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Problem Description
Improved pressure control during drilling may lead to: the posibility to drill wells that previously
has been considered to be undrillable, reduced pressure related drilling problems and resulting
rig non-productive time, reduced formation damage which may lead to reduced production, and
increased safety for drilling crew and evironement by reducing the posibility for a kick or a blow-
out. The objective of this thesis is to design a controller which improves the pressure control
during drilling. During drilling operations the bottomhole pressure variations should be kept less
than 2.5 bars.
Topics that should be addressed are:
1) Literature review of:

- Managed pressure drilling
- Nonlinear Model Predictive Control

2) Implement an observer for the bottomhole pressure

3) Implement nonlinear model predictive pressure control by using StatoilHydro's MPC tool,
SEPTIC.

4) Analyze the performance of the controller

Assignment given: 07. January 2008
Supervisor: Ole Morten Aamo, ITK





Summary

Drilling into mature, depleted �elds is often di�cult because of tight pressure
margins. Increasing the pressure control will enable wells that previously
were considered undrillable, to be drilled. Enabling drilling and increased oil
recovery from depleted �elds would most likely lead to a substantial increase
in pro�t margains. A better pressure control will also increase the safety of
the drilling crew, because the risk of unwanted situations such as a kick or
a blow-out is decreased, also reducing the risk of unwanted environmental
in�uence, e.g. oil spill.

To compensate for the lack of a continuous measurement of the bottom-
hole pressure during drilling operations, an adpative observer of the bot-
tomhole pressure is implemented. The observer implemented is tested, and
shows promising results in estimating both the bottomhole pressure and the
friction coe�cient in the well during a pipe connection procedure.

To control the pressure in the well, a low-order nonlinear model predicitve
controller is developed, and it has been tested to perform well during the pipe
connection procedure, where it maintains the pressure within the prede�ned
boundaries. In this thesis both the obsever and the controller will be tested
against an arti�cial well; simulated by a commercial software.
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Chapter 1

Motivation

1.1 Pore, Fracture and Collapse Pressure

All formations are porous to some degree, and these pores contain either
water, gas or oil, or any combination of these �uids. The pressure exerted by
the �uids within these pores are often refered to as pore pressure, or in case
of a gas or oil reservoir, reservoir pressure. The formation pressures must
be less then the total overburden pressure (The overburden pressure is the
pressure exercised by the weight of �uids and formation materials which lie
above any particular depth point). If not, the �uid would �ow through the
overlying formations, and escape until the pressure di�erence equalizes. A
normal formation pressure is de�ned to be equal to the hydrostatic pressure
exerted by all the �uids in formations above. In some cases, e.g. an artesian
well, the formation pressure may be abnormally high. A basic introduction
to formation pressure can be found in [Skalle, 2005]. The pore pressure will
be denoted pres from now on.

The fracture pressure is the pressure which will cause the rock formation
to fracture hydraulically. The fracture pressure will be denoted pfrac from
now on.

Collapse pressure is the pressure at which the well will catastrophically
deform as a result of di�erential pressure acting from the surrounding forma-
tions to the well. The collapse pressure of a perfect round tubing is relatively
high, but even slightly ovality will signi�cantly reduce the di�erential pres-
sure at which the well collapses. The collapse pressure will be denoted pcoll
from now on.

The relationship between the three pressures mentioned above is

pcoll(t, x) < pres(t, x) < pfrac(t, x) (1.1)

where t is the time, and x is the vertical position in the well.

1



2 CHAPTER 1. MOTIVATION

1.2 Pressure Control

During drilling operations the pressures mentioned above must be taken into
consideration. The success of the hole drilling operation will be dependent
up on managing the pressure in the well. If the fracture and collapse pressure
is �rst taken into consideration, it is important that the pressure in the well
is kept within these pressures (illustrated in �gure 1.1).

pcoll(t, x) < pwell(t, x) < pfrac(t, x) (1.2)

If the pressure in the well is not kept within these boundaries, there will be
unwanted consequences. The case of exceeding the fracture pressure is �rst
considered.

pcoll(t, x) < pfrac(t, x) < pwell(t, x) (1.3)

Exceeding the fracture pressure will fracture the rock formation, and there is
a high risk of an underground blowout. [Grace, 1994] de�nes an underground
blowout as the �ow of formation �uids from one zone to another. The under-
ground blowout can usually be detected by a lack of pressure response on the
annulus while pumping on the drillpipe. It can be very di�cult to handle,
and can result in a dangerous and destructive situation. If the underground
blowout is within 3000- 4000 feet from the surface, it is possible for the �ow
to fracture to the surface outside the casing. If the drilling is performed o�-
shore, it is most likely that the crater will occur immediatly below the rig.
If the crater is below the rig or platform, the entire installation can be lost,
with severe consequences.

The opposite situation; a pressure drop in the well beneath the collapse
pressure:

pwell(t, x) < pcoll(t, x) < pfrac(t, x) (1.4)

If the pressure in the well is lower then the collapse pressure, it can lead to
an unstable hole, where the walls falls onto the drillpipe. This can lead to a
stuck pipe, or a twist-o�, which is breaking the drillpipe. If the drillpipe is
twisted o�, the well probably has to be drilled again.

The reservoir pressure must of course also be taken into consideration, and
will signi�cantly impact the drilling operations. Ordinary drilling operations
are usually performed with a higher hydrostatic pressure than formation
pressure, also known as overbalanced conditions.

pcoll(t, x) < pres(t, x) < pwell(t, x) < pfrac(t, x) (1.5)

The result of this di�erence is an in�ux of �uids and solids into the formation.
Usually, the volume of invading �uids is small and the invasion is limited to
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Figure 1.1: Hydrostatic Pressure

a short distance from the wellbore. The depth of solids invasion is less than
the �uid invasion, but results in more severe formation damage.Golan and
Whitson [1986]

If the well pressure unintentionly drops below the reservoir pore pressure,
there will be an in�ux from the reservoir to the well.

pcoll(t, x) < pwell(t, x) < pres(t, x) < pfrac(t, x) (1.6)

If this �ow is small, there will be a change in the density of the mud, which
is measured at the surface, and the drilling �uid is said to be 'gas cut', 'salt
water cut' or 'oil cut'.Skalle [2005]. If this in�ux from the reservoir is large,
it is known as a kick or if the in�ux is uncontrolled, a blow-out, which is
a more serious and dangerous situation. A kick must be handled when it
occurs, and blowout prevention equipment is needed to close the well. If gas
migrates from the reservoir to the well, it is more possible that a kick occurs,
than if the �uid is oil or water. Grace [1994] lists the following key reasons
for a pressure drop, which may result in a kick:

• Mud weight less than formation pore pressure

• Failure to keep the hole full while tripping
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• Swabbing while tripping

• Lost circulation

• Mud cut by gas, water or oil

A kick can sometimes by hard to detect, but there are some signs that a kick
has occured. Grace [1994] lists the following indications:

1. Sudden increase in drilling rate

2. Increase in �uid volume at the surface, which is commonly termed a
pit level increase or an increase in �ow rate

3. Change in pump pressure

4. Reduction in drillpipe weight

5. Gas, oil, or water-cut mud

The �rst indication of a kick, is a sudden increase in drillrate, known as
a 'drilling brake'. The increase in drillrate is an indication of penetration
of a porous formation. The next warning sign is an increase in �ow rate
caused by the in�ux of formation �uids. The in�ux may be rapid or virtually
unnoticeable, depending on the formation productivity. Changes in �ow
rate or pit level should never be ignored. The in�ux from the reservoir will
decrease the hydrostatic pressure in the well. This would be observed by a
reduction in the pump pressure.

The desire to maintain the pressure within these limitations, rises the
need for accurate control of the pressure gradient in the well. A technic
used to control the pressure in the well is Managed Pressure Drilling (MPD).
An introduction to MPD, and a describtion of di�erent MPD solutions can
be found described in Hannegan [2006].De�nition of MPD by IADC's MPD
Subcommittee:

'An adaptive drilling process used to precisely control the an-
nular pressure pro�le throughout the wellbore. The objectives are
to ascertain the downhole pressure environment limits and man-
age the hydraulic pressure pro�le accordingly'.

MPD consist of di�erent solution for better control of the pressure gradient in
the well. A better control of the pressure gradient will lead to the possibility
of drilling wells, that has been considered to be undrillable. MPD techniques
can therefore be used to increase the oil recovery from depleted and mature
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reservoirs. However, controlling the pressure gradient is complicated by the
absence of a continuous measurement of the pressure gradient in the well. The
measurement of the pressure is sent to the surface by a mud pulse telemetry
(MPT) system. This system has a low bit rate, and are therefore unsuited
for control purposes. The desire to control the pressure in the well rise the
need to estimate the pressure gradient in the well.

Several articles and reports on MPD has been written. The reader may
refer to Nygaard and Nævdal [2006] and Nygaard et al. [2007] for a control
solution with an NMPC control scheme, or Rognmo [2007] for a H∞ control
scheme.

1.3 Drilling Mud

Drilling mud was introduced with rotary drilling in 1900, and it's main func-
tion was to remove the cuttings from the well. With time, drilling has become
more sophisticated, and the functions of the mud has increased to include
several other factors. Moore [1986] de�nes the primary functions of the mud
as following:

• Lifts formation cuttings to the surface

• Controls subsurface pressures

• Lubricates the drillstring

• Cleans the bottom of the hole

• Aids in formation evaluation

• Protects formation productivity

• Aids formation stability

The mud has evolved from beeing a simple �uid to become a complex mixture
of liquids, solids and chemicals. The reader may refer to Moore [1986] for
a general introduction to the functions and composition of drilling �uids.
The discussion in this section will give a brief summary of the information
presented in Moore [1986].

Lifting formation cuttings is an essential function of the mud. If the
speci�c gravity of the cuttings are higher then the mud, the cuttings will slip
downwards in the mud. While the �ow in the annulus is viscous or laminar,
the slip velocity of the cuttings are directly related to the thickness or shear
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characteristics of the mud. Sometimes the decision to increase the mud thick-
ness/weight will a�ect other aspects of the drilling. The hydrostatic pressure,
and the circulating pressure losses will increase. Bottomhole Cleaning is
generally improved by having thin �uids �ow at high shear rates through the
bit. If they have good shear characteristics, viscous �uids can be good for
bottomhole cleaning.

