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Problem Description
Recently a new method for improving performance of linear control systems has been proposed.
The method is based on utilizing nonlinear controllers for linear control
systems. It has been shown that for the so-called nonlinear convergent systems one can extend
the conventional performance evaluation tools such as frequency response functions from the
linear systems theory. Yet, reliable numerical methods for computing such
nonlinear frequency response functions still need to be developed.

The goal of this project is to develop such a numerical method for computing frequency response
functions (FRF) for a class of convergent nonlinear systems. In particular, since computing such
an FRF involves finding a solution to a partial differential equation, the applicability of the finite
element method should be investigated. Other methods can be tested as well. The obtained
numerical method should be tested on a
nonlinearly controlled DVD drive as a benchmark system. Based on the outcome of the
development of the numerical procedure, the candidate should propose a sensible performance
measure for nonlinearly controlled systems and, if time permits, provide an algorithm for tuning
controllers to improve their performance (corresponding to the proposed performance measure).
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Abstract

In this report, a set of nonlinear coupled partial differential equations arising from the extension of frequency
response functions to convergent nonlinear systems are studied.

It will be shown how the finite element method can be applied to various versions of the system, start-
ing with a simple linear example, and ending in the finite element model equations for the complete coupled
nonlinear system. Further, a solution will be attempted for some of the most usual nonlinear solution tech-
niques. It will be argued that a finite element solution cannot be found if using only linear simplex elements.
A possible way forward for the finite element method is presented, but due to several reasons not applied to
studied in-depth. Additionally, an alltogether different method is also presented, which was an open option
to apply.

The reader is assumed to be familiar with basic linear and nonlinear control theory and terminology. Addi-
tionally, some familiarity with the most basic aspects of the finite element method is advantegous, though
some theoretical background will be given.
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Chapter 1

Introduction

In industrial control applications performance has always been a very important design criterion. For general
linear systems, a vast array of techniques and design tools already exist that allow controller tuning based on
performance criteria. Exactly what the word performance entails may wary from system to system, though
many practical control applications are based around some notion of tracking or path following, where the
system must follow some precalculated trajectory as closely as possible, subject to noise and disturbances.
For an excellent background in linear performance analysis, consider [5].

For nonlinear control systems, there is in general a lack of properly formulate performance criteria. Two
factors can be mentioned as to why; a (much) higher level of mathematical knowledge is required for the
formulation of such critera, which makes it more unapproachable for many practitioners. Further, the com-
plexity of some of the numerical simulations involved have so far proved a limiting factor in practice as well.
Simulations running 50-60 hours is not very efficient use of engineer time, especially when they have to be
repeated numerous times in a complete synthesis.

For many practical applications purely linear control strategies prove sufficient. However there are also
examples of systems where this does not hold, we will see one such example in form of a nonlinearly con-
trolled optical storage drive in this text. Good tracking control is in general coupled with good disturbance
attenuation properties at predominantly low frequencies in the linear control systems theory, however for a
linear system, this unavoidably means poorer attenuation properties at higher frequencies. If the presence
of high-frequency disturbances is likely in addition to the low-frequency content, and if the system requires
high tracking performance, this introduces a problem with a purely linear control strategy.

If the system is noiseless, then perfect tracking is always achieveable. However in practice no system is
ever noiseless. In particular there is always the presence of measurement noise. Consider the simple linear
control system depicted in Figure 1.1. with a plant P , controller C, reference input r, error ẽ, output p
and measured output p̃ = p+ n where n is the measurement noise. The output p of the system is to follow
(track) the reference input r as closely as possible. What, then, is a good measure of performance? There
are two quantities of special interest in this regard.

• How sensitive the system is to changes in the input (reference r).

• How sensitive the system is to noisy disturbances (herein the measurement noise n).

Both effects (reference changes and noise) are commonplace in any control system. A system will deviate
from its desired trajectory subject to changes in either the reference or the noise.

In linear systems theory, these quantitites are analyzed according to the so-called sensitivity and complemen-
tary sensitivity functions, denoted S(s) and T (s) respectively. Insertion of the complex frequency s = jω
gives a frequency-dependent characteristic of how the reference trajectory affects the tracking error through
|S(jω)| and likewise how the measurement noise affects the output through |T (jω)|. The applicability of the

1



Figure 1.1: A linear control system.

laplace transform to the governing set of ordinary differential equations, and the fact that superposition is
valid for any linear system, yield simple and effective analysis tools for performance based on, among other
results, these functions.

Another powerful result of the linear systems theory is that of uniqueness of solution. Suppose a linear
system, represented by the frequency domain transfer function G(jω), is subjected to a general harmonic
input of the form u = a sinωt. Then, the steady-state output response p of the system will equal

p(t) = |G(jω)| sin (ωt+ φ) (1.1)

where φ = −arg(G(jω)) is the phase shift of the output oscillatory response. Thus, when excited by a har-
monic input u, linear systems have a unique steady-state response as per (1.1). This steady-state response
is unique, and independent of the initial condition(s).

For general nonlinear systems these results vanish. There are two particurlarly vexing aspects of general
nonlinear systems that are undesirable in terms of analyzing the steady-state response or results based on
that response;

• It may have multiple coexisting solutions.

• The steady-state solution xw(t) may not be independent of the initial condition(s).

However a class of nonlinear systems exist that do not have these drawbacks; they are referred to as conver-
gent systems. While the mathematical definitions will be given, an intuitive textual description is given first.
A convergent system will, though nonlinear, have a well-defined unique steady-state response. In addition
such a system will converge to this response from any initial condition. This definition of convergence is very
general and applicable to any nonlinear system that satisfy these two criteria. For the systems considered
in this report we will mainly be focused on one special class of nonlinear (and convergent) systems; namely
the Lur’e systems.

In recent years, research into the properties of convergent systems have yielded some interesting results.
As it turns out, for systems with the convergent property, nonlinear counterparts to sensitivity functions
can be defined based on knowledge of the steady-state response. Controller design based on these and other
performance-based techniques have been tried and tested in practice, as is the example with Philips’ DVD
drives for use in cars [2].
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However, an obstacle is encountered with the calculation of these steady-state responses. Part of this is
due to the desire that the system be analyzed with respect to general harmonic inputs, as per the linear
systems theory. This creates a set of nonlinear partial differential equations, of which the solution is the
sought response. Solving this system of equations is in itself a nontrivial task.

Early on, the solution to the system was simply found “brute force”, repeatedly solving the system in
state-space (of the form ẋ = Ax + ...) with respect to harmonic inputs. This was computationally very
demanding, and an interesting question arose as to whether applying some known numerical method to the
problem could ease the computational demand and make the procedure more practically applicable. This is
mainly the focus of this thesis. In particular, the applicability of the finite element method to the system
will be investigated.

In fact, there are (now) practically applicable solution methods that may very well outdo a finite element
solution, especially the method described in [8], which is also briefly outlined in Chapter 4 of this thesis.

The thesis is organized as follows. In Chapter 2, the theory and application considering general conver-
gent dynamical systems is briefly presented. In Chapter 3, the finite element implementation is considered.
In (a brief) Chapter 4, some possible ways forward, with or without the finite element method, is considered.
Conclusions are presented in Chapter 5.

3



Chapter 2

Convergent Systems

This chapter aims to cover the needed background about convergent systems. The theory is mostly based
on the papers [1] [2] [3] [4], as well as [22].

The systems considered can in state-space be written in the very general form

ẋ = f(x,u(t)). (2.1)

The system of (nonlinear) ordinary differential equations (hereafter ODEs) given by (2.1) has state x ∈ Rn
and input —u(t) ∈ Rm. It is required that the inputs are (at least) piecewise continuous on R. Then, the
following defines a convergent system [].

Definition 2.1. The system (2.1) may be called;

• convergent if

1. there exists a unique steady-state solution xw(t) that is defined and bounded on R,

2. xw(t) is asymptotically stable,

• uniformly convergent if xw(t) is uniformly globally asymptotically stable (UGAS),

• exponentially convergent if xw(t) is globally exponentially stable (GES).

It is seen that the requirements given in Definition 2.1 are quite general. Any system that possesses a unique
steady-state solution, and is asymptotically stable, is a convergent system. All asymptotically stable linear
systems are also convergent systems (in fact exponentially convergent). In that case the definition overlaps
the usual definition of linear stability.

Definition 2.2. Systems of the form (2.1), that are convergent for some class of inputs u(t), are said
to have the uniformly bounded steady-state (UBSS) property if for any ρ > 0 there exists constant M > 0
such that;

|u(t)| ≤ ρ ∀ t ∈ R ⇒ |xw(t)| ≤M ∀ t ∈ R. (2.2)

In words, if the inputs are absolutely bounded by a constant value ρ, the steady-state output will also be
absolutely bounded by some constant M . This is an extension of BIBO stability (bounded input bounded
output) which is well known from LTI systems.

The next section establishes that steady-state solutions corresponding to harmonic excitations of the system
(2.1), the excitations having varying frequencies and amplitudes, can be characterized by one function. In
[1], it is referred to as the nonlinear frequency response function, and aims to extend such functions found
in linear systems theory.
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2.1 Nonlinear Response to Harmonic Excitation

Consider systems of the form (2.1), as well as Definition 2.2. The system is excited by inputs w(t) that are
known to be solutions of

ẇ = S(w), w ∈ Rn (2.3)

with a locally Lipschitz right-hand side. The solution of (2.3) is some function w(t, w0) with initial condition
w(0, w0) = w0. We need a boundedness assumption related to this solution;

Assumption 2.1. Every solution of (2.3) is defined and bounded on R, and ∀ r > 0 there exists ρ > 0 such
that

|w0| < r ⇒ |w(t, w0)| < ρ ∀ t ∈ R. (2.4)

The above assumption is basically the same boundedness assumption as in Definition 2.2, applied to the
system (2.3). To generate general harmonic inputs, we may for example choose S(w) = Sw where the matrix
S fulfills

S =
[

0 ω
−ω 0

]
. (2.5)

The solution to (2.5) will be w1 = sinωt, w2 = cosωt. Next, one needs to apply this system, acting as a
“harmonic signal generator”, as input to the general nonlinear convergent system. The following theorem is
the result of doing just that.

Theorem 2.1. Let the system (2.1) be uniformly convergent and regular with the UBSS property for
the class of continuous bounded inputs. Then, there exists a continuous function α : R3 → Rn such that
for any harmonic excitation of the form u(t) = a sinωt, the system has a unique periodic solution

xaω(t) = Π(a sinωt, a cosωt, ω) (2.6)

and this solution is UGAS.

Proof. Consider the system (2.3) generating harmonic signals. Consequently, the system (2.1) excited by
u = w1 = a sinωt can be treated as the system

ẋ = f(x, w1) (2.7)

excited by the solution of (2.3). The above system is regular and uniformly convergent with the UBSS
property for the class of continuous bounded inputs. Further one can easily check that the boundedness
assumption 2.2 is satisfied. Therefore, by the above theorem, there exists a unique continuous function such
that the steady-state solution of system (2.7) equals xw(t) = Π(w1(t), w2(t), ω).

Definition 2.3. The function Π(w1, w2, ω) is called the state frequency response function. If there in
the system is an output operator y = h(x) then the function h(Π(w1, w2, ω)) is called the output frequency
response function.

The following lemma is the result that is used to determine the set of partial differential equations that
describe the state frequency response function.

Lemma 2.1. Under the conditions of Theorem 2.1, if there exists a continuous function Π(w1, w2, ω)
differentiable in w = [w1w2]T and satisfying

∂Π
∂w

(w,ω)S = F (Π(w,ω), w1), ∀ w,ω ∈ R2 × R (2.8)

then this Π(w1, w2, ω) is the state frequency response function. Conversely, if the state frequency resposne
function is differentiable in w, then it is a unique solution of (2.7).

The proof of this statement can be found in []. How straightforward it is to actually find this function
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Π is system dependent. For some systems it is possible analytically. If not, one can try and find some ap-
proximative solution by numerical means. Further note that (2.8) will result in a partial differential equation
for systems with only one state (which are quite a rare sight in control applications), or a set of coupled
partial differential equations for system with multiple states. If the system itself is nonlinear, the equations
will naturally also be nonlinear, and such systems rarely have analytical solutions.

The above couple of pages have been an excercise in assumptions, theorems, and lemmas. Indeed, they
are a condensed version of quite a lot of research that can be found in the referred papers. To round this
section off, a more textual description of what has just been presented will be attempted.

Recall that a convergent system is a general nonlinear system which exhibits two defining characteristics;
firstly it has a unique steady-state response, and secondly this response is independent of the initial con-
ditions. We wish to analyze the system behaviour subject to harmonic excitations. This is achieved by
defining the exosystem (2.3), which generates harmonic signals that can be used as inputs to the general
convergent system (2.1). Note that this does not change the convergence property since Assumption 2.1.
holds. Next, Theorem 2.1. is presented establishing that the system response to these harmonic excitations
may be characterized by only one function. This is where it gets slightly tricky. This function takes three
arguments in general; w1 and w2 are the solutions of (2.3), and ω is the frequency which naturally is allowed
to vary.

Continuing onwards, said function may be found by solving the system of partial differential equations
given by (2.8). This solution is in terms of the (w1, w2, ω)-coordinates, however for simplicity assume that
the frequency ω is constant satisfying ω > 0. Then, the solution is given in terms of the w1w2-axes by
Π(w1, w2) where w1 = a sinωt and w2 = a cosωt.

