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Abstract 44 

Ecotoxicology evolved as a scientific field as the awareness of the unintended effects of 45 

anthropogenic pollutants in biota increased. Polar bears (Ursus maritimus) are often the focus of 46 
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contaminant exposure studies because they are apex predators with high contaminant loads. 47 

While early studies focused on describing and quantifying pollutants, present-day polar bear 48 

toxicological studies often incorporate ecological variables. This systematic literature review 49 

investigates the ecological, physiological, and morphological variables that have been integrated 50 

in such studies. The systematic literature search resulted in 207 papers, published 1970-2016. 51 

Representation of each of the 19 polar bear subpopulations varied from 0 to 72 papers, with East 52 

Greenland, Barents Sea, Southern Beaufort Sea, and Lancaster Sound being the most well 53 

represented with > 30 papers each. Mean number of samples analyzed per paper overall was 76 54 

(range 1-691). Samples were collected from 1881 to 2015, with the large majority from the 55 

1990s and 2000s, primarily from harvested bears (66%). Adipose, liver, and blood were the most 56 

common tissues examined. On average, papers investigating temporal trends did so using 57 

samples from 61 bears over a time period of 6 years. 58 

 The frequencies with which ecological variables were integrated into the toxicological 59 

papers varied. Notably, 51% included age and/or sex as the only ecological variable(s) in relation 60 

to contaminant concentrations. Further, 98% dealt with toxicology at the individual level, leaving 61 

population level effects largely unstudied. Solitary subadult and adult polar bears were included 62 

in 57% and 79% of the papers, respectively. Younger bears were included in fewer studies: 63 

yearlings in 20% and cubs-of-the-year in 13%. Only 12% of the papers examined reproduction 64 

relative to contaminants. Finally, body condition was included in 26% of the research papers, 65 

while variables related to polar bear diet were included in � 9%. 66 

 Knowledge gaps were identified in the polar bear ecotoxicology literature. Based on our 67 

findings, we suggest future polar bear ecotoxicology studies increase sample sizes, include more 68 
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ecological variables, increase studies on family groups, and increase the applicability of studies 69 

to management and conservation by examining pollution effects on reproduction and survival. 70 

 71 
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Introduction 74 

 75 

Ecotoxicology is the multidisciplinary study of chemical contaminants in the environment and 76 

their effects on biota (Newman, 2010). The field includes studies of chemistry, ecology, 77 

toxicology, physiology, immunology, endocrinology, developmental biology, genetics, and 78 

others. Ecology and toxicology both consider multiple scales in three primary areas: biological 79 

scales of organization, time, and space (AMAP, 1998; Graham et al., 2013). Ecology was 80 

defined as the “relation of the animal both to its organic as well as inorganic environment” 81 

(Haeckel, 1866), and as such encompasses a range of disciplines including physiology, 82 

evolution, genetics, behavior, energetics, population dynamics, and relationships with other 83 

species. In contrast, toxicology focuses on the detection, properties, exposure concentrations, and 84 

effects of toxic compounds (Newman, 2010). Ecological and toxicological aspects can be applied 85 

to any level of biology, from cell to biosphere. However, in wildlife, ecology typically focuses 86 

on the individual, population, or species, whereas toxicology usually focuses on the molecular, 87 

cellular, and organ level of the individual. Thus, ecology often begins at the level of the 88 

individual, which is where toxicology usually ends (AMAP, 1998; Chapman, 2002). 89 

Furthermore, ecology examines the larger-scale effects (Johnson, 1980; Mayor et al., 2009), 90 

while toxicology tells us that variables are changing, but rarely what the larger-scale effects may 91 

be. The interdisciplinary perspective of combining the two fields in an ecotoxicological approach 92 

provides greater insight into factors influencing the bioaccumulation and toxicological effects of 93 

pollutants in wildlife.  94 

 95 
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Anthropogenic chemicals in the environment predate concerns of their effects on wildlife or 96 

humans. For example, polychlorinated biphenyls (PCBs) were first synthesized in 1881 and 97 

while their use in industry emerged about 50 years later (Cairns and Siegmund, 1981), they were 98 

not reported as persistent and bioaccumulated contaminants in biota until 1966 (Jensen, 1966). 99 

Generally, other environmental pollutants have a shorter history and new, emerging 100 

environmental pollutants are frequently discovered, including in the Arctic (Dietz et al., 2013a; 101 

Gebbink et al., 2016; Trumble et al., 2012). Persistent organic pollutants (POPs) cover a 102 

diversity of compounds including legacy compounds (defined as those that remain in the 103 

environment long after they were introduced) such as PCBs, DDTs, and chlordanes, as well as 104 

new chemicals of emerging concern (CECs), such as brominated flame retardants (BRFs) and 105 

some current-use pesticides (AMAP, 2016; Bidleman et al., 2010; Butt et al., 2010; Gebbink et 106 

al., 2016; Warner et al., 2010). Heavy metals, especially methylmercury (MeHg), are another 107 

group of toxic compounds of concern in Arctic biota (Dietz et al., 2013b; Eaton and Farant, 108 

1982; Norstrom et al., 1986).  109 

 110 

Ecotoxicology evolved as a scientific field in the 1950s and 1960s as the emergence of 111 

unintended effects of anthropogenic chemicals in biota became apparent (Newman, 2010; 112 

Rattner, 2009). Although DDT had been detected in wildlife in the 1950s (Rattner, 2009), it was 113 

eggshell thinning in birds of prey that provided evidence of the detrimental effects of 114 

environmental pollution (Ratcliff, 1967). The first Arctic ecotoxicological studies were reported 115 

in the 1970-80s at which time long-range transport of pollutants became apparent (Barrie et al., 116 

1992; Kerr, 1979). The first paper on chlorinated organic chemicals in an Arctic marine mammal 117 

was published by Holden (1970), who detected PCBs, DDT, and dieldrin in ringed seals (Pusa 118 
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hispida). More detailed reports on PCBs and DDT-related compounds in the Arctic were 119 

published in the early 1970s on ringed seal and beluga (Delphinapterus leucas) (Addison and 120 

Brodie, 1973; Addison and Smith, 1974; Clausen et al., 1974). Studies on heavy metals in the 121 

Arctic occurred about the same time on harp seals (Pagophilus groenlandicus) and hooded seals 122 

(Cystophora cristata) (Sergeant and Armstrong, 1973). The first paper on POPs in polar bears 123 

(Ursus maritimus) was published in 1975, when high concentrations of PCBs were reported in 124 

their milk (Bowes and Jonkel, 1975). Similar to the legacy contaminants, heavy metals were first 125 

quantified in polar bears several decades ago (Eaton et al., 1982; Norstrom et al., 1986). Once it 126 

became clear that polar bears were subjected to high concentrations of these compounds, they 127 

soon became a focal species for contaminant exposure studies in the Arctic. 128 

 129 

Polar bear ecotoxicology has been a growing field of research since the 1970s (Fig. 1). 130 

Expanding our knowledge on the exposure and the effects of contaminants in relation to polar 131 

bear ecology is of particular concern because polar bears are apex predators with a high lipid diet 132 

and, as such, carry high loads of contaminants due to biomagnification (Atwell et al., 1998; 133 

