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ABSTRACT 

Numerical methods are widely used in seismic exploration to simulate wave propagation, 

however the algorithms are based on various assumptions. The accuracy of numerical 

simulations is of particular interest in case of realistic geological setups. The direct 

comparison of numerical results can have limitations, and an alternative approach can be 

the comparison of synthetic results with experimental data, obtained for a small-scale 

physical model in laboratory conditions. Laboratory experiments are repeatable and 

provide high-quality data for a known configuration. The goal of this work is to provide a 

possible workflow to adapt the numerical simulations and the laboratory experiments to 

each other, such that the two can be easily compared with high accuracy. The model is 

immersed in a water tank and a conventional pulse-echo technique is used to collect 

reflection data in both zero-offset and offset configurations. We use a spectral-element 

method for the numerical modeling. The model geometry is implemented using a non-

structured mesh and the computational cost can be optimized using larger elements and 

higher-order basis functions. The real source transducer characteristics are implemented 

based on a new approach: laboratory characterization of the impulse response, followed 

by an inversion step to obtain a numerically-equivalent source. The comparison of the 

zero-offset synthetic and laboratory results reveals an excellent fit in terms of arrival time, 

phase and amplitude. Minor amplitude mismatches may be attributed to the noise recorded 

in the laboratory data, and to the possible inaccuracy of the proposed source 

implementation. Comparison of simulated and laboratory offset traces also exhibits a good 

fit in general, but with significantly less accuracy for some arrivals than in the zero-offset 

case. This can be mainly attributed to the inaccuracies of the transducer positions during 

the laboratory measurements combined with the strong topography of the model. 
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INTRODUCTION 

Numerical simulation of seismic wave propagation is widely used for environmental 

and industrial applications for subsurface evaluation in seismic exploration (e.g., for 

survey design, data processing and interpretation) (Robertsson et al., 2007). Simulation is 

also a core tool of seismic imaging and inversion (Virieux et al., 2011). Conventional 

methods (e.g., ray-tracing, Kirchhoff integral and finite-difference methods), widely used 

in seismic exploration, are efficient to simulate realistic wavefields in environments with 

simple structures and slowly-varying material properties. However, difficulties arise for 

environments with large and rapid structural changes, due to shadow zones and (multiple) 

diffractions. Thus, different methods have been developed to improve seismic modeling 

in realistic geological environments, including steeply-dipping faults, curved interfaces, 

salt bodies, etc (e.g., Mittet, 2017). Before real applications, new methods are typically 

tested against other numerical methods using synthetic configurations. Several projects 

have focused on the comparison and validation of different numerical results (e.g., Igel et 

al., 2000; Moczo et al., 2006; Fehler & Kehiler, 2011; Chaljub et al., 2015). Since each 

numerical algorithm is based on mathematical or physical assumptions, their direct 

comparison for realistic and complex models can have limitations, as it can be difficult to 

determine the one that gives the best approximation of a physically unknown solution. 

Therefore there is a strong interest in using physical datasets to benchmark synthetic 

results. However, since in real life the subsurface of the Earth is never accurately known, 

the synthetic results cannot be directly compared with any seismic or seismological dataset 

from real measurements. 

An alternative approach to test and validate the performance of numerical methods in 

realistic cases can be the comparison of synthetic results with experimental data, obtained 
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for a small-scale physical model in laboratory conditions. This implicitly assumes that the 

scaled physical mechanisms are identical to those at seismic scale (Ebrom & MacDonald, 

1994), and this assumption is fulfilled in case of the linear wave equation. Considered as 

obsolete in the 1990's – essentially due to the drastic increase in computing capacities -, 

laboratory experiments have recently been re-introduced into the ideas-to-applications 

pipeline. Laboratory can be considered as a halfway house between numerical modeling 

and field observations. Indeed, laboratory experiments are repeatable, more controllable 

than real seismic surveys, versatile in terms of acquisition setup and provide high-quality 

data for a known configuration. Furthermore, similarly to real seismic acquisitions and 

unlike some numerical data, laboratory measurements contain random and signal-

generated noise, multiples, mode conversions, and uncertainties due to position 

inaccuracies. As these sources of noise and uncertainties can be better assessed than in 

case of field datasets, laboratory experiments also provide a higher fidelity data than real 

seismic surveys. Therefore, laboratory experiments are a valuable tool to validate 

numerical simulations against real physical datasets. 

Initially, small-scale physical modeling was extensively developed for a better 

understanding of wave propagation phenomena (e.g., Wapenaar & Berkhout, 1987; Pant 

et al., 1992) and for the validation of theoretical predictions (Favretto-Anrès & Rabau, 

1997). Laboratory experiments are still used nowadays to investigate physics that is not 

sufficiently understood to be numerically modeled with confidence (Cooper et al., 2010; 

Stewart et al., 2013; Ekanem et al., 2013; Xu et al., 2016; Chang et al., 2017). Data from 

laboratory experiments are also used as input to inverse problems (Pratt, 1999; Favretto-

Anrès & Sessarego, 1999; Bretaudeau et al., 2013; Chai et al., 2016), to test new data 

processing algorithms (Campman et al., 2005), and in time-lapse 3D studies (Sherlock et 

al., 2000). More recently, small-scale modeling approaches have been developed as tools 
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to validate numerical modeling and seismic imaging methods in the context of onshore 

and offshore seismics (Bretaudeau et al., 2011; Tantsereva et al., 2014; Favretto-Cristini et 

al., 2014). In particular, Tantsereva et al. (2014) evaluated the ability of a 3D discretized 

Kirchhoff integral method (DKIM) to accurately simulate complex diffractions using a 

zero-offset laboratory dataset, measured for a small-scale model with strong topography, 

immersed in a water tank. Comparisons of numerical and laboratory datasets showed that 

the DKIM could correctly reproduce the wavefield, except in the vicinity of secondary 

shadow boundaries created by the interaction of the edges of the topographic structures. 

As a follow up of the work of Tantsereva et al. (2014), Favretto-Cristini et al. (2017) 

quantitatively analyzed the effect of multiple scattering and surface curvature on the 

wavefield, in order to define the cases where these effects may be neglected in the 

numerical modeling without a significant loss of accuracy. These works clearly show the 

importance of laboratory datasets as part of the benchmarking options for numerical 

algorithms. 

An efficient benchmarking procedure requires a carefully chosen and jointly-adapted 

approach to both the laboratory experiments and the numerical modeling. On the one hand, 

the numerical tools must be adapted to the experimental configuration (e.g., implementing 

the real source characteristics, material properties and acquisition conditions). On the other 

hand, the laboratory experiments have to be carried out in accordance with the capabilities 

of the numerical tools (e.g., choosing the acquisition geometry such that the future 

computational cost is the lowest possible). In addition, experimental uncertainties must be 

identified, in order to be subsequently minimized as much as possible, and numerical 

simulations may also contribute to it. 