2.2 Nonlinear Frequency Reponse Functions

In addition, and with a solution to the above problem, functions may be defined which are basically nonlinear
counterparts of the frequency response functions so commonly applied in linear control theory. They are
referred to in [1] as generalized sensitivity functions, and aim to mimic the sensitivity functions which may
be found in linear control theory. These will not be restated here, but [5] is an excellent textbook on this
subject. To formulate the nonlinear version of these functions, we consider a closed-loop system like the one
depicted in Figure 1.1, but with a nonlinear plant and/or controller. In state-space, this may be modelled
as;

ẋ = f(x, r,n)
p = h(x).

(2.9)

The error is defined as e = r − p. By inspection, this system is convergent for the class of continuous
bounded inputs r and n. For inputs n(t) = a sinωt and r(t) = 0 the system has a unique steady-state pe-
riodic solution, which we may denote as paω(t). Conversely, for the inputs r(t) = a sinωt the corresponding
steady-state solution eaω(t) is also unique. Then, the generalized sensitivity function and the complementary
generalized sensitivity function is defined as follows [1].

The functions

S(a, ω) =
||eaω||2
||raω||2

, T (a, ω) =
||paω||2
||naω||2

, (2.10)

are called, respectively, the generalized sensitivity function and the complementary generalized sensitivity
function of the convergent system (2.9).

Note that, in light of the fact the superposition does not hold, the functions above only yield informa-
tion on the system response to actual harmonic inputs. However, this information is usually very valuable,
as in industrial control systems it is commonplace to evaluate the performance subject to harmonic distur-
bances. Additionally, many disturbances that are encountered in practice may be modelled as a harmonic
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disturbance, or at the very least closely approximated as harmonic disturbances. For example, the engine
vibrations experienced by an optical drive mounted in a car may be viewed as a low-frequent harmonic
disturbance.

2.3 Lur’e Systems as Convergent Systems

An early nonlinear feedback control problem was formulated by A. I. Lur’e. Control systems of this form
(Figure 2.1), hereafter termed Lur’e systems, have a forward LTI path, and a feedback path that contains
a memoryless, though possibly time-varying, static nonlinearity. The linear part may be represented by
the matrix quadruple (A,B,C,D) such that the linear transfer function in the forward loop is uniquely
determined by;

Figure 2.1: A general Lur’e system.

G(jω) = C(jωI−A)−1B + D. (2.11)

The expression (2.11) should be easily recognized by anyone with some background in linear control theory.
The nonlinear part is represented by a sector nonlinearity1 µ(y).

The Lur’e systems may be written in state-space as:

ẋ = Ax + Bµ(y) + Fu

z = −Cx + Du

y = Cyx + Dyu

(2.12)

where x ∈ Rn is the state vector, y ∈ R is the input vector, and u ∈ R is the output vector. The nonlinearity
µ(y) is a scalar nonlinearity. The following assumptions must be made in connection with (2.4.1):

1. The matrix A is Hurwitz;

2. The nonlinearity µ(z) is odd and satisfies the slope restriction

0 ≤ µ(z1)− µ(z2)
z1 − z2

≤ ξ, (2.13)

∀ z1, z2 and some constant ξ > 0;

3. The circle criterion holds;

Re
[
C(jωI −A)−1B

]
> −1

ξ
, ∀ ω ∈ R. (2.14)

1This means we have
µ(y
y
∈ [a, b], where a < b.
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It is known that, under the above assumptions, the Lur’e system (2.4.1) is exponentially convergent for
the class of bounded piecewise inputs. Therefore, for the harmonic input a sinωt this system has a unique
periodic steady-state solution xaω(t) which corresponding output yaω(t) and period τ = 2π/ω.

This is a powerful result, because many practical control system applications may be written as a Lur’e sys-
tem. In particular, any mass-spring-damper system is a Lur’e system, and any stable mass-spring-damper
system, linear or nonlinear, is a convergent system. The applications of mass-spring-damper systems in
control practice are virtually endless.

2.4 Case Study: Nonlinearly Controlled Optical Storage Drive

A Case Study (was) intended for this thesis, that of a control problem relating to an optical storage drive,
on which the theory can be applied. The resulting model will fit the general class of Lur’e systems that has
been outlined. The study is also presented in [2]. A technical study of optical drives in general can be found
in [23].

2.4.1 Dynamics and Model

In optical storage units, like CD or DVD drives, the information is stored in a series of indentations in the
surface of the disk, called pits. Between these pits are sections of flat surface, known as lands. The lens
projects a beam onto the reflective surface of the disk, and reads this topology of pits and lands which is
subsequently converted into binary data. The lens itself is placed on a sledge which is actuated and can move
radially on the disk along a base frame. Addiotionally, the lens itself is actuated and can move within the
sledge. This situation is depicted in Figure 2.2. There are two control problems of interest for this system;
the long-stroke motion of the sledge relative to the disk, and the short-stroke motion of the lens relative to
the sledge. It is the latter that is the control problem which will be presented here.

Figure 2.2: The lens mass inside the sledge, moving on a radial base frame.

The lens dynamics are modelled as a standard mass-spring-damper system with mass m, stifness k,
and damping b. In addition the actuator dynamics are modelled as a lowpass filter in series with the lens
dynamics, such that the (linear) combined lens and actuator dynamics may be represented by the transfer
function

P (s) =
ωa

(ms2 + bs+ k)(s+ ωa)
, (2.15)

where ωa is the break frequency of the lowpass filter. The controller is chosen as a linear PID type, with
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corresponding transfer function

C(s) =
kpω

2
lp(s

2 + (ωd + ωi)s+ ωdωi)
ωd(s3 + 2βωlps2 + ω2

lps)
= kp

1
s

ω2
lp(s

2 + (ωd + ωi)s+ ωdωi)
s2 + 2βωlp + ω2

lp

. (2.16)

In (2.16) kp is the controller gain, ωi the breakpoint of the integral action, ωd the breakpoint of the derivative
action, ωlp is the breakpoint of the lowpass, and β is a damping parameter. The control system that would
result from the above plant and controller is depicted in Figure 1.1, where x is the state, and ẽ is the measured
error signal. The overall control problem is to drive this error to zero, and thus position the lens correctly to
read the appropriate data from the disk. For some time in these control problems, the systems were based on
linear models such as the one above. While this is a tempting approach due to the relative simplicity of the
control problem, it does have its share of drawbacks. In practice, the most important drawback was found
to be that of noise and shock suppression over a wide range of frequencies. While the linear system can be
tuned to suppress noise very well in one limited frequency range, it typically performs much poorer outside
of this range. This is a problem if the control system is frequently subjected to disturbances of very varying
frequency. As optical drives became commonplace in cars, on public transport systems, and even designed to
be carried around by people jogging, disturbances of varying frequency content also became more and more
common. The movement experienced by the system, because of being mounted in car, or carried around in
the park, is a disturbance of relatively low frequency. At the same time, scratch marks and smudge is easier to
keep on the typical CD or DVD disk than off it, which will contribute to a typical high-frequency disturbance.

With a purely linear control system, a design choice would have to be made as to which of these dis-
turbances to focus on. Clearly, it would be best overall to focus on suppressing the low-frequency content,
as it is most common and mostly unavoidable. At the same time, the user might find that his car-mounted
stereo performed much poorer in playing his slightly scratched disk than the tabletop stereo at home. The
best solution would be to come up with a way to tackle both of the mentioned disturbances at the same time.

A possible solution to this was presented in the paper [2], wherein a variable-gain control strategy is sug-
gested. The basic idea is to vary the controller gain kp such that it ramps up if the measured error (subject
to the noisy disturbances) is outside of certain bounds, aiding the control system in repressing said distur-
bances. A slightly modified version of the control system above is shown in Figure 2.3, where a variable-gain
block has been added to the feedback path between the application of the disturbances and the controller.
The purpose of this block is to improve the overall performance of the control system. In state-space, the
system depicted in Figure 2.3 may be written as:

ẋ = Ax + Bγ(ẽ) + B(r + n),
p = Cx,

ẽ = r + n− p.

(2.17)

Figure 2.3: The nonlinear control system under consideration.
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With r,n ∈ R being the (radial) error and the added noise, respectively, x ∈ R6 is the state vector,
and ẽ is the measured error signal. In the state vector x, the variables x1 through x6 corresponding to the
following. x1, x2, x3 are the derivative, proportional, and integral action of the controller, respectively, x4

is the force acting on the lens mass, x5 is the radial position, and x6 is the radial velocity of the lens mass.
The matrices A, B, and C are constant and satisfy;

A =



−2βωlp −ω2
lp 0 0 −kpω2

lp 0
1 0 0 0 0 0
0 1 0 0 0 0
ωa
ωd

ωa(1 + ωi
ωd

) ωa
ωi

−ωa 0 0
0 0 0 0 0 1
0 0 0 1

m − k
m − b

m

 ,

B =
[
kpω

2
lp 0 0 0 0 0

]T
,

C =
[
0 0 0 0 1 0

]
.

(2.18)

While the nonlinearity γ is a piecewise linear nonlinearity signifying the wanted change in the controller
gain. We have γ(ẽ) = α(ẽ− sgn(ẽ)δ) for |ẽ| > δ and γ(ẽ) = 0 for |ẽ| ≤ δ.

It may easily be shown that the system (2.17) is a convergent Lur’e system of the form (). The system
matrix A is Hurwitz due to the stabilizing control design. The nonlinearity clearly satisfies the incremental
sector condition for ξ = α, and the circle criterion holds for certain values of α. Hence, we may use the
presented theory on this system to arrive at the function which describes the steady-state solution.

2.5 Derivation of the PDE Models

It has been hinted earlier in the report that the result of the process of formulating nonlinear frequency
response functions is a coupled nonlinear system of partial differential equations. In this section this process
will be briefly summarized, and it will be outlined how to derive these equations. The section is concluded
with deriving said equations for the case of the optical storage drive system.

Let us first consider a very simple model example.

ẋ = −x+ a sinωt. (2.19)

The above is a stable system, harmonically excited with amplitude a and frequency ω. Obviously, this system
in linear, and the laplace transformation may be applied to analyze its performance. However, this system
is convergent and the theory of the preceding sections is applicable. Since the sinusoid term is the input, we
may look at it as the output u = v1 = a sinωt, and we then have the following;

There exists a unique function xv(t) = Π(v1, v2) which is the steady-state solution of (2.19), when u = v1

and v1, v2 are the outputs generated by the ”harmonic signal generator” (2.3).

Insertion of this function into the govering ODE model (recall that a sinωt = av1) directly gives the following
partial differential equation:

∂Π
∂v1

ωv2 −
∂Π
∂v2

ωv1 = −Π + av1. (2.20)

The above equation now describes the steady-state solution of the original ODE model, for a particular
choice of a and ω.

Consider the case in which we assign some constant value to ω. In this case, we have a threedimensional
solution to the partial differential equation, which, given the theory present, is smooth and unique. The
solution is further defined in the whole v1, v2 plane, so if we could solve this equation for a particular value
of the amplitude, we would also necessarily solve the equation for all other values between 0 and a. This
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is the primary result a numerical method like the finite element method might be able to achieve - to solve
for many different values of the amplitude in a single, smooth solution. If this is possible then it might very
well be more effective, computationally, than other methods in which both a and ω must be allowed to vary.
If a solution to the partial differential equation can be found, then we may proceed to construct frequency
response functions by resolving the equation for different values of ω.

For the case study system, we may simply insert the solution into the state space model (2.17), and obtain
the following expression.

∂Π
∂v1

ωv2 −
∂Π
∂v2

ωv1 = −AΠ + Bγ)(CΠ) + Bv1. (2.21)

The above descripes a nonlinear coupled system of partial differential equations. Such systems are usually
very nontrivial to solve, and the solution methods may be highly system-dependent. While there are several
possible methods that may be studied, in this thesis the finite element method will be applied to this system.

We will also here comment briefly on a couple of particulars of this system. Firstly note that there are
no additional conditions that come with the model (2.21), such as boundary conditions, or other conditions
that are required in order to establish a unique solution. Few partial differential equations (at least in the
authors space of knowledge in this area) have this property. We will note one more aspect, which may be
viewed as a connection between the ODE and PDE solutions.

As we have seen, the PDE is obtained by inserting the known solution into the ODE system. It is pos-
sible to solve the ODE system, and map the solution over to the v1, v2-space in which the PDE solution is
defined. To do this, we note that we have v1 = sinωt and v2 = cosωt as per the definition of the harmonic
signal generator. The unique steady-state PDE solution is defined for some period τ of the ODE solution,
and hence we may solve the ODEs, extract the signal values for one period τ , and map this data to a circle,
of radius a, in the v1, v2-system using the following transformation;

v1 = a sinωt
v2 = a cosωt
Π = xaω(t).

(2.22)

The above is defined ∀ t in one full period of the ODE solution xaω(t), and is the solution to the partial
differetial equation for a single circle in the v1, v2-plane. This leads to the following conclusion.

The domain over which to solve the systems of partial differential equations in the v1, v2,Π-space should
be a circle of radius a, where a is the maximum considered amplitude of the input signal v1.

The above will allow us to search for a solution to the problem for all amplitudes between 0 and some
maximum a, as long as we keep ω fixed as has been outlined.

Finally, we will briefly discuss the nonlinearity. It was found that most nonlinear solution methods for
finite element applications relied on a differentiable nonlinearity, both in order to formulate the method, and
to be able to prove under what condtions the iterations can be expected to converge. The nonlinearity γ is
clearly not differentiable since the signum function is not, and it was decided to approximate this term with
a continuous function. As we will see later, this may not have been the best choice of action in this case.
At any rate, in this thesis the nonlinearity is approximated with a cubic function, that is γ(Π) ≈ Π3. This
allows for the finite element model equations to become differentiable. The approximation is reasonable ∀
a < 1, which points to the fact that we may consider the unit circle as our domain of interest for the time
being. The true output of the nonlinear block is shown in Figure 2.4.

