& NTNU

Innovation and Creativity

Communication Protocol for Advanced
Prosthesis Components

David Karna

Master of Science in Engineering Cybernetics
Submission date: June 2007
Supervisor: Geir Mathisen, ITK

Norwegian University of Science and Technology
Department of Engineering Cybernetics






Problem Description

Det foreligger planer for en standard stremforsynings- og kommunikasjonsprotokoll for
protesekomponenter, noe som vil forenkle sammenkopling av hender, albuer m.m. fra ulike
leverandgrer samt tillate mer avanserte, koordinerte styreprinsipper. Standarden gar under det
forelgpige navnet Standardised Communication Interface for Prosthetics - SCIP.

Det foreligger en forelgpig funksjonsspesifikasjon for SCIP. Denne oppgaven gar ut pa a kartlegge
ulike eksisterende lavniva protokoller som vil kunne oppfylle funksjonsspesifikasjonen, samt
utvikle,

realisere og evaluere utvalgte elementer av protokollen for en av de aktuelle lavnivaprotokollene.
1. Gi en oversikt over lavnivaprotokoller som du mener er relevante for den aktuelle
anvendelsen. Legg spesielt vekt pa forhold som er av direkte eller indirekte betydning for den
foreliggende funksjonsspesifikasjonen.

2. Velg ut en av protokollene, og spesifiser en hgynivaprotokoll basert pd denne som
tilfredsstiller de funksjonelle kravene som er stilt til SCIP.

3. Implementer deler av eller hele protokollen, og test, sa langt tiden tillater det, hvorvidt den
spesifiserte oppfarselen er oppnadd.

4. Foresld endringer og/eller tilfgyelser til den foreliggende funksjonsspesifikasjonen i den grad
du finner dette ngdvendig eller naturlig.

Assignment given: 08. January 2007
Supervisor: Geir Mathisen, ITK






Preface

This master thesis is as I mention in the introduction just a part of an interesting
project that aims towards defining an international standard for communication
in powered upper-limb prostheses. I hope that this report can contribute a little
to that work, and that other students wish to continue where I let go.

It has been very instructive to work with this kind of formal design, and I
honestly believe that I have learnt much during this spring.

I would like to thank my advisor @yvind Stavdahl for his guidance. His pos-
itive attitude, and sincere enthusiasm has been very inspiring. I would also like
to thank my classmates, Morten Engen and Anders Fougner who have been
great to discuss my work with. Finally I would like to thank NTNU for the
privilege it has been to study here.

Trondheim 19/6-07

David Karna



ii



iii

Abstract

It would be of great value for the prosthesis industry to achieve an open standard
for communication in upper limb prostheses. Cooperation between NTNU and
the University of New Brunswick has resulted in a functional requirements
specification for such a standard, SCIP(Standardised Communication Interface
in Prostheses). The special challenges for communication in a prosthesis system
are possible noisy environments, high demands for light weight, safety for the
user and the fact that devices might be switched during operation.

It was the purpose of this master thesis to make a design based upon those
requirements. This was done by first choosing an existing bus standard, that
would provide the lower levels of communication. CAN was chosen for this
purpose. The next step of the design process was to transform the functional
requirements into more specific technical requirements. This resulted in the
definition of four types of nodes on the bus. These are bus controller, input
controller, device controller and service controller. Their interactions called for
the specification of several different message types, to support data exchange
between the nodes.

The result was a design that specifies node types, message types, variables
like adresses, control strategies etc., state transition diagrams for the different
node types and some message sequences. It also specifies the use of the CAN
data-frame for all message types.



iv



List of Figures

1 Network topologies . . . . . . . . . . .. ... .. ... ... ... 4
The Standard Anatomical Position and relative directions . . . . 5
3 The degrees of freedom of the human wrist joint(Courtesy to
Qyvind Stavdahl) . . . . . ... oo L 6
4 The degrees of freedom of the metacarpophalangeal joint of the
index finger. . . . . .. .. 7
5 The joints of the human hand. . . . . . ... ... ... ..... 8
6 Single-site control by use of level coding. . . . . . .. .. ... .. 9
7 Single-site control by use of rate coding. . . . . . ... ... ... 10
8 STD for a Device Controller . . . . . . .. .. .. .. ... .... 28
9 STD for the bus controller . . . . . . . . ... .. ... ...... 28
10  STD for the Input Controller . . . . . ... ... ... .. .... 29
11 Useof the CANID-field . . . ... ... ... ... ........ 35
12 Example of use of the Data-field for request_status_vars. . . . . . 36
13  Example of use of the Data-field for inc_port_config . . . . . . .. 36
14 Example of use of the Data-field for dc_init . . . . . .. ... .. 37
15  Use of the Data-field and ID-field for adressing control_data . . . 38
16 Use of the Data-field for sending control_data . . . . . . . . . .. 39
17 Use of the Data-field and ID-field for adressing status_vars . . . . 39
18  Use of the Data-field for sending status_vars . . . . . . . .. ... 40
19  Use of the Data-field for de_dof-init. . . . . . . .. ... ... .. 40
20 Use of the Data-field for dof-config . . . . . . ... ... ... .. 41

21 The message sequence for initialization of the DCs and the InC.. 49
22 The message sequence for configuration of the system. . . . . . . 50



vi



Contents

1 Introduction

2 Background

2.1 Networking Concepts and Standards . . . . . ... ... ... ..
2.1.1 ISO/OSI . . .. .
2.1.2 CSMA/CD . .. ...
2.1.3 Network Topologies . . . . ... ... ... ... .....

2.2 Basic Anatomy of The Upper Limb . . . . . . . ... .. ... ..
2.2.1 The Standard Anatomical Position . . . . . ... ... ..
2.2.2  The Shoulder Joint . . . . . .. ... ... ... ...
2.2.3 The Elbow Joint . . . . . ... .. oo
2.24 The Wrist Joint . . . ... ... .. oL
2.2.5 The Hand and Fingers . . . . . . ... .. ... ......

2.3 Control strategies in prostheses . . . . . . . .. ... ... ....
2.3.1 Sensor types . . ..o ..o
2.3.2 Single-Site Systems . . . . . . ... oL oL
2.3.3 Two-Site Systems . . . . . .. ... oL
2.3.4 Multi Function Control Strategies . . . . ... ... ...

3 Choice of Bus Solution

3.1 BusStandards . . ... ... ... oo
3.1.1 Wireless Data Transfer . . . . . .. ... ... .......
3.1.2 Parallel Buses . . . . . ... .. ... oo,
3.1.3 UART(Universal Asynchronous Receiver Transmitter) . .
3.1.4 SPI(Serial Peripheral Interface) . . . . . . ... ... ...
3.1.5 I2C(Inter Integrated Circuit) . . .. ... ... ... ...
3.1.6 OneWire . . . . .. .. ..
3.1.7  CAN(Controller Area Network) . . . ... ... ... ...
3.1.8 TTP(Time Triggered Protocol) . . . . . ... ... . ...
3.1.9 USB(Universal Serial Bus) . . . . . ... ... ... ....
3.1.10 FireWire . . . . . . ... oo o
3.1.11 Ethernet . . . . . . . . ... oo

3.2 Requirements for SCIP . . . . . .. .. ... ... ... .....
3.2.1 Transfer Speed . . . . . . . . . ... ... ... ...
3.2.2 External Electronic Components . . . .. ... ... ...
323 Wiring . . . . . . ..o
3.2.4 Noise Sensitivity Reduction . . . . . ... ... ... ...
325 BusControl . . . .. ... ... ... .
326 Overhead . .. ... ... .. ... 0.
3.2.7 Broadcasting . . . ... .. ... Lo oL
3.2.8 Message Priority . . . .. ... ..o oL
3.2.9 Error Detection . . . . . . .. ... oL

3.3 Comparison . . . . . . .. ...

3.4 Conclusion . . . . . . . s

vii



viii

4 Technical requirements specification

4.1 Technical requirements specification . . . . ... ... ... ...
5 Design
5.1 State transitions . . . ... ...
51.1 STD for DCs . . . . . . . . .. .
5.1.2 STD for the Bus Controller . . . . . .. ... ... ....
5.1.3 STD for the Input Controller . . . . . ... ... .....
5.2 Message Derivation . . . . . .. . ... oL
5.2.1 Initialization Messages . . . . . . . .. ... ... ... ..
5.2.2 Control Messages . . . . . . . . ... .o
5.2.3 Configuration Messages . . . . . . .. .. .. ... ....
5.2.4 Housekeeping Messages . . . . . ... .. .. .. .....
5.3 Message Layout . . . . . . ... ... ..o .
5.3.1 UseoftheID-field .. ... ... ... .. .........
5.3.2 Use of the Data-field . . . . .. ... ... ... ......
5.3.3 Summary . . . . ..o
5.4 Declaration of Constants . . . . . . . . ... ... ... ......
5.4.1 message_id . . ... ..o
5.4.2 controlstrategy . . . . . . ... ..o oL
5.4.3 controlscheme . . .. ... ... ... ... ...
5.4.4 controlvariable . . . . ... ... oo
5.4.5 Input_type. . . . . ...
5.4.6 input_usage . . . . . ...
5.4.7 data_type . . . .. ...
54.8 adress . . . ...
5.4.9 state . . . ..o
5.4.10 Shoulder dofs(Degrees of Freedom) . . . . . .. ... ...
5.4.11 Elbow dofs(Degrees of Freedom) . . ... ... ... ...
5.4.12 Wrist dofs(Degrees of Freedom) . . . . . .. .. ... ...
5.4.13 Hand dofs(Degrees of Freedom) . . . . . .. ... ... ..
5.5 Message SeqUeNnces . . . . . ... .o i el
5.5.1 Initialize Sequence . . . . . ... ...
5.5.2 Configure Sequence . . . . . . . . . ...
6 Discussion
6.1 Choiceof Bus . . . . . ... ... .. ... ...
6.2 Node Interaction . . . . . .. ... ... oL
6.3 Use of the CAN ID-field . . . .. .. ... ... ... .......

7 Conclusion

8 Future Work

8.1 Consistency Check . . . . .. ... ... . o .
8.2 TImplementation . . . . . . . ... ...
8.3 Testing . . . . . . . . e

8.4 Alternative Physical Layer Solutions . . . . . ... ... ... ..

19
19

27
27
27
27
28
29
29
30
30
31
33
33
35
41
43
43
44
44
44
44
45
45
45
46
46
46
47
47
49
49
50

51
51
o1
51

53



A Functional Requirements Specification

ix

59






1 Introduction

In the area of powered upper limb prostheses improvements are continously
made, as new technology allows devices to be made lighter and easier to control,
battery lifetime is prolonged and our understanding of the interaction between
man and machine is increasing. A cooperation project going on between NTNU
and The University of New Brunnswick among others that aims to contribute
to these improvements is SCIP. SCIP or Standardised Communication Interface
in Prostheses is meant to become an open standard for data communication in
upper limb prostheses. The advancements achieved with a bus solution like
this are increased modularity, lighter and more robust prostheses as a result of
reduced wiring and possibility for centralized control.

This master thesis is a part of the SCIP project, and is based upon a func-
tional requirements specification written by @yvind Stavdahl, Peter J. Kyberd
and Geir Mathisen. The task is to design a solution for SCIP built upon an
available low level bus protocol. This should then be implemented as far as
time suffices.

