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Problem Description
Practical use of optimization, for MPC or parameter estimation, requires a large number of
gradient calculations. These gradients are used to compute search directions, for instance in a
SQP algorithm. Computing gradients is time-consuming and limits the use of for instance MPC to
small and medium-sized systems.

Gradients are usually computed by finite difference methods. Adjoint-based methods is an
alternative since these are efficient for problems with many decision variables and few outputs.
Efficiency may however deteriorate in cases with output constraints which typically are present in
MPC. In this project, which continues earlier work, the use of adjoints as a means to increase
efficiency of MPC for large scale reservoir models is further studied.

Tasks:
1. Present adjoint-based methods and review central literature. The presentation shall focus on
MPC, with a sequential approach, applied to reservoir models.
2. Output constraints can be detrimental to the efficiency of adjoint-based methods. Hence,
optimization algorithms where output constraints can be removed, as for instance in barrier
methods, or the number of output constraints are significantly reduced are approaches to exploit
the efficiency of adjoint-based methods. Discuss and propose such methods.
3. Evaluate the methods above by comparing them with forward methods. This should be done on
suitable reservoir examples, preferably available benchmark cases, using realistic test scenarios.

Assignment given: 12. January 2009
Supervisor: Bjarne Anton Foss, ITK





Abstract

The purpose of this thesis was to study the use of adjoint methods for gradient
calculations in Model Predictive Control (MPC) applications. The goal was
to �nd and test e�cient optimization methods to use in MPC on oil reservoir
models. Handling output constraints in the optimization problem has been
studied closer since they deteriorate the e�ciency of the MPC applications
greatly.

Adjoint- and �nite di�erence approaches for gradient calculations was tested
on reservoir models to determine there e�ciency on this particular type of
problem. Techniques for reducing the number of output constraints was also
utilized to decrease the computation time further.

The results of this study shows us that adjoint methods can decrease the
computation time for reservoir simulations greatly. Combining the adjoint
methods with techniques that reduces the number of output constraints can
reduce the computation time even more. Adjoint methods require some more
work in the modeling process, but the simulation time can be greatly reduced.

The principal conclusion is that more specialized optimization algorithms can
reduce the simulation time for reservoir models.

Keywords: Gradient calculation, adjoint method, MPC, Oil reservoir
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Chapter 1

Introduction

Over the years linear Model Predictive Control (MPC) has become popular
due to the theoretical results provided by the academic community and the
successful installations in the industry. Linear systems with linear constraints
results in a linear or quadratic optimization problem that easily and e�ective
can be solved in the MPC application. Nonlinear Model Predictive control
(NMPC) on the other hand consists of nonlinear components, making the op-
timization problem nonlinear, which is solved with far less e�ciency. NMPC
has gained more interest, both in industry and in the academic community,
the last years due to the desire to controlling more complex systems. Using
nonlinear models that are more realistic enables operation closer to constraints
and better output prediction which can results in better control performance.
The optimization algorithms requires in NMPC are much more computational
expensive than for linear MPC. Many of them uses gradient information to
solve the problem. Calculation these gradients requires a lot of calculations
using traditional methods as �nite di�erence since the systems needs to be
simulated Nu + 1 times, where Nu is the total number of decisions variables,
which again is the number of system inputs (nu) times the length of the op-
timization horizon (NHu). The computation time for large systems, such as
a reservoir model, becomes unpractical, especially when the time horizon is
extended.

There exists an alternative method used to do gradient calculation, the adjoint
approach, which only requires 2 system simulations over the optimization hori-
zon, one forward in time and one backward in time. Implementing this method
into the NMPC optimization algorithm can increase the speed of NMPC ap-
plication greatly.
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Chapter 1. Introduction 2

This thesis will study the use of the adjoint approach in an nonlinear Model
Predictive Control application utilized on a reservoir model. A NMPC appli-
cation is developed and used to compare the e�ciency of calculating gradients
using the adjoint approach up against using traditional methods. The main
focus will be on a NMPC application optimizing on a reservoir model.

This thesis start by giving some background informations about MPC and
reservoir modeling in chapter 2. Chapter 3 will explain the adjoint approach
to gradient calculations, discuss the advantages/disadvantages and look at
how constraint handling in the optimization problem can be done. A reservoir
model used in later tests is developed in chapter 5. Test cases for the reservoir
model is de�ned in chapter 6, while the results obtained from simulations of
this case is presented and discussed in chapter 7. Chapter 8 gives a general
discussion of the work in this thesis and the results obtained from is. At last
chapter 9 gives a conclusion and proposals to further work.



Chapter 2

Background

This section will provide background information needed to understand the
rest of this thesis.

First a short introduction to the Model Predictive Control (MPC) [5, 12] strat-
egy is presented to help readers not familiar with MPC to understand the
concept and the connection to optimization. Then some general optimization
theory is presented.

2.1 Model Predictive Control

In this section there will be given a short introduction to model predictive
control (MPC). MPC is one of the most popular techniques used for advanced
system control. It uses an internal model to calculate a sequence of optimal
inputs that minimizes a function that describes the desired behavior of the
system. The future input sequence is re-optimized at each time-step for a �nite
period of time into the future, and it is therefor also called Receding Horizon
Control (RHC) [1]. Compared to traditional linear control, MPC has a mayor
advantage as it handles constraints on inputs, outputs and internal states. This
way it can take saturation into account, and it is possible to operate closer to
system limitation which can be utilized to increase pro�tability. This is one of
the reasons why MPC in the process industry has gained such high popularity
[12]. Another advantage the MPC has is that it is naturally multi-variable,
giving the algorithm large freedom in choosing which inputs to manipulate to
achieve its goal.

3



Model Predictive Control 4

Figure 2.1 illustrates the MPC principle. At time t = k, Tp is the prediction
horizon, telling how far into the future the system is to be simulated. Tu is the
control horizon, telling how far into the future the inputs are changed, after
this, the inputs are kept constant for the rest of the simulation.

futurepast

Tp

Tc

u(k + i|k)

ŷ(k + i|k)

t = k

y(t)

u(t)

setpoint

t

Figure 2.1: MPC principle

If the internal system model is perfect and the systems is not exposed to any
noise the future inputs calculated at time t = k would be the optimal solution
on the whole prediction horizon, meaning that the optimization problem only
needs to be solved once. This is not a robust solution as the plant model
is never perfect and the system will be exposed to noise. The solution used
in MPC is to re-optimize the problem with a receding horizon when new in-
formation about the system (such as measurements from the real system) is
available. This introduces feedback to the system even thou the future predic-
tion is open-loop calculations.

A simple presentation of the MPC principle is described in algorithm 2.1.
System states are referred to as x, inputs as u and outputs as z.

Algorithm 2.1 Model Predictive Control

1: De�ne control goals in the form of an objective function (J(z,x,u))
2: De�ne control, state and output constraints
3: while MPC application is running do
4: Update start state. Set x0 = measured/estimated states from the real

process.
5: Find inputs u that minimize J(z, x, u) subject to constraints.
6: Implement �rst step of optimal input and shift optimal input / opti-

mization horizon one step forward.
7: end while



Model Predictive Control 5

Linear MPC has a linear system model and linear constraints. The objective
function is usually a quadratic function. The optimization problem associated
with a linear MPC application then becomes a quadratic optimization prob-
lem that can be solved e�cient and the computation time is deterministic [12].
Solving the a more general optimization problem where the objective function
and its constraints can contain nonlinear components is far more challenging.
This kind of problem is found in a nonlinear MPC application. Finding the so-
lution by using gradient based optimization solvers on such problems is studied
in this thesis. The focus will be on e�cient gradient calculations.

2.1.1 Problem de�nition

This section will formulate the problem studied in this thesis. We will be using
a �rst-principle nonlinear reservoir model described by continuous di�erential
equations on the form

ẋ = fc(x(t), u(t)), x(0) = x0 (2.1)

where x(t) ∈ Rn
x is the state vector and u(t) ∈ Rn

u is the input vector of the
system. The output of the system is described by the algebraic

z = g(x(t), u(t)) (2.2)

where z ∈ Rnz is the output vector.

This model is then discretized using the numerical integration scheme Euler's

method [7]. Giving the following discrete model, where k is the time-step.

xk+1 = xk + ∆tfc(x
k, uk) = f(xk, uk) (2.3)

zk = g(xk, uk) (2.4)

The objective function J ∈ R is chosen to be quadratic and only containing
the input- and output variables

J(z, u)

Tp−1∑
k=1

[(zk)TQxk] +
Tu−1∑
k=0

[(uk)TRuk] + (zTp)TPzTp (2.5)

where Tp is the prediction horizon, Tu is the control horizon, Q and R is
diagonal matrices weighting system outputs and inputs while P is a diagonal
matrix weighting the outputs at the end of the prediction horizon.
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To complete the problem we need to add constraints.

c(u) ≤ 0 (2.6)

Umin ≤ uk ≤ Umax (2.7)

(2.8)

where nonlinear constraints are introduced through (2.6) while (2.7) give sim-
ple block constraints on inputs. If we combine all these elements we get an
optimization problem that can be used in a MPC application

minimize J(z, u) =

Tp−1∑
k=1

[(zk)TQzk] +
Tu−1∑
k=0

[(uk)TRuk] + (zTp)TPzTp (2.9)

subject to (2.10)

x0 = x(t0) (2.11)

xk+1 = f(xk, uk) (2.12)

zk = g(xk, uk) (2.13)

c(u) ≤ 0 (2.14)

Umin ≤ uk ≤ Umax (2.15)

(2.16)

This optimization problem that is going to be used in the MPC application
can be solved by standard nonlinear optimization solvers.

2.2 Optimization

Optimization is the procedure of �nding the best alternative for a particular
situation. To do this it is important to know what the objective is, as well as
what the alternatives are. Optimization problems may has multiple objectives
that often con�icts. The optimization solver then has to �nd a middle-way.
A simple example would be to create a car that runs as fast as possible and
uses as little fuel as possible. The optimization problem in this case would
be to �nd the car parts that gives a fast car with low fuel consumption. The
weighting between the speed and fuel consumption is something the that has
to be determined by the designer.