The goal of this paper is to address the above challenges by providing a possible way 

to adapt both the numerical simulations and the laboratory experiments such that the two 
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can be easily compared with high accuracy. To achieve this goal, we resorted to spectral-

element modeling (SEM) as a full-wave method, which is not based on strong underlying 

assumptions (such as for example the DKIM). SEM also becomes more and more popular 

with time in the seismic community, since it is well-suited for high-performance 

computing (Komatitsch et al., 2003). As it combines the accuracy of a pseudo-spectral 

method with the flexibility of a finite-element method, SEM allows the handling of 

complex geometries by using a non-structured mesh and different element sizes in the 

computational domain (Komatitsch & Tromp, 2002; Oliviera & Seriani, 2011). Since the 

necessary trade-off between accuracy and computational cost is usually sought-after, we 

are also interested in the ability of SEM to accurately simulate complex 3D wavefields 

including (multiple) diffractions at the lowest possible computational and man-hour cost. 

Few papers are devoted to the comparison of SEM with other numerical methods (e.g., 

Capdeville et al., 2002, 2003; Moczo et al., 2010; Chaljub et al., 2015; De Basabe & Sen, 

2015). Pageot et al. (2017) recently compared laboratory and synthetic datasets in an 

onshore configuration to investigate surface wave propagation and amplitude 

transformation between 2D and 3D. But to the best of our knowledge, no paper uses 

laboratory experiments as reference datasets for comparison in offshore configuration. 

In this paper, we thus compare 3D spectral-element simulations with laboratory 

measurements in both 3D zero-offset and 3D offset offshore reflection configurations for 

the so-called Marseille-Benchie model. To our knowledge, it is the first time that such a 

comparison for the general offset case is presented. The Marseille-Benchie model is based 

on French's model (French, 1974) and also includes additional structures with steep flanks, 

sharp edges, corners and curved interfaces (Tantsereva et al., 2014). It enhances multiple 

reflections and diffractions, as well as shadow zones and interactions between different 

structures. This complexity provides a significant challenge to any numerical method to 
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reproduce the wavefield. 

The paper is organized as the following. Section ”Small-scale seismic modeling” 

briefly describes the laboratory experiments, i.e., the small-scale model and the 

experimental setup. The laboratory datasets obtained in zero-offset and offset 

configurations are also presented, together with their physical interpretations. 

Section ”Numerical modeling” is devoted to a short description of SEM. More importantly, 

we also discuss in details the input data/parameters, namely the model geometry, the 

material properties, and the characteristics of the source and receiver transducers. In ”Data 

comparisons”, we compare the laboratory and numerical datasets, and then discuss the 

results in ”Discussion”. 
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SMALL-SCALE SEISMIC MODELING 

We carried out several laboratory experiments in a water tank, where wave propagation 

occurs in small-scale conditions. A scaling factor of 1:20 000 is used to scale down the 

real-life dimensions of typical seismic setups to the laboratory scale. Hence, an 

experimental frequency of 500 kHz corresponds to a seismic frequency of 25 Hz and an 

experimental distance of 1 mm corresponds to 20 m at seismic scale. Material properties, 

such as velocity, density and attenuation are not affected directly by the scaling. 

 

Small-scale geological model 

The Marseille-Benchie model contains various complex topographic features, such as a 

dome, a truncated dome, a truncated pyramid and two flat parts separated by a ramp (Figure 

1). The model is made of polyvinyl chloride (PVC) and has a size of 600 mm x 400 mm, 

corresponding to 12 km x 8 km at seismic scale. Its thickness varies between 30 and 70 

mm, depending on the geometry. The measured material properties of the PVC are 

Vp=2220±10 m/s, Vs=1050±10 m/s, ρ=1412±17 kg/m3. PVC is considered to be 

homogeneous and isotropic for the frequency range of interest of this work (250-650 kHz).  

For example the P- and S-wave velocities were found to be quasi-constant for this 

frequency range, suggesting a negligible dispersion. Attenuation was measured using the 

amplitude of transmitted monochromatic sine waves at different frequencies through 

different PVC samples of varying thickness. Following the measurements, the attenuation 

can be transformed into quality factors: 30 < Qp < 60 and 27 < Qs < 31 for P- and S-waves, 

respectively. As that is known, the measurement of attenuation is one of the most difficult 

laboratory tasks among all the material property characterizations. According to the 
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measurements and accounting for the uncertainties of this parameter, we consider the PVC 

to have the same quality factor between 250-650 kHz which is in good agreement with the 

literature (Favretto-Anrès & Rabau, 1997). For further details on the model, see also 

Tantsereva et al. (2014). 

 

Experimental setup 

Since our work is concerned with offshore measurements, the model was immersed in 

a water tank equipped with a computer-controlled acquisition system that allows for 

accurate positioning of the source and receiver transducers. The water temperature was 

continuously monitored during the measurements, providing accurate knowledge of the 

speed of sound waves in water (usually around 1480 m/s). Water was considered to have a 

density of 1000 kg/m3 and negligible attenuation. 

 

Figure 1. Illustration of the small-scale seismic experiments performed in the water tank. 

The Marseille-Benchie model contains a dome (a), a truncated pyramid (b), a truncated 
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dome (c), a ramp (d) and an elevated plateau (e). The model is illuminated by a 

piezoelectric transducer (on the left). In offset configuration, the wavefield is recorded by 

a hydrophone (on the right). 

 

A conventional pulse-echo technique was used to collect reflection data in both zero-

offset and offset configurations (Figure 1). Zero-offset measurements were performed by 

using a custom-made Imasonic® transducer as both the source and the receiver. It has a 

diameter of 3 mm and was located 180±0.5 mm above the flat part of the model 

(corresponding to 3.6 km at seismic scale). The source signal generated by this transducer 

and its associated frequency spectrum for the frequency range of interest of this work are 

shown in Figure 2. The transducer has a dominant frequency of 500 kHz and a broad-beam 

radiation pattern, as the width of the main lobe is 35° at -3 dB. This radiation pattern allows 

for a large area to be illuminated and therefore more 3D effects to be captured, e.g., 

interaction of waves with multiple topographic features and multiple wave scattering 

(Favretto-Cristini et al., 2017). 

Offset measurements were performed by using two transducers, namely the above-

mentioned transducer as the source and an omnidirectional Teledyn Reson® hydrophone 

as the receiver. Both transducers were located 150±0.5 mm above the flat part of the model. 

