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Problem Description
The production of oil and gas from a reservoir with a number of production wells and in some
cases injection wells for pressure support is typically based on simulations and optimisation  with
a reservoir model (e.g. ECLIPSE). Long and short term plans are made and production engineers
follow up these plans by daily or weekly changing well choke positions, considering situations,
such as topside processing capacity constraints, equipment failures, critical reservoir pressure,
max sand free rate, etc. The idea of this exercise is to see if this model based optimization can be
solved by model predictive control (MPC). Linear model representations were investigated in an
MSc project, and it was concluded that the responses were highly nonlinear. A potential for
nonlinear MPC was found. The idea is to use ECLIPSE for predictions.

Tasks:
1. Perform a literature review on MPC with a particular focus on nonlinear MPC.
2. Implement a nonlinear MPC in the in-house Statoil MPC tool, SEPTIC
3. Develop an interface between SEPTIC and ECLIPSE for simulations and model predictions
4. Tune and test the NMPC for two different reservoir models, assuming no model errors.
5. Discuss the NMPC algorithm performance and the potential of optimal reservoir control.
6. Write a paper/abstract to a selected conference.

Assignment given: 08. January 2007
Supervisor: Ole Morten Aamo, ITK





Summary

Recent years advances within well deployment and instrumentation technology
offers huge potentials for increased oil recovery from reservoir production. Wells
can now be equipped with controllable valves at reservoir depth, which may
possibly alter the production profitability of the field completely, if the devices
are used in an intelligent manner. This thesis investigates this potential by
using model predictive control to maximize reservoir production performance
and total oil production.

The report describes an algorithm for nonlinear model predictive control, using
a single shooting, multistep, quasi-Newton method, and implements it on an
existing industrial MPC platform - Statoil’s in-house MPC tool SEPTIC. The
method is an iterative method, solving a series of quadratic problems analogous
to sequential quadratic programming, to find the optimal control settings. An
interface between SEPTIC and a commercial reservoir simulator, ECLIPSE,
is developed for process modelling and predictions. ECLIPSE provides highly
realistic and detailed reservoir behaviour and is used by SEPTIC to obtain
numerical gradients for optimization.

The method is applied to two reservoir examples, Case 1 and Case 2, and
develops optimal control strategies for each of these. The two examples have
conceptually different model structures. Case 1 is a simple introduction model.
Case 2 is a benchmark model previously used in Yeten, Durlofsky and Aziz
(2002) and models a North Sea type channelized reservoir. It is described by
a set of different realizations, to capture a notion of model uncertainty. The
report addresses each of the available realizations and shows how the value of
an optimal production strategy can vary for equally probable realizations.

Improvements in reservoir production performance using the model predictive
control method are shown for all cases, compared to basic controlled references
cases. For the benchmark example improvements range up to as much as 68%
increase in one realization, and 30% on average for all realizations. This is an
increase from the results previously published for the benchmark, with a 3%
average. However, the level of improvement shows significant variation, and is
only marginal for example Case 1. A thorough field analysis should therefore be
performed before deciding to take the extra cost of well equipment and optimal
control.
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Introduction

1 “(...), nothing arises in the universe in which one

cannot see the sense of some maximum or minimum.”

- Leonhard Euler

In a time experiencing increasing energy demands, and estimated depletion of
the already mapped out oil reserves within the next 50 years, there is a obvious
need for enhancing the recovery factor of existing as well as for future reservoirs.
Reservoir management has traditionally been performed on the basis of long and
short term plans made by production engineers in a manual, ad hoc fashion.
Reservoir models were generally viewed as to large and computer resources to
scarce, to apply full scale optimization of the production chain. Meanwhile, on
the downstream end of the production line and in process industry in general,
advanced control techniques have been gradually developing and implemented
with prosperous results.

Recent technological advances have opened for new possibilities within reservoir
production. Mapping techniques like 4D seismic offers better quality reservoir
model estimates for predictions, smart wells are equipped with valves downhole
and multiphase flow meters to enhance control and computer speed has reached
an acceptable level. This has made the oil industry spawn research programs to
address the issue of closed-loop reservoir management. The goal is ultimately to
apply real-time, optimal control to reservoir production. Inspired by the rest of
the process community, one solution may be to use a model based optimization
scheme. Such methods offer robust control to the type of constrained problems
reservoir control represents.

This report seeks to investigate two main questions related to this topic. The
first question treats the use of model predictive control (MPC) for reservoir
optimization. Other authors have previously addressed reservoir production
using optimal control theory, but further investigation using the concept of
MPC was found necessary. The second question concerns the use of a reservoir
simulator, ECLIPSE, for modelling purposes. The author has previously
investigated reservoir optimization using system identification theory to derive
linear model representations from ECLIPSE in Meum (2006). It was concluded
that the reservoir model responses where highly nonlinear, suggesting the use
of a nonlinear MPC (NMPC) approach instead.

An NMPC algorithm is developed and implemented in Statoil’s MPC platform,
SEPTIC. The algorithm is customized to handle black-box models and an
interface between SEPTIC and ECLIPSE is established. The application is then
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tested with two reservoir example models. Under the assumption of a perfect
model simulations are carried out using the same models both for predictions
and process simulations.

1.1 Structural contents

This report is structured in three main parts. The first part concerns the subject
on MPC. A literature review on the topic is presented in Chapter 2, outlining a
general picture of the MPC concept. Some basic connections to optimal control
theory is described, along with a short historical survey. The chapter ends
with a quick look on principles of NMPC and important controller properties.
Chapter 3 develops an NMPC algorithm to be implemented in SEPTIC. The
chapter describes the algorithm down to a pseudo code detail level, before
applying it to a nonlinear test case model to present the algorithm performance.

The second part focuses on the reservoir production problem and reservoir
simulation. Chapter 4 gives a description of the problem overview along
with a presentation of previous work on the subject. Some of the major
contributions are mentioned, with a short explanation of their scope and results.
A quick introduction to reservoir simulation is given in Chapter 5, along with
a description of basic ECLIPSE properties.

The third part describes the details of the reservoir examples investigated in
this report and the simulation results, in Chapters 6 and 7. Finally conclusions
and reflections on further work given in Chapter 9.
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Model Predictive Control: A Short Survey

2
MPC is one of today’s most commonly used techniques within advanced control.
Although MPC is the widely used term and by now the conventional name of
this technique, one can also find the term receding horizon control (RHC) used
on occasions in older literature. For simplicity this report will mostly refer to
the former term, though RHC will be used when found appropriate. Mayne,
Rawlings, Rao and Scokaert (2000) describes MPC as:

a form of control in which the current control action is obtained by
solving on-line, at each sampling instant, a finite horizon open-loop
optimal control problem.

By repeatedly solving the open-loop control sequence at each time step, the
controller has an inherently closed-loop effect. As the new control sequence is
calculated from present state of the system1, a stabilizing feedback control can
be obtained. This is where this technique has its main difference from other
pre-computed, optimal control laws. The control law is calculated for a given
horizon, Tc, and the dynamic behaviour of the system is predicted for a horizon
Tp, where Tc ≤ Tp. As the controller moves forward in time, so does the horizon
(hence the mentioned term RHC). The basic idea of this is illustrated in Fig. 2.1.
A system is sought to be controlled at a set point, given by r(t). The controller
calculates an optimal input sequence, parameterized as a piecewise constant
function of time, for the control horizon. As time progresses all horizons are
moved ahead as well, so they slide along by one sampling interval at each step.

The MPC is now described in a more formal, mathematical formulation,
following notation from Allgöwer, Findeisen and Nagy (2004). Consider a
general class of continuous time systems described by some differential equation

ẋ(t) = f(x(t), u(t)), x(t0) = x0 (2.1)

which is subject to input and state constraints of the form:

u(t) ∈ U, ∀ t ≥ t0, (2.2)

x(t) ∈ X, ∀ t ≥ t0. (2.3)

1In case of the system state not being fully measured, but estimated in an observer, the
best estimate available is used as the basis for the calculation
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prediction horizon Tp

closed-loop control

open loop input 

u*(t)

predicted system response

Figure 2.1: Principle of MPC

The inputs are given in the vector u(t) ∈ Rm and x(t) ∈ Rn denote the state
vector, and the sets U and X are assumed to satisfy necessary topological
properties. The optimal open-loop control is given by solving problem at every
time instant:

min
ū(·)

J(x(t), ū(·)) =

∫ t+Tp

t

F (x̄(τ), ū(τ))dτ (2.4a)

subject to

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(t) = x(t) (2.4b)

ū(τ) ∈ U, ∀ τ ∈ [t, t+ Tc] (2.4c)

ū(τ) = ū(t+ Tc), ∀ τ ∈ [t+ Tc, t+ Tp] (2.4d)

x̄(τ) ∈ X, ∀ τ ∈ [t, t+ Tp], (2.4e)

where Tp and Tc refers to the control horizons already introduced above. The ū
denotes internal controller variables, and x̄ refers to the system response to the
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input vector ū, i.e. the solutions to (2.4b). The cost functional J is a sum of
performance costs, F (·), at each time step. The cost function can in principle
take any shape or form, but often arises from some economical consideration on
the systems operational point (xop, uop) through a quadratic form:

F (x, u) = (x− xop)Q(x− xop) + (u− uop)R(u− uop). (2.5)

Thus, the cost is given as a result of deviations from the operational set point,
specified by positive definite weighting matrices Q and R. Often one can also
find additional terms in F which penalize movements of the inputs where that
is appropriate.

We define the solution to (2.4) as ū∗(t; x(t)), where the first set of inputs are
applied to the system:

u(t) = ū∗(t0; x0) = ū∗0. (2.6)

The optimal cost yielded by ū∗ is then a function of the state x(t) alone. This
optimal cost is often referred to as the value function

V (x) = J(x(t), ū∗(t; x(t)). (2.7)

This chapter gives a short review of selected portions of the existing theory
available today on the topic of MPC. It does by no means set out to include
every aspect of the subject, as that would be far out of scope for this report.
This review relies heavily on the reviews made by Mayne et al. (2000), Qin and
Badgwell (2003), Morari and Lee (1999), Allgöwer et al. (2004) and the book
by Maciejowski (2002). The reader should assume to find everything mentioned
here in these excellent papers. Citations are made in the largest extent
possible, while simultaneously trying to maintain some degree of readability.
The interested reader should in any case seek to investigate these surveys for a
more comprehensive picture. Also recommended is the book by Allgöwer and
Zheng (2000). Now, we will first focus on the underlying fundamentals which
make up MPC by outlining the historical development from linear theory. Then
we expand our horizon and move the attention the work made on nonlinear
MPC (NMPC), arising new issues on i.e. solution time, algorithm design and
feasibility considerations to name a few. The chapter ends with some discussion
on the topics of stability and robustness for MPC in general and NMPC in
particular.

2.1 The History and Evolution of MPC

Predictive control is the one general class of advanced control methodologies
to have a significant impact on the practice in industrial control engineering,
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Maciejowski (2002) states. Much of this class is covered by varieties of MPC,
though there other subclasses can be found which share common properties with
MPC (e.g. general predictive control). We will here only consider MPC, without
much loss of generality. MPC started out as an industrial success only, because
the advantages of this control were first recognized by the industrial engineering
community alone. It was within the industry that much of the early work was
done on the topic, covering only the analysis necessary to perform satisfactory
performance. Only in the past 20-25 years have MPC gotten the attention it
deserves from academia, which has made important contributions to clarifying
the properties of stability and robustness for predictive control.

In the following of this subsection we consider a discrete, linear time-invariant
(LTI) model

xk+1 = Axk +Buk (2.8a)

yk = Cxk. (2.8b)

2.1.1 Origin of MPC

Though MPC in the strong sense evolved within communities of industrial
engineering, it did in fact evolve from important academic work done in the
1960s on the topic of optimal control. Mayne et al. (2000) states that MPC
links

Hamilton-Jacobi-Bellman theory (Dynamic Programming), which
provides sufficient conditions for optimality and a constructive
procedure for determining an optimal feedback controller u = κ(x),
and the maximum principle, which provides necessary conditions
of optimality and motivates computational algorithms for the
determination of the optimal open-loop control ū∗(·; x) for a given
initial state x. The link is

κ(x) = ū∗0 (2.9)

This represent the ideal case of optimal control. The feedback control is given
by the solution to the open-loop control problem, as in (2.4), for every x.
Kalman (1960a) made an important complementary observation to this when
showing that optimal control does not imply stability in the general finite
horizon case. He found that stability can be shown, with some assumptions
on the system conditions, for an infinite horizon optimal controller, known as
the Linear Quadratic Regulator (LQR) (Kalman, 1960a,b). The LQR generates
the optimal control sequence from a static state feedback law where the feedback
gain is found via the solution of an Algebraic Riccati Equation (ARE), because
the Hamilton-Jacobi-Bellman equations simplifies to an ordinary differential
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equation for a LTI system, the Riccati equation. Stability can be guaranteed
by ensuring that the problem objective function is positive definite through the
choices of weighting matrices (Morari and Lee, 1999).

However, the stability properties alone were not enough to make the process
industry embrace the LQR Qin and Badgwell (2003) reports, listing the
following subjects that the theory failed to address:

• constraints - typically the most economically profitable operating point of
a process lies in an intersection of several input or output constraints;

• process nonlinearities - LQR are based on LTI models;

• model uncertainties - LQR stability guarantees are made on assumptions
of a perfect model;

• performance criterion flexibility - many process units may require to
combine several objectives of different nature.

To include constraints in the infinite horizon controller, ones again needs to solve
(2.9) as the solution based on ARE was no longer valid. However, computing
the solution to the Hamilton-Jacobi-Bellman equations in the infinite case is
a difficult task. From an on-line perspective this is usually not even close to
practical to obtain. In fact, it often can not be found analytically at all, even
in the simplest form, the unconstrained case (Allgöwer et al., 2004).

The solution to the infinite horizon problem was to redefine it as a receding
horizon optimal control problem. Mayne et al. (2000) mentions the work
of Kleinman (1970); Thomas (1975); Kwon and Pearsons (1977) and Kwon,
Bruckstein and Kaliath (1983) as important here, as they all proposed different
extensions to a stabilizing receding horizon alternative. With some variations
the all shared a common approach, by introducing various types of terminal
constraints. Although, as we will see later on in Section 2.2.3, the concept of
adding a terminal constraint to the problem would show to have large impact on
later research, the stability results of Kleinman, Thomas and Kwon et al. was
limited to hold for unconstrained linear systems only. Hence, they also lacked
many of the same properties as the LQR.

2.1.2 Industrial applications

The above listed weaknesses of the LQR were indeed reasons for the lack of
its industrial support, but in addition, it has been claimed that the main
reason was a cultural difference represented by LQR and the process industry.
Control engineers either had no exposure to LQR concepts or regarded them
as impractical (Qin and Badgwell, 2003). So the industry developed its own

7



methodology, by including properties such as input/output constraints and
explicit process models from which could be estimated from test data.

