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BACKGROUND 

 

Production systems for oil and gas are often split into two main parts with regard to optimization and 

control. The production wells transport the reservoir fluids from the reservoir to the processing unit 

at the platform. The wells are controlled manually by the operators, while the topside process is 

controlled using a decentralized control system.  

 

The production rates are set at the inlet of the topside process by use of the stroke position of the 

production chokes for each well. There is no automatic feedback from the process to where the 

production rates are set. The feedback is handled manually by the operators and the performance 

will naturally vary depending on the operators. Especially, when one or more of the wells show 

natural variation in the feed rates, the feedback is slow and not optimal with respect to process 

utilization. 

 

The process constraints (which limit the throughput) are typically located in the processing unit and 

the operational objective is to utilize the available capacity (constraint control) dynamically. Since the 

production rate is set at the wells, introducing automatic feedback control from the constraints to 

the feed stream to the process is assumed to have great economic potentials in term of plant 

efficiency. 

 

The number of feed points (wells, multivariable nature) and different routing options (binary decision 

variables) make regular decentralized feedback control difficult to implement. 

 

The main objective of this Master thesis is to show the potential of integrated automatic control of 

wells and topside processes using model based control. 

The following points should be addressed:  

 

1. MODELING  

 

The first task of the thesis is to establish a simplified dynamic model of a generic topside process 

including the main unit operations. Matlab/Simulink is the preferred simulation environment. Model 

input will be provided by Hydro.  

 

Next, a dynamic model of a subset of the production wells should be coupled with the dynamic 

model of the process. OLGA or a simplified PDE based multi-phase model is to be used as the 

simulation model for the wells (supplied by Hydro). The coupling of the well simulator and the 

simplified topside model is one important project target. 

It is assumed that the constraint of the process is the available processing capacity for gas. The limits 

of the process are treated as hard constraints. 

 

A disturbance scenario is to be defined in cooperation with Hydro R&D which is used as a base case 

for the dynamic simulations. 

 



2. CONTROLLER IMPLEMENTATION 

Two control structures should be compared with respect to robustness and performance for the 

predefined disturbance scenario.  

 

The decentralized control structure should be implemented without any model in closed loop (should 

be possible to implement in existing DCS). The flow of gas in the compressor train should provide 

feedback to the choke valve for one or more of the wells. The control structure for the topside 

process should follow a typical offshore Hydro implementation. Back off from the constraints should 

be adjusted so that the operation is inside the allowable region of operation for the disturbance 

scenario simulated. 

 

As an alternative control structure, an MPC controller is to be utilized for the manipulation of the 

well choke valves and possibly also of key set points of the topside controllers. It is assumed that 

there is no measurement of the flow rates from the wells. A linear model is to be used for the model 

of the wells in the MPC controller. 

 

Alternative implementations should be investigated and proposed by the candidate. 

 

3. SIMULATION 

 

The two control structures should be compared with respect to robustness and performance for a 

defined disturbance signal. An economic objective should be used to evaluate the performance of 

the two implementations. 

 



Abstract

In offshore production systems for oil and gas, the wells are usually controlled
manually, while the topside process is controlled using a decentralized control
system. It is clear that this control structure may not be economically
optimal.

In the work of this thesis, one decentralized and two MPC based control
systems were designed, integrating the control of the production wells and
the topside process of an offshore production system. The performance of the
controllers was tested in a simulation study with three different disturbance
scenarios, defined in collaboration with Hydro. The simulations were also
carried out using a manual control scheme, enabling a performance com-
parison between the designed controllers and the control conventions of today.

The automatic controllers showed a significant increase in oil throughput over
the manual control scheme, while performing quite similarly when compared
to each other. It is however expected that the MPCs will outperform the
decentralized control system in a case with a larger number of wells than was
used in the simulations of this thesis. The potential of achieving additionally
smoothened topside outflow rates by applying a supervisory MPC for topside
setpoint manipulation was also demonstrated.
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Chapter 1

Introduction

In many offshore production systems for oil and gas, the wells and the topside process are
separated with respect to control and optimization. The flow from each well passes through
a choke valve at the inlet to the topside process. Thereafter the well flows are mixed in the
manifold and sent to the separators. The purpose of the topside process is to secure the quality
of the exported oil and gas.

The gas processing capacity is assumed to be the main operational constraint of the topside pro-
cess examined in this thesis. Utilizing this capacity can be achieved by balancing the production
rate at the choke valves. While too high production rates may lead to process shut downs and
flaring of gas, mainly due to excessive separator tank pressures, lower than optimal production
rates obviously yield a loss of income due to lower production rates.

Usually, the topside process is controlled using a decentralized control structure, while the wells
are controlled manually by the operators through the choke valve stroke positions. Although this
control strategy may not be optimal with respect to utilizing the full processing capacity of the
platform, its high operational reliability due to low design complexity is a favorable advantage.

The well dynamics can be difficult to predict. In addition to the natural variation in the flow
rates and the multi-phase flow in each well, its dynamics are affected by the choke valve position
and the gas lift rate. Also, there is the additional complexity introduced by using multiple
production wells with individual dynamics and compositions. Add the dynamics of the topside
process to this, and it is obvious that it may be difficult for a human operator to control the
production chokes in an optimal manner.

The integrated control of topside and wells becomes more important when the process distur-
bances become larger (e.g. slugging wells). With unstable wells present, the platform operators
tend to back off from the process capacity constraints in order to avoid process shut downs and
flaring of gas in the event of excessive slugs entering the topside process. This does however
yield lower production rates which lead to a loss of income. With automatic well and topside
control, it is likely that we will be able to operate closer to the process constraints also with
process disturbances such as slugging wells present in the system.

1.1 Compressor capacity limitation

The gas mass flow rate through the compressors can be represented using a second order com-
pressor flow approximation as given in equation (1.1), where f(u) is proportional to the shaft
speed control signal u, and c2 < 0. The models will be dealt with in more detail in Section 2.1.

1
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w =
−c1f(u)−

√
(c1f(u))2 − 4c2[c0f(u)2 − (Pout − Pin)]

2c2
[kg/s] (1.1)

In the following, assume that the compressor outlet pressure is given. The mass flow rate
through a compressor as a function of inlet pressure and shaft speed control signal is illustrated
in Figure 1.1. As can be seen in the right plot of said figure, the gas mass flow rate increases with
increasing shaft speeds. This explains why the compressors often are operated at full speed1,
when recalling that the main limiting factor of the topside process often is the gas processing
system.

