tick()] function restarts the idle tick when the pro-
cessor is woken up from idle.

The clock event functionality for dynamic ticks are available whether the
high resolution timer is enabled or not.

Code Sequence 5.8: cpu_idle()
118

119 void cpu i d l e (void )

120 {
121 while (1 ) {
122 t i c k noh z s t op s ch ed t i c k ( ) ;

123

124 while ( ! need resched ( ) )

125 cpu re l ax ( ) ;

126

127 t i c k n oh z r e s t a r t s c h e d t i c k ( ) ;

128 preempt enable no resched ( ) ;

129 schedu le ( ) ;

130 preempt d i sab le ( ) ;

131 }
132 }

Configuration

High resolution timers and dynamic ticks are added to the AVR32 Linux con-
figuration menu in arch/avr32/Kconfig. Figure 5.1 shows the high resolution
timer support and dynamic ticks option in the menuconfig screen.

Code Sequence 5.9: arch/avr32/Kconfig
133 menu ”System Type and f e a t u r e s ”

134

135 source ”ke rne l / time/Kconf ig ”

136
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137 c on f i g SUBARCH AVR32B

138 bool

Figure 5.1: Menuconfig.

The complete source code for high resolution timers and dynamic ticks im-
plementation is provided on the CD-ROM.



Chapter 6

Benchmarks

The capabilities of the AVR32 Linux high resolution timers and dynamic ticks
are demonstrated in this chapter. The timer latencies involved when using
POSIX timers are measured, and the proposed high resolution timers and dy-
namic ticks solution is compared with the standard AVR32 Linux kernel.

6.1 Setup

6.1.1 Hardware

All tests have been run on a AT32AP7000 which is based on a AVR32B revision
1 processor. The processor runs at 140.000 MHz.

The results of 2.6.16 Linux and 2.6.16-hrt5 are published in (Gleixner and
Niehaus, 2006). These results are gathered from a Pentium III 400MHz based
PC and used as reference to the results presented in this thesis.

6.1.2 Software

The 2.6.21-avr kernel referrers to a standard configured AVR32 2.6.21 Linux
kernel. The 2.6.21-avr-hrt1 referrers to a standard AVR32 2.6.21 Linux kernel
configured with high resolution timer and dynamic tick support. Appendix A
goes into details about the kernels and theirs configuration. Both kernels mount
its root file system over NFS at boot time.

The cyclictest utility is written by Thomas Gleixner to measure the timer
latencies involved in sleep and wake operation of highly prioritized real-time
threads. The utility is designed to test different user-space intervals timers and
sleep functions. In particular, the following functions have be used:

• POSIX interval timers

• POSIX clock_nanosleep()
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6.1.3 Test cases

The 2.6.21-avr and 2.6.21-avr-hrt1 Linux kernels have run through four test cases
based on the cyclictest program. Table 6.1 shows the test cases and theirs pa-
rameters. Loops denotes the number of test cycles in one test. cyclictest stops
once the number of loops have been reached. Interval denotes the expiration
time of the interval timer and the sleep function.

Table 6.1: Test cases and their properties.

Test Case Number POSIX timer function Interval Loops
1 timer_settime() 10000 10000
2 timer_settime() 500 100000
3 clock_nanosleep() 10000 10000
4 clock_nanosleep() 500 100000

The test for intervals less than the jiffy resolution have not been run on
2.6.21-avr Linux (nor 2.6.16 Linux). The test thread runs in all cases with
scheduling policy SCHED_FIFO and priority 80.

To test the real-time behaviour of the systems, the test cases are run with
and without load while measuring. Under load, the test cases are run together
with the Cache Calibrator1 tool. This program produces heavy cache pollutions
and causes thus high latency time while switching between applications.

6.2 Results

Table 6.2 through 6.5 show the results of the testes described in Section 6.1.
More results are presented in Appendix B. It is easily seen that the average
latencies are significant for the 2.6.21-avr-hrt1 compared to 2.6.21-avr1 for all
test cases. Hence, the purposed high resolution timers and dynaic ticks solu-
tion yields a lower latency than the standard AVR32 Linux kernel, and is an
improvement of the this version.