Selecting the speci�c weight of the mud to control subsurface pres-

sures introduces several problems. As the mud weight decreases, the drilling
rate will increase, and lost circulation problems are minimized. (burde skrive
hva lost-circulation problemer er)

Lubrication and cooling of the drillstring is an important function of
the mud. Adequate cooling may prolong the expected lifetime of the equip-
ment, and reduce hole problems, such as torque, drag, and di�erential pres-
sure sticking. Lubricants include betonite, oil, detergents, graphite, asphalts,
special surfactants, and walnut hulls.

An increase in formation evaluation requirements has a�ected the
drilling �uids signi�cantly. Viscosity has been increased to improve the re-
moval of cuttings, special mud has been developed to improve logging char-
acteristics.

Protection of formation productivity is one of the most important
aspects of drilling, since noncommerical hydrocarbons zones often are due to
formation damage through invason of mud or �ltrate.

Economides et al. [1998] choose to group drilling �uids into four basic
types:

• Water-based muds

• Oil-based muds

• Synthetic-based muds

• Pneumatic drilling �uids

Water based muds make up the majority of drilling �uids. The water can
be either fresh or salt water. Fresh water is the base of must muds, and has
an advantage in beeing generally accessible and cheap. It is easy to control,
even when it is loaded with solids. Salt water has also become more com-
men as a base, because of it's accessibility in o�shore operations. There are
many disadvantages using salt water. It reduces the e�ectivness of formation
evaluation methods, corrosion problems are increased, and mud costs are in-
creased. Oil has been used as a base almost as long as water. Initally it was
used to protect potential productive formations. Oil-based muds are highly
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inhibitive, resistant to contaminants, stable at high temperatures and pres-
sures, highly lubricious, noncorrosive, and �exible [Economides et al., 1998].
Resulting in reduced torque, drag, and pipesticking problems. Synthetic-
based mud represents the latest technology, and provides high performance,
comparable to the performance of oil-based mud, without the objectionable
toxicity and environmental impact. [Azar and Samuel, 2007] lists the fol-
lowing di�erent pneumatic �uids: Dry air, Mist, Foam, and Gasi�ed mud.
Pneumatic �uids are normally used in special applications to minimize dam-
age to productive formations, prevent loss of circulation, and achieve very
high penetration rates. There are some drawbacks to pneumatic �uids. Even
though they adequatly handle normal drilling �uids, there are problems with
cuttings suspension and �lter cake deposistion. Moore [1986] lists the follow-
ing disadvantages to using oil-based mud compared with water-based mud.

• Oil costs more than water

• Environmental pollution problems are increased

• Drilling crews generally do not like to work around oil

• Annular circulatating pressures may be higher with oil-based muds

• Gas kicks are more di�cult to control because of the solubility of gas
in oil

One last important point is that oil-based mud is compressed under pressure;
increased pressure leads to a higher �uid density. Pressure changes has almost
no e�ect on water-based mud.
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1.4 Scope and outline of thesis

The scope of this thesis has been to develop a nonlinear model predictive con-
troller (NMPC). The controller is to be tested on a pipe connection scenario.
The NMPC scheme will be based up on a low-order singel phase model of the
well. An observer of the bottomhole pressure (BHP) will be implemented to
estimate the pressure in the well. To simplify the problem, only the BHP
will be considered, and the pressure gradient in the rest of the well will be
ignored.

• In chapter 2 a low order model of the well is derived.

• Chapter 3 presents an adaptive observer for the bottomhole pressure.

• Chapter 4 gives a brief historical introduction to NMPC, and contin-
uous with a more detailed discussion around concept of NMPC. The
end of the chapter describes the implementation of the NMPC scheme.

• In chapter 5 some important results are presented.

• Chapter 6 concludes the report, and future work is discussed.



Chapter 2

Modeling

As stated previously, there will not exsist a continuous measurment of the
BHP, and there is a need of an observer to estimate the pressure. The ob-
server which will be presented in chapter 3, needs a model of the dynamics
in the well. The model predictive controller (MPC) presented in chapter
4 also needs a model to predict future responses of the system. The ba-
sic �uid mechanics presented in this chapter is mainly from [White, 2003].
The more speci�c well model is orginally developed in an unpublished inter-
nal document by [Kaasa]. It can also be found in a master thesis [Øyvind
Nistad Stamnes, 2007]. The model presented is a simpli�ed model, which
only considers a singel phase �ow of drilling �uids. Reservoir in�ux will not
be taken into consideration. A similar two phase model can be found in
[Nygaard and Nævdal, 2006].

The well model, described in �gure 2.1, consists of a jointed drillpipe,
two mud pumps, a topside choke and a drill bit. The drillpipe consists of
segments 100 feet long, joined together, with the drill bit at the end. At the
topside the main mud pump is connected to the drill pipe, and the drilling
�uids �ow through the drillpipe and the bit. It then �ows up the annulus,
bringing cuttings to the surface. At the surface the mud �ows through the
topside choke, before the cuttings are removed from the mud, and the mud is
reused. The second mud pump is not connected to the drill pipe, but directly
to the annulus. It can be used to increase the pressure in the well, and to
maintain a degree of circulation during a pipe connection. For modelling
purposes the well will be divided into two di�erent control volumes as shown
in �gure 2.1.

In the model which is derived later in this chapter, all temperature e�ects
are neglected, even though the temperature variations in the well can be
signi�cant. The temperature in the well is assumed to be constant(isothermal
conditions). The modelling will be based on the equation of continuity (mass

9



10 CHAPTER 2. MODELING

conservation), the equation of momentum (Navier-Stokes) and the equation
of state. Since all temperature e�ects are neglected, the equation of energy
will not be further discussed.

Figure 2.1: Well divided into two control volumes. [Kaasa]

2.1 Equation of State

The drilling mud will have a density which will change as a function of
pressure and temperature. The changes of �uid density are small for a liquid,
and the linearized function will be used as an approximation.

ρ = ρ0 +
∂ρ

∂p
(p− p0) +

∂ρ

∂T
(T − T0) (2.1)

p0,ρ0 and T0 is a set of conditions, which equation 2.1 is linearized around[Kaasa].
While the energy equation will not be taken into consideration, and isother-
mal conditions are assumed, the equation simpli�es into

ρ = ρ0 +
∂ρ

∂p
(p− p0) (2.2)
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It is normal to de�ne the bulk modulus of a liquid. The bulk modulus is a
term used to describe the compressibilty of a �uid[White, 2003].

β = −V ∂p

∂V
= ρ

∂p

∂ρ
(2.3)

The bulk modulus is related to the speed of sound

c =

√
∂p

∂ρ
=

√
β

ρ
(2.4)

where c denotes the speed of sound. The bulk modulus can also be described
by the di�erential form [Egeland and Gravdahl, 2002]

∂ρ

ρ
=
∂p

β
(2.5)

The bulk modulus is inserted into equation 2.2, and the �nal linear approxi-
mation of the density is found.

ρ = ρ0 +
ρ0

β
(p− p0) (2.6)

As stated in section 1.3, there is a signi�cant di�erence in the bulk modu-
lus for oil-based and water-based mud. If the mud is oil-based, the hydro-
static pressure in the well will increase nonlinear with increasing depth. This
phenomenon should be taken into consideration, and the approximation in
equation 2.6 should not be ignored.

2.2 Friction

Friction can not be ignored in a viscous �ow. The friction terms that will be
discussed in this section is head losses and minor losses.

2.2.1 Head losses

Head losses (or Major losses) is a term used to describe the losses in sections
consisting of straight pipes. The friction loss term, can be given by

∂F

∂x
= S(x)

∂

∂x
(σw) (2.7)

where σw is the wall shear stress. For a pipe �ow, the friction term can be
determined by

σw = f
1

4

ρ

2
v2 (2.8)
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The parameter f is dimensionless, and is called the Darcy friction factor,
after Henry Darcy, which �rst established the e�ect of roughness on pipe
resistance. The friction factor for smooth pipes is usually asummed to be

f = 0.316 Re−
1
4 (2.9)

This relationship applies to Reynolds numbers less than 105. Since the
drilling mud is a compressible �uid, the estimate may be very crude.

2.2.2 Minor Losses

Most pipe systems consist of more then straight pipes. Bends, valves and
tees add to the overall head loss of the system. These losses are generally
refered to as minor losses[Munson et al., 1998]. The term minor loss does not
indicate a small and unsigni�cant loss. In the case of incompressible �ow,
the pressure drop will be equal to:

∆p = KL
1

2
ρV 2 (2.10)

Where KL is an empirical loss coe�cient:

KL =
∆p

1
2
ρV 2

(2.11)

The value of KL will be strongly dependent on the Reynolds number, and the
geometry of the component. The Reynolds number of the pipe is Re = ρV D

µ
.

2.2.3 Ori�ce Flow

The head loss assosicated with a valve is a common minor loss, and the size
of the loss may be a signi�cant portion of the resistance in the system. The
area of the valve is much smaller than the upstream area. The velocity of
the �ow is given in the equation

v = Cd

√
2(p1 − p0)

ρ
(2.12)

where Cd is the discharge coe�cient. The discharge coe�cient accounts for
an additional �ow concentration know as vena contracta. Inserting v = Q

A
,

gives an expression of the volume �ow.

q = CdA(x)

√
2(p1 − p0)

ρ
(2.13)
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This equation is based on the assumption of a steady and icompressible �ow,
which is not valid for our system. However, this approximation is used.

2.2.4 Friction Gradient

The pressure loss due to friction will be the sum of the minor losses and the
head losses. As stated in equation (2.7)- (2.8), the friction loss in the pipeline
will be

∂F

∂x
= S(x)

1

4
f
ρ

2
v2 (2.14)

The minor losses can be related to the friction gradient according to

∂F

∂x
= A(x)

∂K

∂x

ρ

2
v2 (2.15)

where K is the loss coe�cient over a length ∆L, and the minor loss gradient
is

∂K

∂x
=

K

∆L
(2.16)

The total friction gradient of the well will be the sum of the minor and major
losses.

∂FF
∂x

=
1

4
fS(x)

ρ

2

(
q

A(x)

)2

+
∂K

∂x
A(x)

ρ

2

(
q

A(x)

)2

(2.17)

where A(x) and S(x) are the cross sectional area and perimeter of the �ow.

2.3 Equation of Continuity

The derivation in this chapter starts with the one-dimensional continuity
equation. The derivation of the continuity equation can be found in appendix
B.