The hydrophone has an active diameter of 4 mm and its sensitivity is constant between 50-

800 kHz. The source can be tilted with various angles to illuminate different parts of the 

model or to enhance some particular effects, such as shadow zones. 
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Figure 2. Top: source signal (filtered between 250-650 kHz) generated by the source 

transducer and recorded by the hydrophone in opposite position, bottom: associated 

frequency amplitude spectrum. 
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Laboratory datasets 

We performed acquisitions along x-lines (Figure 1) with a sampling distance of 0.5 mm 

(corresponding to 10 m at seismic scale). The collected dataset thus consists of numerous 

parallel profiles, providing a set of reflection data for a dense grid (with a receiver spacing 

of 0.5 mm in both directions). In order to enhance the signal-to-noise ratio, 256 acquisitions 

were performed at each grid point and then the individual registrations were stacked. The 

speed of sound in water was 1485±0.1 m/s and 1484±0.1 m/s for zero-offset and offset 

measurements, respectively, due to the different water temperatures during the two 

measurements. The tilt angle of the source transducer was 39° for the offset measurements. 

For the sake of brevity, we focus only on one line in this paper, located above the full 

dome, the truncated pyramid and the ramp (red line in Figure 3). This acquisition line 

provides complex diffraction effects, multiple reflections and arrivals corresponding to 

curved interfaces. Figure 4 shows the laboratory zero-offset dataset for the study line, 

overlaid by the interpretation of the recorded events. For the sake of clarity, only the main 

events are shown in Figure 4. Events a) and c) represent the arrivals related to the top 

surface of the PVC, corresponding to the pyramid and the dome, and to the flat parts, 

respectively. Event a) mainly consists of reflections (see positions between 90-115 mm for 

the pyramid and 95-410 mm for the dome). There are also some diffraction hyperbolas 

corresponding to the edges of the top surface of the pyramid, for positions below 90 mm 

and above 115 mm. Moreover due to the angle of the truncation, there are two smaller 

hyperbolas in the center of the pyramid, partly overlapping with the reflections from the 

top flat surface of the object. Similarly to event a), event c) mainly consists of reflections, 

as well as some diffraction hyperbolas related to the junctions of the the pyramid and the 

dome with the flat part. Events b) and d) correspond to reflections from the bottom of the 
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PVC, below the pyramid and the dome, and below the flat part, respectively. Since Figure 

4 is a time section, a classical velocity pull-up effect can be seen in the different arrival 

times of events b) and d). Indeed, depending on the overburden, reflections from the same 

horizontal bottom surface of the PVC arrive at different times. Event e) represents 

reflections from the small truncated dome (Figure 1). This out-of-plane arrival, which is 

due to the broad-beam radiation pattern of the source transducer, was not considered during 

the simulations. Event f) shows reflections from the ramp, which was partly accounted for 

during the simulations. Note that the diffractions on the right side of the section after 200 

μs and for positions between 300-420 mm, are related to the side of the model. 

Figure 5 shows the laboratory offset dataset (i.e. a common shot gather) for the study 

line together with the interpretation of the main events. Event a) shows the direct arrival 

from the source and event b) the reflections from the dome. All the interpretations marked 

as event c) correspond to reflections/diffractions from the pyramid. Event d) illustrates the 

reflections from the flat part of the PVC. Event e) is related to reflections from the small 

truncated dome and event f) to reflections from the ramp. Event g) is not related to the 

model, but to spurious arrivals from the acquisition system (not considered during the 

simulations). 

 

Figure 3. Part of the model used for the numerical simulations with a coarse mesh. The 

red line denotes the position of the study line discussed in the paper. The yellow asterisk 

shows the source position for the offset study line. The different colors show the 

subdomains necessary for the non-structured meshing. 
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Figure 4. Cross-section of the laboratory zero-offset dataset, corresponding to the red line 

in Figure 3. The data was filtered between 250-650 kHz. Annotated events: (a) & (b) top 

& bottom of the pyramid and the dome, (c) & (d) top & bottom of the flat part, (e) truncated 

dome, (f) ramp. The vertical lines denote the zero-offset traces chosen for comparison. 
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Figure 5. Cross-section of the laboratory offset dataset (i.e. common shot gather), 

corresponding to the red line in Figure 3. The data was filtered between 250-650 kHz. 

Annotated events: (a) direct arrival, (b) dome, (c) pyramid, (d) flat part, (e) truncated 

dome, (f) ramp, (g) spurious reflection from the acquisition system. The source position is 

shown in Figure 3 with the yellow asterisk. The vertical line denotes the offset-trace chosen 

for comparisons. 
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NUMERICAL MODELING 

We used a spectral-element method (SEM) for the numerical modeling of the 

experiments. Following a brief recall of the method, we discuss the strategy used to mesh 

the model geometry, the numerical implementation of the real transducer characteristics, 

as well as the preliminary numerical calibration of the material properties. 

Recall of the spectral-element method 

Here we focus only on some of the most important features of the method, and we refer 

the reader to Komatitsch & Vilotte (1998), Fichtner (2010) or Peter et al. (2011) for more 

details. 

The strong form of the wave equation for viscoelastic materials is described as 

ρ𝜕𝑡
2𝑢 = 𝛻 ⋅ σ + 𝑓(1) 

where ρ denotes the mass density, u=u(x,t) the displacement field, x the spatial coordinates, 

t the time, σ the stress tensor and f the source term. The source term for viscoelastic 

materials can represent for example a point source: 

𝑓 = −𝐷 ⋅ 𝛻δ(𝑥 − 𝑥𝑠)𝑆(𝑡)(2) 

where D denotes the moment tensor, xs the source position, δ the Dirac delta distribution 

and S(t) the source wavelet. Under the assumption of small perturbations, the stress tensor 

σ is linearly related to the displacement field through the constitutive relationship (Hooke's 

law): 

σ = 𝑐: 𝛻𝑢(3) 

where c denotes the stiffness tensor, describing the elastic properties of the material. Since 

the Marseille-Benchie model is made of a viscoelastic material, equation 3 has to be 

modified such that the stress is determined by the entire strain history: 
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σ(𝑡) = ∫
𝑡

−∞
𝜕𝑡𝑐(𝑡 − 𝑡′): 𝛻𝑢(𝑡′)𝑑𝑡′(4) 

The technique of Liu et al. (1976) is used to approximate the absorption based on a set 

of three Zener standard linear solids. This standard approach usually assumes that the 

quality factor Q does not depend on the frequency. This assumption is confirmed by our 

laboratory measurements, which show the same Q factor for the PVC used in the model 

when measured between 250-650 kHz (see section “Small-scale geological model”). In 

practice, the implementation of the Zener model requires fitting Q in the frequency range 

of interest by using a set of relaxation mechanisms (relaxation times represented by points 

in the frequency range, and their associated weights). A linear approach can be used by 

setting the optimization points at given frequencies in the frequency range of interest and 

then optimizing the fit for the weights (Emmerich & Korn, 1987). However, this approach 

does not ensure the positivity of the weights and thus the decay of the total energy. 