A optimization problem may have restrictions or constraints associated with
it. In the car example above there may be an upper cost of the car, or maxi-
mum weight limit. Any optimization solver solving such problems has to take
these restrictions into account and make sure that they are not violated. Op-
timization is used in various �elds as �nance (maximize pro�t, minimize risk),
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manufacturers (e�cient design and operation of products), engineers (param-
eter optimization) etc.[9]

To be able to do optimization we need a quantitative measure of the perfor-
mance of the system, a way of telling how good the objectives are reached.
This can be done by using a objective function that calculates a number rep-
resenting the performance of the system. The optimization task is then to �nd
parameters that maximizes/minimizes the objective function.

2.2.1 Choosing an optimization algorithms

There exist various optimization algorithms, each which is designed for a spe-
ci�c type of problem. There is no such thing as an e�ective general optimiza-
tion algorithm. Every algorithm has strengths and weaknesses, and is designed
for a speci�c type of problem. The main categories of optimization problems
listed in order of complexity is:

• Unconstrained linear problems.

• Constrained linear problems.

• Unconstrained nonlinear problems.

• Constrained nonlinear problems.

Every problem can be put in one of these categories, and a proper solver �tting
that category should be chosen. It is possible to use a constrained nonlinear
solver on problems in all the above categories, but the e�ciency on for instance
a constrained linear problem will be far from as good as if a solver designed
for that kind of problem had been used. Each of the above categories will also
have subcategories with even more specialized optimization solvers.

The choice of optimization algorithm must be taken with a certain type of
problem in mind. Choosing a optimization algorithm with constraint support
is not necessary for an unconstrained problem and will result in lower perfor-
mance. There exist many optimization solvers that are tailored for a speci�c
type of problem [9], choose one that �ts your problem. Tailoring a solver for a
special/speci�c problem can result in great performance increase, but the de-
velopment cost has to be taken into account. Throughout this thesis di�erent
optimization techniques will be studied and tested to �nd a combination that
results in a e�cient optimization solver for MPC applications used on reservoir
models.
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2.2.2 Optimization solver for MPC application

Any MPC controller needs a optimization solver to solve the optimization
problem associated with the control applications. In the optimization theory
there exists a large number of solvers which is suitable for MPC applications.
MPC applications will always require an optimization solver that can handle
constraints since the system equation will be present as a equality constraint.
The reservoir model presented in chapter 5 is nonlinear, thus a nonlinear opti-
mization solver is required. The optimization solver used in this thesis belongs
to the Sequential Quadratic Programming (SQP) class. The SQP concept is
described in section 2.2.2.

The MPC application developed in this study utilizes the function fmincon

[13] provided by the optimization toolbox in Matlab. The function is highly
customizable allowing for user-provided functions to do gradient calculations.

Sequential quadratic programming

Sequential Quadratic Programming (SQP) [4, 11] is a popular an e�cient
method for solving nonlinear optimization problems [16]. SQP methods solves
a series of quadratic subproblems to �nd search directions that decreases the
objective function value. Let us consider the nonlinear optimization problem

min
x

f(x) (2.17)

such that

c(x) ≤ 0 (2.18)

h(x) = 0 (2.19)

where f(x) is the objective function, x is a vector containing the decision
variables, c(x) is the inequality constraints and h(x) is the equality constraints.
The Lagrange function[12] for this problem is de�ned as

L(x, λ, σ) = f(x) + λT c(x) + σTh(x) (2.20)

where λ and σ is Lagrange multipliers. If dk is the search direction at time k,
then xk+1 = xk + dk. Inserting xk+1 into (2.20) gives L(xk+1) = L(xk + dk)
which can be approximated by a second order Taylor expansion

L(xk + d) ≈ L(xk) +∇xkL(xk)dk +
1

2
(dk)T∇2

xkL(xk)dk (2.21)
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The constraints can be linearized using the a �rst order Taylor expansion

c(xk+1) ≈ c(xk) +∇xkc(xk)dk (2.22)

h(xk+1) ≈ h(xk) +∇xkh(xk)dk (2.23)

The approximation of the objective function and the constraints gives us a
local quadratic problem (2.24) - (2.26) that is repeatedly solved by the SQP
solver to �nd new search directions dk until a convergence criteria is reached,
or the maximum number of iterations is reached (meaning no solution was
found).

min
xk

L(xk) +∇xkL(xk)dk +
1

2
(dk)T∇2

xkL(xk)dk (2.24)

such that

c(xk) +∇xkc(xk)d ≤ 0 (2.25)

h(xk) +∇xkh(xk)d = 0 (2.26)
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Chapter 3

Gradient calculation

Gradient calculation is an important and time consuming part of gradient
based optimization algorithms. The gradients are used to �nd a search direc-
tion than decreases the objective function value. Choosing an e�ective method
for gradient calculations can greatly reduce the computation time for the op-
timization problem. This chapter, together with the next one will present two
methods, the adjoint method and the �nite di�erence method, which will be
compared later by simulations.

3.1 Finite di�erences

Finite di�erence methods is the most common way of calculating gradients in
MPC applications. The simplest and fastest �nite di�erence method is the
one-sided �nite di�erence method. The method is based on the de�nition of
the derivative (3.1).

d

dt
f(t) = lim

∆t→0

f(t+ ∆t)− f(t)

∆t
(3.1)

The de�nition of the partial derivate (3.2) becomes:

11
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∂

∂xi
f(x1, ..., xi, ...xn) = lim

∆xi→0

f(x1, ..., xi + ∆xi, ...xn)− f(x1, ..., xi, ..., xn)

∆xi
(3.2)

The de�nition (3.2) requires ∆xi to approach zero, while the �nite di�erence
replaces ∆xi with ε which is chosen to be a number su�ciently small. The
result is an approximation of the derivative:

∂

∂xi
f(x1, ..., xi, ..., xn) ≈ f(x1, ..., xi + ε, ...xn)− f(x1, ..., xi, ..., xn)

ε
(3.3)

ε = small number

Choosing the size of ε is not a trivial task. A smaller ε will give a more accurate
approximation, but if ε is chosen too small numerical problems can arise. If
the function f is highly nonlinear a small ε is even more important to ensure a
good approximation, while just a slightly nonlinear function will give a quite
accurate result even with a moderate sized ε-value.

The gradient ∇f(x1, ..., xn) can be calculated by using the approximation (3.3)
and calculate ∂

∂xi
f(x1, ..., xn) for i = {1, ..., n}. This requires one nominal

evaluation of the function f and one evaluation for each of the variables to
�nd the partial derivatives for all of them. This results in the total of n + 1
function evaluations to determine an approximation of the gradient.

It can be noted that there exist another method called two-sided �nite di�er-
ence method that uses one perturbation in each direction:

∂

∂xi
f(x1, ..., xi − ε, ..., xn) ≈ f(x1, ..., xi + ε, ...xn)− f(x1, ..., xi, ..., xn)

2ε
(3.4)

ε = small number

The two-sided �nite di�erence method gives a better approximation than the
one-sided method. The computational cost is the same for the one-sided
method if only one partial derivative is calculated, but if more than one par-
tial derivative is calculated the method requires more function evaluations. To
calculate the gradient of the function the two-sided �nite di�erence method
require 2n function evaluations, almost twice as much as the one-sided version.
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The �nite di�erence method is well suited for problems with few decision vari-
ables, since the method requires one pertubation for each of those variables.
As the number of decision variables increase, the number of pertubations and
simulations that need to be done also increases.

3.1.1 Finite di�erence methods in MPC applications

The one-sided �nite di�erences method is the most commonly used method
to calculate gradients in a MPC application. The two-sided method is too
time consuming, at least for on-line applications where the computation time
of the optimization in the MPC application may be critical to keep the system
stable. Throughout the rest of this thesis �nite di�erence methods will mean
the one-sided version of the method.

The optimization problem solver in a MPC application requires the gradients
of the function to minimize, namely the objective function. The objective
function is generally a function of the system states, the system outputs and
the system inputs. The system states and outputs is coupled to the system
inputs through the system. The system inputs is the decision variables of the
optimization problem, meaning that the gradient of each of the input variables
must be calculated. We are interested in:

d

duk
J(z,x,u), k = 1, ..., N (3.5)

,where J is the objective function, u = {u1, ..., uN}, uk is the input vector at
time k, z is the system outputs and x is the vector containing all states on the
optimization horizon.

Since the objective function value is depending on system states and outputs
we need to simulate the system over the prediction horizon to obtain these.
This is a computational costly process that must be repeated for each decision
variable over the whole control horizon since perturbing a decision variable
changes the states and outputs. Since the system is causal, simulation for the
perturbation of a particular input variable can start at the time-step where this
variable a�ects the system. All the previous states/outputs are equal to those
calculated in the nominal simulation where none of the inputs were perturbed.
Algorithm 3.1 presents the procedure.

In the algorithm belowthe gradient for one particular set of inputs are calcu-
lated. An iterative optimization solver (like SQP ) will try to change the set of
inputs (in a clever way) at each iteration to decrease the value of the objective
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Algorithm 3.1 Calculate gradients using �nite di�erence method
Require: u - nominal input vector
Require: ε - perturbation value

{Nominal simulation}
1: for k = 1:N-1 do
2: xk+1 = fk(xk, uk)
3: zk = gk(xk, uk)
4: end for

5: J = calculateObjectiveV alue(z, x, u)

{Perturb inputs and simulate}
6: for k = 1:N do

7: x̃ = x
8: z̃ = z
9: for i = 1:NHu do

10: ũ = u
11: ũki = ũki + ε
12: for j = k:N do

13: x̃j+1 = f j(x̃j, ũj)
14: z̃j = gj(x̃j, ũj)
15: end for

16: J̃ = calculateObjectiveV alue(z̃, x̃, ũ)

17: ∂J
∂uk

i
= J̃−J

ε

18: end for

19: end for
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function. meaning that Algorithm 3.1 may be executed a large number of times
before a su�cient solution is found. The computation time for the algorithm
grows fast with increasing prediction horizon and input variables due to the
3 nested for-loops. The number of simulation steps required to calculate the
gradients would be

nuNHu(NHu + 1)

2
(3.6)

where nu is the number of inputs and NHu is the control horizon. (3.6 can be
explained by the fact that we need one nominal simulation in addition toNHunu
simulation with one input pertubated. This needs to be done for each timestep
over the control horizon NHu , but causality can be exploited giving us only
half that many simulations on average. This results (3.6) which is a quadratic
function with respect to the control horizon. The quadratic computation time
with respect to the control horizon was con�rmed by simulations in [3].

