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Problem Description
Extraction of natural gas from organic rich shales is challenging and complicated. The most
prominent property of shale gas reservoirs is low permeability, and this is one of the reasons why
shales are some of the last major sources of natural gas to be developed. However, shale can store
enormous amounts of gas and may, by the use of modern recovery techniques, be very profitable.

Due to the low permeability, hydraulic fracturing is almost always performed at initial phases of
the development of shale gas reservoirs. The gas production from the well will typically decrease
rapidly, demanding regularly stimulation of the wells to maintain production. Several techniques
exist for performing this stimulation. The most well-established technique is to apply the hydraulic
fracturing on a regular basis. Another strategy is to switch between production and well shut-ins
in a cyclic manner. Well shut-ins allow for recharging of fractures with gas and pressure build up
in the stimulated regions of the reservoir. This second approach will be the focus of this master
thesis, in particular assessing the potential of applying model-based optimization as a means to
maximize production and long-term recovery.

The project includes the following tasks:
1.Finalize the development and validation of an appropriate model for wells in shale gas
reservoirs.
2.Analyze production from one well using a cyclic production strategy.
3.Develop a system model for shale gas reservoirs which includes several wells as well as a
suitable compression unit.
4.Formulate the production problem as an optimization problem. Both long-term recovery as well
as short-term production planning should be included. Discuss alternative formulations and
review literature as a background for the discussion.
5.Study the potential of using an optimization scheme and discuss the applicability of such a
strategy in practice.

This master project will use the report  Modeling and Simulation of Shale Gas Reservoirs  written
by the same candidate as its starting point.
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Abstract

Natural gas from organic rich shales has become an important part of the
supply of natural gas in the United States. Modern drilling and stimulation
techniques have increased the potential and profitability of shale gas reserves
that earlier were regarded as unprofitable resources of natural gas. The most
prominent property of shale gas reservoirs is the low permeability. This is
also the reason why recovery from shale gas wells is challenging and clarifies
the need for stimulation with hydraulic fracturing. Shale gas wells typically
exhibit a high initial peak in the production rate with a successive rapid
decline followed by low production rates. Liquid accumulation is common in
shale wells and is detrimental on the production rates.

Shut-ins of shale gas wells is used as a means to prevent liquid loading and
boost the production. This strategy is used in a model-based production
optimization of one and multiple shale gas well with the objective of maxi-
mizing the production and long-term recovery. The optimization problem is
formulated using a simultaneous implementation of the reservoir model and
the optimization problem, with binary variables to model on/off valves and
an imposed minimal production rate to prevent liquid loading. A reformula-
tion of the nonlinear well model is applied to transform the problem from a
mixed integer nonlinear program to a mixed integer linear program.

Four numerical examples are presented to review the potential of using
model-based optimization on shale gas wells. The use of shut-ins with
variable duration is observed to result in minimal loss of cumulative
production on the long term recovery. For short term production planning,
a set of optimal production settings are solved for multiple wells with global
constraints on the production rate and on the switching capacity. The
reformulation to a mixed integer linear program is shown to be effective
on the formulated optimization problems and allows for assessment of the
error bounds of the solution.
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Chapter 1

Introduction

As an introduction to production of shale gas, this chapter gives a brief sum-
mary of the geological and physical properties of shale gas and the motivation
for recovery of gas from shale gas reservoirs. Emphasis is put on the chal-
lenges associated with recovery of gas from the tight shale rock. The use
of shale gas is seen in context of other unconventional gas resources, and a
review of today’s level of shale gas production is included.

This chapter is based on the introductory chapter in Knudsen (2010).

1.1 Background
Extraction of natural gas from sources of organic rich, tight shales is inher-
ently challenging. Traditionally, shale gas wells have only been marginally
profitable, and this is also why shales is one last major resource of natural
gas to be developed. With extensive developments of drilling and stimula-
tion techniques over the last decade, the substantial asset and potential in
shale gas have been highlighted. This has generated significant interest in the
exploration of shale gas in several European countries, and particularly in
China. The United States are the world leader on shale gas recovery and are
the driving force behind the last decade’s vast developments in this industry.

Shale gas is one out of several types of unconventional gas resources. Tight
gas and coalbed methane are two other sources of developed unconventional
gas resources, both with the property of the gas being stored in tight for-
mations. However, shale is far tighter and less permeable than these two
categories of unconventional gas resource. This is one of the reasons why
the production of shale gas has been lower compared to the production these
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Figure 1.1: Production of unconventional gas in the United States from
1990 to 2008. Source: WEO (2009), data from by the US Department of
Energy/Energy Information Administration.

types of unconventional gas. This is seen in figure 1.1 of the production of
unconventional gas in the United States WEO (2009). The same figure also
shows the substantial increase in the production of shale gas in the United
States since year 2000. The gas in shales is stored by different mechanisms:
some is stored within the pores and small natural systems of fractured of
the rock, while much of the gas is absorbed on the surface of the shale itself
or dissolved in organic content(Carlson and Mercer, 1991; Carlson, 1994).
Hence the storage mechanisms of shales are substantially different from con-
ventional reservoirs, where the gas is stored in relatively large open pores
with a geological trap to hold the gas in place. The organic richness of shales
depends heavily on geological location and how the gas content in the shale
was created. Far from all of the discovered shale gas resources are economi-
cally profitable with today’s recovery techniques.

The discussion and presentation of the shale gas characteristics and develop-
ments will be based on the shale gas production in the United States, as this
shale gas industry is by far the most developed and well documented. Figure
1.2 gives an overview of the known shale gas resources in the lower states of
the U.S. The most famous and developed shale formations are the Barnett
Shale in Texas and the Devonian Shale in eastern U.S. Other famous shale
gas locations include Haynesville, Fayetteville, Marcellous and Woodford.
Only considering the shale gas resources in the U.S., these are estimated to
be between 500 and 1000 trillion cubic feet (Arthur et al., 2008). The US
Energy Information Administration reported a yearly shale gas production
of 1,184 bcf (billion cubic feet) in 2007 and 2,022 bcf in 2008.
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Figure 1.2: Map of the shale gas resources in the U.S as of May 2009. Source:
Energy Information Administration

The report World Energy Outlook 2009 by the International Energy Agency
WEO (2009) describes natural gas a resource for building a bridge from
the current extensive use of fossil-fuel in energy production to cleaner and
renewable energy in the future. This as gas-fired power plants are considered
to be more environmental friendly than coal-based power generation (WEO,
2009). Unconventional gas developments and in particular the shale gas
developments may therefore provide large resources of natural gas to
gradually replace the extensive use of coal in power generation.

1.2 Shale gas characteristics
The shale is generally too tight for the gas to flow directly from the storage
in the rock to the well. While in conventional gas reservoirs where large
amounts of gas flow directly from the storage pores to the well, these quan-
tities will only last in the scale of minutes in shale gas reservoirs (Carlson
and Mercer, 1991). The gas in shales mainly consists of methane. Due to
the tightness of the shale, the gas will only travel a very short distance in the
rock over a given reasonable time span. Schettler et al. (1989) and Carlson
(1994) describes this flow through the rock itself predominately as a result
of molecular diffusion. The majority of the gas flow in shales arises from the

3



molecules traveling the short distance from the storage in the tight rock to
adjacent segments of fractures in the rock itself. The rock in this context
describes a piece of tight shale rock. The gas then flows from these small seg-
ments of fractures to larger networks of fractures in the shale. This physical
process makes the gas flow in shale gas reservoirs examples of dual porosity
behavior.

The key characteristic of shale gas reservoirs is the low permeability. Perme-
ability is a measure of a materials’ ability to transmit fluids, in this context
the shales ability to transmit the gas. For shale gas reservoirs, the effective
permeability may often be in the range of 10−3 mD to 10−6 mD. This em-
phasize the difficulties and challenges of recovering gas from shales compared
to conventional viscous reservoirs. Many factors impact the gas production
from shale gas reservoirs, where the most prominent is the number and the
structural complexity of fracture network (Cipolla, 2009). The effective con-
ductivity of fractures and the actual permeability of the shale rock are also
crucial for the productivity.

Figure 1.3: Illustration of the mechanisms in the gas flow in shales. From
Warren and Root (1963)

Shale gas reservoirs are essentially land-based. A typical developed shale gas
play1 consist of a large number of wells. The geological properties of shale
gas reservoirs vary widely between the shale gas plays. Many of the geolog-
ical properties are hard to identify or estimate, and for some only the span

1The established expression in the literature used to describe a shale gas area
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of the parameter value can be quantified. The reservoir permeability is by
far the most difficult parameter to predict. It is also the most dominating
property for the productivity of shale gas, thereby causing unpredictability
in the production forecast and uncertainty in reservoir simulations. North
(1990) describes the typical permeability of shale rock to be in the range of
5 · 10−2 - 1 · 10−5 mD, which agrees with the values given in Smith (2007) for
Barnett shale. Shale gas reservoirs are typical found on depth ranging from
300 to 4000 meters (1000 to 13000 ft), with net thickness ranging from 15 to
183 meters (50 to 600 ft) (Cipolla et al., 2009). The porosity is normally in
the range 2-8% and the amount of total organic content is 1 to 14%.

The Newark East field in Northeast Texas - referred to as the Barnett Shale
- is currently the most active shale gas play in the United States (WEO,
2009). Using the average properties of these wells thus serve as a good ba-
sis for the simulations. As an example of shale gas reservoir properties, the
average properties of the Barnett Shale is shown in table 1.1. The data are
compiled from the sources Cipolla et al. (2009); Jenkins and Boyer II (2008);
J.H. Frantz, Jr. et al. (2005); Smith (2007); WEO (2009). The entries in
table 1.1 are somewhat spread out in the different sources, but they give a
hint of the actual respective reservoir properties.

Table 1.1: Average reservoir properties in Barnett Shale reservoirs
Reservoir depth 2000-2600 meters
Reservoir thickness 30-200 meters
Porosity 4-5%
Permeability 9 · 10−6 - 5 · 10−3 mD
Total organic content 4.5%
Basin size 13 000 km2

Number of producing wells in 2008 12 000
Gas rate per well 100-3000 mcf per day
Recovery factor 5-20 %
Total annual production 44 · 109 m3

1.3 Recovery techniques
The properties of a shale gas reservoir requires new and challenging recov-
ery techniques compared to those used in conventional oil and gas reservoirs.
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Based on the above description of these reservoirs, the key to high production
rates is to maximize the area of the reservoir exposed to the network of frac-
tures connected to the wellbore. The standard technique used to stimulate
the network of fractures is known as hydraulic fracturing. Large volumes of
water with specially designed proppant is pumped into the reservoir at high
rates and pressure, stimulating and extending the small existing fractures in
the shale rock. This creates conduits of high conductivity and variable size,
leading the gas to the wellbore. The proppant is used to prevent the new
fractures from closing, and often consists of grains of sand. The fractures
created are large and complex, and are stretching in both horizontal and
vertical direction. Hydraulic fracturing is normally performed in multiple
stages, and is a well established technique for stimulating horizontal wells in
tight gas formations (Medeiros et al., 2007). Most of the currently exploited
shale gas resources are developed with horizontal wells (Cipolla, 2009), but
the technique is also applicable to vertical wells.

Due to the low permeability, hydraulic fracturing is almost always performed
at initial phases of the development of shale gas reservoirs. The gas produc-
tion from the well will typically decrease very rapidly, demanding regularly
stimulation of the wells to maintain production. Two more or less established
techniques exist for stimulation of the wells. The most well-established tech-
nique is to apply the hydraulic fracturing on a regular basis, which is an
expensive but effective technique to preserve the production from shale gas
wells. Another strategy for maintaining the production, is to alternate the
production and shut-ins in a cyclic manner. Depending on the shut-in in-
terval and time, this allows for recharging of fractures with gas and pressure
build up in the stimulated regions of the reservoir. This approach is described
in Rahmawati et al. (2009), where the production from a single well in a tight
gas reservoir was optimized using a constant shut-in period.

Liquid accumulation in the well is a prominent problem for shale gas wells,
and is one of the key factors for the rapid fall in production of gas. The
liquid accumulation may cause the phenomenon known as liquid loading, a
state of the well where the backpressure on the well is high on the gas rate is
erratic and unpredictable. It is important to address this problem as the well
eventually will die. The preferred technology by many operators to address
this problem, in particular operators of Barnett shale, is the use of gas lift
(Elmer et al., 2009). The use of gas lift is an effective method for decreasing
the backpressure on the well resulting from the liquid accumulation, while
the drawback is the necessary source of lift-gas. Another strategy to pre-
vent liquid loading is to apply regularly shut-ins of the well with variable
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duration, allowing for pressure build-up in the well and thus removal of the
accumulated liquid. This particular strategy for accommodating liquid ac-
cumulation in the wells as well as boosting the production will be addressed
in this report.

The available literature on production optimization of shale gas wells is
limited. The focus in the literature is mainly on the complex modeling
of the fracture network and stimulation technique with hydraulic water.
Production optimization applied to conventional petroleum reservoirs and
similar applications is therefore studied and used partly as background for
the study in this report.

1.4 Scope
The scope of this master thesis is to study the potential of applying model-
based production optimization in shale gas reservoirs. In particular, the idea
is to apply shut-ins of the wells as a means to boost the production and
prevent liquid loading in the wells. The intention is further to assess how
such a production strategy may be used to maximize the gas production and
long-term recovery from one and several shale gas wells as an alternative or
supplement to performing stimulation with hydraulic fracturing on a regular
basis.

1.5 Report outline
This report is organized as follows:

• Chapter 2 presents the reservoir modeling, with reservoir simulations
and model discussion in chapter 3.

• In chapter 4, the derivation of the production optimization problems is
described.

• Chapter 5 describes the different implementations and solution
approaches used to solve the optimization problems in chapter 4. This
chapter also includes a review of alternative problem formulations.

• Chapter 6 presents four numerical examples of shale gas production op-
timization, with discussion of the results and the practical applicability
in chapter 7.
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Chapter 2

Reservoir and well modeling

This section describes the reservoir and well model used to describe the
gas flow from a shale gas well. The derivation of the flow equations and
in particular the discretization scheme is based on the report Modelling
and Simulation of Shale Gas Reservoirs by Knudsen (2010). The reader
is referred to this report, or generally to Aziz and Settari (1979) for further
details on the reservoir modeling.

2.1 Reservoir model
The physical process of the gas flow in shale gas reservoirs is complicated.
Simplifications and approximations are necessary to describe the flow in the
complex network of fractures, and comprehensive numerical simulations are
normally required to describe these flow patterns. The applicability of these
type of models to model-based optimization is thus limited. Analytical mod-
els of the gas flow in fractured reservoirs are normally obtained by dual-
porosity mathematical models. These models have been extended to describe
the gas production in tight gas and shale gas reservoirs. See for instance
Medeiros et al. (2007) and Carlson and Mercer (1991) for examples on dual
porosity models.

In this thesis, a model of the gas flow in a shale gas reservoir is constructed
using a black oil based approach. The use of black-oil based models in
shale gas reservoir modeling is limited, but the technique is well established
and document from conventional reservoir modeling, making the modeling
considerably easier. The essential idea is to use a radial composite reservoir
model with two concentric region, each having homogeneous properties. To
describe the highly conductive fractures in the stimulated region close to the
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wellbore, the inner region is imposed a high permeability and a small radius,
while the outer region retains the low permeability of the shale gas reservoir.
Further assumptions of the reservoir model are:

• The flow is single phase.

• The geometry of the reservoir is cylindrical.

• The reservoir consist of only one layer.

• The entire thickness of the reservoir is perforated by a well in the center
of the cylindrical reservoir model.

By using Darcy’s law for laminar flow and assuming that the flow is one-
dimensional and purely radial, the flow equation for the single phase gas flow
in radial coordinates is described by the partial differential equation (PDE)

∂

∂t
(φρ) = 1

r

∂

∂r

(
rρ
k

µ

∂p

∂r

)
(2.1)

where t is time, r the radial axis, φ the porosity, ρ density, k the permeability
and µ the viscosity. The porosity is assumed constant, while the pressure
dependency of the three parameters are omitted to simply the notations.
Equation (2.1) assumes low flow velocity and thereby neglects the second
order flow term often added to Darcy’s law in the description of gas flow
in a porous media. The gas density ρ is highly pressure dependent and is
normally substituted with the real gas law

ρ = pM

ZRT
(2.2)

where M is molecular mass, Z the gas compressibility factor, R the universal
gas constant and T the reservoir temperature. It is common to assume
isothermal conditions in the reservoir, expressing the total compressibility c
as

c = 1
ρ

∂ρ

∂p

∣∣∣∣∣
T

(2.3)

Gas expands with decreasing pressure and the disparity between gas rates
measured in the reservoir and at the surface is therefore prominent. It has
become conventional to express the gas flow rates standard conditions by
the use of volume formation factors. For gas, the volume formation factor is
defined (Aziz and Settari, 1979)
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Figure 2.1: Illustration of reservoir geometry

B = TZpsc
Tscp

(2.4)

where psc and Tsc is the pressure and the temperature at standard conditions,
1 bar and 15.5◦C, respectively.

The boundary conditions of the reservoir are defined with no flow across
the outer boundary and a sink in the center of the reservoir. Equation
(2.2) and (2.3) are substituted in the basic flow equation (2.1) with some
rearrangements to obtain an applicable expression of the gas flow in reservoir,
see Al-Hussainy et al. (1966). With respect to the reservoir geometry in
figure 2.1, the general boundary value problem (BVP) for the gas flow in the
reservoir is expressed

φ
p

Z
c
∂p

∂t
= 1
r

∂

∂r

(
k
p

µZ
r
∂p

∂r

)
, rw < r < re (2.5)

Boundary conditions

∂p

∂r

∣∣∣∣∣
re

= 0, ∀t > 0 (2.6a)

r
∂p

∂r

∣∣∣∣∣
rw

= qscBµ

2πhk , ∀t > 0 (2.6b)
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Initial conditions

p(r, 0) = pinit in Ωr ∪ Γ (2.7)

Ωr − reservoir interior Γ− reservoir boundary

The boundary conditions (2.6) are Neumann-conditions as they describe the
derivative of the pressure across the boundary. Equation (2.5) is a nonlinear
PDE, but can be linearized in different ways depending on the range of
pressure in the reservoir.