Hobson et al., 2002). POPs are generally lipophilic compounds as exemplified by PCBs and 134 

PBDEs, as well as some forms of metals such as methylmercury (AMAP, 1998; Dietz et al., 135 

2013b; McKinney et al., 2011; Sonne, 2010). Although subpopulation specific, polar bears are at 136 

risk as a consequence of the effects of climate change (Stirling and Derocher, 2012), pollution 137 

(Sonne, 2010), harvest (Taylor et al., 2006), and the synergistic effects of these stressors 138 

(Holmstrup et al., 2010; Hooper et al., 2013; Jenssen et al., 2015). In addition, polar bears are 139 

harvested for human consumption (Ostertag et al., 2009; Sonne et al., 2013b). Thus, knowledge 140 
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of contaminants and their effects on polar bears may aid our understanding of the extent and 141 

nature of their potential effects in humans. 142 

 143 

Collecting data on widely dispersed and solitary wildlife species, such as polar bears, is 144 

challenging. Thus, there is a need to coordinate and optimize available resources to maximize the 145 

scientific output contributing to the conservation of the species (Jenssen et al., 2015; Patyk et al., 146 

2015; Vongraven et al., 2012). Despite identification of environmental contaminants as a key 147 

threat to polar bears (Amstrup et al., 2007; Patyk et al., 2015), there has been no systematic 148 

overview of their ecotoxicology across all subpopulations. 149 

 150 

The primary aim of this systematic review was to examine polar bear ecotoxicology in the peer-151 

reviewed literature, the patterns over time, and how ecological variables have been integrated in 152 

these studies. The secondary aim was to identify knowledge gaps within the field of polar bear 153 

ecotoxicology and provide recommendations on how to fill those knowledge gaps through future 154 

research within the field. 155 

Methods 156 

 157 

A systematic review of peer-reviewed literature was performed based on searches in the 158 

comprehensive database Web of ScienceTM (WoS, Thompson Reuters, 2016). “All databases” 159 

were searched (see Table S1 for an overview of the included publication databases) on WoS 160 

using polar bear- and contaminant-relevant search terms to generate an initial list of potential 161 

papers. This list was then refined, retaining papers where polar bears were the focal species. Date 162 
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of publication was unrestricted but only peer-reviewed papers in English were included. The 163 

resulting papers were then divided into two categories: 164 

• research papers – original ecotoxicological studies (e.g., Basu et al., 2009; Derocher et 165 

al., 2003) or 166 

• review papers - overview of published studies (e.g., Letcher et al., 2010; McKinney et al., 167 

2015). 168 

A number of ecological and toxicological variables were documented for each paper included in 169 

the systematic review (Table 1, core ecological and toxicological variables; Table S2, full list of 170 

all variables and their definitions). Refining the list of papers from the initial literature search and 171 

scoring the variables on those papers that were included in the review was done by co-author M. 172 

Viengkone.  173 

 Further, an index was created, consisting of ecotoxicology publications for a selection of 174 

marine and terrestrial mammal species relative to those published for polar bears. The index was 175 

created using the raw, unfiltered results from literature searches for each species in connection 176 

with the contaminant-related search terms outlined above. 177 

 178 

Search terms 179 

Two “TOPIC” search terms were combined using the Boolean operator “AND”. The asterisk (*) 180 

indicated wildcard truncation in the specific terms. 181 

• "polar bear" OR "ursus maritimus" OR "thalarctos maritimus" 182 

• pollut* OR contamin* OR metal* OR flame* OR PCB* OR organo* OR cadmium* OR 183 

mercur* OR lead* OR pestic* OR PFOS OR PFAS OR PFOA OR PFCA OR PFC* OR 184 
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hydrox* OR OH-* OR bromin* OR perfluor* OR fluor* OR chlor* OR halogen* OR 185 

legacy OR emerg* OR metabolit* 186 

 187 

Statistical analyses 188 

Linear regression analyses were used to investigate temporal relationships in number of authors 189 

and number of samples used in research papers. In addition, a Kruskal-Wallis rank sum test was 190 

used to examine temporal patterns in the research papers. Statistical analyses were conducted 191 

using Microsoft Excel 2010. “The last decade” of papers included in the present systematic 192 

review was defined as those papers published between January 2006 and December 2015. 193 

Results were considered statistically significant at p ≤ 0.05, with 0.05 < p ≤ 0.1 considered as 194 

approaching significance. 195 

Results and discussion 196 

 197 

Literature 198 

 199 

The literature search was conducted August 17, 2016 and yielded 207 publications published 200 

between 1970 and 2016 (Fig. 1); 176 research papers, 27 reviews, and 4 papers that were both 201 

research and review (Dietz et al., 2015; Henriksen et al., 2001; Pavlova et al., 2016; Sonne et al., 202 

2009a). For our purposes, these four papers were subsequently included in both the research and 203 

the review paper categories. Research papers were published in 43 different journals, with 19% 204 

published in Environmental Science & Technology and 16% in Science of the Total 205 

Environment. Review papers were published in 16 different journals, with 42% in Science of the 206 
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Total Environment. For perspective on how well researched polar bears are, we created an index 207 

of toxicology publications for a selection of marine and terrestrial mammal species relative to 208 

those published for polar bears (Fig. 2). This index showed that polar bears, along with beluga 209 

whales, were one of the more well-published Arctic marine mammal species within this field  210 

and had a similar number of published papers to mink (Mustela lutreola and Neovison vison), 211 

which are often used as a mammalian model species in toxicology studies (Folland et al., 2016; 212 

Pavlova et al., 2016; Wang et al., 2014). Ringed seals, the main prey species of polar bears 213 

(Thiemann et al., 2008), were also well studied.  214 

 215 

There is a temporal trend to include more authors on publications in complex, collaborative 216 

fields of research such as ecotoxicology (Mindeli and Markusova, 2015; Subramanyam, 1983). 217 

While this trend was not found in the review papers (1992-2016; Fig. 3a; F1,29 = 2.00, p = 0.17, r2 218 

= 0.06), there was an increasing trend towards larger authorship for research paper published 219 

1970-2016 (Fig. 3b; F1,178 = 48.36, p < 0.001, r2 = 0.21). However, over the past decade, these 220 

results switched: review papers, perhaps due to the growing complexity, had an increasing 221 

number of authors (2006-2015; Fig. 3c; F1,17 = 5.97, p = 0.03, r2 = 0.26), while research papers 222 

had an average of 7-8 authors per paper published in the period 2006-2015 (Fig. 3d; F1,87 = 0.11, 223 

p = 0.74, r2 = 0.001). Although the number of authors varies between natural science fields, 7-8 224 

authors in total is at the higher end of the range (Newman, 2001). International collaboration is 225 

common in polar bear ecotoxicology (Table 2). Institutions within Canada and Denmark have 226 

been the most prolific followed by Norway and the United States (Table 2). Greenland and 227 