3.2 Adjoint method

The adjoint method for calculating gradients are the main topic of this thesis
and the study is therefor placed in its own chapter, chapter 4.
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Chapter 4

Gradient calculations using an

adjoint approach

This section presents the adjoint approach [10, 6, 14] to gradients calculations
in an NMPC application. The adjoint approach uses information about the
dynamic system, that is controlled by the NMPC application, to calculate the
gradients. By utilizing this information instead at looking at the system as a
black box the adjoint approach is able to do gradient calculations more e�cient
than traditional methods.

4.1 Objective function gradients

Lets start with a simpli�ed version of the optimization problem (2.9) presented
in section 2.1.1. The simpli�ed problem (4.1-4.2) consist of a general objective
function with the system equation as a equality constraint to preserve the
system dynamics during the optimization.

min
u
J(u) =

N−1∑
k=0

Gk(xk, uk) +HN(xN) (4.1)

subject to

xk+1 − fk(xk, uk) = 0, i = 0, . . . , N − 1 (4.2)

17
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The function Gk is general function that can be nonlinear and changing with
time, HN is a function penalizing the state at the end of the horizon. Lets
continue by de�ning the Lagrange function:

L(x, u, λ) =
N−1∑
k=0

[Gk(xk, uk)] +HN(xN)−
N−1∑
k=0

[λTk+1(xk+1 − fk(xk, uk))] (4.3)

, where λk is called the Lagrange multipliers. If we rearrange the Lagrange
function to group the term concerning the �rst time-step, those in between
and the last time-step the Lagrange function can be presented as:

L(x, u, λ) = G0(x0, u0) + λT1 f0(x0, u0)

+
N−1∑
k=1

[Gk(xk, uk) + λTk+1fk(xk, uk)− λTk xk]

+HN(xN)− λTNxN (4.4)

This representation of the Lagrange function makes it easy to de�ne the �rst
order Karush-Kuhn-Tucker (KKT) [9, 8] conditions for the problem:

∇λk+1
L = fk(xk, uk)− xk+1 = 0 (4.5)

∇xN
L = ∇xN

HN(xN)− λN = 0 (4.6)

∇xk
L = ∇xk

Gk(xk, uk) +∇xk
fk(xk, uk)λk+1 − λk = 0 (4.7)

∇uk
L = ∇uk

Gk(xk, uk) +∇uk
fk(xk, uk)λk+1 = 0 (4.8)

The �rst order KKT conditions are necessary conditions for an optimal solution
of the optimization problem. A closer look on the KKT conditions shows
us that the �rst KKT condition (4.5) is the system equation, preserving the
system dynamics. Obviously this equation has to be satis�ed at the optimum.

Simulating the system along a nominal input trajectory u = {u0, ..., uN−1}
will satisfy the equality constraints and give us a nominal value for the states
x = {x0, ..., xN−1}.

To Lagrange multipliers can be obtained using equation (4.6) and (4.7). Start-
ing with (4.6), we �nd the last Lagrange multiplier:

λN = ∇xN
HN(xN) (4.9)

To obtain the other Lagrange multipliers and the gradients for the objective
function we continue from the last time-step and iterate backward using equa-
tion (4.7) and (4.8). If the input vector u does not optimize the objective
function ,then the last KKT condition (4.8) is not satis�ed, instead it provide
us with the gradients of the objective function with respect to the inputs.

∇uk
L = ∇uk

Gk(xk, uk) +∇uk
fk(xk, uk)λk+1 (4.10)
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This approach results in the following psudo-code for gradient calculations:

Algorithm 4.1 Calculate gradients using adjoint method
Require: u - nominal input vector

{Forward simulation}
1: for k = 1:N-1 do
2: xk+1 = fk(xk, uk)
3: end for

{Backward simulation}
4: λN ← ∇xk

fk(xk, uk)
5: k ← N
6: while k > 0 do
7: ∇uk

J = ∇uk
Gk(xk, uk) +∇uk

fk(xk, uk)
Tλk+1

8: λk = ∇xk
Gk(xk, uk) +∇xk

fk(xk, uk)λk+1

9: k = k − 1
10: end while

The adjoint method is well suited for problems with many decision variables
and few outputs. The minimizaition of a objective function in an MPC appli-
cation would be such a problem. Since the method only require 2 simulations
over the control horizon regardless of the number of inputs the computation
time will increase linearly with the length of the control horizon. This was
con�rmed by simulations in [3].

4.2 Constraints

Adjoint based methods for gradient calculations are e�cient for problems with
many decision variables and few outputs, however, the present of output con-
straints may deteriorate the e�ciency. Output constraints are typically used
in MPC. This section discusses how to handle output constraint in an SQP
algorithm (used in an MPC application) that uses an adjoint approach for
gradient calculations.

There are several techniques that may reduce the e�ect of output constraints
in optimization problems solved with adjoint gradient calculations. The tech-
niques will be studied further, and tested on the reservoir model described in
chapter 5.
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4.2.1 Softening constraints

The terms soft constraints are used to describe a set of constraints that are
allowed to be violated occasionally, but this is not desired. Soft constraints are
incorporated into the optimization problem by adding a cost to the objective
function whenever the constraints are violated.

In MPC applications, soft constraints are often used on system states and
outputs. The states and outputs are coupled to the inputs through the system,
making the prediction of them uncertain due to model error and noise in the
real process. Since the states and outputs cant be calculated exact, and the
fact that most real systems do not naturally have hard constraints, states and
output makes them good candidates for soft constraints. Constraints on inputs
are often hard by nature, mainly because of saturation in actuators. Inputs
are under direct control by the MPC application, making the handling of them
simpler.

Softening constraints is the process of transforming hard constraints into soft
constraints. This is done by removing the original hard constraints and adding
a penalty function [9] to the objective function. The penalty function is zero
as long as the original constraints are adhered, but as soon as the constraints
are violated the penalty function will be greater than zero, thus increasing the
value of the objective function. Consider the following constrained optimiza-
tion problem

min
x
f(x) (4.11)

subject to
ci(x) ≤ 0, i ∈ I (4.12)

which can be transformed to a unconstrained optimization problem by soft-
ening the constraints and adding a penalty function to the original objective
function f(x).

min
x
Q(x, σ) = f(x) + σi

∑
i∈I

g(ci(x)) (4.13)

where σi is the penalty coe�cients and g() is the penalty function.

The choice of penalty function depends on the desired behavior and properties
of the resulting optimization problem. Penalty functions can be either be exact
or not. Exact penalty functions gives the softened problem the same solution as
the original one as long as the original problem is feasible [9]. Inexact penalty
functions often results in di�erent solution that the original problem, no mat-
ter how large the penalty coe�cients are chosen. The drawback of softening
constraints are that introducing penalty functions makes the minimization of
the new objective function harder. One problem is that penalty functions may
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not be smooth (this is almost always true for exact penalty functions), result-
ing in unde�ned di�erentials for some values of x. Another problem is that
even for smooth penalty function the resulting objective function can become
less smooth by choosing large penalty coe�cients, this is quite critical as large
penalty coe�cients are required for the solution of the unconstrained problem
to be a good approximation of the original solution. [9] proposes a algorithm
(4.2) for inexact penalty functions that increases the penalty coe�cients re-
peatedly:

Algorithm 4.2 Penalty method

1: Given σ0, a nonnegative sequence {τk} with tk → 0, and a starting point
xs0;

2: for k = 0, 1, 2, ... do
3: Find an approximate minimizer xk of Q(·;σk), starting at xsk,
4: and terminating when ‖∇xQ(x;σk)‖ ≤ τk;
5: if �nal convergence test satis�ed then
6: stop with approximate solution xk;
7: end if

8: Choose new penalty parameter σk+1 > σk;
9: Choose new starting point xsk+1;
10: end for

4.2.2 Lumping constraints

Nonlinear problem solvers needs the gradient of all active constraints to �nd
a feasible search direction. This can be time-consuming to calculate for many
constraints. One way to reduce the calculations of these gradients is to lump
the constraints, creating one equivalent constraint for all the active constraints.
Various lumping schemes are available, with the following being commonly
used for optimal control problems:

N−1∑
n=0

max[cn(xn, un), 0] = 0 (4.14)

N−1∑
n=0

(max[cn(xn, un), 0])2 = 0 (4.15)

The following approach is proposed in [2] and used in the General Purpose
Research Simulator (GPRS) developed at Stanford University. The proposed
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lumping scheme is a smooth di�erentiable approximation of the max function.
The constraints are assumed to be on the form cn(xk, uk) ≤ 0. The max

function (4.14) is the integral of the unit step function (4.16):

σ(y) =

(
1 y > 0
0 y ≤ 0

)
(4.16)

max(x, 0) =

∫ x

−∞
σ(y)dy (4.17)

The unit step function can be approximated with (4.18):

s(y, α) = {1 + exp(−αy)}−1 ∀α > 0 (4.18)

By substituting s(y, α) for σ(y) in (4.17), we get an approximation for the max

function:

p(x, α) =

∫ x

−∞
s(y, α)dy = x+

1

α
log{1 + exp(−αx)} (4.19)

One important property for this approximation is that it can be derived in-
�nitely many times, meaning that p(cn(xn, un), α) is di�erentiable as many
times as cn(xn, un). Some other relevant properties of p(x, α) are:

p(x, α) > max{x, 0} ∀x ∈ R (4.20)

lim
|x|→∞

{p(x, α)−max(x, 0)} = 0 ∀α > 0 (4.21)

lim
α→∞
{p(x, α)−max(x, 0)} = 0 ∀x ∈ R (4.22)

The above properties makes the function p(x, α) suitable as an approximation
to the max function that can be used for constraint lumping.