2.1.1 Linearization of the PDE
The viscosity µ and compressibility factor Z are both highly pressure depen-
dent and the treatment of these parameters defines the appropriate lineariza-
tion technique.

100 200 300 400 500 700600

p
µZ

Applicability of
p2 - linearisation

Applicability of
p - linearisation

Pressure p [bar]

Figure 2.2: Illustration of the product p
µZ

.

Consider the illustration in figure 2.2 of the fraction p/µZ, adapted from
Golan and Whitson (1991) . A straight forward approach is to assume the
fraction p/µZ constant, which is a reasonable approximation for pressures
higher than about 300 bar as indicated in the illustration in figure 2.2. For
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pressures lower than about 200 bar, the product µZ can be assumed ap-
proximately constant. This approximation is known as the p2-linearization,
and is the as assuming small pressure gradients in the reservoir. Both these
linearization techniques where studied in Knudsen (2010). In relation with a
well-model, it is important to emphasize that both the reservoir pressure and
the well bottomhole pressures must be within the specified pressure ranges
for linearization techniques to be valid. It was observed that both these
linearization-techniques limits the validity of the reservoir simulations.

To avoid limitations on the applicability of the reservoir model due to the
pressure range in the reservoir and in the well, equation (2.5) will be expressed
by the use of so-called pseudopressure, defined as (Al-Hussainy et al., 1966)

m(p) = 2
∫ p

0

p′

µZ
dp′ (2.8)

The transformation (2.8) between pressure and pseudopressure m(p) is
nonlinear, but omits any assumptions about the gas compressibility factor Z
and the viscosity µ. The left hand side of equation (2.5) can be rewritten

φµc
p

µZ

∂p

∂t

For notational convenience, the pressure argument of pseudopressure m(p)
is omitted in the rest of the report. The time derivative in terms of
pseudopressure m can be expressed

∂m

∂t
= ∂m

∂p

∂p

∂t
= 2 p

µZ

∂p

∂t

and the spatial derivative is obtain in a similar way:

r
∂m

∂r
= r

∂m

∂p

∂p

∂r
= 2 r p

µZ

∂p

∂r

Substituting these identities in the PDE in equation (2.5), the linearized
PDE in terms of pseudopressure m yields

φµc
∂m

∂t
= 1
r

∂

∂r

(
kr
∂m

∂r

)
(2.9)

Equation (2.9) is linear in m when the coefficients are fixed and has the same
form as the more well-known diffusivity equation. However, by the use of a
radial composite reservoir model to describe the difference in permeability
in the stimulated region from the shale, equation (2.9) becomes a nonlinear
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PDE. In fact, both µ and the total compressibility c are highly pressure de-
pendent. Generally speaking, the PDE in equation (2.9) is thus a nonlinear
form of the diffusivity equation.

Boundary conditions and initial conditions are both adaptable to the flow
equation in terms of pseudopressure m. Since

∂p

∂r

∣∣∣∣∣
re

= 0 ⇒ ∂m

∂r

∣∣∣∣∣
re

=
(
∂m

∂p

∂p

∂r

)∣∣∣∣∣
re

= 0 (2.10)

The boundary condition on the inner boundary rw, equation (2.6b) can be
reformulated using the volume formation factor in (2.4):

r
∂m

∂r

∣∣∣∣∣
rw

= r
∂m

∂p

∂p

∂r

∣∣∣∣∣
rw

= ∂m

∂p

qscBµ

2πhk (2.11)

= qsc
∂m

∂p

µ

2πhk
TZpsc
Tscp

(2.12)

Since

∂m

∂p
= 2 p

µZ

the final form of the inner boundary can be expressed

r
∂m

∂r

∣∣∣∣∣
rw

= qsc
2p
µZ

µ

2πhk
TZpsc
Tscp

= qsc
Tpsc
Tscπhk

(2.13)

Formulating the initial pseudopressure minit from the initial condition (2.7)
is straight forward using the definition of the pseudopressure.

Mathematically, the use of a radial composite reservoir permeability can be
expressed

k(r) =

ks r ≤ rs

ko r > rs
(2.14)

As a result of the composite permeability, the PDE in equation (2.9) cannot
be solved analytically. The reservoir model will therefore be evaluated nu-
merically, using a spatial discretization of the pseudopressure m similar to
conventional spatial discretization of single phase petroleum reservoirs.

In the rest of the report, it will be assumed that all flow rates are expressed in
standard conditions. Hence the subscript sc, denoting standard conditions,
is omitted in the notation of the gas flow rate q.
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2.2 State space formulation
This section is heavily based on the work in Knudsen (2010), except for a
different state variable due to the pseudopressure linearization. The main
equations are repeated to present the numerical reservoir model. The ap-
plied discretization scheme of the reservoir model is the same as for single
phase fluid.

The PDE describing the gas flow in the shale gas reservoir will be discretized
using a finite difference scheme to approximate the spatial derivative.
Dividing the reservoir into Nm grid blocks and defining the pseudopressure
mi as the block variable for grid block i, the state variables is stacked in a
state vector

m :=
[
m1 m2 . . . mNm

]T
(2.15)

rw r1

well

ri− 1
2

ri+ 1
2

rj rN re r

z

Figure 2.3: Grid definition. From Knudsen (2010)

The pseudopressure mi for grid block i is obtained by applying the finite
difference method on the PDE in equation (2.9)

π
(
r2
i+ 1

2
− r2

i− 1
2

)
hφµc

∂mi

∂t
=

2πh
[
rLi+ 1

2
ki+ 1

2

(
mi+1 −mi

ri+1 − ri

)
− rLi− 1

2
ki− 1

2

(
mi −mi−1

ri − ri−1

)]
(2.16)
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The boundary conditions in terms of m are incorporated in the numerical
reservoir model by directly substituting equation (2.10) and (2.13) in the
finite difference scheme for grid block Nm and grid block one, respectively.
The grid block radii are defined such that

ln rj+1

rj
= constant (2.17)

with a particular evaluation of ri± 1
2
, rL

i± 1
2

and ki± 1
2
. The derivation and de-

tails of these expressions, including a more thorough derivation of equation
(2.16) and the boundaries are left out, and can be found in Knudsen (2010)
or in textbooks on reservoir modeling as Aziz and Settari (1979) and Abou-
Kassem et al. (2006).

The discretization of the PDE results in a set of ODE’s, which in turn can
be rearranged in a state space model. See for instance Chen (1999) for
description of state space models. The spatial discretization of the boundary
value problem for the flow in the shale gas reservoir can then be replaced by
the single ordinary differential equation (ODE)

Eṁ(t) = Am(t) + Bq(t) (2.18)
m(0) = minit (2.19)

where q(t) corresponds to a scalar input since there is only a single well. The
spatial discretization of the reservoir model is then with basis in equation
(2.16) re-arranged in the matrices A, B and E:

A :=



−a1+ 1
2

a1+ 1
2

0 . . . 0
a2− 1

2
−
(
a2− 1

2
+ a2+ 1

2

)
a2+ 1

2
. . . 0

0 . . . . . . 0
0 0 . . . . . . 0
0 · · · aNm−1− 1

2
−
(
aNm−1+ 1

2
+ aNm−1− 1

2

)
aNm−1+ 1

2
0 0 · · · aNm− 1

2
−aNm− 1

2



ai+ 1
2

:=
2πrL

i+ 1
2
ki+ 1

2
h

ri+1 − ri
, i = 1 · · ·Nm − 1

ai− 1
2

:=
2πrL

i− 1
2
ki− 1

2
h

ri − ri−1
, i = 2 · · ·Nm
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E :=


V1φµc 0 . . . 0

0 V2φµc . . . 0
... 0 · · · 0
0 . . . 0 VNmφµc

 (2.20)

Vi = π
(
r2
i+ 1

2
− r2

i− 1
2

)
h (2.21)

Observe that the compressibility c and the viscosity µ in matrix E are
evaluated as constant values to obtain a time independent, constant matrix.
The consequence of this assumption is discussed closer in section 3.3. Matrix
B is derived from the discretization of grid block Nm, and is obtained

B :=



−2Tpsc
Tsc

0
...
...
0


(2.22)

The matrices A,B and E are all constant and independent of m if the
coefficients are fixed. Note that the sum of the elements in each row of
matrix A is zero. Hence A is singular.

2.3 Well representation
The gas inflow q(t) from the reservoir in the well is often represented through
a well model as a function of the bottomhole pressure pwf , a valve setting α
and the pressure in the grid block closest to the wellbore. For applicability
to the reservoir model in derived in the previous section, the well model is
represented in terms of the pseudopresure m. The well model is obtained
from Darcy’s flow law by including the volume formation factor to express
the gas flow in surface rates. Using a skin factor S for correction of the ideal
flow characteristics, the well model in terms of the pseudopressure m can be
represented

q(t) = αw [m1(t)−m(pwf )] (2.23)

w := πkhTsc

Tpsc
(
ln r1

rw
+ S

) (2.24)
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where α is the valve setting, simply a fraction between 0 and 1. Note that
the flow rate in both equation (2.23) as well as the rest of the report is repre-
sented in surface conditions. The term w in equation (2.24) is often referred
to as the well index. It takes a particular simple form, due to the cylindrical
reservoir geometry and the assumption of single phase flow.

Representing the well flow rate in terms of the bottomhole (pseudo)pressure
and the valve setting, impacts the state space model of the pseudopressure
in the reservoir. The final state space formulation depends on the definition
of the control variable. If the valve setting α is absent and the bottomhole
pressure pwf is controlled directly, the well index w is subtracted from entry
(1,1) in matrix A due to the minus sign in B. The control variable u is then
replaced by m(pwf ), and the resulting state space model will be nonlinear
since µ and Z are uncontrollable and must be included in the nonlinear map-
ping from pressure to pseudopressure.

If the valve setting α can be controlled directly, matrix B be will be a function
of the state vector, while matrix A remains a pressure independent matrix.
Defining α(t) as the control variable, u(t) := α(t), the resulting state space
formulation will be on the form

Eṁ(t) = Am(t) + B̃ (m (t) ,mwf )α(t) (2.25)
m(0) = minit (2.26)

where the notation mwf is used as an abbreviation for the bottomhole
pseudopressure. Equation (2.25) is a bilinear state space model (Verdult and
Verhaegen, 2000), since it is linear in m if either α or m is fixed. Element
(1, 1) in matrix B in equation (2.22) is replaced by

B̃(1, 1) = − 2πkh
ln r1

rw
+ S

(m1(t)−mwf ) (2.27)

All other entries in B are still zero. The matrix E is invertible provided that
the gas is compressible, i.e. c 6= 0. By left-multiplying equation (2.25) with
E−1, the state space model can be expressed on “standard” form

ṁ(t) = Ām(t) + B̄(m(t),mwf )α(t) (2.28)
m(0) = minit (2.29)

where Ā = E−1A, B̄ = E−1B̃. The three-diagonal pattern of matrix A,
common for the finite difference matrix of the PDE discretization in one
spatial variable, is preserved using the valve setting as control variable.

18



2.4 Tubing performance
The pressure drop in the tubing is caused by gravity effects and friction
between the gas and the tubing wall. Using the mechanical energy balance
for a true vertical well, the pressure drop between the bottomhole of the well
and the wellhead is expressed (Katz and Lee, 1990)

∫ pw

pwf

vdp+mggzw +mg
fzwv

2

2Dt

= 0 (2.30)

where pw is the wellhead pressure, v is the gas molar volume,f is the friction
factor corresponding to the fully turbulent region of the Moody diagram, zwis
the true vertical depth of the well, Dt the tubing diameter and mg the mass of
the gas. By substituting equation (2.30) with real gas laws and evaluating the
temperature and the compressibility factor Z at average values, the energy
balance can be solved for steady state flow,

p2
wf = C1p

2
w + C2q

2 (2.31)

where C1 and C2 are constants. The common scheme for solving the gas
deliverability of the reservoir is to use so-called nodal analysis, typically
with a fixed wellhead pressure. See for instance Guo et al. (2007) or Golan
and Whitson (1991). However, since the reservoir model is expressed in
pseudopressure, this requires the solution of a set of nonlinear equations
consisting of the flow from the reservoir and equation (2.31) for the tubing.
This complicates the reservoir simulation and modeling considerably. Hence,
the friction term in the tubing is neglected. Equation (2.30) is then solved
with the surface as datum, linking the bottomhole pressure pwf to the
wellhead pressure pw with the static relation (Knudsen, 2010)

pwf = espw (2.32)

s := zwGMair

RTaZa
(2.33)

where G = M/Mair is gas specific gravity and Mair is the molecular mass of
air. The static ratio between the wellhead and the bottomhole pressure is
then directly substituted in the well flow model in equation 2.23,

q(t) = αw [m1(t)−m(espw)] (2.34)

Consequently, controlling the pressure or the valve setting at the bottomhole
of the well is the same as controlling the same variables with respect to the
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wellhead valve (choke). This, as there is no dynamics between the two pres-
sures. Therefore, the it will be assumed that all control settings are posed
on the wellhead valve.

The dynamics of the well flow and the pressure during the start up of a
gas well or after a shut-in are complex and hard to model. These dynamics
are not included in the mechanical energy balance in equation (2.30), but
are governed by the Navier-Stokes equations. By using Darcy’s law in the
reservoir model, hence assuming stationary flow, the start-up dynamics of
the well are lost. The result of these unmodeled dynamics is an unrealistic
high flow rate immediately after the well is re-opened. Consequently, an
upper bound on the flow rate is imposed:

q(t) ≤ qmax (2.35)

The upper bound on the flow rate thus limits the amount of gas extracted
from the reservoir to physically realistic values. Hence, the upper bound also
affect the pressure drop in the reservoir.

2.5 Numerical calculation of pseudopressures
All parameters in the integrand of the pseudopressure in equation (2.8), i.e.
the viscosity and the compressibility factor in addition to the pressure it-
self, are pressure dependent functions. It is therefore necessary to know the
PVT values of the gas evaluated at various pressures values to be able to
evaluate the pseudopressures of the gas. The values used in this application
is obtained by assuming knowledge of the reservoir temperature T and the
gas gravity G. Calculation of the pseudopressures are done numerically by
trapezoidal integration of the table values of p, µ and Z. Hence, each value
of the pressure corresponds to one value of the pseudopressure.

The mapping of from pressure p to pseudopressure m(p) is nonlinear. Figure
2.4 shows the correlation between pressure and pseudopressure, based on the
the table values in appendix A.

For high pressure values, the function may be approximated by a linear
function. To include the entire pressure range, the fitting of a polynomial
function would be better, or possibly using a piecewise function. However,
curve fitting of the pseudopressure function in figure 2.4 is omitted in this
report. Instead, linear interpolation is used to obtain values of pressures and
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Figure 2.4: The nonlinear map from pressure p to pseudopressure m(p).
Observe the scale on the axes.

pseudopressures that are between the PVT table values in appendix A.
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Chapter 3

The performance of shale gas
wells

This chapter presents simulations and analysis of the performance of a single
shale gas well based on the cylindrical reservoir model developed in chapter
2. Further, the problem of liquid loading in shale gas wells is addressed in
this chapter. To review to the potential of applying shut-ins, a case study
with constant shut-in times is presented at the end of the chapter.

3.1 Base case for the reservoir model
This section presents the reservoir geometry and a base case for reservoir
properties used in the simulations in this chapter and also in the succeeding
optimization in the next chapters.

The reservoir geometry will hold the same values for each of the wells con-
sidered in this report. The grid is constructed so that 8 grid block radii are

Table 3.1: Reservoir geometry
Parameter SI-units Field units
rw 0.11 m 0.36 ft
re 914.4 m 3000 ft
h 152.4 m 500 ft
zw 2300 m 10000 ft

inside the stimulated fractured region, stretching out to rs = 32 m. This
is done to emphasize the pressure behavior inside the stimulated region, as
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these pressures are considered to be more important for the flow compared to
the pressure behavior close to the outer boundary of the reservoir. The gas
flow in the developed shale gas reservoir is most sensitive to the magnitude
of the reservoir permeability (Knudsen, 2010), which is also the parameter
that is most difficult to determine in practice. Hence, variations in reservoir
properties for different wells will consist of different rock permeability. The
sensitivity of the permeability in the inner stimulated region was investigated
in Knudsen (2010), and shown not to be decisive on the cumulative produc-
tion. Values for the reservoir properties are given in table 3.2. Typical initial
pressure in the Barnett Shale is in Cipolla et al. (2009) reported to be 3000
psia, which is about 207 bar.

Table 3.2: Reference reservoir properties
Parameter SI-units Field units
Nm 12 -
ks 100 mD∗ -
ko 0.00075 mD -
φ 5 % -
S 0 -
rs 32 m 105 ft
µ 2.02 · 10−5 Pa · s 2.02 · 10−3 cp
c 8.46 · 10−8 Pa−1 5.83 · 10−4 psi−1

T 366.3 K 200.0◦ F
pinit 200 bar 2900 psi

∗ The SI-unit for permeability is m2. However, for convenience, the estab-
lished field unit for permeability mD is used. A - sign means that the field
unit equals the SI-unit.