First a decision must be made as to which bus protocol to use, and this is the
topic of chap.3. After that the functional requirements specification is rewritten
in terms of more concrete technical requirements in chap.4. Chapter 5 describes
the behaviour of the nodes in the network, and specifies the messages needed to
fulfill the technical requirements. The layout of these messages and specification
of the use of variable values also belong in that chapter. Next, chap.6 provides
a critical review of the design choices, and chap.7 states the authors view of the
final design. Finally chap.8 gives some suggestions to what could and should
be done next. Some relevant theory is presented in chap.2



1 INTRODUCTION



2 Background

This chapter will introduce a few important concepts and standards which are
much used in the area of networking. Following that is a short introduction
to the anatomy of the human upper limb. The last section provides some
information about control strategies in prostheses and the input signals used
for this control.

2.1 Networking Concepts and Standards
2.1.1 ISO/OSI

This is a standardized model which divides a network into seven sub-layers.
The sub-layers are listed here in top-down order:

e 7. Application Layer
e 6. Presentation Layer
e 5. Session Layer

e 4. Transport Layer

e 3. Network Layer

e 2. Data Link Layer

e 1. Physical Layer

The following explanation is a short version of the one found in (Tanenbaum
2003, chap.1.4) The application layer defines the interface to the end-user, i.e.
what data to send and what to do with data received. The presentation layer
deals with converting the structure of the data. This is only necessary if the
application layer uses data structures that are non standard. The session layer
allows two machines to establish sessions. The session might set restrictions
with regard to who can send data when, and might also provide checkpointing.
The transport layer provides end to end communication by breaking down user
data to smaller packets handled in turn by the network layer. The network layer
is responsible for routing, and thus decides the quality of service provided(for
example delay). The data link layer handles even smaller packets of data called
data frames. These may contain error handling information in addition to data
and adresses. Finally the physical layer transmits raw bits over some commu-
nication media.

2.1.2 CSMA/CD

Carrier sense multiple access/Collision detection is a standard for buses with
several nodes that can initiate communication. CSMA means quite simply
that each node scans the bus for a short period of inactivity before starting a
transmission. CD requires that the nodes can read the bit value on the bus while



4 2 BACKGROUND

sending. If discovering an inconsistency, the node simply stops the transfer. The
node then takes the action specified by the bus standard. The solution used
by ethernet is to wait for a random time, then retransmit the data. For more
information on this topic (see Onshus 2006)

2.1.3 Network Topologies

There are a number of different basic network topologies and hybrids that mix
those. The most common basic topologies are bus, star, ring and tree according
to (Olsen 1998, chap.4). The only ones mentioned in this report are bus and
star. They are illustrated in fig.1. The only difference between an ordinary star
topology and the tiered star is that the ordinary one does not have a root node.

Root tier

Tier3

RRRRY

Tier4

a) Tiered star b) Bus

Figure 1: Network topologies

The main advantage of a star topology over a bus is that a broken wire
does not affect the entire network. The main advantages of a bus topology are
reduced wiring, and the lack of need for hubs.

2.2 Basic Anatomy of The Upper Limb

This chapter gives only a very brief introduction to the anatomy of the hu-
man upper limb. For a more detailed description (see Qyvind Stavdahl 2002,
Chap. 2)

2.2.1 The Standard Anatomical Position

In fig.2 the standard anatomical position is illustrated. Also some terms that
refer to different directions relative to the human body are specified. Proximal
means closer to the trunk, and distal is the opposite. Dorsal means the back of



2.2 Basic Anatomy of The Upper Limb 5

the body and ventral means the front. Lateral and medial refer to further from
or closer to the plane that divides the body in two symmetrical parts.

Figure 2: The Standard Anatomical Position and relative directions

2.2.2 The Shoulder Joint

A human shoulder has three degrees of freedom(DoF'). These are flexion/exten-
sion, pronation/supination and abduction/adduction. Flexion refers to ventral
displacement of the arm, and extension refers to dorsal displacement. Prona-
tion and supination refer to rotation of the arm about the long axis of the arm.
Pronation rotates the palm medially, while supination rotates the palm later-
ally. Finally abduction means lateral displacement of the arm, and adduction



6 2 BACKGROUND

means medial displacement. All explanations above refer to movements starting
in the standard anatomical position of fig.2.

2.2.3 The Elbow Joint

A human elbow exhibits only one DoF, flexion/extension. Flexion refers to
bending the elbow and extension naturally means extending the elbow.

2.2.4 The Wrist Joint

A human wrist exhibits the same three degrees of freedom as the shoulder. This
is illustrated in fig.3. Note that adduction is termed ulnar deviation and abduc-
tion is termed radial deviation in the figure. These terms are used throughout
this report for wrist movements, and the corresponding DoF is called radioulnar
deviation.

I
Flexion . Extension
. \
Radial

Deviation

Ulnar
Deviation

Figure 3: The degrees of freedom of the human wrist joint(Courtesy to Qyvind
Stavdahl)



2.2 Basic Anatomy of The Upper Limb 7

2.2.5 The Hand and Fingers

Figure 4: The degrees of freedom of the metacarpophalangeal joint of the index
finger.

The fingers of a human hand has four degrees of freedom each. The first
three are flexion/extension of the metacarpophalangeal(MCP) joint(see fig.4),
the proximal interphalangeal joint(PIP) and the distal interphalangeal joint(DIP).
The last one is abduction/adduction of the MCP. The thumb is slightly more
complex with five DoFs. They are flexion/extension of the carpometacarpal(CMC)
joint, the MCP joint and the interphalangeal(IP) joint. In addition the thumb
supports abduction/adduction of the CMC joint and the MCP joint. This adds
up to a total of 21 degrees of freedom for the whole hand. The joint placement
within the hand is shown in fig.5 More detail on this hand model is found in
the article(Rijpkema & Girard 1991).



8 2 BACKGROUND

Figure 5: The joints of the human hand.

2.3 Control strategies in prostheses

This chapter will describe the most common control strategies which are used
in todays prostheses, and also the sensors used to register input from the user.
For more information on control strategies (see Muzumdar 2004, chap.3)

2.3.1 Sensor types

The most important sensor types in use in todays prostheses are switches, myo-
electric sensors, variable resistors(f.ex. force sensing resistors(FSR)) and linear
potentiometers. For more details on these sensors (see Karna 2006, chap.2).
Switches give digital signals as output, while all the other types produce analog
signals. The resolution of these signals depend on the A/D converter used, but
10 bit and 16 bit are common.

It is important to separate between raw(only amplified and rectified) myoelec-
tric signals(MES) and processed(amplified, rectified and smoothed) myoelectric
signals(PMES). In a control system where raw signals are used the sampling
rate must be at least 1kHz. This is due to the fact that MES includes frequency
components of up to 500 Hz.! If smoothed signals are used the control strategy
dictates the sampling frequency, which should not be below 20Hz.

Tt actually contains higher frequency components, but these are small enough that down-
folding of them will not distort the signal notably.



2.3 Control strategies in prostheses 9

2.3.2 Single-Site Systems

In a single site system only one input is used for controlling one degree of
freedom(DoF). Any of the sensors described above could be used to generate
this input, except for a switch. There are two commonly used strategies for
single site control. These are illustrated for a hand device in fig.6 and fig.7.
The first figure shows level coding. It is achieved by separating between three
levels of the input. Typically the lowest level would give no motor output, while
the two higher levels would rotate the device in opposite directons.

Amplitude

1 1 + I Time
Rest Opening Closing Opening

Figure 6: Single-site control by use of level coding.

The second method is called rate coding. It uses the average rate of change
of the input over a small time interval(decision time) to decide the direction of
rotation. The decision time is constant, and the count starts when the signal
amplitude exceeds the theshold level(L1). A quick change in level(fig.7a) sets
one direction, and a slow change(fig.7b) the other. This direction of rotation is
then maintained until the signal again drops below the threshold level(L1).



10 2 BACKGROUND

a) b)

Amplitude Amplitude
A A

Y1
_____________ L1 AR
1 : 1
\ =Time :‘—’:‘—\’: Tim=e
\ Opening \ Closing
Decision period Decision period

Figure 7: Single-site control by use of rate coding.

2.3.3 Two-Site Systems

This strategy uses two input for controlling one degree of freedom. For example
in a wrist prosthesis one input could control flexion and the other extension.
It is common to use myoelectric signals(MES) from remnant muscles as input,
but one could also use two FSR:s or even two switch-signals.

2.3.4 Multi Function Control Strategies

The aim of these strategies is to control several functions with the same myo-
electric system. One way that this could be done is to use raw MES and look
at the pattern of the signals. This way more information could be extracted
than in a traditional PMES based system, where only the level of the signal
is considered. This was done in a swedish prosthesis called the Sven Hand. It
uses two raw MES to control three degrees of freedom. To accomplish this six
different patterns are recognized and used to control one direction of rotation
of one DoF each.

Another kind of multi function control strategy has been implemented in the
Southampton hand. It is based on a two-site myoelectric signal, to control up
to five independent fingers. This control scheme uses touch and slip sensors on
each finger to provide feedback to a microcontroller. The microcontroller then
uses the two MES and the sensor feedback to decide on the best grip when
holding an object.



11

3 Choice of Bus Solution

This chapter starts with a short description of each of the buses, which might
provide the basis for SCIP. Following that is a listing of the SCIP requirements
that should be fulfilled on this low level of the protocol, and whether or not
the different buses provide solutions to these. The final section provides a short
discussion on the final choice of bus standard for SCIP.

3.1 Bus Standards

The first two subsections of this section describe Wireless data transfer and
Paralell buses respectively. The following nine subsections all describe different
serial bus standards starting with the simplest, and then gradually moving up
in complexity. Most serial standards support only bus topology(see chap.2.1.3).
For the standards where this is not the case, the supported topology /topologies
is/are mentioned. Most bus standards are described in more detail in (Catsoulis
2003)

3.1.1 Wireless Data Transfer

The two most used wireless standards for short range, low power data transfer
are Bluetooth and ZigBee. Bluetooth is a high bandwidth standard which
unfortunately consumes a lot of power. ZigBee on the other hand has low
power consumption, but the bandwidth is only 250kbps. This is probably a
little bit low for SCIP, especially for a wireless standard where retransmission
due to corruption is more probable. ZigBee and Bluetooth are therefore not
very well suited for use in SCIP.

There is another wireless standard under development which might provide a
realistic alternative for SCIP. It is called WiBree and has a bandwidth of 1Mbps.
Also it is supposed to have much lower power consumption than Bluetooth. This
might be an interesting alternative for the future, but as the standard is not
fully developed yet it will not be considered further in this report.

3.1.2 Parallel Buses

Parallel data buses naturally have very high bandwidth due to the ability of
sending a whole data word, for example 8 bit simultaneously. The main draw-
back of a parallel bus is the greatly increased number of wires needed. This
rules out a parallel bus as a solution for SCIP, as it is stated in the functional
requirements specification that a maximum of two wires shall be used for data.
Parallel buses are therefore not considered further in this report.

3.1.3 UART(Universal Asynchronous Receiver Transmitter)

UART is a very simple serial transfer protocol, with one channel for receiving
and one for transmitting data. Being asynchronous it requires transfer rates,
or baud rates as it is often called, to be hardcoded in the sending and receiving



12 3 CHOICE OF BUS SOLUTION

devices. Further UART is best suited for 1 to 1 communication, as a device in
a UART network would have no way of detecting another device sending at the
same time. It provides simple error detection through parity bit stuffing.