The left plot shows that a higher compressor inlet pressure, that is, a lower pressure difference
over the compressor, yields a higher mass flow rate through the compressor. However, with an
upper limit on the compressor inlet pressure (which is given by the highest allowed separator
tank pressure), it follows that there is an upper limitation on the attainable gas mass flow rate
through the compressor when its outlet pressure is given. Thus, it seems reasonable to control
the gas inflow rate to the topside process in order to avoid excessive process pressure increases.
More specifically, the gas inflow rate from the wells should typically not exceed the maximum
possible gas outflow rate from the gas compression train. For the above purpose, the gas inflow
rate can be controlled through the production choke valves, and if we place a constraint on
the compressor gas flow rate at a level lower than the circle in the left plot of Figure 1.1, the
compressor should be able to keep the pressure down to a corresponding level to the left of the
circle in the said plot.
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Figure 1.1: Illustration of compressor gas mass flow rates. The compressor data are taken from the second stage
compressor used in later simulations. Pout = 80 bar. Constant values in the plots: Left: u = 1. Right: Pin = 8
bar.

1.2 Master’s thesis objectives

In this Master’s thesis, two main choke valve control structures will be examined. The studies are
to be performed on a generic model of a topside process and its production wells. The operational
objective is to maximize the oil production rate while not exceeding capacity constraints in the
gas processing train.

max
uchokes

Nwells∑
i=1

wo,i s.t.

Nwells∑
i=1

wg,i ≤ w̄g (1.2)

1Note that with the gas compressors being the main tank pressure control devices, this means that many
platforms are in effect operating without any tank pressure control, at least within certain limits.
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1.2.1 Decentralized control

The first control structure to be examined is traditional decentralized control. One of the ad-
vantages of this approach is that such controllers can be easily implemented in the existing
distributed control system (DCS) of the platform. Since the main operational constraint of the
topside process is assumed to be the gas processing capacity, it is presumed that measurements
in the gas compression train should represent good candidates for the feedback signal to the
decentralized choke valve controllers. It is however assumed that the distribution of the pro-
duction between the different production wells will not be straight forward in the decentralized
control approach. One possibility would be to use the choke valves of one or a selection of the
wells which produce significant amounts of gas for constraint control, and keep the other choke
valves at constant openings.

1.2.2 Model predictive control

In the second approach, a model predictive controller (MPC) is to be used. In addition to
setting choke valve positions, the MPC may be used to set control reference points for the
local separator tank and compressor controllers. The advantage of employing an MPC is the
prospect of achieving near optimal plantwide operation, given that the plant model and problem
formulation is chosen appropriately. Further, it eliminates the eventual need of a multivariable
analysis for plants with multivariable couplings. The basic PI controllers and the MPC can
be considered to be situated in different layers in the control system hierarchy, namely the
regulatory and supervisory control layer, respectively. Care must be taken in order to achieve
a sufficient time scale separation between the two layers. That is, the supervisory control layer
must operate on a slower time scale than the lower regulatory control layer. The time scale
separation means that the controllers are not expected to interfere with each other stabilization
wise. Note however that the MPC will operate directly on the choke valves, so this control
system layering will only apply to the topside process.

1.2.3 Model requirements

For the MPC to be implemented, there is a need for a linear model of the topside process. A
simplified nonlinear topside model was provided by Hydro at project startup, see Figure 1.2.
Thus, there is need for linearizing the provided process model.

Further, for the well dynamics to be taken into consideration by the MPC, a linear model of the
wells should also be developed. An OLGA well model was provided by Hydro. Although the
OLGA model will not be used in the MPC directly due to its high complexity, it will be used
for representing the physical wells in the simulations, providing a more realistic simulation case.
There is thus still a need for a simplified, robust well model for use in the MPC. The behavior
of the simplified well model will be verified in a comparison with the OLGA model response.
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Chapter 2

Models

In this chapter, the system models will be presented. First, the nonlinear model of the topside
process is introduced. Further on, the OLGA well models are presented. After this, the lin-
earization of the well models will be presented, followed by an introduction of the disturbance
well models used in the simulation cases to be introduced in Chapter 4. Note that although the
topside process model and OLGA well models were provided by Hydro at project startup, the
well models did not operate in a stable flow regime upon delivery, so some model adjustment
was needed.

2.1 Nonlinear topside process model

The nonlinear topside process model was provided by Hydro at project startup. In the following,
an outline of the model will be presented. For additional details on the model, consult the
enclosed Matlab code. Look to Appendix A for the key parameter values of the topside
process.

The mass holdup of gas, oil and water in the two separator tanks define the six states of the
nonlinear topside process model. The topside process is depicted in Figure 1.2.

The state vector of tank i is

xi =

 mg,i

mo,i

mw,i

 [kg] (2.1)

The mass balance of tank i is computed as follows. Note that each wj is a 3× 1 vector defining
the mass flow of each of the three phases (gas, oil and water, respectively) through the different
tank inlets and outlets.

ẋi = win,i − wout,g,i − wout,o,i − wout,w,i [kg/s] (2.2)

For the first separator tank, the inflow win is set by a well flow defined by a simulation performed
in OLGA added on top of a bias representing the other wells. The inflow win to the second
separator tank is set equal to the oil valve outflow wout,o from the first separator tank (easily
verified by a quick glance at Figure 1.2)

5
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win,1 = (well outflow) [kg/s]
win,2 = wout,o,1 [kg/s]

(2.3)

wout,w is the outflow passing through the water valve, and is given by equation (2.4). Note that
this outflow consists of pure water, meaning that no oil mixes into the water layer of the tank.
The tank pressure p is calculated in a flash equation where constant volume and temperature
is assumed. The downstream pressure pext,w is defined as a constant (given by the platform
produced water treatment facilities, not included in the model). Kv,w is a valve sizing constant,
ρw is the water mass density, and uw is the valve opening control signal.

wout,w,i =

 0
0
1

 · uw,iKv,w,i

√
ρw(pi − pext,w) [kg/s] (2.4)