The average temperature Ta in the well is calculated as the arithmetic mean
between the wellhead temperature and the reservoir temperature, while
the average gas compressibility factor Za corresponds to arithmetic mean
between Z evaluated at wellhead pressure and initial reservoir pressure. Table
3.3 summarizes the tubing, the wellhead and the gas properties.
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Table 3.3: Tubing and surface conditions
Parameter SI-units Field units
psc 1 bar 14.5 psi
Tsc 288.15 K 59.3◦F
Dt 6 cm 2.4 in
Mair 0.029 kg/mol -
R 8.31 J/Kmol -
Tw 311 K 100.4◦F
G 0.7 -

3.2 Production profile of shale gas wells
Shale gas wells share many of the same production characteristics, of which
the rapid decline of productivity is the most dominating. This is supported
by the report “World Energy Outlook 2009” from the International Energy
Agency - IEA (WEO, 2009), which provides a detailed study of the potential,
the last decade’s production history and current production level of shale gas.
In particular, the report gives the summary of a study of more than 7000
Barnett shale wells. The production profiles were observed to be remark-
ably similar, both for horizontal and vertical wells. To elaborate, the wells
exhibited an early peak in the production before a rapid decline in the rate.
For horizontal Barnett wells, the decline in production rate is reported to be
averagely 39% during the first year and 50% from the first to the third year.
Vertical wells appears to have a slightly slower decline in rate. The monthly
rates are reported to decline as much as 57% over the first 12 months.

The averagely initial monthly production rate for Barnett shale horizontal
wells, is in the report from IEA showed to be approximately 0.9 million m3.
Based on this value, the maximum daily flow rate qmax for the base case is
set to 30000 m3/d. Using the reservoir geometry and parameter values in
the base in tables 3.1 - 3.3, a simulation of the production from a shale gas
well over a time horizon of 5 years is shown in figure 3.1(a). The the wellhead
pressure is set to a constant value of 10 bar.

The reservoir model model is implemented in the Simulink toolbox in MAT-
LAB, and the simulations are executed with the variable step solver ODE15s
in Simulink. The solver is based on a backward differential integration scheme
(BDF) and is suitable for integration of numerically stiff systems ODE’s.
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Figure 3.1: Typical production profile of a single shale gas well

Without enforcing the maximum production rate, the initial peak in pro-
duction rate would in the magnitude of 109, obviously unrealistic high. By
imposing the maximum rate constraint of 30000 m3/d, the shale gas reser-
voir is enable of provide enough pressure to maintain this production level
for approximately 400 days. The decline in production rate is then steep. By
zooming in on the point of the sudden drop in the rate, it can be seen that the
transition time from 30000 m3/d to about 15700 m3/d is less than 12 hours.
In reality, this transition will last longer, start earlier and be smoother. The
reason for the abrupt fall in the rate comes from both simplifications and
assumptions in the modelling as well as the numerical integration. The steep
decline in the production rate also illustrates the numerical issues associated
with the integration of the numerically stiff the state-space model describing
the shale gas reservoir, particularly in the transition from the initial plateau
level to the fast dynamics present when the rate drops. It should also be
noted that the derivative of q(t) in the region of the abrupt production drop
is close to infinity, or at least very high. This may cause problems when
the model is applied in model-based optimization. A long slowly decreasing
production rate is achieved in the last years of the simulation.

Figure 3.1(b) shows the profile of the cumulative production. The total cu-
mulative production increases linearly the first 400 days when the well is
producing at the constant maximum rate, and the total production over five
years is about 29 million m3. As comparison, in the study of the ultimate
recovery of the Barnett shale wells in WEO (2009), the mean recovery of a
Barnett shale horizontal well was found to be 38.6 million m3. The ultimate
recovery of vertical wells is significantly lower; the mean is 20.7 mcm. How-
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ever, it is important to remark that figure 3.1(b) as well as figure 3.1(b) is
not physically realistic: in reality, the probability of liquid accumulation in
the well is high, which will cause erratic flow rates or eventually kill the well
if not appropriately treated. Hence the curve of the cumulative production
will in realty fluctuate substantially more than in figure 3.1(b).

The grid pressures for the same example are shown in figure 3.2. Comparing
the behavior of the grid pressures with the flow characteristic in figure 3.1(a),
the thick “multicolored” line shows that the pressures inside the stimulated
region drops with approximately the same factor until the pressure reaches
the constant bottomhole pressure pwf = espw. The difference in pressure
drop is most prominent the first days after the opening of the well, while this
difference is offset due to the imposed maximum rate qmax. At this point, the
flow drops from its plateau level while the grid pressures in the stimulated
region stays just above pwf . The gas flow in the well is now dominated by the
amount of gas flowing from the low permeable outer region of the reservoir
to the high permeable stimulated region.
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Figure 3.2: Grid pressures

Although the wellhead pressure is included as a constant value in the sim-
ulations, it must be regulated to keep a constant plateau level in the initial
phase if the actual peek production is higher. However, it is important to
remark that the plateau level caused by the upper bound on the flow rate is
a compensation for the lack of dynamics in the tubing model. In reality, this
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plateau level may not exist and the flow rate will then naturally decline.

Before proceeding on the shale gas well performance, a model validation and
comparison is performed against a commercial reservoir simulator.

3.3 Model validation
As mentioned in the derivation of the reservoir model, an analytical solution
of the PDE is not available due to the radial composite permeability. A
commercial reservoir simulator is therefore used to compare and validate the
numerical model of the reservoir. The reservoir model with the geometri-
cal properties of table 3.1 and the reservoir parameter values as in table 3.2
has been implemented in the compositional and black oil reservoir simulator
SENSOR from Coats Engineering, Inc1. The typical shale gas flow charac-
teristic in figure 3.1(a) is compared with a corresponding SENSOR model
in figure 3.3. The initial reservoir pressure and the maximum production
rate are the same as in the base case in section 3.2, 200 bar and 30000 m3/d
respectively. It is remarked that the interval of values of p, µ and Z used to
calculate the pseudopressures for the MATLAB model is significantly shorter
than for the values in the black-oil PVT table used in the SENSOR model.

The errors in the MATLAB model are most prominent in the transition region
from the initial plateau in the rate to the slowly decreasing rate. This is a
result of the assumption of constant compressibility and initial viscosity in the
PDE (2.9) and equivalently in matrix E in the state space formulation. The
compressibility increases with lower pressure, and gives smoother transient
behavior as seen in the graph for the SENSOR model. Although the
assumption ensures an numerically efficient model with constant matrices,
it limits the achievable accuracy of the model. An improvement of the
MATLAB model would be to either use interpolation of the table values
of c and µ (see appendix A ) or to use the first order correction of the total
compressibility,

c = 1
p

where the (second-order) effect of the gas compressibility factor Z on the total
compressibility c is neglected. Both corrections would improve the accuracy
of the model and the resemblance between the output from SENSOR model
and the MATLAB model. However, this would result in a numerically more

1http://www.coatsengineering.com/
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Figure 3.3: Comparison of MATLAB and SENSOR reservoir model.

demanding reservoir model. Some of the loss of accuracy of the MATLAB
model is also due to the simple tubing model without friction compensa-
tion. By convention, the product of c and µ are normally evaluated at initial
pressure or as the arithmetic mean between the well pressure and the initial
reservoir pressure. In this application, µ is evaluated at initial conditions
while c is chosen as a physically consist value, corresponding to evaluation at
a pressure between the constant wellhead pressure and the initial reservoir
pressure.

The total error in cumulative production between the to models over the five
years prediction time is 6.35%.

3.3.1 Applicability to horizontal wells
Historically, most of the drilling in shale gas reservoirs has consisted of ver-
tical wells (Jenkins and Boyer II, 2008). With the improvements in drilling
technology in the mid-1990s, horizontal wells became and attractive and
economically profitable alternative. Today, the use of horizontal and mul-
tilateral wells has become the preferred drilling technology, and more than
90% of all new wells in the Barnett shale are being developed with horizontal
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wells (Jenkins and Boyer II, 2008).

The driving force for the gas flow in shale gas reservoirs is the pressure
gradient between the wellbore and the reservoir. Gravity effects on the gas
are small compared to the pressure gradients, and can thus be neglected in
the flow equation without substantial loss of model accuracy. The use of a
vertical well model with cylindrical geometry will therefore not loose essential
applicability to horizontal wells. The use of a cylindrical coordinates,
imposing radial flow in the reservoir is also generally advantageous in the
description of the fractures compared in the stimulated region compared
to the use of Cartesian coordinates. However, what actually is vital and
decisive for the productivity of horizontal as well as vertical wells, is the
number of stages of hydraulic fracturing. Essentially, each stage of the
hydraulic fracturing will cause a thin layer of high conductivity lateral of
the well. Compared to the single layer reservoir model used in this report,
the production will only be boosted in this thin layer and not along the
complete well. This will clearly decrease the gas rate, and somewhat change
the flow pattern. However, the development of a multi-layered horizontal
shale gas well is left out for further work.

3.4 Liquid loading
Shale gas wells are prone to liquid loading. As the gas in shale is normally
only semi-dry, condensate will be entrained in the extracted gas. The con-
densate may cause liquid accumulation in the well and hence increase the
backpressure on the vertical parts of the well significantly. As the pressure
in the near wellbore part of the reservoir decreases, the back pressure on the
well will eventually become to high for the liquid to be “lifted” out of the
well. This phenomenon is known as liquid loading, and will cause erratic
production before the well eventually will die.

Turner et al. (1969) proposed an estimate of the critical gas velocity needed
to ensure continuous removal of liquids. This rate is also known as the
“minimum rate to lift”. The estimate is widely used, and is expressed

vgc = 6.2[σ (ρl − ρ)] 0.25

ρ 0.5 (3.1)

where the constant in front is converted to SI-units (20.4 in original paper).
Note that ρ is here implicitly interpreted as the gas density. The real gas
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law in equation (2.2) can be used to substitute ρ, expressing the molecular
weight of the gas M as a function of specific gas gravity G:

ρ = GMair

ZRT
p (3.2)

It was suggested in Turner et al. (1969) that the onset of liquid load-
up is dominated by the wellhead conditions. The temperature and the
compressibility factor Z generally varies with the pressure in the well, and are
easiest evaluated at values corresponding to the wellhead pressure. Numerical
values for the liquid density ρl and the interfacial tension σ must be specified.
Using the suggested values from Turner et al. (1969), these are set to

• σ = 0.06 N/m2

• ρl = 1074 kg/m3

Denoting the tubing cross section areal At and , the critical gas rate in m3/d
expressed in standard conditions are

qgc = 8.64 · 104At
pw Tsc
pscTwZw

vgc(pw) (3.3)

vgc(pw) = 6.2[σ (ρl − κ pw)] 0.25

κ p 0.5
w

κ : = GMair

ZwRTw

The size of the cross section of the tubing will obviously affect the necessary
rate for continuous removal of liquids in the well. From the critical rate (3.3),
small tubing diameters are thus an advantage for avoiding liquid loading in
the well.

The original Turner constant 6.2 has been observed to be conservative and
not necessarily reliable as many gas wells produce at rate less than the crit-
ical gas rate (Petroleum Experts Ltd., 2008). In the same Prosper reference
manual from the Petroleum Experts Ltd, it is also suggested that the value
might be changed by the user depending on the application. Li et al. (2001)
proposed the value 2.5 for the constant after analyzing and observing the
typical shape of a liquid drop entrained in gas streams. The values were
tested against field data and showed convincing results when compared to
the actual production rate.
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In Al-Ahmadi et al. (2010), field data of the flow rates from a random cho-
sen Barnett shale gas wells have been compared to the critical rate given by
Turner et al. (1969). The flow rates that fell below the theoretical critical
rate, were in most of the collected field data observed as erratic and unstable
flow rates. The liquid loading was started after about 300 days, and were
persistent after 400 days. In shale gas wells, onset of liquid loading may
generally occur earlier than expected due to the stimulation with hydraulics,
leaving undrained water in the fractures.

The different literature presented above on liquid loading in gas wells and
in particular the determination of the critical gas rate qgc, indicates some
freedom in the choice of the constant in front of the critical gas rate equation
(3.1). Choosing a value close to the original Turner constant will ensure a
reasonable margin on the critical rate. Choosing the constant 5.0 and using a
wellhead pressure of 10 bar together with the gas properties given in table 3.3
leads to the critical rate qgc = 1.203 ·104 m3/d. This value will be imposed as
the minimum accepted gas rate in the following optimization, applied with
a means of preventing liquid loading in the well.

The calculated value of the critical rate is applied in a simulation in the next
section, using a cyclic production strategy for the shale gas reservoir model.

3.5 Cyclic production with predefined shut-
in time

To review the potential of using a shut-in based production optimization,
this section studies the use of a simple cyclic production strategy of a single
shale gas well, based on the above discussion on liquid accumulation the well.
This as a first review of the shut-in based production strategy.
Applying a cyclic production pattern to shale gas wells without accounting
for the possibility of liquid loading in the well is generally unfavorable. This
may cause sudden shut-ins of the well and thus deviation in the original
production plan. The interpretation of the critical rate needed to ensure
continuous removal of accumulated liquid in the well is therefore emphasized
in the development of the production strategy. To study the effect on the
total gas production from shut-ins triggered by the minimum rate, a set of
simulations is performed using a constant shut-in time tSI for each of the
simulations, but with a different shut-in time for each the simulations. The
specifications are:
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• The reservoir properties are the same as in the simulation of the
reservoir model in section 3.1 with initial reservoir pressure 200 bar
and constant 10 bar wellhead pressure. The prediction time is five
years.

• The maximum flow rate is set to 3 · 104 m3/d, and the minimum rate
is set equal to the critical rate, qgc = 1.203 · 104 m3/d.

• Once the well rate falls below minimum rate, the well is shut-in for the
fixed predefined time tSI . After tSI shut-in-days, the well is re-opened
and set to produce again, provided that the rate does not violate the
minimum rate. When the rate once again falls below qgc, the well is
shut-in for another tSI days.

• The considered shut-in times are from one to 100 days. Figure 3.4 is
attached to illustrate the flow rate with 100 days equivalent shut-in
days. The shut-in time is exaggerated to illustrate the shut-in pattern.
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Figure 3.4: The production rate with constant 100 days shut-in time

The simulations are done using the reservoir model implemented in Simulink
in MATLAB, and the shut-ins are implemented with logical constraints and
measurements of the rate. Hence there is no optimization involved in the
obtained results, only simulations.

Figure 3.5 shows the total cumulative production over five years as a
function of the predefined (constant) shut-in time tSI . The total cumulative
production decreases slowly as a function of the shut-in time. Based on the
linear least-squares fit, the cumulative production decreases with
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Figure 3.5: Cumulative production as a function of a fixed number of shut-in
days tSI for each shut-in. The prediction time is 5 years.

qcum.(t, tSI) ≈ 28.98− 0.0105 tSI [106 m3]

as a function of the equivalent shut-in time. However, the total cumulative
production only decreases with 4.26% by using a shut-in time of 100 days.
To elaborate, using a 100 days equivalent shut-in period each time the well
falls below the critical rate, the well is shut-in 6 times during 5 years. Hence
the well is shut almost 33% of the prediction time, still being able of extract
more than 95% of the maximum possible recovery if no liquid loading occur.

However, there is no particular reason why the optimal production strategy
is to use an equivalent shut-in time each time the well must be shut-in.
It may be beneficial to initially apply short shut-ins, while longer shut-ins
may be beneficial when the well has been operated for several years. The
switching frequency and shut-in times may also be affected by varying gas
prices, discounting of the sales-income, cost involved in the production and
constraints in the switching capacity. These factors and the above discussion
are used as basis in the next chapter when the optimization problem for
maximizing the asset of shale gas wells is formulated.
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Chapter 4

Optimization of gas production

This chapter presents the derivation of the optimization problems with the
objective to maximize the production from one and multiple shale gas wells.
Two different optimization problems is defined, with different operational
settings and constraints.

The essential idea of the optimization is to apply shut-ins with variable
duration. This will cause the gas to flow from the outer low-permeable
region of the reservoir to the inner high-permeable region, does recharging
the fractures in the stimulated region with gas. This, as a means of
preventing liquid loading and boosting the production. The derivation of
the optimization problems is based on the simulations and analysis on the
production profile of shale gas wells in chapter 3.

4.1 System description
The production optimization of shale gas wells considered in this report con-
sist of the production from a given number of wells with a joint production
planning. Both optimization from a single well production and from multiple
wells is considered. The optimization problem is therefore defined to be ap-
plicable with respect to both of these cases. In order to maintain a relatively
high production rate over the wells life-cycle, the wellhead pressure must be
kept low for shale gas wells. The wellhead pressure will normally not be able
to provide high enough pressures for the gas to flow in pipelines from the
production fields to the market. Hence, a compressor is needed to compress
the gas to a certain higher pressure. However, the integration of the com-
pressor in the modeling is limited with the means of keeping the complexity
level low, thus focusing on the shut-ins of the wells in problem formulation.

35



Figure 4.1 illustrates the production facilities. The need for separation of
the gas is normally limited, and a separation unit is therefore left out in the
system description.

Compressor

Market

Considered system

Figure 4.1: Illustration of production facilities for shale gas wells

4.2 Objective function
In the choice of objective when optimizing the production from oil and gas
reservoirs, it it common to maximize either the cumulative production or the
net present value (NPV). If the objective is to maximize the NPV, there is
a choice in whether to include only the revenue from the sold gas or also
including the cost of producing the gas. Further, if the latter expenditures
are integrated in the objective function, there is a freedom in whether only
operational expenditures (OPEX) or also capital expenditures (CAPEX) is
included. The CAPEX of shale gas wells dominated by the drilling costs
and the cost of stimulation with hydraulic fracturing. The OPEX of a set of
shale gas wells consists of on-site costs of operating the wells and preparing
the gas to be sold to the market. These costs are associated with the gas
compression, manpower costs, transportation costs and tear and wear of
the well and surface equipment. The definition of the objective function
will therefore take different forms depending on the level of integration of
economics. The choice of objective functions therefore consists of:
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1. Maximizing the cumulative production without taking economy into
account

2. Maximizing the NPV including operational expenses (OPEX) and/or
capital expenditure (CAPEX).

Table 4.1: Sets and indices
Index Meaning Set Meaning
i grid block number Nm number of grid blocks
j well number r set of wells
k time step N number of time steps

The objective function in the definition of the optimization problems is chosen
to be option two with the OPEX as the only included expenditures. That
is, the objective is to optimize the NPV with respect to the operation costs
of the wells. The use of NPV as optimization criteria includes a discount
factor df representing the today value of money, defined as a yearly interest
rate. The objective function will be evaluated over a time horizon T . Letting
Gp denote the gas price in US dollars ($) per volume-unit, the objective of
maximizing the NPV can be written :

max
∫ T

0

Gp

r∑
j=1

qj(t)− Cop(t)

 1
(1 + df )t

dt (4.1)

By considering short-term production, the objective function (4.1) can be
interpreted as the operating income by imposing a zero discount factor df .
The term Cop(t) is used to represent the on-site costs of operating the wells
and preparing the gas to be sold to the market.