In the following the first industrial MPC applications are presented, as presented
in Qin and Badgwell (2003). These represent pioneering work which has
influenced later MPCs in one way or the other.

IDCOM The first publication which explained MPC in the broader sense is
often credited to Lee and Markus (1967). However, Richalet, Rault, Testud
and Papon (1976) are the ones credited for describing the first MPC control
application, with their IDCOM (Identification and Command). IDCOM was
described by the authors as a model predictive heuristic control, because a
transfer function of the control law was not available. This is due to the fact
that MPC is not a linear controller, since it behaves nonlinear in terms of
dealing with constraints. Even so, the IDCOM is what today is known as a
linear MPC, because of its linear model representation. This was an impulse
response model, known as a finite impulse response (FIR) model. The model
had inputs called manipulated variables (MVs), if adjustable by the controller,
and disturbance variables (DVs), if not available for control. The outputs were
termed controlled variables (CVs). The FIR was identified from plant test data
using a parameter estimation algorithm to minimize plant and model outputs.
To calculate the control problem IDCOM used the same algorithm, by noting
that control is the mathematical dual of identification (Qin and Badgwell, 2003).
Most importantly, the IDCOM included what the LQR lacked, an explicit
formulation of input and output constraints. These were included in the control
calculations by checking for feasibility in all algorithm iterations.

The contributions by Richalet et al. are important because they proposed
an application that satisfied particular demands of process control. Also,
they pointed out the importance of embedding dynamic control in a control
hierarchy to be effective. The significant economical benefits lies not in the low
level dynamic control by reducing output variations, but in the above level by
dynamically allocation variable set point as close to the operational constraints
as possible. This has since been one of the crucial arguments in favour of MPC
to be chosen as the control application.

DMC Dynamic Matrix Control (DMC) was presented by Cutler and Ramaker
(1979, 1980) and was the other algorithm to form the first generation of MPC,
together with IDCOM. DMC computed the optimal inputs as a solution to a
least-squares problem, and did not include constraint handling in the original
version. This was taken care of by Prett and Gillette (1980) which contributed
with a modification to the DMC in which constraint handling was included for
absolute input constraints.
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The DMC used a linear step response model where the output is described by
a weighted sum of past input changes, i.e. an integral of the impulse response.
For multiple outputs DMC imposed the superposition principle. By utilizing
this step response model the predicted future output changes can be written
as a linear combination of future input moves, given an initial state. This
way one can parameterize the computation of the optimal inputs as relative
movement from the initial input, a fact which is still appreciated in MPC today.
Considering the system from (2.8), and the fact that every future output can
be written as a sequence of changes from the current value

uk =∆uk + uk−1

uk+1 =∆uk+1 + uk

=∆uk+1 + ∆uk + uk−1

uk+2 =∆uk+2 + uk+1

=∆uk+2 + ∆uk+1 + ∆uk + uk−1

...

uk+Hu−1 =∆uk+Hu−1 + uk+Hu−2

=∆uk+Hu−1 + ∆uk+Hu−2

· · ·+ ∆uk+1 + ∆uk + uk−1,

the future outputs can be written over the prediction horizon Hp as

xk+1 = Axk +B(uk−1 + ∆uk)

xk+2 = Axk+1 +B(uk + ∆uk+1)

= A2xk + (AB +B)uk−1 + (AB +B)∆uk +B∆uk+1

...

xk+Hp
= AHpxk + (AHp−1B + . . .+ AB +B)∆uk

. . .+ (AHp−1B + . . .+ AB +B)∆uk+1

. . .+ (AHp−HuB + . . .+ AB +B)∆uk+Hu−1

+ (AHp−1B + . . .+ AB +B)uk+1.

Now we can stack the states and input changes over the prediction horizon in
two vectors X (k) and ∆U(k) respectively, and write it more compactly as

X (k) = ψxk + υuk−1 + θ∆U(k),
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where

ψ =











A
A2

...
AHp











, υ =











B
AB
...

∑Hp−1
i=0 AiB











,

θ =











B · · · 0
AB +B · · · 0

...
. . .

...
∑Hp−1

i=0 AiB · · ·
∑Hp−Hu

i=0 AiB











.

The linear combination ties future inputs and outputs together through a so-
called Dynamic Matrix. The dynamic matrix is a sensitivity matrix, S, as will
used later on in this report, which expresses the influence from every input to
every output in the discrete parameterization over the prediction horizon. This
matrix founds the basis for the least-squares problem definition, as the solution
is given by (Maciejowski, 2002)

∆U = S\ [Xref − X ] ,

where Xref depicts the control target.

Morari and Lee (1999) states that DMC had a tremendous impact on industry,
estimating that probably every major oil company in world has a DMC inspired
application installed in most new installations or revamps. But even if DMC,
as well as IDCOM, did get the recognition LQR failed to receive in process
industry, there still was weaknesses in their handling of constraints.

QDMC The breakthrough in constraint handling came when Garćıa and
Morshedi (1986) showed how the DMC objective could be written as a standard
quadratic program (QP), by introducing a quadratic cost function similar to
(2.5). The QP provides efficient constraint handling in the control algorithm
through the performance objective, both for inputs and outputs. As in standard
DMC the dynamic matrix plays a important role, as the process constraints can
be related directly to the input moves, re-written from uk to ∆uk.

The beauty behind QDMC lays in the fact that a QP is a simple optimization
problem to solve in the convex case. Since the Hessian of the QP is positive
definite for linear plants, QDMC could easily calculate optimal control inputs
using standard commercial optimization codes. This allowed the QDMC scheme
to grow in model size and complexity, since not much time was spent on
calculations.
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Though several other industrial MPC applications have been proposed after the
QDMC, this report will end this part of the review here. The interested reader
is referred to Qin and Badgwells excellent survey on the topic to learn more
about the third and the fourth generation of MPC. The next subsection will
take a look at MPC from a nonlinear perspective, as this is where the interest
currently lays. The QDMC seems like the natural place to stop, as it has proven
to be the basis of several attempts to extend the MPC technology to incorporate
nonlinear process models.

2.2 NMPC

This section addresses various elements on the topic of NMPC, from a control
theoretical point of view. First possible model representations are presented,
then different system discretizations and solution methods. Stability and
robustness will also be given some attention, before ending with some notes
on feasibility.

2.2.1 Model

The model is the heart of MPC. Qin and Badgwell (2003) states that, in
principle, the model can take any required mathematical form. Unsurprisingly,
a wealth of model formulations is used, although some are more common than
others. In Qin and Badgwell (2003) some of the model forms used in commercial
products are listed; finite impulse response (FIR), velocity FIR, Laplace transfer
function, linear state-space, auto-regressive with exogenous input, Box-Jenkins
and multi-model, input-output, first-principle, nonlinear state-space, nonlinear
neural net and static nonlinear polynomial. These labels are not mutually
exclusive, nor do they represent an exhaustive list of models that can be used.
This section will look at some different categories in which most models can
be sorted. The classification is based on Meadows and Rawlings (1997) and
Rawlings (2000).

Perhaps the most important classification is the divide between linear and
nonlinear models. For linear models, the superposition principle holds. That
is, any linear combination of solutions for the linear system is in itself also
a solution. Powerful tools for the analysis and control of such systems are
available. Nonlinear models will in general have no special characteristics, and
are perhaps only characterized by not being linear. An introduction to nonlinear
models and nonlinear model identification, is presented in Pearson (1997).

Similarly, models can be classified as either first principles or experimental.
First principles models are based on physical knowledge of the system and
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are also referred to as physical models. In general a first principles model
will be given as differential equations, either as ordinary differential equations
(ODE) or as differential algebraic equations (DAE). Experimental models, also
called black-box models, are used to obtain models that fit the process data
sets. An experimental model will only contain the characteristics that were
exhibited by the system during the identification process. Hence, the data
used for model identification should be carefully selected, as the predictive
ability of an experimental model is small outside the range of data that was
used to identify it. Common experimental model formulations include step
response and auto regressive external input models. The use of neural networks
as models in MPC is an active area of research. The interested reader can
consult Su and McAvoy (1997) with references. As a first principles model is
based on physical insight into the system, it can be expected to describe system
dynamics more completely than empirical models (Pearson, 1997). It should
be mentioned that there exist model representations that tries to combine both
experimental and first principles, so-called hybrid models. These can be thought
of as experimental models based on fundamental physical laws of the underlying
process, which is tuned with respect to model parameters to be in accordance
to plant data.

Other classifications are possible. Continuous time or discrete time, distributed
parameters or lumped parameters, deterministic or stochastic, input-output or
state-space and frequency domain or time domain. Although these classifica-
tions can be used to further categorize models, they are less important than the
first two already discussed.

2.2.2 Solution methods

There are three main strategies for solving the NMPC optimization problem
(Allgöwer et al., 2004; Strand, 1991; Tenny, Wright and Rawlings, 2004; Barclay,
Gill and Rosen, 1997). These can be categorized as either sequential or
simultaneous approaches (Biegler, 2000).

If the behaviour of a system is completely determined by its initial values it is
called an initial value problem (IVP). In order to determine the states in a time
interval, [t0, t1] only one simulation is necessary (single shot). This approach is
also described as single shooting, sequential approach or feasible path approach
and are more thoroughly described in Oliveira and Biegler (1995); Silva and
Oliveira (2002); Tenny et al. (2004). A fuller description of single shooting is
given in Section 3.

Multiple shooting differs in that the time interval is divided into multiple
intervals. In each of these subintervals an IVP is solved independently. These
IVPs must be solved iteratively with updated initial values that converge to the
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end value in the preceding interval. Multiple shooting is therefore also coined
as a sequential approach. Diehl, Bock, Schlöder, Findeisen, Nagy and Allgöwer
(2002) lists several advantages with multiple shooting:

• As a simultaneous strategy, it allows to exploit solution information in
controls, states and derivatives in subsequent optimization problems by
suitable embedding techniques.

• Efficient state-of-the-art DAE solvers are employed to calculate the
function values and derivatives quickly and accurately.

• Since the integrations are decoupled on different multiple shooting
intervals, the method is well suited for parallel computation.

• The approach allows a natural treatment of control and path constraints
as well as boundary conditions.

The third option is to solve the differential equations and the optimiza-
tion problem simultaneously, thus the term simultaneous approach. The
differential equations are discretized and enter the optimization problem as
equality constraints. The manner in which the differential equations are
discretized is important. Silva and Oliveira (2002) lists weighted residuals,
orthogonal collocation and finite differences schemes as possible techniques for
discretization/parameterization. Of these, collocation is the technique most
often referenced. Barclay et al. (1997) explains collocation as “a form of multiple
shooting in which an appropriate implicit Runge-Kutta (IRK) formula is used
to solve the initial-value problem”.

2.2.3 Stability

Before theory on stability and robustness is presented, it is appropriate to define
what the terms refer to. Skogestad and Postlethwaite (2005) mentions two types
of stability — nominal stability (NS) and robust stability (RS). If the system
is stable for the nominal plant, it is said to be nominally stable. Similarly, if
the system remains stable for all plants in the uncertainty set, it is said to be
robustly stable. In this report, stability is taken to mean nominal stability,
while robustness is taken to mean robust stability.

Stability of NMPC is becoming a mature area of research, if not as mature as
the stability of linear MPC. A good starting point to NMPC stability literature
is provided in Mayne et al. (2000) and somewhat simpler stated in Allgöwer
et al. (2004), the two of which this discussion is based. The literature is focused
on the stabilization of a steady state.

Due to constraints, even linear MPC will result in a nonlinear control law,
requiring nonlinear tools for the study of stability. For almost all stability
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analysis, Lyapunov theory using the value function (recalling (2.7)) is therefore
used. Mayne et al. (2000) starts the stability analysis by listing several
modifications to the MPC scheme such that stability can be guaranteed.

Since MPC solves a open loop problem over a horizon, the easiest method of
stabilization to grasp is to extend the horizon infinitely. Due to Bellmanns
principle of optimality, the optimal trajectory in the next sample will be the
remaining trajectory of the previous sample. Since an infinite horizon input
trajectory in general will be impossible to compute in finite time, several
approximations exists that ensures closed loop stability with finite horizon. One
can, without loss of generality, assume that the system is to be stabilized at the
origin. Terminal equality constraint ensures stability by requiring that all states
should be set to zero at the end of the prediction horizon and the control inputs
used to maintain the system at the origin should also be zero,

x̄(t+ Tp) = 0. (2.10)

The obvious disadvantage of a terminal constraint is that it will force the system
to a selected state in finite time, heavily decreasing the solution space of the
problem. Also, there is in addition the extra computational burden of finding
an exact satisfaction to the imposed equality, as this transforms the problem
to a boundary-value problem (BVP). Terminal cost function uses no exact
terminal constraint. Instead, a terminal cost is used to ensure the stability.
Such a terminal cost can unfortunately only be obtained generally for linear
unconstrained or linear constrained stable systems. The terminal costs can in
these cases be computed by solving the Lyapunov equation, see for example
Maciejowski (2002). A method related to terminal equality constraints is the
terminal region constraint where the states are required to lie within a terminal
set at the end of the prediction horizon,

x̄(t+ Tp) ∈ Ω. (2.11)

This terminal region, Ω, are defined by calculating a controller that drives all
states within the terminal set exponentially fast to the origin. Finally, it is
possible to combine terminal set with terminal cost. A cost E is added to
(2.4a) for the terminal state, giving

J(x(t), ū(·)) =

∫ t+Tp

t

F (x̄(τ), ū(τ))dτ + E(x̄(t+ Tp)). (2.12)

If the terminal cost equals the residual of weights for all t > Tp, the solution of
(2.4) extended with (2.11) and (2.12) will, in effect, become the infinite horizon
solution. The closer the terminal cost is to the infinite horizon weight, the more
of the benefits gained by infinite horizon are realized. A deduction of an infinite
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horizon scheme is given in Chen and Allgöwer (1998a) and Chen and Allgöwer
(1998b).

Allgöwer et al. (2004) gives the following theorem ensuring stability of the
NMPC, after modifying the original problem (2.4) with (2.11) and (2.12):

Theorem 2.1 Assume that:

1. U ⊂ Rm is compact, X ⊆ Rn is connected and the origin is contained in
the interior of U ×X.

2. The vector field f : Rn×Rm → Rn is continuous in u and locally Lipschitz
in x and satisfies f(0, 0) = 0.

3. F : Rn × U → R is continuous in all arguments with F (0, 0) = 0 and
F (x, u) > 0∀(x, u) ∈ Rn × U\0, 0.

4. The terminal penalty E : Ω → R is continuous with E(0) = 0 and that
the terminal region Ω is given by Ω := x ∈ X|E(x) ≤ e1 for some e1 > 0
such that Ω ⊂ X.

5. There exists a continuous local control law u = k(x) such that k(x) ∈ U
for all x ∈ Ω and dE

dx
f(x, k(x)) + F (x, k(x)) ≤ 0, ∀x ∈ Ω.