It should further be noted that only first-order derivatives will appear in the partial differential equations.
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Figure 2.4: The nonlinear block gamma.
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Chapter 3

Finite Element Application

This chapter firstly aims to present the Galerkin Finite Element Method in general and certain theoretical
and practical details that are needed to solve systems such as the one shown in (2.21). The approach taken
here is fairly pragmatic and presents only the most important subjects, those that need to be covered in
order to fully understand the implementation. Secondly, this will be used to apply the finite element method
to arrive at a finite element model of (2.21). Before we start off, we will briefly summarize the main points
of the method;

• Discretize the domain

• Obtain a model which approximates the problem over this domain through the use of piecewise inter-
polation on each discrete element of the domain

• Assemble the equations to obtain global equilibrium equations for the total domain.

Certain details in each of the above steps will be outlined. For more information, consider one of the several
excellent finite element resources in the references, for instance [7], [12], [14], [15], and others.

3.1 The Galerkin Finite Element Method

This section presents all the required background theory for the method of choice; the Galerkin Finite
Element Method. We begin with discussing how to, in general, obtain approximative solutions to partial
differential equations.

3.1.1 The residual and integral test

It is an advantage to cast the needed formulations and ideas in a general way. To this end, consider the
following expression.

R(u) = 0. (3.1)

Here, u ∈ Rn is a vector of unknowns, and R(u) is a matrix function of these unknowns. Expression (3.1)
will be thought of to represent any partial differential equation, be it linear or nonlinear, single or sets of
equations, and including or not including time as an independent variable. The equation is arranged such
that the righthand side becomes identically zero, and the lefthand side R(u) will be referred to as the residual
of the equation. Obviously, if u is the exact solution, the residual is zero. However, we will be searching for
approximate solutions and such we may (and most likely will) encounter situations in which the residual is
not equal to zero. Checking whether the residual is zero at any given u does not provide anything useful
we can use to talk about approximate solutions, it is either zero or not. Hence the first question to be
addressed is how one should measure whether an approximate solution, for which the residual is not equal to
zero, is a good solution. In short, we are looking for a quality measure on the approximate solution ũ to (3.1).

One possible choice of such a measure is to integrate the residual over the problem domain (such as the
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length in one dimension, the area in two dimensions, and so on). The problem domain will be denoted Ω.
Hence, we first construct the integral ∫

Ω

R(u) dΩ. (3.2)

Think of this as a test; if the residual is identically zero, then the integral will also come out zero. There is
a problem however, (3.2) may be zero even if the residual is not. If this was to be used to attempt to prove
that the residual corresponds to an actual solution, it would be a flawed test. For example, consider the
simple sinusoid depicted in Figure 3.3. Clearly the integral over the length of the graph is zero, however the
residual itself may be large. So, some additional thought is needed. One can think of (3.2) as being ”blind“
to the actual shape of the residual.

Figure 3.1: A simple sinusoid.

A remedy that addresses this is to use a ”window“ function, or more commonly known a test function.
Hence, let w ∈ Rn be a vector of such functions, and note that they are for the time being taken to be
completely arbitrary. Now, instead of (3.1), construct the following integral.∫

Ω

wTR(u) dΩ (3.3)

The above correctly indicates that the residual alone does not correspond to the exact solution. Equation
(3.3) is known as a weighted residual statement. Approximation methods that start from a weighted residual
statement are known as weighted residual methods.

There is still a small issue with (3.3) however. In order to make sure there are no ”bumps“ in the residual it
would need to be evaluated for an infinite number of functions w. Just like evaluation the original residual
at every possible u, this job will still take an infinite time. An analogy of what (3.3) is actually trying to
accomplish is that it is like trying to push a balloon into a box. We may use the fingers of one hand to press
down on the balloon such that the top of the balloon is held exactly at the top of the box - this is like the
residual being zero with the fingers being test functions. However, evidently the balloon will protrude a little
between the fingers and a lot everywhere else. We may then increase the number of test functions - fingers
- by using our other hand as well. Then we may recruit our friends and relatives to come assist in pushing
down the balloon, and do a better and better job so the balloon in the end does not protrude very much.
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With the above analogy we may begin to see how a trial-and-test approximation method may be formulated.
Selecting a finite number of suitable functions wj , j ∈ 1, 2, ..., N , we should be able to keep the residual
small, and by increasing the number of test functions the error should reduce. In addition, for each suitable
test function we will make the integral (3.3) vanish, which provides the means of calculating N coefficients
from these N equations. Then, the domain Ω may also be divided into N separate parts, a solution to (3.3)
sought for each with some corresponding test function wj . The total solution over the entire domain can
then be imagined as the sum of each ”sub-solution“. In fact, this is what the Finite Element Method is all
about at the core, and the next few sections will explore these ideas and why they work. The first step is
the actual division of the whole domain Ω into a number of subdomains.

3.1.2 Discretising the domain

First, we clarify what is meant by the domain Ω. To this end, return to the expression (3.1). In this text, the
domain will always be understood as where we seek to solve the equation, for example within a certain area
of R2 for a two-dimensional problem. While the equation may very well be defined for the entirety of R2,
the domain will be understood as some simply connected, closed subset or subspace of the total definition
space for which the equation remains valid. By simply connected we mean that the boundaries of this region
do not in any way overlap, and by closed we mean that the boundary defines some complete shape such that
there are no gaps in it. For example, the circle depicted in Figure ?? is a simply connected, closed subspace
of R2.

Next, we need to divide the domain into a finite number of subdomains. These subdomains should be
as easy as possible, and the concept of tiling arbitrary domains into a set of triangles is quite old. Hence,
the domain Ω will be approximated as a collection of triangles, known as a triangulation. As the number of
triangles increase, the geometry of this ”collection“ of triangles will more and more closely resemble that of
the actual circle.

The vertices of the triangulation are the nodes, while the segments connecting the nodes are edges. Ev-
idently, the triangles themselves are the finite elements.

For the purposes of this thesis, we will consider a discretization of the unit circle in the v1, v2 space us-
ing linear triangular elements. Such a discretization is shown in Figure ??.

3.1.3 Test and trial functions: basis functions on triangulations

It is time to discuss the test and trial functions, and how these may be chosen. From this point, the discussion
will be limited to two-dimensional problems, as there is no need to consider higher dimensional problems for
the purpose of this thesis. The discussion will be further limited to triangular elements.

The basic idea here is to construct some interpolation over each individual element, then combine these
into a total system solution. It assumed that the interpolation may be written as an expression similar to;

Π =
n∑
i=1

Ni(v1, v2)ui. (3.4)

Where Ni are certain polynomial functions, and ui are the nodal unknowns we are trying to calculate. It is
worth noting that this corresponds to a displacement-based finite element method, in that we are only solving
for the displacements of u when raised out of the v1, v2-plane. These functions are often called trial functions.

First, recall that the test function is an arbitrary function w used to weigh the residual before integra-
tion. The trial function is a chosen function which will be assumed to approximate the solution to the
partial differential equation within one finite element.

The idea that will be followed here is quite an old one, namely the concept of piecewise linear functions
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Figure 3.2: A triangulation of the unit circle.

defined over these tilings of the domain Ω. Now some additional points need to be made about the actual
form of the partial differential equation contained in the residual, specifically what order derivatives we are
dealing with. For the purpose of this thesis only first-order derivatives of the unknown functions need to be
considered. At any rate, for equations containing second-order derivatives it is common practice to carry
out integration by parts to reduce the second-order terms to first-order terms, hence still allowing for linear
interpolants to be used. It the following it is thus assumed that only first-order derivatives are encountered.

With this in hand, interpolation on the triangulation will be treated as a linear combination of functions
which geometrically will resemble ”tents“. Each individual tent is formed by grabbing one of the nodes of a
triangle (say node j), and raising it out of the plane of the triangulation (traditionally to unit height). The
tent ”canvas“ is stretched over the edges that connect at node j, and are clamped down by the ring of edges
that surround node j. One such particular basis function tent is shown in Figure ??, along with some points
for the integration rules inside the triangle. For those who do not like tents, the term hat function may be
preferable. The basis function connected to node j will be denoted as Nj .

All the triangles which are connected to node j are said to support the function Nj , which is another way
of saying that the function Nj is nonzero in these triangles; evidently it is defined to be zero everywhere else.
It now remains to find the expression that defines such a function Nj at any point within its support. That
would mean writing an expression for each triangle separately. This is certainly one way of doing it, and since
the equations will be similar for any triangle it is possible to do so. There is, however, a better way. The
alternative viewpoint is to define one single triangle to serve as a master element. Over this triangle we can
express all nonzero pieces of all basis functions. The triangle most commonly chosen for this is the unit right
isosceles triangle, one of which is depicted in FIGURE. Referring to the same figure, there are only three such
functions; the three basis functions associated with the nodes at the corners of the element. All the other
basis functions in the mesh are identically zero for that particular element. Thus, all that is left is the task of
writing down the basis functions on a single triangle. Before this, a very important requirement will be stated.

It is imperative for the convergence of the isoparamteric finite element models that each shape function
takes on the value of unity (1) at its home node, and is zero everywhere else in the mesh.

The reasons as to why are not covered but may be found in most introductory textbooks.
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Figure 3.3: The master element, along with some integration points.

Each of the three basis functions is zero along one edge of the triangle. Using the standard unit right
isosceles triangle as the master triangle, one can spot that the basis functions associated with nodes 2 and
3 are simply

N2(ξ, η) = ξ,

N3(ξ, η) = η.
(3.5)

As is easily verified, N2 is zero along the edge 1-3 and assumes the value +1 at node 2; analogous properties
hold for N3. If N1 should be equal to +1 at node 1, it must be written as

N1 = 1− ξ − η. (3.6)

Clearly N1 vanishes at the edge opposite node 1. These three functions now also satisfy an important
interpolation property known as the Kronecker delta property. In English, this means that the degree of
freedom at each node of the triangle is equal to the value of the interpolated function at the node. Therefore,
we make the observation that data sitting at the nodes of the triangle are naturally interpolated. One
particularly useful quantity that one can interpolate on the standard triangle are the Cartesian coordinates
of the nodes in the physical space (x,y);

x =
3∑
i=1

Ni(ξ, η)xi,

y =
3∑
i=1

Ni(ξ, η)yi,

(3.7)

with [xi,yi] being the Cartesian coordinates of the three points. The result of this interpolation is now a
fixed point p = [x, y]T in the Cartesian space, and equation (3.7) is a mapping from the pair (ξ,η) to the
point (x,y). Substituting for the basis functions, it may be written explicitly as[

x
y

]
=
[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

] [
ξ
η

]
+
[
x1

y1

]
. (3.8)

Inverting the above to arrive at ξ and η, which could then be substituted into the shape functions, looks
tempting but should be resisted. The reason is that quadrature rules for numerical integration are readily
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available for the standard triangle, but is much harder on general triangles. This will become especially clear
with the applications covered later.

However, since (3.8) is an invertible map1 from the standard triangle to any given triangle in the Cartesian
coordinates, we now have an approach to evaluating basis functions on a general triangle. Given a point
(x̄, ȳ) in the Cartesian space, and within the bounds of a triangle, we can use the inverse of the map (3.8) to
obtain a pair (ξ̄,η̄) in the standard triangle. We may then evalute Ni(ξ̄, η̄). This might seem awkward, but
normally we wish to evaluate the basis functions in order to perform a numerical integration at a particular
quadrature point within the standard triangle. Then, (ξ̄,η̄) would be known, and (x̄,ȳ) would be unknown.
However since values at the nodes are naturally interpolated we have

Ni(ξ̄, η̄) = Ni(x̄, ȳ). (3.9)

Thus if we can calculate the value of Ni at any given node in the standard triangle, we automatically get
the value of Ni at the corresponding node in the Cartesian space.

3.1.4 Derivatives of the basis functions

We have already established how to evaluate the value of a basis function at any point within the element.
What remains is to derive the expressions necessary to calculate the derivatives of these functions. While
this section only does so for the linear triangle, the results are much more general, and the same ideas and
formulas may be applied to any element.

Recall that the basis functions corresponding to the linear triangle are

N1 = 1− ξ − η, N2 = ξ, N3 = η. (3.10)

Deriving ∂Ni/∂x and ∂Ni/∂y is easy enough using the chain rule of differentiation. We get:

∂Ni
∂x

=
∂Ni
∂ξ

∂ξ

∂x
+
∂Ni
∂η

∂η

∂x

∂Ni
∂y

=
∂Ni
∂ξ

∂ξ

∂y
+
∂Ni
∂η

∂η

∂y

(3.11)

The above may, after some shuffling, be arranged into the following matrix equation.

[
∂Ni
∂ξ

∂Ni
∂η

]
=
[
∂Ni
∂x

∂Ni
∂y

] [∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
(3.12)

The 2 × 2 matrix in the above is the Jacobian matrix of the mapping x = x(ξ, η), y = y(ξ, η) of (3.8),
denoted as J . The elements of J are directly available from (3.8), but it is better to use (3.7) instead.
Hence, inserting we have:

J =

[∑3
i=1

∂Ni
∂ξ xi

∑3
i=1

∂Ni
∂η xi∑3

i=1
∂Ni
∂ξ yi

∑3
i=1

∂Ni
∂η yi

]
. (3.13)

For implementation purposes the Jacobian will be expressed as the product J = xTN∆ where x collects
in each row a coordinate pair (xi, yi) of the nodes and N∆ collects in each row the derivatives of the basis
functions with respect to the (ξ, η)-coordinates.

It is further noted that, in the case of the linear triangular element, the Jacobian will be a constant matrix.
This is always the case for elements which have straight sides.