An alternative approach is introduced by Blanc et al. (2016) to ensure that the weights 

are always positive and their non-linear optimization is also more accurate in terms of 

fitting the constant Q approximation in the frequency range of interest. The non-linearity 

means that both the points and the weights are optimized to obtain a better fit of Q in the 

frequency range of interest. We use this approach for the simulations presented in this 

work. 

SEM uses the weak form of the equations, which can be obtained by multiplying 

equation 1 with an arbitrary test function w and then integrating by parts over the total 

volume of the model Ω: 

∫
Ω

ρ𝑤 ⋅ 𝜕𝑡
2𝑢𝑑3𝑥 = ∫ 𝑛̂

𝜕Ω
⋅ σ ⋅ 𝑤𝑑2𝑥 − ∫

Ω
𝛻𝑤: σ𝑑3𝑥 +𝑀:𝛻𝑤(𝑥𝑠)𝑆(𝑡)(5) 

Equation 5 can be reformulated as: 

𝑀𝑢̈(𝑡) + 𝐾𝑢(𝑡) = 𝑓(𝑡)(6) 
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where M denotes the mass matrix and K the stiffness matrix. In SEM, the computational 

cost is optimized by combining high-degree Lagrange interpolants to represent the 

wavefield and Gauss-Lobatto-Legendre (GLL) quadrature to compute the integrals 

involved (Komatitsch & Vilotte, 1998). This combination leads to a perfectly diagonal 

mass matrix in equation 6, which then enables the use of an explicit time scheme that can 

be efficiently parallelized (Komatitsch et al., 2003; Carrington et al., 2008; Vos et al., 

2010). On the one hand, SEM is efficient in handling complex geometries and fluid-solid 

coupling. On the other hand, the standard GLL quadrature requires a hexahedral mesh in 

3D, which can be challenging to obtain in case of a non-structured mesh for realistic 

geological setups. 

Considering only a part of the full physical domain results in the need for artificial 

boundaries in the simulations. In order to avoid spurious reflections from these boundaries, 

we use a perfectly matched layer (PML) technique (Komatitsch & Tromp, 2003; Festa et 

al., 2005; Kristek et al., 2009). As SEM uses the weak form of the wave equation, the PML 

equations have singularities, which need to be explicitly removed (Xie et al., 2016). 

In our work, we used Specfem3D-Cartesian, an open-source spectral-element software 

package (Komatitsch & Vilotte, 1998), with explicit second-order Newmark time stepping 

(Hughes, 1987). 

 

Meshing 

Creating a non-structured hexahedral mesh for a complex geometry is a challenging and 

lengthy task (Shepherd & Johnson, 2008; Staten et al., 2010). We used Cubit/Trelis® 

(Blacker, 1994) to mesh the model. In case of a non-structured mesh, we need to keep in 

mind the future computational cost and the accuracy by considering three points. Firstly, 
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the element size must be small enough to accurately model the highest frequencies to be 

considered. Secondly, the size of the different elements in one material should be as equal 

as possible  (depending on the geometry) to avoid too small elements. This is important 

because smaller elements require smaller time steps (i.e., higher computational cost) and 

more memory. Finally, one needs to avoid creating too distorted/elongated elements, which 

could result in meshes of poor quality or even containing elements with negative Jacobians, 

making the simulation unstable. Since the model has a complex overall geometry, fully 

automatic hexahedral meshing algorithms could not be used. Our solution was to cut the 

domain into several subdomains, which were easier to handle for the meshing algorithms 

(Figure 3). The challenge of the task was to find the order in which the individual 

subdomains had to be meshed, such that the entire computational domain could be meshed 

at the end. Due to these difficulties - and also to reduce the computational cost -, we 

considered only a part of the full model for the numerical simulations (Figure 3). As a 

result, the truncated dome was excluded from the simulations, as this object proved to be 

too complex to be meshed, mainly due to its small dimensions combined with sharp edges 

and narrow corners. With our decomposition strategy, we first obtained a mesh containing 

about 15.6 million elements, including the water layer above the PVC. Figure 6 shows a 

typical distribution of the element size for the model with the applied decomposition and 

meshing strategy. The maximum edge length is about four times bigger than the smallest 

one, being about 1.6 and 0.4 mm, respectively. It is important to note that the accuracy of 

the spectral-element simulations is not directly constrained by the element size, but rather 

by the number of GLL points per wavelength. The initial meshing strategy was designed 

for 4th order polynomial basis functions, requiring 5 GLL points per wavelength, which is 

approximately 5 GLL points per element (Mulder, 1999). Considering the minimum 

velocity of the model  - namely, 1050 m/s for the S-waves in PVC – and the maximum 
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target frequency – namely, 650 kHz –, the goal was to have all the edge lengths below 1.6 

mm. We present an optimized meshing strategy in the Appendix, which allowed us to 

reduce the number of elements to about 1.4 million and the computational cost by a factor 

of 4 to 6. 

 

Figure 6. Distribution of the element size of the mesh for the part shown in Figure 3. 

 

Numerical implementation of the real transducer characteristics 

One of the most important task in our work was to accurately implement the real 

characteristics of the transducers in the numerical simulations. Since it is omnidirectional 

and has a frequency-independent sensitivity, the Teledyn Reson® hydrophone (used as the 

receiver for offset measurements) was implemented as a point receiver. However, the 

Imasonic® source transducer has a unique radiation pattern that cannot be described by the 

classical analytical formulation of Zemanek (1971) or by an approximate radiation pattern 

valid only for the dominant frequency (Tantsereva et al., 2014). The latter does not provide 
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a good solution, as other frequencies also contribute to the radiation pattern. Therefore, we 

propose a new, two-step approach to implement the real transducer characteristics in 

numerical simulations, accounting for all frequencies. The procedure consists of the 

laboratory characterization of the source followed by an inversion step in order to obtain a 

numerically-equivalent source. 

The characterization of the radiation pattern of the source transducer was performed in 

a water tank. The source transducer was connected to a pulse generator and kept fixed, 

while the hydrophone was moved around the source to record the impulse response of the 

source at every 0.2°, covering an angle range of 200° at a constant distance of 259 mm 

(Figure 7). The recorded dataset was the input for the subsequent inversion step. Here, we 

need to distinguish the procedures to obtain the numerically-equivalent source in zero-

offset and offset configurations, as they require a slightly different approach (Figure 8). 