6. The NMPC open-loop optimal control problem has a feasible solution for
t = 0. Then for any sampling time 0 < δ ≤ Tp the nominal closed-loop
system given by the problem (2.4) extended with (2.11) and (2.12), and
the input (2.6), is asymptotically stable and the region of attraction R is
given by the set of states for which the open-loop optimal control problem
has a feasible solution.

Mayne et al. (2000) concludes the discussion about stability with the conclusion
that a combination of terminal set and terminal cost seems to be the best way
to ensure both stability and good performance.

2.2.4 Robustness

When NMPC is applied in practice, it is unrealistic to assume that the
model used for prediction will accurately match the process and similarly
that no un-modelled disturbances enters the process. Obviously a successful
implementation of NMPC relies on being able to cope with these issues. The
MPC formulation has an inherent robustness, due to its similarity with optimal
control (Allgöwer et al., 2004). According to Qin and Badgwell (2003) most
commercial MPC products relies on this robustness and brute force evaluation
of model mismatch to ensure robustness. Qin and Badgwell (2003) calls for
MPC formulations that ensure robust stability. A survey of different schemes
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to ensure robust stability can be found in Allgöwer et al. (2004) and Mayne
et al. (2000) which is also the basis for this discussion.

Three approaches to achieve robust stability are outlined. The first of these is to
solve an open-loop min-max problem, which minimizes the maximum objective
function value for a set of uncertainties. The input sequence must be feasible for
every realization in the set of uncertainties, possibly giving feasibility problems
or conservative solutions. H∞ MPC is another approach, using H∞ control to
achieve robustness. Large computational cost and the need for a global optimum
are drawbacks for this approach. The third approach is to use the parameters of
a feedback controller as optimization variables instead of using inputs directly.
Because a feedback controller is used, disturbances are rejected also between
sampling times, reducing the need for conservative control.

Mayne et al. (2000) concludes the discussion of robustness by stating that
current robustness schemes must be regarded as conceptual rather than
practical.

2.2.5 Feasibility

Model based predictive control is based on finding a solution to the optimization
problem (2.4). Feasibility problems arise when no solution to this problem
can be found. Normally, feasibility problems are solved by relaxing process
constraints. Process constraints are often output constraints that define safety
constraints, process equipment limitation or product specifications. Such
constrains are by nature different from input constraints that are physical
constrains imposed by the actuator. Such constrains can be maximum power,
maximum opening etc. Thus, input constraints can normally not be violated.

Different ways of imposing soft constraints are possible. Oliveira and Biegler
(1994) advocates for the use of exact penalty functions. Hence, process
constraints are only violated if no other feasible solution exists. It is also possible
to penalize constraints relaxation using a normal quadratic penalty. A quadratic
penalty implies that, if the optimal operation is on the constraint, a small
violation of the constraint will be allowed. This violation will be reduced as the
penalty is increased. However, as long as the penalty is finite, the violation will
also be finite.

When discussing feasibility of MPC, there is one additional type of constraints
that needs to be considered, namely model constraints. Naturally, these
constraints cannot be relaxed. For a linear system, the model constraints
can be solved exactly and simultaneously with the optimization problem. In
general, this will not be possible for nonlinear models. A discussion of how
nonlinear equalities enters the optimization can be found in Section 2.2.2. A

16



short discussion of the different solution methods impact on the feasibility of
the model follows.

Single shooting enjoys the advantage that the model equations are satisfied
along the whole prediction horizon. Thus, each iterate will be a feasible
albeit suboptimal solution of the optimization problem. Multiple shooting and
collocation allows iterations, inconsistent with the system dynamics. (Tenny
et al., 2004) Thus, the solution cannot be guaranteed feasible until convergence
is achieved.

This concludes the chapter on MPC theory. From a focus on methodological
overview and important properties such as stability and robustness, the
following chapter will present a dedicated NMPC application, derived from a
SQP principle.
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A multistep quasi-Newton method

3
This chapter will focus on the NMPC method developed in this report, a single
shooting, multistep, quasi-Newton method (SSMQN). The first section contains
the motivation for using NMPC along with some background on the chosen
method. A detailed description of the SSMQN method follows in the second
section, while the implementation used for this report is described in the third
section. Finally, an example used extensively in the development of the SSMQN
— NMPC used on a CSTR system, is presented.

3.1 Background and motivation

When the model used for predictions in an MPC application is changed from a
linear model to a nonlinear model, the optimization problem to be solved online
changes from a QP (or LP if a linear objective function is used) to a NLP2.
While QP’s are solved fast and reliably with standard QP solvers, algorithms
for solving NLP’s are much more an area of research. In this report, the NLP
will be solved using a single shooting multistep quasi-Newton method. The
method was described by Li and Biegler (1989) extending the previous single-
step method by Li, Biegler, Economou and Morari (1990). An algorithm very
similar to the one used in this report can be found in Oliveira and Biegler (1995)
where more general objective functions can be accommodated. A linearized
input output model is obtained from a black box nonlinear model around the
nominal input sequence found at the previous sample. A search direction is
found by formulating a QP sub problem using the linearized model. In order
to avoid algorithm divergence, a linesearch is performed along the calculated
search direction, ensuring descent in the objective function. The solution found
is checked against a convergence criterion, and, if not satisfactory, set as nominal
input trajectory and the procedure repeated. Summarized, the algorithm is a
SQP algorithm especially adapted to the NLP’s generated by a NMPC.

Single shooting has some known stability and robustness issues (Barclay et al.,
1997; Biegler, 2000). If the system is locally unstable, the states can diverge,
giving immediate failure. It can also be difficult to find input trajectories with
bounded outputs except very close to the optimal trajectory making single

2NLP is a commonly used acronym for a nonlinear programming
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shooting unsuitable as an optimization strategy. Despite these problems, single
shooting has been reported to successfully control some nonlinear systems, e.g.
batch processes in Silva and Oliveira (2002).

3.2 Algorithm description

3.2.1 Outline of algorithm

The following outline of the algorithm is based on the algorithm described in
Oliveira and Biegler (1995)

1. Set the QP sub problem iteration counter to zero.

2. Compute input sensitivities for the nominal input trajectory.

3. Solve the QP sub problem with the linearized model to find a search
direction

4. Employ a line search algorithm to determine a suitable step size along the
search direction.

5. If the solution found satisfies a defined convergence criteria, the first input
of the computed input trajectory given to the controlled system, and the
new input trajectory shifted one sample and set as the nominal input
trajectory.

6. If the solution fails to satisfy the convergence criteria, the QP sub problem
iteration counter is checked, and if less than the iteration limit, it is
incremented and the algorithm jumps to Step 2. If the maximum iteration
limit is reached, the algorithm is stopped and the best input trajectory
found returned.

The following subsections will describe some of these steps in greater detail. It
can be practical to return to this algorithm outline to keep the right perspective.

3.2.2 Input sensitivities

Step 2 of the algorithm is to linearize the model by computing sensitivities.
Depending on the level of model control, there are several different possibilities
as to which sensitivities should be calculated. Silva and Oliveira (2002) shows
figures of two possible methods of calculating sensitivities. The first method
is to calculate the sensitivities from inputs to state, state to state and state
to output. The second is to only calculate input to state and state to output
sensitivities. The drawback of this approach is that the input sensitivity for one
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Figure 3.1: Calculation of sensitivities

input must be calculated for all subsequent states as opposed to calculating only
the sensitivity to the states in the next sample, and then to use state to state
sensitivities. However, it can be seen as an advantage that it is not necessary
to perturbate the states, as this is problematic for black box models.

The scheme for calculating sensitivities used in this report, can be seen as
a variant of the second approach. Sensitivities are calculated from input to
outputs directly, analogous to defining the outputs as the state vector x and
using a unity measurement sensitivity. Inspired from Silva and Oliveira (2002)
the sensitivities are given in a matrix with elements given by

Sj+1,i =
∂xj+1

∂ui

, j ≥ i, (3.1)

Sj+1,i = 0, else, (3.2)

j ∈ [k, Tp − 1], i ∈ [k, Tc]. (3.3)

The sensitivities calculated are shown in Fig. 3.1. As can be seen, the sensitivity
from each input parameter to each subsequent coincidence point is calculated.
Notice that in Fig. 3.1 only perturbations in the inputs are necessary.

The sensitivity matrix calculated gives a linearized input-output model of the
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+ b, (3.4)

where xk+i is the output at time k + i, ∆uk+i is the change in input at time
k + i and b is a vector containing the constant terms of the linearization.

The sensitivity matrix is obtained by perturbating the inputs by small, but fi-
nite, values, giving numerical gradients. The size of the perturbations influences
the accuracy of the sensitivity, and hence also the convergence rate of the SQP
algorithm. Too small perturbations give sensitivities dominated by numerical
noise, while too large perturbations will give inaccurate sensitivities and possibly
problems with convergence. It is therefore desirable to select a perturbation size
as small as possible without encountering numerical difficulties. The lower limit
on perturbations is determined by the accuracy of the solver used to simulate
the nonlinear model. An example showing the effect of too large perturbation
is shown in Fig. 3.2. The large perturbation will wrongly indicate an increase
in the objective function value moving from right to left, where as the small
perturbation correctly shows a descent direction towards the minimum.
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3.2.3 The QP sub problem

This section will present the QP sub problem generated in SQP algorithms.
Solving this QP sub problem is done in Step 3 in order to find a search direction.
The introduction and the notation will follow Nocedal and Wright (1999).

Assuming a nonlinear problem of the form:

minf(x) (3.5a)

s.t. ci(x) = 0, i ∈ E (3.5b)

ci(x) ≥ 0, i ∈ I, (3.5c)

where f(x) is the function to be minimized, subject to state constraints ci(x), i ∈
E ∪ I. E is the set which contains the indices of equality constraints, as I is
the set of indices of inequality constraints.

The QP subproblem (3.6) to be solved in order to find the search direction, p,
are obtained by linearizing both equality and inequality constraints

min
1

2
pTWkp+∇f(xk)

Tp (3.6a)

s.t. ∇ci(xk)
Tp+ ci(xk) = 0, i ∈ E (3.6b)

∇ci(xk)
Tp+ ci(xk) ≥ 0, i ∈ I (3.6c)

Where Wk = W (xk, λk) = ∇2
xxL(xk, λk) denotes the Hessian of the Lagrangian

of (3.5), with the Lagrangian defined as L(x, λ) = f(x)− λT c(x).

For general SQP algorithms it is important to maintain Wk positive definite to
avoid generating non-descending search directions, p. This is necessary in order
to guarantee convergence on non-convex problems and from remote starting
points. There are several possibilities as to how this can be accomplished.
Nocedal and Wright mentions using full quasi-Newton approximations, such as
the BFGS formula, using the Hessian of an augmented Lagrangian functions
or using reduces-Hessian approximations. However, none of these techniques
are required for NMPC if using a special choice of Hessian, as proven in the
following section.

In MPC, the objective function f(x) = 1
2
xTQx are quadratic in x. Thus, the

Hessian becomes∇xxf(x) = Q and will be positive definite as long asQ is chosen
positive definite. The only possibility for Wk not to become positive definite is if
−∇2

xxλ
T c(x) is negative definite. By linearizing the constraints c(x) before the

QP sub problem is formulated, the contribution to Wk from the Hessian of the
constraints will always be zero. This is equivalent to the “Gauss-Newton” choice
of Hessian where the effects of the nonlinear model equations on the Hessian is
neglected. The effects of neglecting the contribution from the nonlinear model
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is described (among other choices for Hessians) in Tenny et al. (2004). Here it is
stated that this choice in not asymptotically equivalent to the true Hessian of the
Lagrangian unless the model is linear or the Langrange multipliers for the model
is zero. It is also pointed out that when x in (3.5) is close to its optimal value,
the state equations will be only weakly active, and their Lagrange multipliers
close to zero. The Gauss-Newton choice of Hessian will therefore be close to the
true Hessian. In fact, according to Biegler (1998), a NMPC has a structure that,
for a solution interior to the constraints, will have Wk ≈ ∇2L when using the
“Gauss-Newton” choice of Hessian. The approximated Hessian of the Lagrange
function will be asymptotically equivalent to the actual Hessian at the solution,
resulting in a Q-quadratic convergence rate.

3.2.4 Linesearch

The QP sub problems are based on a quadratic approximation of the original
NLP. If the approximation is poor, the solutions found may in fact cause the
algorithm to diverge, if implemented unbounded. In order to ensure that the
step taken is a descending step, a linesearch algorithm is employed in Step
4. This algorithm must decide the fraction of the step to be taken. Newton
methods have a natural step length of one. The fraction, α, of the step
taken should therefore be in the interval (0, 1]. One can potentially solve
an optimization problem, finding the step length, α ∈ (0, 1], minimizing the
objective function. However, it will in general be a compromise between doing
a thorough linesearch with fewer QP solutions, or a approximate linesearch
with more QP solutions. Nocedal and Wright (1999, chap. 3) describes some
approaches to linesearch based on the Wolfe conditions — the sufficient decrease
condition and the curvature condition. The sufficient decrease condition ensures
that the step is descending while the curvature condition makes certain that the
step length is not unacceptably short steps.

3.2.5 Convergence criterion

The optimization termination criteria in Step 5 can be specified as in generic
SQP algorithms. However, since the single-shooting quasi-Newton methods
search along a feasible path, optimization can be terminated before exact
convergence is achieved, still yielding feasible solutions although not optimal.
Especially since NMPC generates a series of NLP’s, where the solution of the
previous NLP can be used as a starting point for the next NLP, and where the
solution often converges over time, the convergence criterion can be relaxed.
Since the accuracy of the sensitivities are bounded by the perturbation size (as
discussed earlier in section on sensitivities (Section 3.2.2)), and thus also the
solver accuracy, it can be convenient to use a relaxed convergence criterion.
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3.3 Implemented algorithm

The previous section described some issues in the single shooting multistep
quasi-Newton algorithm used in this report. In this section, the solutions used
are described, as well as a pseudo code of the implementation.

3.3.1 Description of SEPTIC

The NMPC application was implemented in STATOIL’s in-house MPC tool,
SEPTIC (Statoil Estimation and Prediction Tool for Identification and Con-
trol). SEPTIC was first used in 1997 Strand and Sagli (2003), and has since
then been implemented on 70 installations. Most of these applications have
been implemented using linear and experimental models, as these have proved
sufficiently accurate for the respective processes. There is however possible to
use first principles nonlinear models, either as models programmed in SEPTIC,
or through a interface against an external simulator. Either way, SEPTIC
treats the model as a black-box model. None of the previous applications have
used nonlinear simulator models, and as such SEPTIC did not include a robust
algorithm for an iterative NMPC scheme. Hence, there was a need to develop
the algorithm presented here.