Russia are largely represented as coauthors on research publications from other countries. Low 228 

contributions from these two countries may be related to our focus on publications in English 229 
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only. The low number of papers from Greenland reflects that most research on Greenland polar 230 

bear subpopulations were conducted by Denmark-based scientists. 231 

 232 

The ratio of polar bear ecotoxicology research to review papers was 6:1 (Fig. 1). The high 233 

frequency of review papers highlights two aspects about polar bear ecotoxicology: 1) it is a 234 

complex research field encompassing a large number of chemicals and ecological variables, 2) 235 

due to the often limited sample size, each individual study only takes a limited number of 236 

possible ecological variables into account. Review papers present a means to reduce these 237 

restrictions by integrating insights from individual papers, thereby facilitating incorporation and 238 

interpretation of a wider range of variables.  239 

Toxicology 240 

 241 

Samples  242 

Results of ecotoxicology research have been published for all recognized polar bear 243 

subpopulations (mean ± S.E.: 21 ± 4 papers/subpopulation, range: 0-72), except the Arctic Basin 244 

(Fig. 4a-b; IUCN PBSG, 2010). The subpopulations of East Greenland, Barents Sea, Southern 245 

Beaufort Sea, and Lancaster Sound were the most published with > 30 papers each. Bears in East 246 

Greenland and Barents Sea have high contaminant loads and ecotoxicological research has been 247 

a priority in these areas (AMAP, 1998; Dietz et al., 2015; Norstrom et al., 1998; Sonne, 2010). 248 

The number of polar bears harvested varies widely across Canadian subpopulations (IUCN 249 

PBSG, 2010) and the access to samples from a large harvest in Lancaster Sound may have 250 

facilitated ecotoxicological studies. Finally, the high number of papers including the Southern 251 

Beaufort Sea subpopulation is likely due to it being a shared subpopulation and thus having 252 
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publications from both Canada and USA, its long history of population assessment, and 253 

monitoring in relation to hydrocarbon exploration (Amstrup, 2000; Stirling, 2002).  254 

 For those subpopulations where research has occurred, Kane Basin, Laptev Sea, Kara 255 

Sea, and Norwegian Bay were the least studied (<10 papers each), likely because they are less 256 

accessible and have low or no harvest (Vongraven et al., 2012). Limited resources and varying 257 

priorities for the different subpopulations affect research intensity. However, ecotoxicological 258 

studies should optimally form part of polar bear research programs, in particular due to the 259 

adverse interactions that exist between climate change and contaminants (AMAP, 2011; Jenssen 260 

et al., 2015), but also due to the direct sub-lethal effects that contaminant exposure may have on 261 

the bears’ reproduction and health (Dietz et al., 2015; Letcher et al., 2010; Sonne, 2010; Sonne et 262 

al., 2015). Without the ability to include ecologically relevant data as input in predictive 263 

toxicological models, the effects of potentially important variables influencing the health status 264 

and survival of polar bears is missing (also see Atwood et al., 2016). 265 

  266 

Polar bears were the only species studied in 65% (117) of research papers, whereas in 35% (63), 267 

they were studied along with other species including fish, turtles, pinnipeds, cetaceans, sled dogs, 268 

and humans (Giesy and Kannan, 2001; Sonne, 2010). The mean number of sampled polar bears 269 

per paper was 76 (S.E. = 8.4, range: 1-691). Although the positive trend in number of 270 

samples/paper over time approached significance (Fig. 5a; F1,171 = 3.16, p = 0.08, r2 = 0.02), the 271 

mean was stable over the last decade (2006-2015; mean ± S.E.: 96 ± 14.53; Fig. 5b; F1,85 = 1.61, 272 

p = 0.21, r2 = 0.02). The three largest sample sizes came from studies that included museum 273 

specimens (Bechshoft et al., 2008; Bechshoft et al., 2009; range n = 510-691; Sonne et al., 274 

2007b). Larger sample sizes allow for parsing of the data into homogenous groups (e.g., sex/age 275 
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categories), while maintaining statistical robustness. It also better facilitates investigation of 276 

interactions between variables without overfitting or otherwise compromising the data analyses 277 

(Crawley, 2007; Hair et al., 2006). Ecotoxicological studies with small sample sizes (e.g., n ≤ 30) 278 

were often investigative (e.g., Sacco, 2005; Verreault et al., 2006), experimental (e.g., Lie et al., 279 

2005; Lie et al., 2004), or focused on new analytical method development for chemical 280 

contaminants and biomarker endpoints of effects pathways and mechanisms (e.g., Letcher and 281 

Norstrom, 1995; Simon et al., 2011). Developing new methods using only a small number of 282 

samples is advantageous with regards to cost, time, and optimal usage of the limited tissue 283 

samples available. The number of samples available for ecotoxicological polar bear research 284 

depends on a number of factors such as subpopulation(s) investigated and sampling methods. Of 285 

the 180 papers, 66% (119) used samples from harvested bears, 25% (45) samples from live 286 

bears, and 6% (10) with samples from both harvested and live bears. The remaining 3% (6) of 287 

papers did not specify how tissues were obtained. The most common tissues examined were 288 

adipose, liver, and blood, incorporated in 40% (72), 38% (69) and 26% (46) of the papers, 289 

respectively (Fig. 6). While tissue samples such as kidney, liver, and reproductive organs are 290 

useful in determining histopathological toxicological and functional endpoints (Beland et al., 291 

1993; Bergman, 1999; Gabrielsen et al., 2015; Letcher et al., 2010; Sonne, 2010), they are only 292 

available from dead polar bears. As climate change induced habitat loss and, to some degree, 293 

pollution are expected to have increasingly adverse effects on the abundance of polar bears, the 294 

availability of invasive samples may decline long-term (Amstrup et al., 2007; Derocher et al., 295 

2013). Thus, it is increasingly important to examine relationships between ecotoxicological 296 

results based on invasive versus minimally- or non-invasive samples. Such samples include those 297 

that can be collected without any direct contact with the animal, e.g., fecal samples collected  298 
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opportunistically (Iversen et al., 2013) or hair samples collected using hair snags (de Groot et al., 299 

2013). Born et al. (1991) found concentrations of mercury in polar bear hair to be positively 300 

correlated to mercury concentrations in muscle, liver, and kidney tissue. However, the types of 301 

samples and how these are collected will be dependent on the research questions: minimally- or 302 

non-invasive sampling will not be applicable in all studies. 303 

 304 

Temporally, the research papers were based on samples collected from 1881 to 2015, with the 305 

1990s and 2000s being more prevalent (Fig. 7; Kruskal-Wallis rank sum test, H = 7.75, p < 306 

0.01). Ten papers analyzing hair or bones from museums spanned > 100 years (e.g., Horton et 307 

al., 2009; Sonne et al., 2013a). Including these 10 papers, the mean time span covered was 12 308 

years (S.E. = 2.1; range 1-119), but excluding them reduced the mean to 6 years (S.E. = 0.8, 309 

range 1-71). Six years is a brief period considering the interannual variation in ecological as well 310 

as contaminant-related variables and the lifespan of polar bears (see Riget et al., 2010; Riget et 311 

al., 2011). The years included in these time spans, however, were not necessarily contiguous. 312 