Similarly, wout,o is the outflow passing through the oil valve, and is given by equation (2.5). This
is a true three phase flow, due to water and gas mixing into the tank oil layer. The flow phase
composition is given by x2 in equation (2.6). ρ2 is the average mass density of the oil layer and
is different from the oil density due to water blending into the oil (gas contribution is neglected
due to its low mass density). For the first separator tank, the downstream pressure is set equal
to the pressure p of the second separator tank. For the second separator tank, the downstream
pressure is set at a constant level (given by the oil export line inlet pressure).

wout,o,i = x2,i · uo,iKv,o,i

√
ρ2,i∆pi [kg/s] (2.5)

with
∆p1 = p1 − p2

∆p2 = p2 − pext,o,2

The phase composition x2 of the outflow through the oil valves, equal to the phase composition
in the tank oil layers, is given in equation (2.6). mo is the mass holdup of oil in the tank. mwo

is the mass holdup of water in the oil phase, and is only greater than zero if the tank water
level surpasses the tank weir height. ms is the mass of the gas contained in the oil phase due to
pressure conditions, and is computed from the results of the flash equation used to compute the
tank pressure p. m2 is the total mass of the holdup in the tank oil layer. Gas is neglected also
here due to its relatively low mass density.

x2,i =
1

m2,i
·

 ms,i

mo,i

mwo,i

 , m2,i = mo,i + mwo,i (2.6)

The mass flow of gas through compressor stage 1 and 2 (referring to Figure 1.2) is modeled as
given below. c0, c1 and c2 are parameters defining the compressor characteristics in a second
order polynomial approximation. Note that c2 < 0.

wg,c,i =
−ua,ic1,i −

√
(ua,ic1,i)2 − 4c2,i[c0,iu2

a,i −∆pi]

2c2,i
[kg/s] (2.7)

with
∆p1 = p1 − p2

∆p2 = pext,g − p1
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where ua,i ∈ [Nmin,i, Nmax,i] is the actual input as given below, with ui ∈ [0, 1] being the
control signal

ua,i = ui(Nmax,i −Nmin,i) + Nmin,i

The gas outflow wout,g from the tanks is then as given in equation (2.8). The outflow through
the gas outlet of the second separator tank is equal to the gas flow through the first compressor
stage. Further, since the total gas outflow from the gas compression train is equal to the the flow
through the second compressor, it follows that the difference between the mass flow through the
second and first compressor has to come from the first separator tank.

wout,g,1 = wg,c,2 − wg,c,1 [kg/s]
wout,g,2 = wg,c,1 [kg/s]

(2.8)

2.2 OLGA well model

The inflow of gas, oil and water from the controlled wells to the topside process was to be
simulated with two dynamic OLGA well models with an inflow bias added on top of the OLGA
output in order to heighten the inflow rates to a realistic level. This bias represented the rest of
the “thought” wells connected to the platform.

Two separate OLGA well models (to be denoted X6 and X8 ) were provided by Hydro at project
startup. Their geometry is presented in Figure 2.1.

For practical reasons, it was decided to replace the so called OLGA PVT files with the OLGA
Blackoil module. These entities are used in the phase composition calculations of the model,
and abandoning the PVT files allowed for easier model adjustments and a larger dynamic model
range without the need of making new PVT files as the pressure and temperature operating
points changed. This did however mean that the simulations would take more time to complete
as the fluid properties would have to be calculated in stead of simply looked up in a table.

Note that the two wells were equipped with gas lift systems. These were left at 3000 and
3300 Sm3/h for X6 and X8, respectively, and will not be manipulated throughout the project.
Therefore, we will not go into further details on these.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
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Figure 2.1: Geometry of wells X6 and X8
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2.2.1 Phase composition

The models would have to be scaled in order to provide a useful simulation case. First, their
phase compositions were adjusted to have different gas-to-liquid ratios and water cuts. With
maximization of the oil production rates being the objective of the optimization, and gas rates
being the limiting factor, it would be interesting to have one well producing relatively large
amounts of both oil and gas compared to the other well. Otherwise, it would seem quite obvious
that the solution to gas processing capacity problems would be to choke down on the well which
produced more gas. Consequently, it was decided that X6 would have a larger oil and gas
production than X8.

Table 2.1: Chosen GLR and wc for the two wells. Computed at standard conditions.

Well GLR = Qg

Qo+Qw
wc = Qw

Qo+Qw

X6 800 0.75
X8 600 0.85

2.2.2 Flow rates

Thereafter, the production rates were scaled using the reservoir pressure pr and productivity
index PI as tuning parameters. The maximum capacity of the second gas compressor at the
given pressure operating point (inlet pressure 8 bar, outlet pressure 80 bar) is about 470 kg/s,
as is illustrated in Figure 1.1. After tuning, the wells had a maximum gas outflow rate of about
19 kg/s at full valve opening. Using this number as an average well gas flow rate, we need a
total number of about 25 thought wells in order to fill the process capacity of 470 kg/s.

Table 2.2: Chosen pr and PI for the two wells.

Well pr [bar] PI [Sm3/d/bar]

X6 140 290
X8 160 210

Table 2.3: Maximum well outflow rates, in kg/s, with outlet pressure 8 bar. At full choke valve opening.

Well w̄g w̄o w̄w

X6 20.2 4.2 15.5
X8 17.0 2.8 19.3
Average 18.6 3.5 17.4

2.2.3 Model combination

The two models were combined in a single OLGA model file in order to get less simulation
overhead. They shared the same output boundary condition, which was set equal to the dynamic
pressure of the first separator tank.
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2.2.4 Choke valve stroke time

The choke valve stroke time, defined as the time the valve uses to go from fully closed to fully
open, was set to 8 minutes, and was introduced as follows. First, a manual controller was defined
per choke valve in the OLGA model. For each choke valve, a controller was assigned (and the
valve time parameter was left blank). The stroke time was set as a parameter in the controllers.
The controllers would then receive and simply pass through control commands (valve opening
setpoints) from the controllers implemented in Matlab to their assigned valves.1