3.1.4 SPI(Serial Peripheral Interface)

This is another simple protocol, which uses (minimum) four wires for commu-
nication. It is a single master multiple slave protocol, and one of the wires(SS)
is used for selecting the slave which the master wants to communicate with. In
normal operation there is one SS for each slave, making the SPI unsuited for
large systems. The other wires are data lines(Master in slave out(MISO) and
Master out slave in(MOSI)), and a clock(SCL) for synchronization.

3.1.5 I2C(Inter Integrated Circuit)

12C, or TWI(Two Wire Interface) as it is sometimes called, uses the two wires
SDA((serial data) and SCL(serial clock) to connect devices. It uses adressed
communication, and supports broadcasting of only a few predefined messages,
for example reset. The frame size is 21 bit including 8 bit data, and each device
could act as master or slave.

3.1.6 OneWire

OneWire has as the name suggests one very desirable feature, namely only one
wire for both data transfer and power(It naturally needs one extra wire for
ground). It uses very long adresses(8bytes), and the idea behind that is to have
statical adresses without running the risk of two nodes sharing adress.

3.1.7 CAN(Controller Area Network)

CAN is a very robust bus standard which is, for that reason, much used in
automotive applications. It is message based meaning that every node can read
every message on the bus. Further it uses the CSMA/CD standard described
in chap.2.1.2 for bus access. The robustness is due to the facts that CAN
sends data over a differential wire pair(see chap.3.2.4), and that it implements
automatic retransmit upon error discovery together with CRC coding(see 3.2.9).
For more information on CAN see (Pazul 1999).

3.1.8 TTP(Time Triggered Protocol)

TTP differs from all other protocols mentioned here in that it divides the band-
width of the bus into time slots. Every node has its unique time slot where only
it is allowed to send. Hardware bus-guardians make sure that no nodes violate
this scheme, and thus a babbling idiot can not prevent other nodes from using
the bus?. TTP is well suited for time critical applications, since one can always
predict how often a node gets access to the bus. TTP supports both star and

2 An exception is the rare case where both the node and its bus guardian fail simultaneously



3.2 Requirements for SCIP 13

bus topologies. (Kopetz 1998) gives a good introduction to the special features
of TTP.

3.1.9 USB(Universal Serial Bus)

This is a very widespread bus standard, used primarily in PC:s but also in other
local networks. It has a tiered star topology (see fig.1). Like CAN USB transmits
data over a differential wire pair. In a USB network there is one and only
one host, which is responsible for initiating all communication. The maximum
number of peripherals is 127. For USB communication is more complex than
for the bus types mentioned above. One data transmission actually consists of
three parts. Initially a token packet is transmitted, telling what kind the next
packet is. Then a data packet is transmitted and finally a handshaking packet
is returned.

3.1.10 FireWire

FireWire is a rather complex bus standard which supports two different modes
of communication. These are asynchronous and isochronous. In isochronous
mode messages are broadcast on a communication channel without any form of
acknowledment. This is well suited for time critical data transfer like real time
audio or video. Asynchronous transfer would be the mode of choice for SCIP,
as this means adressed messages with acknowledgement. For further reading
see(Wickelgren 1997)

3.1.11 Ethernet

Ethernet is not a simple standard, but a family of several standards differing
in speed, network topology, transportation medium etc. Star topology is the
most commonly used network topology, and all ethernet standards are fast
with the slowest one running at 10Mb/s. Ethernet uses CSMA /CD for collision
handling, and implements either full- or half duplex allowing nodes to transmit
and receive data simultaneously.

3.2 Requirements for SCIP

There are many requirements for SCIP that will not be mentioned in this chap-
ter. In fact the requirements mentioned in this chapter are just the ones that
should preferrably be placed in one of the lowest two layers of the ISO/OSI
model. The reason for this is that SCIP will only need to implement layer 1,2
and 7 of ISO/OSI. Furthermore the bus protocols considered here only imple-
ment parts of layers 1 and 2. Thus layer 7, and possibly parts of layer 1 and 2,
are left for the SCIP protocol to define.

3.2.1 Transfer Speed

By far the most time-critical information exchange which SCIP will have to
deal with are raw myo electric signals(MES). It is common practice to set the



14 3 CHOICE OF BUS SOLUTION

highest measured frequency for MES to 500 Hz, and according to the Nyquist
sampling theorem it will then be necessary to sample the MES at two times
this frequency, i.e. 1kHz.

Consider a case with six raw MES as control input, and a data frame size of
8 bytes for each transmission. This gives the minimum bandwidth for the bus
Biin = 1000 % 6 x 8 * 8 = 384kbps As is stated in the functional requirements
specification in appendix.A the current maximum bus traffic shall require only
40% of the bus bandwidth, in order to leave room for increased traffic. This
means that the real bandwidth required is Byeq = Byin/0.4 = 768kbps.

In the example above the data frame size of CAN was used, so for protocols
with less overhead the required bandwidth will be less. SPI for example only
sends one data byte per frame. The opposite is of course true for Ethernet and
other higher level protocols, which have more overhead. Also it should be noted
that more than one of the MES are likely to have the same recipient. This gives
the opportunity to send several MES in the same message, drastically reducing
the bandwidth required.

3.2.2 External Electronic Components

Since size and weight are critical in a prosthesis system, it is important that
the bus standard of choice requires as few electronic components as possible.
Ideally bus controllers should be integrated in the microprocessor.

3.2.3 Wiring

The functional requirements specification allows a maximum of two wires for
data transfer(in addition to ground and power supply). This requirement is
indeed rather strict, and by itself it rules out a few protocols. With an increased
number of wires comes increased weight and maintenance problems, so it is
probably a reasonable requirement despite its strictness.

3.2.4 Noise Sensitivity Reduction

As a prosthesis should be able to operate under most conditions, it is likely that
SCIP will have to cope with noisy environments. This means that some sort
of noise sensitivity reduction should be present. Two methods for realising this
are:

Error reduction The first is implemented in the physical layer of the ISO/OSI
model, and focuses on reducing the fault-rate, i.e. the percentage of corrupted
frames. This could be achieved by sending the data over a differential bus.
The voltage induced in both lines by electromagnetic noise will then be almost
identical, and the difference between the voltage of the lines will be almost
unaltered.



3.2 Requirements for SCIP 15

Error recovery The second method is implemented in the data-link layer
and is discussed below in chap.3.2.9.

3.2.5 Bus Control

It is stated in the requirements specification that SCIP shall allow any two
nodes to exchange data. It is therefore required that any node could initiate
communication, a so called multi master solution.

3.2.6 Overhead

Frame overhead One aspect of overhead is the number of bits sent in each
frame, which do not contain actual data, called frame overhead in this text. This
includes start/stop conditions, error detection, adress-bits etc. Frame overhead
should be kept small, but some error detection might be required.

Program overhead A second aspect of overhead is program overhead. This
refers to the fact that more complex bus protocols require more program mem-
ory for the bus drivers. Program overhead could be reduced by writing special-
ized drivers. This however means work overhead, so ideally the bus protocol
should not specify more features than needed.

3.2.7 Broadcasting

It is required that the bus supports broadcasting of messages. Broadcasting
will greatly reduce overhead if there is one central node directing the traffic on
the bus. This is likely to be the case for applications based on SCIP, and thus
this is a reasonable requirement.

3.2.8 Message Priority

The only case where this is implemented in one of the lower layers of the
ISO/OSI model, is when several nodes could send simultaneously. Arbitra-
tion on message means that if two nodes initiate a data transfer at the same
time, the node with the lowest priority message will release the bus. In CAN
for example a zero bit is dominant. Thus if one node outputs a 1 on the bus
but discovers a 0 it immediately stops its transfer, knowing that another node
is sending a higher priority message.

3.2.9 Error Detection

There are different ways of realising error discovery/recovery, but all have that
incommon that some redundant data has to be added to the frame. The simplest
error discovery method is parity bit stuffing, which means that one bit is added
to make the data word contain either an odd or an even number of bits. This
method can only discover an odd number of errors.

Cyclic redundancy check(CRC) is a more complex error detection algorithm.
The details of how CRC works are beyond the scope of this text, but it applies



16 3 CHOICE OF BUS SOLUTION

polynomial division to calculate a checksum which is used by the receiver to
discover errors.

Message loss If the message was never sent then the algorithms mentioned
above will not be of any help. What is often added to discover such errors is an
acknowledge bit which a receiving node has to set either high or low. Further,
the acknowledge bit is necessary for asking a sender to retransmit a corrupted
frame. Alternatively a whole acknowledge frame might be sent.

Collision handling If two nodes start transferring data simultaneously, this
should be detected by the bus, and some action should be taken to correct the
situation. Otherwise the data will naturally be corrupted.

3.3 Comparison

The relevant functional requirements were specified above, and in some cases
rewritten in a more concrete form. Table.1l summarizes how the different bus
standards handle these requirements.

UART| SPI 12C OneWire CAN USB FireWire | Ethernet
Data wires 2 4 2 1 2 2 4 4
Bandwidth(bps) 2.7M | 3M 400k | 15k 1M 480M 400M >1G
Noise sensitiv- | No No No No DB DB DB DB
ity reduction
Bus control 1tol | SMMS | MM SMMS | MM SMMS MM MM
Frame over- | 3bit Obit 12bit | — 47bit 80bit 128bit 512bit
head
Broadcasting - No Lim Lim Yes USB Yes Yes
Message No No No No Arbitra- | No No No
priority tion
Error detec- | Parity| No No CRC CRC CRC CRC CRC
tion bit
Acknowledge No No Yes No Yes Ack Ack Ack
bit frame Frame frame
Collision han- | No - CD - CD - - CD
dling

Table 1: Properties of different bus protocols

DB = Differential Bus

SMMS = Single master multiple slaves
MM = Multi master

CD = Collision detection(see chap.2.1.2)

3.4 Conclusion

Based on the information given in table.1, the CAN bus standard ISO 11898 is
chosen to provide SCIP with physical and data link layer. The reasons for not
choosing the other standards are summarized below.



3.4 Conclusion 17

e UART

— Only suited for point to point communication.

e SPI

— Too many wires.
— No error detection.

— Single master.

o I12C

— Limited broadcast
— No error detection.

— No message priority.
e OneWire

— Too low bandwidth
— Limited broadcast

— No message priority.
e USB

— Increased message overhead compared to CAN.

— Tiered star topology, resulting in the need for hubs if the wire re-
quirement shall still hold.

— Single master
e TTP

— Decreased flexibility compared to CAN, since the sending cycle has to
be reprogrammed when nodes are added /removed. Also the sending
cycle should be reprogrammed when the control mode is changed.

— More external components, as each node requires a bus guardian.