Table 6.2: Test case 1 with no load.

Kernel Minimum Maximum Average
2.6.21-avr 3650 5870 4690
2.6.21-avr-hrt1 103 301 133
2.6.16 21 4073 2098
2.6.16-hrt5 22 120 35

1http://monetdb.cwi.nl/Calibrator/
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Table 6.3: Test case 1 load.

Kernel Minimum Maximum Average
2.6.21-avr 2584 4822 3654
2.6.21-avr-hrt1 106 331 141
2.6.16 82 4271 2089
2.6.16-hrt5 31 458 53

Table 6.4: Test case 2 with no load.

Kernel Minimum Maximum Average
2.6.21-avr-hrt1 74 396 106
2.6.16-hrt5 8 119 22

Table 6.5: Test case 2 with no load.

Kernel Minimum Maximum Average
2.6.21-avr-hrt1 73 1888 360
2.6.16-hrt5 16 489 58



56 Benchmarks



Chapter 7

Discussion

The RT-preempt patch is at the time of this writing, still under heavy devel-
opment. The majority of the announcements, discussions and debates about
the RT-preempt patch (and other Linux features) happen on the Linux Kernel
Mailing List, or lkml for short. Most of the information concerning the RT-
preempt patch exists in this mailing list and is quite factional. The patch and
its logical changes have not been summarized in detail until article presented by
Rostedt and Hart (2007) at the Linux Symposium, ultimo June 2007.

Prior to the RT patches created against 2.6.22 Linux and later releases, the
patches were submitted in an ∼ 1.7MB single file as plain text. Hence, the patch
contains several logical changes in one file, and not broken into chunks, with each
chunk representing a logical change. The largest portion of the work with the
AVR32 real-time patch has been carried out by using investigating these single
files. Therefore, the preliminary work to see how the RT-preempt patch affected
the AVR32 architecture might have taken longer time than necessary.

The HRT patch, which is independently maintained, is made out of chunks
that represent logical changes. This made it easier to understand the patch, and
in turn, pinpoint the changes that is relevant for architecture-dependent code.
Further, the preliminary work before porting the patch to the AVR32 architec-
ture was more effective than in the RT-preempt patch case, because of papers
such as (Gleixner and Molnar, 2005) and (Gleixner and Niehaus, 2006).

The patches presented in this thesis is up to date as of AVR32 Linux kernel
version 2.6.21. The kernel is a moving target, and late in the process of this
thesis, Atmel released 2.6.22 AVR32 Linux which includes a real time clock
driver. The inclusion of the real time clock into the AVR32 timer management
makes the kernel to reject the AVR32 high resolution timers and dynamic ticks
patch. Nonetheless, the internals of patch are mature, and can without much
difficulty be adopted by higher release numbers than 2.6.21 AVR32 Linux.
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Chapter 8

Conclusion

The main objective of this thesis was to improve the real-time capabilities of
AVR32 Linux. This was done by implementing features from the RT-preempt
patch to AVR32 Linux. The patch includes three different features; fully pre-
emptible kernel, high resolution timers and dynamic ticks.

The fully preemptible kernel investigation identified the need of a more ad-
vanced interrupt controller for the AVR32 architecture. With the existing in-
terrupt controller, the current interrupt request cannot be masked individually.
When a hardware interrupt which is converted into a kernel thread triggers, the
interrupt is not and, therefore, triggers again. Threaded hard interrupts are a
prerequisite to implement a fully preemptible AVR32 kernel.

The timer specific code in AVR32 Linux is converted to fully support John
Stulz’s generic time-of-day and the clock events components. The clock event
source operates either in periodic or one-shot mode. The configuration of
AVR32 Linux is extended to include high resolution timers and dynamic ticks.
When high resolution timers is enabled, the clock event resolution is no longer
bounded to jiffies, but to the underlying hardware itself.

The benchmark results for the high resolution timers and dynamic ticks
implementaion for AVR32 show significant lower latencies for POSIX timers.