2.3 Linear well model

A linear time invariant (LTI) well model was needed for use in the MPCs, relating the choke
valve openings to the combined well outflow. The step response of the OLGA simulated wells
is illustrated in Figure 2.2, showing the well flow response to stepwise choke valve opening
changes. Note that the steady state gain decreases nonlinearly with increasing valve openings
(approximately quadratically, see Figure 2.3). The model to be found was of the form

xk+1 = Awxk + Bwuk

yk = Cwxk + Dwuk
(2.9)

In the above, the w indicate that the matrices represent the well model. The control input is
the choke valve openings of choke valves X6 and X8, and the measurement vector is the mass
flow rate of gas, oil and water out of the combined wells

uk =
[

uX6,k

uX8,k

]
, yk =

 y1,k

y2,k

y3,k

 =

 wg

wo

ww

 (2.10)

Mainly two approaches to the well modeling were considered. The first involved use of the System
identification toolbox of Matlab. It did however prove a bit difficult to achieve good model
characteristics with low model orders using the said toolbox, as the main desired characteristics
of the model were not necessarily the ones being weighted the most by the toolbox routines.
Thus, after a while, a manual modeling approach was carried out. This approach was much
more successful, cutting the number of model states in half, if not down to one third.

2.3.1 Model design principle

It was decided to model the response for an input step change from 20 to 25% valve openings
(indicated in Figure 2.2 with thick lines). At this operating point, both the steady state gain and
the transient response could be considered to be around the average over the whole spectrum of
valve openings, not being too extreme in any direction.

Prior to the modeling, the linearization point of the input uk (valve openings) and the measure-
ment yk (flow rates) were stored in the vectors uN and yN , respectively, such that

uk = ∆uk + uN

yk = ∆yk + yN (2.11)

1Note that there is also the possibility of assigning a stroke time parameter directly to the valve objects in
OLGA models, but this parameter is restricted for use only with separator tank drain valves and does not comply
with our case.
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Figure 2.2: Response of well X6 and X8 to choke valve opening steps of magnitude 5%. Note the nonlinear
steady state gain, and the approximate symmetry when comparing the response to increasing and decreasing
valve openings. The thick lines around t = 35, 000 s indicate the responses used in the linearization of the wells.
Green-gas, black-oil, blue-water.
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Figure 2.3: Flow rate steady state gain at different valve openings. Relative to gain at linearization point
u = 0.2. Circles: gain of the six different inflows (three from X6, three from X8 ). Solid line: The mean response.

The nonlinear responses were then shifted to an initial value of zero by subtracting yN from the
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measurements.

The two OLGA wells would be modeled separately. For each well, it seemed that the oil and
water phase flow could share dynamics, only to be distinguished by different measurement gains.
The individual dynamic responses were modeled as a low-pass filtered first order plus delayed
second order transfer function. The delay of the second order response was realized with a
first order Padé approximation, requiring one additional state. The low-pass filtering of the
first order response was included in order to represent the valve stroke time and gave a strictly
proper transfer function (meaning that the input signal would not pass directly through to the
measurement).

The inverse response introduced by the right-half plane zero of the Padé approximation would
call for some additional tuning. As an alternative to the Padé approximation, one could have
introduced time shifting states in the discrete system. This solution would however necessarily
introduce quite a considerable amount of extra model states and was avoided.

With a total of five states per dynamic well outflow, the model would require a total of twenty
states for the representation of the six phase flows before model reduction. The transfer functions
took the form of equation (2.12), and the principle is illustrated in Figure 2.4.
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Figure 2.4: Design principle. Well flow model (thick, solid) is the sum of a low-pass filtered first order (dashed)
and delayed second order (dotted) transfer function. Inverse response is due to Padé approximation.

y(s) =

((
K1s

1 + T1s
+ yf

)
· 1
1 + T2s

+
K2s

1 + 2ζ s
ω0

+ ( s
ω0

)2
·
1− θ

2s

1 + θ
2s

)
u (2.12)

2.3.2 Model tuning

The model tuning was carried out as follows, and was performed as a combination of calculations
based on plot measurements and tweaking through examination of the resulting plots. While
reading through the following section, it could be handy to keep an eye on the response of the
original nonlinear system and the response of the resulting model, shown in Figure 2.6.

y0 and yf were found as the height of the initial peak and the steady state gain, respectively. A
first order response was fitted to the first part of the plot, falling from y0 to yf . T1 was found
as the time constant of this response.
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An approximate of K1 was found by applying the initial value theorem to the first parenthesis
of equation (2.12), setting the initial value equal to y0

lim
s→∞

K1

1 + T1s
+ yf =

K1

T1
+ yf = y0 ⇒ K1 = T1(y0 − yf ) (2.13)

The low-pass filter was introduced with T2 set such that the well flow estimate would closely
resemble the physical flow response at the time of the next MPC iteration, e.g. 20s into the
response if using 20s as the MPC sampling interval. After introducing the low-pass filter, the
gain K1 would need some adjustments due to the low-pass filter lowering the overall gain of
the filtered model. While the filter would mean that the initial peak of the response would
be smoothened out, it was included due to the importance of getting a more accurate MPC
prediction of particularly the first upcoming flow rate.

Then, the delay θ before the start of the second order response was found by plot examination.
The damping factor ζ was initially set to 0.7. Lowering this value would lead to a more distinct
second order response, but would also give more oscillations and also increase the inverse re-
sponse effect of the Padé delay approximation. ω0 was chosen such that 1/ω0 + θ resembled the
approximate desired time of the maximum of the second order response (this point is slightly
before the exact maximum, see Figure 2.5 for an illustration without the time delay added).

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5
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y(
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Time [s]

Figure 2.5: Step response of K2s/(1 + 2ζ s
ω0

+ ( s
ω0

)2). ω0 = 1/100, K2 = 200, ζ = 0.7. Maximum occurs close
to t = 100 s.

Finally, an approximate of K2 was found by taking the inverse Laplace transform of the non-
delayed second order response after exciting it with a unit step input

y(t) = L−1

{
K2s

1+2ζ
s

ω0
+(

s
ω0

)2
· 1

s

}

= K2ω0e−tζω0 sinh
(
tω0

√
ζ2 − 1

)
1√

ζ2−1

(2.14)

As stated earlier (see Figure 2.5), an approximate maximum of the above function can be found
at t = 1/ω0

y(t = 1/ω0) = K2ω0e−ζ sinh
(√

ζ2 − 1
) 1√

ζ2 − 1
(2.15)

Defining yω0 = y(t = 1/ω0), we get the following for calculating the gain which sets the approx-
imate maximum of the second order response equal to the desired yω0

K2 =
yω0

√
ζ2 − 1

ω0e−ζ sinh
(√

ζ2 − 1
) (2.16)
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After some tuning, the parameters for the wells were found as follows.