1At least as long as the triangle does not have all its corners along a single straight line.
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3.1.5 Numerical Integration

Here the procedure for integrating functions numerically over the standard triangle will be formulated. We
begin by highlighting the role of the Jacobian matrix for this purpose. Consider the following mapping
(ξ, η)→(x, y): [

x
y

]
=
[
x(ξ, η)
y(ξ, η)

]
. (3.14)

Now, define the two vectors [dξ, 0]T and [0,dη]T spanning a parallellogram of area dξdη. These are mapped
by (3.14) to the vectors [

dξ
0

]
→ dξ

[
∂x
∂ξ
∂y
∂ξ

]
,

[
0

dη

]
→ dη

[
∂x
∂η
∂y
∂η

]
. (3.15)

Here the square brackets hold the components in the standard Cartesian basis, note that these vectors are
tangent to the coordinate curves, which consist of the points in the physical space (x, y) that are maps of
the curves ξ = const and η = const. The area of this new ”hatched“ parallellogram is

dξdη

[
∂x
∂ξ
∂y
∂ξ

]
×

[
∂x
∂η
∂y
∂η

]
. (3.16)

When the above is compared to the expression for the Jacobian matrix in (3.12), it is seen that the two
vectors in the cross product are the columns of this matrix. But the cross product of the columns is just the
determinant of the matrix. Hence, the mapping (3.14) maps areas as

dξdη → dξdη det
[
J
]
. (3.17)

As a direct consequence of the above, the following expression holds true for the change of coordinates in
integrals. ∫

Ω[x,y]

f(x, y) dxdy =
∫

Ω[ξ,η]

f(ξ, η) det
[
J
]

dξdη (3.18)

The above equality means that it is possible to determine the value of the integral of f over the element in
the global (x,y)-system by integrating f over the master element in the local (ξ,η)-system and multiplying
through by the determinant of the Jacobian matrix.

Now, depending on the nature of the function f , the integral in (3.18) may or may not be easy to eval-
uate. This is one of the reasons one normally chooses to perform all integrations in the finite element
method numerically. It is also considered standard within the finite element formulation to perform integra-
tions numerically; the process can be largely automated, easily modified to fit different problems, and offers
a high degree of reliability overall.

Hence, approximate the left-hand side expression of (3.18) as follows.∫
Ω[x,y]

f(x, y) dxdy =
M∑
k=1

f(ξk, ηk) det
[
J
]
Wk. (3.19)

Here, M is the number of integration pairs (ξk, ηk) within the master element, and Wk is the weight corre-
sponding to integration point k. Note that we retain the equality in (3.19) since it is generally possible to
obtain the exact (analytical) value of the integrand even if it is evaluated numerically. How (and why) to
accomplish this is considered next.

It seems natural to try achieving as high an accuracy as possible. One integration rule in which the points
and weights are optimized is Gauss quadrature []. Another issue is of what order the integration should
be. It can be shown that, for a Gauss rule, a polynomial of order 2n − 1 is integrated exactly with n
function expressions. Tbe set of points and weights that accomplish this is called an integration rule of
order n. Choosing this order is important in practice because, first, the cost of analysis increases when a
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higher order integration is employed, and second, using a different integration order can affect the results
by a large amount. Specifically, if the order of integration is too low, the coefficients may be evaluated very
inaccurately - and may even cause the finite element method to diverge. For this reason, it is desirable that
full order of integration (giving analytical values of the integrand) is used if possible.

The points and weights to be used in these rules may be found in tables in most textbooks that cover
the subject, for example in [12]. The points for the one-point, three-point, and six-point rules may be seen
as the cross within a polygon, the circles, and the crosses in Figure ??, respectively.

3.1.6 Finite Element Nonlinear Analysis

So far, only linear analysis has been mentioned. We have seen the construction of the finite element equilib-
rium equations of the form

KU = F , (3.20)

and assumed that the relationship between the response U and the applied force F is entirely linear. That
is; if the force is increased to αF , for constant α, the corresponding system response is αU . Now, we will
drop this assumption and discuss how to perform a nonlinear analysis within the finite element context.

Evidently, a nonlinear finite element model stems from a nonlinear governing partial differential equation.
There are no extras involved in setting up the finite element model in such cases; the method of weighted
residuals can be used in the same way as with linear equations.

The basic problem in a general nonlinear analysis is to find the state of equilibrium of a system corre-
sponding to the applied forces. These equilibrium conditions can, returning to the same line of thought that
was used to describe the residual of the governing equations earlier, be expressed as:

R− F = 0. (3.21)

Here both K and F may be functions of the unknowns U . We will think of F as the internal variables
(most often describing forces or dynamics) of the system, while R represents the external variables; in other
words the applied forces. The reason for this ”‘sudden change”’ in notation will become apparent.

There are many types of nonlinearities, and for the purposes of this thesis only one will be considered,
the path-dependent (material) type. With this type, it is necessary to solve the equilibrium equations (3.21)
for the entire ”‘range”’ of interest. By range we mean some collection of discrete steps the system need to
go through before arriving at an (acceptable) solution. It is always with path-dependent nonlinearities nec-
essary to perform some step-by-step incremental procedure, because the solution history affects the current
system equilibrium.

The basic approach of such incremental solutions is to assume that the solution is known at some dis-
crete iteration i within the procedure, and that the solution for iteration i + 1 is required. Within each
iteration, some form of (3.21) is solved. The exact setup of the equations depend on the employed method.
The most widely used iterative methods in finite element analysis is based on the classical Newton-Raphson
technique [], which is formally derived in Appendix APP. Here we restate the needed equations. It is assumed
that the force term R is independent of the solution U , and solve the following for i = 1, 2, 3, ...:

∆Ri−1 = R− F i−1

Ki−1∆U i = ∆Ri−1

U i = U i−1 + ∆U i

(3.22)

Where K is the tangent stiffness matrix, and we assume given F 0 and U0 to be applied in the first iteration.
In essence, (3.22) is obtained by linearizing the response of the finite element system about the conditions at
iteration i−1. In each iteration an out-of-balance force vector is calculated (the first equation), which yields
an increment ∆U i of the displacements in the second equation. We continue until the out-of-balance force
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vector ∆Ri−1 or the displacement increments ∆U i are sufficiently small. Criteria for doing this break-off
are also discussed in Appendix APP.

The Newton-Raphson iteration is so widely used in finite element analysis it represents the primary so-
lution scheme for nonlinear finite element equations. Therefore, before tackling the details in the calculation
of the different terms in (3.22), we give two major properties of the Newton-Raphson method that are of
interest. Denote U∗ as a converged solution.

Property 3.1. If the tangent stiffness matrix Ki−1 is nonsingular, if the finite element system R − F
and its first derivatives with respect to U∗ are continuous in a neighborhood of U , and if U i−1 lies in that
neighborhood, then U i will be closer to to U∗ than U i−1 and the sequence of iterative solutions generated
by the algorithm converges to U∗.

Property 3.2. If the tangent stiffness matrix also satisfies

||K|U1 −K|U2 || ≤ L||U1 −U2||, (3.23)

∀ U1, U2 in the neighborhood of U∗ and L > 0, then the convergence is quadratic. This condition may also
be recognized as Lipschitz continuity.

The practical consequence of these two properties is that if the current solution iterate is sufficiently close to
the solution U∗ and if the tangent stiffness matrix does not change abruptly, we can expect rapid (quadratic)
convergence. The assumption is of course that the exact tangent stiffness matrix is used in the iteration.
On the other hand, if this matrix is not exact and/or changes abruptly, or the current solution iterate is
not sufficiently close to the solution, then the iteration may diverge. In a finite element program, the exact
tangent stiffness matrix should always be used if possible, and if convergence difficulties are still encountered
one should firstly decrease the magnitude of the step between iterations, secondly investigate whether the
initial guess or iterated solution where divergence occurs is sufficiently close to the actual solution. These
topics will also be briefly encountered in later chapters.

Now, it is time to discuss how to calculate the various terms of (3.22) so as to fulfill the requirements
for convergence of the nonlinear iteration. An important point is that the correct calculation of F i−1 from
U i−1 is crucial. Any errors in this calculation will, in general, result in an incorrect response prediction. It
is also worth to note that errors in this calculation may not cause the method to diverge; in fact it might
instead cause the method to converge to some other, slightly different solution, especially if the errors are
quite small. This can understandably lead to much confusion as to why the correct solution is not reached.
The correct evaluation of the tangent stiffness matrix Ki−1 is also important. Incorrect evaluation of this
matrix often leads to divergence, however for sufficiently small errors the method may still converge to the
correct solution, as long as F i−1 is correctly evaluated. Usually ”sufficiently small” means at most a constant
deviation from the correct expressions. So the method is a little forgiving towards errors in the individual
terms, but if they become too large, it will diverge.

The basic steps in the derivation of the finite element equations are the same as those used in linear analysis;
the selection of the interpolation functions and interpolation of element coordinates and displacements with
these functions inserted in the governing equations. Also as in linear analysis, we may restrict ourselves
to the derivation of the equations within a single element of a specific type, because the global equilibrium
equations of the assemblage may be obtained using the same direct summation procedure.

The general approach to nonlinear finite element analysis can be likened to a series of lab tests, in which
various assumptions are investigated in each step to attempt to gain some clarity of the problem behaviour.
It possible, the nonlinear analysis should be preceded by a linear analysis, in which the most important
particulars of the system under consideration can be investigated. Unfortunately, nonlinear analysis can be
vexing in the regard that for an unfunctional system, the iterations may create a vast amount of information,
and the analyst may have problems processing this in a way that will reasonably produce any answers.

21



3.2 Applications

Let us now attack some actual equations and attempt to solve them with the finite element method. In order
to gain more insight into the process and, most importantly, possible hurdles, it is always recommended to
start with an ”‘easy”’ example. It is also helpful in order to prove the correctness of the solution algorithms
involved. Hence, we will start with a single linear equation,, then gradually work our way up to more
challenging tasks.

One-Equation Linear System

Consider the case in which we seek the solution Π(v1, v2) of the following simple (and single) partial differ-
ential equation:

∂Π
∂v1

v2 −
∂Π
∂v2

v1 + Π− v1 = 0. (3.24)

The above is derived from what is probably the easiest stable harmonically excited system, ẋ = −x+u with
u = v1 = a sinωt leads to (3.24) with v1 being the solution of the exosystem v̇ = Sv, v = [v1 v2]T . Taking a
good look at (3.24) reveals that a linear combination of v1 and v2 is a good guess at the solution, and hence
let

Π = Γv =
[
Γ1

Γ2

] [
v1 v2

]
= Γ1v1 + Γ2v2. (3.25)

be a solution ansatz for (3.24). By inserting (3.25) into (3.24) and arranging the following is obtained:

(−Γ2 + Γ1 − 1)v1 = (−Γ2 − Γ1)v2 (3.26)

such that we have the relations −Γ2 + Γ1 − 1 = 0 ∧ −Γ2 − Γ1 = 0, equating to Γ1 = 1/2 ∧ Γ2 = −1/2. The
solution to (3.24) is then Π(v1, v2) = 1

2 (v1 − v2), which may be easily checked to be correct by insertion.

Applying the finite element method to (3.24) is done in the standard way. The weighted residual formulation
of the equation is found by weighing and integrating. We pick the linear triangle and its corresponding three
shape functions N1, N2, N3 as shown in (3.10), and insert for Π =

∑3
i=1Niui. Dropping the summations

for brevity, the following expression is the finite element model, within a single element, of (3.24).∫
Ω

[
Ni
∂Nj
∂v1

v2 −Ni
∂Nj
∂v2

v1 +NiNj −Niv1

]
dΩ = 0. (3.27)

The element matrix k, of size 3× 3, is constructed from the terms involving the solution Π, and the element
vector f , of size 3× 1, from the terms not involving the solution:

kij =
∫

Ω

[
Ni
∂Nj
∂v1

v2 −Ni
∂Nj
∂v2

v1 +NiNj

]
dΩ,

f i =
∫

Ω

Niv1 dΩ.

(3.28)

Note that in the above the element vector is assumed to have moved to the right-hand side of the equation.

To check the correctness of the solution, we may use the analytical solution given above, however we may also
map the solution of the state-space ODE, for a single amplitude and frequency, to the (v1, v2)-coordinates.
This will, as described in Section 2.XX, create a circle which must lie entirely within the plane of the solution.
This approach will be used since it is the only way to test the correctness of the solution in the nonlinear case.

We will scrutinize the individual elements of this system some more, to show the actual expressions that
need to be integrated, and to choose a sufficient integration rule for the problem. Hence, take for example
term k22. This term involves shape function N2 only, and we may easily see that

k22 =
∫

Ω

[
N2

∂N2

∂v1
v2 −N2

∂N2

∂v2
v1 +N2

2

]
dΩ. (3.29)
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The above must be written as a function (ξ, η) for the purposes of numerical integration. We have N2 = ξ,
further we must map v1 and v2 to v1(ξ, η) and v2(ξ, η) through the interpolation as shown in (3.7). The
derivatives of N2 with respect to v1 and v2 behave as constants. Let v11, v12, v13 be the v1-coordinates of
the element nodes, and similarly for v2. Then, we end up with the following function to be integrated.

γ(ξ, η) = ξ
∂N2

∂v1

(
(1− ξ − η)v11 + ξv12 + ηv13

)
− ξ ∂N2

∂v2

(
(1− ξ − η)v21 + ξv22 + ηv23

)
+ ξ2. (3.30)

Now, k22 is evaluated as

k22 =
∫

Ω[ξ,η]

γ(ξ, η) dξdη =
M∑
k=1

γ(ξk, ηk) det
[
J
]
Wk. (3.31)

Similar derivations hold for the calculation of all other terms in k and f . Note that the maximum polynomial
order of γ in (3.30) is 2, and we may also easily realize that this must hold for all other expressions to be
integrated for this particular model as well. Therefore, the three-point integration rule shown in Table TAB
should be capable of obtaining the exact values of these integrands, and is chosen for implementation.