— No message priority. In fact all messages will be delayed until the
sender is allowed to access the bus.

e FireWire

— Too much frame overhead

— Too many wires

e Ethernet

— Far too much frame overhead

— Too many wires



18

3 CHOICE OF BUS SOLUTION



19

4 Technical requirements specification

The main item of this section is a table which lists the technical requirements
for SCIP. They were derived from the functional requirements specification as
a part of the design process. The technical requirements specification covers all
points of the functional requirements specification, with the exception of FR-
08-04, FR-07 and FR-01. After discussion with my advisor @yvind Stavdahl,
FR-08-04, which states that the service controller should be able to download
new firmware to other controllers on the bus, was found unrealistic. FR-07
which requires devices to be interchangeable was found to require far too much
overhead. Further FR-01 which says that the bus shall have no more than two

wires in total? was modified to no more than two data wires.

4.1 Technical requirements specification

The terms shall and should refer to functions that must be provided, and that
may be left out if justified respectively.

Table 2: Technical requirements

Req.no Requirement Functional
spec references
TR-01 The physical layer and the data link layer of SCIP will | FR-01, FR-02,
follow the definition for CAN stated in ISO 11898. FR-04-01-01,
FR-04-02,
FR-04-03,
FR-08-01, FR-
11, FR-11-01,
FR-11-02
TR-02 There shall be a node in the network that serves as | FR-08-02, FR-
bus controller(BC). 09
TR-02-01 The BC shall continually gather information about | FR-08-02
past errors, node resets etc.
TR-02-02 The BC shall implement a watchdog timer which re- | FR-09
sets the BC in case of an error.
TR-02-02-01 | If the BC has been reset two times another watchdog | FR-09-01
timer overflow shall result in a shutdown of the whole
system after it has entered a safe state.

Continued. ..

3That means both data and power on maximum two lines, and makes OneWire or wireless
the only options possible.




20

4 TECHNICAL REQUIREMENTS SPECIFICATION

Table 2: Technical requirements continued

Req.no

Requirement

Functional
spec references

TR-02-02-02

Safe states have to be defined for every node in the
network.

Comment: A safe state might be defined to be
a state where a node gives no output to motors. An
exception to this is a hand prosthesis, where a safe
state should first open the hand if it is closed.

FR-09-03

TR-02-03

The bus controller shall broadcast heartbeat mes-
sages with at least 10 Hz. If a node has not received
these signals within 0.3 sec it shall assume a safe
state and then reset.

Comment: The heartbeat message is used to tell
the other nodes that the BC 1is operating properly,
and that the bus connection is ok.

FR-09-02

TR-02-03-01

All signals which are broadcast from the BC count
as heartbeat messages.

FR-05

TR-02-04

The Device Controllers(DCs) and the Input Con-
troller(InC) shall send heartbeat messages with at
least 5 Hz. If the BC has not received heartbeat mes-
sages from a node within 0.5 sec the BC shall send
a state request to that node. If the request is not
answered within 0.5 sec the BC shall force this node
into a safe state and then reset it. This requirement
is only valid for the Running state of the DCs.

FR-05

TR-02-04-01

For the DCs and the InC all messages sent to the BC
count as heartbeat messages as long as the senders
adress is included, or the message is unique for that
node.

FR-09-02

Continued. ..




4.1 Technical requirements specification

Table 2: Technical requirements continued

21

Req.no

Requirement

Functional
spec references

TR-02-05

The bus controller shall keep track of which node
that sent the last message. If one node sends more
than a specified number of messages in a row, this
shall be considered a babbling idiot error and the
node shall be forced into a safe state and then reset.

Comment:  This calls for the reset-message to
have highest priority(since the priority of the mess-
sage from the babbling fool must be lower). In
addition a watchdog timer might be mnecessary on
every node, in case it fails in a way that prevents it
from reading data from the bus.

FR-09-02

TR-02-06

An error that still remains after a node has been at-
tempted reset(by the system) a specified number of
times shall be considered unrecoverable. If an un-
recoverable error occurs, the system shall shutdown
after it has entered a safe state.

FR-09-01

TR-03

The adressing space shall be sufficient to host 4 DCs,
1 InC plus a broadcast adress. This means that 3 bit
adresses will be used.

FR-05-03, FR-
04

TR-03-01

All DCs and the InC shall have predefined adresses.
For the DCs these adresses will be based on device

type.

Comment:  This is only possible because there
are a small number of standard device types like
hand and elbow in an upper limb prosthesis system.
Hybrid or new device types can use the unused
adresses.  Predefined adresses are used because it
greatly simplifies the initialization procedure.

FR-05

TR-03-02

Combined devices like a hand-wrist proshesis shall
appear as two standard devices when communicating
with the InC, but only one when communicating
with the BC.

Comment: The reason for this is that a com-
bined device acts as two devices when it comes to
control, but it will only have one physical connection
to the bus.

FR-05

Continued. ..




22

4 TECHNICAL REQUIREMENTS SPECIFICATION

Table 2: Technical requirements continued

Req.no

Requirement

Functional
spec references

TR-04

The most significant bits of the identifier field shall
define the message type, or message group. The
lowest numbers shall be used for the most time
critical data, i.e. reset and shut down messages.

Comment: The reason for this is that CAN ar-
bitration gives highest priority to the lowest identifier
value.

FR-05-02

TR-05

There shall be a special node called Input Con-
troller(InC), which is responsible for gathering input
data from the user. It is also responsible for passing
this data on to the correct DC and its DoF over
the bus. If centralized control is supported it is also
provided by the InC.

Comment: The reason for having centralized
control and input management on the same mode
is to reduce traffic on the main bus. If there was a
separate control node it would have to receive input
data from the InC over the bus.

FR-03

TR-05-01

The DCs shall be able to send status messages for all
of its DoF's to the InC when this is requested.

Comment:  These messages are only mnecessary
during centralized control, and will then serve as
feedback for the InC regulator.

FR-03

TR-05-02

Control data of up to 16 bit resolution shall be sup-
ported.

FR-03-01

TR-06

There shall be a standardized initialization procedure
that every DC has to follow at start-up, and after it
has been reset.

FR-06, FR-07-
01, FR-10

TR-06-01

Each DC and the InC shall, upon entering the net-
work, deliver an initialization message to the BC. This
message shall be retransmitted until an acknowledge
message has been received from the BC. This initial-
ization message shall contain the senders adress.

FR-06, FR-07-
01

Continued. ..




4.1 Technical requirements specification

Table 2: Technical requirements continued

23

Req.no

Requirement

Functional
spec references

TR-06-02

FEach DC shall, upon entering the network, deliver
an initialization message to the InC. This message
shall be retransmitted until an acknowledge message
has been received from the InC. This initialization
message shall contain the senders adress, supported
control signal types, supported data types and infor-
mation about what degrees of freedom(DoF) are sup-
ported.

FR-03, FR-06,
FR-07-01

TR-06-03

Each DC shall, after delivering the two messages
above, deliver an initialization message to the InC
for each DoF supported. These messages shall be
acknowledged by the InC. These initialization mes-
sages shall contain the senders adress, supported con-
trol schemes, supported control strategies, supported
control variables and extreme angles for each DoF.

FR-03, FR-07,
FR-07-01

TR-07

A special node called the Service Controller(SC), shall
provide a link between an external computer and the
bus. This node shall only be attached during config-
uration and maintenance.

FR-08

TR-07-01

Configuration requires all DCs and the InC to be
in the configure state. This state shall only be
exited when the SC sends a message telling that the
configuration is complete.

Comment: The point of the configure state is
that the nodes will not interfere with the config-
uration bus traffic by sending hertbeat messages
etc.

FR-05

TR-07-02

The SC shall be able to send configuration messages
to the InC about input signal types for each port,
use of input signals and mapping of input signals to
nodes. These messages shall be acknowledged by the
InC.

FR-08-05, FR-
08-05-01

TR-07-02-01

The SC shall be able to send configuration messages
to the InC and the DCs about input signal types, con-
trol schemes, control strategies, control data types,
control variables and mapping of input signals to
nodes. These messages shall be acknowledged by the
InC and the DCs

FR-08-05, FR-
08-05-01

TR-07-02-02

The SC shall be able to send a special message to tell
the nodes when the configuration is complete.

Follows from

TR-07-01

Continued. ..




24 4 TECHNICAL REQUIREMENTS SPECIFICATION
Table 2: Technical requirements continued

Req.no Requirement Functional

spec references

TR-07-03 Upon a request from the SC, the BC shall supply | FR-08-02
information about past errors, node resets etc.

TR-07-03-01 | The BC shall at least store information about | Follows from
resets of itself in flash or SRAM. Other diagnostic | TR-07-03
information should also be stored in the same manner.

Comment:  This is mnecessary in order to find
the error when the BC itself causes it.

TR-07-04 Upon a request from the SC, the InC shall supply in- | FR-08-05-01
formation about all prosthesis devices in the network.
This information shall include device adress, sup-
ported control schemes, supported input types and
supported degrees of freedom.

TR-07-04-01 | The information mentioned in TR-07-04 will be sent | Follows from
in several messages, and a special message shall there- | TR-07-04
fore be sent to tell the SC when all messages are sent.

TR-07-04-02 | Upon a request from the SC, the InC shall also sup- | FR-08-05-01
ply information about all of its input ports. This in-
formation shall include port number and input types
supported for each port.

TR-07-04-03 | The InC shall store all information mentioned in | FR-08-05-01
TR-07-04 and TR-07-02 in flash or SRAM.

Comment: This is necessary in case the InC is
reset.

TR-08 Each node except for the SC shall have a defined | FR-05
sleep state. This state shall be entered when no input
has been received from the user for a specified time.

The sleep state shall be exited when some user input
changes.

TR-08-01 DCs and the InC shall enter sleep mode upon a sleep | Follows from
command from the BC. They shall also be able to | TR-08
request permission to enter sleep mode.

TR-08-01-01 | DCs and the InC shall exit sleep mode upon a wake | Follows from
up command from the BC. They shall also be able to | TR-08
request permission to wake up.

TR-08-02 The InC shall request to enter sleep mode as a result | Follows from
of inactivity from the user for a predefined time. TR-08

TR-08-02-01 | When in sleep mode the InC shall only transmit | FR-05

heartbeat messages.

Continued. ..




4.1 Technical requirements specification 25
Table 2: Technical requirements continued
Req.no Requirement Functional
spec references
TR-08-02-02 | The InC shall request to exit sleep mode as a result | Follows from
of change in user input. TR-08
TR-08-03 The BC shall enter sleep mode when all other nodes | Follows from
are in sleep mode. TR-08
TR-08-03-01 | The BC shall exit sleep mode upon a wake up request | Follows from
from the InC. TR-08
TR-09 The InC and the DCs shall always inform the BC | Follows from
when they enter a new state. TR-02-01

Comment:  For more

see chap.5.1.

information about states

The End




26

4 TECHNICAL REQUIREMENTS SPECIFICATION



27

5 Design

Section 5.1 will start with a description of the different units in the network
and their state transition diagrams. Then 5.2 gives a definition of the messages
necessary for their interaction on the bus. In 5.3 the use of the CAN frame is
specified for each message type. Following that is a declaration of all constants
in section 5.4, and finally section 5.5 shows UML-diagrams for the two most
complicated message sequences.

There are several open protocols available that are based on the CAN stan-
dard. Examples of such are DeviceNet, Smart Distributed System(SDS), CanOpen
and M3S. The first three of these are very general, and a possibility would have
been to let SCIP be based on one of those. This would have saved a lot of
effort, but in being general those protocols also implement a lot of unneccesary
functionality. This kind of program overhead should definitely be avoided in a
specialized protocol like SCIP.