The real-time capabilities of the AVR32 Linux kernel has been imporved.
This thesis describes only the first steps towards a fully preemptible AVR32 Linux
kernel. However, the implementation considering high resolution timers and
dymanic ticks is made mature to be incorporated. Now, applications running
AVR32 Linux can utilize time driven and event driven events with microsecond
accuracy
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Chapter 9

Future Work

As always, heaps of future work remains. The most important work follows in
preferred order:

• The 2.6.22 AVR32 Linux version incorporates a Real Time Clock driver.
The clock and clock event sources in the AVR32 Linux timer related code
should utilize this driver.

• More code inspection are required to implement a fully preemptible kernel
implementation for AVR32 Linux. The current implementation is prelim-
inary.

• The AVR32 architecture should provide a more advanced interrupt con-
troller. The controller must provide the ability to mask individual inter-
rupt. This is required to implement threaded hard interrupts. This is a
comprehensive work that will require considerable effort.
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Appendix A

AVR32 Linux kernel

A.1 2.6.21-avr

$ wget

http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.21.tar.bz2

$ tar xfj linux-2.6.21.tar.bz2

$ cd linux-2.6.21

$ make ARCH=avr32 CROSS\_COMPILE=avr32-linux- defconfig

$ make ARCH=avr32 CROSS\_COMPILE=avr32-linux-

A.2 2.6.21-avr-hrt-dynticks

$ wget

http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.21.tar.bz2

$ tar xfj linux-2.6.21.tar.bz2

$ tar hrt-dynticks-patches.tar.bz2

$ cd linux-2.6.21

$ for patch in ‘cat ../patches/series‘; do

>patch -p1 < ../patches/$patch;

>done

$ make ARCH=avr32 CROSS\_COMPILE=avr32-linux- defconfig

$ make ARCH=avr32 CROSS\_COMPILE=avr32-linux-

A.3 2.6.21-avr-rt

$ wget

http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.21.tar.bz2

$ tar xfj linux-2.6.21.tar.bz2

$ tar rt-patches.tar.bz2

$ wget

http://people.redhat.com/mingo/realtime-preempt/older/patch-2.6.21-rt8
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68 AVR32 Linux kernel

$ cd linux-2.6.21

$ patch -p1 < ../patch-2.6.21-rt8

$ for patch in ‘cat ../patches/series‘; do

>patch -p1 < ../patches/$patch;

>done

$ make ARCH=avr32 CROSS\_COMPILE=avr32-linux- defconfig

$ make ARCH=avr32 CROSS\_COMPILE=avr32-linux-



Appendix B

Benchmark results

Table B.1: Test case 3 with no load.

Kernel Minimum Maximum Average
2.6.21-avr 690 2717 1694
2.6.21-avr-hrt1 30 129 64
2.6.16 24 4043 1989
2.6.16-hrt5 12 94 20

Table B.2: Test case 3 with load.

Kernel Minimum Maximum Average
2.6.21-avr 2919 5065 3961
2.6.21-avr-hrt1 24 256 57
2.6.16 55 4280 2198
2.6.16-hrt5 11 458 55

Table B.3: Test case 4 with no load.

Kernel Minimum Maximum Average
2.6.21-avr-hrt1 19 292 31
2.6.16-hrt5 5 108 24
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Table B.4: Test case 4 with no load.

Kernel Minimum Maximum Average
2.6.21-avr-hrt1 20 268 35
2.6.16-hrt5 9 684 56



Appendix C

CD-ROM Content

• ./avr32-hres-dynticks

– avr32-prepare-for-dyntick.patch

– avr32-use-gtod-persistent-clock-support.patch

– clockevents-driver-for-avr32.patch

– gtod-clocksource-avr32.patch

– gtod-clocksource-avr32.patch.patch

– hrt-dynticks-patches.tar.bz2

– hrtimer-hres-avr32.patch

– remove-useless-code-in-time-c.patch

– version.patch

• ./avr32-rt-preempt

– avr32-realtime-preempt.patch

– rt-patches.tar.bz2

• ./benchmark

– .config

– /cyclictest

∗ Makefile
∗ cyclictest.c
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