∂ρ

∂t
+

∂

∂x
(ρu) = 0 (2.18)

As described in [Kaasa] the continuity function is integrated over a de-
formable control volume, with lenght equal to L

d

dt

(∫ L

0

ρA(x)dx

)
=
∑

min −
∑

mout (2.19)

where

m =

∫ L

0

ρ̄(p)A(x)dx = ¯ρ(p)V (2.20)
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V is the total volume in the well, and A(x) is the area in the well. Equation
2.19 is rewritten on the form

ṁ =
∑

min −
∑

mout (2.21)

The density in the well will not be constant, but will be approximated by an
average density, which will be dependent on pressure variations in the well.

ρ̄(p) =
1

V

∫ L

0

ρ(x, p)A(x)dx (2.22)

The left part of equation 2.21 can be expressed as

ṁ =
∂m

∂t
=
∂ρ̄(p)V

∂t
= V

∂ρ̄(p)

∂t
+ ρ̄(p)

∂V

∂t
(2.23)

Insert the bulk modus into equation 2.23

ṁ = ρ̄(p)
V

β

∂p

∂t
+ ρ̄(p)

∂V

∂t
= ρ(

V

β
˙̄p+ V̇ ) (2.24)

This expression is inserted into equation 2.21

ρ̄(p)(
V

β
˙̄p+ V̇ ) =

∑
min −

∑
mout (2.25)

Rearranging the equation gives

V

β
˙̄p+ V̇ =

1

ρ̄(p)
(
∑

min −
∑

mout) (2.26)

The assumption of 1
ρ̄(p)

∑
min =

∑
qin and 1

ρ̄(p)

∑
mout =

∑
qout is made.

Resulting in
V

β
˙̄p+ V̇ = (

∑
qin −

∑
qout) (2.27)

This result will be used on the well in �gure 2.1. The well will be considered as
two seperate subsystems(two di�erent control volumes). The �rst subsystem
will consist of the drillpipe-section of the well. (The left part of �gure 2.1)
At the topside the drilling �uids will be pumped into the drillpipe. The mud
pump will have a pressure of pp. The drillpipe will have a length of ld, an
inner and outer radius of rdi and rdo, and volume of Vd. The volume of the
drillpipe will change accordingly to di�erent well operations. During surge
and swab operations (insertion and extraction o� the drillpipe) the volume
will change. The boundary of this subsystem will be the drill bit. The �uids
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that pour out of the bit, will be denoted qbit. This is inserted into equation
2.27 and the resulting di�erential equation for the subsystem forms:

VD
β
ṗp = qin − qbit − V̇D (2.28)

The remaining part of the system will be considered in the second system.
The connection between the to subsystems will be the �ow through the bit.
For the second subsystem, the in�ow to the control volume will be the �ow
through the bit, a possible in�ux from the reservoir, and the �ow from the
backpressure pump. The outlet of the annulus subsystem is the �ow through
the topside choke. The annulus will have a length of la, a volume of Va, and
a radius of ra.

VA
β
ṗc = qbit + qres + qbp − qout − V̇A (2.29)

2.4 Equation of Motion

Using Newton's second law of motion and the assumption of one dimensional
�ow, the momentum balance is obtained. The derivation of this equation can
be found in appendix C.∑

F =
∂

∂t
(

∫
CV

Vsρ dV) +
∑

(ṁVs)out +
∑

(ṁVs)in (2.30)

The sum of the forces acting on the �uid will consist of two di�erent type of
forces, body forces and surface forces.∑

F = Fsurface + Fgravity (2.31)

The body force that will be taken into consideration in this system, is gravity.
The size of the component of the gravity force that acts on the body, will
depend up on the angel between the streamline and the gravity force [Munson
et al., 1998]. In this particular case having done the assumption of a one
dimensional vertical �ow, the streamline will be parallell with the gravity
force, as illustrated in the right part of �gure 2.2.

Fgravity = ρgsinθ = ρg
∂h

∂x
(2.32)

The second type of forces that will be considered, are the surface forces. The
viscous stresses on the surfaces of the control volume lead to surface forces.
These surfaces forces are the sum of the hydrostatic pressure, and friction
forces (viscous stress) due to motion.[White, 2003]



16 CHAPTER 2. MODELING

Figure 2.2: Body Force

Fsurface = −∂p
∂x
Adx− ∂FF

∂x
dx (2.33)

Inserting equation 2.32 and 2.33 into equation C.6:

ρ
dVs
dt
A(x)dx = −∂p

∂x
A(x)dx− ∂FF

∂x
dx+ ρg

∂h

∂x
A(x)dx (2.34)

ρ
dVs
dt
dx = −∂p− 1

A(x)

∂FF
∂x

dx+ ρg∂h (2.35)

This is a reduced form of a well-known equation, Navier-Stokes. The equation
is reduced from full order to one-dimensional �ow. Due to the assumption of
one-dimensional �ow: Vs = dx

dt
. The di�erential equation is integrated over a

control volume with length L.

∫ l

0

ρ

A(x)
dx
dq

dt
= −

∫ p(l)

p(0)

∂p−
∫ l

0

1

A(x)

∂FF
∂x

dx+

∫ h(l)

h(0)

ρg∂h (2.36)

∫ l

0

ρ

A(x)
dx
dq

dt
= p(0)− p(l)−

∫ l

0

1

A(x)

∂FF
∂x

dx+ ρg [h(l)− h(0)] (2.37)

The expression ∂FF
∂x

, described in equation 2.17 is inserted into the equation.
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∫ l

0

ρ

A(x)
dx
dq

dt
= p(0)− p(l)−

∫ l

0

1

A(x)

1

4
fS(x)

ρ

2

(
q

A(x)(x)

)2

(2.38)

+
∂K

∂x
A(x)

ρ

2

(
q

A(x)

)2

dx+ ρg [h(l)− h(0)] (2.39)

Equation 2.38 can be rewritten into∫ l

0

ρ

A(x)
dx
dq

dt
= p(0)− p(l)− F |q|q + ρg [h(l)− h(0)] (2.40)

where F is equal to

F =
ρ

2

(∫ l

0

∂K

∂x

1

A(x)2
dx+

∫ l

0

1

4

S(x)

A(x)3
dx

)
(2.41)

The two separate control volumes in the well illustrated in �gure 2.1, are
considered again. Equation 2.40 is integrated over a control volume of length
L. If this control volume is considered to be the annulus section of the well,
the term on the left side of equation 2.40 can be described as following∫ la

0

ρ

Aa(x)
dx
dq

dt
= Maq̇a (2.42)

where la is the length of the annulus/well. This expression is inserted into
equation 2.40 together with the topside choke pressure, the pressure at the
bit, and the vertical length of the well. The �ow through the annulus, will
consist of the �ow through the bit and the in�ux from the reservoir, qa =
qbit + qres.

fMaq̇a = pbit − pc− Fa|(qbit + qres)|(qbit + qres)− ρaghbit (2.43)

Rearranging the equation obtaining an expression for the BHP:

pbit = pc + Fa|(qbit + qres)|(qbit + qres) +Ma(q̇bit + q̇res) + ρaghbit (2.44)

The same procedure can be performed on the drillpipe section of the well.
The left side expression in 2.40 will then be:∫ ld

0

ρ

Ad(x)
dx
dq

dt
= Mdq̇d (2.45)

Equation 2.40 will together with the topside pump pressure, the pressure at
the bit, and the vertical depth of the well.
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Mdq̇d = pp − pbit − Fd|qd|qd + ρdghbit (2.46)

Where the �ow through the drill pipe, qd, is equal to the �ow through the
drill bit, qbit = qd. Rearranging the equation to obtain the expression for
BHP.

pbit = pp − Fd|qbit|qbit −Mdq̇bit + ρdghbit (2.47)

Adding equation 2.46 and 2.43 together:

Maq̇a +Mdq̇d = pbit − pc − Fa|(qbit + qres)|(qbit + qres)− ρaghbit + pp

− pbit − Fd|qbit|qbit + ρdghbit (2.48)

De�ning M = Ma +Md

Mq̇bit = pp−pc−Fa|(qbit+qres)|(qbit+qres)−Fd|qbit|qbit+(ρd−ρa)ghbit (2.49)

Equation 2.44 and 2.49 are combained. qres is assumed to be a slowly varying
parameter. This assumption leads to q̇bit = 0.

pbit = pc + Fa|(qbit + qres)|(qbit + qres) +Ma(q̇bit + q̇res) + ρaghbit (2.50)

Insertion of q̇bit gives

pbit = pc+Fa|(qbit+qres)|(qbit+qres)+
Ma

M
(pp−pc−Fa|(qbit+qres)|(qbit+qres)

− Fd|qbit|qbit + (ρd − ρa)ghbit) + ρaghbit (2.51)

pbit =
Md

M
pc +

Ma

M
pp −

Ma

M
Fd|qbit|qbit

+
Md

M
Fa|(qbit + qres)|(qbit + qres) +

(
Ma

M
ρd −

Md

M
ρa

)
ghbit (2.52)

2.5 Model Summary

A brief summary of the important equations derived in this chapter: These
equations will be the foundation of the observer presented in chapter 3 and
the NMPC control scheme presented in chapter 4.

VD
β
ṗp = qin − qbit − V̇D (2.53)
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VA
β
ṗc = qbit + qres + qbp − qout − V̇A (2.54)

Mq̇bit = pp−pc−Fa|(qbit+qres)|(qbit+qres)−Fd|qbit|qbit+(ρd−ρa)ghbit (2.55)

ρ = ρ0 +
ρ0

β
(p− p0) (2.56)

pbit =
Md

M
pc +

Ma

M
pp −

Ma

M
Fd|qbit|qbit

+
Md

M
Fa|(qbit + qres)|(qbit + qres) +

(
Ma

M
ρd −

Md

M
ρa

)
ghbit (2.57)

2.6 Drill bit

The drill bit will be equiped with a check valve to prevent �ow from the
annulus to the drillpipe; qbit ≥ 0. This check valve will e.g be active during
the pipe connection procedure. If it was not present, the �uids in the well
would �ow up through the drillpipe during the pipe connection (The pipe
connection procedure is described in section 5.4. The check valve is a physical
limitation that will a�ect the model. When qbit = 0 the equation for q̇bit
reduces to:

Mq̇bit = max (0, pp − pc − Fa|qres|qres + (ρd(p)− ρa(p))ghbit) (2.58)

2.7 Reservoir

In this thesis the reservoir in�ux will be assumed to be equal to zero, qres = 0.
This is a major simpli�cation and decreases the complexity of the problem.
The in�ux from the reservoir would most likely e�ect the density in the well,
and it is also likely that there would be gas present in the in�ux. A multi-
phase �ow is more complex than a singel-phase, and it might be necessary
to use a two-phase model to adequately describe the process.
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Chapter 3

Adaptive Estimation of BHP

The lack of a continuous BHP measurement rises the need of an estimation
of the BHP. In this chapter a nonlinear observer based on the model derived
in Chapter 2 will be presented. The nonlinear adaptive observer is originally
developed in a master thesis [Øyvind Nistad Stamnes, 2007]. The observer
uses only the topside measurements to estimate the �ow through the bit,
the friction factor in the annulus, and the di�erence in density between the
drillpipe and the annulus. The measurements needed to performe the calcu-
lations are the topside pump pressure, the choke di�erential pressure and the
pump �ows. An alternative approach to estimating the BHP can be found
in Nygaard et al. [2006], where the BHP is estimated by extended, ensemble
and uncented Kalman �lter.