The aim was therefore to follow the example of M3S which is a protocol tai-
lored for use in wheel chairs, but create a protocol tailored for use in prostheses
instead. However elements from the protocols mentioned above have inspired
some of the design choices in this report.

5.1 State transitions

SCIP separates between four kinds of units, the Bus Controller(BC), the Input
Controller(InC), the Service controller(SC) and the Device Controllers(DCs).
Their different tasks are described in chap.4. The SC is an external device, and
will only be plugged into the bus occasionaly for configuration or checking the
system status. For this reason it will be assumed that it is always in the running
state, and thus no State Transition Diagram(STD) is necessary to explain its
behaviour. For the BC, the InC and the DCs which are constantly in the
network, STD:s will help in clarifying their behaviour.

5.1.1 STD for DCs

The state of a DC is mainly decided by the SC, BC or InC, as can be seen in
fig.8. The node responsible for each state transition is written in paranthesis
after the name of the trigger event. No name in paranthesis means that the
node itself generates the event.

5.1.2 STD for the Bus Controller

The STD for the Bus Controller is shown in fig.9. Timer] refers to a watchdog
timer which should be reset periodically during normal operation. A failure to
do so indicates an error in the BC software, and shall result in a reset(TR-02-
02), or a shutdown(TR-02-02-01) depending on how many times the BC has
been reset. Timer2 makes sure that the BC allows the other nodes a little time
to enter safe states.



28 5 DESIGN

start Initialization
entry/Send Init
Messages

-
acknowledged(InC)

Configure

——
received all dof_config(SC/InC) SBeing
shutdown(BC; Running go_to_sleep(BC)
wake_up(BC)

start_config(SC)

Safe State reset(BC)
S A—
Entering Safe
State(l)
entry/Go to Safe In Safe State / Reset

Power Cut(BC) State

Entering Safe
State(ll)

entry/Go to Safe

State

In Safe State

end

Figure 8: STD for a Device Controller

start

Initializing
Init Complete
Timer1 Overflow && BC Resets <2/ Sleepi
Broadcast Reset Running All Nodes Sleepin: Sleeping

exit/InC Wakeup

request_wake_up(InC

S —
Timer1 Overflow && BC Resets == 2

Entering Safe
State(l]
entry/Broadcast
Shut Down

Timer2 Overflow / Power Cut

end

Figure 9: STD for the bus controller

5.1.3 STD for the Input Controller

In this STD(fig.9) it is noteworthy that even though the BC decides when the
InC goes to sleep and wakes up, the actual event triggering this comes from
the user. All user input is handled by the InC. This means that when the InC
registers prolonged inactivity from the user it has to ask the BC to be sent
to sleep, and when the InC again registers activity it has to ask to be woken.
The reason for this is that the BC shall control main events on the bus during
regular operation. This includes state transitions for the other nodes.



5.2  Message Derivation

start

Configure
config_complete(SC),
start_config(SC)

29

Initialization

(Init) acknowledged(BC)

Running go_to_sleep(BC) Sleeping

reset(BC)

5.2 Message Derivation

wake_up(BC)

shutdown(BC)

end

Figure 10: STD for the Input Controller

In this section the messages needed for implementing a version of SCIP based
on the Technical Requirements Specification are derived.

5.2.1 Initialization Messages

During initialization the DCs and the InC shall identify themselves to the BC,
and the DCs shall supply the InC with information about themselves. The BC
and the InC shall acknowledge these messages upon reception. The following
messages are necessary to achieve this:

Message Name | Derived from | Description
node_init TR-06-01 Sent by the DCs and the InC to the BC, this mes-
sage contains only the adress of the sender.
dc_init TR-06-02 Sent by the DCs to the InC, these messages contain
information about what data types, input types
and degrees of freedom the DC supports.
dc_dof_init TR-06-03 Sent by the DCs to the InC, these messages contain
information about what control schemes, control
strategies and control variables the given DoF sup-
ports. Also provides information about extreme
angles.
acknowledge TR~06-01, TR- | Used to confirm that a message has been received
06-02, TR-06-
03

Table 3: Initialization Messages




30

5.2.2 Control Messages

5 DESIGN

For control of a prosthetic device, the only information exchange needed are
control data from the Input Controller to the Device Controllers, and status
variables from the DCs to the InC. Control data is transmitted from the InC
with a predefined frequency, whereas status variables are sent upon demand.
The three new message types introduced are shown in table.4:

Message Name

Derived from

Description

control_data

TR-05

Sent by the InC to the DCs, this message contains
control data for some of the nodes DoF's.

request_status_vars| TR-05-01 Sent by the InC to one of the DCs in order to ask
for the measured values of the control variable.
status_vars TR-05-01 Sent by the DCs to the InC, this message contains

the measured values of the control variables for

some of the nodes DoFs.

Table 4: Control Messages

5.2.3 Configuration Messages

When the SC is connected to the bus for the first time, the service person must
configure the system. The necessary information exchange during configuration
is listed in TR-07-02, TR-07-04 and TR-~07-04-02 in chap.4. The configuration
procedure will follow the sequence described below.

The SC starts the configuration by sending a config message.

The InC and the DCs react on the config message by entering the configure
state.

The BC tells the SC when all nodes are in the configure state.

The InC sends information about its input ports to the SC. The SC ac-
knowledges each of these messages upon reception.

The InC supplies information about the DCs available, and their DoF's.
The SC acknowledges each of these messages upon reception.

When the InC has supplied the SC with all available information it sends
a message to tell this.

The service person sets up the system on an external computer.

When the service person is done the SC tells the InC about these settings.
The settings include input type used for each input port, input function,
and mapping of each input to DC, DoF and rotation direction. Further
it includes control scheme, control strategy, control data format, control
variable and control signal type for each DC and its DoFs. The InC
acknowledges each set up message upon reception.




5.2  Message Derivation 31

e When all configuration is completed, the SC sends a special message which
states this.

Message Name | Derived from | Description

start_config TR-07-04, TR- | Sent by the SC to start the configuration sequence.
07-04-02

ready_to_config TR-07-04, TR~ | Sent by the BC to start the configuration sequence.
07-04-02 In effect this message works as a request to the InC

to return information about itself and the DCs.

inc_port_info TR-07-04-02 This message is sent by the InC and supplies the
SC with information about input port nr, and in-
put types supported.

inc_dc_info TR-07-04 This message is sent by the InC and supplies the
SC with information about what data types and
input types the DC supports.

inc_dof_info TR-07-04 This message is sent by the InC and supplies the
SC with information about what control schemes,
control strategies and control variables the DoF's
of all DCs support.

info_complete TR-07-04-01 Sent by the InC to inform the SC that information
about all DCs have been sent.
inc_port_config TR-07-02 Sent by the SC to tell the InC how the input ports

are configured. This includes what input type shall
be used, the use of that input and mapping of the
input to the correct control data(l or 2) of the
correct DoF of the correct DC.

dof_config TR-07-02 Sent by the SC to tell the InC and the DCs how
the DCs are configured. This message could also
be sent by the InC to a DC that has been reset. It
includes information about what control scheme,
control strategy, control variable, data type and
input type shall be used.

config_complete TR-07-02-02 Sent by the SC to tell all nodes that the configu-
ration procedure is completed.

Table 5: Configuration Messages

5.2.4 Housekeeping Messages

Housekeeping refers to all messages needed to check that the bus and the nodes
on the bus are operating properly. It also includes messages to handle a situation
where this is not the case. Finally messages that are involved in changing the
mode of operation of nodes are included here. The following housekeeping
messages can be derived from the technical specification:



32

5 DESIGN

Message Name

Derived from

Description

heartbeat TR-02-03, TR- | Sent periodically by all kinds of nodes except for
02-04 the SC, to tell the other nodes that one is operat-
ing properly. Heartbeat signals are only necessary
when no other signals have been sent for a given
time.
request_state_info | TR-02-04 Used by the BC to receive information about the
current state of the targeted DC or the InC
state_info TR-09, TR-02- | Sent by the DCs or the InC in answer to the re-
04 quest_state_info message, and when they change
state.
reset TR-02-02-01, Used by the BC to reset one ar all of the nodes in
TR-02-03, the network in the case of an error.
TR~02-05
shutdown TR-02-04, TR- | Used by the BC to shut down all of the nodes in
02-06 the network in the case of an unrecoverable error.
go_to_sleep TR-08-01 Used by the BC to send one or all of the nodes to
sleep.
wake_up TR-08-01-01 Used by the BC to wake up one or all of the nodes.
request_sleep TR-08-01, TR- | Used by the InC or DCs to ask the BC to send it
08-02 to sleep.
request_wake_up | TR-08-01-01, Used by the InC or DCs to ask the BC to wake it
TR-08-02-02, up.
TR-08-03-01

Table 6: Housekeeping Messages




5.3 Message Layout 33

5.3 Message Layout

This chapter describes the use of the data- and ID-fields of the CAN frame. The
ID-field has 11 bit and the data-field may contain up to 8 byte. This report is
meant as a suggestion for the specification of SCIP, and it is likely that more
messages will be added in time. Therefore it is important to leave room for
growth when specifying the use of the ID-field. Also it is important not to let
the CAN ID-field start with 7 or more consecutive recessive bits(1), since some
CAN transceivers do not support this.

5.3.1 Use of the ID-field

In order to find a good way of utilizing the CAN ID-field, the messages defined
above will be sorted with respect to structural similarities. The following main
groups can be identified:

e Adressed messages with no data

— acknowledge

— node_init

— reset

— request_state_info
— heartbeat

— request_sleep

— go_to_sleep

— request_wake_up

— wake_up

e Non adressed messages with no data

— info_complete

ready_to_config

shutdown

— start_config

config_complete

e Hierarchically adressed messages with no data

— request_status_vars

e Adressed messages containing data

— dc_init
— inc_dc_info

— state_info



34 5 DESIGN

e Non adressed messages containing data

— inc_port_info

— inc_port_config

e Hierarchically adressed messages containing data

control_data

status_vars

— de_dof_init

inc_dof_info

dof_config

Adressed messages refer to messages that contain an adress. This adress
might specify sender, receiver or just the node that the information in the
message is about. Hierarchically adressed means that one or several Degrees of
Freedom(DoF's) within a DC are adressed. An example of this is when the InC
sends a request_status_vars to the flexion/extension DoF of a wrist device.

The number of messages specified above is 25, and thus 5 bit should be
sufficient for identifying message type. Further it is stated in the technical
requirements specification that adresses shall be 3 bit. Fig.11 shows how the
different kinds of message groups listed above utilize the ID-field of the CAN
frame. Note that the message state_info uses the last three bit of the ID-field to
send data about its current state. Another thing worth commenting on is that
group 4 only contains two messages, both concerned with the input ports of
the InC. This allows the port nr to be specified in the ID-field. The message nr
part of the CAN ID-field for message group 7 is explained in the next section.