As mentioned, the largest expenditure of shale gas wells is without cost of
the drilling and the hydraulic fracturing. The stimulation may performed on
a regular basis, depending on the geological properties of the rock and the
success of each stimulation, and thus be very expensive. In fact, this is one
of the reasons why many shale gas wells today still are unprofitable (WEO,
2009). However, these costs are difficult to estimate, and there is not much
literature available on the topic. These costs are therefore not included in the
objective function (4.1). Hence, the NPV optimized over a long time horizon
will not include all of the expenditures related shale gas wells, but only in-
clude operational costs, excluding any stimulation with hydraulic fracturing
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performed after the initial completion of the well.

4.2.1 The cost term
The production costs of shale gas wells are among other related to the cost
of compressing the the gas. The cost term in the objective function will
therefore include a crude estimate of the cost of compressing the gas.

In calculations of the power needed to compress the gas, it will be assumed
that the compressor is a so-called reciprocating compressor. Further, a
constant downstream pressure pm will be assumed. This pressure is decided
by the demands and requirements of the market. It is common to assume an
isotropic process for reciprocating compression of gases (Guo et al., 2007).
Letting pc be the compressor inlet pressure and neglecting the kinetic energy
in the expression of the shaft work, the power consumption for the compressor
can be written (Guo et al., 2007)

ws(t) = kg
kg − 1pc q(t)

(pm
pc

) kg−1
kg

− 1

 (4.2)

where q(t) is the gas to be compressed and kg is the gas specific heat ratio1.
Normally, several stages of compression is required to compress the gas up
to the specified pressure pm. This will modify the power expression slightly.

The fuel consumption of the compressor is a function of the power capacity
and the power used, the load on the prime mover and type of fuel used. The
function is normally given by the compressor specifications or obtained by
estimation. This cost will not be included in the costs of the compressor. The
power cost is therefore imposed as the only compression cost. Implicitly, it
is thus assumed that the compressor runs on the power supply and that all
gas that is produced can be sold to the market. For more details on multiple
stage gas compression, fuel consumption and appurtenant power expressions,
see Guo et al. (2007).

Using Pp to represent the power price in US dollars ($) per kWh, the cost
term is written

1The subscript g is used to separated the gas specific heat ratio, normally denoted
k = cp

cv
, from the time step index k.
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Cop(t) = l(q(t), t) + Ppws(t) (4.3)

The time argument of l are used to impose a variable cost on operation of
the wells. This term is aimed on operation costs and switching costs of the
well, and will be addressed below.

4.2.2 The time horizon
The time horizon of scheduling and production planning of oil and gas wells
may be subdivided into long-term, mid-term and short-term planning. Long-
term planning often concerns strategic management and investments related
to operating the set of wells and equipment involved in the gas production.
The time horizon is typically a year and up to the field’s lifetime. Mid-term
planning typically spans the production planning and reservoir management
in the time scale of months up to a couple of years, and is also referred
to as season planning in the literature. Short-term production planning is
more related to operational production planning. The operator will typically
seek to optimize the daily production based on the up to date production
history of the well and available real-time information. The time horizon is
thus typically days or weeks. Short term production planning of petroleum
systems has recently been gained a lot of interest, and is usually denoted
real-time production optimization (RTPO). See for instance Gunnerud and
Foss (2009) for an application example of RTPO and Bieker et al. (2006) for
an extensive overview of the aspects of RTPO.

The problems considered is this report consider production optimization of
shale gas wells on short term and long term horizons. The study of long term
optimization is used to study long terms effects and production potential over
several years, while the short term production optimization is aimed for the
daily scheduling, the production planning and the need for maintenance of
the wells.

4.3 Reservoir model representation
The chosen strategy to represent the reservoir and well model in the
optimization problem, is to use a so called simultaneous approach. In
this way, the reservoir and well model model is directly integrated in
the optimization problem. That is, the optimization and simulation are
performed simultaneously. The opposite is to use a sequential approach,
where each iteration in the optimization algorithm consist of the system
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model simulation and the optimization performed sequentially. The pros
and cons of both approaches is addressed in chapter 7, while for now it
is remarked that the simultaneous approach results in many optimization
variables and constraints while preserving full control of the reservoir model
equations with respect to the optimization.

4.3.1 Time discretization
The state space model (4.7) is discretized in time to be incorporated in the
optimization algorithm. An implicit integration method is desirable when
the time integration is solved using a fixed step size. The simplest and least
accurate implicit integration method is implicit Euler’s method. Compared
to the well-known explicit Euler’s method, the integration is done backwards
in time. In terms of a general ODE,

ṁ = f (m,u)
the right-hand side is expanded

mk+1 −mk

h
= f (mk+1,uk+1) (4.4)

The number of time steps is defined N = T/h, where h is the fixed
step size and T is the prediction time. The state space model of the gas
reservoir and the well model are kept as separate equality constraints in the
implementation. This as a means of discussing different control variables
with respect to the optimization problems, but also as the well model will be
extended to include the imposed maximum flow rate qmax. With respect to
the state space model in equation (2.18), (2.19) and well model in equation
(2.34), the discrete representation is obtained by using (4.4),

mk+1 −mk

h
= E−1Amk+1 + E−1Bqk+1 (4.5)(

I− E−1Ah
)

︸ ︷︷ ︸
=Ad

mk+1 = mk + E−1Bh︸ ︷︷ ︸
=Bd

qk+1 (4.6)

The representation of r wells in the simultaneous optimization approach is
then obtained by the equations

Ad
j mj

k+1 = mj
k + Bd

jqjk+1, k = 0, .., N−1, j = 1, .., r (4.7)
mj

0 = mj
init, j = 1, .., r (4.8)

qjk = αjk w
j
(
mj

1,k −m(espjw,k)
)
, k = 0, .., N, j = 1, .., r (4.9)
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For each time step, the pseudopressure for each block together the separate
well model are implemented as a set of explicit equality constraints. Hence,
for one well the number of equality constraints representing the gas rate over
the prediction time T is (Nm + 1)× (N + 1). Implicit Euler’s discretization
scheme is A-stable, that is, it is stable for any choice of the time step h
(Egeland and Gravdahl, 2003) .

Before proceeding on the choice of control variables, the imposed bounds on
the flow rate is discussed.

4.4 Bounds on the flow rate
As discussed in the modeling of the tubing performance in section 2.4, the
production immediately following the re-opening of a well will be unrealistic
high if no upper bound is posed on the flow rate q. This results in a quick
depletion of the reservoir. To obtain realistic solutions from the production
optimization, it will therefore be essential to impose a distinct upper bound
on the flow rate from each well:

qjk ≤ qjmax, k = 0, .., N, j = 1, .., r (4.10)
To prevent liquid loading in the wells, each of the flow rates should be greater
than the critical gas rate specified qgc derived in section 3.4. This rate is
emphasized in the optimization and imposed as a fixed minimum rate for
each well:

qjgc ≤ qjk, k = 0, .., N, j = 1, .., r (4.11)

Hence, the total bounds on qjk will be

qjgc ≤ qjk ≤ qjmax, k = 0, .., N, j = 1, .., r (4.12)
The lower bound in (4.12) will cause infeasibility once a well is shut in. To
circumvent this problem, one possibility would be to soften the lower bound
by introducing slack variable and penalize the slack variable in the objective
function. However, penalizing the slack variable in the objective function will
deteriorate the economical interpretation of the objective function. Hence
this solution procedure will not be further investigated.

Equation (4.11) must be modified before implemented in the optimization
problem. Its final form depends on the choice of decision variables.
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4.5 Choice of control variables
Choosing the control variables of the wells for incorporation in the
optimization formulation, consists of the options:

• Choosing which of variables in the well model in equation (4.9) to be
control variables

• If the valve setting is chosen as control variable, it can be defined either
as continuous or as integer variable.

The use of integer variables is an intuitive and straight forward approach for
the modeling of shut-ins. Using integer variables to model on/off valves is
also meaningful modeling approach. The pressure build-up in the reservoir
from shut-ins of the well, is triggered by the valve setting α being set to
zero, giving a step response in the grid pressures. This is property is es-
sential, both for the simulation and for the optimization of the switchings
of a shale gas well. There is no obvious way of implementing shut-ins by
only controlling the wellhead pressure and at the same time avoiding integer
variables, without assuming a particular structure of the optimal solution.
Using integer variables enables an efficient way of handling the lower bound
on the flow rate in equation (4.11). It is, however, important to mention
that the solution procedure and implementation changes considerably once
integer variables are introduced in the problem formulation.

The valve settings are by definition fractions between zero and one. Following
the above discussion, the valve setting will therefore be imposed as integer
binary variables. Following the notation of Wolsey (1998) for n-dimensional
0,1 vectors, the set of feasible valve settings will thus be a subsets of

B = {0 , 1}n

Although the frequency of the decision variables may be defined differently
from the sampling interval of the state space model, it will be assumed that
the control settings can be changed by the same interval as the fixed step
size of the discretized reservoir model in equation (4.7). That is, the number
of control variables will be the same as the number of time steps N .

The upper bound on the flow rates, qmax, complicates the problem
formulation by the use of binary valve settings. If the wellhead pressure
is fixed and the binary valve settings are chosen as the only control variables,
the upper bound in equation (4.10) will cause an infeasible optimization
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formulation. Actually, the only feasible production setting will be to shut
the wells the entire prediction horizon. This infeasibility problem can be
overcome by

1. Imposing the wellhead pressure for each time step as an additional
control variable, thus introducing a a new decision variable in the
optimization problem. The control variables will then be both the
wellhead pressures and the binary valve settings.

2. Including the fixed maximum flow rate qjmax in a reformulation of the
well flow model in equation (4.9), using only the binary valve settings
as control variables.

3. The same as above, but imposing a slack on the maximum flow rate.
That is, the requested flow rate is included as a decision variable with
tight bounds.

Option 2 is the strategy giving the least number of control variables, and is
the preferred approach with the objective of modeling on/off valves. The in-
tention of the optimization is to provide production plans and scheduling by
the use of shut-ins of the wells. Hence, few control variables is advantageous.

The following optimization problems will therefore be defined with binary
valve settings as the only control variables in a extended well model.

4.6 Mixed integer formulations
Based on the above discussion of objectives, constraints, bounds and decision
variables, the optimization problem for one and multiple wells are formulated.
The optimization will be performed using the discretized representation of
the reservoir model in section 4.3.1. The objective function will thus be on
the form,

max
N−1∑
k=0

r∑
j=1

Gpq
j
k − Cop,k

(1 + df )a
h (4.13)

where a substitutes the time argument in the continuous time objective
function (4.1), and yields the number of year passed since the start in the
production.
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4.6.1 Problem 1:
When the wellhead pressure is fixed, the upper bound (4.10) on the flow from
the well model (4.9) will as mentioned cause infeasibility in the optimization
problem. This problem is solved by replacing the upper bound qjmax and the
well model for each well j by the non-smooth, continuous function

qjk := min
{
qjmax , α

j
k w

j
(
mj

1,k −m(espjw)
)}
, k = 0, .., N, j = 1, .., r (4.14)

The lower bound (4.11) defining the shut-in rate can then be efficiently
reformulated by the constraint

qjgcα
j
k ≤ qjk, k = 0, .., N, j = 1, .., r (4.15)

thereby avoiding the infeasibility on (4.12) rising from shut-ins of a well. Note
that this formulation is only meaningful when the valve settings are defined
as binary variables. It is further remarked that the derivative of (4.14) is dis-
continuous and therefore may cause convergence problems in gradient based
optimization algorithms. However, the need for additional control variables
is avoided.

To enable the use of a variable cost on the switchings of the wells instead
of the daily operation costs, the auxiliary variables ηjk is introduce to count
the number of switchings of a well. The ηjk variables are defined by using the
valve settings αjk in the additional constraints

|αjk+1 − α
j
k| ≤ ηjk+1, k = 0, .., N−1, j = 1, .., r (4.16)

A cost on the switchings of the wells can the be imposed in the general cost-
term l in the objective function by

l(qjk) := Op η
j
k, (4.17)

where Op is the price for opening or closing of a well in association with
shut-ins. Since the sign in front of Cop,k in the objective function is negative,
symbolizing a cost, ηjk will take the following values for time step k + 1:
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Event αjk+1 αjk ηjk+1

closing 0 1 1
stay closed 0 0 0
opening 1 0 1
stay open 1 1 0

Note that that η variables are a defined as continuous variables, but only
takes the values zero or one. The initial switching of the well can be defined
by using the last valve settings prior to the prediction horizon, αj−1, defined
such that

αj−1 =
{

0, if the well is initially closed
1, if the well is initially open (4.18)

Including the constraint (4.16) and a price on ηjk in the objective function
will thus impose a cost on the switching of a well in addition to the cost of
compressing the gas. These are the only operational costs included in the
optimization formulation. When applying shut-ins as production plan of the
shale gas wells, the operator will normally not have unlimited capacity to
switch a large number of wells on and off. Hence there might be constraints
on the acceptable number of switchings. This is incorporated as global
production constraints on the switching of the wells, and imposed as a set of
linear constraints on ηjk, written generally as:

Ψ
(
η1

1, η
1
2, ..., η

j
k, ..., η

r
N

)
= 0 (4.19)

The constraints on the switching may be imposed both as per-time-step con-
straints and as constraints over the entire prediction horizon.

Summarized, the optimization problem in terms of maximizing the net
present value for a set of shale gas wells controlled with on/off valve set-
tings is formulated:
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Problem 1:

max J =
N−1∑
k=0

r∑
j=1

Gp q
j
k − C

j
op,k

(1 + df )a
h (4.20)

s.t.
αjk ∈ {0 , 1} , k = 0, .., N, j = 1, .., r

Ad
j mj

k+1 = mj
k + Bd

jqjk+1, k = 0, .., N−1, j = 1, .., r
mj

0 = mj
init, j = 1, .., r

qjk = min
{
qjmax , α

j
k w

j
(
mj

1,k −m(espjw)
)}
, k = 0, .., N, j = 1, .., r

qjgcα
j
k ≤ qjk, k = 0, .., N, j = 1, .., r

|αjk+1 − α
j
k| ≤ ηjk+1, k = 0, .., N−1, j = 1, .., r
Ψ
(
η1

1, η
1
2, ..., η

j
k, ..., η

r
N

)
= 0,

Cj
op,k = Opη

j
k + Pp

kg
kg − 1pc q

j
k

(pm
pc

) kg−1
kg

− 1


By defining the valve setting as binary variables, problem 1 will consequently
be a mixed integer nonlinear program (MINLP). Although problem 1 is for-
mulated as the problem of finding the optimal set of binary valve settings,
the entire set of optimization variables includes both continuous and integer
variables. The cost term in the last line in the problem formulation is imple-
mented in the objective function is written as a separate equation to simplify
the readability.

Note that there are no pressure dependency or interconnections between the
wellhead pressures of the different wells nor the inlet pressure of the compres-
sor. It is assumed that all wells operates with a constant wellhead pressure,
and the surface condition that the wells “see” is therefore the constant well-
head pressure pjw. With reference to figure 4.1 of the system description, it is
thus assumed that there are additional valves in the inlet to the compressor
inlet pressure. However, it is chosen not to include neither the description
of these valves or the dynamics of the compression. The compression cost in
the last line in the problem formulation will therefore only affect the value
of the NPV as an estimate of the compression cost. Since it linearly adds
up the compression cost from the individual flow rates, the argument of the
optimal solution will not be affected by the compression cost term. This
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way the integration of the surface and the subsurface system is done using
a “loose coupling” scheme, with interconnections only in the global produc-
tion constraints. The same level of integration is utilized in the definition of
problem 2 below.

4.6.2 Problem 2:
Problem 2 is based on the following production scenario:

Based on the market’s demands for natural gas, the customer of the gas
produced from the considered shale gas wells has specified a requested sup-
ply of gas. From this request of gas, a supervisory control has specified a
constant total production rate per time step for the set of wells controlled.
The total gas rate demanded by the marked, denoted qtot,k, is then expressed
in standard conditions before the compression of the gas. Consequently, the
specification of a total gas rate per time step from the r wells is imposed as a
global constraint in a optimization problem with the same reservoir and well
model as in the previous problem definition.

This type of problem resemble the problem of optimal trajectory following,
where in this case the optimal trajectory is the constant rate. The most
commonly used objective for such problem is to minimize the deviation from
the optimal trajectory using a quadratic criteria. By choosing appropriate
penalty parameters in the objective function matrices, the quadratic criteria
ensures a high cost when there is a large deviation from the actual and the
requested rate (the trajectory).