3.1 Model

The observer is dependent upon the model derived in chapter 2 to estimate
the BHP.

ṗp =
βD
VD

(
qin − qbit − V̇D

)
(3.1)

ṗc =
βA
VA

(
qbit + qres + qbp − qout − V̇A

)
(3.2)

q̇bit =
1

M
(pp − pc)−

Fa − Fd
M

|qbit|qbit +
ρd − ρa
M

ghbit (3.3)

In Øyvind Nistad Stamnes [2007] the author has chosen to adapt two param-
eters. The parameters are de�ned as following:

θ1 =
Fa − Fd
M

(3.4)

21
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θ2 =
ρd − ρa
M

(3.5)

The purpose of the �rst parameter, θ1, is to obtain an estimation of the
friction in the annulus, Fa. The friction in the annulus would be a�ected by
the roughness of the annulus-walls, and it would also be dependent on in�ux
of reservoir �uids.

The purpose of the second parameter, θ2, is to obtain an estimation of
the di�erence in density between the drillpipe and the annulus section of the
well. These two parameters are inserted into equation 3.3.

q̇bit =
1

M
(pp − pc)− θ1|qbit|qbit + θ2hbit (3.6)

The equation of the BHP has previously been de�ned to be:

pbit = pc + Fa|qbit|qbit +Maq̇bit + ρaghbit (3.7)

The new expression for q̇bit is inserted into equation 3.7:

pbit = pc + (Mθ1 − Fd)|qbit|qbit +Ma(
1

M
(pp − pc)− θ1|qbit|qbit

+ θ2hbit) + (ρdg −Mθ2)hbit (3.8)

This equation will later be used to estimate the BHP.

3.2 Stability

The observer of the BHP is derived with an approach motivated by a method
described in Tan et al. [1998]. Inspired by this article; the change of coordi-
nates is de�ned as:

ξ1 = qbit + l1pp (3.9)

where l1 is a feedback gain. The observer equations will not be derived here,
but the reader may refer to Øyvind Nistad Stamnes [2007] for a complete
insight to the observer derivation and the proof of stability. When the ap-
proach in equation 3.9 is used, exponential stability can be guaranteed. The
stability is proved through Lyapunov analysis.
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3.3 Observer Equations

The most important results from Øyvind Nistad Stamnes [2007] is summa-
rized in table 3.1. This equations are implemented directly to estimate the
BHP in the following simulations.

ρd(p) = ρd,0 +
ρd,0
β

(p− p0)

p̂bit = pc + (Mθ̂1 − Fd)|q̂bit|q̂bit +Ma(
1
M

(pp − pc)− θ̂1|q̂bit|q̂bit + ε

+θ̂2hbit) + (ρd(p)g −Mθ̂2)hbit
Observer q̂bit = ξ̂1 − l1pp

˙̂
ξ1 = −l1 βdVd q̂bit − θ̂1|q̂bit|q̂bit + θ̂2hbit + 1

M
(pp − pc) + l1

βd
Vd
Qin

ξ̂1(0) = q̂bit(0) + l1pp(0)

θ̂ = σ̂ − η(q̂bit, hbit)

˙̂σ = −l1 ∂η
∂q̂bit

βd
Vd

(qin − q̂bit) + ∂η
∂q̂bit

˙̂
ξ1 + ∂η

∂hbit
ḣbit

σ̂(0) = θ̂(0) + η (q̂bit(0), hbit(0))

Adaptive law η(q̂bit, hbit) = Γ

 |q̂bit|3

3l1
βd
Vd

−hbitq̂bit

l1
βd
Vd


∂η
∂q̂bit

= Γ

 |q̂bit|q̂bit
l1
βd
Vd

− hbit

l1
βd
Vd


∂η
∂hbit

=

[
0

− q̂bit

l1
βd
Vd

]

Observer gain l1 > 0
Design variables Adaption gain: Γ = ΓT > 0

Initial conditions: q̂bit(0) and θ̂(0)

Table 3.1: Summary of Adaptive Observer
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3.4 Weaknesses

There are some weaknesses with the presented observer. As stated in Øyvind
Nistad Stamnes [2007] there is an unsolved issue in connection with the case
of zero �ow, qbit = 0. Stability can no longer be proven, and the author
presents an ad-hoc solution to overcome the problem. The solution presented
is a small modi�cation to the observer; when the following conditions occurs:

qbit = 0 and (
1

M
(pp − pc) + θ2hbit) < 0 (3.10)

these modi�cations are made to the observer:

˙̂
ξ1 = l1

βd
Vd
qin (3.11)

p̂bit = pc + (ρd(p)g −Mθ̂2)hbit (3.12)

An other important issue is that the observer is sensitive to errors in the
assumption of the drillpipe friction parameter, Fd. The observer is designed
to estimate the friction in the annulus and not the drillpipe. This choice
of design can be justi�ed through the assumption that the friction in the
annulus would be more unpredictable and will have larger variations than
the friction in the drillpipe.

One of the disadvantages with this observer design, is that the measure-
ment of the BHP is ignored. When there is a su�cent �ow in the well, the
measurement of the BHP is sendt to the surface by an MPT system. The
MPT system has a low bitrate, and the measurement will be disturbed by
noise. Even so, the observer should be redesigned to take this measurement
into consideration. The time elapsed between every sample of the BHP will
in this report be assumed to be constant, and the time elapsed between each
sample will be denoted Tm. In the following, a minor modi�cation to the ob-
server will be presented. The main objective of this modi�cation is to cancel
the di�erence between the estimated and the measured BHP.

δ = Kε(y − ŷ) = Kε(pbit − p̂bit) (3.13)

Due to sensitivity to noise, the size of Kε should be small (approximately:
Kε < 0.1). If ε where to be added directly to equation 3.15 it would result
in a discontinuity in the observer each time a new measurement is obtained.
To avoid this, the time elapsed between two samples is used to smooth out
the estimate. At each time interval a fraction is added to the observer.

εk+1 = εk +
δ

Tm
(3.14)
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Adding εk to equation 3.15 will reduce the di�erence between the estimated
and measured BHP.

pbit = pc + (Mθ1 − Fd)|qbit|qbit +Ma(
1

M
(pp − pc)

− θ1|qbit|qbit + θ2hbit) + (ρdg −Mθ2)hbit + ε (3.15)

However, adding this term to the equation, will give the same e�ect as al-
ternating the density in the well. It has not been the author's purpose to
develop a more advanced observer, but as a suggestion for future develop-
ment of the observer, the BHP could either be used to estimate the density
in the well, ρ, or the fricton in the drillpipe, Fd.

Another issue is that the relationship between the density of the mud and
the pressure in the well is ignored. As discussed in the modeling chapter, the
variations in density due to pressure, can be approximated by:

ρ(p) = ρ0 +
ρ0

β
(p− p0) (3.16)

In the implementation the pressure at time k is used to calculate the density
at time k+1, which again is used to calculate the pressure at time k+1.

The observer also has a problem with observability when estimating two
parameters. The θ1 and θ2 solution found would converge to a �nal value, but
the value found is most likely not the correct value. Because of the problem
with observability, the adaption of θ2 will be turned o�, and the value kept
constant through the simulations.
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3.5 Verifying the Observer

The observer's ability to estimate the pressure correctly is essential for con-
trolling purposes. The observer was analyzed in Øyvind Nistad Stamnes
[2007], but since the observer has been modi�ed, some simulations will be
run to analyze the performance of the modi�ed observer. The scenario that
will be used to test the observer, is the pipe connection procedure. The pro-
cedure can be found in section 5.4. The following simulations will be run
without the presence of a controller (open-loop).

In the �rst simulation, presented in �gure 3.1 , Kε is set equal to zero, and
the density is held constant, independent of the pressure variations. WhenKε

is set equal to zero, the BHP measurement is ignored. The observer is equal
to the original observer with this parameter set. The resulting parameters
can be found in table 5.1.

The result of this simulation can be found in �gure 3.1. It can be observed
from the simulations that the observer presents a good estimation of the
BHP during a pipe connection. However, it is a small deviation between the
estimated pressure, with the set of parameters used, and the BHP measured.
The measured BHP is presented by a commercial simulator. (See section 5.1
for more information on the simulator used).
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Figure 3.1: Open-loop pipe connection: Original Observer
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Kε is kept equal to zero in the second simulation. But in this simulation
the density is set to be pressure dependent. Equation 3.16 is included in the
observer. The result of this simulation can be found in �gure 3.2. It can
be observed that implementing a pressure dependent density represents a
minor improvement to the estimation of the BHP. The variations in density
are small, but when the hydrostatic pressure is calculated, the density is
multiplied with gravity and the vertical height of the well. Multiplying with
gravity and height will in this speci�c well represent a factor of 20 000. If
the density is increased from 0.0125 to 0.0126, the hydrostatic pressure will
be increased by 2.0 bars.
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Figure 3.2: Open-loop pipe connection: Density is pressure dependent
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Kε is set equal to 0.05 in the third simulation, and the density is still pres-
sure dependent. The result of the simulation is presented in �gure 3.3. The
BHP measurement is assumed to reach the surface once every 30 sec when
the �ow is above 500 [l/min], and noise will be absent in the measurement
in this simulation. When the BHP measurement is used, the performance of
the observer is further improved.
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Figure 3.3: Open-loop pipe connection: Density is pressure dependent. BHP
measurement is used.
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In the fourth and �nal simulation the observer will be the same as in the
above simulation. In this simulation noise will be present, and will make the
BHP measurement less reliable. The noise will be generated by a pseudo-
random MatLab function, randn(). Pseudo-random values will be drawn
from a normal distribution with mean zero and standard deviation of one.
The results are presented in �gure 3.4. The performance of the observer is
not signi�cantly reduced with this set of parameters, even though the BHP
measurement is in�uenced by noise. IncreasingKε will increase the observer's
sensibility to noise. If there are noise present, as assumed in this simulation,
Kε should be chosen with care.