5.3 Message Layout 35

(4)Non adressed messages containing data

(1)Non adressed messages with no data
message_id port_nr

— [T IEEEN

BitNr 11 10 9 8 7 6 5 4 3 2 1

BitNr 11 10 9 8 7 6 5 4 3 2 1

(5)Adressed messages containing data
(dc_init, inc_dc_info)

message_id adress

BitNr 11 10 9 8 7 6 5 4 3 2

message_id adress

(6)Adressed messages containing data
tate_info
BtNr11 10 9 8 7 6 5 4 3 2 1 (state_info)

_ message_id _ _adress _ _ state _

BitNr 11 10 9 8 7 5 4 3 2 A1

(3)Hierarchically adressed messages with no data

message. id adress (7)Hierarchically adressed messages containing data

message._id adress message_nr

BitNr 11 10 9 8 7 6 5 4 3 2 1

Figure 11: Use of the CAN ID-field

5.3.2 Use of the Data-field

For the messages in the right part of fig.11, the Data-field will contain different
kinds of information. An exception to this is the state_info message which
includes its data in the ID-field. Type 3 messages utilize the Data-field to
adress DoFs within a DC. It will therefore be necessary to specify the use of
the Data-field for each kind of message in groups 3, 4, 5 and 7.

request_status_vars is the only message type in group 3. It will use 1-4 bytes of
data to specify which DoF's it requests status from. The first byte corresponds
to DoF's 0-7, the second 8-15 and so on. A 1-bit stands for request while a 0-bit
stands for no request. In the example of fig.12 DoF nr 1,4,13 and 21 should
respond with their status variables. The DoF's of the standard prosthesis devices
will all be given a specific number in chap.5.4

Group 4 consists of inc_port_info and inc_port_config. inc_port_info contains
one byte of data, which tells what input types the port supports. The port nr
was given in the ID-field. The different input types are specified in chap. 5.4.

inc_port_config contains two bytes of data. The first three bit of the first byte
states what input type the port will receive, the fourth bit states whether it



36 5 DESIGN

Bye1 1 0|0|0|1|0|0 0
BtNr 8 7 6 5 4 3 1
Bye2 1 0|0|1/0/0/0(0]|0
BitNr 8 7 5 4 3 2 1
Bye3 1 0|0|1/0/0/0({0|0
BtNr 8 7 6 5 4 3 2 1

Figure 12: Example of use of the Data-field for request_status_vars

is the first or the second of the control input* and the next three bit specify
the use of the input. The second byte is also divided in two parts. The first
part is three bit and gives the adress of the DC, that shall receive the input.
The second unit is five bit and determines which DoF within the DC that is
adressed.

control_input_nr

input_usage l input_type

a1 | X[ 0]0]0f@]o]1]0
5 4 3

BitNr 8 7 6 2 1

dof_nr dc_adress

BitNr 8 7 6 5 4 3 2 1

Figure 13: Example of use of the Data-field for inc_port_config

The example given in fig.13 shows how the data-field would look when a port
was configured for supplying DoF nr 3 of DC nr 6 with the first control input
of type 2. Input usage is only set if the adress is set to broadcast. dc_adress,
input_type and input_usage will be specified in chap.5.4 .

Group 5 has two specified messages which are dc_init and inc_dc_info. The
dc_init message has 2-5 bytes in the data-field, where the first byte specify what

1.e. positive or negative rotation direction



5.3 Message Layout 37

data types the DC supports. A one bit means that the data type with number
corresponding to the bit nr is supported. Data types are bit, byte, 16bit etc,
and their number mapping is specified in chap.5.4 . The next byte specifies
what input types the DC supports in an identical manner. The last 1-4 bytes
contain supported DoF's in a manner identical to that for request_status_vars.
This is all illustrated in fig.14, where DoFs 2 and 10° are at least supported (the
last two byte are not shown in the figure). Also data types 1 and 6, and input
types 1 and 4 are supported.

supported_data_types

Byte 1
BitNr 8 7 6 5 4 3 2 1
supported_input_types
Bvte2(0[0[0]0[1]0[0[1]
BitNr 8 7 6 5 4 3 2 1
supported_dofs(0-7)
Byte3/0[0[0[0[0[1[0]0]
BitNr 8 7 6 5 4 3 2 1
supported_dofs(8-15)
Byte4/0[0]0]0[0[1]0[0]
:BitNr87654321

Figure 14: Example of use of the Data-field for dc_init

The message type inc_dc_info uses the data field in a manner identical to
dc_init except for that it lacks the last 1-4 bytes about the DoFs.

Group 7 is the largest group and contains the message types; control_data,
status_vars, de_dof_init, inc_dof_info and dof_config. These message types utilize
the data-field in different ways, so each has to be specified separately. The last
three messages have some data incommon.

When it comes to control_data one message is always adressed to a single DC.
The adress of the DC is specified in the ID-field as was shown in fig.11 above.
On the other hand one message might contain one or two control signals to
one or several DoFs within the DC. The adressing of DoF's is done by allowing
the first data byte and the three LSB of the ID-field(message_nr) to tell which
degrees of freedom will receive data in this message. The first data byte also
tells whether the message contains the first, the second or both control signals
for each of the DoFs. There is support for up to 32 DoFs for each DC. The
adressing scheme is illustrated in fig.15. As can be seen there is room for 4
DoF's in each message, and the number of the first DoF in one message can
therefore be found as message_nr * 4.

SRemember that the first DoF number is 0.



38 5 DESIGN

CAN ID-Field

message_nr
— =

Message ID Adress 0 1 1

BitNr 11108 8 7 6 5 4 3 2 1

CAN Data-Field 3 o= 7™~0

¥
DoF 15* DoF 14 DoF 13  DoF 12

Inp2 Inp1 Inp2 Inp1 Inp2 Inp1 Inp2 Inpi

sve1 [1] 0 [1] 0[] 1 [0] 1
6 5 4 3 2 1

BitNr 8 7

Figure 15: Use of the Data-field and ID-field for adressing control_data

In the example of fig.15 DoF 12 receives control input 1, DoF 13 both 1 and
2, and DoF's 14 and 15 receive control input 2. These data are contained within
data bytes 2-8. The data is structured according to the following rules:

e All data are sorted on DoF in rising order, and thereafter on input nr in
rising order.

e If any data are of the type bit, these data are all stored in the second data
byte.

e Data of 9-16 bit is stored in two consecutive bytes with the LSB in the
first byte.

If both input for DoF 13 was of the type byte, the input for DoF 14 was
of the type 16bit, and the input for DoFs 12 and 15 were single bit this would
look like in fig.16.

The next message type is status_vars. The status for each degree of freedom
can be either the deviation angle or the rotation speed. In addition a third
and fourth value is left to be specified. The deviation angle is given from the
standard anatomical position mentioned in chap.2.2.1. It shall always be 9 bit
allowing the angle to be expressed in degrees, ranging from 0 to 360. The
rotation speed is given in degrees/s and specifies the speed of the end device,
not the motor. It is given as a single byte.

The DoF's identify themselves in a similar manner as they were adressed in the
control_data message described above. The only difference is that each message
number correspond to eight different DoF's instead of four. This is illustrated
in fig.17.



5.3 Message Layout 39

No Data

.
Byte 2/ x| X[ X[ X[ X[x 4] 0|

BitNr 8 7 6 5 4 3 2XUd

Input 1 for DoF 13

Eww3|1|o|1|o|o|1|1|1|

Bit Nr

Input 2 for DoF 13

Byte 4
BitNr 8 7 6 5 4 3 2 1

Input 2 for DoF 15  Input 1 for DoF 12

Input 2 for DoF 14(LSB)

BitNr 8 7 6 5 4 3 2 1

Input 2 for DoF 14(MSB)

BitNr 8 7 6 5 4 3 2 1

Figure 16: Use of the Data-field for sending control_data

CAN ID-Field

message_nr
— =

Message ID Adress 0 1 1
BitNr 11109 8 7 6 5 4 3 P 1
38
CAN Data-Field %
2
/ ;
DoF F oF 2 DoF24
oF
o] oot "] ool ar”| "ot
Byte 1 1 0 1 0 1 101
BtNr 8 7 6 5 4 3 2 1

Figure 17: Use of the Data-field and ID-field for adressing status_vars

Fig.18 shows an example where DoFs 8 and 14 send their status variables.
In the example the variables are assumed to be the deviation angles as can be
seen by the fact that the data consists of 9 bit. It is also illustrated that the
MSB of all 9 bit data words are sent in data byte 2. This is always the case.
The different status types are declared in chap.5.4.

For the message types dc_dof_init, inc_dof_info and dof_config each message
contain information about one single DoF. They are all identified or adressed
in an identical manner as the last message type.

These four message types will always have the same payload, making things
a bit easier than for the other messages of group 7. For dc_dof_init the data con-
sists of the following parts: supported_control_schemes, supported_control_strategies,
supported_control_variables, and extreme_angles. These data are laid out in the



40 5 DESIGN

message_nr =1
<= dofs

""sye1[0[1]0]0]0]0]0[1]

BitNr 8 7 6

DoF 14 DoF 8
No Data status bit9 status bit9

syte 2 [ X] X[ X[ X[ X] xi
Bit Nr 8 7 6 5 4 3 2 1
DoF 15 status bit1-8

Byte 3

BitNr 8 7 6 5 4 3 2 1
DoF 8 status bit1-8

Byte 4
BitNr 8 7 6 5 4 3 2 1

Figure 18: Use of the Data-field for sending status_vars

data field in accordance with fig.19. In this example DoF nr 2 is initialized(given
that message_nr is 0) and it supports control strategies 3 and 7, control scheme
1, control variables 0,1 and 3 and has a maximum angle of 65(64+1)and a min-
imum angle of 263(256+4+2+1). Note that the minimum angle is larger than
the maximum angle due to the fact that negative angles are recalculated by
adding 360/.

dofs(only one)

Bve1[0[0[o[o0[o0[1]0]0]

BitNr 8 7 6 5 4 3 2 1

supported_control_strategies
Byte 2
BitNr 8776 5 4 3 2 1

supported_control_variables
supported_control_scheme:

gle(bit9) max_angle(bit9)

-—

Byte 3
BitNr 8 7 6 5 4 3 2 1

min_an

min_angle(bit1-8)

Byte 4
BitNr 8 7 6 5 4 3 2 1

max_angle(bit1-8)

Byte 5
BitNr 8 7 6 5 4 3 2 1

Figure 19: Use of the Data-field for dc_dof-init

inc_dof_info passes some of the information in the dc_dof init messages on to
the service controller. Its use of the data-field will be identical to dc_dof init,
except for the 18 bit concerning max and min angles.

Finally there is the message type dof_config. It shall provide the variables con-
trol_scheme, control strategy, control variable, data_type and input_type. The



5.3 Message Layout

41

data-field usage is shown in fig.20. In this example DoF nr 2 is configured(given
that message_nr is 0). It shall use control strategy 6 and control scheme 0. The
variable regulated is of type 1, the data is of type 2 and the input is of type 4.

<=>

message_nr =0

DoF:s = 0-7 dofs(only one)

Byte 170[0]0]0]0]1]0]0]
6 5 4 3 2 1

BitNr 8 7
control_variable

control_scheme control_strategy
—

—r—> ——>

Byte 2
BitNr 8 7 6 5 4 3 2

data_type input_type

1

Byte 3| X| X| [1]0]0]

BitNr 8 7 6 5 4 3 2

1

Figure 20: Use of the Data-field for dof_config

5.3.3 Summary

All message types are summarized in table.7. This table gives message type,
contents of the ID- and data-field, sender, receiver and state of the sender.