3.3.2 Computation of sensitivity

Because of the simple model interface in SEPTIC, each column in the sensitivity
matrix in (3.4) is calculated by simulating the system from tk to tk+Tp

, which
might seem unnecessary as all columns except the one to the extreme left con-
tains one or more zero elements in the top. Two facts, however, implies that this
implementation is not as wasteful as it might seem at first sight. Firstly, input
blocking are normally implemented with increasing block length. Consequently
the number of zero elements in the sensitivity matrix will be much less than half
the total number of elements. Secondly, if the sensitivity matrix is found from
parallel processing where each input parameter sensitivity is simultaneously
calculated on separate CPUs, all processes calculating sensitivities for inputs
ui, i ∈ [k+ 1, k+ Tc] must wait for the process calculating the sensitivity for uk

to end. Simulating shorter horizons for ui, i ∈ [k+ 1, k+ Tc] will therefore have
no effect on the algorithm run time.

3.3.3 QP solver

The QP solver used in SEPTIC is a C compilation of a Fortran implementation
developed by Schittkowski (2005) This implementation is based on the dual
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method developed by Goldfarb and Idnani (1983) The motivation for the
development of this algorithm was the need for fast and robust solutions to
the QP sub problems generated by a SQP algorithm. The dual QP solver
implemented requires the QP to be positive definite. Earlier in this chapter, in
section 3.2.3, it was shown that this will be true for the Gauss-Newton choice
of Hessian approximation used in SEPTIC.

Compared to a primal algorithm, the advantage presented by a dual method
is that there is no need for an expensive search for a feasible starting point
(Goldfarb and Idnani, 1983). The unconstrained solution of the primal problem
is a feasible solution for the dual problem. A feasible solution for the primal
problem is obtained by solving series of sub problems where violated constraints
are added until all constraints are satisfied. This procedure is in Goldfarb and
Idnani (1983) considered superior to primal algorithms when no feasible starting
point is immediately available.

In conclusion the QP sub problem solved in SEPTIC are stated in (3.7) where
the Hessian of the objective function will be positive definite as long as the Q
used is positive definite.

min
1

2
pTQp +∇f(xk)

Tp (3.7a)

s.t. ∇ci(xk)
Tp+ ci(xk) = 0, i ∈ E (3.7b)

∇ci(xk)
Tp+ ci(xk) ≥ 0, i ∈ I (3.7c)

3.3.4 Linesearch

Backtracking is the implemented method of linesearch. The algorithm is a
modified version of the backtracking linesearch found in Nocedal and Wright
(1999, procedure 3.1, pages 41-42). First the full step is evaluated, then smaller
and smaller fractions are evaluated until an acceptable step length is found. The
difference between subsequent steps is a constant factor, ξ. For a step ξi to be
accepted, two criteria needs to be fulfilled. First, the objective value with step
length ξi must be less than the objective value with step length ξi+1. Second,
the objective value with step length ξi must be less than the objective value
with step length zero. Fig. 3.3 shows a case designed to illustrate the linesearch
convergence criteria. Here, the algorithm will choose a step length α = ξ3, since
this is assumed to be a local minima with greater objective function values on
both sides.
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Figure 3.3: Backtracking linesearch

3.3.5 Convergence criterion

Different algorithm convergence criteria considered in the algorithm developed
in this report were linearization error, change in objective function and change in
input parameters. The original SEPTIC algorithm used the linearization error
criterion — after a step, the difference in the response of the controlled variables
using the nonlinear and the linearized model is computed. If the linearization
error is below a limit, the linear model is assumed to be an accurate description
of the nonlinear model along the solution. However, consistent performance was
difficult to obtain with this criterion.

Instead, the norm of the input change was used. Li and Biegler (1989) proposed

this in their algorithm, as
∑

k

∥

∥ūk − ūk−1

∥

∥

2 ≤ ε, but noting “that it is not really
necessary to solve the QP problem (...) repeatedly (i.e. ε can be large)”. This
was found not to be true using models of such a degree of nonlinearity as in this
report. Thus, a small value should be chosen for ε, so that a sufficient number
of QP’s are solved at each iteration.

∑

k

||∆uk||2 < MVnorm. (3.8)

The explicit criterion used is given in (3.8) where MVnorm is the convergence
limit. This criterion gave consistent performance while the resulting algorithm
was significantly simpler. Alternatively, the change in the objective function
could have been used. The obvious drawback is that if a step gives a reduction
in the objective function value below the limit, the step may still be of significant
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length and the sensitivity around the new solution may be quite different from
the previous. Using only the descent in objective function will then stop the
optimization even if the new solution can result in a significant improvement
in objective function value. Possibly, a criterion combining change in objective
function with the norm of the input change would be better. However, the
algorithm in its current form performs well.

3.3.6 Algorithm pseudo code

The SQP algorithm implemented in SEPTIC is given as pseudo code in
Algorithm 1. The linesearch used is also given in pseudo code in Algorithm 2.
Pseudo code is used in order to be able to state the algorithms more clearly, as
the actual SEPTIC code makes extensive use of specialized methods and data
structures which would have made the presentation of the algorithm unduly
involved. Some previously presented and some new parameters will be used.
MVnorm and ξ was described in Sections 3.3.5 and 3.3.4 respectively. In addition
will NQP,max be used to represent the maximum number of QP iterations allowed
in one NMPC step, Nls,max the maximum number of linesearch iterations and
Uvalid is the feasible input values. In addition will some of the variables used
in Algorithm 1 also be used in Algorithm 2. The used variables are declared at
the top of Algorithm 2.

3.4 Test system: a continuously stirred tank reactor

This section shows NMPC tested on a small continuously stirred tank reactor
(CSTR) model. Even though the intension behind developing the SSMQN
algorithm was to apply it to a computational expensive simulator model,
developing it on such models hardly proved practical considering the time spent
on retrieving results after algorithm modifications or tuning. To develop and
verify the NMPC application there was a need for quick and simple model,
which could simulate a number of runs in only a few seconds time, but still
exhibit severe nonlinearities in order to challenge the algorithm robustness.

3.4.1 CSTR model description

The test model used is a CSTR with multiple steady states, previously
investigated by both Oliveira and Biegler (1995) and Martinsen, Biegler and
Foss (2004). The model equations are given in (3.9). The equations are similar
to the system given in Martinsen et al. (2004), with the exception that the
effect of inputs u1 and u2 on dx1

dt
is quadratic. This modification was done in

order to make the system more nonlinear, and does not reflect any physical
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Algorithm 1 SEPTIC SQP algorithm

Require: unom ∈ Uvalid, MVnorm and NQP,max

Ybest ← calcObjectiveValue(unom)
S ← calcSensitivity(unom)
∆u← solveQP, nQP ← 1
Ynew ← calcObjectiveValue(unom + ∆u)
runSQP ← true
while runSQP do

αbest ← doLineSearch
unom ← unom + αbest ∗∆u
Ybest ← calcObjectiveValue(unom)
if ||αbest ∗∆u|| < MVnorm then

runSQP ← false
else if nQP == NQP,max then

runSQP ← false
warning ← maximum number of iterations without convergence

else

S ← calcSensitivity(unom)
∆u← solveQP(unom), nQP ← nQP + 1
Ybest ← calcObjectiveValue(unom)

end if

end while

interpretation.

dx1

dt
= u2

1 + u2
2 − k1

√
x1 (3.9a)

dx2

dt
= (CB1 − x2)

u1

x1
+ (CB2 − x2)

u2

x1
− k2x2

(1 + x2)2
(3.9b)

The initial parameters, following Martinsen et al. (2004), are set to: k1 = 0.2,
k2 = 1, CB1 = 24.9 and CB2 = 0.1. With inputs (u1, u2) = (1, 1) the
system has three equilibrium points. These can be found at x1 = 100 and
x2 ∈ (0.633, 2.78, 7.07), the middle one being unstable. Figure 3.4 shows
computed trajectories from different starting points with the initial parameter
values. The plot was made using pplane7 and the Dormand-Prince solver,
and shows the systems two stabile equilibrium points, and the unstable one in
(x1, x2) = (100, 2.78).

Martinsen et al. (2004) uses a nonlinear combination of variables as the
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Algorithm 2 doLineSearch

Require: Ynew, Ybest, unom, ∆u, ξ and Nls,max

nls ← 0, α← 1
runLS ← true
while runLS do

nls ← nls + 1
αnew ← ξ ∗ α
Yold ← Ynew

Ynew ← calcObjectiveValue(unom + αnew ∗∆u)
if Yold <= Ybest and Yold <= Ynew then

runLS ← false
αbest ← α

else if nls == Nls,max then

runLS ← false
warning ← no good step length found
if Ynew <= Ybest then

αbest ← αnew

else

αbest ← 0
end if

else

α← αnew

end if

end while

return αbest

controlled variable to be held at a constant reference value,

y = k1

√
x1x2, (3.10)

giving the extended CV vector

x =
[

x1 x2 y
]T
. (3.11)

The MVs are gathered in the vector

u =
[

u1 u2

]T
. (3.12)

To impose additional nonlinearities to the system, yref is introduced as an
arbitrary reference trajectory for y to follow, transforming the problem into a
trajectory tracking problem.
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Figure 3.4: Solution trajectories for CSTR system

3.4.2 Algorithm Performance

This section presents the performance of the SSMQN algorithm applied to
the CSTR example. The sampling time Ts was set to one second, and
simulations where carried out for 20 seconds. Tc and Tp was chosen to 30 steps,
parameterizing each input with 10 blocks, yielding a total of 20 optimization
parameters considering both u1 and u2. Weighting matrices was chosen as

Q =





1 0 0
0 16 0
0 0 4e104



 , R = P =

[

4 0
0 4

]

, (3.13)

where P is a penalty term added to the cost functional on movements in ∆u
giving

F (x, u) =(x− xop)
TQ(x− xop) + (u− uop)

TR(u− uop)

+ ∆uTP∆u.
(3.14)

The system is attempted driven to the unstable equilibrium point
(

x1,op x2,op

)

=
(

100 2.78
)

, uop =
(

1 1
)

and y = yref for two different reference trajectories.

Simulations for both reference trajectories were done with different values for the
linesearch factor ξ and theMVnorm convergence criterion, as described in Section
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Figure 3.5: CSTR state plot for yref
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Figure 3.6: CSTR state plot for yref
2

3.3, to investigate the effects of these parameters on algorithm performance.
Simulation results are shown in Fig. 3.5 for yref

1 and in Fig. 3.6 for yref
2 . We

only show one simulation for each reference vector, since the state plots differ
only slightly from one parameter setting to another. As we can se from both
figures, the algorithm controls the system in a satisfying manner. The reference
trajectory is closely followed by y, and only some slight deviations for x1 and
x2, as a result of the tuning in Q. An additional remark on the plot for x2 must
be made in Fig. 3.6. The deviation from set point here is caused by the values
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Figure 3.7: Algorithm performance for different MVnorm using yref
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Figure 3.8: Algorithm performance for different MVnorm using yref
2

in yref
2 which are found further away from the “nonlinear equilibrium”

yop = k1
√
x1,opx2,op (3.15)

= 0.2 ·
√

100 · 2.78 = 5.56. (3.16)

Fig. 3.7 and Fig. 3.8 shows the difference in the algorithm performance for
different values of MVnorm for both reference trajectories. Both figures shows
the performance for the different MVnorm relative to MVnorm = 0.01, along
with the total number of simulations done at each sample interval for each
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Figure 3.9: Algorithm performance for different ξ using yref
1

value of MV convergence criterion tested. As one might expect, the more
relaxed MVnorm values perform more poorly then for the more rigid (lower)
convergence criteria, but only in a few isolated samples, e.g. sample 11-14 in
Fig. 3.7 and samples 2-3 and 17-19 in Fig. 3.8. The cost of a rigid MVnorm

value is a high number of extra simulations at each timestep, and may in many
cases not be justifiable. The figures show that performing an extensive number
of extra simulations does in many cases not yield a significant objective value
improvement. When using large commercial simulator models for prediction the
simulation time overhead can be of considerable size if the algorithm performs
additional simulations without producing objective improvement.

Fig. 3.9 and Fig. 3.10 shows the difference in the algorithm performance for
different values of ξ for both reference trajectories. Both figures shows
the performance for different ξ values relative to ξ = 0.7, along with the
total number of simulations done at each sample interval for each value of
backstepping factor tested. Here it is not so obvious what is the effect of the
choice of ξ, as there are no clear trends shown like in the case of the varying
MVnorm. The performance of the different values of ξ gives no indication of any
value being superior to the others, and ought to be chosen from knowledge of the
underlying process to be controlled. It should be noted that in these simulations
Nls,max were chosen large enough to avoid any linesearch from being terminated
before finding a satisfying step length, αbest. If the control application is facing
tight real-time deadlines, leaving only a limited number of simulations available
for the algorithm to converge and obtain a solution, the Nls,max must be chosen
low. If this is the case, the algorithm performance will benefit from a lower ξ, as
the linesearch will cover a greater part of the α interval (0, 1] in fewer iterations.
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Figure 3.10: Algorithm performance for different ξ using yref
2

Fig. 3.11 and 3.12 shows bar plots of the total number of model simulations for
each reference vector and for the different choices of MVnorm and ξ respectively.
These figures further confirm the trends discussed earlier, as we can see a clear
effect on the number of simulations from the value of MVnorm, the number of
simulations increasing as the convergence criterion is tightened. The effect of
the value of ξ is, however, not as evident. The problem seems to need a certain
number of simulations for convergence, regardless of the value of ξ.
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Figure 3.11: Total number of simulations for different values of MVnorm
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Figure 3.12: Total number of simulations for different values of ξ
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The Reservoir Production Problem

4
The reservoir production problem is a complex problem, for many reasons. First
of all, reservoir models tend to grow very large if set out to reflect some sense of
realism compared to real life reservoirs. That is, realism in scale, behaviour or,
preferably, both. Such models can consist of dynamic variables in the range of
103-106 (Heijn, Markovinović and Jansen, 2004), and certainly earn the right to
classify as high-order models. In addition to the state variables, there are static
variables in the same number of range, which possibly need to be estimated
for model correction. Secondly, reservoir models are strongly nonlinear in their
nature, as they involve multiphase flow in fields of variable geology properties
(permeability and porosity). The reservoir model must be able capture the
duality of the state dynamics involved, from the rapidly changing pressures
to the more slowly varying saturation ratios of every fluid involved. This
causes the state vector to show a clearly twofold character, and must be taken
into consideration when optimizing production since reservoir control objectives
normally are subject to a number of constraints. These constraints add another
dimension to the problem complexity, as they often appear as nonlinear control-
state path inequality constraints3.