The simulations illustrate that the modi�cations made to the observer
result in a slightly increased performance. These modi�cations will be present
in all following simulations. The noise generator will be turned o� in all
simulations in chapter 5.
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Figure 3.4: Open-loop pipe connection: Sensitivity to noise
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Chapter 4

Model Predictive Control

MPC is the only advanced controller which has made a signi�cant impact
on the industrial control engineering. In section 4.1 the history of the MPC
controller will be presented. The MPC controller stands out from other
advanced controllers by its history within the industrial community. The
controller did not have its origin within theoretical communities, which is the
case of most advanced controllers. Predictive control was developed and used
in the industry as an e�ective tool for dealing with multivariable constrained
control problems. Mayne et al. [2000] de�nes MPC as following:

'Model predicitve control (MPC) or receding horizon con-
trol(RHC) is a form of control in which the current control ac-
tion is obtained by solving on-line, at each sampling instant, a
�nite horizon open-loop optimal control problem, using the cur-
rent state of the plant as the initial state; the optimization yields
an optimal control sequence and the �rst control in this sequence
is applied to the plant.'

The purpose of choosing an MPC control scheme to control any process, is
to optimize the outcome. An MPC controller enables the system to operate
closer to the process boundaries, and an increase in pro�t would be the
main objective of such an implementation. The MPC controller can be used
to optimize the process directly on setpoints (optimizing PI-controllers), and
on a high-level optimization of the full process. Qin and Badgwell [2003] lists
the main objective of an MPC controller in prioritized order as following:

1. Prevent violation of input and output constraints

2. Drive the CVs to their steady-state optimal values

35
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3. Drive the MVs to their steady-state optimal values using remaining
degrees of freedom

4. Prevent excessive movement of MVs

5. When signals and actuators fail, control as much of the process as
possible

4.1 Historical Development of MPC

A short survey of industrial model predictive control technology is presented
in this section. The reader may refer to Qin and Badgwell [2003] for a more
thorough presentation on the topic. The historical presentation presented
here is a brief summary of the work of Qin and Badgwell [2003].

Figure 4.1: Timeline: MPC technologies Qin and Badgwell [2003]

4.1.1 LQG

The development of modern control concepts can be traced back to the work
of Kalman in the early 60's, and the reader may refer to relevant articles as
Kalman [1960a] and Kalman [1960b] for a in-depth description of the linear
quadratic gaussian (LQG) controller. The LQG represents an automated
method to compute a state-feed back controller, u = kcx. At every timestep
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the output measurement is used to calculate an optimal state estimate. Then
the optimal input is calculated, and the kalman �lter gain Kc is found be
solving a dual Ricatti equation.

The LQG controller did not have a signi�cant impact on control technol-
ogy development in the process industry. The main reasons for this are listed
here, and a more thorough discussion on that topic can be found in Richalet
et al. [1976].

• constraints

• process nonlinearities

• model uncertainty (robustness)

• unique performance criteria

• cultural reasons (people, education, etc)

4.1.2 IDCOM

The �rst MPC application is refered to as IDCOM, an acronym for Identi-
�cation and Control, and can be found presented in Richalet et al. [1976],
and summarized in Richalet et al. [1978]. The authors described their ap-
proach as model predicitve heuristic control (MPHC). In Qin and Badgwell
[2003] the following list of distinguishing features of the IDCOM approach
are presented:

• impulse response model for the plant

• quadratic performance objective over a �nite predicition horizon

• future plant output behavior speci�ed by a reference trajectory

• input and output constraints included in the formulation

• optimal inputs computed using a heuristic iterative algorithm, inter-
preted as the dual of identi�cation

In Richalet et al. an input-output represention are chosen, and the inputs
are refered to as manipulative variables (MVs) and disturbance variables
(DVs), and the outputs are refered to as controlled variables (CVs). The MVs
are adjusted by the controller, and the DVs are assumed to be unavailable
for control. The relationship between the process inputs and outputs are
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described by a discrete-time �nite impulse respons (FIR) model. If the singel
input singel output (SISO) scenario is considered, the FIR model looks like:

yk+j =
N∑
i=1

hiuk+j−i (4.1)

where hi are the impulse response coe�cients. This approach uses the linear
combination of past inputs to calculate a predicted output. As stated in Qin
and Badgwell [2003], this approach is only possible for stable plants.

In Richalet et al. another important point on dynamic optimization was
made. They stated that dynamic control must be embedded in a hierarchy
of plant control functions to be e�cient. Four levels of control are described:

• Level 3: Time and space scheduling of production

• Level 2: Optimization of setpoints to minimize costs and ensure quality
and quantity of production

• Level 1: Dynamic multivariable control of the plant

• Level 0: Control of ancillary systems; PID control of valves

The conclusion made in Richalet et al., is that the real economic bene�ts
come at level 2, where better dynamic control allows the operational point
to be moved closer to the constraints, whitout violating them.

4.1.3 DMC

Dynamic Matrix Control (DMC) was developed by Shell engineers in the
early 70's, and can found published in Cutler and Ramaker [1979]. Some of
the key features of the DMC approach are:

• Linear step response model for the plant

• Quadratic performance objective over a �nite prediction horizon

• Future plant output behavior speci�ed by trying to follow the setpoint
as closely as possible

• Optimal inputs computed as the solution to a least-squares problem

If the SISO case is considered again, the step response model takes the
following form:

yk+j =
N−1∑
i=1

si∆uk+j−i + sNuk+j−N (4.2)
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where si are the step response coe�cients. DMC uses the principle of super-
position; the predicive future outputs are described as a linear combination
of the future input moves.

The IDCOM and the DMC applications are considered to be �rst genera-
tion MPC applications. They made a signi�cant impact on industrial process
control.

4.1.4 QDMC

The IDCOM and the DMC applications had a weakness in constraints han-
dling. However, they o�ered excellent control for unconstrainted multivari-
able processes. Engineers at SHELL suggested formulating the DMC algo-
rithm as a quadratic programming (QP) problem. This approach was �rst
presented in Cutler et al. [1983]. This method is called quadratic dynamic
matrix control (QDMC). Key features of this approach are:

• Linear step response model of the plant

• Quadratic performance objective over a �nite prediction horizon

• Optimal inputs computed as the solution to a quadratic program

QDMC is considered to be a second generation MPC application. QDMC
formulated the problem as a standard QP, which could easily be solved by
commercial available software. QDMC provided a systematic way of handling
input and output constraints.

After the sucsess of the second generation MPC applications, the tech-
nology gained wider acceptance, and problems handled by MPC technology
grew larger and more complex. However, issues like the abscence of a clear
procedure on how to handle an infeasible solution, motivated control engi-
neers to further develop the technology, and new third generation solutions
like Shell Multivariable Optimizing Controller (SMOC)[Yous� and Tournier,
1991] emerged. This generation of MPC controllers distinguishes between
di�erent level of constraints: soft, hard and ranked. They provide a way to
recover from an infeasible solution, and allows for a wider range of process
dynamics: stable, integrating and unstable.

Todays commercial available MPC solutions are often referred to as fourth
generation MPC. This include, among others, DMC-plus and RMPTCT. The
latter is Honeywell's MPC solution. These fourth generation MPC applica-
tions provide a Windows-based graphical interface, they have multiple opti-
mization levels to address prioritized control objectives, direct consideration
of model uncertainty, and additional �exibility in the steady-state target
optimization.
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Figure 4.2: Example of MPC Torpe [2007]

4.2 Nonlinear Model Predictive Control

Most running MPC applications are based on linear experimental models. In
many cases the linear models make up an adequate representation of the pro-
cess, and are well suited for control purposes. However, since the 90's there
has been a steady increase in interest from the control theoreticians as well
as control practitioners in nonlinear model predicitve control (NMPC). The
demand and wish to push the boundaries of the controller to increase pro�t
and process performance has been the motivation to an increased interest in
nonlinear control. As Rawlings [2000] states:

'The fundamentals in any process control problem-conservation
of mass, momentum, and energy; considerations of phase equi-
libria; relationships of chemical kinetics and properties of �nal
products- all introduce nonlinearity into the process description.'

In this section some important aspects of NMPC will be discussed. The
discussion is based on the work of Allgöwer et al. [2004], and the notation
used here will follow his example. Allgöwer et al. [2004] present a list of key
characteristics and properties of NMPC:

• NMPC allows the direct use of nonlinear models for prediciton.

• NMPC allows the explicit consideration of state and input constraints.
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• In NMPC a speci�c time domain performance criteria is minimized
on-line.

• in NMPC the predicted behavior is in general di�erent from the closed
loop behavior.

• For the application of NMPC typically a real-time solution of an open-
loop optimal control problem is necessary

• To perform the prediciton, the system states must be measured or
estimated.

NMPC schemes based on continuous di�erential equations will be considered
in this report. Information on discrete NMPC schemes can be found in
Mayne et al. [2000] and Rawlings [2000]. Systems in the following form will
be considered.

ẋ(t) = f(x(t), u(t)), x(0) = x0 (4.3)

subject to input and state constraints of the form:

u(t) ∈ U, ∀t ≥ 0, (4.4)

x(t) ∈ X, ∀t ≥ 0. (4.5)

x(t) ∈ Rn and u(t) ∈ Rm denotes the state and input vector. In a NMPC
application, the following �nite horizion open-loop optimal control problem
is solved at every sampling instant:

min ¯u(·)J(x(t), ū(·)) (4.6)

subject to:

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(t) = x(t) (4.7a)

ū(τ) ∈ U, ∀τ ∈ [t, t+ Tc] (4.7b)

ū(τ) = ū(t+ Tc), ∀τ ∈ [t+ Tc, t+ Tp] (4.7c)

x̄(τ) ∈ X, ∀τ ∈ [t, t+ Tp] (4.7d)

with the cost function:

J(x(t), ū(·)) :=

∫ t+Tp

t

F (x̄(τ), ū(τ))dτ (4.8)

Tp and Tc denotes the prediciton and control horizion.
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F (x, u) = (x− xs)TQ(x− xs) + (u− us)TR(u− us) (4.9)

In equation 4.9, xs and us denote the desired reference trajectories. The latter
can be both time-varying or constant. The matrices Q and R are positive
de�nite matrices, and weighten the deviation from the optimal trajectories.