The drawback of using a quadratic criteria, is the loss of the economical
meaning of the objective function. As will be shown in chapter 5, the
particular form of the well model makes it possible to reformulate the
nonlinearities by linear constraints and binary variables. Hence, it is an
advantage to preserve linearity of the objective function. An alternative
formulation that preserves both linearity and the economical meaning of the
objective function is

J =
N−1∑
k=0

 r∑
j=1

(
Gp q

j
k

)
− Ppws,k −G1q1,k −G2q2,k

h (4.21)

with the constraints
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−q1,k + q2,k +
r∑
j=1

qjk = qtot,k , k = 0, .., N − 1 (4.22)

The auxiliary variables q1,k and q2,k thus balance the total produced rate for
each time step, and gives the r wells total deviation in production rate form
the requested total rate per time step qtot,k. The penalty parameters G1 and
G2 are the price in $ per volume unit that is lost from either producing too
much or too less gas compared to the requested rate, respectively. This al-
lows for different penalties on excessive gas production and underproduction.
In particular, they can be interpreted both as economical parameters as well
as tuning parameters for minimal deviation from the requested rate.

The flow rate from each well is still lower bounded by the specified critical
rate qjgc. The estimate of the cost of the gas compression is now included as
the only operation cost.

The optimization problem of with respect to maximizing the profitability
of the set of shale gas wells under a total maximum production constraints
therefore takes the form:

Problem 2:

max J =
N−1∑
k=0

 r∑
j=1

(
Gp q

j
k

)
− Ppws,k −G1q1,k −G2q2,k

h (4.23)

s.t.

αjk ∈ {0 , 1} , k = 0, .., N, j = 1, .., r

qtot,k =
r∑
j=1

(qjk)− q1,k + q2,k, k = 0, .., N−1

Ad
j mj

k+1 = mj
k + Bd

jqjk+1, k = 0, .., N−1, j = 1, .., r
mj

0 = mj
init, j = 1, .., r

qjk = min
{
qjmax , α

j
k w

j
(
mj

1,k −m(espjw)
)}
, k = 0, .., N, j = 1, .., r

qjgcα
j
k ≤ qjk, k = 0, .., N, j = 1, .., r

ws,k = Pp
kg

kg − 1pc
r∑
j=1

(qjk)

(pm
pc

) kg−1
kg

− 1
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Note that the requested rate may very well be time-varying, giving a sequence
of different rates to follow instead of the same rate for each time step.
However, the rate per time step will be assumed to be constant in this
report. Problem 2 will only be considered on a short time horizon, therefore
neglecting any discount factor. As in problem 1, there is no pressure
dependency between the wells nor the compressor, and the global production
constraints on the wells are therefore the requested total production rate.
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Chapter 5

Implementation and solution
methods

The use of integer variables in the formulation of the optimization problems
in section 4.6, requires the use of solvers tailored for solving mixed integer
programming. Generally, the Optimization Toolbox in MATLAB is not de-
signed for mixed integer programs, and the availability of suitable solvers is
rather limited. To enable efficient use of special purpose software tailored for
mixed integer programs, the optimization problems from chapter 4 is imple-
mented in the high-level mathematical programming languages GAMS 1 and
Xpress-Mosel2.

Both optimization problems in the previous chapter are implemented using
the simultaneous approach. By doing so, the reservoir and well model equa-
tions are formulated as explicit equality constraints. This limits the com-
plexity in the implementations while at the same time resulting in a large
set of constraints and variables.

This chapter presents a reformulation of the MINLP problems in chapter 4 to
a MILP problem by using linear constraints and additional binary variables.
Hence, GAMS is used in the implementation of the MINLP problems, while
Xpress-Mosel is used to implement a MILP reformulation of the problems.
In addition, the mathematics of the optimization algorithms are briefly
reviewed. At the end of the chapter, two alternative problem formulations
are presented and addressed.

1GAMS Development Corporation, see http://gams.com/
2FICO TM, see www.fico.com
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5.1 Solving mixed integer nonlinear pro-
grams

With the MATLAB model of the shale gas reservoir as basis, the optimiza-
tion problem 1 in section 4.6 is implemented in the programming language
GAMS (General Algebraic Modeling System). There are a variety of solvers
distributed with GAMS, some of which are open-source and thus easily avail-
able for large-scale optimization.

The chosen optimizer for solving the implemented MINLP problem is the spe-
cial purpose solver BONMIN (Basic Open-Source Nonlinear Mixed Integer
programming), distributed through the COIN-OR project (Computational
Infrastructure for Operations Research). The mathematical details of the
various algorithms implemented in BONMIN can be found in Bonami et al.
(2008). Of the four available algorithms in BONMIN for solving MINLPs, the
branch and bound is selected due to the nonconvexity of the problems con-
sidered. This agrees with the recommendations in Bonami and Lee (2007).
BONMIN further uses the open-source interior-point filter line-search algo-
rithm IPOPT for solving the nonlinear programs (NLP) at the nodes with
the integer variables relaxed.

5.2 Reformulation of the nonlinearities
The nonlinearities in the optimization problem formulations in section 4.6
are due to the extended well model

qjk := min
{
qjmax , α

j
k w

j
(
mj

1,k −m(espjw)
)}
, k = 0, .., N, j = 1, .., r (5.1)

and the definition of the ηjk variables in equation (4.16). The nonlineari-
ties in (5.1) consist of the aggregate function (the minimum value) and the
product of αjk and mj

1,k. Both these nonlinearities can be efficiently refor-
mulated to linear constraints in a single binary or continuous variable. This
enables reformulation of the original problems to mixed integer linear pro-
grams (MILP). The reformulation can be performed in several ways, and is
a topic of several textbooks on mathematical programming and operation
research. See for instance Williams (1993). The reformulation used in this
section is based on the Xpress-MP manual from FICOTM (2009).
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For simplicity, the well index in (5.1) is left out in the derivation of the
reformulations. Hence, it is implicitly assumed that the equations in the
reformulation are valid for all of the wells considered.

5.2.1 Product values
Consider once more the non-smooth, aggregate flow function (4.14) for a
fixed wellhead pressure pw:

qk = min {qmax , αk w (m1,k −m(espw))} (5.2)
Define the actual well model, that is, the last term in the above expression

q̃k := αk w (m1,k −mwf ) (5.3)
where mwf = m(espw) is the bottomhole pseudopressure corresponding to
the fixed wellhead pressure pw. Note that the nonlinear mapping pw 7→ mwf

is done off-line, prior to the optimization. For readability, q̃ is divided into a
nonlinear and a linear part, respectively:

q̃k = αk wm1,k − αk wmwf = q̃nl,k − αk wmwf

⇒ q̃nl,k := αk wm1,k (5.4)

The nonlinear part q̃nl, is a product of one binary variable and one continuous
variable. For the reformulation, it is necessary to know the bounds on the
continuous variable m1. Since there is no injection wells in the reservoir, the
pressure will never go above the initial pressure, or equivalently, m1 is upper
bounded by the initial pseudopressure in grid block one. For producing wells,
the block pseudopressures in the reservoir will never fall below the bottomhole
pseudopressure mwf . The equivalent mixed linear reformulation of q̃nl,k, can
then be obtained

q̃nl,k =αk wm1,k

⇓

αk wmwf ≤ q̃nl,k ≤ αk wm
max

wmwf (1− αk) ≤ wm1,k − q̃nl,k ≤ wmmax (1− αk)
(5.5)

where the maximum value of m1,k, denoted mmax, equals the initial pseudo-
pressure in grid block one. The inequalities (5.5) above are all linear, and
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can hence substitute the nonlinear terms q̃nl,k in equation (5.4) in a MILP
implementation.

5.2.2 Minimum values
In a similar, the min {· · · } function in (5.2) can be reformulated as a set of
linear constraints for implementation with a MILP solver. Using equation
(5.3) for q̃, still omitting the well index, the flow equation (4.14) is repeated
here with the simplified notation

qk = min {qmax, q̃k} (5.6)
q̃k := q̃nl,k − αk wmwf (5.7)

q̃nl,k := αk wm1,k (5.8)

It is necessary to know the lower and the upper bounds on the variable
arguments in (5.6), in this case the lower and upper bound of q̃. The upper
bound for q̃ is essentially given by the supremum norm of a sequence of all
feasible values of (5.7) in the prediction horizon. However, when the wellhead
pressure is fixed, the value upper bound on q̃, denoted q̃k∞ is given by

q̃k
∞ = w (mmax −m(espw)) (5.9)

where mmax is the maximum value of pseudopressure m1,k in grid block one.
Note that the value of q̃k∞ is generally different for the individual wells and
depends on the initial reservoir pressure. The lower bound on q̃k In the
linear reformulation of the min {· · · } function, one new binary variables d1
is introduced for each time step. The min {· · · } function expressing the well
flow rate in problem 1 and 2 can then be reformulated with following set of
linear constraints:

qk ≤ qmax (5.10)
qk ≤ q̃k (5.11)
qk ≥ qmax d1,k (5.12)
qk ≥ q̃k − q̃k∞ d1,k (5.13)

Note that the calculation of q̃k∞ is done off-line and the value is thus known
a priori the optimization. Observe the difference between this value and the
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value qmax.

The equation defining the switchings,

|αk+1 − αk| ≤ ηk+1

is reformulated simply using the definition of the absolute value:

− ηk+1 ≤ αk+1 − αk ≤ ηk+1

5.2.3 Mixed integer linear formulation
To summarize the above reformulations, the complete reformulation of the
extended well model is given below:

qk = min {qmax , αk w (m1,k −m(espw))}

⇓

q̃nl,k ≥ αk wmwf

q̃nl,k ≤ αk wm
max

wm1,k − q̃nl,k ≥ wmwf (1− αk)
wm1,k − q̃nl,k ≤ wmmax (1− αk)

q̃k = q̃nl,k − αk wmwf (5.14)
qk ≤ qmax

qk ≤ q̃k

qk ≥ qmax d1,k

qk ≥ q̃k − q̃k∞d1,k

All other constraints in addition to the objective function takes the same form
as in the problem definitions in section 4.6. These are not restated here. The
MINLP problems defined in problem 1 and 2 are now effectively reformulated
as equivalent MILP problems. In fact, the optimization problem considered
is by using the above reformulations recasted as mixed binary linear programs
(MBP) or mixed 0-1 programs (Pochet and Wolsey (2006), chapter 3). How-
ever, the implementation with the reformulation of the nonlinearities will be
referred to the as MILP formulation in the rest of the report.

It is clear that the reformulation of the product and the min {· · · } function
is not free of cost; for each time step k, the single nonlinear constraint (5.2)
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of the well flow is replaced by nine inequality constraints and one additional
binary variable for each well. In addition, the absolute value for counting the
switchings is replaced by two linear constraints.

The MILP problems are implemented in the state of the art software Xpress-
IVE from FICOTM, using the special purpose mathematical programming
language Xpress-Mosel. The MILP implementation in Xpress-IVE will be
the implementation in focus in this report. The optimizer applied on the
MILP problem is referred to as the Xpress-MP solver, and is briefly pre-
sented below.

Remark on the MILP implementation: Note the difference between
imposed well-model (5.1) with the above reformulation with a reformulation
of the form

qk ≤ αk w (m1,k −m(espw))
qgcαk ≤ qk ≤ qjmax

Although the above formulation would avoid the additional binary variables
d1,k, the result would be different since qk is now defined as free variable
with two (redundant) upper bounds. In the simultaneous implementation,
this will cause a different result and flow behavior than the aggregate well
flow function (5.1). It is hence important to emphasize that the min {· · · }
form of the extended well model (5.1) is imposed as a compensation for the
simplicity of the tubing model, giving physically more realistic flow rates.

5.3 Optimality conditions
This section briefly reviews the main properties of the Branch and Bound
algorithm. Although both the MINLP implementation in BONMIN and the
MILP implementation is solved with basis in the Branch and Bound algo-
rithm, the nonconvexity of the formulated MINLP problem causes a some-
what different structure of the solution and the search tree. This is further
addressed in the discussion in section 7.3. Hence, the details below are re-
lated to the MILP formulation with the Xpress-MP optimizer. The section
is based on Pochet and Wolsey (2006).

The Xpress-MP optimizer uses a relaxation of a subset of the binary variables
solved as a linear program by using the Dual Simplex Method. The MILP
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problem is the solved as a sequence of linear programs by using the Branch
and Bound algorithm. To simplify the discussion of the algorithm, a general
formulation of the variables and constraints defining the MILP problem is
made. The complete feasible setX of variables and linear constraints defining
the MILP pressed can be expressed (Pochet and Wolsey, 2006)

X = {(x, θ) ∈ R× {0, 1} : Λx+ Ωθ ≥ υ} (5.15)
where all continuous variables are lumped into one long vector x and the
binary variables are lumped into the vector θ. The coefficients of the linear
constraints can be re-arranged in the large matrices Λ and Ω, including the
vector υ. The size of the sets are omitted and thus implicitly understood in
the set definition. Initially, all binary variables are relaxed and the initial
linear relaxation (LR) is solved at the root node. That is, the maximum of
the objective value J is solved with respect to the relaxed set

Px = {(x, θ) ∈ R× [0, 1] : Λx+ Ωθ ≥ υ} (5.16)

For a mixed binary linear program with a maximization objective function,
the solution J̄ of the initial LR defines an upper bound on the optimal
objective value of the original MILP problem (Wolsey, 1998). That is,

J(X) ≤ J̄(Px) (5.17)
Due to linearity of all of the constraints from the MILP reformulation, the
solution obtained from the Simplex solver of the LR problem is globally
optimal. On the the other hand, the objective value J of any feasible solution
with respect to the MILP problem provides a lower bound on the optimal
objective value. Hence, the bounds on J are

J ≤ J(X) ≤ J̄(Px) (5.18)
These bounds are crucial in the optimization of an MILP problem. In the
Xpress-MP optimizer, it is defined 3

Duality gap = |Best LB− Best UB|
Best UB × 100[%] (5.19)

The best lower bound LB is updated every time a better feasible solution is
found, and is initially set to J = −∞. In a similar way, the initial best UB
is J̄(Px). At run time, the best UB is updated with the maximum upper
bound among all outstanding nodes to be solved. The value is obtained from

3The definition differs form the definition in Pochet and Wolsey (2006) as it divides by
the best upper bound instead of the best lower bound.
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the subsequent LP relaxations, for which a subset of the binary variables are
fixed and one variable is branched at a time. The set of fixed binary variables
follows from the rules for the node selection and the variable branching. Both
rules have important impact on the quality of the solution. See for instance
Pochet and Wolsey (2006) for a discussion on different definitions of these
rules.

The duality gap is very important property for solving MILP’s with the
branch and bound algorithm, and is applied in the termination of the search
for the optimal solution. It will therefore be emphasized in the numerical
tests of the MILP implementation in the next chapter.

5.4 Scaling
The magnitude of the pseudopressures may cause numerical related problems
in the optimization. An initial reservoir pressure of p = 200 bar (2.0 · 107 Pa)
corresponds to an initial pseudopressure m(p) = 2.65 · 1019 Pa/s. The
pseudopressure variables m should therefore be scaled before fed to the
optimization solver. The scaling of m is performed using diagonal scaling
(Nocedal and Wright, 1998), which allows different scaling of the individual
grid block variables:

m := Msm̃ (5.20)
with diagonal scaling matrix

Ms :=


ms1 0
0 ms2

. . .
. . . . . . 0

0 msNr

 (5.21)

The initial reservoir pseudopressure minit is scaled as above, while mmax used
in the reformulations in section 5.2 and the bottomhole pseudopressure mwf

are scaled with the factor ms1. The vector m is thus replaced by the product
Msm̃ in state space equation for each well, giving

AdMs m̃k+1 = Msm̃k + Bdqk+1 k = 0 · · ·N − 1 (5.22)
The scaling matrix Ms is invertible if every individual diagonal entry is non-
zero. Hence, left-multiplying equation (5.22) with Ms

−1 gives the scaled state
space model as a set of equality constraints:
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Ãd m̃k+1 = m̃k + B̃dqk+1 k = 0 · · ·N − 1 (5.23)
Ãd : = Ms

−1AdMs

B̃d : = Ms
−1Ad

If the scaling factors are chosen equal for all elements in m (i.e. for every
grid block pseudopressure), the product Ms

−1AdMs is commutative and
thus Ãd = Ad. The well index wj is in the magnitude of 10−15 and may
cause round-off errors in the computations. All equations involving the flow
rate and thus the product of m1 and wj, is therefore replaced by w̃jm̃ where
w̃j := msw. The rows of Ãd are not further scaled.

The the scaling factors in Ms may be chosen differently for different numerical
examples of the optimization problems, mostly dependent on the time step
size h. Normally, the factors are chosen in the magnitude ∼ 1018.

5.5 Alternative problem formulations
This section gives a review of alternative formulations of the optimization
problem formulated in chapter 4. In particular, the potential of using only
continuous variables in the problem formulation is considered.

As described in the introduction chapter, Rahmawati et al. (2009) apply
a constant shut-in period to maximize the production from a single tight
gas well. The implementation of the optimization problem is done using a
high-level software integration of the reservoir model, the compressor model
and the optimizer. The optimization problem is solved using a sequential
approach with the Nelder-Mead simplex reflection method, imposing a max-
imum rate and a minimum rate (the minimum rate to lift) in the reservoir
model and using the single shut-in time tSI as optimization variable. The
method is effective, but does not allow for shut-ins of variable duration. The
optimizer also has little control of the simulation part, since the simulation
and the optimization is done sequentially.

Adjoint-based optimization applied to petroleum reservoirs has recently gen-
erated significant interest. The application in focus has been optimal water-
flooding in oil reservoirs with variations in control variables and constraints.
In Zandvliet (2008) chapter 3, water-flooding in an oil reservoir model is opti-
mized by controlling the valve settings. However, the proposed method only
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considers constraints on the control input, while the computational burden
for adjoint-based optimization methods are normally the presences of state
constraints. The implications of state constraints are studied Suwartadi et al.
(2009). Sarma et al. (2008) further address the presences of nonlinear control-
sate path inequalities in adjoint models, and also gives a survey of the existing
methods on these types of problems. Details of the adjoint-based optimiza-
tion and the calculus of variations can be found in Bryson and Ho (1975).