Many papers listed only a range of years within which the bears were sampled, while 9 studies 313 

included no information of sampling year(s). Removing the 10 papers where the time series > 314 

100 years, the mean sample size was 61 bears (S.E. = 6.0, range 1-378) or only 10 315 

individuals/year, which is at the low end of the 10-25 annual samples recommended for 316 

monitoring time trends of PCBs in polar bears (Henriksen et al., 2001). Determining adequate 317 

annual sample size depends on degree of interannual variability, statistical tests used, number of 318 

years of sampling, and demographic composition of the sample (Bignert et al., 2004). While a 319 

sample of 10 bears/year may seem numerically reasonable, samples are often a mixture of bears 320 

of different age- and sex-class, reproductive status, body condition, geographical location, and 321 
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contaminant load, which are all important factors that can have significant influence on exposure 322 

and physiology (Letcher et al., 2010; Polischuk et al., 2002; Sonne, 2010). Therefore, the annual 323 

sample size for any one demographic group is often significantly smaller. Coordinated sampling 324 

across years and polar bear subpopulations could help address sample size issues and provide 325 

statistical power to temporal studies.  326 

 327 

Twenty-eight percent (50) of research papers reported on the analysis of tissues collected in one 328 

season: 19% spring (34; March-May), 4% summer (7; June-August), 3% fall (5; September-329 

November), and 2% winter (4; December-February). The remaining papers incorporated samples 330 

collected in two (16%, 28), three (7%, 13), or all four (6%, 10) seasons. Two papers (1%) 331 

combined spring samples with samples of unknown season, while the remaining 43% (77) were 332 

entirely based on samples of unknown collection season. Overall, regardless of number of 333 

seasons represented, spring was the most prevalent sampling season (44% [79]), compared to 334 

summer 18% (32), fall 21% (38), and winter 21% (38). For most polar bear subpopulations, 335 

spring samples dominate because it is the season with most harvest, stable sea ice enables on-ice 336 

sampling of bears, and all sex/age groups are accessible. Although season can have a significant 337 

influence on polar bear contaminant load (Dietz et al., 2004; Dietz et al., 2007; Polischuk et al., 338 

2002), it is rarely considered in polar bear ecotoxicology studies. 339 

 340 

Contaminants 341 

Chlorinated compounds and pesticides were included in 55% (99) and 41% (74) of the polar bear 342 

ecotoxicology papers, respectively. Heavy metals, metabolites, and brominated and fluorinated 343 

compounds were each included in 17-28% (30-50) of the papers (Fig. 8). Although the choice of 344 
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compounds studied is rarely explained, the most commonly investigated are those included in the 345 

2001 Stockholm Convention; a continuously updated, global treaty with the purpose of 346 

protecting humans and the environment against persistent organic pollutants (Hung et al., 2016; 347 

Muir and Howard, 2006; UNEP, 2001). Finally, our understanding of contaminant metabolites is 348 

still rudimentary. As our knowledge on the relationship between exposure and effects of parent 349 

compounds and metabolites increases, metabolites may be included in more studies. However, 350 

the study of metabolites and other new compounds continues to be challenged by the lack of 351 

analytical methods and pure chemical standards (Gebbink et al., 2016; Keith, 1976; Wiener, 352 

2013). 353 

 354 

Contaminants in research papers were examined in relation to biology (those listed in Table 3 as 355 

well as age and/or sex; see definition under "Effects" in Table S2), concentration, space, and 356 

time (Fig. 9). Most studies examined either contaminant concentrations (29%, 53) or 357 

contaminant concentrations and biology (32%, 57). However, 67% (38) of the latter only 358 

included age and/or sex in their analyses. Thus, 51% (53 + 38) of the papers included no, or only 359 

the most basic, biological information on their study animals. One explanation for this could be 360 

that the objectives of earlier studies focused on identifying and quantifying contaminants, 361 

essential information which formed the educated basis for studies on their effects. However, 362 

contaminant concentrations alone tell us little about the toxicity mechanisms and potential 363 

adverse effects. Controlled studies in other mammals have shown that even low concentrations 364 

of specific contaminants may have physiological and/or morphological effects (Kirkegaard et al., 365 

2010; Martin et al., 2006; Sonne et al., 2009b; Voltura and French, 2000; Zimmer et al., 2009). 366 

Further, the potential mixture effects between the hundreds of different contaminants in polar 367 
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bears requires additional consideration (Dietz et al., 2015; Letcher et al., 2010; Sonne, 2010; 368 

Sonne et al., 2012); these effects could furthermore differ depending on whether the exposure is 369 

acute or chronic (Chapman, 2002). Biology (as defined above) was investigated relative to 370 

concentrations and spatial, temporal, or spatial and temporal issues in 28% (49) of the papers. 371 

Finally, concentrations were investigated relative to spatial, temporal, or spatial and temporal 372 

issues in 9% (16) of the papers. 373 

 374 

Of the physiological and morphological effects that were studied in relation to contaminant 375 

concentrations, pathology was the most prevalent (9%, 17; Table 3). Morphometrics, enzymes, 376 

and hormones were each studied in 4-6% of all papers (7 ≤  n ≤ 11), whereas immune system, 377 

protein levels, reproductive potential, vitamins, receptor levels, and transport proteins each were 378 

the focus of 2-3% (3 ≤ n ≤ 5) of the studies. Altogether, 37% (66) of the papers included in the 379 

review investigated physiological and morphological effects in relation to contaminant 380 

concentrations (Table 3). 381 

 382 

Notably, 98% (176) of all papers dealt with toxicology at the individual level. The four 383 

exceptions were Bernhoft et al. (1997), who investigated population level effects by assessing 384 

the relationship between contaminants and reproductive success in female polar bears, and Sonne 385 

et al. (2009a), Dietz et al. (2015), and Pavlova et al. (2016), who all modelled potential for 386 

population level effects due to reproductive impairment. Modeling is likely to become 387 

increasingly applied in polar bear ecotoxicology in order to take the results of individual level 388 

studies and apply these at the population level (Dietz et al., 2015; Pavlova et al., 2016).  389 

 390 
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Ecology 391 

 392 

The frequencies with which ecological variables were integrated into toxicological papers varied 393 

(Table 1). Age and sex were the most common: age to nearest month or year was used in 82% 394 

(148) of the papers, whereas sex was used in 72-74% (130 for males, 134 for females). Eighteen 395 

percent (32) did not include age, 16% (29) did not discuss gender, and 10.5% (19) overlapped in 396 

that they investigated neither sex nor age in relation to contaminants. Life history traits such as 397 

age and sex are primary variables determining vulnerability to contaminant exposure because 398 

they reflect the animal’s life stage and physiological (dietary) requirements (Diamanti-399 

Kandarakis et al., 2009; Letcher et al., 2010; McKinney et al., 2013; Thiemann et al., 2008). 400 

Further, inter-sexual differences in diet and hormones influence how a contaminant may affect 401 

an individual (Pilsner et al., 2010; Sonne, 2010). Bears of unknown sex were included in 14% of 402 

the studies, generally as a smaller percentage (< 15%) of the total number of individuals (e.g., 403 