4.2.1 Calculation Issues

NMPC requires a repeated online-calculation of a nonlinear programming(NP)
problem. A linear MPC application requires only an on-line solution to a QP
problem. Solving a QP problem is easily done with commercial software, and
the possibility of e�cient on-line calculation is one of the main reasons for
the sucsess of linear MPC applications. Solving a NP is not straightforward,
and requires much computational power. According to Allgöwer et al. [2004]
the computational expensivness of NP solving was and still is one of the key
limitations on a successful practical implementation of NMPC.

4.2.2 Stability and Robustness

The research on MPC stability has become a relativily mature �eld, and
the important factors of stability have been isolated and employed. The
de�nition of stability and robustness will follow the example of Skogestad
and Postlethwaite [2005], where stability is de�ned to be the case of nominal
stability. The plant is assumed to be modelled perfectly. Robustness is
de�ned to be robust stability, meaning stability of all the plants within the
uncertainty set.

The most intuitive method to ensure stability is to use a in�nte horizon
controller. At a random sampling instant, the open-loop input and state
trajectories calculated by the NMPC scheme, are in fact equal to the closed-
loop response of the system. If the �rst sequence is applied to the system, the
remaining parts of the trajectory is still the optimal solution. This implies
convergence of the closed-loop. A more detailed description of the in�nte
horizon NMPC can be found in Mayne et al. [2000].

If the horizion is �nite, there exist di�erent solutions to ensure stability.
These approaches mainly alternate the original NMPC scheme by including
additional equality or ineequality constraints. These additonal constraints,
and corresponding penalties, are not related to the physical process. They are
implemented with the singel purpose of guaranteeing stability. One method
to enforce stability is to implement a terminal equality at the end of the
optimization horizon.
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x̄(t+ Tp) = 0 (4.10)

More information on this approach can be found in Mayne and Michalska
[1990] and Chen and Shaw [1982]. The main drawback to this approach is
that all the states have to be brought to zero within the prediction horizion.
Bringing all states to zero strongly reduces the solution space of the problem.
From a computational view it is almost impossible to bring all states to the
exact value of zero, within a �nite number of iterations. There is a strong
possibilty that this method will result in an infeasible solution. (Feasibility
will be discussed in section 4.2.3.) Another method to ensure stability exist,
and it is a natural development of the terminal value method. Instead of
de�ning a terminal value, a set of terminal values are de�ned.

x̄(t+ Tp) ∈ Ω (4.11)

Another approach is to add a terminal penalty term E(x̄(t + Tp)) to the
problem. The terminal region, Ω, and the terminal cost are often calculated
o�-line, such that the cost function

J(x(t), ū(·)) =

∫ t+Tp

t

F (x̄(τ), ū(τ))dτ + E(x̄(t+ Tp)) (4.12)

gives an upper bound on the in�nite horizon cost. This gurantees a decrease
in the value function. For this to be taken into consideration in the op-
timization, the problem has to be reformulated. The new problem would
be:

min ¯u(·)J(x(t), ū(·)) (4.13)

subject to:

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(t) = x(t) (4.14a)

ū(τ) ∈ U, ∀τ ∈ [t, t+ Tp] (4.14b)

x̄(τ) ∈ X, ∀τ ∈ [t, t+ Tp] (4.14c)

x̄(t+ Tp) ∈ Ω (4.14d)

If the terminal penalty term E and the terminal region Ω is chosen with
care, it is possible to gurantee closed-loop stability. The following theorem
is found in Allgöwer et al. [2004].

Theorem 1 Assume that:
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1. U ⊂ Rm is compact. X ⊆ Rn is connected and the origin is contained
in the interior of U ×X.

2. The vector �eld f : Rn × Rm → R
n is continuous in u and locally

Lipschitz in x and satis�es f(0, 0) = 0.

3. F : Rn × U → R is continuous in all arguments with F (0, 0) = 0 and
F (x, u) > 0∀(x, u) ∈ Rn × U\{0,0}.

4. The terminal penalty E : Ω→ R is continuous with E(0) = 0 and that
the terminal region Ω is given by Ω := {x ∈ X|E(x) ≤ e1} for some
e1 > 0 such that Ω ⊂ X.

5. There exists a continuous local control law u = k(x) such that k(x) ∈ U
for all x ∈ Ω and

∂E

∂x
f(x, k(x)) + F (x, k(x)) ≤ 0, ∀x ∈ Ω

6. The NMPC open-loop optimal control problem 2 has a feasible solution
for t = 0. Then for any sampling time 0 < δ ≤ Tp the nominal closed-
loop system given by equations 4.13 and 4.14 is asymptotically stable
and the region of attraction R is given by the set of states for which
the open-loop optimal control problem has a feasible solution.

The NMPC solution presented so far, is based on the assumption of a
perfect match between the model and the actual system. It is not likely that
there exists a perfect match, or that all disturbances are modelled perfectly.
As discussed in Allgöwer et al. [2004] one can distinguish between the inher-
ent robustness properties of NMPC and NMPC designes that takes model
uncertainty into consideration. The inherent robustness is due to the similar-
ity between NMPC and optimal control. Many studies has been carried out
within this �eld, and results on inherent robustness can be found in Magni
and Sepulchre [1997], or discrete time results in Scokaert et al. [1997].

Di�erent NMPC schemes that take uncertainty into account are discussed
in Jalali and Nadimi [2006], where the authors divide uncertainty into two
main parts; model uncertainty and disturbance uncertainty. Di�erent meth-
ods approaching the uncertainty problem, such as Linear Matrix inequality
(LMI) based robust methods, Min-Max robust MPC methodes, and methods
based on standard convex optimization problems are discussed.
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4.2.3 Feasibility

There are usually two di�erent types of constraints, input and output con-
straints. Input constraints are usually imposed by physical limitations on ac-
tuators, and these constraints will always be present. The input constraints
can not be exceeded under any circumstances, and it is a advantage to in-
clude these limitations in the control law. In the well, the input constraint will
be the maximum and minium valve opening.(Equivalent to a closed valve).
Since the input constraints can not be exceeded, they are implemented as
hard constraints.

It is sometimes desired to keep the output constraints within a operation
range, due to e.g. safety, process equipment limitations or product speci�ca-
tions.(As discussed in Chapter 1, the BHP has a operational range within the
fracture pressure and the formation pressure.)In the presence of disturbances,
it can sometimes be impossible to keep the output within the constraints. If
the output constraints are implemented as hard constraints, it can lead to
an infeasible solution, meaning that there exists no solution to the problem.
Clearly an infeasible solution and a subsequent calculation failure must be
avoided in an online controller.

One solution to avoid the problem of infeasibility is described in Zheng
and Morari [1995], where a slack variable is introduced. The slack variable
softens the hard constraints. A corresponding quadratic penalty on exceeding
the constraints are introduced, allowing the value to exceed the constraints.
Increasing the penalty value will decrease the violation.

Note that it is not necessary to �nd an optimal solution to the optimiza-
tion problem to gurantee stability. It is only necessary to �nd a feasible
solution that reduces the value function. [Michalska and Mayne, 1993]

4.3 SEPTIC

StatoilHydro's Estimation and Prediction Tool for Identi�cation and Control
(SEPTIC) is StatoilHydros application for MPC solutions. At present there
are approximatly 75 online SEPTIC applications on o�shore and onshore
installations in Norway and Denmark. As stated in Strand and Sagli [2003],
all running SEPTIC applications have been implemented with experimental
SISO step respons models. However, a solver for NMPC has been developed
and implemented in to SEPTIC. The algorithm can be found described in
Meum [2007] and Torpe [2007], and a brief summary of the method will be
given here. Their approach is based on a control algorithme presented in
de Oliveira and Biegler [1995], where the following rutine is used:
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1. The iteration count for the QP subproblem is set to zero

2. Starting with the initial conditions, calculate the input sensitivity for
the nominal trajectory

3. Solve the QP sub problem, and �nd the search direction

4. Run a linesearch algorithme to �nd the appropriate step length

5. Control wether or not the convergence criteria have been satisi�ed.
If satis�ed, the �rst element in the input trajectory is applied to the
system.

6. If the convergence criteria are still not satis�ed, check the QP iteration
count. If it is below the maximum allowed iterations, go back to step
2. If the maximum iterations are reached, the algorithme is brought to
a halt, and the best input trajectory is returned.

4.3.1 Sensitivity

The next step is to calculate the sensitivity. In Septic, the sensitivities from
input to output are calculated directly by simulating the system from tk to
tk+Tp. The inputs are pertubated with a small, �nite value. The changes
in the outputs are obtained, and the sensitivity are calculated. The pertur-
bation value must be chosen with care. A too small pertubation may be
sensitive to noise, and a too large perturbation may result in inaccurate sen-
sitivity function, which can cause less accurate control or stability problems.
A deeper discussion on the topic of calculating sensitivity can be found in
Silva and Oliveira [2002].

4.3.2 QP Solver

Schittkowski [2005] describes a Fortran subroutine QL, which solves strictly
convex QP problems. The problem is solved subject to linear equality and
inequality constraints by the primal-dual method described in Goldfarb and
Idnani [1983]. The main advantage of the primal-dual method is that there
is no need for a comprehensive search of a feasible starting point. The code
solves the following strictly convex QP problem

min 1
2
xTQx+ dTx (4.15a)

aTj x+ bj = 0 , j = 1, ...,me (4.15b)

aTj x+ bj ≥ 0 , j = me, ...,m (4.15c)
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where Q is a positive de�nite matrix. When solving the problem, violated
constraints are added to an active set until the optimal solution is found. At
each step, the minimal object function subject to the new active set is found.
If all linear constraints and bounds are full�lled, the optimal solutions are
found, and the calculations terminate.

The fortrant code presented in Schittkowski [2005] has earlier been rewrit-
ten into C++, and implemented as the QP solver in SEPTIC.

4.3.3 Linesearch

When the original NP problem is approximated with QP sub problems, there
is a posibility of the approximation beeing unsatisfactory, and that the so-
lution found may cause the algorithme to diverge, whereupon a linesearch
algorithme is needed. Nocedal and Wright [1999] present a backtracking line-
search algorithme, where a full step is �rst considered. Then smaller steps
are considered until an acceptible step length is found.

Choose α̂ > 0, ε,c ∈ (0, 1); set α← α̂;
Repeat until f(xk + αpk) ≤ f(xk) + cα∇fTk pk
α← εα

end(repeat)

Terminate with αk = α

where pk is the search direction. This backtracking linesearch algorithme
is implemented in SEPTIC with only minor modi�cations.