We first introduce the procedure for the offset case, and the differences for the zero-offset 

case are discussed afterwards. 

Figure 7. Schematic diagrams of laboratory characterization of the source transducer 

using the source and receiver transducers (left) and the source transducer illuminating the 

air-water interface at normal incidence (right). 
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Figure 8. Workflow of the procedures used to implement the numerical equivalent of the 

real source transducer in offset and zero-offset configurations. 

 

As most of the numerical tools can use point sources, we built an equivalent disk source 

of several point sources. This approach is based on the theory of wave superposition 

(Koopmann et al., 1989). The disk is described with three parameters: thickness, radius, 

and the number of point sources distributed on the surface. The different point sources are 

independent, i.e., they can have any arbitrary (smooth) source signal and are constrained 

only by the measured dataset and the inversion process. The goal of the inversion was to 

determine the source signal of each point source, such that the resulting overall source 

signal of the whole equivalent source is the same as the one measured at each angle. The 

initial guess for each point source was a constant zero pressure, and the cost function was 

computed using the L2-norm : 

Φ(𝑘) = ∑ ∑𝑗 (𝑚𝑖𝑗 − 𝑐𝑖𝑗)
2

𝑖 (7) 

where Φ(k) denotes the cost function after the kth iteration, and mij and cij are the recorded 

and the calculated impulse responses at the ith time sample and jth hydrophone position, 

respectively. During the inversion step, some parameters, namely the radius of the 
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equivalent disk, the number of point sources distributed on the disk, the number of layers 

in the disk, and the number of iterations were tested to find the best fit with the measured 

data. We found that a radius of 3 mm with 253 point sources distributed on only one disk 

layer gives the best fit between the measured and the inverted radiation patterns (Figure 9). 

Using more than 10 000 iterations did not result in any significant change in the results. 

The comparison of simulated traces using the inverted equivalent source with the measured 

traces shows an angle dependency in the goodness of fit (Figure 9).  Indeed, the main lobe 

of the radiation pattern (corresponding to ±30° around the center of the transducer) is 

accurately recovered. For example, the correlation coefficient between the measured and 

simulated traces at 0° and 20° are 0.99 and 0.98, respectively (Figure 10). However, outside 

of the range of ±30°, the goodness of fit drastically decreases with increasing angle from 

the center of the transducer (Figure 9). For example the correlation coefficient between 

measured and simulated traces at 60° is 0.64 (Figure 10). Therefore, the secondary lobes 

of the real radiation pattern are less accurately recovered. This can be explained by the fact 

that the recorded signals corresponding to the secondary lobes have far less energy than 

those of the main lobe (less than -20 dB). Hence they can be overshadowed by the noise 

recorded in the laboratory data. 
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Figure 9. Comparison of the measured (blue) and inverted (red) radiation patterns of the 

transducer in offset configuration. The amplitude is maximal opposite to the transducer 

(0°). 

Figure 10. Comparison of the measured traces (blue) with the simulated traces (red), using 

the inverted equivalent source, at different angles. The correlation coefficients for the 

corresponding traces are shown in the top right corner of each panel. 
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The procedure to obtain the numerically-equivalent source in the zero-offset 

configuration is quite similar to the previous one, but requires a deconvolution process 

before the inversion step (Figure 8). This is due to the fact that for zero-offset 

measurements the same source transducer is used twice (first as the source, and then as the 

receiver). Therefore an extra measurement is needed, using only the source transducer to 

measure the reflected wavefield from the water-air interface at normal incidence (at a 

distance of half of 259 mm). The deconvolution process is done in the frequency domain 

after a Fourier transform of all the recorded signals. Let us denote the laboratory trace 

recorded by the hydrophone opposite to the source transducer as trace #1 (Figure 7), and 

the trace recorded by the source transducer corresponding to the reflected wavefield from 

the water-air interface at normal incidence as trace #2 (Figure 7). The process can be 

summarized as: 

- Step I: note that trace #2 is the square of the source transfer function. Therefore the 

square root of trace #2 gives the source transfer function at 0°, i.e., in the opposite position 

to the source, 

- Step II: since the hydrophone is omnidirectional, the receiver transfer function is the 

same at each angle α. Therefore divide trace #1 by the source transfer function (Step I) to 

determine the receiver transfer function (𝑅(ω)), 

- Step III: divide all the traces recorded by the hydrophone with the receiver transfer 

function (Step II) to get𝑆α(ω)for each angle α (deconvolution in time domain), 

- Step IV: take the square of𝑆α(ω)for each α to obtain the zero-offset transfer function 

of the source transducer at each angle, 

- Step V: inverse Fourier transform all the obtained traces to the time domain. 

The dataset derived using this deconvolution process is the input to the inversion 
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process, which is the same as described above for the general offset case. According to our 

tests, the best fit between the measured and the inverted radiation patterns can be obtained 

with a disk radius of 6 mm, using 253 point sources and only one disk layer. Similarly to 

the offset case, using more than 10 000 iterations did not provide better results. The angle 

dependency in the goodness of fit is also valid for the zero-offset case. However, the range 

of the accurate fit is broader (about ±35° around the center of the transducer). This is due 

to the fact that (relatively) more energy is focused in the central beam in this configuration, 

thus the outer region (with lower signal-to-noise ratio) has less influence on the inversion 

of the main lobe. 

Numerical calibration of material properties 

Since the characterization of material samples yields a range of values for each 

measured property, an initial calibration was necessary to find the values to be used for the 

final simulations. In order to have the least geometrical effect on the calibration, a test point 

above the flat part of the model was chosen (black cross in Figure 11), far from the sides 

of the model to avoid edge effects as much as possible. For this point the laboratory trace 

was considered to be the reference and the following properties were tested during the 

calibration simulations: velocity and Q factors for both P- and S-waves for the PVC. The 

densities of PVC and water, and the velocity of P-waves in water were considered to be 

known. 

We note here that the investigated parameters have a combined effect on the amplitude, 

phase and arrival times, so the result of this calibration provides one possible solution in 

the parameter-space. First the velocities of P- and S-waves for the PVC were calibrated, 

then all the remaining differences between the reference laboratory trace and the simulated 

trace were attributed to Qp and Qs. 
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The resulting material parameters from the calibration are the following: Vp = 2260 m/s, 

Vs = 1050 m/s,  ρ = 1412 kg/m3, Qp = 28.7 and Qs = 26. 

 

Figure 11. Comparison of zero-offset laboratory trace with synthetic results for the test 

point to calibrate the material properties before the final simulations. The position of the 

test point is shown with the black cross. 
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DATA COMPARISONS 

Comparison of zero-offset data 

Here, we consider more specifically three traces of the laboratory zero-offset section, 

shown in Figure 4 and corresponding to the red line in Figure 3. These traces (labeled as 

A, B, and C in Figure 4) are of particular interest, as they contain diffracted waves 

generated by the feature edges, as well as reflections from the flat and curved surfaces of 

the model. 