Facts like these where the reason why not much research was done on optimal
reservoir production until some few years ago. Calculations were considered to
be hard and too slow to acquire, and there were a lack of degrees of freedom in
the available production inputs. This changed rapidly in the 1990’s. First of all
computational costs went down to an acceptable level. Even more important
was the introduction of non conventional wells with downhole instrumentation.
While conventional wells are vertically drilled, or only slightly deviated from the
vertical line, nonconventional wells can either be horizontal, highly deviated or
forked into multiple laterals (Yeten, 2003). A well of any of these sorts can in
the greater sense be made with some completion instrumentation, and are then
called smart (or intelligent) wells. Often this instrumentation is referred to as
smart completion, which means wells are equipped with potentially everything
from sensors, valves and other inflow control devices. However, the term smart
well basically indicate a nonconventional well and is seldom found used on
conventional wells with smart completion. This is because a conventional well

3E.g. maximum water injection rate constraints, maximum production water-cut
constraints, gas/oil ratio constraints or similar
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with smart completion can be considered as a multi branch well with separately
controlled branches. Thanks to these technological improvements the needed
flexibility for well operation was available, yielding a potential production
increase if utilized in a proper manner.

4.1 Problem overview

Reservoir production strategy is often referred to as reservoir flooding. The
target is obviously to maximize the production of the field, most often from
a superior economical view. This economical target implies maximizing the
total production in most cases, i.e. retrieving the highest recovery factor for
the reservoir. To achieve the wanted production it is necessary to replace
the produced fluids with another fluid to maintain pressure support in the
reservoir. In most cases this is done by injection of some other fluid, preferably
an undesired fluid present in the production rate (e.g. non-profitable gas) or
perhaps water from the sea above. As production advances and the reservoir
contents is gradually replaced, the contact front of product and replacement
fluid is pushed towards the producing end. Hereof comes the term flooding,
as one can imagine the contact front moving in a wave-like manner. This
phenomenon is illustrated nicely in Fig. 4.1 found in Brouwer and Jansen (2004)
and Sarma, Chen, Durlofsky and Aziz (2006). Without going too much into
the details of the figure, one can clearly see the blue fluid (water) flooding the
reservoir from left to right forcing the red product (oil) to the producing well.

Here we are at the core of the problem. In order to yield maximum recovery
it is crucial to flood the reservoir in a way that ensures a contact front which
is as smooth as possible. This way we can achieve close to a simultaneous
breakthrough of the injected fluid at all the producing wells, and not the
undesired breakthrough, or coning, at an early stage at only a few wells.
The early breakthrough deteriorates the productivity of the reservoir since
the injected fluid will more easily flow following the lines of the breakthrough
channels, and pushing less on the oil or gas. In a sense one can see this as the
injected fluid following a shortest path. It is therefore often desired to avoid
or delay coning to the greatest extent possible, by selecting the appropriate
production policy of the field.

The general reservoir optimization problem belongs to a class of optimal control
problems subjected to what is known as control-state path inequality constraints.
This basically means constraints that need to be satisfied in every time step.
These constraints can possibly be nonlinear with respect to the chosen controls,
i.e. from a controllable valve or bottom hole pressure (BHP) to a maximum
flow constraint. It is acknowledged that such path constraints are particularly
difficult to handle (Sarma et al., 2006). Hence, to maximize the production
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Figure 4.1: Reservoir flooding (Brouwer and Jansen, 2004; Sarma et al., 2006)

potential of a reservoir it is necessary to solve a constrained NLP. As the
recent years have generated significant interest for closed-loop, model-based
reservoir management, this report will continue with presenting some of the
major contributions to the field.

4.2 Optimal Reservoir Control

Optimal dynamic multivariable control has already been used to a great extent
in process industry in general, and also in the downstream segment of the oil
industry. However, in the upstream end of the production line, advanced control
systems have not yet gotten foothold, in fact many reservoirs are still run
manually by operators and reservoir engineers. Considering the high energy
demands and the rapidly increasing oil price of today, the oil companies have a
huge potential for extra profits if they can increase their production totals. A
small percentage increase in recovery could mean millions in additional revenues.
Therefore, this is an exciting field for new control research, and has already been
adressed previously by a number of authors.

Although some early attempt was made by Asheim (1988) and Virnovsky
(1991), it is common practice to acknowledge the work of Sudaryanto and
Yortsos (2000) as the first systematic approach to solve the fundamental
problem. Considering a 2D geometry model with multiple injectors, this work
investigates the optimal allocation of the available injection rate for the injectors
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to optimize displacement efficiency. The displacement is viewed as a measure
for the flooding efficiency, where the rate policy obtained from optimal theory is
compared to a “conventional approach (...) to design symmetric well patterns,
and allocate injection rates equally to the wells” (Sudaryanto and Yortsos,
2000). Displacement efficiency was selected for the time of break through of
the injected fluid, as it was recognized that delaying this event is desirable for
“many recovery processes”. The work concludes with a “bang-bang” injection
strategy to be optimal, for both the homogeneous and heterogeneous reservoir
models investigated.

Brouwer, Jansen, van der Starre, van Kruijsdijk and Berentsen (2001) did an
early study from a more practical point of view, focusing on the potential
available through smart well technology. They delayed water breakthrough by
controlling the injection and production rates. The rate strategy was found
from a heuristic algorithm, which performed a static optimization. Static
refers to finding the optimal input settings if these are to be kept constant
over the time horizon. They concluded to show significant improvements for
some simple reservoir models. However, they did recognize that even more
improvement could be expected by dynamic optimization. As a contrast to the
static case, dynamic methods allow the input to take different values over the
time horizon. This was investigated in Dolle, Brouwer and Jansen (2002). Using
gradient-based optimization they implement an iterative scheme, calculating the
adjoint equation backwards in time to obtain the gradients with respect to the
injection and production rates. The algorithm was tested on fields of different
heterogeneity types, and confirming the expected improvement over the results
from the static approach4.

Common to all the above mentioned efforts are that they all consider cases
operated at constant injection and production rates. This will hardly be
feasible in practice for any real reservoir, as such constant rate policies in many
cases would cause violation of production constraints, i.e. give unrealistically
low BHPs. Brouwer and Jansen (2004) addressed this by applying dynamic
optimal control to cases subject to two extreme well-operation conditions.
The first case was subject to pure rate constraints, and the other was under
pressure constraints only. Both cases showed reduction in both produced as
well as injected water rates. In addition, for the rate constrained case the
optimal strategy showed both production acceleration and an increase in the oil
production totals.

In their work, Yeten et al. (2002) further investigated production rate opti-
mization by utilizing features available in a commercial reservoir simulator,

4They managed to show improvements in most cases, though there were to cases where
the static solution gave better result. This was blamed on numerical instability problems
with the adjoint equation.
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ECLIPSE (Schlumberger, 2006). Although costly in computation time, using
ECLIPSE for model prediction should improve the reliability for most reservoir
cases over the simpler models used in the other publications. Particularly,
using a highly developed simulator tool like the ECLIPSE will most certainly
make it easier to incorporate models of more complex geological structures and
representation of different smart well segments such as inflow control valves
(ICVs). Hence, the sense of realism can be increased in the problems addressed.
Yeten et al. (2002) describes a optimization procedure for control of ICVs for
smart wells, using a conjugate gradient (CG) algorithm to solve the NLP. At
a given time step of the simulation, they calculate the optimal static ICV
setting for the rest of the prediction horizon. These settings are applied for
one time step, and then a new set of optimal static ICV settings are found.
As an analogy to the MPC methodology presented in the previous chapters,
this can be viewed as a fixed horizon MPC with only one blocking for the
inputs, i.e. one optimization parameter for each input m. The gradients are
found numerically using a forward finite difference approximation. To test
their proposed algorithm they considered a number of fairly large models of
3 dimensions with 3 phases present (oil, gas and water). The results showed
significant improvement in oil production totals for the optimized case here
as well. However, by representing geological uncertainty by different model
realizations, optimization results also showed large variations for a type of fluvial
reservoir models. This was an important recognition, as it was found that not
all reservoirs may justify the extra cost of smart well completion.

Sarma et al. (2006) presented a gradient based optimization scheme with im-
provements in computational efficiency compared to similar methods previously
proposed. They use an approximate feasible direction NLP algorithm, which
only uses two evaluations of the adjoint function in all iterations, one for the
objective function gradient and one for a gradient made from combining the
active constraints. Besides the benefits from an increase in computational
efficiency, they argue for guaranteed feasibility for all iterates by explicitly
“solving the constraints during the forward model evaluation”. Implementing
test cases on a in-house simulator facility at Stanford University providing the
adjoint models directly from the simulator, they managed to show similar results
compared to a case also used in Yeten (2003). However, requiring only a fraction
of the total simulations Yeten (2003) needed to generate numerical gradients,
these results are acquired with far less computational effort.

Although Yeten et al. (2002) introduced an aspect of model uncertainty by
considering algorithm performance for a number of slightly different models
of the same characteristics and size, the above mentioned studies all assume to
have an exact model with all properties known a-priori. In reservoir engineering
this is seldom assumed to be the case, since all reservoir modelling is based on
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data from geological measurements with a high degree of uncertainty. Thus, a
reservoir model can only be expected to be a rough approximation of the actual
field at best, and therefore hold limited predictive value. In petroleum industry,
there is therefore a large subject area devoted to reservoir model updating
based on actual production data (e.g. BHPs and multiphase flows), known as
history matching. The idea is to fit the model to the available measurements by
tuning the geological parameters. Traditionally this problem has been solved
in a least squares sense, finding a set of model parameters with the best fit
between model output and production history. For closed-loop reservoir control
with model mismatch it will be necessary to include a model updating scheme
to achieve satisfying performance. This is especially important with respect
to violation of constraints. This was recognized in Brouwer, Nævdal, Jansen,
Vefring and van Kruijsdijk (2004) as they proposed way to combine optimal
reservoir control with online model updating from measured data. Here, they
extended their previous work from Brouwer and Jansen (2004) by incorporating
an estimator methodology known as the ensemble Kalman filter (EnKF) from
Nævdal, Johnsen, Aanonsen and Vefring (2005). They found that when starting
of with an erroneous model for predictions, they were able to produce results
close to those from the optimization with a perfect model, as the EnKF proved
to capture the reservoirs permeability field after only a few simulation steps.

As the order of the reservoir grows larger, e.g. increasing scope form near-
well models to complete fields, optimization will become more costly. To more
efficiently handle such large models Heijn et al. (2004) investigated methods
for model reduction for a two-phase heterogeneous reservoir. Discussing both
mathematical reduction of first principle models and identification techniques
for low-order black-box models, they found promising results especially for two
methods, proper orthogonal decomposition (POD) and subspace identification.
In practice, most reservoir models are given in a commercial simulator descrip-
tion and not by explicit model equations. In these cases mathematical reduction
methods, like the POD, is unsuitable, and pure identification methods, like
the subspace identification method, should be chosen of the two. Subspace
identification was used in a previous report by the author (Meum, 2006)
to derive low-order model representations of a simulator model to use for
predictions in a MPC. The identified models were able to show predictive
qualities for a limited time window, but deteriorated as nonlinearities became
more influential as the simulation time elapsed. The report remarks that even
though one could potentially develop a set of models to represent different part
of the reservoir life time, it would possibly be a better solution to introduce
some adaptive scheme for continuous model updating. E.g. use the subspace
identification method on-line, using simulator predictions and production data,
to update the identified model in each step. Saputelli, Nikolaou and Economides
(2006) presented an analogous approach to this, with a Self-learning Reservoir
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model. They use a hybrid model for predictions, based on basic fluid mechanics,
which is updated on-line through parameter estimation by standard linear
regression. By dividing the optimization problem into different levels depending
on their dominant time constants, long term optimization was done on an upper
level, while short term optimal control was found from an MPC application
utilizing the adaptive hybrid model. The upper level provides set points for the
MPC, which performs as close to these as possible. Saputelli et al. (2006) were
able to show a considerable increase in production efficiency for a multi-well
reservoir model.

This concludes the overview of the reservoir production problem. The interested
writer should seek to get familiar with some of the papers mentioned here
for a more detailed picture on each of them respectively. For a nice survey
on offshore real time production, Bieker, Slupphaug and Johansen (2006) is
recommended. They outline every aspect of upstream production, from well to
reservoir, for a bigger picture. Also highly recommended is Yeten (2003) which
addresses optimal reservoir production from the optimal placement of wells, to
optimal flooding strategies and considerations on geological uncertainty, in a
great detail.
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Reservoir Simulation

5
This chapter gives a brief introduction to reservoir modelling and simulation.
First an overview of the model description is given, along with the basic model
equations. Then the commercial simulator, ECLIPSE, is presented with some
basic properties.

5.1 Reservoir Model Description

A reservoir model is a geometric model which contains a detailed description
of geological properties and the dynamics of complex multiphase flow in a
porous media. Fig. 5.1 shows an example model for illustration. The colouring
scheme can be considered to represent a physical property (e.g. permeability)
in the different regions of the geological structure. The reservoir model will

Figure 5.1: Illustration of a reservoir model

try to describe the different static properties in all regions, along with the
dynamic variables, i.e. saturations and pressures. Preferably one could wish to
describe these model parameters continuously in space, to best capture the true
reservoir dynamics. For reservoirs containing discontinuities, such as barriers,
a piecewise continuous model would be desirable. However, the model needs to
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be discretized to use in simulations, and a continuous description can become
excessively complex. The common approach is therefore to model the reservoir
with spatial blocks, as a discretization in space. The blocks are known as grid
blocks. Appropriate static and dynamic parameters are assigned to each grid
block, found from geological measurements, e.g. collected during drilling or from
seismic data. As the parameters are associated with a degree of uncertainty, the
model will often need to be updated by history matching several times through
the reservoir lifetime.

The other important aspect of reservoir modelling concerns the description
of multiphase flows. The reservoir may contain water, liquid hydrocarbon
substances of different types or gas, in any combination. During production
fluids will be removed and replaced from the reservoir, as described in
Section 4.1. Hence, it is crucial to have a good model of the flow behaviour
to select the optimal production strategy. The next section describes the basics
for a particular mathematical multiphase flow model widely used in reservoir
modelling.

5.2 Model Equations

There exist various types of different mathematical models for the flow of
multiphase fluids in porous media. One of these types is the “Black-Oil”
model, where it is assumed that, in addition to water, there are two phases
of hydrocarbon substance (oil and gas) present in the reservoir. The Black-Oil
equations can also apply to a two-phase representation if assuming no gas in the
reservoir. The model can be expressed as a set of partial differential equations,
describing the saturation and pressure in the fluids. Basically these equations
arise from conservation of mass and an assumption on the relation between the
flow velocity and the pressure known as Darcy’s law. Dolle et al. (2002) gives
the equations on the form

∇ ·
(

hρl

k · krl

µl

∇pl

)

+ hqlρl = h
∂ (ρlSlφ)

∂t
, ∀ l ∈ {o, w, g} , (5.1)

where h is grid block height, ρl is the density of the liquid, krl is the relative
permeability of the liquid, k is the absolute permeability, µl is the viscosity of
the liquid, φ is the porosity, Sl is the liquid saturation, pl is the liquid pressure
and o, w, g refers to oil, water and gas respectively. Some of these parameters
are functions of the reservoir coordinates, such as the permeability and porosity,
if one is not making the naive assumption of a completely homogeneous geology
(e.g. φ = φ(x, y, z)). We recognize the nonlinearity of the system for the
dynamic states pl and Sl.
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In order to include (5.1) in a numerical simulator, and to fit the grid divided
reservoir description, the equations need to be discretized, with respect to time
and space respectively, as mentioned in Section 5.1. This is done according to
the Simultaneous Solution method (Peaceman, 1977; Aziz and Settari, 1986).
The spatial discretization can be done either for corner-point space grid, or
block-centred grid. Variable grid size can also be applied to decrease the number
of variables and parameters.