We can now de�ne the equivalent constraint by lumping the constraints and
use the max approximation. The new equivalent constraint C is now de�ned
as:

C =
N−1∑
n=0

[
cn +

1

α
log{1 + exp(−αcn)}

]
≤ log2

α
∀α > 0 (4.23)

The new equivalent constraint is less than or equal to log2
α
, the reason is that

p(0, α) = log2
α

and p(cn, α) increases monotonically with cn. Solving the opti-
mization problem using the lumped constraint C can produce a search direction
that is feasible for the lumped constraint, but not for the original constraints.
We then have an infeasible search direction with respect to the original con-
straints.
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To illustrate the method a simple example is provided. Figure 4.1 illustrates
the original problem. There are two decision variables u1 and u2, and two
constraints c1 and c2. The �gure shows the constraints as green lines, objective
function contours as red dotted lines, objective function gradient as a purple
arrow and constraint gradients as blue arrows. Figure 4.1 shows the lumped
constraint as a black line. As we see the lumped constraint are less restrictive
than the original constraints, giving a infeasible search direction (red arrow).
This can be handled by projecting the search direction onto the constraint, as
described later.

Figure 4.1: Illustration of constraint lumping.

The fact that the search direction calculated with the lumped constraint may
actual be infeasible with respect to the original constraints is a problem. To
solve this problem a feasible line search can be employed. The basic idea be-
hind this algorithm is to implement the constraints into the forward model
and modify the search direction if any constraints are violated. The modi�-
cation consist of projecting the infeasible search direction onto the violated
constraints during line search by solving the violated constraints during the
forward simulation. This is equivalent to performing a curved line search along
the violated constraints. If a constraint is violated at a given time-step the
search direction has to be modi�ed and the time-step has to be simulated
again. The projection in the case of the simple example described above is
illustrated in �gure 4.2. The search direction red arrow) is projected onto the
violated constraint c2.

To modify the search direction we need some knowledge about which inputs
that can be modi�ed to satisfy the violated constraints. It is not clear if there
exists a �best� strategy to select these inputs, so knowledge about the dynamic
system and previous iterations must be used to �nd suitable inputs. An ex-
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Figure 4.2: Projecting search direction onto constraint.

ample where system knowledge is used can be found in [2] , where the solution
is applied to a reservoir model with a maximum total water injection con-
straint and a maximum total liquid production constraint. An approximated
linear connection between the injection rate of an injector and the bottom hole
pressure is used in an iterative manner to satisfy the violated constraints.

Lumping constraints in an MPC application

In an MPC application the number of constraints for the optimization solver
is the sum of the number of constraints at each time-step over the prediction
horizon. Lumping constraints can reduce the number of constraint by a large
factor. A optimization problem with lumped constraints results in a system
where the number of inputs nu is larger than the number of constraints nc.

nu > nc (4.24)

If all constraints are lumped into one single constraint, then nc = 1. The pro-
cess of calculating the constraint gradients is a problem quite similar to calcu-
lating the objective function gradient. Both problems have a �large� number
of decision variables that results in a �nal value (the objective function value
and the lumped constraint). In fact, they have the same inputs (system in-
puts). The system equation (4.2) is the same for both problems and it has to
be respected at all times for both problems. The similarities can be exploited
during the gradient calculations.

The gradients of the lumped constraint can be calculated using an adjoint
approach, reducing the calculation time compared to �nite di�erence methods.
The number of decision variables is greater than the number of outputs making
the use of an adjoint approach a great candidate for gradient calculations.
Using an adjoint approach to calculate both the objective function gradients
and the constraint gradients have certain advantages that can be exploited to
increase the computation time even more. Some of the terms calculated during
the computation of objective function gradients can be stored an reused when
the constraints gradients is calculated. States (x) and outputs (z) from the
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forward simulation is expensive to calculate and should be stored and reused
when calculating constraint gradients. Since the system equation is the same
for both problems the gradients ∇xk

f and ∇uk
f will be the same and can be

stored an reused.
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Chapter 5

Reservoir modeling

This chapter will present the notation and reservoir model used in this thesis.
The reservoir model is based on the black oil model. Many simpli�cations
has been done to reduce the time spent on developing the model. This gives
more focus on the important aspects of this thesis, namely e�cient gradient
calculation.

5.1 Introduction

The reservoir model used in this thesis is based on the black oil model. The
black oil model [17, 18] is used to determine the pressure, volume and temper-
ature of the di�erent phases(oil, water and gas) in the reservoir. The model
developed here is highly simpli�ed to make the derivation of analytic gradients
easier. The model only consider a reservoir with two phases, oil and water.
The simpli�ed model is far from realistic, but is still contains the properties
that are important for this thesis. The system still contains a large number of
states, it is nonlinear and the number of inputs and outputs can be chosen. It
is also possible to introduce constraints on both inputs and outputs. Because
of similar properties, the work presented here regarding gradient calculations
should be transferable to reservoir models that are more realistic.

27
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Simpli�cations and assumptions

The analytic derivation of gradients is time consuming. To reduce the com-
plexity of this process, the model presented here has many simpli�cations and
assumptions. The model will be less realistic, but the main focus of this thesis
is e�cient gradient calculations, making the simpli�cation defensible.

Fluids are assumed to be incompressible. The mixed �uid (oil and water)
is assumed to have a constant density regardless of the ratio between them.
Water pressure and oil pressure are equal.

5.2 Derivation of model equations

The reservoir model is discretized in space. The reservoir is divided into a
large grid of cells, each cell having two states, pressure p and water saturation
S.

Most of the variables used in the rest of this chapter will have sub- and super-
scripts. Subscripts are used for position indices and other describing informa-
tion, while superscript are used for time indices. The variable k will be used
as time index.

Each cell in the grid interacts with four neighbor cells (north, east, south and
west). The �ow between two cells are determined by the pressure di�erence.
The notation will be as followed. The current cell has index i, while the
neighbor cells has the index j, where j belongs to a set Ni that represents
neighbor indices (j ∈ Ni). Figure 5.2 explains the relationship between the
i and j indices. The �gure shows cell i in the middle with 4 neighbor cells
(north, east, south and west) marked with j. Flow from neighbor cells only
occurs over the thick black border.

The �ow consist of water and oil, and the ratio between them is determined
by the water saturation in the cell with the highest pressure. Since two cells
generally do not have the same water saturation we get a instant change in
saturation as the �ow changes direction. To avoid numerical problems as
the �ow approaching zero and changes direction, a saturation on the �ow is
introduced. A �ow between two cells require the pressure di�erence between
those two cells to be higher than a given tolerance εp. Flow qi,j from cell j to
i is the sum of the water �ow qw,i,j and the oil �ow qo,i,j. The water and oil
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Figure 5.1: Relationship between cells

�ow is described by the following equations:

qw,i,j =


ηi,jSi(pj − pi) if pj − pi ≤ −εp
ηi,jSj(pj − pi) if pj − pi ≥ εp
0 otherwise

 (5.1)

qo,i,j =


ηi,j(1− Si)(pj − pi) if pj − pi ≤ −εp
ηi,j(1− Sj)(pj − pi) if pj − pi ≥ εp
0 otherwise

 (5.2)

,where ηi,j is the permeability between cell i and j , Sx is the water saturation
in cell x and px is the pressure in cell x.

The saturation introduced in the �ow equations results in zero �ow when
the pressure di�erence is less than the εp. This can be a problem when the
derivative of the equations are calculated since the optimization solver may
not see any reason to change a input variable because it seems like it would
not a�ect the system. To prevent this the derivatives are adjusted so that the
derivatives is given a value even if the pressure di�erence is too low to generate
any �ow.

The �ow equations (5.1)-(5.2) are derived with respect to pi, pj, Si and Sj.
Equations (5.3)-(5.10) shows the result.
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∂qw,i,j
∂pki

=

{
−ηi,jSi if pj − pi < 0
−ηi,jSj if pj − pi ≥ 0

}
(5.3)

∂qo,i,j
∂pki

=

{
−ηi,j(1− Si) if pj − pi < 0
−ηi,j(1− Sj) if pj − pi ≥ 0

}
(5.4)

The derivative for the �ow with respect to pi is modi�ed so that it seems like
a change in pi will result in a change of �ow even if we got no �ow. This is
done so that the optimization solver can escape from some no-�ow situations.

∂qw,i,j
∂Si

=

{
ηi,j(pj − pi) if pj − pi ≤ −εp
0 otherwise

}
(5.5)

∂qo,i,j
∂Si

=

{
−ηi,j(pj − pi) if pj − pi ≤ −εp
0 otherwise

}
(5.6)

As seen from the above equations, the derivatives with respect to Si, the
water/oil �ows will only be a�ected if we have �ow going from cell i to j.

∂qw,i,j
∂pj

=

{
ηi,jSi if pj − pi < 0
ηi,jSj if pj − pi ≥ 0

}
(5.7)

∂qo,i,j
∂pj

=

{
ηi,j(1− Si) if pj − pi < 0
ηi,j(1− Sj) if pj − pi ≥ 0

}
(5.8)

Derivation of the �ow equations with respect to pj results in the same behavior
as for pi. The derivatives is manipulated to make it seems like a change in the
pressure pj will result in change of �ow even if the �ow is zero.