Trace A is located above the lower edge of the pyramid, where its flank meets the flat 

part (Figure 12). It is composed of several groups of reflections from the side of the 

pyramid (denoted as event A1), from the flat part (A3 and A4), from the bottom of the 

model below the flat part (A8 and A9) and below the dome (A10). Several groups of 

diffracted waves are also present, corresponding to diffractions from the upper edge (A2) 

and the lower edge (A7) of the pyramid, and from the edge of the dome (A6). Event A5 is 

related to the truncated dome, which is not included in the simulations. 

Trace B is located halfway between the pyramid and the dome (Figure 13). It is 

composed of several groups of events associated with reflections from the side of the dome 

(events B1 and B2) and from the side of the pyramid (B3), from the flat part (B4), and 

from the bottom of the model below the flat part (B6). Event B5 is the superposition of 

diffractions from the upper edge of the pyramid and from the edge of the dome. Event B7 

corresponds to the superposition of a reflection from the bottom of the model below the 

dome and a diffraction from the lower edge of the pyramid. 

Trace C is located on the other side of the dome, compared to traces A and B (Figure 

14). It is composed of several groups of reflections from the side of the dome (C1 and C2), 

from the flat part (C3 and C4), and from the bottom of the model below the flat part (C6 
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and C7). Event C5 is a multiple of a diffraction from the lower edge of the dome, while 

event C8 is a multiple reflection. 

It is important to note that the laboratory data are real data, as they contain unknown 

noise recorded by the acquisition system. Furthermore, as can be seen in Figure 2, the 

source wavelet is a long signal, composed of a main event followed by a few tens of μs 

long low-energy tail with small amplitudes (ringing effect). It may explain the fact that 

some events are composed of two parts (for instance, events A8 and A9 in Figure 12; B1 

and B2 in Figure 13; C1 and C2, C3 and C4, C6 and C7 in Figure 14). 

Qualitative comparisons between laboratory and synthetic traces show a quite good fit 

in amplitude, phase and travel time. Regardless of the trace location, synthetic traces show 

an almost perfect fit with the experimental data in time, phase and amplitude for the 

reflected events from the top and bottom of the flat part of the model. The early and late 

parts of these arrivals sometimes reveal minor amplitude misfits, most probably due to the 

low-energy second part of the source signal, which may not be perfectly reconstructed by 

the source inversion, as well as the uncertainties in the attenuation parameters chosen for 

the simulations. Events associated with the side reflections and/or diffractions from the 

topographic features are also well restored by the simulations (see events A1 in Figure 12, 

B5 and B6 in Figure 13, C1 and C8 in Figure 14). The correlation coefficients between 

measured and simulated traces are 0.91, 0.95 and 0.91 for traces A, B and C, respectively. 

These good results are due to the fact that SEM has the ability to honor the model geometry, 

even for tilted and curved interfaces by using a non-structured mesh. 
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Figure 12. Comparison of zero-offset laboratory trace A with synthetic results. Physical 

interpretation of the annotated events is provided in the text. 

 

Figure 13. Comparison of zero-offset laboratory trace B with synthetic results. Physical 

interpretation of the annotated events is provided in the text. 

 

Figure 14. Comparison of zero-offset laboratory trace C with synthetic results. Physical 

interpretation of the annotated events is provided in the text. 

 

Comparison of offset data 

Here, we consider more specifically one trace of the laboratory offset section, labeled 

as D in Figure 5. The source location (represented by the asterisk in Figure 15) is above 
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the flank of the dome, and the receiver (represented by the triangle in Figure 15) is located 

close to the ramp. Trace D contains several groups of events, mainly associated with the 

direct source-receiver travel path (labeled as D1 in Figure 15), reflection from the top of 

the truncated pyramid (D2) and reflection from the curved surface of the dome (D3). 

A qualitative comparison between the simulated results and laboratory data shows a 

good fit in arrival time, phase and amplitude for all the events pointed out, except for the 

reflection from the dome (D3). Some important remarks must be highlighted here. First, 

the offset configurations are more sensitive to noise than zero-offset ones. Due to a more 

complex acquisition setup, using more electric devices and transducers, the signal-to-noise 

ratio of the laboratory data in offset configuration is generally lower than in the zero-offset 

case. Furthermore, the offset configurations are more sensitive also to uncertainties in the 

acquisition geometry, especially in case of a model with strongly tilted and curved 

interfaces. Indeed, it can be analytically shown that a small uncertainty in the source 

position and/or in the incidence angle of the incident wave may have a significant impact 

on the illumination of the curved surface of the dome. As a result, it can have a huge effect 

on the reflected and diffracted wavefields (see section “Discussion”). It explains the fact 

that event D3 in Figure 15 is quite well modeled by the simulation, but with both significant 

time and amplitude misfits. The correlation coefficient between the measured and 

simulated traces is 0.76 for trace D. Finally, as mentioned above, the implementation of 

the numerically-equivalent source has higher uncertainties for both the low-energy later 

part of the source wavelet and the secondary lobes (due to the low signal-to-noise ratio of 

these events) than for the main lobe of the directivity pattern. Even if they carry less energy 

than the main lobe, the role of these higher-order lobes in the illumination of the model 

should not be neglected in case of offset configurations. 
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Figure 15. Comparison of offset laboratory trace D with synthetic results. Physical 

interpretation of the annotated events is provided in the text. The red line shows the 

acquisition line, the yellow asterisk the source position and the yellow triangle the receiver 

corresponding to trace D. 
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DISCUSSION 

As shown above, SEM can reproduce laboratory zero-offset data in terms of arrival 

time, phase and amplitude with excellent accuracy. However, the fit between synthetic 

results and experimental offset data is significantly less accurate. We discuss here the 

possible explanations for this observation, including experimental uncertainties and 

numerical implementation of the directivity pattern of the source transducer, as well as the 

computational cost. 

Laboratory data always contains noise, and offset datasets have a lower signal-to-noise 

ratio than zero-offset ones. Moreover, uncertainties in the transducer positions also have 

an effect on the data. It is more significant in the offset case, since there is a non-linear 

combination of uncertainties in the source location, the source tilt angle and the receiver 

position. This non-linear combination makes it difficult to evaluate the role of one effect 

over the others. This effect is even more pronounced in the presence of strongly curved 

interfaces, causing wave defocusing. Let us analyze here this source of misfit and quantify 

the order of magnitude of the possible resulting error. As the problem is the most 

pronounced in case of strongly curved interfaces, we show an example for the Marseille-

Benchie model using the dome. 