The next step is, simply, assembling and solving the equations. Figure 3.4 shows the solution of (3.24)
as obtained by the model (3.27). Further, Figure 3.5 shows the same solution, with the aforementioned
mapped ODE solution embedded in the surface for four different values of the input amplitude (which
equates to the radius in the (v1,v2)-system). It is clearly seen in all cases that the solution is correct. It may
also easily be checked point-for-point with the analytical solution in this case.

Figure 3.4: Solution of the single-equation linear system.

There is one more aspect that should be investigated before we move on from this simple example; that
of the effect of reduced order numerical integration on this system. If the solution can be obtained with
reduced integration, it would be more computationally effective. There are no two-point rules on the linear
triangle, but we may try the one-point rule. The result of solving the system with this rule is shown in Figure
FIG. It is immediately seen that this solution is not very accurate. Hence, we may predict that full-order
integration should always be used for these systems. This also has ramifications for the nonlinear iteration
process; having iteration solutions which are as inaccurate as that shown in Figure FIG would probably
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Figure 3.5: Solution of the single-equation linear system.

prevent convergence of the method alltogether.

Next, we treat a similar nonlinear problem.

One-Equation Nonlinear System

A nonlinear equivalent to (3.24) can easily be constructed by introducing a nonlinearity in the state equation.
Thus, let the new state equation be ẋ = −x3 + u, with u = v1 from the exosystem as before. It is trivial to
show that the PDE from which the steady-state solution may be found in this case is

∂Π
∂v1

v2 −
∂Π
∂v2

v1 + Π3 − v1 = 0. (3.32)

Applying the same procedure as in the linear case, the following finite element model of (3.32) is obtained.∫
Ω

[
3∑
k=1

(
Ni
∂Nj
∂v1

v2 −Ni
∂Nj
∂v2

v1

)
uk +Ni

( 3∑
k=1

Nkuk

)3

−Niv1

]
dΩ = 0. (3.33)

In the above we have used that the interpolation of Π is Π =
∑3
i=1Niui. We may further easily find the

corresponding kij and f i:

kij =
∫

Ω

[
3∑
k=1

(
Ni
∂Nj
∂v1

v2 −Ni
∂Nj
∂v2

v1

)
uk +Ni

( 3∑
k=1

Nkuk

)3
]

dΩ,

f i =
∫

Ω

Niw1 dΩ.

(3.34)

It is important to note that, in the above, it is impossible to write the entire model as ku = f due to
the nonlinear term. Instead, we must write it simply as k(u) = f . Hence, the summation is kept in the
equations. Basically, (3.34) now describes one of the three equations needed to evaluate the three unknowns
u1u2,u3. Again, closer inspection of the expressions to be integrated is required. Pick k22 as before. The
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Figure 3.6: Linear one-point integration yields an unstable solution.

contribution from the linear part involving the derivatives is the same as with the linear equation, and the
nonlinear part may be written, after expanding the sum:

γnl(ξ, η) = ξ
(
(1− ξ − η)u1 + ξu2 + ηu3

)3
. (3.35)

As before, k22 is obtained by integrating γnl (along with the linear contribution). The above expression will
result in a highest order polynomial of 4. Therefore, the three-point integration rule is no longer applicable
to this situation. The six-point rule shown in Table TAB is however able to integrate (3.35) exactly.

To solve the system (3.34), it is necessary to implement an iterative method as described in Section 3.1.6.
Newton-Raphsons method is the choice, and we must now evaluate the basic equations to be solved using
this procedure. Refer to Section 3.1.6 or Appendix B for more details.

We start by treating the external force term, denoted as R. It was assumed that this was independent
of the solution U , and indeed it is:

Ri =
∫

Ω

Niv1 dΩ. (3.36)

In other words, this term does not change with the iterations. Next, consider the internal contribution F ,
which, for iteration k, becomes

F k
i =

∫
Ω

[
3∑
k=1

(
Ni
∂Nk
∂v1

v2 −Ni
∂Nk
∂v2

v1

)
uk +Ni

( 3∑
k=1

Nkuk

)3
]

dΩ. (3.37)

The final piece of the puzzle is the tangent stiffness matrix, which is the derivative of F with respect to the
nodal variables.

T k
ij =

∂F k
i

∂Uk
i

=
∫

Ω

[
3∑
k=1

(
Ni
∂Nk
∂v1

v2 −Ni
∂Nk
∂v2

v1

)
+ 3NiNj

( 3∑
k=1

Nkuk

)2
]

dΩ. (3.38)
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The notation may appear a little confusing in some of the above expressions. We will write out one element
of F k

i and the corresponding contribution to T k
ij to hopefully make these slightly convoluted expressions

clearer. Pick F k
1 , and let uk1 ,uk2 ,uk3 be the three unknowns inside a particular element for iteration k. Then,

we have:

F k
1 =

∫
Ω

[(
N1

∂N1

∂v1
v2 −N1

∂N1

∂v2
v1

)
uk1 +

(
N1

∂N2

∂v1
v2 −N1

∂N2

∂v2
v1

)
uk2 +

(
N1

∂N3

∂v1
v2 −N1

∂N3

∂v2
v1

)
uk3

+N1

(
N1u

k
1 +N2u

k
2 +N3u

k
3

)3]
dΩ.

(3.39)

The above expression is one of three equations for any given element and gives rise to three elements of the
tangent stiffness matrix, found by differentiating F k

1 with respect to uk1 , uk2 , and uk3 , respectively:

T11 =
∫

Ω

[(
N1

∂N1

∂v1
v2 −N1

∂N1

∂v2
v1

)
+ 3N2

1

(
N1u

k
1 +N2u

k
2 +N3u

k
3

)2
]

dΩ,

T12 =
∫

Ω

[(
N1

∂N2

∂v1
v2 −N1

∂N2

∂v2
v1

)
+ 3N1N2

(
N1u

k
1 +N2u

k
2 +N3u

k
3

)2
]

dΩ,

T13 =
∫

Ω

[(
N1

∂N3

∂v1
v2 −N1

∂N3

∂v2
v1

)
+ 3N1N3

(
N1u

k
1 +N2u

k
2 +N3u

k
3

)2
]

dΩ.

(3.40)

Similar derivations naturally hold for the remaining six entries of the tangent stiffness matrix. Note that we
keep the integration for the terms in T k

ij as well. Since we differentiate with respect to uk, the integration,
which is in terms of ξ and η, is simply treated as a constant. Vice versa, uk may be treated as constants
when performing the integration.

We now have all the needed terms to perform the Newton-Raphson iterative procedure. Denote uk−1
1 ,

uk−1
2 and uk−1

3 as the values of U belonging to a particular element, for iteration k − 1. Then, the system
to be solved in iteration k of the Newton-Raphson method is:T11 T12 T13

T21 T22 T23

T31 T32 T33

k−1 ∆uk1
∆uk2
∆uk3

 =

R1

R2

R3

−
F k−1

1

F k−1
2

F k−1
3

 ,
uki = uk−1

i + ∆uki .

(3.41)

As has been mentioned in Appendix APP, the equilibrium equations for the total assemblage of elements
may be constructed using the same procedure as in linear analysis, even with the terms involved in the
Newton-Raphson procedure.

Again, the highest polynomial order in any term in (3.41) is 4, and a six-point rule is sufficient for ex-
act integration.

We may now proceed to implement the above iteration and attempt to solve the system (3.41). Unfor-
tunately, the method does not seem to be able to converge. To gain some insight into what is happening,
consider the error norm ||R− F ||, in other words a norm of the residual of the equations. Figure 3.7 shows
what is happening to this expression. Clearly, we have divergent oscillations. Some effort must now be made
towards establishing why this is occuring.

The first steps should obviously be checking whether there are any errors in the equations or their
implementation. Consider the equations. The basic steps that lead to the complete finite element model
equations are;

1. The weighing and integrating of the partial differential equations (weighted residual statement).
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Figure 3.7: The error norm of the nonlinear solution where the initial guess is the linear solution.

2. The choice of some approximating interpolation Π =
∑
iNiui on the individual mesh elements.

3. The insertion of this approximation into the governing model.

4. Assembly to establish the equilibrium equations over the whole assemblage of elements.

Let us consider these steps in turn to see whether any errors could have been made here. The first step is
obviously correct in that it makes mathematical sense, as has already been argued in Section 3.1.1. The
second step only involves the choice of the shape functions Ni to be used, that these are correct has been
argued in Section 3.1.3. The third step is again correct because the expressions are still mathematically
valid. The fourth step sees us arrive at the total global system of equations, which is correct since the
same algorithm has been used to arrive at the linear equilibrium equations, which as we have seen yield the
correct solution. It may also be proven mathematically. In fact, the correctness of the mathematics and the
algorithms involved may easily be argued through the support of a correctly functioning linear solution.

Let us dwell some further with the expressions. It can easily be seen that the nonlinear finite element
model is similar to the linear model, except for the one nonlinear term. Hence, we may reuse the expressions
obtained from a linear model (these may also be very effectively precomputed) and concentrate only on the
effect the nonlinear term, Ni

(∑3
i=1Niui

)3, has on the implementation of the equations.

Firstly, we state that, at the end of each iteration, this expression will be a number. Therefore, it is possible
to handle the nonlinear term in the code in the same way that the v1 and v2 terms are handled where the
multiply their respective derivatives in the expressions. We may precalculate the interpolated expression
Π = N1u1 +N2u2 +N3u3 in the same way that v1 = N1v11 +N2v12 +N3v13 is calculated. Then, We may
weigh the interpolated version of Π with the correct shape function (depending on what node of the element
we are currently treating), and proceed to integrate the expression numerically. It has already been cov-
ered that the numerical integration rule is correct and can exactly recreate the polynomials that are involved.
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In addition, we may show that the nonlinear iteration is working as intended by substituting the linear
system into the nonlinear iteration. This must converge in the first iteration with the exact solution, which
it does.

We may also try other methods or modifications of the standard Newton-Raphson procedure to see if
convergence can be reached. A simple modification is to decrease the step length by a factor α < 1 (typically
α lies in the 0.30-0.50 range), such that the solution update becomes

uki = uk−1
i + α∆uki . (3.42)

The above may now be attempted for varying values of α, 0 < α < 1. No values of α has been found that
ensure convergence, so this is clearly a dead end as well.

Another method may be to try a different solver for the equations. The matlab function fsolve is often
used to solve systems of nonlinear equations. By default, fsolve uses a trust-region dogleg method [], which
is a quite different approach to the Newton-Raphson method. The nonlinear equation system F −R may
be implemented in the same way as earlier for this purpose, and the fsolve function called with some initial
guess u0. Again, the correctness of the implementation is most easily verified by solving the linear system
with the same method, which indeed yields the correct solution.

In fact, this approach, for a simple nine element mesh, converges to a solution with an error norm that
satisfies ||R−F || ≤ 10−16, or in other words, machine accuracy. The solution is depicted in Figure 3.8 along
with a certain simulated single circle along edge of the circle.

Figure 3.8: The ”solution” to the nonlinear problem obtained using fsolve.

It is seen that the solution is not at all very accurate, yet it is a solution to the equation system (it
has already been argued that the equations themselves are correct, and correctly implemented). This may
easily be seen as a conflicting (not to mention confusing) result. Further investigation is no doubt needed.
It is well known that the solution accuracy should increase with increasing mesh density for finite element
methods, so we may next try to solve the system on a denser mesh. The mesh depicted in Figure ?? has
55 elements. Trying to solve the nonlinear equations on this mesh yields no convergence for any attempted
method, including fsolve.

The next step to try may be to vary the initial guess, and overall checking whether Property 3.1 is ful-
filled. It may easily be found that the tangent stiffness matrix is always nonsingular (except in extreme cases
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of divergence when the solution has blown up too much). Hence, we will try moving the initial guess closer
and closer to the actual solution. The actual solution may be found by manually assigning values that are
in close agreement with the simulated solution to the nodes. If this is done to good accuracy, it will sligthly
better the error norm of the residual in the Newton-Raphson iteration. We may also attempt to polish a
root by picking out the solution iterate for which the error is smallest (typically occurs within the first 25
iterations), and using this new solution as the guess with which to restart the iterations. This will also
slightly better the error norm, but not to a degree where it can be argued a converged solution is reached,
see Appendix B for some discussion around these error norms and how they should be interpreted. The term
’slightly better the error norm‘ here refers to a change of about one order of magnitude (10−2 to 10−3) for
the iterations. Figure 3.7 shows the error norm plotted as a function of the iteration number if the initial
guess is the linear solution, while Figure 3.9 shows the same situation after several steps of ’root-polishing‘
has been taken. Additionally, Figure 3.10 shows the error norm when the initial guess is rather arbitrary.
Obviously no acceptable converged solution is reached. At any rate, using a method which relies this much
on manual labor would not be very well adaptable to solutions over finer mesh sizes, which would be required
for good accuracy.

Figure 3.9: The error norm of the nonlinear solution after some root polishing has been attempted.

Let us look at cases where the Newton-Raphson method produces the kind of response we have seen. In
fact, the kind of nonlinearities we have restricted ourselves to very much pose a problem for this method
in some situations. It is relatively easy to (and commonplace as an example of failure of Newton-based
methods) find a third-order equation or system which may fail to converge to a solution if the initial guess is
too inaccurate. However, as long as a solution can be found, the iteration should converge if the initial guess
is accurate enough. In this case then, we clearly have a situation in which no solution can be found. It is
also interesting to look at how the response actually develops. It appears to be diverging to the linear solution.