4.3.4 Convergence

In this step of the algorithme it must be decided whether or not the conver-
gence criteria is full�lled. Di�erent convergence criterias can be considered,
such as linearization error, change in object function and change in input
parameters. The convergence criterium which is implemented in SEPTIC is
changes of the input parameters. The explicit criterium used is:∑

k

||∆uk||2 < MVnorm (4.16)

where MVnorm is the convergence criterium. The norm should be given a
small enough value to ensure that a su�cient number of QP's are solved at
each iteration.
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4.4 Implementation

To predicit the future behavior of the well system, the equations developed
in chapter 2 and the observer equations presented in chapter 3 are used. The
equations are restated here. At each timestep the future pump and choke
pressure are calculated using the di�erential equations 4.17 and 4.18, where
the volume of the drillpipe and the annulus is assumed to be constant.

VD
β

˙̂pp = qin − q̂bit (4.17)

VA
β

˙̂pc = q̂bit + qbp − Cdu

√
2p̂c
ρ(p)

(4.18)

where u = A(x). Equation 4.18 is a combination of equation 2.29 and 2.13.
The linear simpli�ed density function is used to predict the future density

ρ̂d = ρd,0 +
ρd,0
βd

(p̂bit − p0) (4.19)

The future value of q̂bit is not known, and has to be calulated. To calculate
the value, the observer equations are used to predict the future behavior.
And with the help of equation 4.20 - 4.22, q̂bit is predicited.

At each timestep the future behaviour of the system is predicted through
the prediction horizon. During this prediciton horizon the value of the pa-
rameter θ1 is held constant. The prediction will start with initial conditions
equal to the current state of the process.

pbit = pc + (Mθ1 − Fd)|qbit|qbit +Ma(
1

M
(pp − pc)− θ1|qbit|qbit

+ θ2hbit) + ρd(p)ghbit (4.20)

q̂bit = ξ̂1 − l1pp (4.21)

˙̂
ξ1 = −l1

βd
Vd
q̂bit − θ̂1|q̂bit|q̂bit + θ̂2hbit +

1

M
(pp − pc) + l1

βd
Vd
Qin (4.22)

As discussed in section 3.4, these equations are not valid at zero �ow. Again
the same method handling the issue is used. When

qbit = 0 and (
1

M
(pp − pc) + θ2hbit) < 0 (4.23)
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the following modi�cations are made to the prediction:

˙̂
ξ1 = l1

βd
Vd
qin (4.24)

p̂bit = pc + (ρd(p)g −Mθ̂2)hbit (4.25)

When implementing these models as the base of the NMPC scheme, a
choice must be made which system inputs will be used to control the BHP.
The available input with the fastest repsonse is the topside choke valve. The
�ow from both pumps can also be controlled under normal conditions. The
slowest variable to control the BHP is the density of the mud. When changing
the composition of the mud, the entire drillpipe and annulus has to be �lled
up with new mud, before the new steady-state is obtained. Since there are
more available inputs then variables to control (sometimes refered to as a
fat plant), an optimal value of the CVs could be set. However, since the
main objective in this report is to focus on the pipe connection procedure
(described in section 5.4), where the main pump has to be shut down, the
pumps are modelled as disturbances. And since changing the composition of
the density is a very slow way to change the pressure in the well, the density
will also be modelled as a disturbance. The design choices are listed in table
4.1.

MV u Topside choke opening
CV p̂bit BHP

qin Main pump �ow
DV qbp Back pressure pump �ow

ρ Mud density

Table 4.1: NMPC variables

In SEPTIC, input blocking is used to reduce calculation time. When in-
put blocking is used, the calculated input is held constant for a time period.
And the optimization problem is only solved at certain points of the pre-
diction horizon. Each timestep, where the optimization problem is solved,
increases the time needed to calculate the problem. The prediction horizon
is set to 500 seconds in all simulations in chapter 5.
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Chapter 5

Pressure Control - Simulations

and Results

The main result of the simulations will be presented in this chapter. The
performance of the NMPC controller will be analyzed, but in order to analyze
it, it is convinient to compare it with another controller. In this section the
NMPC scheme will be compared against a standard proportional integral
(PI) controller. The PI-controller will be given by the following equations:

uk = uk−1 +Kp((ek − ek−1) +
T

2Kτ

(ek + ek−1)) (5.1)

where
ek = pbit,ref − p̂bit (5.2)

and T is the time length of one iteration. Kp and Kτ are controller tuning
parameters. The reader may refer to Balcen et al. [2003] for a more thorough
introduction to PI-control. It is important to observe that both controllers
try to control the estimated pressure. The pressure from the simulator, which
will be assumed to be the real pressure in the well, is also plotted, so that
the controllers impact on this pressure could be observed.

5.1 WeMod

The well will be simulated with the dynamic well simulator,WeMod. WeMod
is a commercially available software developed by the International Research
Institute of Stavanger (IRIS). The user can through a MATLAB interface set
the valve opening, the main and annulus pump �ow, and the density of the
drilling �uid. Based on this values all the pressures and �ow characteristics
through the well is calculated. A speci�c pore pressure and permeability can
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be given as an input to the simulator, resulting in a dynamic in�ux from
the reservoir. During the following simulations, the in�ux from the reservoir
is turned o�. This results in a major simpli�cation of the control problem.
As discussed in chapter 1, the in�ux from the well can contribute to a lower
BHP, resulting in a possible kick or an uncontrolled blowout. The interface
between SEPTIC and WeMod is written in C++, and at each timestep, the
measurements from WeMod is copied to SEPTIC. SEPTIC then optimizes
the problem, and calculates a value of the inputs. These inputs are then
copied back to WeMod which then simulates one timestep further.

5.2 Parameter Identi�cation

All the parameters in the model and the controller have to be �tted to the
simulator. The parameters used are listed in table 5.1. Most of the param-
eters in the table are taken from Imsland [2007], and some are experimental
adjusted to the simulator.

Parameter Value Unit
βa 7000
βd 11000
Fa 15831
Fd 176640
G 9.81 [m/sec]
Hbit 2000 [m]
Kε 0.05

Ma 1621 [10−5x kg
m4 ]

Md 6064 [10−5x kg
m4 ]

M 7685 [10−5x kg
m4 ]

Pp(0) 10 [bar]
qbit(0) 0.0167 [m3/sec]

ρa 0.0125 [10( − 5)x kg
m3 ]

ρd 0.0125 [10( − 5)x kg
m3 ]

Va 96.1327 [m3]
Vd 28.2743 [m3]
p0 183 [bar]
Kp -0.0025
Ktau 15
Cd 0.0045

Table 5.1: Parameters used in simulations
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5.3 Reference Tracking

The �rst test scenario is reference tracking. In this scenario, the controllers
will be tested on their ability to follow reference variation. Every 500 second
the reference is changed by 10 bars. The initial reference on the BHP is 270
bars, and it is increased every 500s until it reaches 320 bars. After reaching
this pressure, the reference is decreased at the same speed, until the initial
reference at 270 bars is reached. There are no disturbances present in this
scenario, since the pump �ows are kept steady. The results are presented in
�gure 5.1 (PI control) and in 5.2 (NMPC).

The �gures where the simulations are presented, consist of �ve di�erent
subplots:

1. The valve opening

2. The estimated BHP

3. BHP from the simulator

4. Both the estimated pressure and the BHP from WeMod is plotted to-
gether for comparison

5. The ε value, which is added to the observer equation

All simulations are carried out with one iteration every second. And at
each second the NMPC optimization problem is solved.
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Figure 5.1: Pi control: Reference tracking
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Figure 5.2: NMPC: Reference Tracking
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As illustrated in �gure 5.1 and 5.2, both the controllers have the ability
to track the reference without any problems, when there are no disturbances
present. There is one important comment to be made. The PI controller is
tuned much tighter then the NMPC controller. The reason for this choice
of tuning parameters is not obvious in this scenario, but it is due to the
controllers ability to reject disturbances. Since the PI controller has been
tuned aggressively, it follows the reference trajectory very well, but it comes
with a drawback. The usage of the topside choke is aggressive, and the
controller makes the valve overshoot its resting values by a factor of 0.5-6
each time the setpoint is changed. The NMPC controller is not tuned as
aggressively as the PI controller, and there is no excessive movement of the
valve. There are also a penalty on changing the opening of the choke in the
NMPC controller.
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5.4 Pipe Connection

If a jointed pipeline is used during drilling, there will be an interruption in
the drilling operation each time a new drillpipe is connected. The drillpipe
usually consist of pipe segments 100 feet long. During the pipe connection
procedure the main pump has to be disconnected, and this will lead to loss
of circulation. This procedure is illustrated in �gure 5.3. The consequences
of lost circulation are variations in the bottomhole pressure, due to reduced
friction loss. When circulation is lost, the measurement of the BHP will not
be available, since the system is dependent on circulation.[Nygaard, 2006]

Figure 5.3: Pipe connection procedure[Nygaard, 2006]

To simulate the pipe connection, the annulus pump �ow rate is decreased
from a �ow rate of 1000m3/min to zero �ow rate. 30 seconds after the annulus
pump reduces its �ow, the �ow from the backpressure pump is increased from
200m3/min to 400m3/min. Figure 5.4 shows the operation of the pumps.
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Figure 5.4: Pump �ow

The results of the simulations are presented in �gure 5.5-5.8. The �rst
two simulations, �gure 5.5 and 5.6 are pipe connection procedures with a
setpoint of 280 bars. The next two, �gure 5.7 and 5.8, are the results of the
same scenario, but with a set point of 320 bars.
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Figure 5.5: PI control: Pipe connection - 280 bar setpoint
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Figure 5.6: NMPC: Pipe connection - 280 bar setpoint
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Figure 5.7: Pi control: Pipe Connection - 320 bar setpoint
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Figure 5.8: NMPC: Pipe connection - 320 bar setpoint
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The results show that when the NMPC scheme is used, the BHP is kept
within a range of ±2.0 bars from the setpoint, even though the control is
performed on the estimated value and not directly on the BHP. As shown
from the simulations with a setpoint of 280 and 320 bars, the performance
of the NMPC scheme is indi�erent to the value of the setpoint. This is
were the NMPC scheme has its strength compared to linear controllers. The
performance of a linear controller, such as the PI-controller, will be a�ected
by the variations in setpoint. A PI-controller may be tuned to perform well
at one speci�c pressure, or to one speci�c scenario, but deviation from this
setpoint will reduce the performance of the conroller. In the simulations
with PI-control, �gure 5.7 and 5.5, it can be seen that the performance of
the controller is a�ected by di�erent setpoint values. The reason why the
PI-controller had to be tuned aggressivly is ensure its ability to reject noise.
The �ow from both pumps are modelled as disturbances, and if the controller
were less aggressivly tuned, it would lead to larger variations in the BHP
when the �ow rates are changed. The maximum deviation from the setpoint
when using the PI-controller, is 3 bars. The target of this report has been
to maintain the BHP within a range of 2.5 bars from the setpoint, which
the PI-controller is not abel to do. When trying to maintain the pressure
within these boundaries, it is crucial that the estimated pressure is close to
the BHP.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

• During drilling operations, large variations in the BHP can be observed.
Minimization of these variations is a key factor for the success of the
well. Large economical bene�ts can be the result of a successful well.
Managed Pressure Drilling gives the possibility of increased control of
the BHP and will in some cases make 'undrillable' wells drillable

• The modi�cations implemented in the observer has improved the pre-
formance of the obsever. The reduction of the di�erence between the
estimated BHP and the real value of the BHP has proved to be impor-
tant when trying to control the BHP within narrow constraints.