Table 2.4: Parameters used in the transfer functions as given in equation (2.12)

Parameter X6g X6w,o X8g X8w,o

yf 33.2 27 30 37
K1 868 2850 360 4200
T1 35 150 20 200
T2 13 13 13 13
K2 -3656.5 4940.3 -8776.6 11834.0
ζ 0.9 0.7 0.75 0.65
1/ω0 200 250 350 350
θ 350 600 130 500

2.3.3 The resulting model

The combined water and oil models were modeled for the water flow. Then, the individual gas
and water models were taken over to state space form and discretized. Following this, the water
state space model was duplicated to represent the oil model and the oil measurement matrices
C and D were scaled down in accordance with the ratio (steady state gain oil)/(steady state gain
water). The two A and B matrices were combined in a block-diagonal form, and the three C
and D measurement matrices were stacked vertically. The model before model order reduction
was then

∆xk+1 =
[

Ag 0
0 Ao,w

]
∆xk +

[
Bg 0
0 Bo,w

]
∆uk

∆yk =

 Cg

Co

Cw

∆xk +

 Dg

Do

Dw

∆uk

(2.17)

Lastly, the model order was reduced by two states using the Matlab function minreal, bringing
the model order down from twenty to eighteen for representing the six well outflows. The step
response of the resulting model is shown in Figure 2.6, and the reduced order model is repeated
below

∆xk+1 = Aw∆xk + Bw∆uk

∆yk = Cw∆xk + Dw∆uk
(2.18)

with
uk = ∆uk + uN

yk = ∆yk + yN (2.19)

As a final note on the models, one could have considered including a second second order
response in the oil and water flow models, representing the first minor top which happens
between approximately 100 and 400s in Figure 2.6. However, with the linear model being tuned
at one operating point and the transient response being somewhat different at other points, it
would not necessarily improve the overall controller performance much. There would still be
model errors present in the system either way.
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Figure 2.6: Resulting linearized model, shifted down to initial value zero for easier comparison. Response to a
valve opening step change from 20 to 25%. Thick lines: actual nonlinear well response. Thin lines: linear model.
Green-gas, black-oil, blue-water.

2.4 Well startup model

In the simulation case to be denoted as case 1 in Chapter 4, the well W3 in Figure 1.2 will be
simulated using OLGA. The well will be opened for production after some time, and the W3
choke valve will be held at a constant level thereafter. This change in production will be known
in advance, and with a model of the startup dynamics of W3, the controllers will perform a
feedforward compensation in advance of and during the production change in order to try to
avoid breaking any constraints and try keeping the production as optimal as possible.

W3 has the same geometry and properties as the well X6 (see Section 2.2), albeit with its GLR
set to 700 and its gas lift rate set to 1980 Sm3/h.

The startup dynamics of the third well will be introduced to the controllers through logging data
from previous startups (in our case from previous simulations). If no inflow rate measurement
logs are available in a practical implementation (for instance due to lack of instrumentation at
the well outlet), they could be generated from other plant measurements using a model based
estimator such as a Kalman filter, or the data could be generated using simulation software such
as OLGA.

The logging data to be used for feedforward in later simulations are shown in Figure 2.7. The
choke valve is opened from 0 to 15% after 2000s. The W3 gas lift is started at t = 0s, building
up pressure before the valve is opened, as is standard practice. In some cases, a simplified model
based on the logging data will be fed forward, more about this later.
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Figure 2.7: Startup of well W3. Choke valve moves from 0 to 15% at t = 2000s. Gas lift is started at t = 0s.
Green-gas, black-oil, blue-water.

Figure 2.8 shows the outflow from W3 if the choke valve opening is postponed from the initial
t = 2000s, as shown in Figure 2.7, to t = 4000s, thereby allowing a further pressure and mass
buildup prior to the valve opening. Although the trend is quite similar in the two cases, there is
still some difference, especially in the gas flow rate peak amplitude, and the figures hint at the
importance of applying the right startup model depending on the actual operating conditions.
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Figure 2.8: Startup of well W3. Choke valve moves from 0 to 15% at t = 4000s. Gas lift is started at t = 0s.
Green-gas, black-oil, blue-water.

2.5 Slugging well model

In the simulation case to be denoted as case 2 in Chapter 4, the well W3 in Figure 1.2 will be
defined by a pre-generated inflow vector, representing a slugging well. The inflow disturbance,
shown in Figure 2.9, will not be known in advance.

While we will not try to control the slugging well itself, we will examine how the other con-
trolled wells and the topside process can be used to compensate for the disturbances which are
introduced to the system.

The maximum amplitude of the W3 gas, oil and water mass flow rates were set equal to the
average maximum flow rate of wells X6 and X8, as given in Table 2.3 on page 8. If the inflow
rates had been set too high, the two controlled wells and the topside process would not have been
able to compensate adequately for the disturbance. The same applies if the inflow disturbance
rate was too rapidly changing.
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Figure 2.9: Process disturbance - slugging well. Slug period time 50 minutes. Green-gas, black-oil, blue-water.



Chapter 3

Controllers

In this chapter, the various controller approaches will be presented. Simulation results follow in
Chapter 4.

The MPC implementations will use the compressed formulation of Maciejowski (2002). Using
this formulation, the optimization state vector consists exclusively of the future control input
changes (and eventual augmented parameters needed for soft constraints, more about this later).
The system model is substituted into the objective function and the constraints, thereby elimi-
nating the need for additional equality constraints. The result is a computationally efficient MPC
structure with a relatively small optimization state vector. Note that with the well model being
stable, and the topside process being marginally stable (integrating tanks), there is no need for
prestabilizing the process for the MPCs to function properly, see page 22 of Maciejowski (2002).

In the following, the tuning of the topside PI controllers will be presented. Following this, the
basic structure common to all the realized MPCs will be introduced. Thereafter, we turn the
focus to the specific MPCs and decentralized controllers.