Routti et al., 2011). In most of the studies where gender was unknown, it was the result of using 404 

inadequately labeled, museum specimens (e.g., Sonne et al., 2004). 405 

 406 

Solitary subadult and adult polar bears were included in 57% (102) and 79% (142) of the papers, 407 

respectively. Younger bears were included in fewer studies: yearlings in 20% (36) and cubs-of-408 

the-year in 13% (24). The category subadults here predominantly consists of independent 409 

immature individuals > 2 year old (Rosing-Asvid et al., 2002). From a conservation perspective, 410 

studying contaminants in adult polar bears is relevant to their reproductive success and would 411 

include variables such as epigenetics, reproductive organ deformation, and behavior (Jenssen et 412 

al., 2015; Pilsner et al., 2010; Sonne et al., 2007a; Sonne et al., 2015). Furthermore, effects of 413 
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contaminants may reduce survival and thus reproductive output (Derocher et al., 2003; Dietz et 414 

al., 2015). However, developing young are more sensitive to the effects of contaminants 415 

(Domingo, 1994; Hamlin and Guillette, 2011), while also being subjected to high concentrations 416 

via maternal transfer (Bernhoft et al., 1997; Bytingsvik et al., 2012). Given the risk of lifelong 417 

consequences (Colborn et al., 1993; Hamlin et al., 2011), developing young are underrepresented 418 

in the polar bear ecotoxicology literature. 419 

 420 

Presence of dependent offspring can have a profound influence on maternal contaminant load in 421 

polar bears (Lie et al., 2000; Polischuk et al., 2002). In addition, information on reproductive 422 

success, including sex, age, and survival of cubs, is essential to population assessments. 423 

However, only 12% (21) of the research papers examined reproduction in relation to 424 

contaminants. Lack of linkages to reproduction could be due, in part, to the large number of 425 

ecotoxicological studies where samples are collected from harvested animals, which generally 426 

excludes family groups because they are protected from harvest (Naalakkersuisut, 2005; Sonne, 427 

2010). Data on family groups is more readily obtainable for frequently monitored subpopulations 428 

(e.g., Barents Sea, Western Hudson Bay, and Southern Beaufort Sea). Of the studies that 429 

incorporated offspring variables in the contaminant analysis, 9% (16) included offspring age, 4% 430 

(7) offspring sex, and 2% (4) litter size. In addition to the 12% of papers that included some 431 

measure of reproduction, another 7% reported on contaminants in dependent young, but without 432 

any further statistical analysis (e.g., Derocher et al., 2003; Dietz et al., 2000). Dependent young 433 

differ in contaminant exposure and physiological variables such as hormone concentrations, not 434 

only from adults, but also due to sex and age (Bechshoft et al., 2016a; Bernhoft et al., 1997; 435 

Knott et al., 2012; Oskam et al., 2003; Oskam et al., 2004). Differences in physiological response 436 
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to contaminants is expected between offspring life stages (e.g., when shifting from milk to 437 

solids) as well as between the sexes, as these differ in their endocrine, morphological, and overall 438 

physiological profile already at the fetal stage (Derocher et al., 2005; Hamlin et al., 2011; 439 

Maekawa et al., 2014).  440 

 441 

The amount of lipophilic contaminants biologically available to a bear is closely linked with that 442 

individual bear’s body condition (size of adipose tissue store): the leaner the bear, the more of 443 

the contaminants will be released into the blood stream (Polischuk et al., 2002). However, body 444 

condition was included in the contaminant analyses in only 26% (46) of the research papers. In 445 

addition, adult female polar bear body condition is related to reproductive success (Derocher et 446 

al., 2004; Robbins et al., 2012), indicating a potential link between body condition, contaminant 447 

load, and reproductive success in polar bears. Investigating contaminants in relation to body 448 

condition is also interesting in that they are associated with altered metabolism in other species 449 

(van Ginneken et al., 2009; Verreault et al., 2007; Voltura et al., 2000). Finally, measures of 450 

polar bear diet were included in ≤ 9% (≤ 17) of the contaminant analyses.  As the contaminant 451 

concentration and composition in prey species varies widely (McKinney et al., 2013; McKinney 452 

et al., 2010; Routti et al., 2012; St Louis et al., 2011), diet information could be a variable that 453 

warrants further investigation. For example, integrating information on the diet of a polar bear 454 

could help elucidate dietary reasons that baseline contaminant concentrations may differ between 455 

demographic groups such as males and females or subadults and adults. 456 

 457 

Genetics, size of home range, and climate variables were each examined in ≤ 1% (≤ 2) of the 458 

research papers, while the variable behavior (which in this review is separate from movement, 459 
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see Table S2) was never used. Given the relationship between these variables and toxicology, 460 

they could be an area for future studies. Investigating individual and geographical differences in 461 

the animals’ exposure to contaminants is a relevant conservation topic (Bickham et al., 2000; 462 

Brown et al., 2009). Further, larger home range sizes have been linked to higher contaminant 463 

exposures in polar bears (Olsen et al., 2003), while climate variables have been linked to the 464 

abundance and behavior of the contaminants in their ecosystem (AMAP, 2011; Derocher et al., 465 

2004; Ma et al., 2011). Finally, alteration of behavior has been observed in other mammal 466 

species (Clotfelter et al., 2004; Patisaul and Adewale, 2009; Zimmer et al., 2009). Therefore, 467 

combining contaminant concentration information with behavioral observations of wild polar 468 

bears may be useful given that the contaminants can affect vitamin and endocrine levels 469 

(Bechshoft et al., 2015; Bechshoft et al., 2016b; Pedersen et al., 2015; Villanger et al., 2011), 470 

which may affect behavior. Similarly, a change in feeding behavior could affect contaminant 471 

exposure (McKinney et al., 2013; McKinney et al., 2015). 472 

Conclusions 473 

 474 

Summary: Key knowledge gaps 475 

Although our systematic review of the published literature found polar bears to be one of the 476 

better studied Arctic marine mammal species in the field of toxicology, few of the studies 477 

incorporated polar bear ecology. The increased integration of toxicology and ecology has 478 

particular relevance to polar bear conservation given concerns of contaminants as a threat to the 479 

species. Vongraven et al. (2012) and Patyk et al. (2015) noted the need for multidisciplinary 480 

projects that include a broad range of ecological variables. Our review identified existing 481 

knowledge gaps in polar bear ecotoxicology. Based on our findings, we suggest that polar bear 482 
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researchers consider the following recommendations when designing future ecotoxicology 483 

studies: 484 

 485 

(1) Subpopulation(s) 486 

While it would be interesting to have ecotoxicological data for all polar bear subpopulations, 487 

logistical restraints require prioritization. Furthermore, the choice of which polar bear 488 

subpopulation to focus on in future ecotoxicology studies will depend on the nature of the 489 

scientific questions being investigated. For example, if family group data is required, relying on 490 

a hunter harvest will be of little value because family groups are protected from harvest. 491 