Let us briefly go back to the linear solution and explore some peculiarities of this model. Firstly, note
that we have insofar not touched the aspect of boundary conditions. Simply put, the original partial differ-
ential equations on which the finite element modelling is based does not come with any specific boundary
conditions that are known to be required in order to find an unique solution to the system. If boundary
conditions are not stated by the PDE model, then they do not have to be included in the finite element model.
Indeed in the linear case, the exact solution is obtained without the addition of any boundary conditions.
If one adds the correct boundary conditions to the system, it will not change the response in any way. If
incorrect boundary conditions are added (even if only one node is incorrect, and even if the error is mini-
mal), then the solution to the linear system will be divergent. Even so, one could attempt to use boundary
conditions in the nonlinear case. The correct values of the boundary nodes may be manually assigned to
good accuracy as has been described above. For the nine-element mesh, we would now only need to actually
compute values for the two nodes at the mesh interior - all other nodal values are fixed. This may be tried
- in fact if it is, no solution can be found to the system in any case.

At any rate, and as has been mentioned, so long as the original partial differential equation model does
not explicitly include any other conditions, we should not expect to need to model them. The way the
boundary conditions are obtained in this case - is actually by solving the equations. There is no other way
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Figure 3.10: The error norm of the nonlinear solution where the initial guess is arbitrary.

to compute the values of this surface solely by working on the ordinary differential equations from which the
model ultimately stems. Hence, arguing that we need boundary conditions to stabilize the solution is like
arguing that we need to solve the equations, in order to solve the equations. It does not make perfect sense.
Also, because there are enough support conditions to uniquely recreate the solution in the linear case, and
the mesh has not changed, it should still be possible to recreate the solution without boundary information.
However, it may also be that the original model is incomplete - though this is not likely, looking at the
particulars of the linear solution.

Maybe it is time to actually take a look at the surface we are trying to calculate. Recall that the lin-
ear equations yielded a linear surface. Now, obviously, we are looking at a nonlinear surface. As before, we
may calculate single circles with different amplitudes of the input. Figures 3.11, 3.12, and 3.13 show three
different angles of this surface, for values of the amplitude a = 0.05, 0.25, 0.50, 0.75, 1.00. This gives an idea of
what the surface actually looks like in threedimensional space. Now, evidently, staring at these figures in the
report may not be the best solution - it is hard to convey threedimensionality using five circles ”‘shot”’ from
different angles and projected on flat paper. It is recommended that the Matlab .fig file that corresponds
to FIG is studied instead, see Appendix C detailing the content of the attached files. We are looking to
get some basic information about the shape of this surface. The shape is cubic - evidently governed by the
chosen nonlinearity. It is very unlikely that the linear elements can adapt to this situation.

Now, it might seem that it has been argued that linear elements are generally insufficient to solve nonlinear
problems. This is not the case. Certainly, for all PDEs whose solution has a well-behaved parabolic shape,
for instance, linear elements are perfectly admissible. The process of solving the nonlinear equations using
linear elements can be alikened to that of bending a jigsaw puzzle, each individual piece of jigsaw representing
one linear element. Initially, as with the linear system, we are okay because we are solving a flat surface. In
the nonlinear case, we may think that we are beginning to bend and twist this jigsaw. Initially, the jigsaw
will give in and adapt somewhat to this action, but if the bending or twisting becomes too severe, it will
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Figure 3.11: A simulated version of the nonlinear surface, seen slightly from above.

Figure 3.12: A simulated version of the nonlinear surface, seen from the side.
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Figure 3.13: A simulated version of the nonlinear surface, seen slightly from below and the side.

break, because the individual pieces of jigsaw are stiff and cannot be properly adjusted. Here is the main
realization about why convergence cannot be reached, for this nonlinear system, using linear elements:

The linear elements are much too stiff.

Simply put, the linear elements cannot properly adapt to the flow of the surface in order to achieve a solution
with good enough accuracy to ensure convergence.

To properly understand why some finite elements fail in certain situations, it is necessary to know something
about the mathematical relationship between the mesh geometry, interpolation errors, and stiffess matrix
conditioning. This is an active research field within finite element methods, and [18] [19] are excellent in-
troductory papers in this field. Any depth study into this is beyond the scope of this thesis, however some
general comments can be made that shed a slightly more mathematical light on the failure of the linear
elements for this nonlinear application.

The basic idea of the finite element method application herein is to, by interpolation on a triangular mesh,
construct a function that attempts to approximate some ”true” function, whose exact identity is not per-
fectly known. Herein, the sole purpose of the elements is to be a basis for the triangulation - and the primary
criterion of fitness in this regard is how much the interpolated function differs from the true function. There
are two types of this interpolation error that matter for most applications; the difference between the inter-
polated function and the true function, and the difference between the gradient of the interpolated function
and the gradient of the true function. Let us return to the situation in which we tried to heighten the mesh
density to see if it improved the convergence (which it did not). Initially, one might think that this points
to some basic mistake in either the equations or the implementation of the method - after all, if the true
function is smooth, one would expect to see significant error reduction in the interpolated function simply
by making the triangles smaller. Indeed this is true, however what such reduction there is can easily be
”nullified” by added errors in the gradient. Errors in the gradient can be surprisingly important.
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The curvature of the true function (the surface we are trying to approximate) certainly plays a role also.
Given some vector-valued function f(p), the curvature is defined by

κ = dTH(p)d (3.43)

Where H(p) is the Hessian matrix of f , and d is a unit direction vector. In short, the curvature of the
surface along a certain direction it is the second derivative along that direction. The approximative power
of the element depends largely on how well it can predict the curvature of the surface where the element is
placed. While we for this application do not know f , we do have information about its shape, as described in
an earlier paragraph. At certain points in the surface, the curvature will change signs. We will now present
a statement regarding the suitability of linear elements for such situations:

Statement 3.1. If any linear element overlaps a point in which the curvature of the surface changes
sign, the error in the interpolated function and its gradient can be large.

The above is intuitive - the predictive capability of any linear element is only good enough to affix a
flat surface, which has zero curvature and a constant directional derivative. In an iterative method, such
elements may induce significant error to the system by effectively ”changing” their appearance between it-
erations - oscillating between a positive and negative direction. Naturally, exactly how large the errors are
is problem dependent, and an analysis of the situation would require knowledge of both the true function
and the interpolating function. However, we may construct a small thought experiment to see what may be
happening in this case. Consider an element which has two nodes on one side of a curvature sign change,
and the last node on the other side. The linear element can obviously only replicate a linear displacement
field within the element. Therefore, it cannot accurately predict the actual response, and will tend to either
slope in the direction of the curvature before the curvature sign change, or in the direction of the curvature
after the curvature sign change. So at least one node in the element may be fairly inaccurately predicted.
Depending on how the nonlinear iteration is updating the solution, the element may also change direction
between iterations. Exactly how and when this may be occuring is dependent on many factors, and is fairly
futile to attempt to analyze for a large system. In addition, the element is coupled to other elements, so the
inaccuracies tend to ”spread” across the entire surface, even if they are severe only for a few elements or
nodal points. These effects are hard to analyze without the proper tools to do so. It is enough to conclude
that significant errors may be introduced in the finite element model due to the possibility of having such
behaviour.

We can now also attempt to shed some light on why the solution accuracy seems to decrease with in-
creased mesh density. Simply put, the more elements there are in the mesh for an unstable method, the
worse we can expect the errors to become. For example, the more elements experience curvature changes
”from within”, the more error overall will be added to the system.

We may also point out that the consistency requirement that is vital for convergence, as described in
Appendix A, does not hold for the linear simplex element model. Hence, the method does not converge.

One can conclude this discussion with the following statement, to which all signs now point.

Statement 3.2. For the nonlinear systems considered in this thesis, and using only linear elements, the
combined effect of interpolation errors, discretization errors, and inaccurate gradient information will pre-
vent convergence of the finite element method as applied to these systems.

There is one aspect which might have struck the reader as strange by now. Why are we not attempt-
ing to properly quantify the effect of these error sources on the system? Again, the problem is too complex
for it to be any use at all. Even if we could, for example, compute some values which tell us how the gradient
information changes with varying conditions, there would be nothing to compare these numbers to. Here is
another statement.

Statement 3.3. In the finite element method, the only information available to recreate the solution comes

33



from the choice of elements and the integration of the element shape (interpolating) functions.

Again - fairly obvious. However it also means that a test in which we, for example, were to manually
assign the correct values of the solution and insert these into the equations to test whether the equations
are actually correct, can be flawed, since the interpolation information is not accurate enough to be able
to predict the exact behaviour of the unknowns. Hence, even these tests may produce answers that can be
confusing.

So, the linear elements will have to be scrapped. Unfortunately, this took a long time to properly real-
ize. Is there now a way forward with the finite element method for this application? Possibly - we may
simply consider nonlinear elements instead. A nonlinear element can curve in the cartesian space - which
obviously adds much accuracy to the solution and may be enough to ensure convergence of the method. We
will briefly discuss such possible ways forward in a later chapter.

Two-Equation Linear System

While we have now discussed the particulars of the nonlinear system for some time, we must also be able
to solve a coupled system of partial differential equations. Again, we will start with something simple. One
of the easiest two-equation systems is a linear mass-spring-damper system of the form mẍ + dẋ + kx = u
where x is the position, m is the mass, d is the damping, k is the spring constant and u a driving force. This
system may trivially be represented in state space as

ẋ1 = x2

ẋ2 = − b

m
x1 −

k

m
x2 +

1
m
u

(3.44)

Assume for added simplicity that m = b = k = 1. Again let u = w1 be the driving force as generated by
the exosystem. Then, we have a function Π(w1, w2) as before, that is the solution to the above system with
respect to harmonic inputs. The insertion of this function into the ODE model yields the following set of
partial differential equations to be solved.

∂Π1

∂w1
w2 −

∂Π1

∂w2
w1 −Π2 = 0

∂Π2

∂w1
w2 −

∂Π2

∂w2
w1 + Π1 + Π2 − w1 = 0

(3.45)

The main idea behind solving this coupled system with the finite element method is to construct an extended
system matrix consisting of p × p submatrices where p is the number of unknowns in the equation system.
Submatrix number (i, j) with i, j ∈ [1 p] must then reconstruct the contribution in equation number i from
unknown number j. With these ideas it is quite simple to see that one gets the following system matrix and
vector for the system (3.45).

K =
[
[k11] [k12]
[k21] [k22]

]
, F =

[
f1

f2

]
, (3.46)
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where

k11
ij =

∫
Ω

[
Ni
∂Nj
∂w1

w2 −Ni
∂Nj
∂w2

w1

]
dΩ,

k12
ij =

∫
Ω

[
−NiNj

]
dΩ,

k21
ij =

∫
Ω

[
NiNj

]
dΩ,

k22
ij =

∫
Ω

[
Ni
∂Nj
∂w1

w2 −Ni
∂Nj
∂w2

w1 +NiNj

]
dΩ,

f1
i = 0,

f2
i =

∫
Ω

[
Niw1] dΩ.

(3.47)

Again, assembly of this total system follows the steps already outlined. Also, note that this system is cycli-
cally coupled - it is not possible to reduce the complexity of the system by removing any of the unknowns.
Hence, it has to be solved ”as is” - solving all the unknowns simultaneously in one solution. Fortunately,
the finite element method is easily extendable to this situation. It is enough to formulate the finite element
model as usual, and extend the global system matrix and vector in such a way that both unknowns can be
tackled in the same structure.

One more important point should be noted, about the expressions shown in (3.47). Since we are using
the same shape functions in all expressions, the four stiffness matrices are actually constructed from only
two unique expressions;

I1 =
∫

Ω

[
Ni
∂Nj
∂w1

w2 −Ni
∂Nj
∂w2

w1

]
dΩ,

I2 =
∫

Ω

[
NiNj

]
dΩ.

(3.48)

And we may see that we can construct the entire global matrix for the finite element solution of (3.45) by
precalculating these expressions (which, obviously, also are the same expression that turn up in the previous
one-equation problems), then combining them to form the required system. This is computationally effective,
since the required matrices in (3.48) are constant for any fixed mesh, and may be very effectively precomputed
and stored. Let us now combine these expressions and solve the two-equation coupled system. This done, the
solution for Π1 and Π2 are depicted in Figures 3.14 and 3.15 respectively, with as before the simulated single-
circle response embedded in the surface to prove that it is indeed the correct solution to these unknowns.
As expected, the response is entirely linear.

3.3 Application to Case Study

It is time to apply the theory of the previous section to the case study. Consider the system as stated
in (.). This particular set has six partial differential equations in the six unknowns Π1, · · · ,Π6. As per
the techniques of the finite element method, an approximation of the following form is assumed for the six
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Figure 3.14: The computed linear solution for Π1 with a coupled system.

Figure 3.15: The coupled linear solution for Π2 with a coupled system.
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unknowns in the problem.

Π1(w1, w2) =
3∑
i=1

Ne
i u

e
i , Π2(w1, w2) =

3∑
i=1

Ne
i v

e
i ,

Π3(w1, w2) =
3∑
i=1

Ne
i w

e
i , Π4(w1, w2) =

3∑
i=1

Ne
i q
e
i ,

Π5(w1, w2) =
3∑
i=1

Ne
i r
e
i , Π6(w1, w2) =

3∑
i=1

Ne
i s
e
i .