• An NMPC scheme that full�lls the objective of keeping the BHP within
the range of ± 2.5 bars during a pipe connection procedure has been
developed. The performance of the NMPC controllers is indi�erent to
the operation point compared to a linear PI controller.

• A low order model of the well has turned out to be su�cient to both
estimate and control the pressure in the well
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6.2 Future work

The model is essential for both the implementation of the observer and the
NMPC scheme. The accuracy of the estimation is strongly dependent on the
model's ability to describe the �uid mechanics. The �ow in a well can under
normal conditions consist of liquids, gas and solids, known as a multi-phase
�ow. The �ow patterns in a multi-phase �ow are complex, and are not easily
described by simple equations, as those used in this report. However, the
models have showed to be adequate for both estimating and controlling the
BHP when gas is not present in the well. The model should be developed fur-
ther to take gas into consideration, and to describe the dynamics in the well
when a kick occurs. An adequate description will be essential in estimating
the BHP, and to be able to handle it by an NMPC scheme.

When using this simpli�ed model to control the pressure in the well, some
key parameters should be estimated for control purposes. One important
parameter is the compressibility in the annulus, βa, which will be greatly
a�ected both by gas in�ux and cuttings. Estimating βa is crucial for the
performance of the controller, while the prediction will be o� if the parameter
value is wrong.

When drilling into the ground, the temperature increases with increasing
depth. The temperature will also be dependent on the temperature of the
mud, which can be controlled by mud heaters. The temperature e�ects in
the well has been neglected in the model. The temperature will e�ect both
the density of the mud, and the viscosity. Therefore the temperature e�ects
should be implemented in the model to improve the accuracy. It can also
be relevant to control the temperature in the well, to avoid formation of
hydrates.

In this report the e�ects of surge and swab operations (Insertion and
extraction of the drillpipe) has not been discussed. Extraction of the drillpipe
is one of the main reasons why kicks occur. Controlling the BHP while these
operations are carried out, will have great potential for reducing unwanted
situations.
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Appendix A

Variables in the NMPC

Application

Cvr: BHP_STAMNES_ESTIMATE

Text1= ""

Text2= ""

Mode= ACTIVE

Auto= OFF

PlotMax= 400

PlotMin= 200

PlotSpan= -1

PlotGrp= 0000000000000000000000000001000

XvrMnu= 0000000000000000

Nfix= 3

MaxChg= -1

Unit= "Bar"

Meas= 300

GrpMask= 0000000000000000000000000000001

GrpType= 0000000000000000000000000000000

Span= 50

SetPntOn= 280

HighOn= 285

LowOn= 275

SetPntPrio= 2

HighPrio= 1

LowPrio= 1

Fulf= 200

HighPnlty= 20

LowPnlty= 1000

HighLimit= 1000
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LowLimit= 1000

RelxParam= 4 1 30 80 150

FulfReScale= 0.001

SetpTref= 1

BiasTfilt= 0

BiasTpred= 0

ConsTfilt= -1

Integ= 0

TransformType= NOTRANS

BadCntLim= 0

DesHorz= 0

Neval= 5

EvalDT= 0

KeepTargets= OFF

Mvr: CVALVE

Text1= ""

Text2= ""

Mode= TRACKING

Auto= OFF

PlotMax= 1.4

PlotMin= 0

PlotSpan= -1

PlotGrp= 0000000000000000000000000000010

XvrMnu= 0000000000000000

Nfix= 4

MaxChg= -0.01

Unit= "%"

Meas= 1

GrpMask= 0000000000000000000000000000001

GrpType= 0000000000000000000000000000000

Span= 0.05

HighOn= 0.1

LowOn= 0.00001

ProcessValueBAD= 0

IvOff= 0

MaxUp= 1

MaxDn= -1

MovePnlty= 100

IvRoc= -1

IvPrio= 99

Fulf= 1

FulfReScale= 0.1
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Price= 0

Blocking= 9 2 4 7 11 16 22 50 100 200

Dvr: MAIN_PUMP_FLOW

Text1= ""

Text2= ""

Mode= TRACKING

PlotMax= 1000

PlotMin= 0

PlotSpan= -1

PlotGrp= 0000000000000000000000000000001

XvrMnu= 0000000000000000

Nfix= 3

Unit= "kg/s"

Meas= 1000

GrpMask= 0000000000000000000000000000001

GrpType= 0000000000000000000000000000000

Span= 300

Dvr: ANNULUS_PUMP_FLOW

Text1= ""

Text2= ""

Mode= TRACKING

PlotMax= 500

PlotMin= 0

PlotSpan= -1

PlotGrp= 0000000000000000000000000000001

XvrMnu= 0000000000000000

Nfix= 3

Unit= "kg/s"

Meas= 200

GrpMask= 0000000000000000000000000000001

GrpType= 0000000000000000000000000000000

Span= 100

Dvr: Density

Text1= ""

Text2= ""

Mode= TRACKING

PlotMax= 0.04

PlotMin= 0.01

PlotSpan= -1

PlotGrp= 0000000000000000000000000000001
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XvrMnu= 0000000000000000

Nfix= 3

Unit= "kg/s"

Meas= 0.0125

GrpMask= 0000000000000000000000000000001

GrpType= 0000000000000000000000000000000

Span= 0.01



Appendix B

Derivation of the Equation of

Continuity

An elemental control volume in carthesian coordinates are used to derive
the basic di�erential equation. The elemental control volume is in�nitesimal
and it is illustrated in �gure B.1. There is a �ow through all six faces of
the control volume, which are approximated to be one-dimensional. The
di�erential equation for the control volume will be∫

CV

∂ρ

∂t
dV +

∑
mout −

∑
min = 0 (B.1)

The volume integral can be approximated to the di�erential term, since the
elemental volume is so small:∫

CV

∂ρ

∂t
dV ≈ ∂ρ

∂t
dxdydz (B.2)

If the in�ow through the right surface of the conrol volume is assumed to
be equal to ρu, then the out�ow will be ρu+ ∂

∂x
(ρu)dx. This is the situation

illustrated in �gure B.1. The �ow through all the six surfaces are listed in
table B.1. The equations in table B.1 is inserted into equation B.1

Table B.1: 3-Dimensional Flow[White, 2003]
Face Inlet mass �ow Outlet mass �ow

x ρudydz (ρu+ ∂
∂x

(ρu)dx)dydz
y ρvdydz (ρv + ∂

∂y
(ρv)dy)dxdz

z ρwdydz (ρw + ∂
∂w

(ρw)dz)dxdy

∂ρ

∂t
dxdydz +

∂

∂x
(ρu)dxdydz +

∂

∂y
(ρv)dxdy +

∂

∂z
(ρw)dxdydz (B.3)
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Figure B.1: Elemental Control Volume

Cancel out the element volumes.

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (B.4)

This is often referred to as the equation of continuity because it requires
no assumptions except that of density and velocity as continuum functions.
The latter states that the �ow may be either steady or unsteady, viscous or
frictionless, compressible or incompressible [White, 2003]. This result will
also be used in chapter C, when deriving the equation of motion. For the
well an assumption of one dimensional �ow in the x-direction (vertical �ow)
will be made. This assumption reduces the full continuity equation to a
one-dimensional expression.

∂ρ

∂t
+

∂

∂x
(ρu) = 0 (B.5)



Appendix C

Derivation of the Equation of

Momentum

In this chapter linear momentum will be discussed. Newtons second law
of motion is used in conjunction with the approach from section 2.3. An
in�nitesimal elemental volume, using the linear momentum relation∑

F =
∂

∂t
(

∫
CV

Vsρ dV) +
∑

(ṁVs)out +
∑

(ṁVs)in (C.1)

will be considered. Vs is a vector describing the speed of the �uid in carthesian
coordinates, Vs = [ u v w]. Again the volume integral, due to it's small
volume, can be approximated to

∂

∂t
(Vsρ dV) ≈ ∂

∂t
(ρVs) dx dy dz (C.2)

The momentum �ux occurs on all six surfaces of the elemental volume, and
the size of the �ux on each surface can be found in table C.1.

Table C.1: Momentum Flux[White, 2003]
Face Inlet Momentum Flux Outlet Momentum Flux

x ρu Vs dy dz (ρu Vs +
∂
∂x

(ρu Vs) dx) dy dz
y ρv Vs dy dz (ρv Vs +

∂
∂y

(ρv Vs) dy) dx dz

z ρw Vs dy dz (ρw Vs +
∂
∂w

(ρw Vs) dz) dx dy

These terms are inserted into equation 2.30 resulting in

∑
F = dxdydz

[
∂

∂t
(ρVs) +

∂

∂x
(ρuVs) +

∂

∂y
(ρvVs) +

∂

∂z
(ρwVs)

]
(C.3)
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Using the method described in White [2003] and splitting the terms in the
bracket gives:∑

F = dxdydz

[
∂ρ

∂t
+ Vs(

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw))

+ρ(
∂Vs
∂t

+ u
∂Vs
∂x

+ v
∂Vs
∂y

+ w
∂Vs
∂z

)

]
(C.4)

The left part of the equation is the continuity equation ( Derived in chapter
2.3, equation B.4), which is equal to zero. The resulting part of the equation
is therefore:∑

F = dxdydz

[
ρ(
∂Vs
∂t

+ u
∂Vs
∂x

+ v
∂Vs
∂y

+ w
∂Vs
∂z

)

]
= ρ

dVs
dt
dxdydz (C.5)

If the assumption of a one dimensional vertical �ow is used, the resulting
equation will be: ∑

F = ρ
dVs
dt
A(x)dx (C.6)
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