The challenge of any of these methods when applied to optimization of shale
gas wells, is the lower bound on the flow rate imposed as the critical rate for
avoiding liquid loading. The bound

q(m(t), α(t)) ≥ qgc

will hence be an explicit input- and state constraint. The paper Optimal
Control of Switching Times in Switched Dynamical Systems by Egerstedt
et al. (2003) presents an adjoint-based optimization strategy on systems that
have similarities with the problems considered in this report. The problem
considers a given sequence of N switching times,

τ̄ = (τ1, ..., τN) (5.24)
applied to the optimization problem

max
τ̄

J =
∫ T

0
L(x(t))dt,

s.t.
ẋ(t) = {fi(x(t))}Ni=0

x(0) = x0

where {fi(x(t))}Ni=0 is a sequence of continuously differentiable function from
Rn to Rn, each defined in the interval t ∈ [τi, τi+1). The paper presents
a particular simple calculation of the gradient of J(τ̄) using an adjoint
formulation, which are further embedded in the steepest decent algorithm to
find the optimal switching times of the dynamical system. The assumption
of continuous differentiability limits this methods applicability to the shale
gas reservoir and well model developed in this report. The well performance
of the shale gas well seen in figure 3.1(a) in section 3.2 has discontinuities
in the derivative of the flow rate in the transition between the plateau level
qmax and the decline rate, and when the well is shut-in. A proposal to apply
the method of Egerstedt et al. (2003) on the shale gas problem is to apply
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the dynamic state space model in continuous time as a sequence of switched
models,

ṁ(t) = { fi(m(t), q(t)) }Ni=0 (5.25)
and defining three different forms of the reservoir model depending on the
rate:

fi(m(t), q(t)) =


fi,1(m(t)), if q(t) ≥ qmax
fi,2(m(t)), if qgc < q(t) < qmax
fi,3(m(t)), if q(t) ≤ qgc

(5.26)

That is, fi,1 is the right hand side (RHS) of the dynamic reservoir model
with constant rate qmax as the applied control variable, fi,2 is the RHS of the
reservoir model with the conventional well model with valve setting equal
one and a constant wellhead pressure, and fi,3 is the (RHS) of the reservoir
model when the well is closed, i.e. q = 0 4. In this way, a cycle of the max
production, the transition region and the shut-in period is defined as one
function that is repeated as a sequence of functions to represent the response
of the reservoir model to shut-ins. To obtain continuous differentiability, the
sub-functions in the piecewise function expression (5.26) may be put together
using a normalized radial basis function. The other alternative would be to
define the domain for each of the sub-functions by linear cuts and assemble
the complete function (5.26) by using integer variables. However, this ap-
proach will not solve the the discontinuity problem and may not work at all.

The formulation is very experimental, and no attempt is made prove that it
will work on the switching time computation of the shale gas well. The pro-
pose formulation has not been implemented in this report, and is therefore
left out for further work. However, it is proposed as an sequential approach of
solving the switching of the shale gas well, and may be an alternative method
for solving the optimal set switchings of switchings for shale gas wells. The
proposed formulation omit the discretization of state space model and have
a strongly reduced number of optimization variables, while the drawback is
the assumption of the known number of switchings and the need to smooth
the transitions in the subfunctions (5.26).

Another algorithm for switching time computation can be found in Simakov
et al. (2002). However, this algorithm also assumes a fixed number of
switchings and a fixed terminal state on the time horizon of the optimization.
The optimization problem may also be formulated using the continuous time
ODE for the reservoir model together with the bounds on the flow rate and

4The bold fi is used as vector notation, following the notation in the rest of the report.

61



the binary valve settings. The problem is then an example of mixed integer
dynamic optimization (MIDO). The use of both sequential and simultaneous
approaches for solving MIDO problems is described in Flores-Tlacuahuac
and Biegler (2006).
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Chapter 6

Results from numerical
examples

This chapter presents results and analysis based of numerical examples
applied to the formulations of the optimization problems in chapter 4. The
optimization is performed with both single and multiple wells, and with the
MINLP and MILP implementation presented in chapter 5. Unless clearly
specified, the geometrical properties in table 3.1 and the reservoir and well
properties in the tables 3.2 and 3.3 presented in section 3.1 will be applied
in the examples.

6.1 Optimization of single well production
Two different examples are constructed to study the applicability of problem
1 in section 4.6. Both examples considers the production from a single well,
and is formulated as optimization problems of short-term production plan-
ning and long-term recovery, respectively.

The properties of the gas compression are shown in table 6.1, which is used
to estimate the cost of compressing the gas before it is sold to the market.
Note the value of the inlet pressure pc, which is set constant and low, and
only used estimate of the compression cost. Note once more that possible
gas fuel consumption used to produce the power to the compressor is not
included in the objective function. Hence, it is assumed that all gas that is
extracted from the reservoirs can be sold to the market.

The computations are performed on a Fujitsu Desktop with two 2.13 GHz
processors and 16GB RAM.
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Table 6.1: Compression properties
pc 10 bar
pm 100 bar
kg 1.32

Table 6.2: Initial gas and power price, retrieved the 16.05.2010 from the US
Energy Information Administration - EIA.

Label Field units SI-units Abbreviation
Gp 5 $/mcf 0.117 $/ m3 Gas price
Pp 0.0682 $/kWh - Power price

Clarification: A switching of a well is referred to the operation of either
closing or opening a well, that is, a shut-in or a re-opening.

6.1.1 Example 1: Short-term production planning of
a single shale gas well

Once a shale gas well is stimulated and prepared for production, the optimal
solution of problem 1 for a single will be trivial in the initial phase; As long
as the flow is above the critical rate qgc the optimal valve setting is to keep
the well open. On the other hand, the solution is non-trivial once the rate
approaches the critical rate qgc.

To get a meaningful short-term optimization problem, a simulation using the
base case in section 3.1 with initial pressure 200 bar is performed prior to the
optimization. The initial grid pseudopressures of the optimization are then
set equal the reservoir grid pressures from this simulation just before the flow
reaches the critical rate. Precisely, the grid pseudopressures are sampled 2
years and 28 weeks after the start up of the well.

Description:

Example 1 uses the reservoir and well characteristics described base case in
section 3.1, except from the initial pseudopressure as described above. Par-
ticularly, the well is assumed to operate on a constant wellhead pressure of
10 bar. The imposed minimum gas rate is the critical gas rate calculated in
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section 3.4, i.e. qgc = 1.20 · 104 m3/d.

The time step in example 1 is set to 12 hours, thus allowing relatively fre-
quent switching. The switching cost Op is set to = $200 per switching. There
are no constraints on the number of switchings. Hence the function Ψ(η1

k) for
the global switching constraints is taken out of the optimization problem. On
a short-term production planning, the total operating income is considered
as a better performance measure than the NPV. Hence the discount factor
df is set to 0. The operating income is measured from initial prediction time
as described above to the final prediction time T . Hence, the operating in-
come does not included the entire life-cycle profit of the well. Example 1
is solved both with the MINLP implementation of problem 1 and with the
reformulation to the MILP problem described in chapter 5.

Results:

Table 6.3: Results from example 1 tested with different implementations and
solvers. The - sign indicates that no solution is found

Prediction Time T [days] 7 14 21 28
BONMIN - GAMS
Objective value J [$] 9596 18275 27721 -
No. of switchings 2 8 10 -
Solution time [sec] 15.1 47.8 155.7 810
Xpress-MP - Mosel
Objective value J [$] 9596 19497 29265 38805
No. of switchings 2 2 2 2
Solution time [sec] 0.1 0.8 3.4 344.2
Optimality gap [%] 0.00 0.00 0.00 0.00

Table 6.3 shows the results of example 1 solved with BONMIN and Xpress-
MP, respectively. The results show that the MINLP formulation solved with
BONMIN finds a lower maximum objective value than the the MILP for-
mulation solved with the Xpress-MP optimizer for two and three weeks pre-
diction time. The solution time is clearly favorable in terms of the MILP
implementation. However, the performance of BONMIN is satisfactory on
small problem sets despite the discontinuity in the derivative of the extended
well flow model. For a four weeks prediction time, the BONMIN does not
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converge to a local feasible optimum.

Remark: In the results in both table 6.3 and 6.4, ηk is considered in the in-
terval k = 0, .., N−1. Since the objective function sums the equivalent time
steps, there is no cost on the last switching and the optimal solution will be
to shut-in the well at the end of the prediction time, i.e. ηN ≡ 1. Hence ηN
is not included in the number of switchings in the tables.

Comparison with zero switching cost:

Table 6.4 compares the solution time and the operating income for example
1 with and without the imposed cost term in the objective function, using
the MILP formulation to solve the problem. To be able to compare the solu-
tions, the operating incomes for the tests with the cost term are re-calculated
off-line with the total switching cost removed from the objective values. 1.

Table 6.4: Comparison of the operating income for the single well in example
1 with and without a cost on the switchings. The problem is solved using
the Xpress-MP Optimizer.

Prediction Time T [days] 7 14 21
Problem 1 with switching costs:
Operating income [$]* 9996 19897 29665
No. of switchings 2 2 2
Solution time [sec] 0.1 0.8 3.4
Problem 1 without switching costs:
Operating income [$] 9996 19943 29840
No. of switchings 2 8 18
Solution time [sec] 0.1 0.2 1.3

* The total switching cost is subtracted from J off-line after termination of
the optimizer.

The difference in operating income when the switching cost is subtracted
in J , is only 0.67% with three weeks prediction time. The well is switched
16 times without the switching cost and only two times with the switching

1In this way, the switching cost is interpreted as an imposed of “shadow” cost on the
valve settings. However, it does not have the same meaning as the actual shadow price,
see Williams (1993).
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Figure 6.1: Graphical presentation of the flow rates in last column table 6.4.
The subscript k only symbolizes that the values for the rates are discrete.

cost. However, the use of a cost term on the switchings is computationally
demanding on the optimization algorithm, seen as an increases solution time.
The optimal production plan as a result of problem 1 without a cost on the
switchings, is to re-open the well once there is enough pressure to produce at
a rate higher than the critical rate. This is seen in figure 6.1, where the flow
rates are compared for the results in the last column in table 6.4. Without
the switching cost in the problem formulation, the well is closed as short
time as possible, causing many switchings with short shut-in periods. The
exception is at the end of the prediction, where the well is closed for two time
steps such that the well is eventually closed for k = N . The first switching
(or shut-in) occurs earlier when there are no switching cost. In fact, the well
is shut-in before the critical rate is reached with only a short shut-in period,
resulting in a boost of the production rate. With the switching cost in the
objective function, the well is not shut-in before strictly necessary due to the
imposed minimal rate. The well stays closed longer, with a higher pressure
build-up and thus a longer sustained production rate.
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6.1.2 Example 2: Long term recovery of a single well
Description:

Example 2 is used to study the performance of problem 1 on a long time
horizon, using the MILP formulation solved with the Xpress-MP optimizer.
The well specifications are exactly the same as described in the base case in
section 3.1, i.e. the initial pressure is 200 bar, the well is operating on a 10
bar constant wellhead pressure and the maximum rate is set to 3 · 104 m3

per day. As in example 1, the Ψ(η1
k) constraint is removed from the problem

formulation and the minimum rate is qgc = 1.20 · 104 m3/d. The fixed time
step h is set to one week, the switching cost Op is $200 and the discount
factor is 10 %. The high discount factor represents a certain risk involved
with exploration of shale gas reservoirs. A one-week time step is long consid-
ering the fast dynamics in the gas reservoir. However, small time steps are
generally demanding for the optimizer when using a long time horizon, and
would possibly lead to termination with large duality gap.
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Figure 6.2: Cumulative production in example 2. The blue line is the
theoretical maximum possible production if no liquid loading occur and the
well produces continuously the entire prediction horizon.

Results:
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For a five year prediction time, the optimizer is terminated after three hours,
reporting the optimal NPV of 2.79 million US $. The duality gap was 0.88%
when the optimizer is terminated. In figure 6.2, the cumulative production
is compared with the maximum theoretical production given that no liquid
loading occur and the well may produce continuously without shut-ins. Thus,
the theoretical maximum does not accommodate liquid accumulation in the
well. The difference in total cumulative production by using shut-ins of
the well compared to a continuous production is only 0.62%. The optimal
solution of example 2 yields a total of 63 switchings over five years, that is,
there are 31 shut-in periods excluding the last closing of the well for k = N .
The first shut-in is after 2.56 years. The shut-in periods spans from one to six
weeks, with an average of 2.55 weeks and the median 2 weeks. No particular
pattern is seen whether the long shut-in periods occur early or late in the
production time after the rate for the first time falls below the critical rate.

6.2 Production optimization of multiple wells
This section presents two numerical examples on the production from multi-
ple shale gas wells with global production constraints. Problem 1 is therefore
considered with imposed global constraints in the function Ψ(ηjk). Once there
are global production constraints on the switching capacity or requirements
on the total production rate for the set of wells considered, the interactions
between the wells are prominent and the optimal switching of the well is non-
trivial. The two examples are on problem 1 in section 4.6.1 and on problem
2 in section 4.6.2, respectively.

Both of the next examples are solved with the MILP formulation using the
Xpress-MP optimizer, as the results in the previous examples are clearly
favorable in terms of this implementation. Each of the examples uses the
production from ten wells and considers short-term production planning.

6.2.1 Example 3: Bounded total switching capacity
Description:

Example 3 is constructed to study the effect of global constraints on the
switching capacity of multiple shale gas wells operated by joint administra-
tion. With a great number of wells to control and inspect, the operators will
not have the capacity to switch all of the wells on and off simultaneously.
The optimization problem is therefore to find an optimal distribution of the
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switching capacity on the set of wells controlled.

Well specifications:

• All wells are available at initial prediction time k = 0. The prediction
time is 2 weeks and the fixed time step h is set to 8 hours.

• All wells operate on a constant wellhead pressure set to 10 bar. The
pressures of the different wells are decoupled, and the compression
properties are the same as in table 6.1. Hence the estimate of the
compression cost is based on the state of the gas at the wellhead
pressures. The same minimum rate is imposed for each well, i.e.
qjgc = 1.203 · 104 m3/d for all wells.

• Each well share the same reservoir properties except from the reservoir
permeability and the maximum flow rate qjmax. The properties are the
same as in tables in section 3.1. The permeabilities are chosen randomly
in an interval of ±10% around the reference permeability ko=0.00075
mD. The maximum production from each well qjmax is chosen similarly,
with each value varying with ±10% around the reference value 3·104 m3

per day. Each of the wells have been operated a given time T jp
since last completion and the wells thus have different initial grid
pseudopressures. Hence some of the wells are in the “switching-phase”
while others have not been shut-in yet. The permeability, the elapsed
time T jp and the initial state of each of the wells prior the prediction
are shown in the table below.

• There are no further constraints on the number of switchings on
each respective well, nor any costs on the switchings. Thus, the
switching cost Op is zero and the cost of switching the wells are instead
incorporated in the constraint on the switching capacity. This is done
to avoid both excessive constraints and additional costs terms on the
switching variables ηjk

* P = producing, SI = shut-in

Example 3 is implemented with two different sets of global constraints on
the switching of the ten wells. This is done to compare the effects of the
limited switching capacity. Thus, to distinguish between the two optimiza-
tions, example 3 is subdivided into two similar but still different optimization
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Table 6.5: Example 3, well states and special properties.

Well number 1 2 3 4 5 6 7 8 9 10
T jp [days] 800 428 952 960 830 1210 1008 670 750 1317
kjo [10−4mD] 7.50 7.67 7.77 7.34 7.30 8.23 6.81 8.08 8.12 7.94
qjmax [10−4] m3/d 3.30 2.85 2.70 2.94 3.15 3.03 2.91 2.79 2.70 2.94
State of well* P P P SI P SI P P P SI

problems:

Global switching constraints in example 3a:

For the 10 wells controlled, only three switchings are allowed per day.
Since the fixed step size is 8 hours and the prediction time is 14 days,
each day consist of 3 samples. Hence the general global production
constraints for the wells

Ψ
(
η1

1, η
1
2, ..., η

j
k, ..., η

r
N

)
= 0

in problem 1 in section 4.6.1 are replaced by the set of linear constraints

10∑
j=1

(
ηj3l−3 + ηj3l−2 + ηj3l−1

)
≤ 3, l = 1, ..., 13 (6.1)

10∑
j=1

(
ηj39 + ηj40 + ηj41 + ηj42

)
≤ 4 (6.2)

The latter constraint is added to avoid that all wells are choked in the
end of the prediction horizon. The choice of only three allowed switch-
ings per day is done to enforce tight constraints; with an unconstrained
number of switchings, the ten wells where switched 66 times during the
same prediction time.

Global switching constraints in example 3b:

The daily constraint on the switching capacity is doubled, while the
total allowed switchings over the entire prediction time is the same as
in example 3a. The total number of allowed switchings over the entire
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prediction horizon in example 3a is 43. Thus, the constraints (6.1)-(6.2)
are replaced by

10∑
j=1

(
ηj3l−3 + ηj3l−2 + ηj3l−1

)
≤ 6, l = 1, ..., 13 (6.3)

10∑
j=1

(
ηj39 + ηj40 + ηj41 + ηj42

)
≤ 8 (6.4)

42∑
k=0

10∑
j=1

ηjk ≤ 43 (6.5)

equivalently substituted for

Ψ
(
η1

1, η
1
2, ..., η

j
k, ..., η

r
N

)
= 0

in problem formulation 1. The total number of allowed switchings over
the prediction horizon is thus identical, but the switching capacity can
be shared more “freely” than in example 3a.

All other specifications are identical for example 3a and 3b. To elaborate
on the ever-changing gas price, a periodic sequence of the gas price is im-
posed. The function is constructed by sinuous-function with one month pe-
riod and an amplitude 7.5% higher than the average gas price Gp = 5$/mcf
= 0.177$/ m3. Note that this extension of the gas price does not increase the
number of variables in the optimization problem, but only affect the switch-
ing pattern of the wells.
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Figure 6.3: The variable gas price Gp.
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Example 3b is only used as comparison with example 3a. Hence, the effects
of the different well settings in table 6.5 are discussed in light of example 3a.