∂qw,i,j
∂Sj

=

{
ηi,j(pj − pi) if pj − pi ≥ εp
0 otherwise

}
(5.9)

s
∂qo,i,j
∂Sj

=

{
−ηi,j(pj − pi) if pj − pi ≥ εp
0 otherwise

}
(5.10)

Changing the water saturation Sj will only a�ect the �ow if the �ow is leaving
cell j.
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System inputs

System inputs are the variables that can be controlled. For this model it is
the �ow into the reservoir and the opening on the producer valve. The �ow
into the system through a injector well is controlled by the variable qin,i, while
the valve opening is controlled by uout,i, where i is the injector/producer well
number. The variables is stacked into one input vector u.

u =


qin,1
...

qin,ninj

uout,1
...

uout,nprod

 (5.11)

ninj and nprod is the number of injector and producer wells respectively. The
relationship between the valve opening uout,i and the output of that cell is

qout,i =
pi
p0

uout,i (5.12)

where p0 is a constant.

Di�erential equations

The update laws for the states S and p are controlled by di�erential equations.
We begin by �nding the equation for the pressure state of each of the reservoir
cells.

The pressure is de�ned as

pi = ρghi (5.13)

where ρ the constant density of the �uid and hi is the height in the cell, then
the total volume Vtot,i can be described by

Vtot,i = Ahi (5.14)

=
A

ρg
pi (5.15)

= µpi, µ =
A

ρg
(5.16)

It is easy to see that the pressure is depending on the volume in the cell,
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pi =
Vtot,i

µ
. The time derivative then becomes

ṗi =
1

µ
V̇tot,i

=
1

µ
(V̇w + V̇o)

=
1

µ
(
∑
j

[qw,i,j + qo,i,j] + qin,i − qout,i) (5.17)

where qout,i is the output through a producer well if present in cell i, otherwise
it is zero, qin,i is the water injection through a injector well if present, otherwise
it is zero. The term qw,i,j and qo,i,j is the �ow of water/oil from neighbor cells
with index j ∈ Ni. Rearranging (5.17) results in the the �nal equation for ṗi

ṗi =
1

µ
(
∑
j

[qw,i,j + qo,i,j]) +
1

µ
(qin,i − qout,i) (5.18)

The water saturation Si for cell i is de�ned by

Si =
Vw,i
Vtot,i

, Vtot,i = Vw,i + Vo,i (5.19)

where Vw,i, Vo,i is the volume of water and oil in cell i. Derivation of (5.19)
with respect to time

d

dt
Si = Ṡi =

V̇w,i(Vw,i + Vo,i) + Vw,i(V̇w,i + V̇o,i)

V 2
tot,i

(5.20)

The rate of change in the oil and water volume (V̇w,i and V̇o,i) is determined
by the oil/water �owing in/out of the cell.

V̇w,i =
∑
j∈Ni

qw,i,j + qin,i − Siqout,i (5.21)

V̇o,i =
∑
j∈Ni

qo,i,j + (1− Si)qout,i (5.22)

Combining (5.20) with (5.14), (5.21) and (5.22) and rearranging gives us the
Ṡi:

Ṡi =

∑
j qw,i,j − Si

∑
j[qw,i,j + qo,i,j]

piµ
+

(1− Si)qin
piµ

(5.23)

Each cell in the reservoir have a pressure and a water saturation state. The
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states for all the cells are combined into the vectors p and S

p =

 p1
...

pncells

 (5.24)

S =

 S1
...

Sncells

 (5.25)

These vectors are again combined into a single state vector x

x =

[
p
S

]
(5.26)

The total system model can now be described in a compact form by

ẋ(t) = Ā(x(t))x(t) + B̄(x(t))u(t) (5.27)

System outputs

The output from the system tells us how much each of the producer wells
are producing. For each producer well we have two outputs, the produced
water and the produced oil. The total amount of produced �uid for a well i
is controlled by the input variable uout,i, where i is the index of the cell where
the well is placed. To calculate the output of water qout,w,i and the output of
oil qout,o,i the following equations are used.

qout,w,i = qout,iSi (5.28)

qout,o,i = qout,i(1− Si) (5.29)

where
qout,i =

pi
p0

uout,i (5.30)

The ratio between the phases is determined by the water saturation in the
cell that the well is producing from. The outputs are stacked in the variable
z. First water output from all the producing wells are stacked, then the oil
outputs.

z =


qout,w,1
...

qout,w,Nprod

qout,o,1
...

qout,o,Nprod

 (5.31)
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5.2.1 Time-discretization of the model

At this point the model exist in a continuous form with respect to time. To
implement the model on a computer we need to discretize it. This is done by
using the Euler integration scheme [7] described in section 2.1.1.

xk+1 = xk + ∆tẋ

= xk + ∆tĀ(xk)xk + ∆tB̄(xk)uk (5.32)

Finally we can write the discrete model in compact form

xk+1 = A(xk)xk +B(x)uk (5.33)

where

A(xk) = (1 + ∆tĀ(xk)) (5.34)

B(xk) = ∆tB̄(xk) (5.35)

Cost and restrictions

We are going to use MPC to control the reservoir. The MPC application needs
a speci�cation of what we mean by optimal control as it using this speci�cation
to �nd the optimal inputs to the system. In our case optimal control is speci�ed
as recovering as much oil as possible at a low cost. Injection water into the
reservoir represents a cost as the water must be transported and pumped into
the reservoir. Recovering water from the reservoir also represents a cost as this
water must be separated from the oil and processed (cleansed to make sure it
is pure enough to be disposed without environmental damage) before it can
be deposed again. The only pro�table situation considered is the recovery of
oil. Since the MPC application needs a mathematical de�nition of the optimal
case. This can be done by weighting water injection, water production and
oil production. The objective function is chosen to be quadratic meaning that
the quadratic term is weighted. The water injection and water production is
weighted by R̄ and Q̄w respectively. Both the weights are a positive constants
as they represents a cost. The production of oil is weighted by the constant
Q̄o which is negative since this represents a pro�t. The resulting objective
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function J used in the MPC application can be described by:

J =

NHx∑
k=1

(zk)TQzk +

NHu∑
k=0

(uk)TRuk (5.36)

Q =



Q̄w 0 · · · 0

0
. . .

Q̄w
...

... Q̄o

. . . 0
0 · · · 0 Q̄o


(5.37)

R =



R̄ 0 · · · 0

0
. . .

R̄
...

... 0
...

. . .

0 · · · · · · 0


(5.38)

The matrix Q is a diagonal matrix containing Q̄w and Q̄o, this is because the
output vector z consist of the water- and oil output for all production wells,
see equation (5.31). The diagonal matrix R is also divided into two parts,
one containing the water injection weight R̄ and zeros. This is because the
input vector u contains both the water injection variables qin and the output
variables qout. It is not desirable to weight qout as this is done one the the
outputs z.

5.3 Partial derivatives of the system equations

The use of adjoint gradient calculation require some additional information
about the system. The gradients ∇xkf(xk, uk) and ∇xkf() are required. The
function f(xk, uk) is the system equation, xk+1 = f(xk, uk). To calculates these
gradients each of the states in the system equations needs to be derivated with
respect to all the states and inputs. It can be shown that the derivatives are

∂

∂pki
(pk+1
i ) = 1 +

∆t

µ

∑
j

[
∂

∂pki
(qkw,i,j) +

∂

∂pki
(qko,i,j)

]
= 1 +

∆t

µ

∑
j

[−ηi,j] , j ∈ N〉 (5.39)
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Derivation of pk+1
i with respect to pi is linearly depending on the permeability

between cell i and the neighbor cells j ∈ N .

∂

∂pkj
(pk+1
i ) =

∆t

µ

(
∂

∂pkj
(qkw,i,j) +

∂

∂pkj
(qko,i,j)

)
=

∆t

µ
(ηi,j), j ∈ N〉 (5.40)

The derivative with respect to the pressure in a neighbor cell is only depending
on the permeability between cell i and j.

∂

∂Ski
(pk+1
i ) = 0 (5.41)

The pressure pi is not depending on the saturation Si in cell i. Pressure will
remain constant even if the ratio between oil an water changes because of equal
density (simpli�cation).

∂

∂Skj
(pk+1
i ) = 0 (5.42)

The pressure pi does not change if the saturation in any of the neighboring cell
changes, because of equal density for water and oil.

∂

∂qkin,i
(pk+1
i ) =

{
∆t
µ

if i ∈ I
0 otherwise

}
(5.43)

where I is the set of injector indices. If a injector well is present, then pressure
increases linearly with the volume of injected water.

∂

∂qkout,i
(pk+1
i ) =

{
−∆t

µ
if i ∈ P

0 otherwise

}
(5.44)

where P is the set of producer indices. If a producer is present, then pressure
decreases linearly with the volume of produced liquid.
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∂

∂pki
(Sk+1

i ) =
∆t

(pki )µ

(∑
j

[
∂

∂pki
(qkw,i,j)

]
− Ski

∑
j

[−ηi,j]

)

− ∆t

(pki )
2µ

(∑
j

[qkw,i,j]− Ski
∑
j

[qkw,i,j + qko,i,j] + (1− Ski )qkin,i

)
(5.45)

, j ∈ N〉

The above equation shows that changing the pressure in cell i has great in-
�uence on the water saturation in that cell. This is because the �ow from
neighbor cells changes and the fact that total �uid volume (and therefor wa-
ter/oil volume) is determined by the pressure.

∂

∂pkj
(Sk+1

i ) =
∆t

pki µ

(
∂

∂pkj
(qkw,i,j)− Ski ηi,j

)
, j ∈ N〉 (5.46)

The change of pressure in a neighbor cell j only a�ects the �ow between that
cell and cell i giving a simple expression only depending on the �ow and per-
meability.

∂

∂Ski
(Sk+1

i ) = 1 +
∆t

pki µ

(∑
j

[
∂

∂Ski
(qkw,i,j)

]
−
∑
j

[qkw,i,j + qko,i,j]− qkin

)
, j ∈ N〉

(5.47)
A change in the water saturation in cell i at time-step k will de�nitely a�ect
the water saturation Si at the next time-step (k + 1).