(3.49)

Here the Ne
i are the approximating shape functions, uei are the unknown nodal values in the mesh corre-

sponding to Π1, vei correspond to the unknown nodal values of Π2, and so on through sei going with Π6.
As we have seen with the two-equation system, the total global system matrix for this case will have one
”submatrix” for each nonzero entry of the corresponding system of ODEs. Hence, the global system matrix
will have the general form shown below.

[K11] [K12] [0] [0] [K15] [0]
[K21] [K22] [0] [0] [0] [0]

[0] [K32] [K33] [0] [0] [0]
[K41] [K42] [K43] [K44] [0] [0]

[0] [0] [0] [0] [K55] [K56]
[0] [0] [0] [K64] [K65] [K66]




u
v
w
q
r
s

 =


F 1

0
0
0
0
0

 . (3.50)

The weighted residual equations as per the Galerkin finite element method are also straightforwardly found.
Choose a weight function w, then weigh and integrate;∫

Ω

w

[
∂Π1

∂v1
ωv2 −

∂Π1

∂v2
ωv1 + 2βωlpΠ1 + ω2

lpΠ2 + kpω
2
lpΠ5 − ω2

lpΠ
3
5 − ω2

lpv1

]
dΩ = 0∫

Ω

w

[
∂Π2

∂v1
ωv2 −

∂Π2

∂v2
ωv1 −Π1

]
dΩ = 0∫

Ω

w

[
∂Π3

∂v1
ωv2 −

∂Π3

∂v2
ωv1 −Π2

]
dΩ = 0∫

Ω

w

[
∂Π4

∂v1
ωv2 −

∂Π4

∂v2
ωv1 −

ωa
ωd

Π1 − ωa(1 +
ωi
ωd

)Π2 −
ωa
ωi

Π3 + ωaΠ4

]
dΩ = 0∫

Ω

w

[
∂Π5

∂v1
ωv2 −

∂Π5

∂v2
ωv1 −Π6

]
dΩ = 0∫

Ω

w

[
∂Π6

∂v1
ωv2 −

∂Π6

∂v2
ωv1 −

1
m

Π4 +
k

m
Π5 +

b

m
Π6

]
dΩ = 0

(3.51)
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As before, we have the linear triangular mesh with linear triangular shape functions. Then, we may easily
insert the interpolation into the equations above to obtain the finite element model of the case study system.∫

Ω

Ni

[
∂Nj
∂v1

ωv2 −
∂Nj
∂v2

ωv1 + 2βωlpNj + ω2
lpNj + kpω

2
lpNj − ω2

lp(
3∑
k=1

Nkuk)3 − ω2
lpv1

]
dΩ = 0∫

Ω

Ni

[
∂Nj
∂v1

ωv2 −
∂Nj
∂v2

ωv1 −Nj
]

dΩ = 0∫
Ω

Ni

[
∂Nj
∂v1

ωv2 −
∂Nj
∂v2

ωv1 −Nj
]

dΩ = 0∫
Ω

Ni

[
∂Nj
∂v1

ωv2 −
∂Nj
∂v2

ωv1 −
ωa
ωd
Nj − ωa(1 +

ωi
ωd

)Nj −
ωa
ωi
Nj + ωaNj

]
dΩ = 0∫

Ω

Ni

[
∂Nj
∂v1

ωv2 −
∂Nj
∂v2

ωv1 −Nj
]

dΩ = 0∫
Ω

Ni

[
∂Nj
∂v1

ωv2 −
∂Nj
∂v2

ωv1 −
1
m
Nj +

k

m
Nj +

b

m
Nj

]
dΩ = 0

(3.52)

We skip the attempt at solving a linear version of these equations since neglecting the nonlinearity in this
case, and with the constants at their defined values, generates a system which is very badly conditioned. In
fact, trying to find a solution to the governing ODEs in this case is futile - no solution can be found. Here
we hit another numerical obstacle in the solution of this system - the system matrices as generated with the
finite element method for this case will inherit any conditioning problems, which may destabilize the method
when an inversion of the system matrix is performed. At any rate, we have already outlined how to solve a
coupled system, as long as it does not induce any additional numerical problems in the system matrices. It
must be stressed that the matrices that are presented are correct - however in this particular case, there is
no solution to the governing ODE system if the system is simply linearized by neglecting or linearizing the
nonlinearity. Hence, the finite element model is not supposed to find a solution either.

Nonlinear analysis on the system is also skipped - the system will inherit the problems of the one-equation
nonlinear system, as well as possible other obstacles with the inversion of system matrices destabilizing the
method due to the numerical values, which adds yet another error source to the equation.
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Chapter 4

Ways Forward

In the previous chapter, we have shown that a linear simplex element is not applicable in order to recreate the
solution to the problems considered in this thesis. Is there now a way forward? Well, me may as suggested
attempt to use other elements, or we may use a different method alltogether. First, we will cover two theories
as to how work may progess with the finite element method.

4.1 Nonlinear Elements in the Finite Element Method

Since we are solving a nonlinear problem, it may be wise to consider nonlinear elements as well. By nonlin-
ear finite element we mean that the shape functions will, in general, be nonlinear polynomials of the local
coordinates. While the linear triangle can only exactly recreate linear surfaces for example, the quadratic
triangle can exactly recreate a parabolic surface. Such a triangle has six nodes instead of three, and can
curve in the cartesian space. Naturally, the accuracy of the solution would improve significantly using such
elements, and it may even be enough to obtain a convergent method. Since the surface we are trying to
establish has a cubic shape, the gradient will be parabolic. Hence, the quadratic element should be able
to interpolate the gradient exactly, while still leaving some errors in the interpolation of the actual surface.
This may be enough to ensure convergence - the only way to know for sure is to actually try it.

Unfortunately, no freely available meshing tool that can generate such a mesh, that is useful for the purposes
of this project has been found. Hence, one can only stipulate the theory that it might work, and attempt to
show the way forward.

In fact, if one could get the mesh information in a form that could easily be implemented in Matlab, it
would not be hard to modify the finite element model to account for this new mesh. We simply need
the shape functions of the quadratic triangle, and we may do all the necessary derivations from there. A
quadratic triangle is shown in 4.1, and the shape functions for this triangle are, denoting ζ = 1− ξ − η:

NT =


ζ(2ζ − 1)
ξ(2ξ − 1)
η(2η − 1)

4ζξ
4ξη
4ζη

 . (4.1)

We may now obtain the Jacobian as before, and through the shape functions and the Jacobian terms
obtain the cartesian derivatives as before. Then, we would have a finite element interpolation Π =

∑6
i=1Niui

over the quadratic element. All the previously discussed factors of numerical integration and assembly of
the equations are unchanged, except for the Jacobian matrix also becoming a function of position. This is
easy to deal with however as we will always know the position values at any given point, so they may just
be inserted directly.
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Figure 4.1: A general quadratic triangular element.

If the quadratic element is not sufficient, then one may try a cubic element also, like the 10-node cubic
element shown in 4.2. The shape functions for this element are, respectively; N1 = 1

2ζ(3ζ − 1)(3ζ − 2),
N1 = 1

2ξ(3ξ − 1)(3ξ − 2), N3 = 1
2η(3η− 1)(3η− 2), N4 = 9

2ζξ(3ζ − 1), N5 = 9
2ζξ(3ξ − 1), N6 = 9

2ξη(3ξ − 1),
N7 = 9

2ξη(3η−1), N8 = 9
2ζη(3η−1), N9 = 9

2ζη(3ζ−1), N10 = 28ζξη. Again, the same procedures as before
may be used to obtain a finite element model using this interpolation. This cubic interpolation should be
able to exactly interpolate both the actual response and the gradient, something that may just be required
for convergence of this method. However, as it can be seen, this will yield a quite complex analysis process.

Figure 4.2: A general cubic triangular element.

Some tools would be required to make the process of testing these assumptions even remotely feasible.

4.2 Direct computation of the frequency response functions

We have seen that the response of a nonlinear system to general harmonic disturbance may be represented as
a certain system of partial differential equations. However, it is also certainly possible to use a ”brute-force”
method, in which the ODE system is simulated subject to harmonic inputs u = a sinωt for ranges of a
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and ω. Hence, we may compute these solutions for the desired ranges of the amplitude and frequency, and
simply construct the frequency response functions directly from this information. This is very ineffective
computationally, and was abandoned as soon as better solutions surfaced. Hence, it should not be considered.

4.3 Fast computation of the frequency response functions

While the title of this section is slightly dubious, it actually mimics the title of the paper [4]. In this paper, an
iterative numerical method for computing periodic responses to periodic excitations for Lur’e-type nonlinear
systems is derived. Addtionally, the procedure has guaranteed convergence for arbitrary initial values. In
this procedure, periodic responses are represented in terms of the Fourier coefficients. We will not restate
these equations here as they can be found in the referred paper, but the main points will be briefly outlined.

In fact, the convergence of this procedure can be proved to be exponential (which is not the case for a
finite element solution). The procedure is based on doing the nonlinear update in the time domain, where
this is effective, and transferring back and forth between the frequency domain (where the rest of the update
is perfomed) and the time domain using the fast fourier transform. Hence, it is a very effective procedure.
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Chapter 5

Conclusions

In this thesis, we have attempted to solve a coupled nonlinear set of partial differential equations using
certain numerical techniques. The main focus has been on the finite element method application, which has
been shown to be unfunctional, in the nonlinear cases, for simplex meshes.

At some point in the work, it had probably been favorable to the overall result if the finite element method
had been abandoned, and other methods pursued instead, especially the method so briefly described in Sec-
tion 4.3. This would have allowed for the solution of the system to be found, and thus progress could have
been made towards performance analysis and controller tuning of the case study. Evidently, this path was not
chosen. It may be advantegous to give an explanation as to why - clearly it would have been the better choice?

In short, the author (unfortunately) chose to keep going with the finite element application, trying to gain
more insight into the workings of the method, believing that a solution could be found with this method.
If so, it would have been a good contribution to the original problem. At a certain point in the work, the
author was reasonably certain of the findings of this report, and the choice was now between abandoning the
finite element method as a solution candidate, and instead carrying on with one of the applicable methods
described earlier. However, there was also only a limited time left before the thesis deadline. This was like
being stuck between a rock and a hard place - should one concentrate on developing the already established
findings, possibly making a breakthrough, or should these be abandoned, and a solution attempted to be
found with a different method in a much more limited timeframe? The choice was the former - based on
a wrongfully held viewpoint that a breakthrough could be accomplished - and it may very well have been
a poor choice. In addition, the ”alternative” method is in itself not particularly straightforward and would
in all probability require a good amount of time to properly adapt to the situation, and for the author to
absorb the theory needed to apply said method, time that may no longer be available.

The abscence of proper tools that can be applied to the situation has been glaring. There is a signifi-
cant part of the project work, at least in terms of man-hours, that is not done proper justice previously in
the thesis - that of looking for software tools that may aid in the process, and trying out many different
such tools. However, it has been found that all of the publicly available tools for this problem have some
limitations that would render them practically useless for the application. The following lists what such
tools should be able to accomplish, should they be considered applicable, and it must be stressed that the
below is viewed as requirements of software tools for this problem.

• It must be possible to construct circular meshes of cubic triangles.

• The tools must allow for a coupled nonlinear problem to be user-defined over this mesh.

• There must be some solver capability that is able to solve the problem (nonlinear solver).

• The output data must be easily accessible for postprocessing work, including analysis of the data, and
more importantly, use of the solution data to generate the needed functions for performance analysis.
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• As an addition to the above point, since the software intended for use for the performance analysis is
Matlab, there should be an easy way to import the data into Matlab, perhaps through an interface, or
saving the data to disk in an easily readable format.

When we look at all of the above, we can begin to see that the availability of free software tools that can
meet all of these demands is probably quite low. In fact, the author has found it to be relatively nonexistent.
Many different tools have been tried - some may allow you to define a mesh, but not define or solve the
problem, some may have capability to solve the problem, but not to define the mesh. Most have no interface
towards Matlab, the few free tools who do, naturally, cannot solve the problem. It may now be thought that
it could be possible to combine the capabilities of different tools, instead of looking for the one perfect tool
that will do the job, however this has been shown to be infeasible as well, mainly because there is no proper
interfacing between these tools. In short, trying to combine several tools to obtain a solution ends up being
a worse ”hack” than just attempting to do it yourself.

However, there does exist software tools that would probably be sufficient to aid in the solution of this
problem with the finite element method. While they may be no sufficiently capable free software tools, there
are several commerically available finite element packages that boast all of the requirements in the above list.
The drawback - they cost a significant amount of money, and naturally a lot more than it is realistic to spend
on software for a masters project, especially when reaching an acceptable solution with the software cannot
be viewed as guaranteed. The ”cheapest” software solution that might be able to deal with the problem is
currently priced at $895 for a limited academic license.

Much time has also been seemingly ”lost” trying to quantify the effects of various potential error sources
on the system, when in fact these error cannot be properly quantified. In short, it may very well not be
possible at all to come up with an error bound which dictates the point in which the finite element solution
becomes unstable for this particular system, and in fact, such error bounds are rare in the literature. There
exists a small amount of somewhat available information in the form of certain research papers and other
documents, such as [17] [18], which can be found in the references. To give a specific example, consider
the effect of inaccurate gradient information on the system. To properly quantify these effects, it would be
necessary to obtain the exact (or at least converged) values of the gradient at every nodal point. Without
this information, the issue cannot be further studied.

Some clarifications must also be made with regards to the outcome of the earlier work on this problem
by the author, which was described in a previously delivered project report. While many of the findings
of that report were correct, there were also a few either incorrect or misguided ones, including a couple of
pretty severe errors, as it turns out. For example, the previous project focuses on the effect of boundary
conditions on the problem in a way that is incorrect. Hence, the following few paragraphs will in some ways
be an excercise in ”debunking” some of the authors previous work, but it needs to be done in order to be
perfectly clear about some of the properties of this problem. For example, on the last paragraph of page 43
of the previous report, the following can be read: [quote]...a quick convergence test for the implementation
may be to simply stipulate some arbitrary boundary conditions and check if the solution still converges
smoothly...[unquote].