Results example 3a

The optimizer finds the first feasible integer solution after 22.6 minutes with
a duality gap 2.6%. Although the simulation was executed for 12 hours, no
more integer solutions were found and the optimality gap was only slightly
reduced. The results of optimal valve settings for the ten wells over the two
weeks prediction are shown in figure 6.4. The results from the optimization
show that the daily maximum capacity on switchings is distributed to those
wells that needs frequent switching to maintain production and at the same
time are profitable for the total production. Well 4 and 10 that both are shut-
in prior to the prediction, remains closed a couple more days before they are
re-opened. All of the four rows in table 6.5 describing the distinct properties
of the wells will affect the number of switchings for each well. Apparently,
wells that have been operated a long time prior the prediction gets a higher
share of the switching capacity, while wells with higher reservoir permeability
are able to produce gas for a longer time once they are re-opened. A high
reservoir permeability increases the conductivity in the tight shale rock that
is not stimulated, thus increasing the amount of gas flowing from the outer
region to the stimulated region of the reservoir during a shut-in. A figure of
the flow rates can be found in appendix B.

Due to the higher permeability and maximum rate of well 6, it was expected
that this well would be assigned more of the switching capacity than appear-
ing in figure 6.4. However, as seen in figure B.1 of the well rate in appendix
B, the well is actually producing on a rate just beneath the critical rate in
the last phase of the prediction, even though the well appears to be shut-in
in figure 6.4 above. The reason is too soft integer tolerance in the MILP
solver.

Comparison of switchings in example 3a and 3b :

As seen in the comparison of the examples in figure 6.5(a), the set of wells
are operated differently when the daily bound on the switching capacity is
softer. In particular, the wells are switched more frequently the first three
days in example 3b. In this ways, fewer shut-ins are needed during the most
“profitable” time, seen as a higher sustained number of producing wells in
figure 6.5(b) between day five and nine in the prediction period. In light of
the gas price in figure 6.3, the wells in example 3b are more profitable during

73



0 2 4 6 8 10 12 14
0

0.5

1

Time [days]

F
ra

ct
io

n 
[−

]
Valve settings well 1

0 2 4 6 8 10 12 14
0

0.5

1

Time [days]

F
ra

ct
io

n 
[−

]

Valve settings well 2

0 2 4 6 8 10 12 14
0

0.5

1

Time [days]

F
ra

ct
io

n 
[−

]

Valve settings well 3

0 2 4 6 8 10 12 14
0

0.5

1

Time [days]

F
ra

ct
io

n 
[−

]

Valve settings well 4

0 2 4 6 8 10 12 14
0

0.5

1

Time [days]

F
ra

ct
io

n 
[−

]

Valve settings well 5

0 2 4 6 8 10 12 14
0

0.5

1

Time [days]

F
ra

ct
io

n 
[−

]

Valve settings well 6

0 2 4 6 8 10 12 14
0

0.5

1

Time [days]

F
ra

ct
io

n 
[−

]

Valve settings well 7

0 2 4 6 8 10 12 14
0

0.5

1

Time [days]

F
ra

ct
io

n 
[−

]

Valve settings well 8

0 2 4 6 8 10 12 14
0

0.5

1

Time [days]

F
ra

ct
io

n 
[−

]

Valve settings well 9

0 2 4 6 8 10 12 14
0

0.5

1

Time [days]

F
ra

ct
io

n 
[−

]

Valve settings well 10

Figure 6.4: Optimal valve settings for the ten wells in example 3a.
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period with the highest gas price by lowering the production when the prices
are lower. This is seen as an increased total operating income in figure 6.6.
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Figure 6.6: Comparison of the operating incomes in example 3a and 3b.

The total rates for example 3a and 3b are compared in figure B.2 in appendix
B. The figure shows that the total rate is higher in the period after the peak
in the gas price than before the peak, even though the price is the same.
This is also seen as higher number of producing wells in this period in figure
6.5(b).

6.2.2 Example 4: Scheduling
Example 4 considers the problem of optimal scheduling of a set of shale gas
wells as defined in problem 2 section 4.6.2. That is, the example considers
the optimal production planning of set of wells with respect to a constant
requested rate.

Description:

• The well specifications are the same as in table 6.5, used in the previous
example: There are a total of 10 wells to be controlled, all wells are
available at k = 0 and operate on a 10 bar wellhead pressure.

• The requested total rate is set to 1.80 · 103 m3/d, and is reformulated
as the equivalent rate-per-time-step, qtot,k, in the implementation in
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Xpress-IVE. The rate is chosen reasonably with respect to the sum of
the maximum possible rate from each of the wells considered.

• The optimization is done with a fixed time step h = 8 hour and
prediction horizon is one week.

• There are no constraints on the switching capacity, nor any switching
cost. The gas price Gp is constant 5 $/mcf.

The penalty parameters G1 and G2, penalizing excessive production and too
low production respectively, have a substantial impact both on the result
of the optimization and the performance of the algorithm applied to this
particular problem. Example 4 is therefore optimized with different values
of G1, while G2 as shown in figure 6.7:

Red line: G1 and G2 are both zero.

Blue line: G1 = 0.5Gp and G2 = 2Gp.

Green line: G1 = 2Gp and G2 = 2Gp.

In another words, in the first optimization there is no economical loss of vi-
olating the requested rate, in the second optimization the price is halved for
excessive production volumes while underproduction is penalized with twice
the sales-value of the gas, and in the last optimization both the excessive
production and the underproduction is penalized with twice the sales-value
of the gas.

Results:

Figure 6.7 shows the comparison of the optimization with the different val-
ues of the penalty parameters. The production is highest with no penalties,
and clearly exhibits the largest deviation from the requested rate. Penalizing
both the excessive production and the underproduction equally results in the
tightest production rate as seen by the green line. However, with relatively
long time steps, a limited number of wells to control and only the binary
valve settings as control variables, the deviation from the requested rate is
still significant. With G1 low and G2 high, underproduction is far more ex-
pensive than the excessive production, resulting in production rates that are
always as high as the requested rate if such a solution is feasible with respect
to the model constraints. In this way, the loss in operating income from the
rates for the red line below the requested rate is avoided as long as a feasible
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Figure 6.7: The total flow rates of the based on different penalty parameters

solution exist.

The operating income is obviously highest when there are no penalties on
the excessive production and the underproduction, and lowest when there are
high penalties and thus the tightest production with respect to the requested
rate. The penalties on the rates result in a computationally more demanding
optimization problem: With zero costs the problem terminates with zero
duality gap after 72 seconds, the problem with G1 = 0.5Gp and G2 = 2Gp is
terminated after 81 minutes with 2.2% duality gap while problem with equal
penalties (green line) is terminated after 23 hours with 15.2% duality gap.
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Chapter 7

Discussion

In this chapter, the results from the numerical examples in the previous
chapter are further discussed. The advantages and the drawbacks of the
different formulations and implementations are reviewed, including sources
of errors on the solutions. Finally, the results are put in perspective with
more practical considerations.

7.1 The different numerical examples
The main contribution in this report is the study of different problem formu-
lations for optimal production strategy of multiple as well as single shale gas
wells. In particular, the objective is to study the effects of using shut-ins with
variable duration with a means to maximize the production and long-term
recovery. Observations made in the results of the four numerical examples
are discussed below.

Example 1 and 2:

The two examples in section 6.1 were used to study the performance of
problem 1 in terms of optimization of gas production from a single shale
gas well. The following observations are elaborated:

• Reformulation of the nonlinearities, constructing a MILP problem from
the formulated MINLP, has great benefits both for the scalability of the
optimization problems and the quality of optimal solutions. Comparing
the number of switchings in the MILP and the MINLP solution in table
6.3, BONMIN “misses” the solutions with few switchings and stops the
global search for the optimal solution ones it finds a locally optimum
with many switchings. However, the substantial increase in the problem
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size rising from the reformulation of the nonlinearities also limits the
scalability of the MILP implementation.

• The switching cost decreases the number of the switchings while the
shut-in period is longer. The results showed that fewer switchings of
the well resulted in minimal loss of operating income. This is closer
discussed below.

• On a short prediction horizon with corresponding small time steps, the
optimal solution to problem 1 for a single well without any cost on the
switchings will be to re-open the well as soon as possible after a shut-in.
This is observed in figure 6.1. Although this might be an acceptable
production strategy for the operation of a single well, it is not a very
pronounced optimization problem.

• The NPV of a single well was successfully optimized over a prediction
time of five years with varying switching periods. The total cumulative
production was only reduced by 0.62% when compared to the
theoretical maximum production with no shut-ins. The latter value
does not accommodate the risk of liquid loading or necessary shut-ins
due to maintenance, and therefore serves as the theoretical maximum
without practical considerations.

Example 3 and 4:

The production environment for shale gas wells will normally consist of a
substantial amount of wells located within a relatively short geographical
area. From an operational perspective, the challenge will therefore be to
optimally control a set of wells to meet some predefined production plan, or
simply to keep the daily operating income as high as possible. At the same
time, the operational capacity may be limited when there are large sets of
wells to be controlled and the expenditures must be kept low to ensure the
profitability of the wells.

The following observations are elaborated from the results of example 3:

• With a tight bound on the total daily switching capacity for a set
of shale gas wells controlled by applying shut-ins, the result from
the optimization is an optimal distribution of the switching capacity
with the objective of maximizing the total operating income over
the prediction time. The optimization problem is computationally
demanding, and is terminated with a relatively high duality gap.
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• Example 3 is solved with a varying gas price, with the result that the
wells are switched optimally to produce as much gas as possible during
the high peak of the gas price. If the gas price is constant, the wells
might be switched differently to maximize the operating income, while
the structure of the formulated optimization problem is the same. The
variable gas price is used to stress more extensive switching of the wells
in parts of the prediction time to maximize the production when the
gas price is high.

• If the trend of the gas price can be anticipated and it is possible to
schedule the daily operational capacity, it is beneficial to increase the
man-power in part of the time to increase the number switchings, while
at the same time reducing the switching capacity in other parts of the
production period. This is seen as the increased the operating income
for example 3b in figure 6.6.

In contrast to the other three examples which all are based on problem 1 in
section 4.6.1 with different operational constraints and implementations, the
last numerical example is based on problem 2 in section 4.6.2. The following
results from example 4 are emphasized:

• The penalty parameters for the excessive production and the under
production, G1 and G2, are decisive for deviation between the actual
production and the requested total production rate. In this way, the
contract for the trade of the gas will impact the production plan. If
the operator is able to sell the amount of gas produced irrespective of
the deviation from the requested rate, there is no particular need to
schedule the wells to produce a total specific rate. If there are great
loss from too low production rates while only small loss in revenue
from selling the excessive produced gas, there are benefits in terms of
increased operating income obtained by optimizing the scheduling of
the wells and in this way controlling the total production rate. If there
are equal loss in both excessive production and under production, the
results from the optimization are such that the preferred production
plan is to schedule the wells with a means to produce a the total
rate as close as possible to the requested rate. The different penalty
parameters used in the example show how problem 2 in section 4.6.2
can be used to optimally schedule the shut-in times for a set of shale
gas wells dependent on the contract for selling the gas.

• The problem of scheduling a set of shale gas wells with respect to a
constant rate is a demanding optimization problem with the proposed
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formulation, particular with high penalty parameters in the objective
function. Optimizing the same problem over a two week prediction
horizon as in example 3 was observed to be too demanding for the
optimizer, and no feasible integer solution was found in the case of
high values for the penalty parameters.

• Without going into details, a quadratic objective criteria might be
better for the trajectory following. However, this would require a
reformulation of the applied MILP formulation, and an objective
function that is not formulated with respect to operating income.

7.1.1 Effects of the switching cost
The use of a switching cost decreases the number of switchings, but is at the
same time computationally demanding for the optimizer. The actual costs
of switching a well depends on the equipment. Modern wellhead chokes may
have a fully remote control structure, thus the well can be switched from
a control room and the need for on-site operator action is limited. This
depends somewhat on the location of the wells and whether this kind of
more expensive control equipment is installed. In this case the actual cost of
switching the wells are minimal when employment costs are excluded in the
formulation. On the other hand, any switching of the wellhead choke involve
motion of mechanical equipment. Frequent switching of the wells will thus
eventually cause tear and where on the chokes. Any mechanical motion in
the wellhead chokes involves a certain risk of failure of the operation. The
price of switching may therefore, to some extend, be interpreted as a risk in-
volved with the switching. With this interpretation the switching cost should
be subtracted the from the optimal objective value.

A drawback of established methods used on optimal time switching compu-
tations, is that the total number of switchings is set a priori. As stressed in
Zandvliet (2008) chapter 3.5, this number is normally not known beforehand.
This assumption can be omitted by using a cost on the switching as proposed
in this report. However, as seen in figure 7.1, the cost must be balanced. A
too high cost will “choke” the profit of the well, and consequently the number
of shut-ins will be small and the duration of each shut-in long. On the other
hand, a too low switching cost will diminish the effect of the cost term. Low
switching costs also increases the solution of the algorithm. This is the algo-
rithmic drawback rising from the switching cost in the objective function, also
observed in table 6.4 of example 1. As comparison, by applying a maximum
of two switchings for example 1 with zero switching costs and three weeks
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Figure 7.1: Number of switchings against the switching cost Op, using the
short term planning example 1 with three weeks prediction time. See also
table 6.4

prediction time (the equivalent problem set as shown in figure 7.1 only with
no switching cost), the problem is solved in 1 seconds to a optimal objective
value $29645. The corresponding problem solved with a switching cost $200
gives an objective value $29665 when the switching cost is subtracted as seen
in table 6.4, though solved by more than three times as long solution time.
The switching times are identical for the two problem sets, and the small
difference in objective value is solely due numerical round-off errors in the
optimizer, even though the optimizer options are identical. More problem is
further addressed below.

As observed in table 6.4, it is possible to decrease the number of switchings
without major loss of operating income. From an operational perspective, a
decrease in the number of required switchings to maintain production should
be an advantage even without direct costs or need for maintenance of the
wells. The operation of a well will always demand surveillance by an operator,
and particularly if the well is to be switched. Hence, there will always be
costs associated with the daily operation and the switching of the well.
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7.2 Consequences of the implementation
strategy

The use of the aggregate function

Extending the conventional model of the well rate with an aggregate function,
repeated here for simplicity,

qjk = min
{
qjmax , α

j
k w

j
(
mj

1,k −m(espjw)
)}

(7.1)

is a compensation for the lack of dynamics in the tubing modeling. How-
ever, the fact that the function is non-smooth has clear drawbacks for the
optimization. Solving the MINLP implementation using BONMIN involves
the use a gradient based line-search algorithm. As the derivative of (7.1) is
discontinuous, the formulation is computationally demanding which in turn
is reflected in the results in table 6.3. The formulation violates the assump-
tion of twice continuously differentiable objective constraints, for which the
BONMIN solver and the node NLP-solver IPOPT is designed (Bonami and
Lee, 2007). Numerical issues related to ill-conditioning and insufficient scal-
ing are also more prominent in line-search algorithms.

The cost of reformulating the expression for the well flow (7.1) is mainly
due to the necessary additional binary variables d1,k. The binary variable
must be introduced for each well and for each time step, hence increasing
the number of discrete variables significantly. In addition, for each well eight
new constraints are imposed for each time step . In light of the above dis-
cussion, it is evidently that the problem size grows quickly with increased
prediction time and additional number of wells. From the results in table
6.3, the solution time for the MILP formulation increases from 3.4 seconds
to 344.2 seconds when the prediction time is increased from three to four
weeks. It is hence clear that the growing problem size limits the achievable
performance of the chosen implementation. However, the reformulation to a
MILP problem, thereby avoiding the use of a NLP line-search algorithm to
solve the relaxed problems, results in significant improvements both in the
solution quality and in the performance of the optimization problems.

The simultaneous approach
The use of a simultaneous approach with full discretization of the ODE de-
scribing the reservoir model results in a large problem size. All variables
including the state variables, the flow rates, the valve settings and the aux-
iliary variables are thus treated as optimization variables by the optimizer
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(the reason for why the approach is also known as “full space”). Hence,
there is no separation between the actual control variables and variables that
are included in the explicit constraints describing the reservoir model. The
optimal point must then be strictly feasible with respect to all of the ex-
plicit constraints describing the reservoir model, which in turn may cause
feasibility problems. In dynamic optimization without discrete variables, the
contrary method is known as the sequential approach (or single-shooting).
Theses methods only parameterize the control variables, and thus have a
strongly reduced number of variables. Two examples of this approach for
implementation was described in section 5.5, both without the use of inte-
gers. These methods are generally advantageous when there are few control
variables compared to many state variables, and also guarantees feasibility
with the respect to the physical model. However, the sequential approach
may perform worse than the simultaneous approach when there many con-
trol variables. The simultaneous approach is also advantageous for problems
with state constraints (Cervantes and Biegler, 1999).

The alternative of using a sequential approach instead of the simulations ap-
proach applied in this study, can be seen in two contexts: The discretized
reservoir model and the bounds on the flow rate may be re-parameterized
as equivalent bounds on the discrete valve settings. This problem may be
solved in a similar way as the simultaneous approach, however, with im-
plementation of large matrices. As remarked in Diehl et al. (2009), this
formulation has less structure in the linear subproblems of the optimization,
and a faster local convergence is typically observed for the simultaneous ap-
proach (Diehl et al., 2009). The second context of the sequential approach
is to use similar approach as formulations in 5.5, i.e. optimization without
integer variables. However, the challenge involved using alternative problem
formulations without the use of integer variables is caused by the minimum
rate needed to prevent liquid loading, imposed as a lower bound on the non-
linear well model that can only be active when the well is producing.