∂

∂Skj
(Sk+1

i ) =
∆t

pki µ

(
∂

∂Skj
(qkw,i,j)

)
, j ∈ N〉 (5.48)

Changing the water saturation in a neighbor cell of i will only a�ect the satu-
ration in cell i if the �ow is going from cell i to cell j, this is handled by the
derivative of the �ow equation with respect to the water saturation Skj

∂

∂qkin,i
(Sk+1

i ) =

{
∆t
pk

i µ
(1− Ski ) if i ∈ I

0 otherwise

}
(5.49)

where I is the set of injector indices. Injection water into a cell will de�nitely
change its water saturation.
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∂

∂qkout,i
(Sk+1

i ) = 0 (5.50)

A producing well in cell i will not a�ect its water saturation because the �uid
produced will have the same ratio between water/oil as the cell itself.

Injection of water into the reservoir is done to keep the reservoir pressure above
a certain level. If and injector well is perforated into the well at grid block
j we can directly control the source terms qw and qo. Since we only inject
water into the reservoir, the term qo will be zero, while the water injection qw
depends on the volume and density in the grid-block, which gives us

qjo = 0 (5.51)

qjw =
ρ(pj)

vj
qj, j ∈ Ninj (5.52)

where vj is the grid volume, qj is the rate of the injected water and Ninj is the
set of grid block indices where an injection well is perforated.

In producer wells the liquid drained is a combination of oil and water, resulting
in indirect control of the phases. The model used for the produced liquid is



Chapter 6

Simulations

This section presents the di�erent simulation cases used in this thesis. The
reservoir model used is presented in chapter 5. The reservoir size used and
the placement of wells is described here. The choice of objective function and
constraints used is also included here, since they vary for each of the cases.
Each subsection will describe a di�erent case.

The number of optimization variables are de�ned by the number of inputs
multiplied by the prediction horizon. Extending the horizon increases the
number of optimization variables linearly.

6.1 Case 1

Case 1 is a simple case illustrating the e�ciency of the adjoint gradient calcu-
lations (even for a small system) when there is no output constraints present.
The reservoir starts out as steady state meaning that the pressure in all the
cells are equal. The reservoir is tiny, only divided into three cell with one
injector and one producer. Figure 6.1 shows an illustration of the reservoir.
Figure 6.1a shows well placement, where the cross shows the injector well and
the circle shows the producer cell. Figure 6.1b shows the water saturation in
the reservoir cells, where light areas shows a high water saturation and dark
areas shows large oil saturation.

The constraints on the inputs are simple box constraints:

0 ≤ uki ≤ 1 (6.1)
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(a) Well placement

(b) Water saturation map

Figure 6.1: Tiny reservoir model

In this example there is no cost of producing water, but injecting water is given
a cost while producing oil is associated with a pro�t.

The reservoir model are simulated several times with a set of di�erent control
horizons using both the adjoint and the �nite di�erence method for gradient
calculations. This gives results that can be used to compare the calculation
time for the adjoint and �nite di�erence method.

6.2 Case 2

Case 2 uses the same reservoir as in case 1, but introduces output constraints
to the problem. A constrained problem will deteriorate the e�ciency of the
optimization algorithm compared to an unconstrained problem. This case will
show how the introduction of output constraints will a�ect the calculation time
for both the adjoint and �nite di�erence method.

Production equipment will often have production limits. Water produced from
oil reservoirs have to go through a process of separation and puri�cation before
it can be released into the nature again and the production plant will have an
upper limit on production capacity. In this case we have chosen to set a limit
on the water production. Since there is only one producing well, the limit will
only a�ect one output:

zk1 ≤ zw,max (6.2)

where zk1 is the water production at time k and zw,max is the maximum water
production. zw,max is set to 0.2.
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Now that output constraints are introduced into the problem the optimization
algorithm requires gradient information about the constraints. The constraints
gradients are calculated using a �nite di�erence approach.

Another way of handeling constraints is by softening them, as described in
4.2.1. This technique is also tested.

6.3 Case 3

This case will be using a larger reservoir model. The dimesions will be 8 x 12
gridcells, which results in 96 cells with 192 states. The model will have 4 wells,
two injectors and two producers. Simulations will be done with a horizon from
5-30 timesteps. The total number of states when the control horizon is 30 will
be 5760, which can be considered a large system. The number of inputs will at
the same time be 120. Since each case is simulated many times, several times
with di�erent control horizon for all the methods tested, a larger system would
be not be practical in this thesis.

An illustration of the reservoir is presented in �gure 6.3. The sub�gure 6.2a
shows the well placements, a cross is a injector well while the circle represents
a producer well. The water saturation is shown in sub�gure 6.2b, darker areas
contains mostly oil, while lighter areas contains more water.

The reservoir will be simulated with di�erent approaches for output constraint
handeling as well as without any output constraints. The results of the sim-
ulations are presented in section 7.4. One of the method tested is the adjoint
method with lumped constraints. Lumping the constraints makes the feasible
region of the problem larger, making voilation of the original constraints pos-
sible. This is solved by checking the outputs after the optimization at each
timestep to see if the original constraints is voilated, if it is the valve on the
producer well where the voilation occures is adjusted until the constraint is
satis�ed.
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(a) Well placement

(b) Water saturation map

Figure 6.2: Tiny reservoir model



Chapter 7

Results

Simulation results will be presented and commented in this chapter. Results
concerning reservoir state, inputs and outputs are not that interesting in this
thesis. The most important results will be how good output constraints are
handled, and how e�cient the optimization is done. A comparison of the opti-
mization time for the adjoint and the �nite di�erence method will be presented
for each simulation case, and the handling of possible output constraints will
be presented.

A more general discussion on the total results is done in chapter 8.

7.1 Comparison of optimization time

Testing techniques and theories are done by de�ning multiple scenarios/cases
and then simulate to see how well the di�erent con�gurations perform. We
are mainly interested in e�ciency for the di�erent techniques. To measure
how e�ective the preform it is natural to look at the time spent executing
the optimization. The number of gradient calculations needed could also be
interesting, however, simulations shows that for most simulations, the number
is equal regardless of the method used.

Comparison of optimization time will be presented for all cases. The time that
is compared is time spent in the optimization algorithm, and not the rest of
the MPC application. A pro�ler (Matlab pro�ler [13]) is used to record the
time. CPU-time is used instead of real-time, giving a better result that is less
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dependent on overall CPU load.

Within each case the time-axis is normalized, going from 0-1. This is done
because the actual time is irrelevant as it is depending on the hardware used in
the simulation. The time is only interesting when compared between di�erent
optimization methods, which can be done just as easily with normalized data
sets.

7.1.1 Θ-notation

To compare the running time for the �nite di�erence method and the adjoint
method we need to de�ne a notation suitable for this purpose. To describe
the asymptotic running time of an algorithm we use the Θ-notation [15]. The
Θ-notation gives an upper and lower asymptotic bound on computation time.
For a given function g(n) we denote Θ(g(n)) as the set of functions

Θ(g(n)) = {f(n) : there exist positive constants c1, c2, and n0 such that
(7.1)

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}

Example: The function g(n) = 5n2 belongs to Θ(n2) because we are able to
�nd a function f(n) that satisfy (7.1). We could choose f(n) = n2 and the
variables c1 = 1, c2 = 10 and n0 = 2. Then c1f(n) is a lower bound for g(n)
and c2f(n) is a upper bound for g(n). This example is illustrated on �gure
7.1.

7.2 Results - Case 1

Simulations were done with a control horizon spanning from 5 timesteps to
50 timesteps. Only plots from simulations with 5 and 50 timesteps horizon is
included since they represents the extreme situation of the simulations.

Figure 7.2 and 7.2 shows the inputs and outputs of the system. From these
plots we can see that the water injection and oil production is greater when the
control horizon is 50 timesteps rather than 5 timesteps. The water injection
has increased the most, this is done to produce more oil since the cost of
injecting water is lower than the pro�t of the extra oil produced. A longer
horizon looks further into the future, making water injection more pro�table
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Figure 7.1: Θ-notation example.

because sees that injecting more water leads to a higher oil production longer
into the future. This simple example clearly show that a longer optimization
horizon is preferred.
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(b) Control horizon: 50 timesteps

Figure 7.2: System inputs

Extending the horizon clearly gives a better result, but the computation time
will also increase. Let us take a closer look on the computation time. Figure
7.4 shows the computation time as a function of the horizon. It includes both
the adjoint and �nite di�erence computation times, as well as two function
that are �tted to the original graphs.



Results - Case 1 46

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

ou
tp

ut
s

 

 

z
1
 (water)

z
2
 (oil)

(a) Control horizon: 5 timesteps

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t
ou

tp
ut

 

 

z
1
 (water)

z
2
 (oil)

(b) Control horizon: 50 timesteps

Figure 7.3: System outputs
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Figure 7.4: Runtime comparison between adjoint and �nite di�erence method.
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The plot clearly shows us the strength of the adjoint method with no output
constraints. Computation time is close to linear with respect to the horizon,
while the computation time for the �nite di�erence method follows a second
order polynomial function. Using the Θ-notation, this means that the adjoint
method has Θ(n) computation time and the �nite di�erence method has Θ(n2)
computation time, where n is the horizon (or number of decision variables,
which is increasing linear with the horizon length).

7.3 Results - Case 2

Case 2 was simulated with a horizon of 5-50 timesteps. Figure 7.3 shows
the inputs and outputs of the system for simulation with 5 and 50 time-step
horizon. A longer horizon gave a higher oil output and water injection, just as
expected. We can also see that the water production was held at a maximum
at all times. The reservoir cell where the producer well is places contains
much more water than oil, making the water production constraint active at
all times during the simulation. The constraint is never violated as this is a
hard constraint.
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Figure 7.5: System inputs and outputs

Gradient calculation time is compared in �gure 7.6. The graphs clearly shows
that the adjoint approach to gradient calculations is the fastest. The �nite
di�erence method still follows a Θ(n2) calculation time with respect to the
length of the horizon. What is more interesting is that the adjoint approach
also follows a Θ(n2) trajectory. Figure 7.3 presents the same information as
�gure 7.6, but the graphs showing the �nite di�erence method and the adjoint
method is separated into two subplots, �gure 7.7a and �gure 7.7b.
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The reason for this behavior is that as the horizon length grow the problem
becomes larger and more complex making it harder to solv. The larger problem
is harder to solv, thus more iterations (and gradients) in the SQP algorithm
is required. This means that when the control horizon grows, the number of
gradients calculated for the complete optimization and simulation also grows,
introducing extra optimization time in addition to the time used to calculate
the gradients.
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Figure 7.6: Runtime comparison between adjoint and �nite di�erence method.
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Figure 7.7: Runtime for gradient calculation

Figure 7.8 shows the runtime comparison of the di�erent simulation done on
the tiny reservoir model. The datapoints are shown as dots with stipled dots
connecting them. The solid lines are polynom functions �tted to the data to
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show a interpolation of the results(simulations time would most likely follow
the solid line if done for every horizon length).