Similarly, studies on temporal trends would benefit from previous investigations of the variables 492 

of interest in the same geographical area. Our recommendation for focal subpopulations in future 493 

ecotoxicology studies are all included in those suggested as appropriate for high or medium 494 

intensity monitoring under the circumpolar polar bear monitoring framework outlined by 495 

Vongraven et al. (2012): Barents Sea, Chukchi Sea, East Greenland, Northern Beaufort Sea, 496 

Southern Beaufort Sea, and Western Hudson Bay (see Table 4 for an overview). Results from 497 

disparate subpopulations, differing with regards to ecological data or availability of invasive 498 

tissue samples, would complement each other, thereby providing a greater understanding of the 499 

relationship between ecology and toxicology.  500 

 501 

(2) Exposure assessments and temporal trends 502 

Assessing change in the contaminant exposure of polar bears, or temporal exposure trend studies, 503 

would benefit from increased sample set sizes as well as an increase in the range of years 504 

covered. Depending on collection protocols for a study, increased use of polar bear specimens 505 



24 
 

from museums as well as those stored in tissue banks would help alleviate both of these 506 

problems, and at low cost. In addition, the continued collection and archiving of samples is 507 

recommended. Finally, larger and more homogenous sample sizes may allow for the 508 

incorporation of additional ecological variables in the temporal trend studies.  509 

 510 

(3) Family groups 511 

Developing young are underrepresented in the polar bear ecotoxicology literature. Hence,family 512 

groups and dependent young, including those < 2 years of age, should be included in 513 

ecotoxicology studies whenever possible (keeping in mind that samples from the youngest bears 514 

should be limited to those obtainable through minimally invasive methods).If sample size allows, 515 

dependent young should be split into sex/age groups before analyses. Furthermore, polar bear 516 

ecotoxicological studies should include measures of reproduction (e.g., lactation, 517 

number/age/sex/weight/body condition of offspring) in analyses whenever possible. Such detail 518 

may be more difficult to incorporate in studies based on hunter-gathered samples, as the harvest 519 

is often male biased (Derocher et al., 1997), but should be more readily obtainable in studies 520 

based on observational and/or researcher-gathered data.  521 

 522 

(4) Ecological variables 523 

Body condition is an essential variable to consider in ecotoxicological studies, especially with 524 

respect to lipophilic compounds, and should be among the data collected on all bears, regardless 525 

of the origin of the samples. Developing an understanding of the relationship between various 526 

methods of measuring body condition would also be helpful in facilitating inter-study 527 

comparisons (Cattet et al., 2002; McKinney et al., 2014; Stirling et al., 2008). Furthermore, we 528 
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recommend increased incorporation of ecological variables such as diet, climate, reproduction, 529 

and survival in ecotoxicological studies. In addition to following up on the existing studies on 530 

hormone response and immune function (Bechshoft et al., 2012; Bernhoft et al., 2000; Lie et al., 531 

2004; Macbeth et al., 2012; Oskam et al., 2004; Weisser et al., 2016), hitherto uninvestigated 532 

health and immune system variables such as parasitic load may also be of interest in relation to 533 

ecotoxicological polar bear studies. Finally, behavior may have the potential to be an important, 534 

yet largely uninvestigated, variable in polar bear ecotoxicological research. 535 

 536 

(5) Conservation implications 537 

Essentially all polar bear ecotoxicological data published investigate the impacts of contaminants 538 

at the individual level. If ecotoxicology is to be considered in population assessments, results 539 

must be applicable to the population level, which could be achieved through meta-analyses (e.g., 540 

Nuijten et al., 2016), modeling, or reviews based on already existing data. In new contaminant 541 

studies, an understanding of population-level effects can be achieved by incorporating more 542 

variables directly related to reproduction and survival.  543 

 544 

Polar bear ecotoxicology has helped shape our understanding of the detrimental effects of 545 

anthropogenic contaminants in the Arctic. It is our hope that the knowledge gaps identified in 546 

this review will influence research planning, thus increasing the research impact, especially with 547 

regards to population assessments, management, and conservation of polar bears. 548 

  549 
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Tables 1027 

 1028 

Table 1. Core ecological variables (biological and physical-chemical parameters) included in the 1029 

present systematic review of polar bear ecotoxicology literature. The full list of all variables and 1030 

their definitions can be found under Supporting information (Table S2). 1031 

 1032 
 1033 

Ecological variables included in the contaminant analysis in 
the 180 analyzed research papers  Number Percent 

Age 
• Specific age (months/years) 

Class 
• Cub-of-the-year 
• Yearling 
• Subadult 
• Adult 
• Unknown 

 
148 
 
24 
36 
102 
142 
25 

 
82 
 
13 
20 
57 
79 
14 

Behavior 0 0 
Body condition (any metric) 46 26 
Climate 

• Climate index 
• Season 
• Temperature 

 
1 
1 
1 

 
< 1 
< 1 
< 1 

Diet 
• Fatty acid 
• Stable isotopes 

 
6 
17 

 
3 
9 

Genetics 2 1 
Home range size (movement) 2 1 
Reproductive history 
Offspring 

• Litter size 
• Sex 
• Age 

21 
 
4 
7 
16 

12 
 
2 
4 
9 

Sex 
• Male 
• Female 
• Unknown 

 
130 
134 
43 

 
72 
74 
24 

 1034 
 1035 



39 
 

 1036 
Table 2. Authorship by country of the 207 papers included in the present systematic review of 1037 

the status of polar bear ecotoxicology literature; 31reviews and 180 research papers (four 1038 

publications were in both categories, see text for details). 1039 

 1040 

 Review paper Research paper 

Authorship 
First 
author 

Coauthor 
First 
author 

Coauthor 

Canada 9 19 60 104 
Denmark 10 9 43 70 
Greenland 0 1 1 22 
US 5 7 24 45 
Norway 4 8 34 59 
Russia 0 0 0 12 
Other 3 7 18 31 

 1041 
  1042 
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Table 3. Biological (physiological and morphological) variables investigated in relation to 1043 

contaminants in the research papers included in the present systematic review of polar bear 1044 

ecotoxicology literature. The table is based on 66 papers, some of which analyzed multiple of the 1045 

listed variables. 1046 

 1047 
 1048 

Physiological/morphological variable Number Percent 
Enzymes 9 5 
Hormones 

• Steroid 
• Thyroid 

 
11 
10 

 
6 
6 

Immune system 4 2 
Morphometrics 7 4 
Other 3 2 
Parasites/zoonosis 0 0 
Pathology 17 9 
Protein levels 4 2 
Receptor levels 5 3 
Reproductive effects 

• Litter size 
• Potential 

 
0 
4 

 
0 
2 

Transport proteins 5 3 
Vitamins 4 2 

 1049 
  1050 
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Table 4. Recommendation for which polar bear subpopulations to focus on in future 1051 

ecotoxicology studies, based on their respective strengths with regards to available data.  1052 

 1053 
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Data available on 
life history (e.g., fatness, tooth wear) X X  X X 

family groups X X  X X 

Samples available 

maximally invasive (e.g., inner organs)   X   

high number/consistent sampling efforts X X X X X 
potential repeat captures and sampling  
of the same individual  X X  X X 