A state vector can be defined as

x(t) =
[

pl(t) Sl(t)
]T
, (5.2)

and an input vector as

u(t) = ql(t), (5.3)

where the bold face of pl(t), Sl(t) and ql(t) denotes they contain the state
variables for every grid block, stacked as vectors.

Now, one could make a complete system description by introducing the proper
matrices containing grid permeabilities, porosities and mass as described in
Heijn et al. (2004) on the form

ẋ(t) = Ψ−1V −1Tx(t) + Ψ−1u(t)

= f(x(t), u(t)),

where Ψ is a matrix containing pore fluid compressibility and porosity, V is a
matrix of grid cell masses and T is a transmissibility matrix.

Such an approach will not be further pursued here, as this report relies on a
commercial simulator for modelling. Suffice to say that implementing such a
model for simulations would be time consuming and complex, especially for the
3D, three-phase reservoir. The next section continues with a description of the
ECLIPSE reservoir simulator.

5.3 ECLIPSE 100 - A commercial reservoir simulator

ECLIPSE (Schlumberger, 2006) is an oil and gas reservoir simulator developed
and distributed by Schlumberger. Being used by several oil and gas companies
world wide, ECLIPSE can be considered one of the most acknowledged reservoir
simulators in the industry.

The ECLIPSE is a fully-implicit, strongly coupled, three-phase, three-dimensional,
general purpose Black-Oil simulator5. This means ECLIPSE solves the Black-
Oil equations in (5.1) using a IMPES (IMplicit Pressure Explicit Saturation)

5In addition, ECLIPSE also have an option available to model gas condensate

47



method. The program is written in FORTRAN77 and can be used on
any computer with an appropriate compiler and sufficient memory available.
Although ECLIPSE is a three-phase model, it allows for two-phase options,
solving only a two component system to save computational cost (i.e. memory
and time).

Input data for simulations can be prepared in a free format using a keyword
system. One might be tempted to call it intricate considering the number of
keywords available, which is a few thousand. Even so, the system is simple in
the way that any standard editor can be used to prepare the input file. All
that is required is that the input file must have the postfix .DATA, and that it
includes the following sections in correct order:

• RUNSPEC – General model description, such as title, dimensions, phases
present, etc.

• GRID – Here the model geometry must be specified, i.e. the grid
partitioning and and geological properties.

• EDIT – (Optional) Modifications to calculated pore volumes, grid block
centre depths and transmissibilities.

• PROPS – Tables of properties of reservoir rock and fluids as functions of
fluid pressures, saturations and compositions.

• REGIONS – (Optional) To define different regions which should differ in
properties, e.g. initial conditions.

• SOLUTION – Is used to specify the initial conditions in the reservoir.

• SUMMARY – (Optional) Specifies the required form of the system outputs,
and which values the simulator should output.

• SCHEDULE – This section gives the production specifications, such as
production rates, BHPs etc. This section offer several different options
for built in well control.

As an alternative the ECLIPSE Office package may be used to prepare data
interactively through a graphical interface. This package also offers tools for
visualization of model and simulation results.

Each of the different sections must be specified by a number of other keywords.
These will not be explained here, instead the report refers the reader to the
User’s Manual in Schlumberger (2006). Though, a comment should be made
regarding the SCHEDULE section offering well control. The user must specify the
wanted type of well control, and operational bounds on the production rates
and well pressures. ECLIPSE then operates the wells at the wanted set point,
either at a wanted BHP or a given production rate (e.g. the total liquid rate
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produced (LRAT)), while satisfying the specified constraints. To illustrate; a
well specified for BHP control will at all times produce the rate corresponding
to the set point pressure. If this corresponding rate violates a specified rate
constraint, ECLIPSE will switch to rate control, until the rate constraint allows
it to again produce at the set point pressure. Also, ECLIPSE includes an
option to model a well as multiple segments, through a strongly coupled model
for wellbore flow. Yeten et al. (2002) explains that the “multi-segment well
option uses the drift flux model for the representation of multiphase flow in the
wellbore, which enables the phases to flow with different velocities in the well”.
The different segments can then be viewed as ICVs, as the segments can adjust
the area open for flow, i.e. can be incrementally opened or incrementally closed.
This report will in the next chapter present a case study where well segments
are modelled as ICVs. See Section 6.2 for a more detailed explanation.

5.3.1 Interfacing with ECLIPSE

For the control engineer, it will be important to be familiar with the basics
of ECLIPSE and to have knowledge of important different keywords offering
functional means to use it for modelling purposes in an optimal control
application. Most of these are options are available trough the SCHEDULE section,
providing a number of different control alternatives. The reader is referred to
the ECLIPSE Reference Manual (Schlumberger, 2006) and advised to study
the parts on the SCHEDULE section in some detail before setting off to design an
control application to wrap around an ECLIPSE model.

Independent of what keyword facility found suitable for the control problem
at hand, an application must either way establish the correct interface to the
simulator for efficient use of the model. The obvious choice for such an interface
is through file I/O, since ECLIPSE reads all simulation data from text files. By
writing different text files with the appropriate keywords for production data
for each simulation step, and make sure to include them in the .DATA file,
the application can extract the wanted information from the model. ECLIPSE

writes all data to files with a user specified format, so the application can obtain
simulator output using file I/O for this as well.

Another important ECLIPSE feature, which should be used for efficient use in
optimization, is the RESTART file option. As the optimization progresses forward
in time, it would be extremely inefficient to re-run the .DATA file from the start
time at each sample. This should be avoided by restarting the model from the
end of the previous sample. RESTART files can be requested from ECLIPSE by
including the appropriate keywords in the data file (see Schlumberger, 2006, pp.
2075–2080). This saves all time-invariant data, e.g. geological properties, to a
separate file, and all time-dependent data to subsequent restart files. ECLIPSE
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Figure 5.2: ECLIPSE restart procedure

can then be restarted from previous time steps by specifying the sample number.
The procedure is illustrated as a flow chart in Fig. 5.2.
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Applications

6
This chapter contains detailed descriptions of the two reservoir models applied
to optimization in this report. The first model is a simple, cubic model, designed
as a multi-purpose model to use in student projects. As the model is fairly small,
it functions well as an introduction to reservoir modelling and control for the
non-petroleum engineer. The second model is a strongly channelized reservoir,
previously investigated in the work of Yeten et al. (2002) and Yeten (2003). This
model is larger in dimensions, and also represents a more realistic reservoir.
Hence, the model is more interesting from a control point of view, since the
solution to the optimal control problem is not as trivial as it is for the simpler
case. The section also includes some description of special implementation
adjustments and particular important properties for each model.

6.1 Case 1: The Shoe Box model

The first model implemented for optimization is a small, spatial reservoir with
heterogeneous porosity and permeability fields, named the Shoe Box model. The
model has previously been used in Meum (2006) and in an concurrent Master’s
thesis on EnKF by Jensen (2007)6. The reservoir is shown in Fig. 6.1(a), also
displaying the placement of wells in the reservoir. With two injectors, inj1 and
inj2, and two producing wells prod1 and prod2, available for control, this
represents a multi-variable control problem.

The model is a two-phase model, containing no gas, only oil and water.
Structurally the field consists of two high permeable layers separated by a layer
of lower permeability, and flow lines tend to go diagonally from the lower right
to the upper left of the reservoir, see Fig. 6.1(b). This gives a varying water
flooding time for the different vertical layers in the model. A more detailed plot
of the geological properties are given in Appendix A, Fig. A.1, showing grid
permeabilities and porosities in each layer.

Some of the reservoir properties are presented in Table 6.1. We notice the
number of grid cells

m̄× n̄× k̄ = 15× 15× 10 = 2250,

6The models conceptually equal, though have some small differences in properties.
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(a) Model overview
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INJ1 INJ2

(b) Flow line structure

Figure 6.1: The Shoe Box reservoir

and the total size of the reservoir

(m̄ ·∆x)× (n̄ ·∆y)× (k̄ ·∆z) = (15 · 94)× (15 · 80)× (10 · 5.6)m3

= 0.095 km3.

Variable Description Value Units
m̄, n̄ grid blocks in x and y direction 15 -
k̄ grid blocks in z direction 10 -

∆x grid block width 94 m
∆y grid block width 80 m
∆z grid block width 5.6 m
h reservoir depth 2600 m

Po,init initial pressure 260 bar

Table 6.1: Reservoir properties

Even though this is a multivariable control problem, the model is very
symmetric. To make it more asymmetric, the injectors are assigned to operate in
different layers of the reservoir. This is done by having the injectors perforated
in different segments. Fig. 6.2 shows how the wells are perforated, inj1 in layers
5-7 and inj2 in layers 2-4 respectively.

6.1.1 Base case definition

The reservoir base case is defined by the following operational conditions. The
producers are to produce a constant LRAT of 2000 SM3/DAY each, while
maintaining a minimum BHP of 200 bar and a minimum tubing head pressure
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Perforated well 

segments

Figure 6.2: Perforation of Shoe Box injectors

(THP) of 10 bar for lift considerations. The THP is given from a frictionless
model

pt = pb − (ρw ∗ qw + ρoqo) ·
gh

ql
, (6.1)

where pt is the well THP, pb is the well BHP, ρw is water density, ρo is density
of oil, qw is the water production rate, qo is the oil production rate, ql is the
liquid production rate, g is the gravity constant and h is the reservoir depth.
The multiphase rates are given from ECLIPSE.

The maximum production rate water cut (WCT) is 0.9. To maintain reservoir
pressure, inj1 and inj2 are injection a water rate (WIR) of 2500 SM3/DAY
while maintaining a maximum BHP of 400 bar. Reservoir is simulated for a
total time of 6 years, i.e. 2190 days.

6.1.2 Implementation

The SEPTIC control problem is formulated to maximize the field oil production
rate from the two producers over the prediction horizon 720 days. With a 30
day sample time, this gives a prediction horizon , Tc = Tp = 24 steps.

MVs are the injection and production rates at the four wells, qWk ,W ∈ {inj1,
inj2, prod1, prod2}. The SEPTIC application optimizes the distribution of
the available production and injection rates on the different wells. The available
rates are determined from the production rates of the base case. E.g., the
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injectors have a total rate of 5000 SM3 available per day, and the producers a
total of 4000 SM3/DAY available. Also, all wells have a high rate constraint at
3000 SM3/DAY.

The same pressure constraint as in the base case was imposed, as well as the
WCT constraint. This gives the following problem formulation

min
qW

t+Tp
∑

k=t

qFOPR
k − q∗k (6.2a)

subject to

qWk ≤ 3000 SM3/DAY (6.2b)

qinj1
k + qinj2

k ≤ 5000 SM3/DAY (6.2c)

qprod1
k + qprod2

k ≤ 4000 SM3/DAY (6.2d)

200 bar ≤ pb,W
k ≤ 400 bar (6.2e)

pt,P
k ≥ 10 bar (6.2f)

rWCT
k ≤ 0.9 (6.2g)

qWk ≥ 0 SM3/DAY (6.2h)

where qFOPR
k is the field oil production rate at time k, q∗k is an unattainable set

point, qWk is the flow rate in the set of wells W ∈ {inj1, inj2, prod1, prod2},
pb,W

k is the well BHP, pt,P
k is the well THP for the set of producers P ∈ {prod1,

prod2} and rWCT
k is the production WCT. All four MVs are parameterized as

five piecewise continuous blocks over the control horizon, giving SEPTIC 20
parameters to optimize in each sample.

Using the file I/O interfaces between SEPTIC and ECLIPSE, the production
rates was given directly to ECLIPSE through use of the WCONPROD keyword.

6.2 Case 2: A fluvial reservoir model

The second case model is a model provided by Dr. Burak Yeten, holding a
PhD from Stanford University. Previously used for publications (Yeten et al.,
2002; Yeten, 2003) this model has already proved potential for production
optimization, and is as such an excellent opportunity to validate the quality
of the algorithm developed in this report, through comparable results.

Rendering the reservoir description given in Yeten et al. (2002), this model
represents a virtual, North Sea type fluvial reservoir, made using a software
called fluvsim. Fluvial means that the reservoir is channelized, as it contains
impermeable zones through the layers. This is illustrated in Fig. 6.3, where the
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dark blue colour shows the areas of high permeability. Model dimensions are
5000×5000×100ft3, and the model contains three phases. A detailed list on the
other model parameters can be found in Appendix B, Table B.1. Gas is present
at the top of the field, while water is represented through an aquifer7. The
aquifer provides such a strong connection to the reservoir, that no injections
are needed for additional pressure support.

1 md

10,000 md

Figure 6.3: Fluvial reservoir model (Yeten et al., 2002)

The reservoir contains a multilateral horizontal well, also shown in Fig. 6.3.
The red line shows the unperforated mainbore, while the white lines connected
to the main bore, are four fully perforated laterals. As one can see, the laterals
intersect with both permeable and impermeable zones. The length of the laterals
are approximately 2150 ft long, and the well is placed 15 ft above the water-
oil contact, giving rapid water-breakthrough after production start. To control
each lateral they are all connected to the main bore with a valve (ICV) at the
lateral heel, indicated in Fig. 6.3 by the yellow circles. In addition there is a
valve at the start of the main bore, giving control over the total flow rate in the
well (white circle).

ICVs are introduced in the ECLIPSE model as well segments with adjustable
cross-sectional area (Schlumberger, 2006). The pressure drop in the segment is
then given as the sum of the frictional pressure loss and the pressure loss due
to the valve opening, and is modelled as a sub-critical flow in a pipe with a

7An aquifer can be seen as a water reservoir in connection with the hydrocarbon reservoir,
providing pressure support by continuously replacing the produced volumes through water
influx.
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constriction. Following the definitions given in Yeten et al. (2002), then:

∆pt = ∆pc + ∆pf , (6.3)

where ∆pt is the total pressure drop, ∆pc is the pressure drop resulting of flow
through the constriction and ∆pf is frictional pressure loss. The terms in (6.3)
are calculated from the two equations

∆pc = Cu

ρmv
2
c

2C2
v

, (6.4)

∆pf = 2Cuf
L

D
ρmv

2
p, (6.5)

respectively, where ρm is the density of the multiphase flow in the segment, Cu is
a unit conversion factor8, Cv is a dimensionless valve coefficient, vc and vp a flow
velocities through the choke (denoted by subscripted c) and pipe (subscripted
p). The Fanning factor enters the equations by f , and L and D are, respectively,
the length and the diameter of the well segment. By defining the open cross-
sectional area of the choke, Ac, and introducing this as an input in (6.4) through
the connection

vc =
qc
Ac

, (6.6)

the pressure drop over the constriction can be controlled for the current flow
rate qc.