As expected the adjoint method without any constraints is the fastest. The
adjoint method with soft constraints is a little slower than the unconstrained
case, this is a result of a the extra complexity introduces when the constraints
were softened. The softening extends the objective function, creating a prob-
lem that is slightly harder to solve. The adjoint method with hard constraints
are the third fastest simulation. It is interesting that the adjoint method with
hard constraints, where the constraints gradients is calculated by �nite dif-
ferences, is faster than the unconstrained �nite di�erence method. The three
slowest simulations used the �nite di�erence methods.

It is clear that for this tiny system, adjoint methods would be very e�ctive
compared to the �nite di�erence method.
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Figure 7.8: Runtime comparison between adjoint and �nite di�erence method.

7.4 Results - Case 3

Four di�erent types of simulations were done. The �rst simulation was done on
a unconstrained system, the second simulation used soft output constraints,
the third simulations used hard constraints where constraints gradients was
simulated using the �nite di�erence method and the fourth simulation teste
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the lumping constraint scheme. Only the adjoint method was utilized on the
lumped constraint case.

Figure 7.4 show the output in the di�erent cases.
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(a) Outputs, unconstrained
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(b) Outputs, soft constraints
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(c) Outputs, lumped constraints
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Figure 7.9: System outputs

The unconstrained and soft constraint cases both voilates the output con-
straints. The hard constraints and the lumping scheme cases never voilates
the constraint, but as seen from �gure 7.9c the inputs was modi�ed more than
nessasary.

Simulation time for each of the cases and each of the methods are placed
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together in �gure 7.10. Data points is represented by a dot, while the solid
line is a polynomial function �tted to the data. The legend in the �gure speaks
for it selfs. The unconstrained adjoint method was the fastest, just as expected
and the hard constrained �nite di�erence method was the slowest. As we see
the adjoint method with lumped constraints is faster than the case with hard
constraints. The lumped method is clearly an good alternative, at least for
this case.
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Figure 7.10: Runtime comparison between adjoint and �nite di�erence method.

All the cases seems to be following a quadratic simulation time (Θ(n2)).
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Chapter 8

Discussion

This chapter contains some general discussion based on the results in chapter 7.
Two di�erent reservoir was used in the simulations. The �rst reservoir is tiny
and was included to make the testing of methods and do model/optimization
modi�cation easy without the need for long simulations. The other reservoir
was used to test the methods on a large system which has several thousand
states with the longest horizon. The results obtaint from both reservoir are
quite simular when considering the computation time. It shows that the adjoint
method can save a lot of computation time even with output constraints.

Reservoir simulations is often used to �nd well placement and parameter con-
�guration on oil reservoirs. Engineers need to do an simulation to test their
con�guration. Often modi�cations need to be done after an simulations is
done and a resimulation is needed. This process can be repeated many times
resulting in a large number of simulations. These testing simulations often do
not require hard constraints on the output, soft constraints would be a sati-
fying compromise if the simulation time is reduced considerable. The adjoint
method with softened constraints would often be good enough.

In the case of the unconstrained case, the adjoint method performs far better
then the �nite di�erence method. Using the adjoint method with softened
constraints will give almost as good performance as the unconstrained case.
Softening the output constraints seems like a good alternative for reservoir
simulations used to deside di�erent con�gurations since such simulations of-
ten needs to be repeated to �nd a good con�guration. In the simulations a
quadratic penalty functin was used to penalize a voilated constraint. Other
penalty functions giving a better result may exist.
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Using soft constraints instead of hard constraints may not always give a so-
lution that is accurate enough, for instance reservoir engineers has found a
good con�guration and wants to do a simulations producing more accurate
data to use for other purposes. In such a situations output constraints needs
to be handled properly as hard constraints that never gets voilated. For an
SQP-algorithm using an active-set and line-search technique for optimization
then needs the gradients of the constraints. For the adjoint method this will
reduce the e�ciency because a new set of langrange variables needs to be cal-
culated for each active constraint. This weekness can be reduced by lumping
the constraints. Lumping constraints reduces the number of constraints, but
the feasible region of the optimization problem is often expanded. This was
solved by manipulating the input after the optimization if the inputs computed
by the optimization solver voilated any of the original constraints. The manip-
ulation used an linear approximation of the relationship between the opening
of the output well and the outpout to do an iterative correction of the input.
This method worked quite well, the constraints was never voilated, but some
times the input was corrected a little more than nessasary.

The more simple approach to handling the constraints was to use a �nite
di�erence technique to calculate the gradients of all the constraints without
lumping. This approach is less e�ective but using the adjoint method for
calculating the objective function gradients made the result far better than
using the �nite di�erence method.



Chapter 9

Conclusion and further work

9.1 Conclusion

Through this thesis we have studied the adjoint and �nite di�erence method
for gradient calculations used in a MPC application on reservoir models. Both
methods has weaknesses and strengths. The adjoint method is well suited for
problems as long as no output constraints is present. The present of output
constraints will deteriate the e�ciency of the adjoint method. This can how-
ever be handled by softening the output constraints of lumping them together.
Softening constraints results in a unconstrainted problem which the adjoint
method handles well. The disadvantage is that softening constraints often
results in voilation of the original constraints.

The lumping scheme is more complex but for some problems, as reservoir sim-
ulations where there can be found a quite simple approximated relationsship
between the control signal controlling the output and the actual output, the
lumping of constraints works good and reduces the computation time com-
pared to using hard constraints.

The use of adjoint methods require knowledge about the the equations in
the model used in the simulations. Information about these equations are not
always availible, for instance in commercial simulators. In situations where the
model is not known the use of other methods as the �nite di�erence method
must be used. The process of creating a model to use with the adjoint method
will also require extra development work since ∇xf , ∇uf , ∇xG, ∇uG needs to
be generated in addition to just the objective function and the system equation.
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Adjoint method seems promising for use on reservoir models, it clearly has the
potetial to reduce the simulation time.

9.2 Further work

This thesis has studied the adjoint method for gradients calculations in MPC
applications. The method was tested on a simple reservoir model to test its
performance. The results shows that the adjoint method has great potential
in reservoir simulations. The optimization scheme in this thesis was an SQP-
algorithm.

It would be interesting to test the adjoint method in other types of optimization
algorithms with gradient based searching. The adjoint method can give a
great computation time reduction in a SQP-algorithm, but other algorithms
may reduce this even more. Since the handling of output constraints may
deteriorate the e�ciency of the adjoint method more research in the constraint
handling topic should be done. For instance barrier methods and penalty
functions should be studied further as they are able to remove the need for
output constraints.

Adjoint method are particular e�ective for large systems. The method should
be tested on even larger system that those presented in this thesis. Testing the
method on full-scale simulators, preferably on commercial simulators would be
interesting.



Appendix A

Program code

This chapter contains some code that may be interesting for the reader. The
code was written in Matlab using object-oriented programming.

A.1 Optimization problem class

The most important class is the optimization problem (OP) class that repre-
sents a somewhat general optimization problem. The class is abstract, making
it impossible to initiate it, but its used as a superclass for specialized prob-
lems de�ned by the user. The class de�nes what methods that any subclass
must implements, for instance the system equation function and functions for
calculating output constraints.

The OP class implements two function, both calculating the objective function
value and gradients, one using the adjoint method (function J_Adjoint()) the
other uses a �nite di�erence method (function J_FiniteDi�()).

Listing A.1: OP.m

1 c l a s s d e f OP < handle
2 p r op e r t i e s
3 % Number o f inpu t s / s t a t e s / output s
4 nInputs = 0 ;
5 nStates = 0 ;
6 nOutputs = 0 ;
7

8 % Current s t a t e
9 x0 ;

10

11 % Proper t i e s used in the op t imi za t i on / MPC
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12 ep s i l o n = 0 . 00001 ; % per tuba t i on s i z e used in f i n i t e d i f f e r n c e
c a l c u l a t i o n s .