Contaminant  
high concentrations X  X X  
previously investigated (i.e. potential for 
investigating temporal trends) X  X X X 

  1054 
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Figure legends 1055 

 1056 

Fig. 1. Frequency of polar bear (Ursus maritimus) focused ecotoxicological papers (n=207) 1057 

based on the year of publication and categorized by type (i.e. review or research) included in the 1058 

present systematic review. 1059 

Fig. 2. Index of toxicology publications for a selection of marine and terrestrial mammal species 1060 

relative to those published for polar bears. The index was created using the raw, unfiltered results 1061 

from literature searches for each species in connection with the contaminant-related search terms 1062 

outlined in the text. The dashed line represents the polar bear, here a value of 1 on the index 1063 

scale. 1064 

 1065 

Fig. 3a-d. Number of authors on the papers included in the present systematic review of the 1066 

status of polar bear ecotoxicology literature: a) review papers, 1992-2016, b) research papers, 1067 

1970-2016, c) review papers, 2006-2015, d) research papers, 2006-2015. 1068 

 1069 

Fig. 4a. Map indicating the 19 currently recognized polar bear subpopulations (map from IUCN 1070 

PBSG). GB: Gulf of Boothia, KB: Kane Basin, LS: Lancaster Sound, MC: M’Clintock Channel, 1071 

NB: Northern Beaufort Sea, NW: Norwegian Bay, SB: Southern Beaufort Sea, VM: Viscount 1072 

Melville Sound, WH: Western Hudson Bay. 1073 

 1074 

Fig. 4b. Number of times each of 19 polar bear subpopulations were incorporated in 1075 

ecotoxicological research papers (n = 180).  1076 

 1077 
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Fig. 5a-b. Sample size (individual bears) in polar bear (Ursus maritimus) ecotoxicology research 1078 

papers (n = 180), as included in the present systematic review, published a) over the investigated 1079 

period as a whole (1970-2016) and b) over the past decade (2006-2015; see text for details). 1080 

 1081 

Fig. 6. Percentage of published polar bear ecotoxicology research papers (n = 180) in relation to 1082 

type of tissue(s) analyzed. As more than one tissue type may have been analyzed in a single 1083 

paper, the combined percentages of all tissue types could exceed 100%. 1084 

 1085 

Fig. 7. Percentage of published polar bear ecotoxicology research papers (n=180) in relation to 1086 

year of sample collection. As more than one year bin may have been covered in a single paper, 1087 

the combined percentages of all year bins could exceed 100%. 1088 

 1089 

Fig. 8. Percentage of published polar bear ecotoxicology research papers (n=180) in relation to 1090 

contaminant groups studied. As more than one contaminant group may have been analyzed in a 1091 

single paper, the combined percentages of all contaminant groups could exceed 100%. 1092 

 1093 

Fig. 9. Percentage of published polar bear ecotoxicology research papers (n = 180) in relation to 1094 

contaminant-related issues studied. B: Biological (here: sex and/or age), C: Contaminant 1095 

concentration(s), S: Spatial issues, T: Temporal issues, O: Other.1096 
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Fig. 2. 1108 
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 a)                       b) 1110 

 1111 
 c)              d)                 1112 

 1113 
Fig. 3a-d.  1114 
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Fig. 4a.  1118 
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 1148 

Supporting information  1149 
 1150 
Table S1. The literature search for the present systematic review was done using Web of 1151 

Science, which included the publication databases listed below. 1152 

 1153 
Publication databases 
Web of Science Core Collection 
BIOSIS Citation Index 
BIOSIS previews 
CABI: CAB Abstracts 
Current Contents Connect 
Data Citation Index 
Derwent Innovations Index 
FSTA – the food science resource 
KCI – Korean Journal Database 
MEDLINE 
SciELO Citation Index 
Zoological Record 

 1154 
 1155 

Table S2. Definition of all variables considered for every paper included in the present 1156 

systematic review of polar bear ecotoxicology studies. 1157 

 1158 

So
ur

ce
 

Entry no. Unique identifier assigned to each paper 
Journal - 
Original research or review paper - 
Publication year - 
Total no. of authors - 

A
ff

ili
at

io
n,

  
fir

st
 a

ut
ho

r 

Canada - 
Denmark - 
Greenland - 
US - 
Norway - 
Russia - 
Other - 
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A
ff

ili
at

io
n,

  
co

-a
ut

ho
rs

 

Canada - 
Denmark - 
Greenland - 
US - 
Norway - 
Russia - 
Other - 

Su
bp

op
ul

at
io

n 

Arctic Basin 

 
 
Geographical location of polar bears 
included in older papers (pre-PBSG 
maps) were estimated and assigned 
following the  subpopulation delineation 
maps available at 
http://pbsg.npolar.no/en/status/population
-map.html 
 
Polar bears from Iceland were assumed to 
be part of the East Greenland 
subpopulation. 

Baffin Bay 
Barents Sea 
Chukchi Sea 
Davis Strait 
East Greenland 
Foxe Basin 
Gulf of Boothia 
Kane Basin 
Kara Sea 
Lancaster Sound 
Laptev Sea 
M'Clintock Channel 
Northern Beaufort Sea 
Norwegian Bay 
Southern Beaufort Sea 
Southern Hudson Bay 
Viscount Melville Sound 
Western Hudson Bay 

Sa
m

pl
e 

Size (total) 

Total number of bears included in the 
contaminant analyses. 
Where samples of multiple tissues were 
used / number of unique individuals was 
not given, we used the highest number of 
samples reported as the total number of 
samples 

Year of sampling 
Year of sampling included in the 
contaminant analyses 

Species 
Single species paper Analyzed polar bear samples only 
Multiple species 
paper 

Analyzed samples from polar bears and 
³1 other species 
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Source 
Live 

Samples came from live bears (collected 
during capture-release studies) 

Dead 
Samples came from hunter-harvested 
bears 

Ec
o 

va
ria

bl
es

 ta
ke

n 
in

to
 a

cc
ou

nt
 

Age 

Aged 
Each bear was assigned a specific age 
(months or years) based on tooth growth 
layers or skull characteristics 

Not Aged 

Bears were not assigned specific ages 
(months or years) 
Bears were also classified as “not aged” if 
there was no indication of their age in the 
paper 

Age class 

Cub-of-the-year 
³1 bear included in the contaminant 
analysis was classified as cub of the year 
(< 12 months old) 

Yearling 
³1 bear included in the contaminant 
analysis was classified as yearling (≥ 12 
months and <2 years old) 

Subadult 
³1 bear included in the contaminant 
analysis was classified as subadult 

Adult ³1 bear included in the contaminant 
analysis was classified as adult 

Sex 

Male ³1 bear identified as male was included in 
the contaminant analysis 

Female ³1bear identified as female was included 
in the contaminant analysis 

Unknown ³1 bear of unknown sex was included in 
the contaminant analysis 

Home range size 
A measure of home range size was 
included in the contaminant analysis 

Distance traveled 
A measure of distance traveled was 
included in the contaminant analysis 