Table 7: Summary of messages

Message name | messagel Send-| Re- | State of | Contents | Contents of Data-field(bit)
_id er ceiver| Sender of ID-field
acknowledge 10000 | All All | INIT, message_id,| —
CONFIG, | adress
RUN-
NING
node_init 10011 | DC, | BC | INIT message_id,| —
InC adress
reset 00001 | BC | DCs, | RUNNING| message_id, —
InC adress
request_state_ | 00101 | BC | InC, | RUNNING| message_id, —
info DCs adress
heartbeat 00100 | DCs, | BC | RUNNING| message_id, —
InC, adress
SC
request_sleep | 01100 | DCs, | BC | RUNNING| message_id, —
InC adress
go_to_sleep 01011 | BC | DCs, | RUNNING| message_id, —
InC adress

Continued. ..




42

5 DESIGN

Table 7: Summary of messages continued

Message name | messagel Send-| Re- | State of | Contents | Contents of Data-field(bit)
_id er ceiver| Sender of ID-field
request_wake_ | 01010 | DCs, | BC | SLEEP message_id,| —
up InC adress
wake_up 00111 | BC | DCs, | RUNNING| message_id,| —
InC adress
info_complete | 11110 | InC | SC CONFIG | message_id| —
ready_to_config| 11011 | BC | SC | RUNNING| message_id | —
shutdown 00000 | BC | DCs, | RUNNING| message_id | —
InC
start_config 11010 | SC DCs, | RUNNING| message_id | —
InC
config_complete] 11001 | SC DCs, | RUNNING| message_id | —
InC
request_status_| 01110 | InC | DCs | RUNNING| message_id, dofs(8-32)
vars adress,
dc_init 10010 | DCs | InC | INIT message_id, supported_data_types(8), sup-
adress ported_input_types(8), dofs(8-32)
inc_dc_info 11000 | InC | SC, | CONFIG | message_id, supported_data_types(8), sup-
InC adress ported_input_types(8)
state_info 00110 | DCs, | BC | Any State | message_id, —
InC adress,
state
inc_port_info 10111 | InC | SC CONFIG | message_id, supported_input_types(8)
port_nr
inc_port_config | 10110 | SC InC | RUNNING| message_id,| input_type(3), controlinput_nr(1),
port_nr input_usage(3), adress(3),
dof_nr(5)
control_data 01111 | InC | DCs | RUNNING| message_id,| dofs(8), control_data(1-56)
adress,
mes-
sage_nr
status_vars 01101 | DCs | InC | RUNNING| message_id, dofs(8), status_vars(8-56)
adress,
mes-
sage_nr
dc_dof_init 10001 | DC | InC | INIT message_id, dofs, sup-
adress, ported_control_strategies(8),
mes- supported_control schemes(2),
sage_nr supported_control_variables(4),

max_angle(9), min_angle(9)

Continued. ..




5.4 Declaration of Constants

43

Table 7: Summary of messages continued

Message name | messagel Send-| Re- | State of | Contents | Contents of Data-field(bit)
-id er ceiver| Sender of ID-field

inc_dof_info 10101 | InC | SC CONFIG | message_id, dofs(8), sup-
adress, ported_control_strategies(8),
mes- supported_control_schemes(2),
sage_nr supported_control_variables(4)

dof_config 10100 | SC | DCs, | RUNNING| message_id, dofs(8), control_strategy(3),

InC adress, control_variable(2), con-
mes- trol_scheme(1), input_type(3),
sage_nr data_type(3)
The End

5.4 Declaration of Constants

In this section all known constants are given specific values. The range of these
values depend on what variable the constant is tied to.

5.4.1 message_id

All message types are given message_id values in table.7. The message_id gives
the message its priority on the bus. The higher the priority of the message, the
lower must the message_id be. reset and shutdown are given highest priority.
Other housekeeping messages are also given high priority, as the functionality of
the bus depends on them. Messages sent during configuration are given lowest
priority, as they are sent very rarely. Initialization messages are also given
low priority, for the same reason. When all message types have been given
message_id the following values are left unspecified:

e 00010

e 00011

e (01000

e 01001

e 11100

e 11101

e 11111

This leaves two free high-priority messages, two medium-priority and two
low-priority messages for future use. The value 11111 must not be used®.

5This is done to avoid the risk of having a message with 7 consecutive 1 bits as some CAN

transceivers do not handle this.




44 5 DESIGN

5.4.2 control_strategy

The unspecified values for the variable control_strategy are 3-7.

Constant Name Binary Decimal
Value Value
SINGLE_SITE 000 0
TWO_SITE 001 1
CENTRAL_CONTROL 010 2

5.4.3 control_scheme

The unspecified values for the variable control scheme are none.

Constant Name Binary Decimal
Value Value

PROPORTIONAL 0 0

ON_OFF 1 1

5.4.4 control variable

The unspecified values for the variable control_variable are 2-3.

Constant Name Binary Decimal
Value Value

POSITION 00 0

VELOCITY 01 1

5.4.5 input_type

The unspecified values for the variable input_type are 4-7. See chap.2.3 for a
review of the different sensor input.



5.4 Declaration of Constants 45

Constant Name Binary Decimal
Value Value

MES 000 0

FSR 001 1

SWITCH 010 2

LINEAR_POTENTIOMETER 011 3

5.4.6 input_usage

The unspecified values for the variable input_usage are 3-7.

Constant Name Binary Decimal
Value Value
CONTROL 000 0
SWITCH_MOTOR_DIR 001 1
CHANGE_CONTROL_SCHEME 010 2

5.4.7 data type

The unspecified values for the variable data_type are 4-7. The reason for pre-
defining 10 bit and 16 bit is that these are very common resolutions for A/D
converters. Byte is very convenient for sending control data that does not need
higher resolution, and bit are used by switches.

Constant Name Binary Decimal
Value Value
BIT 000 0
BYTE 001 1
10_BIT 010 2
16_BIT 011 3
5.4.8 adress

This variable refers to the adress of a node on the bus. The unspecified values
for the variable adress are 6-7.



46 5 DESIGN

Constant Name Binary Decimal
Value Value
BROADCAST 000 0
INPUT_CONTROLLER 001 1
HAND_DEVICE 010 2
WRIST_DEVICE 011 3
ELBOW_DEVICE 100 4
SHOULDER_DEVICE 101 5
5.4.9 state

This variable refers to the current state of a node. The unspecified values for
the variable state is 7.

Constant Name Binary Decimal
Value Value
INIT 000 0
CONFIG 001 1
RUNNING 010 2
ENTERING_SAFE_1 011 3
ENTERING_SAFE_2 100 4
SAFE 101 5
SLEEP 110 6

5.4.10 Shoulder dofs(Degrees of Freedom)

The unspecified values for the variable dofs for the shoulder are 3-31.

Constant Name Binary Decimal
Value Value
FLEXION_EXTENSION 00000 0
ABDUCTION_ADDUCTION 00001 1
PRONATION_SUPINATION 00010 2

5.4.11 Elbow dofs(Degrees of Freedom)

The unspecified values for the variable dofs for the elbow are 1-31.



5.4 Declaration of Constants

5.4.12

Constant Name Binary Decimal
Value Value
FLEXION_EXTENSION 00000 0

Wrist dofs(Degrees of Freedom)

The unspecified values for the variable dofs for the wrist are 3-31.

5.4.13

Constant Name Binary Decimal
Value Value
FLEXION_EXTENSION 00000 0
ABDUCTION_ADDUCTION 00001 1
PRONATION_SUPINATION 00010 2

Hand dofs(Degrees of Freedom)

47

The unspecified values for the variable data_type are 21-31. The abbreviations
used are flex_ext for flexion/extension, abd_add for abduction/adduction and
pron_sup for pronation/supination. Further the number in each constant name

stands for fingers.

They are numbered from thumb to little finger in rising

order, i.e. thumb = 1, index finger = 2 and so on. MCP, DIP, PIP, IP, and
CMC are different joints of the hand. For a review of the joints of the human
hand see chap.2.2.5.



48

5 DESIGN
Constant Name Binary Decimal
Value Value

FLEX_EXT_CMC_1 00000 0
FLEX_EXT_MCP_2 00001 1
FLEX_EXT_MCP_3 00010 2
FLEX_EXT_MCP_4 00011 3
FLEX_EXT_MCP_5 00100 4
ABD_ADD_CMC_1 00101 5
ABD_ADD_MCP_2 00110 6
ABD_ADD_MCP_3 00111 7
ABD_ADD_MCP_4 01000 8
ABD_ADD_MCP_5 01001 9
FLEX_EXT_MCP_1 01010 10
FLEX_EXT_PIP_2 01011 11
FLEX_EXT_PIP_3 01100 12
FLEX_EXT_PIP_4 01101 13
FLEX_EXT_PIP_5 01110 14
FLEX_EXT_IP_1 01111 15
FLEX_EXT_DIP_2 10000 16
FLEX_EXT_DIP_3 10001 17
FLEX_EXT_DIP_4 10010 18
FLEX_EXT_DIP_5 10011 19
ABD_ADD_MCP_1 10100 20




5.5 Message Sequences 49

5.5 Message Sequences

This chapter gives UML-diagrams for the message sequences for configuring the
nodes, and for initializing the DCs and the InC.

5.5.1 Initialize Sequence

$--1F
®

auknuv'.lle::ge
S ——— 0 S —
state_info
| node_|nit
: acknowledge
I A e e
| de_init
__e ___________
acknowledge |
|
|
1 |
00p | [for all de_dof_init |
| L e T — I
DOFS] acknowledge |
|
|
|
state_info |
I

]
]

Figure 21: The message sequence for initialization of the DCs and the InC.



5.5.2 Configure Sequence

5 DESIGN

5C g 213 BC
I i start_config : i
slatt_c'::nnﬂg :
start_config : 1 slate_info
U state_info
T
! 1
. 1
opt |[all nodes in I :
config state] : ready_to_config
_l_% __________ l_ ___________
|
1
: T
loop] [for all input inc_port_info : !
ports) acknowledge : i
1
| I
- : I
100D] (for all DCs] B | !
—————————— 1
acknowledge : i
|
I
|
|
I
loop| [for all inc_dof info : 1
DoFs]| b —————————- I 1
acknowledge I i
|
: I
info_complete : :
—————————— 1
1
I
I
loop | [for all I 1
inc_port_canfi
Input ports] i I :
acknowledge : 1
—————————— I
| I
|
dof_carf !
loop| [for all Ty | :
DoFs] dof_config I
I
acknowledge 1
__________ - e e ] (]
acknowledge i
—————————— 1
|
config_complete :
|
I
|
|
I
|

Figure 22: The message sequence for configuration of the system.



o1

6 Discussion

6.1 Choice of Bus

It seems that choosing the CAN bus as base for SCIP was a good choice. It
provides a lot of very useful functionality, like message priority which SCIP
implements by letting message_id provide the MSB of the ID-field. When the
protocol shall be tested it is also likely that the automatic retransmit upon
error, combined with the CRC code, will make the protocol very noise tolerant.
One small drawback with CAN is the fact that there is only room for eight data
bytes per message. This is only a problem when sending control data to DCs
with many DoF's and control data for several DoFs needs updating. In this case
several messages might be required, creating some extra overhead. This might
provide an argument to check other standards like TTP where the data-field
is twice as big. It should be noted however that this situation will not arise
frequently with todays prostheses.