The valve setting is specified to the ECLIPSE model for every time step using
the WSEGLABY keyword in the SCHEDULE section, by explicitly declaring the flow
area Ac. The flow area available is dependent on the diameter of the well
segment, D, and can take any value in the set (0, Amax], where

Amax =
1

4
πD2 = 0.1363 ft2, (6.7)

for D = 0.4166667 ft. Notice the open end bracket, as Ac is not allowed the
value of zero. Referring to (6.6), this would cause obvious problems in the
simulation. In the control application the valve settings are considered to lie in
the interval (0, 1], which is acquired by a simple transformation.

Reservoir models used in practice are made from geological and seismic data.
These are often associated with different degrees of uncertainty. To reflect this
uncertainty, this model is therefore reproduced as five unconditional realizations
from a geostatistical distribution. In Fig. 6.4 a histogram with the global
statistics of the permeability for all five models, along with some basic statistical
properties shown in Table B.2 found in Appendix B. Well properties, like

8All units used in Case 2 are field units
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Figure 6.4: Permeability distribution for the 5 model realizations

location, architecture and instrumentation are the same in all five models, so
all that differs are the surrounding permeability fields. An illustration of the
different models is shown in Fig. 6.5. The idea is to investigate production
increase potentials for equally probable models, to see if instrumentation and
optimization applications are justifiable given model uncertainty.

6.2.1 Base Case Definition

To compare the value of the optimized production results, a definition of a base
case is needed. This section describes a set of simple production conditions,
which functions as the base case. The conditions was chosen to be exactly the
same as found in Yeten et al. (2002). LRAT was specified to 10.0 MSTB/DAY,
with a constraint on gas production not to exceed an gas/oil ratio (GOR) over
5.0 MSCF/STB. If the constraint on GOR was violated, the LRAT was cut
by 10% every time the constraint was reached. Hence, the base case is not
an uncontrolled case, as it includes some simple constraint handling offered by
ECLIPSE. This control was necessary to ensure some stability in the simulator
model. There was however no control on the lateral valves. In fact, these
was not modelled in the base case, but replaced as well segments of ordinary
tubing. There was also specified a constraint on the WCT of the production
rate at 0.8%, to pose as an economical constraint. When WCT reached this
value, the well was specified to close down, as it was considered no longer to be
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Figure 6.5: The five geostatistical realizations

profitable. The pressure at the well was not to go below 1500 psi, given from
lift considerations. However, this constraint never got active in any of the cases,
as the aquifer supplies sufficient pressure support.

These models has been investigated in Yeten et al. (2002) and Yeten (2003).
Hence, their results are also available for comparison. A short description of
their optimizations have already been given in Section 4.2, and will not be
repeated here, but some major differences will be pointed out when appropriate.
The rest of this report will draw comparisons from the results produced here
with both the base case and the results presented in Yeten et al. (2002). The
latter will from here on out be referred to as SPE 79031.

6.2.2 Implementation

This section presents some of the most important implementation aspects and
adjustments in interfacing the Case 2 models with the SEPTIC application and
SSMQN algorithm.

The MVs are chosen is the opening of each of the four valves in connection with
the laterals. This is similar to the inputs used in SPE 79031. Also, we define the
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LRAT as a MV, which is necessary to meet the production constraints on GOR
in some of the model realizations. This gives the application an advantage over
the base case and the SPE 79031 case, as both of these seeks to fulfil the GOR
constraint by the ad hoc solution of cutting back production by 10% whenever
the constraint becomes active. Such a solution is obviously only suboptimal at
best, and the better approach will be to seek optimal production rate as well.
The five MVs are then given in the vector

u =
[

vL1 vL2 vL3 vL4 qLRAT,
]T

(6.8)

where vLm is the valve setting for the valve m ∈ {1− 4} and qLRAT is the well
total production rate. The CVs available are pressures and flow rates in the
well, and in each lateral respectively.

The NMPC is adjusted to include the MVs by using the WSEGLABY keyword to
set the valve openings. The production rate is controlled through the WCONPROD
as in Case 1. The valve settings in the controller takes dimensionless values
from (0, 1] referring to the degree of opening, where 1 represents fully open.
ECLIPSE demands the specified value to give the cross sectional area open for
flow, so the value is linearly transformed between the sets

(0, 1]⇔ (0, Amax]
(6.7)
= (0, 0.1363],

when exchanging valve settings from SEPTIC to ECLIPSE. A valve setting
equal to zero is prevented using a value close to zero at the minimum value for
ECLIPSE to receive.

The step length is chosen to 30 days, as an estimate of how often it is realistic
to change control settings in a real reservoir. The prediction horizon as well as
the control horizon is fixed at 900 days. Though some of these models would
possibly have a life time beyond 900 with a receding horizon controller, this
was done to maintain the possibility for comparison with SPE 79031, where
only the first 900 days of production was optimized. This application then
becomes a batch optimization NMPC, rather then a “standard” NMPC. The
NMPC framework is therefore modified to not call ECLIPSE for simulations
when running a time step exceeding 900 days. To ensure zero sensitivity to the
NMPC all outputs are after 900 days are equal to the ECLIPSE outputs at 900
days. The step length of 30 days is shorter than the 180 days used in SPE 79031.
This increase in sampling frequency will cause a much larger simulation time
as the number of ECLIPSE simulations needed is heavily increased. Though,
it can be argued that a sample time shorter than 180 days is fairly reasonable.

The control problem is formulated to maximize the value qFOPT after 900 days
while satisfying the constraints on GOR and WCT, similar to the formulation
in Case 1.
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Results

7
Having presented the control method, the reservoir production problem and the
case models at hand, this chapter will present the simulation results from the
implementations and the algorithmic performance of the SSMQN. Following
the structure from the previous chapter, each case model is addressed in an
orderly fashion, starting of with Case 1. The chapter will show the SSMQN
method to give production increases of variable degree for all models, and even
more importantly will it show the quality of the SSMQN method compared to
previously published results.

7.1 Case 1

The Shoe Box model was simulated for 6 year period, once with the base case
conditions and once using optimal control with the SSMQN controller. Fig. 7.1
show the total oil production of the reservoir (OPR) for the two cases. One can
observe an increase for the optimal control case, although only a marginal one
– approximately 1.2%. Before making appropriate comments on this result, a
few more figures are presented to analyse the efforts put in to achieve this gain.

Fig. 7.2(a) and (b) This shows the base case injection strategy versus the
SSMQN strategy. The main difference between the two is how the optimal
strategy uses more injection from inj2 than inj1 for the first 400 hundred days,
before shifting other way around. The reason why both the SSMQN case and
the base case decreases the total injection rate after 600 days is because the
BHPs hits the 400 bar constraint for both the injecting wells. From there on
out, both cases lies very close to this constraint, injecting at the maximum
available rate. The figures also indicate a larger water injection total for the
SSMQN than for the base case. No cost on injected water was included in the
optimization, so the SSMQN uses the available injection rate as it sees fit. Such
a cost could possibly and relatively easily have been included.

The production rate strategies for the two cases are given in Fig. 7.3(a) and
(b). These are also very similar for the two cases. One exception is clearly
visible in Fig. 7.3(a). From 600 days and out the SSMQN rate is much higher
than for the base case. This is due to the SSMQN assigning the available
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Figure 7.1: Case 1 – Oil production total

production rate, left unused by prod2 because of an active THP constraint, to
prod1. The base case does not recognize this opportunity, and settles at the
pre-selected production. The magnitude of the difference is also caused by the
injection strategy building up more pressure at the reservoir side containing inj1
and prod1 by injecting more water into this area, allowing a larger rate to be
produced in prod1. Recalling the models flow pattern illustrated in Fig. 6.1(b),
this behaviour is can be further understood. Since inj2 has better connection
to both producers from the pattern than inj1, it is logical to use more force
through inj1 to increase recovery.
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Figure 7.2: Case 1 – Water injection rates
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Figure 7.3: Case 1 – Liquid production rates

The optimal strategy increase of total injected water has already been com-
mented. Fig. 7.4 show the influences of water at the producers. Fig. 7.4(a)
shows a plot of the WCT versus time for the two cases. The behaviours are very
similar in the two cases, but a short delay in water breakthrough is noticeable
in favour of the optimal case. This is in accordance with the problem review
in Chapter 4. Fig. 7.4(b) shows the water production rates (WPR) for the two
cases. The SSMQN produces much more water than the base case. This is a
result of the increased production shown in Fig. 7.3. Keeping the similar WCTs
in mind, it is fairly obvious that a higher production rate will give higher water
rate for equal WCTs. So the increase in water production is the cost of the
increase in oil production. Again, there was not formulated any explicit cost
on produced water in SEPTIC, and therefore it is not taken into consideration
when computing the optimal strategy.

The SSMQN managed to show a minor increase in the OPT for Case 1. An
increase in water injection totals and production was also shown, however,
not more severe than staying inside operational constraints. There are several
reasons that can explain for the low efficiency increase for this case model. The
most obvious reason is the model simplicity. The model has been modified to
inherit some additional complexity by inserting multiple injectors with different
perforation profiles. Even so, the model produces fairly good results with
the naive, equal distribution base case strategy. Another reason may be that
the defined operational conditions are to constraining for the optimal case to
perform at its full potential. Because of lack of pressure support in the reservoir,
both the base case and the optimal case operate very close to the minimum
THP level for the producers and maximum BHP for the injectors. Potentially
these issues could have been investigated further, e.g. slacking the operational
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Figure 7.4: Case 1 – Water production

conditions, rearrange placement of well or changing the whole model structure.
This was found not to be of enough interest, when considering the limited model
potential. Instead, this report moves on to the second case example.

7.2 Case 2

The five models representing Case 2 was each simulated with control for a total
900 days. All simulations were performed with no modelling errors, i.e. the
same model was used as both model and process plant. Fig. 7.5(a)–(f) shows the
optimal controls found from the SSMQN method, for all models. sp1 denotes
one model realization, sp2 a second realization, sp3 a third and so forth.

Fig. 7.5(a)–(e) shows the optimal valve settings over the time horizon for each
of the five cases respectively. Even though the different models all have fairly
different optimal valve settings, there are some common characteristics in the
plots. In all cases except for sp2 the valve at the branch closes to the well heel
(Valve1) is choked down the most. In three of the cases the second most chocked
down valve is Valve2, at the second closest branch. This is explained by the
fact that the pressure in the reservoir causes much more flow in the branches
closest to the heel then the outer ones when the valves are fully opened. The
difference in flow gives a more rapid breakthrough of water and gas and the
closest branches, deteriorating the production performance. The solution is to
distribute more equal rates on all the branches. Fig. 7.6 shows that this is
exactly the solution found by the SSMQN algorithm for sp1. The optimized
case, Fig. 7.6(b), produces at more equal branch rates than the base case in
Fig. 7.6(a), and therefore manages to be productive for a longer time. The
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(c) Model sp3
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Figure 7.5: Case 2 – Optimal controls from SSMQN algorithm

other model simulations show the same tendencies.

Fig. 7.5(f) shows the optimal LRATs versus time for the models. Recalling the
base case specified production rate at 10000 STB/DAY, the figure shows that for
models sp1, sp3 and sp4 this is close to the computed optimal LRATs. However,
in models sp2 and sp5 the controller uses the MV to a great extent. A natural
question arises on how such severe decrease in liquid production is optimal
to maximize oil recovery. Fig. 7.7(a)–(e) showing the well GOR production
rates gives the answer. Paying extra attention to the GOR for sp2 and sp5,
in Fig. 7.7(b) and Fig. 7.7(e) respectively, these figures shows how the LRAT
decrease is used to prevent the GOR to hit the constraint at 5 MSCF/STB.
The SSMQN case performs much better, with the lower GOR, than the base
case 10% cut-back strategy. The three other cases also reduce the GOR to a
substantial degree, using only the choke settings. This indicates that in cases
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Figure 7.6: Case 2 – sp1 Lateral oil production rates

where the presence of gas is not so extreme, valve control can be sufficient,
but in the extreme case LRAT control will add an important contribution to
increase production.

The gas production constraint is important to handle efficiently, since min-
imizing the GOR will yield a higher OPR. Also, to high GOR can cause
well instability. Equally important in this case is that the WCT constraint
is satisfied to the longest extent possible, because of the specification to close
down production when the constraint is reached. Fig. 7.8(a)–(e) show time plot
of the WCT behaviour for the different models.

It is clear to see that the optimized case outperforms the base case on WCT
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Figure 7.7: Case 2 – Gas production comparison

from these figures. The water breakthrough is either delayed or the time of
WCT reaching the constraint of 0.8 is postponed, or as in the case for model
sp4 (Fig. 7.8(d)) – both. Also, we recognize how the WCT meets the constraint
at approximately 900 days for sp1 (Fig. 7.8(a)), sp2 (Fig. 7.8(b)) and sp5
(Fig. 7.8(e)). This is a direct result of the fixed prediction horizon, as the NMPC
will not see any profit in holding the WCT back any longer beyond the horizon
end. These cases could therefore possibly gain from a using standard receding
horizon NMPC instead. The last thing to notice is how the WCT constraint
is not active after 900 days of simulation in case of sp3 and sp4, Fig. 7.8(c)
and Fig. 7.8(d). This means these cases would increase their production totals
if run beyond 900 days. Alternatively, they could have benefited from LRATs
exceeding 10000 STB/DAY. However, this was not investigated, as it would
impose operational conditions making the results not comparable to the results
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Figure 7.7: Case 2 – Gas production comparison
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Figure 7.8: Case 2 – Production water cut comparison

published in SPE 79031.

Before making that final comparison, the time plots of the OPRs in the
optimized case versus the base case are presented. These are displayed in
Fig. 7.9(a)–(e), showing that the optimized case exceeds the production for
the base case in all model realizations. What is equally noticeable, is the large
differences in the production increase for the different model realizations, with
the two extremes of marginal improvement for sp2 in Fig. 7.9(b) and the huge
improvements for sp1 and sp4 in Fig. 7.9(a) and Fig. 7.9(d).

The optimization problem was formulated to maximize the oil production total
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Figure 7.8: Case 2 – Production water cut comparison

(OPT) for the models. As Fig. 7.9(a)–(e) has shown, the NMPC application
gives increase in all models, varying from substantial to minor increases. What
is left is to quantify these production gains. The numbers are given in Table 7.2.
The table lists the production for every model realization on separate lines. The
columns consist of the total oil production after in 900 days for three cases, the
base case, the optimized case and also the results found in SPE 79031. The
gain columns shows production increase found for the two optimization methods
relative to the base case. The results from the SSMQN show large improvements
over the base case production. The relative gain spans from 5.4% to 67.6%, with
an average of 29.9%.