Offspring 

Y/N 
Did the adult bears in the contaminant 
analysis have dependent offspring 

Litter size (1/0) 
Litter size included in the contaminant 
analysis 

Sex (1/0) 
Sex of the offspring included in the 
contaminant analysis 
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Age (1/0) 
Age (months, years) of offspring included 
in the contaminant analysis 

Other - 

Reproductive history (1/0) 
Some measure of reproductive history 
included in the contaminant analysis 

Body 
condition 

Fat index 
Fat index scores (category 1-5) included 
in the contaminant analysis 

Weight (any metric) 
Bear weight (scale or by use of equation) 
included in the contaminant analysis 

Length (any metric) 
Bear length (of skull, head or body) 
included in the contaminant analysis 

Other - 

Diet 

Fatty acid 
Information on fatty acids included in the 
contaminant analysis 

Stable isotopes 
Information on stable isotopes included in 
the contaminant analysis (N15, C13) 

Other - 

Genetics 
Genetic information included in the 
contaminant analysis (genealogy; any 
measure of DNA or RNA) 

Parasites 
Parasite load included in the contaminant 
analysis 

Behavior 

Some measure of bear behavior included 
in the contaminant analysis, e.g., the 
bear's behaviour before/during darting 
procedure; info from a time budget 
analyses; level of curiosity/avoidance 

Season 

Spring (Mar-May) Season of sampling included in the 
contaminant analysis. If bears were 
sampled over the course of multiple 
seasons, each individual season was 
registered 

Summer (June-Aug) 
Fall (Sept-Nov) 

Winter (Dec-Feb) 

Climate 
variables 

Sea ice 
Was any measure of sea ice included in 
the contaminant analysis. e.g., sea ice 
extent, sea ice thickness 

Climate index 

At least one climate index was included 
in the contaminant analysis 
e.g., Arctic oscillation index (AO, AOI), 
North Atlantic Oscillation index (NAO, 
NAOI, winter NAO) 
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Temperature 
Was any measure of temperature included 
in the contaminant analysis. e.g., surface 
temperature 

Other - 

R
ep

or
tin

g 
on

 to
x-

re
la

te
d:

 

Levels Reported on levels of contaminants 

Temporal trends 
Reported on temporal trends of 
contaminant levels 

Spatial issues 

Reported on contaminant(s) in relation to 
spatial issues. e.g., compared contaminant 
loads between polar bears from different 
populations/geographical areas; compared 
bears on land with bears on ice 

Biological response 

Reported on any of the topics mentioned 
under "Effects" in this spreadsheet. 
“Biological response” also noted if age 
and/or sex were used as variables in the 
contaminant analysis 

Other - 

Ef
fe

ct
s 

le
ve

l 

Individual - 
Population - 
Other - 

Fo
od

 w
eb

 

Prey 

The contaminant analysis included data 
on the bear's prey (direct link between 
food item and polar bear). e.g., ringed 
seal, bearded seal, kelp, berries. 

Food web approach 

The contaminant analysis included data 
on the bear's prey as well as other food 
web species (direct as well as indirect 
links from food item to polar bear). e.g., 
fish + seal + polar bear 

Other - 

Ti
ss

ue
 

Liver - 
Kidney - 
Adipose - 
Repro. organs Inner or outer 
Brain - 
Hair - 
Blood/plasma - 
Bones - 
Tooth - 
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Milk  - 
Feces/urine - 
Other - 

C
on

ta
m

in
an

ts
 

Pesticides 

e.g., Mirex, Dieldrin, DDT, DDE, DDD, 
HCH, α-HCH, β-HCH, OCS, CHL, oxy-
CHL, ClBz, HCB, nonachlor (cis and 
trans), heptachlor epoxide 

Flourinated e.g., PFOS, PFAS, PFOA, PFCA 

Chlorinated 

e.g., PCDD, PCDF, PCB (For 
clarification: The compounds included in 
“Pesticides” can be chlorinated. At the 
same time, no compounds defined as 
“Chlorinated” are pesticides). 

Brominated 

e.g., PBDE, HBCD, BTBPE, PBEB, EH-
TBB, DBDPE, TBP-AE, TBCT, PBT, 
HBB, PBB-Acr, TBX, DBE-DBCH, 
HBCDD, OBTMPI, BB-101, BB-153, 
PBP_AE, DBHCTD, TBP-DPTE, PBPB-
dbpe, BEH-TEBP, syn-DDC-CO, anti-
DCC-CO 

Metabolites e.g., OH- (or HO-), MeSO-, MeO- 
Heavy metals e.g., cadmium, lead, mercury 

 Other e.g., crude oil, anti-freeze 

Ef
fe

ct
s 

Hormones 
Steroid 

Effect was measured on one or more 
steroid hormones 
Progestagens: 
pregnenolone, 17α-hydroxy 
pregnenolone, 
progesterone, 17α-hydroxy progesterone 
Corticoids: 
aldosterone, deoxy-corticosterone, 
corticosterone, 11-deoxycortisol, cortisol 
Androgens: 
dehydroepiandrosterone (DHEA), 
androstenedione, androstenediol, 
testosterone, dihydrotestosterone (DHT). 
Estrogens: 
estrone, estradiol, estriol 

 

Thyroid 
Effect was measured on one or more 
thyroid hormones 
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triiodothyronine (= 3.3',5-triiodothyronine 
= T3 = TT3 or FT3 or rT3) ,  
thyroxine (= 3.3',5.5'-tetraiodothyronine = 
T4 or TT4 or FT4) 

Vitamins 

Effect was measured on one or more 
vitamins 
e.g., vitamin A (retinol and derivatives), 
vitamin E ( α-tocopherol), vitamin D 
(Cholecalciferol = D(3) and 25-OH 
vitamin D-3 (25(OH)D(3)) 

Enzymes 
Effect was measured on one or more 
enzymes 
e.g., deiodinase (D1 and/or D2) 

Pathology 

Effect was measured on one or more 
pathology variables 
Any kind of tissue damage to any organ 
(to brain, repro. organs, teeth, kidney, 
liver, and others) 

Immune system 

Effect was measured on one or more 
immune system variables 
e.g., immunoglobulin G (IgG), 
lymphocytes, antibodies 

Protein levels 
Effect is measured on one or more protein 
variables 
e.g., CYP450 

Receptor levels 

Effect was measured on one or more 
receptor level variables 
e.g., estrogen receptor (ER), aryl 
hydrocarbon receptor (AhR) 

Parasites/zoonosis 

Effect was measured on one or more 
variables related to parasite/zoonosis 
infections 
Toxoplasma, Brucella, Trichinella 

Transport proteins 

Effect was measured on one or more 
transport protein variables 
e.g., thyroxine-binding globulin (TBG), 
transthyretin (TTR or TBPA), albumin, 
retinol-binding protein (RBP) 

Morphometrics 
Effect was measured on one or more 
morphometric variables. 
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e.g., skull length or width, body length or 
mass 

Reproductio
n 

Litter size Effect was measured on litter size 

Potential 

Effect was measured on variable directly 
related to reproductive potential. e.g., 
sperm quality, changes in reproductive 
organs (inner and outer) 

Other - 
 Other e.g., thermoregulation 

 1159 