The geometry of the problem is shown in Figure 16, and for now we suppose that the 

source is located exactly above the top of the dome. We are interested in the change in the 

offset of the arrival of a given ray due to an error in the tilt angle of the source (γ). Based 

on geometrical considerations, we can obtain the following relations: 

δ𝑥 =
𝑅+𝐻

cos2(θ)
δθ(8) 

and 
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δ𝑦 = δ𝑙2
sin(α)

cos(θ+α)
+ 𝑙2

cos(α)δαcos(θ+α)+sin(θ+α)(δθ+δα)sin(α)

cos2(θ+α)
(9) 

where the offset change is the sum of δ𝑥and δ𝑦, while R denotes the radius of the dome, 

H the distance between the top of the dome and the source transducer. To quantify the 

order of magnitude of the error in the offset, we consider H = 140 mm, R = 51.25 mm, 

and γ= 5°. Supposing an error of 0.5° in the source position, the point of illumination on 

the surface of the dome has an error of 1.3 mm. Using equations 8 and 9 above, we 

getδ𝑥= 5.2 mm and δ𝑦= 1.5 mm. It means that an uncertainty of 0.5° in the source tilt 

angle leads to a shift of 6.7 mm (134 m at seismic scale) in the arrival offset of the beam 

(i.e. in the receiver location), depending on the point of the illumination of the surface of 

the dome.  This uncertainty may thus have a significant impact on both the arrival time 

and the amplitude of the reflected and diffracted events. In ongoing work, we now focus 

on the design of an acquisition system providing much higher accuracy of transducer 

positions to significantly decrease these uncertainties in the recorded data. 

Figure 16. The effect of the uncertainties in the source position on the wavefield. 

 

We have proposed a strategy to numerically implement the directivity pattern of the real 
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source transducer. This strategy permits to recover the main lobe of the emitted beam, 

where most of the energy is concentrated. Excellent fit between synthetic results and 

laboratory zero-offset data shows that the strategy is efficient in zero-offset configurations, 

as in that case mostly the main lobe illuminates the model and contributes to the recorded 

data. Nevertheless, for offset data recorded in strong topographic environments, the 

proposed strategy is less accurate, since both the low-energy later part of the source wavelet 

(see Figure 2) and the secondary lobes play an important role in the illumination of the 

model, even if they carry far less energy than the main event of the source wavelet in the 

main lobe. Indeed, in our case they may interact with the dome and the pyramid (depending 

on the source location), influencing the amplitude and phase of the wavefield. Future work 

will focus on a new approach to numerically implement real transducer properties, which 

can accurately account for both the main lobe and the lower-energy parts of the source 

wavelet. 

Computational cost of numerical methods is often an important point, particularly in the 

operational context of seismic exploration. Here, we differentiate between the man-hour 

cost spent on the preparation of the simulations and the computational cost (i.e., the number 

of processors used for simulations times the actual running time of one simulation). In 

general, SEM has large man-hour cost, due to the non-structured hexahedral meshing. To 

illustrate this problem, it is interesting to note that we spent three weeks to find the optimal 

meshing strategy for the Marseille-Benchie model, without even finding a satisfying 

strategy for the truncated dome. Contrary to the common finite-difference gridding, there 

is no quick or cheap solution to non-structured hexahedral meshing in terms of man-hour 

cost. 

Regarding the computational cost of the method, we used 2100 Intel® Xeon® Sandy 

Bridge EP (E5-2680) processor cores for the simulations. The initial meshing strategy 
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resulted in a mesh that needed 10150 core-hours to simulate 350 μs of wave propagation 

(corresponding to 7 s at seismic scale). Using the optimized meshing strategy of the 

Appendix, this cost was reduced to 1611 core-hours with a relative element size of 2.5, or 

to 2538 core-hours with a relative element size of 2.25. 
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CONCLUSIONS AND FUTURE WORK 

The goal of our work is to provide a possible workflow to adapt both the numerical 

simulations and the small-scale laboratory experiments to each other, such that the two can 

be easily compared with high accuracy. We are also interested in the ability of SEM to 

accurately simulate complex 3D wavefields including (multiple) diffractions at the lowest 

possible computational and man-hour cost. We have thus compared 3D SEM simulations 

with laboratory measurements in both 3D zero-offset and 3D offset offshore reflection 

configurations for a small-scale physical model. The model includes structures with steep 

flanks, sharp edges, corners and curved interfaces. This complexity provides a challenge 

to any numerical method to reproduce the wavefield. 

Prior to the simulations, some works have focused on the input data/parameters, namely 

the material properties, the model geometry and the characteristics of the source and 

receiver transducers. The viscoelastic behavior of the material used in the model has been 

approximated with a set of Zener standard linear solids, while the other parameters are 

known from previous laboratory characterization of material samples. The real source 

transducer characteristics have been implemented based on a new approach: laboratory 

characterization of the impulse response, followed by an inversion step to obtain a 

numerically-equivalent source for the numerical simulations. The zero-offset measurement 

requires an additional deconvolution step before the inversion, as in that case only one 

transducer is used as both the source and the receiver. 

We have suggested an optimization of the computational cost, by using larger elements 

in the non-structured mesh and higher-order polynomial basis functions. This technique 

helps to significantly reduce the computational cost, while obtaining a similar level of 

accuracy. 
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The comparison of the zero-offset synthetic and laboratory results has revealed an 

excellent fit in terms of arrival time, phase and amplitude. Minor amplitude mismatches 

may be attributed to the noise recorded in the laboratory data, as well as to the inaccuracy 

of the proposed source implementation to restore the low-energy secondary lobes of the 

source transducer, and the uncertainties in the attenuation parameters chosen for the 

simulations. The comparison of simulated and laboratory offset traces has exhibited a good 

fit in terms of amplitude, arrival time and phase, but with significantly less accuracy for 

some arrivals than in the zero-offset case. This can be mainly attributed to the inaccuracies 

of the transducer positions during the laboratory measurements combined with the strong 

topography of the model, as well as to the smaller signal-to-noise ratio of the offset 

configurations. 

Future work will focus on the development of a more accurate acquisition system to 

reduce inaccuracies in transducer positions during the laboratory measurements. 

Furthermore, the noise level of the new acquisition system will have to be assessed (e.g. 

Valensi et al., 2015). The proposed numerical implementation of the real transducer should 

also be investigated further, to account more for the low-energy secondary lobes, and the 

low-energy later arrivals of the source signal as well, since they may also contribute to the 

wavefield. The reduction of the man-hour cost of SEM, due to the lengthy meshing step, 

will be essential in the future. A more robust and automatic meshing tool, suitable for non-

structured hexahedral meshing of arbitrary 3D geometries will be required. The laboratory 

datasets and the obtained numerical results should be also compared with other numerical 

methods, such as the commonly used finite-difference method. 