3.1 Topside PI controller tuning

For control system setups relying solely on PI controllers for controlling the topside process
(all realized controllers except for the one to be denoted MPC2 ), the tank level controllers
should be loosely tuned in order to utilize the buffering capacity of the tanks. The tank level
controllers were therefore in these cases tuned using the smooth tuning rules of Skogestad (2006)
for averaging tank level control.

The separator tank pressures were in all controller setups controlled using PI controllers alone,
the tuning of which was leaning towards a fast response.

The level controller tuning was performed as part of the project, while the pressure controllers
were adequately tuned upon model delivery from Hydro. Therefore, in the following, tuning
details will only be presented for the level controllers. The parameters of the other controllers
will be presented, but not discussed in any more detail.

3.1.1 Smooth tuning for averaging level control

From equation (18) and the equation after equation (23) in Skogestad (2006), we have for
controller i

Kc,i =
|∆q0,i|
|∆hmax,i|

=
|∆wi|

ρi|∆hmax,i|
(3.1)

17
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and

τI,i = 4τtank,i = 4
|∆Vi|
|∆q0,i|

= 4LiDi
|∆hmax,i|
|∆q0,i|

=
4LiDi

Kc,i
(3.2)

in the above, |∆q0| [m3/s] is the maximum expected inflow disturbance flow rate, and |∆hmax| [m]
is the maximum allowed level control deviation. The tank residence time τtank [s] is equal to the
tank volume ∆V [m3] available for liquid buffering divided by the maximum inflow disturbance
rate ∆q0 [m3/s]. L and D are tank lengths and widths as illustrated in Figure 3.1.

In the following, we have assumed that the maximum inflow disturbance rate is equal to the
magnitude of one average well, as given in Table 2.3 on page 8. For the oil level controllers, we
must also include the water inflow disturbances in the calculations, since the oil floats on top of
the water and is thus directly affected by the water disturbances. With parameters as given in
Table 3.1, we get the tunings of Table 3.2.

Table 3.1: Parameters used for smooth level control tuning. See Figure 3.1 for reference. The difference between
the oil surface length of separator tank 1 and 2 is due to different tank lengths.

Di [m] Li [m] ∆hmax,i [m] ∆wi [kg/s] ρi [kg/m3]

Sep1,o 3.0 8.47 0.4 3.5+18.6=22.1 3.5·800+18.6·1000
3.5+18.6 = 968.3

Sep1,w 2.2 5.54 0.2 18.6 1000
Sep2,o 3.0 5.89 0.4 3.5+18.6=22.1 3.5·800+18.6·1000

3.5+18.6 = 968.3
Sep2,w 2.2 5.54 0.2 18.6 1000

1 
mw

o

w

o
o

w

3.154 m

Figure 3.1: Tuning parameter reference illustration. For use with Table 3.1. Separator tank schematic view.
First and second separator tanks have different lengths, but same weir positions.
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Table 3.2: Final PI controller tunings

Parameter Value

Kc,sep1,p 0.5
Kc,sep2,p 0.5
τI,sep1,p 100
τI,sep2,p 100

Kc,sep1,o 0.0512
Kc,sep2,o 0.0512
Kc,sep1,w 0.0822
Kc,sep2,w 0.0822
τI,sep1,o 1986
τI,sep2,o 1382
τI,sep1,w 593
τI,sep2,w 593

3.2 Common MPC structure

The state and measurement updates of the linearized model are (the size and structure of the
A, B, C and D matrices will vary in the different MPC implementations)

∆xk+1 = A∆xk + B∆uk

∆yk = C∆xk + D∆uk

Reserving the ∆ character for input changes between two iterations, we write the following in
stead in order to avoid confusion

x̃k+1 = Ax̃k + Bũk

ỹk = Cx̃k + Dũk
(3.3)

Introducing ∆uk+i = ũk+i − ũk+i−1, we have

x̃k+1 = Ax̃k + B(ũk−1 + ∆uk)
ỹk = Cx̃k + D(ũk−1 + ∆uk)

(3.4)

For the next iteration, we get

x̃k+2 = Ax̃k+1 + Bũk+1

= A(Ax̃k + B(ũk−1 + ∆uk)) + B(ũk−1 + ∆uk + ∆uk+1)
= A2x̃k + (B + AB)ũk−1 + (B + AB)∆uk + B∆uk+1

ỹk+1 = Cx̃k+1 + Dũk+1

= C(Ax̃k + B(ũk−1 + ∆uk)) + D(ũk−1 + ∆uk + ∆uk+1)
= CAx̃k + (D + CB)ũk−1 + (D + CB)∆uk + D∆uk+1

(3.5)
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3.2.1 Prediction

With prediction horizon Hp and control horizon Hu, we get the following prediction of the next
Hp measurements after some straight forward substitutions similar to the ones done between
equations (3.4) and (3.5). Note that the control input is held constant for all k > Hu.

ỹk+1

ỹk+2
...

ỹk+Hu

...
ỹk+Hp


=



CA

CA2

...
CAHu

...
CAHp


x̃k +



D + CB
D + CAB

...
D + C

∑Hu−1
i=0 AiB
...

D + C
∑Hp−1

i=0 AiB


ũk−1+



D + CB D 0 · · · 0

D + CB + CAB D + CB D
. . .

...
. . . 0

... D

D + C
∑Hu−1

i=0 AiB · · · D + CB

... D + CB + CAB

...
...

D + C
∑Hp−1

i=0 AiB · · · D + C
∑Hp−Hu

i=0 AiB




∆uk

∆uk+1
...
...

∆uk+Hu−1

 (3.6)

More compactly written, we have

Ỹk = Ψx̃k + Υũk−1︸ ︷︷ ︸
past

+Θ∆Uk︸ ︷︷ ︸
future

(3.7)

Note that the first two parts of the left hand side of equation (3.7) are given by the past states
and control inputs and cannot be influenced. Thus, the only free variables in the optimization
are the ones being contained in the ∆Uk vector. Also note that although the said vector contains
predicted control input changes Hu steps into the future, only the first input (∆uk) will actually
be used. After this iteration, the prediction and control horizons will recede, and the optimization
will be performed again, after updating x̃k and ũk−1 with new values.