There are several benefits rising from the simultaneous implementations and
in particular the reformulation to a MILP problem. The simultaneous MILP
implementation is very flexible. Increasing the prediction horizon or includ-
ing more wells in the problem formulation is straight forward. Further, it
allows for extension of the model to include for instance a variable gas or a
constrained number of shut-ins for a particular well without major changes
in the implementation. At last, it enables the use of powerful MILP solvers.

It is important to remark once more that the formulation of the MILP
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problem is based on a reformulation and not a piecewise linearization of
the nonlinearities in problem 1 and 2. Hence there is no loss of information
involved in the reformulation, only a different way to express the flow rate
in terms of additional constraints and binary variables. The possibility of
reformulation instead of linearization is due to the particular simple form of
the nonlinearities. Generally, this is not possible for nonlinear function, but
it is an interesting feature for the type of problem considered in this report.

7.3 The duality gap
Nonconvex MINLP problems as the problems defined in section 4.6 are in-
herently difficult to solve. The comparison of example 1 solved with the
MINLP implementation using BONMIN and the MILP implementation us-
ing Xpress-MP is clearly favorable for the MILP implementation. Although
the performance of the MILP implementation decreases for large problem
sets, it was chosen as the preferred solution strategy in the other numerical
examples.

The duality gap defined in section 5.3 effectively computes the error bound
of the optimal solution, and makes it possible to view the progress of the op-
timizer in real time. Figure 7.2 shows the graph in yellow of the best upper
bound J̄ of all remaining unsolved nodes, together with the best lower bound
J of all solutions found so far, marked with green squares and the red line.
The figure is taken directly from the Xpress-IVE interface. The solution time
is shown on the lower axis and the value of the objective J on the left axis.

Figure 7.2: MILP duality gap from the Xpress-MP optimizer
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The gap between the red and the yellow line graphically shows the duality
gap and measures the relative deviation from optimality of the best feasible
integer solution found so far. The particular example is the optimization of
single shale gas well with three weeks prediction time and imposed switch-
ing cost. Comparing with the result in table 6.4, the algorithm terminates
successfully after 3.4 seconds with less than 0.01% gap between the optimal
feasible solution and the best bound.

As already mentioned, the Xpress-MP uses a duality gap less than 0.01% as
default termination criteria. In several of the examples in chapter 6, the opti-
mizer is terminated after a certain time with duality gaps larger than 0.01%.
Due to the visualization duality gap, it is possible to assess the quality of the
feasible solutions relative to the upper bound. Large duality gaps may be
acceptable for some applications , and it is therefore possible to terminate
the optimization at any preferred time once a feasible solution is found, still
being able to quantify the optimality bound of the solution. The decrease of
the upper bound is generally slow for large problem sets where the number
of nodes is high.

The major difference between the solution from MILP and the MINLP for-
mulation is the calculation of the duality gap. The solutions obtained from
IPOPT of the relaxed nonconvex MINLP problem can only be guaranteed
to be a locally optimal solution. The upper bound provided by IPOPT is
therefore not a truly upper bound. In addition, the different starting points
may result in different local optima due to nonconvexity of the problem con-
sidered. Hence the algorithm might proceed the branching on nodes that
are not necessarily optimal. This is reflected in the results in table 6.3 of
the comparison of the same data sets solved with BONMIN and Xpress-MP,
where two of test gave a lower optimal solution when solved with BONMIN.

7.4 Numerical errors
Using a finite difference approximation of both the time derivatives as well
as spatial derivatives will always introduce truncation errors. The error in-
volved with the forward difference scheme of the radial axis decreases by
choosing a finer grid, i.e. increasing Nm. This will, however, increase the size
of the optimization problem, and will be detrimental for the performance of
the optimizer on a large simultaneous optimization problem. More on the
effects of the truncation errors can be found in Aziz and Settari (1979), and
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in Knudsen (2010) for the effects on the radial composite shale gas reservoir
model.

There are trade-offs between a sufficient spatial griding of the reservoir and
the scalability of the optimization problem. However, with the reservoir
model fixed, the time discretization will be the most dominant factor on the
accuracy of the optimization.

7.4.1 The discretization scheme
Implicit Euler’s method yields the least accurate implicit discretization
scheme of the time axis. This choice of discretization of the prediction time
therefore limits the achievable accuracy of the optimization. To quantify the
resulting errors, a comparison is done by using the simulations for the base
case in section 3.2, simulated using the variable step solver in Simulink as
reference solution. The comparison is done without imposing the minimum
rate, i.e. there is no switching of the well involved in the comparison 1.
With five years prediction time, the cumulative production of the reference
Simulink solution is 29.015 million m3.

Table 7.1: Comparison of cumulative production using implicit Euler’s
method (IE) for discretization of the time axis and the variable step BDF
solver used in the Simulink reservoir simulation.

Time step h Cumulative prod. IE’s
method [106 m3]

Error from refer-
ence [%]

1 week 28.673 1.18
3 days 28.617 1.37
1 day 28.588 1.47
12 hours 28.581 1.50

Table 7.1 shows that decreasing the time step actually increases the error
in cumulative production when compared to the Simulink simulation with
a variable step integrator. A high step size will smooth the abrupt fall in
production when the production falls below the plateau rate, see figure 3.1(a)

1A comparison with one of the test case with several switchings is more complicated.
This because the switching may be in the middle of an integration for the variable step
solver, thus causing convergence issues. The comparison without switchings still give a
measure of the accuracy.
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and the successive discussion. The numbers in table 7.1 are therefore some-
what misleading. A shorter time step generally increases the accuracy of
the model, and as seen in the numerical examples on short-term production
planning, a short time step is strictly necessary to successfully optimize the
switchings of the wells. On the other hand, a longer time step is necessary
to enable convergence in the example on the long term recovery. Table 7.1
then shows that the error in the cumulative production in this example is
reasonably low. When compared to the SENSOR reservoir model, the error
will be about 8%.

Using a better discretization scheme, in particular a higher order implicit
Runga-Kutta method, will increase the accuracy of the discretization. An
improved discretization scheme will normally include a set of nonlinear equa-
tions that must be fulfilled for each time step. These equations may be in-
cluded in the optimization problem since the reservoir model is represented
as a set of equality constraints in the simulations problem formulation. How-
ever, this is not applicable for the MILP formulation without further refor-
mulations or linearization.

The upper bound on the rate, qmax, prevents a high and unrealistic initial
gas production. This is partly caused by the neglecting the friction term in
the pressure drop in the tubing model, an assumption that may be hard to
justify physically. Including the rate dependent friction term in the tubing
model would form a set of nonlinear equations that must be solved for each
time step by so-called nodal analysis, see for instance Guo et al. (2007) or
Golan and Whitson (1991). This can straight forward be included in the
MINLP model, but would not be applicable to the MILP formulation.

7.4.2 Numerical tolerances
The irregular radial grid and the composite permeability of the reservoir
model results in a large spread of eigenvalues of the continuous system ma-
trix Ā. This is recognized in the reservoir simulations by the need for an
stiff numerical integrator and implicit discretization scheme of the time axis.
The discretized reservoir model is thus likely to cause numerical issue for the
algorithms when included as a set of equality constraints in a simultaneous
optimization problem. More precisely, a set of badly scaled constraints in the
optimization formulation may cause the build up of round-off errors from the
finite arithmetic precision of the computer. Good scaling of the optimization
problem reduces these errors. However, finding the optimal the diagonal scal-
ing described in section 5.4 is not trivial, particularly not with the large set
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of constraints resulting from the simultaneous MILP implementation. Good
row scaling of the discretized state space matrix Ad is somewhat involved
due to the large spread of the magnitude of the matrix coefficients. However,
a more precise row scaling of this matrix as well as other constraints might
have been beneficial for the optimizer and the reliability of the optimal so-
lutions.

By default, the Xpress-MP optimizer uses an integer tolerance of 5 · 10−6.
This was observed in some cases to cause incorrect solutions for some of the
binary valve settings and the respective well rates. Particularly, in figure B.1
of the well rates in example 3a it is seen that the rate for well 6 is producing
at a rate just below the critical rate qgc. The corresponding valve setting is
close to zero, resulting in a small non-zero rates seen by the optimizer. The
result is an infeasible rate that violates the imposed critical rate. In this
example the integer tolerance was lowered to 2.5 ·10−6. In fact, the tolerance
were tightened to 1 · 10−6 in a couple of the tests. This reduced the errors on
the integer variables, but at the cost of substantially increased solution time
and duality gaps. Actually, with too tight integer tolerance the optimizer
was unable to find a feasible integer solution for example 3.

7.5 Applicability to moving horizon control
A sequence of optimal shut-in times are unlikely to be deployed in practice
without any form of feedback. Gas reservoirs are generally heterogeneous,
not at least because of the hydraulic fracturing, and there will always be
uncertainty involved in the modeling. Even with the knowledge of certain
reservoir characteristics, these are likely to change during the life-cycle of a
shale gas well, thus requiring model update. In light of the risk of liquid
loading in the wells, sudden shut-ins of some of the wells may occur and the
surface facilities may fail. This will change the production settings, requiring
updates and re-optimization of the production planning. Hence long-term
prediction of optimal switching times of a well are most useful to study the
potential profit of a well, while the practical applicability of the optimal so-
lution are rather limited.

A possible implementation strategy would be to use moving horizon control.
For a given prediction time and sampling interval, only the first optimal
valve-settings αj1 would be applied the set of wells controlled before a re-
optimization is performed with updates from both measurements and the
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inputs of the system. The full state vector of the grid pseudopressures must
be available in order to apply any of the proposed optimization formulations
in practice. These are obviously not measurable states. Hence, there will be
a need for state estimation, typically a form of the Kalman filter. The use
of model-based production optimization in practice also put requirements on
the instrumentation. In particular, a measure of the pressure differential over
the wellhead choke is necessary to include the flow rates in the calculations.

The very brief discussion on moving horizon control stops here, and is only
included with a means of putting the optimization problems into a larger
control perspective. However, the above section is also a proposal for further
work on the control of shale gas wells.

7.6 Production optimization in practice
The results obtained from numerical optimization of the production plan-
ning must always be put in perspective with operational requirements for a
production plant. Operational challenges often extends far beyond what is
included or even can be included in an formulation of a mathematical opti-
mization problem.

The production planing of today’s shale gas plays is typically based on the
operators experience and knowledge of the production profile of shale gas
wells. On-site decision making may be based on available real-time infor-
mation of the production, as well as the production history of the wells.
Operators will often monitor a set of wells, and try to either meet the goals
of a given production plan or simply to produce as much gas as possible.
As a first step to actually employing model-based production optimization
of shale gas wells, one possibility would be to provide the operators with a
sort of production plan for a set of wells, typically for a couple of days or up
to a week. There more or less always constraints in the production capacity.
These constraints may for instance be constraints in the switching capacity
of the wells or a request for a certain total gas rate, thus in resemblance with
the examples in chapter 6. A production plan can then be formulated by
support of the proposed optimization problems and implementations done in
this report. If one well is producing without the need for shut-ins, this well
may be left out while optimizing the switching capacity on the rest of the
controlled wells by using one of the proposed optimization problems. In this
way, the model-based optimization of shale gas wells may be used as a deci-
sion support for the operator. By the results in example 2 on long-term gas
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recovery, the model-based optimization may also be applied with the means
of decision support for planning, commissioning and drilling of new shale gas
wells.

The gas price will naturally affect production planning, both on short-term
and long term production planning. The gas price is generally volatile and
can be difficult to predict. However, based on historical data and known sea-
sonal variations in the demand for natural gas, it is to some extend possible
to predict the gas price. See for instance Reiter and Economides (1999). In
such manner, the production plan of shale gas wells may be supported by
the proposed optimization formulation as seen in example 3 in section 6.2.1.
The development of the gas price in the United States is included in figure
7.6.
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Figure 7.3: US wellhead gas price in monthly intervals since 2000. Source:
US-EIA

The use of shut-ins for boosting the production is both unlikely and not
intended to replace the use of multistage hydraulic fracturing. This stimu-
lation technique is essential for the production, and is together with drilling
of horizontal wells the most important factor for the improvement seen the
last decade in the productivity of shale gas wells. However, the use of hy-
draulic fracturing on a regular basis is both expensive and depends on the
availability of large quantities of water. The use of shut-ins of shale gas wells
may therefore be used as a cost-saving supplement to the stimulation with
hydraulic fracturing.
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Chapter 8

Conclusion

The main contribution of this thesis is the development and study of model-
based optimization applied to shale gas wells. The formulated production
optimization problems are special in terms of using the simultaneous ap-
proach with binary variables for modeling on/off valves. The reformulation
from a MINLP problem to a MILP problem, is shown by numerical exam-
ples to improve the solution quality and reduce the solution time. On the
other hand, it is observed that both the simultaneous approach and the use
of binary variables limits the scalability of the optimization problems.

By four numerical examples, it is shown how the use of shut-ins can be ap-
plied as a means of boosting the production and preventing liquid loading
in shale gas wells. The long-term recovery for single shale gas well was op-
timized using shut-ins with variable duration and observed to result in only
small losses of cumulative production compared to the theoretical possible
maximum rate. In terms of short-term production planning, it is possible
to reduce the number of switchings of a well without substantial loss in op-
erating income. For production from multiple shale gas wells with global
production constraints in switching capacity or production rate, the imple-
mented optimization problems show how shut-ins of the wells can be applied
to increase the profit due to varying gas prices and sales-contracts.

The reservoir model and production setting developed and integrated in
the model-based optimization in this thesis are simplifications of the real
production system for shale gas wells. More accurate representation of the
models and the production settings are needed in order to apply the proposed
optimized production strategies in practice. However, the results show a
significant potential of using shut-ins to plan and boost the production from
shale gas wells.
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Chapter 9

Further work

The limitations seen on the scalability of the proposed problem formulation,
motivates the use of parallel computations when solving the optimization
problem. The use of parallel computations in mathematical optimization is
a major research area, and makes it possible to solve a majority of prob-
lems that up to this date have been too big for the existing computation
resources. As the inter-dependencies between the wells in the model for-
mulation are minimal, the use of efficient decomposition algorithms may be
possible, thus allowing parallel computations. In this way, the original opti-
mization problem may be solved as subproblems, defined with the objective
of maximizing some asset of the large group of wells. This may allow for a
site-wide production optimization of shale gas plays, which is, considering
the fact that some plays have hundreds or even thousand producing wells, a
very challenging optimization problem. The use of decomposition algorithms
applied to petroleum production systems are studied in Gunnerud and Foss
(2009).

Several improvements in terms of the modeling and the formulation of the
optimization problems may be applied. The system of the wells may be im-
posed a tighter coupling scheme in the optimization problem by including an
improved compression model and surface pressure calculations of the differ-
ent wells. An improvement on the modeling, would be to use a multi-layered
horizontal well model. This will significantly improve to realism in the rate
predictions, but at the cost of a numerically more demanding reservoir model.

Including the optimization problems in a closed-loop reservoir management
or a moving horizon control is also proposed as possible further work.
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List of symbols

Nomenclature

c total gas compressibility, 1/Pa
g gravity, m/s2

G gas gravity, dimensionless
h reservoir thickness, m
k permeability, mD
kg gas specific heat ratio, dimensionless
M molecular mass of the gas, kg/mol
m pseudopressure, Pa/s
mi initial reservoir pseudopressure, Pa/s
mwf well bottomhole pseudopressure, Pa/s
p reservoir grid pressures, bar
pc compressor inlet pressure, bar
pinit initial reservoir pressure
pw wellhead pressure
pwf well bottomhole pressure, bar
q well flow rate, m3/s
R universal gas constant, 8.3145 J/Kmol
T reservoir temperature, K
zw well height, m
Z gas compressibility factor, dimensionless
µ viscosity, Pa·s
ρ gas density, kg/m3

φ reservoir porosity, dimensionless
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Subscripts

c compressor
d discrete representation
g gas
gc gas critical rate
sc standard conditions, 1 bar and 15.5◦C
w evaluation at wellhead condition

Abbreviations

BVP boundary value problem
GAMS General algebraic modelling system
IE Implicit Euler’s method
IPR inflow performance relationship
IVP intial value problem
LP linear program
LR linear relaxation
LTI linear time-invariant
MILP mixed integer linear program
MINLP mixed integer nonlinear program
NLP nonlinear program
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Appendix A

Gas properties

The calculation of the gas properties is based on a gas gravity G = 0.7
and reservoir temperature T = 366.3 K. The Z-values are based on Hall
& Yarbourough correlation and the µ-values are based on Lee-Gonzales
correlation (courtesy of Professor C.H. Whitson).

Table A.1: Gas properties
p Z µ

[105 Pa] [ - ] [ 10−3 Pa · s ]
10 0.9872 0.0131
20 0.9748 0.0133
30 0.9629 0.0135
40 0.9516 0.0137
50 0.9408 0.0139
75 0.9168 0.0147
100 0.8976 0.0155
125 0.8842 0.0165
150 0.8772 0.0177
175 0.8768 0.0189
200 0.8825 0.0202
225 0.8939 0.0216
250 0.9100 0.0229
275 0.9299 0.0243
300 0.9528 0.0256
325 0.9780 0.0269
350 1.0051 0.0281
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Appendix B

Additional plots

Figure B.1 shows flow rates from the ten wells in example 3a section 6.2.1.
The problem with insufficient tolerance on the binary variables are reflected
in flow rate for well 6, which is treated as zero by the optimizer but results
in a value just beneath the critical rate when re-scaled to actual values.
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Figure B.1: The ten flow rates in example 3a.
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Figure B.2 shows the total rates for the ten wells in example 3a and 3b,
producing with tight bound on the daily switching capacity and soft bound
in addition to a total bound on the swithcing capacity, respectively.
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Figure B.2: Comparison of the total rates in example 3a and 3b.
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