A similar table was given in SPE 79031, without the SSMQN results, where
Yeten et al. (2002) commented on the large variations in production gains for
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Figure 7.9: Case 2 – Oil production rate comparison

the five cases. Although able to show significant increase in some cases, sp2
only produced an extra 1.8% when using optimization and instrumentation.
On this basis Yeten et al. (2002) suggested that with the geological uncertainty
represented by the different models, optimizations did not give a consistent
answer on whether or not instrumentation is economically justifiable. In some
models, the gain found was fairly small, on the other hand, they stated that
“significant resources might be lost by not deploying the control devices”.

Model Base case SPE 79031 Gain SSMQN Gain
realization (MMSTB) (MMSTB) % (MMSTB) %

sp1 2.61 3.83 46.7 3.86 47.9
sp2 2.22 2.26 1.8 2.34 5.4
sp3 3.80 4.13 8.7 4.14 8.9
sp4 2.59 4.27 64.9 4.34 67.6
sp5 2.18 2.48 13.8 2.61 19.7

Average 2.68 3.40 27.2 3.46 29.9
Std. Dev. 0.66 0.95 27.2 0.92 26.9

Table 7.1: Comparison of Oil Production Totals

Comparing the results from the SSMQN to the results from SPE 79031, the
former comes out on top for all the model realizations. On average, the SSMQN
gives an additional 3% increase, relative to the base case, over the SPE 79031.
The three main explanations behind this are

1. Decreased sample time – the NMPC used time steps of 30 days,
whereas the SPE 79031 optimized with 180 day intervals.
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Figure 7.9: Case 2 – Oil production rate comparison

2. Dynamic optimization – in SPE 79031 the optimization problem
parameters was kept to a minimum as each step found the optimal set
of static inputs for the rest of the reservoir lifetime. The SSMQN opened
for computation of dynamically changing inputs by increasing the number
optimization parameters. Where SPE 79031 solved for one parameter per
input, the SSMQN solved for 4, giving a total of 20.

3. Optimizing LRAT – the SSMQN included the LRAT as an optimization
parameter. This way the constraint handling could be taken care of by the
NMPC method, instead of by the heuristic method offered by ECLIPSE.
Since the models are carrying information about the constrained rates,
the GORs and WCTs, the natural thing is to include all the available
MVs for controlling these in the optimization problem.
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The listed reasons imply a higher computational cost for the SSMQN than
for the SPE 79031. A larger number of optimization problems are solved,
the problems are harder to solve and the application requires more ECLIPSE

simulations. Still the SSMQN performs well within real-time demands,
as the 900 days optimal control simulation took about 3 days each on a
single computer. Also, the results suggest that the extra computations are
compensated for, as they give additional increase in all cases. An interesting
thing is to notice the SSMQN performance compared to the SPE79031 for sp2
and sp5. These where the to cases where the LRAT MV was used the most,
recalling Fig. 7.5(f). The table shows that these are the two cases providing
the most increase over SPE 79031, indicating the NMPC being most valuable
for models with the toughest operational conditions. Evident improvements are
also shown for sp2 and sp4, representing the most profitable cases in both this
report and in SPE 79031. The least increase over SPE 79031 are found for sp3.
This is the model with the highest base case OPT. Fig. 7.8(c) shows the WCT
for this case. Notice how the WCT constraint is not active after 900 days in
the optimized case. Hence, this model would have shown a better result if run
for a longer time period as its natural lifetime is longer than 900 days for a
maximum LRAT of 10000 STB/DAY. This would potentially have given better
performance compared to the SPE 79031 as well.

To summarize, the results from the SSMQN simulations confirms and further
strengthens the results from SPE 79031 – valuable resources will potentially
be lost if a reservoir like this is not equipped with smart wells. In addition to
increasing the most promising results in SPE 79031, the SSMQN increases the
“worst case” scenario as well, by recovering 5.4% more oil in sp2, compared
with SPE 79031s 1.8%. Proper decision making methods should still be
considered before investing the extra costs of smart well optimization for a
reservoir. However, these results strengthen the argument of applying reservoir
optimization for complicated reservoir structures.
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Discussion

8
This chapter gives a brief discussion of the main work and results presented in
this thesis, before proposing some thoughts and propositions on further work
and ending the report with the final conclusions.

In Chapter 3 the details of a NMPC algorithm, the SSMQN, was presented.
Basing on previous work using a similar approach, the SSMQN was designed
to control severely nonlinear processes by using a black-box simulator model
for predictions. Applying the method to a benchmark CSTR model for testing
showed satisfying algorithmic performance, for different variations of algorithm
parameters. Depending on the control application to be implemented, the
parameters should be chosen wisely to yield optimal performance. The section
makes a special comment on giving the convergence parameters extra thought if
the time between samples for calculations is limited. The method is developed
considering only stable system, and is as such limited to perform satisfactory
only for stable systems. To be implemented on a unstable process additional
measures must be taken to guarantee stability, e.g. pre-stabilize the unstable
process or impose terminal constraints or regions. Care must also be taken to
avoid the unstable simulator model returning infinite predictions.

Chapter 4 and 5 gives a review of the reservoir problem and reservoir simulation
basics. The ECLIPSE reservoir simulator is described along with a few
properties. As ECLIPSE is a huge simulation tool, the author has only
gathered limited knowledge to the features available. The features used are only
mentioned or described on a higher level. Reservations are taken considering the
possibility that ECLIPSE offers features that could have been used to simplify
any part of the presented work.

Case model descriptions was given in Chapter 6 and the simulation results
was presented in Chapter 7. Again it must be stated that all simulations
was performed without any modelling error. Considering the highly different
behaviour of the five model realizations in Case 2, it would have been an
interesting exercise to investigate optimal production potential using erroneous
models for predictions. This was however out of scope for this report. Since
all results are gained from perfect reservoir model knowledge they can only be
seen as best case scenarios of a real-life reservoir application.
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8.1 Considerations for further work

There are several issues which needs to be address to continue the progression
on this topic. Before drawing the final conclusions, a few will be listed here.

• Model errors – The effects of model errors need to be investigated. This
means both NMPCs ability to prevent violation of operational constraints
through feedback, and also the effects of applying an “optimal production
strategy” to a reservoir calculated from an erroneous model. The question
is whether or not the model error will cause a loss of production compared
to the base case. The five model realizations in Case 2 would make nice
candidates for such a task. E.g. show how much of sp4s production
potential will be lost if sp2 is used for predictions, or how the GOR
would behave for the reversed case.

• Model updating – When model errors are present there is an obvious
need for model updating. As production data becomes available one would
wish to use the deviation from the predicted values to update the model to
make better predictions. The EnKF is a strong candidate for this purpose,
but other methods are also available.

• Model reduction – To be able to run faster simulations for predictions,
model reduction methods should be further investigated. E.g. create
ECLIPSE models with fewer grid cells and/or variable grid sizes, so called
proxy models. Full scale reservoir models may still take hours to run,
making them inefficient to use in a NMPC application.

• Parallel processing – Another possibility is to speed up calculations
by assigning all prediction simulations to different CPUs for parallel
processing. This was not used in this report, as all simulations were run
sequentially. Considering every optimization taking about 3 days, parallel
processing could have easily decreased this time with at least 90%.

Also, a paper presenting the results made on the benchmark reservoir Case 2
is under preparation. An abstract is to be submitted to the SPE Intelligent
Energy Conference and Exhibition 2008. The paper abstract and introduction
can be found as an Appendix on page 89. The full paper will also be submitted
to the SPE Journal when finished.
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Conclusions

9
In this report the author has developed and implemented a NMPC application
in Statoil’s MPC tool SEPTIC, using a single shooting, multistep, quasi-
Newton approach. The application has been successfully tested against different
nonlinear models, showing satisfactory control performance. The NMPC was
interfaced to ECLIPSE, a commercial reservoir simulator, to use for simulations
and predictions to solve the optimal reservoir control problem. The simulation
results show that reservoir productions can be increased by considerable
amounts by using a NMPC controller compared to reference cases produced
using simple constant rate strategies. For one case in example Case 2, an
increase with up to 68% was found.

The results found also confirm that not all reservoir models justify the extra cost
of smart completions. Example Case 1 showed very little improvement when
control was applied. As a general conclusion it can be stated that a reservoir
should either include some structural model complexity or an unbalanced
production profile across the wells to yield a sufficiently potential gain from
optimal control.

The developed algorithm was applied to a benchmark reservoir model to validate
the quality of the NMPC results. The application managed to show an increase
in production over the previously published results on the model. Hence, the
quality of the method was proven.
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Allgöwer, F., Findeisen, R. and Nagy, Z. K. (2004). “Nonlinear model
predicticve control: From theory to application”, J. Chin. Inst. Chem. Engrs.,
Vol. 35, no. 3, pp. 299–315.

Asheim, H. (1988). “Maximization of water sweep efficiency by controlling
production and injection rates” in paper SPE 18365 presented at the SPE
European Petroleum Conference, London, UK, October 16-19.

Aziz, K. and Settari, A. (1986). Petroleum Reservoir Simulation. Elsevier
Applied Science Publishers.

Barclay, A., Gill, P. and Rosen, J. (1997), “SQP meth-
ods and their application to numerical optimal control”.
citeseer.ist.psu.edu/barclay97sqp.html. Numerical Analysis Report
97–3, Department of Mathematics, University of California, San Diego, CA.

Biegler, L. T. (1998). “Advances in nonlinear programming concepts for process
control”, Journal of Process Control, Vol. 8, no. 5/6, pp. 301–311.

Biegler, L. T. (2000). In Nonlinear Model Predictive Control, F. Allgöwer &
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Case 1: Model Properties
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Figure A.1: The Shoe Box reservoir properties
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Case 2: Model Properties

B
drainage area 5000× 5000 ft2

oil thickness 50 ft
gas cap thickness 50 ft
φ 0.20
gas cap PV 0.625 MMft3

Rs 1.0 MSCF/STB
c at pbub 3.0× 10−6 psi−1

kro

{

0.8 at Swc = 0.20

0.8 at Sgr = 0.05

krw 0.4 at Sor = 0.30
krg 0.9 at Swc = 0.20
γ at 14.7 psi

oil 0.85
water 1.0
gas 0.71

µ, cp at pbub

oil 0.42
water 0.30
gas 0.02

B, V/V at pbub

oil 1.55
water 1.02
gas 0.71

Table B.1: Case 2 model properties (Yeten et al., 2002)

Standard Coefficient
Facies Average Deviation of Variation

(md) (md)
Channel Sand 1534 635 0.4

Mudstone 4.9 1.5 0.3

Table B.2: Case 2 permeability statistics (Yeten et al., 2002)
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Abstract 

In this paper, we present an algorithm for 

optimizing reservoir production using smart well 

technology. The term smart well is used to indicate 

a nonconventional well equipped with downhole 

inflow control devices (ICVs) and instrumentation. 

This additional instrumentation extends the degree 

of freedom in the field production planning, since 

production can be efficiently distributed on the 

different well segments available. By proper 

utilization of the ICVs through optimal production 

planning, an increase in the oil recovery factor for 

the reservoir can be expected. We propose a method 

for optimal closed-loop production known from 

control theory as model predictive control (MPC). 

A commercial reservoir simulator, ECLIPSE, is 

used for modelling and predictions. MPC is chosen 

for its ability to provide an optimal solution for the 

constrained multivariable control problem. To 

compute the optimal ICV settings, we propose using 

a nonlinear MPC (NMPC) application, which can 

handle the severe nonlinearities found in reservoir 

models. The NMPC uses a single shooting, 

multistep, quasi-Newton (SSMQN) method to solve 

the optimization problem. As the term multistep 

suggests, this is an iterative method, which solves a 

sequence of quadratic problems (QPs) in each 

timestep. We apply our method to a benchmark 

reservoir model with multiple geostatistical 

realizations. This model has already proven 

potential for increased oil recovery by using 

optimizarion techniques. We show an even 

additional increase over the former approach in 

production totals, using the SSMQN method, with 

as much as 68% increase in one case, and 30% on 

average compared to the uncontrolled reference 

case. 
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A smart well is a nonconventional well equipped 

downhole with ICVs. Such wells offer control of 

the total flow through individual segments and 

branches, as well as multiphase flow and pressure 

measurements. The potential benefits from proper 

use of ICVs in a real-time control application are 

quite substantial. Especially because continuous 

redistribution of the production rate on the available 

branches can delay or avoid coning of gas and/or 

water for as long as possible. 

Reservoir optimization is currently an exiting field 

of research, and has already been investigated by a 

number of authors since the turn of the millennium. 

Although, some early attempts were made by 

Asheim (1988) and Virnovsky (1991), most 

acknowledge Sudaryanto and Yortsos (2000) to be 

the first to systematically address the flooding 

problem. They used optimal control theory to 

maximize sweep efficiency for a multiple source 

(injector), single sink (producer) system. By 

optimally allocating the injection rate for each 

injector they showed a “bang-bang” strategy to 

maximize the displacement efficiency, as this 

caused a simultaneous breakthrough from both 

sources at the producing end. Brouwer et al. (2001) 

made a study from a less theoretical point of view, 

focusing on production potential available through 

smart well control. Using a heuristic algorithm for 

static optimization, the developed a production rate 

strategy for simple reservoir models. This work was 

extended by Dolle et al. (2002) which developed an 

algorithm for dynamic optimization, using gradient-

based optimization. In addition to improving the 

results from the static approach, they also addressed 

reservoirs with heterogeneous permeability fields. 

The above mentioned work was made with an 

assumption of constant production rates. Brouwer 

and Jansen (2004) recognized that this was hardly 

common in pratice, and therefore investigated the 

problem further, as they compared the constant 

production rate case with the constant bottom hole 

pressure (BHP) case. These cases were argued to 

illustrate the two extremes of well-operating 

conditions, as practical production planning need to 

take them both into consideration. Yeten et al. 

(2002) combined optimization, using a conjugate 

gradient method, with features available in a 

commercial reservoir simulator. The simulator is 

used for numerical gradients, as well as for efficient 

modelling of ICVs. Though costly in terms of 
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computation time, their algorithm produced 

promising results. Sarma et al. (2006) used an 

approximate feasible direction algorithm, in 

combination with a general purpose simulator. 

Exchanging exact gradient information directly with 

the simulator, and from the efficiency of the 

approximate feasible direction algorithm, they 

proved to match results by Yeten (2003) using only 

a fraction of the CPU time.  

In this paper we will describe an NMPC algorithm, 

and apply it to a set of reservoir models, previously 

used in Yeten et al. (2002) and Yeten (2003). The 

models are geostatistical realizations of a fluvial 

reservoir with a horizontal multilateral well. All 

models are applied to the optimization routine, and 

results are compared both to base case numbers, and 

the results from previously published optimizations. 

We will show that our NMPC algorithm, by 

dynamic optimization and reducing the sample 

time, further increases production potentials over 

the previous used methods.  