3.2.2 Integral action for offset-free control

Dealing with a nonlinear system, the predictions from the linear model will not be correct. For
example, there is a nonlinear steady state gain in the well outflow rate response to the changing
choke valve openings, see Section 2.3. Also, there are the nonlinearities of the topside process,
see Section 2.1.

For the constraint control to be offset-free, we need to compensate for the mismatching model
and eventual unmeasured process disturbances. This can be done by adding the discrepancy
between the physical plant output and the predicted plant output to the next prediction (see
page 18 in Maciejowski (2002)). This is commonly known as MPC integral action and can be
realized with the following simple modification to equation (3.7)

Ỹk = Ψx̃k + Υũk−1 + Θ∆Uk + Φdk (3.8)
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where

dk = yk − ŷk|k−1 (3.9)

and

Φ =

 I
...
I

 (3.10)

3.2.3 Vector and matrix dimensions

Hp and Hu are the prediction and control horizons, respectively. The MPC vector and matrix
dimensions are given in Table 3.3.

Table 3.3: MPC vector and matrix dimensions

x̃k nx × 1
ũk nu × 1
ỹk ny × 1
d̃k ny × 1

Ỹk nyHp × 1
∆Uk nuHu × 1

Ψ nyHp × nx

Υ nyHp × nu

Θ nyHp × nuHu

Φ nyHp × ny

3.3 MPC1 - Direct choke valve control

The MPC1 control system is structured as shown in Figure 3.2, using an MPC for well control
and a decentralized control system for tank level and pressure control.

The MPC used a plant model consisting of a linearized well model and a simple topside model.
The topside model simply consisted of the steady state gain relation between the outflow rate
from the wells and the outflow rate from the topside process for the gas and oil phases. It
only modeled those two phases since the objective function only focused on those two topside
outflow rates for constraint control and production maximization. Also, with the close connection
between the oil and water phase flows, smoothing the oil outflow rate translates directly to the
same effect for the water flow rate.

Figure 3.3 shows the flow rate of gas and oil out of compressor stage two and the second separator
tank, respectively, when the topside process is subjected to a 2.5% step increase in the inflow
rates of the two said phases from the wells. The figure demonstrates that a simple gain model
is a good representation of the gas input-output dynamics of the topside process.

Although transient dynamics are present in the oil input-output relation of the topside process,
these dynamics were not modeled in this particular MPC implementation, for a few reasons.
First of all, what is needed for maximizing the oil production, is simply for the MPC to know
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MPC1

Wells

Choke valve 
openings

Topside processInflow rates

Level control Pressure control

Valve openings Compressor speeds

Compressor 2
gas rate

Separator 2
oil rate

Figure 3.2: Structure of control system MPC1. Feedback to level and pressure control system is tank level and
pressure measurements, respectively.

that ultimately, more oil inflow means more oil outflow. The focus of the MPC with respect
to the oil outflow is mainly that of flow maximization; there is no reference trajectory to be
followed. This can be taken care of using a simple gain model. There is however the aspect of
outflow smoothing for the protection and easier operation of downstream process facilities. This
is realized in the MPC by a cost on changes in the outflow from the topside process. However,
smoothing the outflow rate using a simple steady state gain model for the topside oil outflow
rate, means that the actual outflow rate will be even smoother than predicted in the MPC.
Thus, a simple gain model was used also for the oil flow rate, thereby saving a few model states.
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Figure 3.3: Left: Gas outflow rate from second compressor stage (solid) when subjected to a 2.5% increase
in the gas inflow rate from the wells (dotted). Right: Oil outflow rate from second separator tank (solid) when
subjected to a 2.5% increase in the oil inflow rate from the wells (dotted).

In the following, the structure of MPC1 will be presented.

3.3.1 Overall plant model

The overall plant input was chosen to be the choke valve opening of the wells X6 and X8. The
plant measurements were the gas mass flow rate out of the second compressor and the oil mass
flow rate out of the second separator tank



CHAPTER 3. CONTROLLERS 23

uk =
[

uX6,k

uX8,k

]
, yk =

[
wg,c2,k

wo,s2,k

]
(3.11)

The input and measurement vectors of the linear well model were as given in equation (2.10) on
page 9. With the topside model consisting of a steady state gain for the gas and oil flow rates,
we get the following plant model

∆xk+1 = A∆xk + B∆uk

∆yk = C∆xk + D∆uk
(3.12)

with
A = Aw , B = Bw , C = CP1C

w , D = CP1D
w (3.13)

where

CP1 =
[

gg 0 0
0 go 0

]
(3.14)

The w indicates matrices from the well model presented in equation (2.18) on page 13. The
steady state gains gg and go of the topside process were found to be as given below, after
dividing the outflow steady state flow rates on the inflow steady state flow rates of the same
phase in the plots of Figure 3.3. Note that the reason why gg is less than 1.0 is that the rest of
the gas stays with the oil, exiting through the second separator oil outflow valve.

gg = 0.99 , go = 1.00 (3.15)

CP1 is the gain matrix transforming the three well outflow rates [wg,in , wo,in , ww,in]T to the
topside outflow rates [wg,c2 , wo,s2]T .

3.3.2 Feedforward from known future inflow disturbances

In simulation case 1, to be introduced in Chapter 4, a third well will be opened for production
a while into the simulation run (the well is denoted as W3 in the model overview given in
Figure 1.2). This production change is known in advance and will be compensated for using
feedforward control. The following augmentation to the last term of equation (3.8) implements
the feedforward from the disturbance, adding the predicted changes to the topside outflow rate
prediction. CP1, defined in equation (3.14), transforms the predicted topside inflow rates to
predictions of the topside outflow rates.

(Φdk)new = Φdk +

 CP1

. . .
CP1





wW3,g,k

wW3,o,k

wW3,w,k
...

wW3,g,k+Hp−1

wW3,o,k+Hp−1

wW3,w,k+Hp−1


(3.16)

Two different approaches will be taken to the inflow predictions, see below.
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MPC1 FF1 - First feedforward scheme

In the first feedforward approach, to be denoted as MPC1 FF1, logging data from previous
startups of W3 will be used for model representation, see Section 2.4. The data to be fed
forward are shown in Figure 2.7.