39 

Acknowledgements 

The authors thank Zhinan Xie for his help with the implementation of stable PMLs for 

the 3D case, Emanuele Casarotti for his advices on non-structured meshing, and Régine 

Guillermin, Patrick Sanchez, Guy Rabau and Vincent Long for their help with the 

experiments. This work received funding from the European Union Horizon 2020 research 

and innovation program under the Marie Skłodowska-Curie grant, agreement no. 641943. 

Børge Arntsen and Bjørn Ursin received financial support from the Norwegian Research 

Council through the ROSE project. We also thank CNRS for its financial support through 

the PICS BENCHIE project. This work was granted access to the French HPC resources 

of TGCC under allocations no. 2016-gen7165 and 2017-gen7165 made by GENCI. 

We also acknowledge the Associate Editor and the four anonymus reviewers for their 

careful reading, helpful suggestions and questions which all improved the paper. 



40 

Appendix 

As mentioned in “Meshing”, finding the appropriate meshing strategy for a complex 

geometry using a non-structured hexahedral mesh is a time-consuming procedure. Thus, 

our goal here is to reduce the computational cost without modifying the meshing strategy. 

In other words, we use the same subdivision of the whole model into subdomains and the 

same meshing order of the different subdomains. 

Our optimization takes advantage of the fact that the accuracy of the spectral-element 

simulations is not directly constrained by the element size, but rather by the number of 

GLL points per wavelength. It means that we can increase the element size and keep a 

similar level of accuracy of the simulations by increasing the order of the polynomial basis 

functions. This technique is widely discussed in the literature as h-, p-, or h-p convergence, 

where h stands for the element size and p denotes the polynomial order of the basis 

functions (e.g., Hughes, 1987; Maday & Rønquist, 1990; Seriani & Priolo, 1994; Vos et 

al., 2010; Oliveria & Seriani, 2011). For the initial meshing of the model we used basis 

functions of order N = 4, meaning that N + 1 = 5 GLL points are used in each element. 

We consider the mesh presented in Figure 3 as the reference for this Appendix. As 

shown in section “Comparison of zero-offset data“, the reference mesh yields accurate 

synthetic results compared with the zero-offset laboratory data. When creating a non-

structured mesh, the element size has a distribution as shown in Figure 6. This is due to the 

geometrical constraints on the meshing algorithm, resulting in various element sizes. 

Cubit/Trelis® uses a target element size, as the meshing algorithm aims to mesh the model 

such that the average of the element sizes is close to this target value. For the reference 

mesh, a target edge length of 1.1 mm is necessary to have the largest elements below the 

required threshold of 1.6 mm. For the sake of brevity, we use relative target element sizes 
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hereafter, by considering the target element size of the reference mesh as being equal to 1. 

We note that small changes in the target element size result in the same distribution of the 

element sizes, only the size of each element is multiplied by the factor of the change. 

According to our experience, it remains true even for such a complex geometry as the 

Marseille-Benchie model if the change is at most a factor of 0.2-5. Since our meshing 

strategy involves the subdivision of the model into several subdomains, there is an upper 

limit for increasing the element size. With our decomposition strategy, using about 5 times 

larger elements than the reference value is the upper limit. It comes from the fact that above 

this value, the element size becomes too high compared with the dimensions of some of 

the subdomains. We emphasize that using larger elements does not result in a less accurate 

representation of even the curved interfaces, as curved hexahedral elements are used. It 

means that the numerical tool can account for curved edges and surfaces of each element, 

instead of only straight lines and planar surfaces (Komatitsch & Vilotte, 1998; Fichtner, 

2010). 

We tested two different approaches. The first one consists of fixing the polynomial order 

of the basis functions and changing the element size. The second one keeps the element 

size fixed and changes the polynomial order. To evaluate the results, we ran the same zero-

offset simulations using the different meshes and compared the resulting synthetic traces 

to traces obtained with the reference mesh. To evaluate the tests we use zero-offset traces 

B and C (Figures 13 and 14). To obtain a quantitative comparison, we computed the root 

mean square (RMS) difference between each synthetic trace and the reference trace. Figure 

17 shows the relative computational cost and the RMS misfit for different element sizes, 

using 6th-order polynomial basis functions. The results suggest that the optimum is around 

relative element sizes of 2.25-2.5. Using smaller elements increases the computational 

cost, while using larger elements increases the RMS misfit without any significant gain in 
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the relative computational cost. 

 

Figure 17. Relative computational cost (blue) and RMS misfit (green: trace B, red: trace 

C) for varying element size, using 6th-order polynomial basis functions. 

 

Considering that the optimal element size is about 2.5 (based on Figure 17), the effect 

of the polynomial order has to be examined as well. Figure 18 shows the relative 

computational cost and the RMS misfit for different polynomial orders, using a relative 

element size of 2.5. The results show that the polynomial order of 8 yields the smallest 

RMS misfit (around 0.008). Even though the RMS misfit is somewhat higher for order 6 

(around 0.05), its computational cost is more than three times lower than that of order 8. 

We note that the RMS misfit does not show a monotonous trend for any of the traces, 

neither in Figure 17, nor in Figure 18. This is probably due to the non-structured mesh. 

Maday & Rønquist (1990) mathematically proved that a monotonous trend in the misfit 

curves can be expected only for a structured mesh, but not necessarily for a non-structured 
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mesh. 

 

Figure 18. Relative computational cost (blue) and RMS misfit (green: trace B, red: trace 

C) for varying order of the polynomial basis functions, using a relative element size of 2.5. 

 

Figure 19 shows the comparison of the traces using the optimized mesh (relative 

element size of 2.5) and 6th order basis functions with the reference traces. The optimized 

mesh provides an excellent fit with the reference solutions in general. Due to the larger 

elements, some minor oscillations can be seen, probably due to mesh dispersion. However 

their amplitude and difference from the reference solutions are negligible. Considering that 

the relative computational cost is only 15.7 % of the reference simulation, we suggest to 

use the optimized meshing strategy. Moreover, the effect of mesh dispersion can be reduced 

by using a relative element size of 2.25 instead of 2.5. In that case the relative 

computational cost is still 25 % of the reference, in return for a a bit higher accuracy than 

with a relative element size of 2.5. 
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Figure 19. Comparison of zero-offset synthetic traces using the reference mesh (blue) and 

the optimized mesh with a relative element size of 2.5 and 6th-order basis functions (red): 

trace B (top), trace C (bottom). 
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