13 simTime = 100 ; % Simulat ion l eng t h
14 hor i zon = 20 ; % Horizon o f the op t imi za t i on
15 useAdjo int = 1 ; % I f t h i s equa l s 1 , ad j o in t g rad i en t methods are used
16 con_A = [ ] ; % Ine qua l i t y con t ra in t s on dec i s i on v a r i a b l e s : con_A ∗ u <=

con_b
17 con_b = [ ] ; % −−−−^
18 con_Aeq = [ ] ; % Equa l i t y con t ra in t s on dec i s i on v a r i a b l e s : con_Aeq ∗ u

= con_beq
19 con_beq = [ ] ; % −−−−^
20 con_lb = [ ] ; % lower bound on dec i s i on v a r i a b l e s
21 con_ub = [ ] ; % upper bound on dec i s i on v a r i a b l e s
22 opt ions = opt imset ( ' Display ' , ' n o t i f y ' , ' Algorithm ' , ' ac t ive−s e t ' ) ;
23 uNom;
24

25 xNom;
26 zNom;
27 D_uk_fNom;
28 D_xk_fNom;
29 end

30

31 % Abstrac t methods t ha t needs to be implemented in s u b c l a s s e s
32 methods ( Abstract=true )
33 % Calcu la t e next s t a t e , g iven current s t a t e s , a input−vec to r and the
34 % times tep .
35 newX = f (o , xk , uk , t )
36

37 %Calcu la t e output s
38 z = g (o , xk , uk , t ) ;
39

40 % Calcu la t e the grad i en t o f the l a s t t imes tep f o r o b j e c t i v e func t i on
41 r e s = D_xN_HN(o ,xN)
42

43 % Calcu la t e the system equat ion g rad i en t s with r e spec t to the
44 % input s
45 r e s = D_uk_f(o , xk , uk , t )
46

47 % Calcu la t e the o b j e c t i v e func t i on g rad i en t s with r e spec t to the
48 % s t a t e vec tor
49 r e s = D_xk_G(o , xk , uk , t )
50

51 % Calcu la t e the o b j e c t i v e func t i on grad i en t with respenc t to the
52 % input vec to r
53 r e s = D_uk_G(o , xk , uk , t )
54

55 % Calcu la t e the system equat ion g rad i en t s with r e spec t to the s t a t e
56 % vec tor
57 r e s = D_xk_f(o , xk , uk , t )
58

59 % Calcu la t e the o b j e c t i v e func t i on va lue
60 r e s = J (o , x , u )
61

62 % nonl inear con s t r a i n t s
63 [ c ceq ] = con_nonlcon (o , uk )
64 end

65

66 methods
67 % Calcu la t e o b j e c t i v e func t i on va lue and g rad i en t s us ing the
68 % ad jo in t method
69 % @param u : Input vec to r
70 % @return J : Ob j ec t i v e func t i on va lue
71 % @return D_uk_J: Gradients f o r the o b j e c t i v e func t i on va lue
72 function [ J , D_uk_J] = J_Adjoint ( o , u )
73 % Check input l eng t h
74 i f mod( length (u) , o . nInputs ) > 0
75 error ( 'J_new :  Wrong input  l ength ' ) ;
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76 else

77 % Input l eng t h ok , cont inue
78

79 N = o . hor i zon ; % Lenght o f hor izon
80

81 % Prea l l o ca t e space
82 x = [ o . x0 ; zeros ( o . nStates ∗N, 1) ] ; % Sta te vec to r
83 z = zeros ( o . nOutputs∗N, 1) ;
84

85 % Do forward s imu la t ion
86 for i =1:N
87 xk = x ( ( o . nStates ∗( i −1)+1) : ( o . nStates ∗ i ) ) ;
88 uk = u ( ( o . nInputs ∗( i −1)+1) : ( o . nInputs ∗ i ) ) ;
89 x ( ( o . nStates ∗ i +1) : ( o . nStates ∗( i +1) ) ) = o . f ( xk , uk , i ) ;
90 z ( ( ( i −1)∗o . nOutputs + 1) : ( i ∗o . nOutputs ) ) = o . g (xk , uk , i ) ;
91 end

92 % Calc o b j e c t i v e func t i on va lue
93 J = o . J ( z , x , u ) ;
94

95 % Save s t a t e s and outputs from s imu la t ion around nominal
96 % t r a j e c t o r y
97 o .xNom = x ;
98 o . zNom = z ;
99

100 % Prea l l o ca t e space
101 o .D_xk_fNom = zeros ( o . nStates ∗N, o . nStates ) ;
102 o .D_uk_fNom = zeros ( o . nStates ∗N, o . nInputs ) ;
103

104 % Prea l l o ca t e space
105 D_uk_J = zeros ( s ize (u) ) ;
106

107 %In i t i a t e langrange mu l t i p l i e r s vec tor lamda
108 lambda = zeros ( o . nStates ∗(N+1) ,1 ) ;
109

110 % Assign the l a s t Lagrange mu l t i p l i c a t o r
111 lambda ( ( o . nStates ∗N + 1) : ( o . nStates ∗(N+1) ) ,1 ) = o .D_xN_HN(x ( ( o

. nStates ∗ i +1) : ( o . nStates ∗( i +1) ) ) ) ;
112

113 % Do the backward i t e r a t i o n
114 k = N;
115 while k > 0
116 % Preca lc . i nd i c e s
117 x i = ( o . nStates ∗(k−1) + 1) : ( o . nStates ∗( k ) ) ;
118 ui = ( o . nInputs ∗(k−1) + 1) : ( o . nInputs ∗( k ) ) ;
119

120 % Extrac t s t a t e s and inpu t s f o r the current
121 % times tep
122 x_k = x( xi , 1) ;
123 u_k = u( ui , 1) ;
124

125 % Calcu la t e system equat ion g rad i en t s with r e spe c t
126 % to inpu t s and outputs
127 o .D_uk_fNom( xi , : ) = o .D_uk_f(x_k , u_k , k ) ;
128 o .D_xk_fNom( xi , : ) = o .D_xk_f(x_k , u_k , k ) ;
129

130 % Temp. v a r i a b l e s
131 tmp1 = o .D_uk_G(x_k ,u_k , k ) ;
132 tmp2 = ( lambda ( ( o . nStates ∗k + 1) : ( o . nStates ∗( k+1) ) ,1 ) '

∗ o .D_uk_fNom( xi , : ) ) ' ;
133

134 % Calcu la t e o b j e c t i v e func t i on g rad i en t s
135 D_uk_J( ui , 1) = tmp1 + tmp2 ;
136

137 % Calcu la t e prev ious lambda va lue s
138 lambda ( xi , 1 ) = o .D_xk_G(x_k , u_k , k ) + o .D_xk_fNom( xi , : )

∗ lambda ( ( o . nStates ∗k + 1) : ( o . nStates ∗( k+1) ) ,1 ) ;
139
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140 k = k − 1 ;
141 end

142 end

143 end

144

145 % Calcu la t e o b j e c t i v e func t i on va lue and g rad i en t s us ing the f i n i t e
146 % d i f f e r e n c e method
147 % @param u : Input vec to r
148 % @return J : Ob j ec t i v e func t i on va lue
149 % @return D_uk_J: Gradients f o r the o b j e c t i v e func t i on va lue
150 function [ J , D_uk_J] = J_Fin i t eDi f f ( o , u )
151 % Check input vec to r l eng t h
152 i f mod( length (u) , o . nInputs ) > 0
153 error ( 'J_new :  Wrong input  l ength ' ) ;
154 else

155 % Input i s ok , s t a r t c a l c u l a t i o n
156

157 N = length (u) / o . nInputs ; % Number o f t imes t eps
158

159 % Prea l l o ca t e space
160 x = [ o . x0 ; zeros ( o . nStates ∗N, 1) ] ; % Nominal s t a t e v e c t o r
161 z = zeros ( o . nOutputs∗N, 1) ;
162

163 % Do nominal forward s imu la t ion
164 for i =1:N
165 xk = x ( ( o . nStates ∗( i −1)+1) : ( o . nStates ∗ i ) ) ;
166 uk = u ( ( o . nInputs ∗( i −1)+1) : ( o . nInputs ∗ i ) ) ;
167 x ( ( o . nStates ∗ i +1) : ( o . nStates ∗( i +1) ) ) = o . f ( xk , uk , i ) ;
168 z ( ( ( i −1)∗o . nOutputs + 1) : ( i ∗o . nOutputs ) ) = o . g (xk , uk , i ) ;
169 end

170 % Calcu la t e o b j e c t i v e func t i on
171 J = o . J ( z , x , u ) ;
172

173 % Save s t a t e / output around nominal t r a j e c t o r y
174 o .xNom = x ;
175 o . zNom = z ;
176

177 % Prea l l o ca t e space
178 D_uk_J = zeros ( s ize (u) ) ;
179

180 % I t e r a t e through every t imes tep
181 for k = 1 :N
182 % Preca l cu l a t e some ind i c e s
183 x_k_end = k ∗ o . nStates ;
184

185 % In i t i a t e temporal x−vector , e x p l o i t i n g c a u s a l i t y
186 xTemp = [ x ( 1 : x_k_end , 1) ; zeros ( (N−k ) ∗ o . nStates + 1 , 1)

] ; % Exp lo i t c a u s a l i t y
187 zTemp = [ z ( 1 : k∗o . nOutputs , 1 ) ; zeros ( (N−k−1) ∗ o . nOutputs +

1 , 1) ] ; %
188

189 % I t e r a t e through a l l inpu t s
190 for i =1:o . nInputs
191

192 % In i t i a t e temporal input vec to r ( Pertubate one o f
193 % the inpu t s
194 uTemp = u ;
195 uTemp( ( k−1)∗o . nInputs + i , 1) = uTemp( ( k−1)∗o . nInputs

+ 1 , 1) + o . e p s i l o n ;
196

197 % Calcu la t e the remaining e lements o f the temporal
198 % sta t e−vec to r
199 for l=k :N
200 % Calc . i nd i c e s
201 x_s = ( l −1) ∗ o . nStates + 1 ;
202 x_e = l ∗ o . nStates ;
203 x_s1 = x_s + o . nStates ;
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204 x_e1 = x_e + o . nStates ;
205 u_s = ( l −1) ∗ o . nInputs +1;
206 u_e = l ∗ o . nInputs ;
207

208 % Extrac t inpu t s and outputs f o r current
209 % times tep
210 xkTemp = xTemp(x_s : x_e , 1 ) ;
211 ukTemp = uTemp(u_s : u_e , 1 ) ;
212

213 % Calc . s t a t e s and outputs with p e r t u ba t e t
214 % input
215 xTemp(x_s1 : x_e1 , 1 ) = o . f (xkTemp , ukTemp , l ) ;
216 zTemp ( ( ( l −1)∗o . nOutputs + 1) : ( l ∗o . nOutputs ) ) = o . g

(xkTemp , ukTemp , l ) ;
217 end

218

219 % Calcu la t e o b j e c t i v e func t i on g rad i en t s
220 D_uk_J( ( k−1)∗o . nInputs + i , 1) = ( o . J (zTemp , xTemp ,

uTemp) − J ) /o . e p s i l o n ;
221 end

222 end

223 end

224 end

225 end

226 end
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