This statement is not just wrong, it is complete nonsense. The issues of boundary conditions and why
they should not have to be considered for this problem has already been lit. In addition, trying to add
arbitrary boundary conditions to the problem should destabilize the method alltogether, be it the nonlinear
or linear version. While the following is evident by now, it also needs to be stated; the previously presented
solution to the nonlinear problem is incorrect.

In fact, the linear solution presented in the previous work is also dubious. It was generated using the
boundary conditions - again a completely false assumption. It was probably incorrect. In this thesis, it is
conclusively shown how to, in general, deal with the linear systems. Naturally - for linear systems we do
not need this amount of complexity to analyze its performance, so this is fairly useless overall. Additionally,
there are further problems with the case study problem.
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At this stage the author cannot honestly recommend further study into the solution of this probem us-
ing the finite element method, as the process of doing would probably be too involved, especially given that
there are at least one perfectly workable solution method that is both easier, more practical, and in all prob-
ability more efficient than a finite element solution. If the author is correct, and a 10-node triangular element
is required to interpolate the solution to a degree where convergence can be reached, it would severely affect
the overall computational time of the method.

Unfortunately, the project has proven, in some ways ”too hard” to be entirely tractable for the author.
The application of the finite element method quickly diverges into advanced finite element studies, which
are in no way included in the previous coursework of the studies. Significant and important time is lost
just ”searching” for that one piece of good information - simply because it is not known where to find it.
The amount of finite element books in the references do not do the actual time and effort spent pouring
over books, lecture notes, publications, and various other online resources justice either. It has proven fairly
fruitless - most textbooks consider only problems which are in all honesty more tractable than the problem
considered here, and the amount of ideas and insight that can be gained from simply ”studying more” is
very limited.

When studying finite element methods, there are two basic approaches - to learn to apply the methods
to general engineering problems, and to pursue research into the methods themselves. The author has opted
to go with the first approach - believing that as an engineering problem, this is achievable, and by studying
the application of the finite element method to other engineering problems enough insight and information
will be gained that the solution may also be found for this problem. It is fairly obvious that this was a
wrongful assumption as well. In this case, the problem has more than one ”peculiarity” which is not shared
by any other system, or discussed by any textbook, the author has seen.

The problem may also not be convex, an impression that is conveyed partly by the involved expressions and
partly by the shape of the surface. Certainly, many cubic problems are in general not convex, and again in
general, convex problems are hard to solve using common iterative methods. For example, Newton-based
methods and line search based methods tend to fail for nonconvex problems, which also adds to the headache
considering the issue of stabilizing the considered systems. While this paragraph should be taken with a
pinch of salt, as the author is unaware how to conclusively show whether the problem is nonconvex or not,
it would probably add significantly to the complexity involved in solving the system should it be nonconvex.

It is, given all of these considerations, fair to say that the solution of the problems considered in this
thesis with the finite element method is simply this:

A dead end.

Due to all the listed problems, it is the authors belief that the problem is not scalable on the level of engi-
neering problems wherein the finite element method may relatively easily be applied. Further study in this
direction would require an effort which is prohibitive, considering the availability of other methods which are
in all honesty better than a finite element solution will be, as well as the complete abscence of proper tools
that would greatly aid such investigations. For example, as we have briefly touched, the solution method
proposed in [4] is exponentially convergent, does not require any tools or extras per se. A finite element
based method will at most attain quadratic convergence rates in general - sometimes far less.

While this thesis does not in any way deliver in terms of computation of frequency reponse functions, it
is believed that the findings in the thesis still deserve some merit. It must be stressed that it is very hard
to quantify the effects of some of the individual error sources and pecularities that are encountered with
these systems, when the readily available literature does not at all deal with these problems. At the same
time, while it is unfortunate that a different method was not attempted, when such a method was avail-
able, it was in the end a choice of how to proceed, and given the authors uncertainty about the findings for
some time, as well as other aspects that were briefly discussed, was not perceived as an alltogether easy choice.

Additionally, the thesis debunks some of the earlier work in the same direction, arguing several incorrect
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aspects of this work, albeit it was performed by the same author. Still, more clarity into the workings of
the finite element method as applied to these systems has been achieved - unfortunately these new findings
have had a tendency to lead to more questions that are even harder to answer.

It should also be noted that finite element methods does not play a mentionable role in any course the
author has attended, it is entirely self-taught. While sometimes self-taught is well-taught, the author has
found the problem at hand too convoluted, and useful information too hard to come across, to make more
progress than what the thesis currently outlines.

Now, it would have been custom to outline some possible future work in these directions. No such work will
be outlined. It is not good use of time overall, since it should be clear that the finite element method is not
particularly applicable. Any future work should use the already functional method [4] on this problem.
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Appendix A

Convergence in Finite Element
Methods

This appendix covers the topic of convergence as it applies to finite element methods to some extent. Because
of the number of topics involved, which are here mostly briefly discussed, this was omitted in large from the
main part of the thesis.

Let us assume that the problem we wish to solve has a nice and smooth solution. What are then the
conditions for a finite element model to converge to this solution in the limit of the mesh size approaching
zero? For the models considered in this text, there are two sufficient conditions for convergence to occur;
consistency and stability.

A.1 Consistency

Consistency is a front for two individual requirements, completeness and compatibility. The present discussion
will be centered around static problems, but may be extended to time-dependent problems (more or less)
straightforwardly.

A.1.1 Completeness

Simply put, the elements must have enough approximative power to capture the analytical solution in the
limit of the mesh refinement. This is mainly an intuitive statement; exactly whether a particular element
fulfills this requirement will in general depend on the problem being solved.

A.1.2 Compatibility

To state this requirement succinctly, we introduce the concept of a patch. A patch is the set of all elements
attached to a given node. Further, we may define a finite element patch trial function by the union of all
shape functions ”activated” by setting a certain degree of freedom in the patch to unity, while the other
degrees of freedom are zero. Such a function ”propagates” only over the patch, and is zero beyond it. This
property follows from the local-support requirement; a shape function for node i should vanish on all sides
or faces that do not include i. We may now continue in this way, obtaining a patch trial function over the
entire finite element mesh. If this function is conforming, then compatilbility holds. By conforming we mean
that the patch trial functions must be continuous between elements, and at least piecewise differentiable
within the elements.

In practice, it is enough that the mesh is matching. That is, there are no elements in the mesh that
share edges with elements whose node number for that particular edge is different. For example, trying to
combine linear and quadratic triangles anywhere in the mesh would not lead to a matching mesh, and hence
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compatibility would not be satisfied.

Naturally, this also means that as long as we use the same element for all elements in the mesh, com-
patibility is always satisfied.

A.2 Stability

Stability may be informally characterized as ensuring that the finite element model enjoys the same solution
uniqueness properties as the analytical solution of the mathematical model.

Additionally, since the finite element method can handle arbitrary assemblies of elements, including indi-
vidual elements, this property is required to hold at the element level.

In the present outline we will be considering stability at the element level. Stability is not a property
of shape functions per se, but of the implementation of the element as well as its geometrical definition. It
involves two subordinate requirements; rank sufficiency, and Jacobian positiveness. Rank sufficiency is the
most important aspect. Jacobian positiveness corresponds to an element which is not distorted in a way
such that it overlaps itself, and for the problems considered in this report such a scenario will never occur.

Rank sufficiency will in these problems be guaranteed on the circulat triangulated mesh because there
are enough support conditions, if in addition the numerical integration rule is sufficient for exact integration.
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Appendix B

Solution Methods for Nonlinear
Algebraic Equations

This Appendix describes the details concerning solution methods for nonlinear algebraic equations, as ap-
plies to the finite element method in the nonlinear case. The focus is on iterative techniques as was briefly
discussed in Section 3.1.5.

The most frequently used iteration schemes for the solution of nonlinear finite element equations are the
Newton-Raphson iteration. Here this method will be derived in a more formal manner. Various solution
methods are discussed extensively in readily available literature, and some excellent references are [12] and
[7].

B.1 The Newton-Raphson Method

The finite element equilibrium requirements amount to finding a solution of the equations

f(U∗) = 0, (B.1)

where
f(U∗) = R(U∗)− F (U∗) (B.2)

The solution is then denoted as U∗. Assume that the iterative solution has established U i−1, then a Taylor
series expansion gives:

f(U∗) = f(U i−1) +
∂f

∂U

i−1

· (U∗ −U i−1) + h.o.t. (B.3)

Where h.o.t means higher order terms. These can be assumed to be very small and are neglected. Now
substitue (B.1) and (B.2) into the above, which leads to

∂F

∂U

i−1

· (U∗ −U i−1) = R− F i−1. (B.4)

In the above it is assumed that the externally applied loads R are independent of the solution. We can now
calculate an increment in the displacements U :

Ki−1∆U i = R− F i−1 (B.5)

Where Ki−1 is the current tangent stiffness matrix. The improved displacement solution is

U i = U i−1 + ∆U i (B.6)
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The iteration as above is continued until appropriate convergence criteria are satisfied.

A characteristic of this iteration is that a new tangent stiffness matrix is used in each iteration, which
is why this method is also referred to as the full Newton-Raphson method. Figure FIG illustrates the pro-
cess of solution for a single degree of freedom system. The nonlinear response characteristics are such that
convergence is rapidly obtained. However, it is easy to image a more complex characteristic with a starting
point of iteration which does not converge. The situation in Figure FIG describes the general idea, but
is only a well-behaved single degree-of-freedom system. In the solution of systems with many degrees of
freedom, the response curves will in general be rather nonsmooth and complicated.

Considering the Newton-Raphson iteration it is recognized that in general the major computational cost
per iteration lies in the calculation and factorization of the tangent stiffness matrix. Since these calculations
can be quite expensive when large-order systems are considered, the use of a modification of the full algo-
rithm may be effective. One such modification is to only use the inital stiffness matrix K0 in the iterations,
and hence operate on the system

K0∆U i = R− F i−1 (B.7)

again with initial guess U0. In this case only one version of the tangent stiffness matrix needs to be calcu-
lated, that of the initial guess. This ”initial stress” method corresponds to a linearization of the response
about the initial configuration and may converge slowly or even diverge. In general, it has worse convergence
properties than the full Newton-Raphson iteration, however it may be a more computationally effective
method for the cases on which it works.

Additionally, it is possible to hit an in-between of the two above variants by calculating a new tangent
stiffness matrix only at certain iteration intervals or based on some measure of the progress of the algorithm.

B.2 Convergence Criteria

Realistic criteria should be used for termination in any iteration method. At the end of each iteration, the
solution must be checked to see whether it has converged within preset tolerances or whether the iteration
is diverging. If the tolerances are too loose, inaccurate results are obtained, and if they are too strict, the
method may never terminate with an accepted solution. The objective in this section is to briefly discuss
some convergence criteria.

Since we are seeking the displacements corresponding to iteration i, it is realistic to require that the displace-
ments at the end of each iteration be within a certain tolerance of the true solution. Hence, one convergence
criterion could be

||∆U i||
||U ||

≤ ε1, (B.8)

where ε1 is some convergence tolerance. The vector U is not known and must be approximated in some
way. Frequently, it is enough to use the solution for the previous attempted iterate for this purpose, however
there are cases in which a convergence test such as the above may terminate and still be far away from the
actual solution, for example if the calculated displacements only change a little from iteration to iteration,
but continue to change for many iterations.

A second convergence criterion may be to measure the out-of-balance load vector. For example, we may
require that the norm of this vector be within a certain tolerance of the initial load increment:

||R− F i|| ≤ ε2||R− F 0||. (B.9)

A problem with the above is that the displacement solution does not at all enter into the termination crite-
rion. In some cases it is possible that the out-of-balance loads are small yet the solution is much in error.
The following may be noted about the two above criteria in general:
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The convergence criteria in (B.8) and (B.9) should only be used with very small values of ε1 and ε2.

A third criterion may include some indication of both when the forces and the displacements are in equilib-
rium. A criterion which measures this is based on the increment of internal energy between the iterations,
and reads:

∆(U i)T
(
R− F i−1

)
≤ ε3

(
∆(U0)T

(
R− F 0

))
(B.10)

In practice the above is often an attractive measure.
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Appendix C

Use of the Accompanying Files

The files that accompany the thesis may be used to generate some of the figures.

To start, locate and executerun.m in the Master directory. This should attempt to solve the nonlinear
single equation using fsolve for a nine element mesh.

After (and only after) this step, type Lin2DSol to bring up the plots for the linear solutions.

Execute FSolNL to run an iteration attempt using the Newton-Raphson method on the simple mesh.

The figures that are used in the report may be found in the Figures subdirectory. They mostly have
understandable namings. In particulars, the plot of the surface that was mentioned in the report, is filed
under the name SolutionPISimul.fig.
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Appendix D

The Mesh Generator

The mesh generator that is used in this thesis for generation and manipulation of the meshes is called
DistMesh, and is Copyright Per-Olof Persson and Gilbert Strang with the Massachussetts Institute of Tech-
nology. The generator is freely available software written in Matlab, and is distributed under the terms of
the GNU General Public License published by the Free Software Foundation; license version 2 or later.

The generator can handle virtually any shape in two or three dimensions, but is only able to triangu-
late the regions using simplex triangular elements.

More information about the mesh generator can be found in [11], as well as at its homepage;

www-math.mit.edu/ persson/mesh/.
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