6.2 Node Interaction

It was attempted to make the node interaction demand as little bus-traffic as
possible, while still maintaining reasonable complexity. This is the reason why
there is support for a sleep state, and the possibility of sending control data to
several degrees of freedom simultaneously. It is possible that a more optimal
solution could be found for utilizing the data field. For example if several 10
bit data shall be transfered, the two extra bit of each data might be sent in the
same byte. The benefit of this depends on how often 10 bit data will be used
compared to 8 bit data. The reason for not supporting that solution in this
design was simplicity.

6.3 Use of the CAN ID-field

The number of messages that proved necessary for implementing SCIP turned
out to be greater than first assumed. In fact only five bit-combinations remain
free for use in message_id. I.e. only five more message types could be specified.
This could easily turn out to be insufficient. A solution to this could be to utilize
all the unspecified bits in message group 1(see fig.11). If these message_id fields
were expanded with three bit we would get 8 x4 = 32 new message types.



52

6 DISCUSSION



93

7 Conclusion

This report should be a good base for developing the SCIP protocol further.
The technical requirements specification cover all the functional requirements.”
From the technical requirements specification, four different kinds of devices
were derived. The bus controller, the input controller, the device controller and
the service controller. Their actions and interactions® are described in such
detail that it should be easy to implement a solution based upon this report.
It is however highly likely that some necessary messages have been overlooked.
The unused bit-combinations in the ID-field should prove sufficient to cover
this.

The fact remains that some part of the protocol should have been imple-
mented. The author choose to attempt to do a thorough design job rather than
rushing into some half measure implementation. The result of this design job is
a detailed technical requirements specification, specifications of the node types
and their states and an overview of the necessary message types. Further, all
constants have been given specific values and the most complicated message
sequences have been described with UML-diagrams.

"With the exception of the ones that were found too strict
81n the form of message transfer



54

7 CONCLUSION



95

8 Future Work

8.1 Consistency Check

The design proposal laid out in this report aims to be no more than a proposal.
This means that it should be thoroughly and critically read through and dis-
cussed. This should attempt to rule out lacks, inconsistencies and inefficient
solutions. Adjustments and changes should be made where the need is found.
It is not easy to be overly critical to ones own ideas so this part is important
in order to achieve a good implementation.

8.2 Implementation

The next step would be to let someone implement a solution based on the
revised design. As the protocol design is quite detailed this should be a rather
easy task. The proposed programming language is C.

8.3 Testing

Once a testable version of SCIP exists, it should be downloaded to microcon-
trollers and thoroughly tested. The testing should verify whether the desired
functionality works, and should also test the system under maximum bus traffic
to make sure that it does not get overloaded.

8.4 Alternative Physical Layer Solutions

It was mentioned in chap.3.1 that existing wireless solutions are not suited for
SCIP. It was also mentioned that Wibree might provide an interesting alter-
native once its specification is finished. The lack of need for wires for data
transfer is a very desirable feature, so this should absolutely be investigated. If
Wibree was chosen as the physical layer for SCIP, it is still likely that much of
the specification in this report could be used.



56

8 FUTURE WORK



REFERENCES o7

References

Catsoulis, J. (2003), Designing Embedded Systems, 4 edn, Oreilly and Asso-
ciates, Inc, 1005 Gravenstein Highway North, Sebastopol, CA.

Karna, D. (2006), ‘Design of pinocchio(prosthesis integrated node for commu-
nication control and hmi input/output)’.

Kopetz, H. (1998), A comparison of can and ttp, Technical report, Institut fiir
Technische Informatik, Technische Universitidt Wien.

Muzumdar, A. (2004), Powered Upper Limb Prostheses, Springer-Verlag Berlin
Heidelberg New York.

Olsen, O. A. (1998), Instrumenteringsteknikk, 5 edn, Tapir Forlag, Trondheim.

Onshus, T. (2006), Instrumenteringssystemer, 4 edn, Institutt for teknisk kyber-
netikk, NTNU - Norges teknisk-naturvitenskapelige universitet, Trondheim.

Pazul, K. (1999), Controller area network (can) basics, Technical report, Mi-
crochip Technology.

Rijpkema, H. & Girard, M. (1991), ‘Computer animation of knowledge-based
human grasping’.

Tanenbaum, A. S. (2003), Computer Networks, 4 edn, Pearson Education, Inc.,
Upper Saddle River, New Jersey.

Wickelgren, 1. J. (1997), ‘The facts about firewire’.

Oyvind Stavdahl (2002), Optimal Wrist Prosthesis Kinematics, Institutt for
teknisk kybernetikk, NTNU - Norges teknisk-naturvitenskapelige universitet,
Trondheim.



58

REFERENCES



A Functional Requirements Specification

99

This is the functional requirements specification that served as base for this

master thesis.

Functional Requirements Specification

This section presents a structured list of functional requirements that are
derived from the meta-spec in the previous section. References are made to
the meta-spec wherever applicable.

The terms should and shall refer to functions that are desirable that may be
left out if justified and functions that must be provided, respectively.

Functional Requirements
Req. No. | Requirement Spec or Meta-
Spec
References
FR-01 The bus should require a minimal number of electrical MS-05-01-02
wires. The total number of wires (data and power) shall MS-05-01-03
not exceed two. MS-05-01-05
MS-05-02-05
Comment: ldeally data and power on the same lines, or MS-05-03-02
wireless transmission (e.g. ZigBee) (MS-07-01)
FR-02 The bus should require a minimal number of electronic MS-05-01-05
components. MS-05-03
Comment: Desirable: all protocol logics integrated with a
microcontroller
FR-03 There shall be support for presently used control MS-01
schemes. MS-02-01
Comment: Known schemes include sequential
(uncoordinated) ON/OFF, proportional velocity or position
control of a set of joints; simple coordination of several
Jjoint positions; hierarchic control (SAMS, SUVA), and
more TBC. Support for does not imply that these are all
implemented, but all the necessary data transmissions
shold be possible within the protocol.
Comment: The bus is not required to support present
components (analogue EMG signals etc.), only the high-
level control principles.
FR-03-01 The protocol shall specify data formats with sufficient MS-05-01-04-02
ranges and resolution for the transfer of control signals
and state and status variables for the classical control
schemes.
Comment: Cf. FR-03.
FR-04 The bus shall leave room for future growth. MS-01
MS-05-03-03
Comment: Address space efc. not “fully specified”, some
left for future enhancements. Some bus bandwith surplus.
FR-04-01 There shall be flexibility and vacant resources for MS-01
accommodating more advanced schemes. MS-02-02
MS-02-03
FR-04-01-01 | The specified bus traffic shall not exceed 40% of the bus | MS-03
bandwidth.
Comment: The specified traffic is the traffic that is planned
to take pace during normal operation conditions with
“traditional” control schemes, cf. FR-03.
FR-04-02 The bandwidth of the bus should allow the transfer of raw | MS-03




60

A FUNCTIONAL REQUIREMENTS SPECIFICATION

EMG signals in real time.

Comment: EMG has a practical bandwidth of at most 1000
Hz; this figure may be significantly reduced in the context
of prosthesis control.

Real-time EMG transfer may be implied by future control
schemes.

FR-04-03

The bus shall facilitate data transfer between any two
connected nodes.

MS-01
MS-02-02
MS-02-03

FR-05

The bus protocol shall exploit known relationships and
communication demands in order to minimise bus load
and maximise user benefits.

MS-03-04

FR-05-01

Data elements with similar transfer rates from one and the
same device should be sent in a single message to
reduce overhead.

MS-03-04

FR-05-02

Bus messages shall be assigned priorities according to
their relative time criticality.

Comment: Cyclic traffic related to EMG and motor control
typically more critical than routine housekeeping, status
information etc.

MS-05-01-04

FR-05-03

Data elements with multiple receivers should be
broadcast to all receivers simultaneously.

MS-03-04
MS-05-01-04-01

FR-06

The bus shall accommodate interoperability.

Comment: Interoperability means that one device may be
swapped with another similar device with a minimum of
reconfiguration requirements.

MS-05-01-03
MS-05-02-02

FR-07

The bus should accommodate interchangeability.

Comment: Interchangeability means that one device may
be swapped with another similar device without any
reconfiguration requirements. This implies standardized
mechanical, electrical and communication interfaces as
well as standardised behaviour. This is an extremely
strict requirement, and will most likely not be realised
within foreseeable future. It is included here because it
is of crucial importance for the future.

MS-05-01-03
MS-05-02-02

FR-07-01

The bus should accommodate hot-swapping of identical
or similar devices.

Comment: hot-swapping means a device is replaced while
the system is powered-up and running, and that the new
member automatically enters into the role of the device
that is replaced.

MS-05-01-03
MS-07-02

FR-08

The bus shall be able to communicate with a Service
Controller (SC) when such is attached to the bus.

MS-05-02-01

FR-08-01

The SC shall be able so monitor the normal bus traffic.

MS-05-02-01

FR-08-02

The SC shall be able to read diagnostic information from
the bus system.

Comment: This probably calls for a single “master”
controller being responsible for collecting such info during
operation and relaying it to the SC when solicited.
Comment: Is there a need for assuming normal us
operation during diagnostic read-out? Probably not.

MS-05-02-03

FR-08-04

The SC should be able to download new firmware to any
controller connected to the bus.

MS-05-02-04




Comment: Subject fo discussion; is this too ambitious?
Each controller could alternatively have a dedicated
programming port for this purpose, but download via the
bus facilitates TRUE remote operation via an IP gateway
efc.

FR-08-05

A setrvice person shall be able to set-up the prosthesis
configuration via a SC connected to the bus.

MS-05-02-01

FR-08-05-01

The configuration set-up should be semi-automatic, with
the bus system automatically collecting information about
the devices and functionality present.

MS-05-02-01

FR-09

The system shall have a fail-safe behaviour.

MS-04-01
MS-05-01-01

FR-09-01

In case of an unrecoverable failure, the system shall
assume a safe state.

Comment: Safety with respect to the user, e.g. the elbow
should not suddenly jump to maximum flexion lest
someone get hurt. Rather, it should be unpowered or held
at a constant angle.

MS-04-01
MS-05-01-01

FR-09-02

In the case of a temporary failure, all system components
shall continually exhibit a safe behaviour.

Comment: Temporary failure in one part of the system
might require temporary change in the behaviour of
another component, e.g. during the performance of
coordinated motion.

MS-04-01
MS-05-01-01

FR-09-03

Each system components shall have a default “safe state”
that is automatically assumed when communication fails
or other critical errors occur.

Comment: The safe state may be different for different
types of components, e.g. a hand and an elbow. Safe
state should be specified for each device profile.

Follows from FR-
09-01 and FR-09-
02

FR-10

At power-up, the system shall assume normal operation
without any user interaction.

Comment: A precondition for this is that the system has
previously been properly configured, cf. FR-08-05.

All other initialisation efc. shall then be automatic when the
system is powered-up.

MS-04-02

FR-11

The bus shall exhibit electromagnetic compatibility with
other prosthesis components and surroundings.

MS-07-01

FR-11-01

The bus shall be not induce excessive noise in measured
EMG signals.

MS-07-01

FR-11-02

The bus shall be immune to the influence of domestic
power lines, household equipment, commercial anti-theft
systems (RFID etc.) and other “normal” sources of
electrical noise.

MS-07-01

61