MPC1 FF2 - Second feedforward scheme

In the second feedforward approach, only the first large, abrupt change in the gas inflow rate
is included in the inflow prediction. The idea is that the rest of the startup dynamics will be
handled by MPC integral action, saving modeling effort. The abrupt inflow change is included
in the prediction data because the choke valve cannot be expected to be able to compensate for
this large, sudden inflow change using feedback control alone due to the long choke valve stroke
time. The data being fed forward using the MPC1 FF2 scheme are shown in Figure 3.4, while
the original data are shown in Figure 2.7.
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Figure 3.4: Simplified inflow disturbance data used in the MPC1 FF2 feedforward scheme (only gas rates are
nonzero). Green-gas, black-oil, blue-water.

3.3.3 Optimization state vector with constraint softening

In order to guarantee feasibility during operation, the constraint on the gas rate (to be introduced
in equation (3.26)) needed to be softened. Consequently, the optimization vector was chosen as
follows

Xk =
[

∆Uk

Ek

]
∈ (nuHu + 1)× 1 (3.17)

This also meant that Θ of equation (3.6) needed to be augmented

Θ =
[

Θ 0
]
∈ nyHp × (nuHu + 1) (3.18)

3.3.4 Cost function

We want to maximize the future oil outflow from the second separator stage. The oil flow rate
measurement is the second element of the measurement vector yk defined in equation (3.11).
Further, we also want to minimize the valve control input changes and the changes in the
topside process outflow rate. Lastly, relaxing the gas outflow rate constraint, meaning that Ek

is set to a nonzero value by the optimizer, should be penalized heavily. Thus,
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min
∆Uk,Ek

V1 = −QT Ỹk + ‖∆Uk‖2
R + ‖Ek‖2

RE + ‖∆Ỹk‖2
S (3.19)

with

∆Ỹk =

 ỹk+2 − ỹk+1
...

ỹk+Hp − ỹk+Hp−1

 =


−I I 0 · · · 0

0 −I I
. . .

...
...

. . . . . . . . . 0
0 · · · 0 −I I


︸ ︷︷ ︸

W∈ ny(Hp−1)×nyHp

 ỹk+1
...

ỹk+Hp

 = W Ỹk (3.20)

and

Q =

 Q1
...

QHp

 , Qi =

 q1
...

qny

 =
[

0
q

]

R =

 R1 0
. . .

0 RHu

 , Ri =

 r1 0
. . .

0 rnu

 =
[

r1 0
0 r2

]

S =

 S1 0
. . .

0 SHp−1

 , Si =

 s1 0
. . .

0 sny

 =
[

s1 0
0 s2

]

RE =

 RE,1 0
. . .

0 RE,nE

 = rE

(3.21)

In the above, q, ri, si and rE are tuning parameters used while setting up the MPC.

Cost function in terms of optimization vector Xk

With the overall aim being to express the cost function in terms of the new optimization vector
Xk, we start by expressing Ỹk and ∆Ỹk as functions of ∆Uk. We have

Ỹk = Ψx̃k + Υũk−1 + Θ∆Uk + Φdk (3.22)

With x̃k, ũk−1 and dk being given by the past control inputs, there is nothing the optimizer
can do with these terms in the future. We therefore get the following term for Ỹk in the cost
function V1

Ỹk = Θ∆Uk (3.23)

From equation (3.20) we have that ∆Ỹk = W Ỹk. We can then rewrite ‖∆Ỹk‖2
S as follows

‖∆Ỹk‖2
S = (W Ỹk)TSW Ỹk = ỸT

k W TSW Ỹk

= (Ψx̃k + Υũk−1 + Θ∆Uk + Φdk)T W TSW (Ψx̃k + Υũk−1 + Θ∆Uk + Φdk)
= 2(Ψx̃k + Υũk−1 + Φdk)T W TSWΘ∆Uk + ∆UT

k ΘT W TSWΘ∆Uk + c
(3.24)
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In the above, c is a constant which cannot be affected by the control input and is therefore
disregarded in the following. With Xk as defined in equation (3.17), we can finally rewrite the
cost function of equation (3.19) as given below, using the results of equations (3.23) and (3.24)

V1 =
[
−QT Θ + 2(Ψx̃k + Υũk−1 + Φdk)T W TSWΘ 0

]
Xk

+X T
k

[
R+ ΘT W TSWΘ 0

0 RE

]
Xk

= hT
kXk + X T

k HXk

(3.25)

3.3.5 Constraints

There were three constraints in this MPC implementation - one on the absolute valve openings,
one on the rate of change of the valve openings (dictated by the valve stroke times) and one
on the gas flow rates through the second compressor (measurement y1,k). The latter one was
softened for feasibility. The two other constraints needed no softening since they were free
variables chosen by the controller, that is, they were not governed by any system equalities

|∆uk| ≤ ∆ū [−]
0 ≤ uk ≤ 1 [−]

y1,k ≤ w̄g,c2 + Ek [kg/s]
(3.26)

The first constraint can be written as follows in terms of the optimization state vector
Xk = [∆UT

k , ET
k ]T , with I ∈ nuHu × nuHu and 1 = [1 · · · 1]T ∈ nuHu × 1. With a 8 minute

valve stroke time, we have ∆ū = h
8·60 with h equal to the MPC sampling time, e.g. 40 s

[
I 0
−I 0

]
︸ ︷︷ ︸

E

Xk ≤
[

1∆ū
1∆ū

]
︸ ︷︷ ︸

e

(3.27)

The second constraint can be written as given below, with I ∈ nu × nu and
1 = [1 · · · 1]T ∈ nu × 1. uN is the control input linearization point (uk = uN + ũk), e.g.
uN = [0.2 , 0.2]T



I 0 · · · 0 0
...

. . . . . .
...

...
...

. . . 0
...

I · · · · · · I 0
−I 0 · · · 0 0
...

. . . . . .
...

...
...

. . . 0
...

−I · · · · · · −I 0


︸ ︷︷ ︸

F

Xk ≤



1− uN − ũk−1
...
...

1− uN − ũk−1

uN + ũk−1
...
...

uN + ũk−1


︸ ︷︷ ︸

fk

(3.28)

The third constraint is developed as follows. Introducing the matrix C, we can select the gas
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rates from the measurement vector

C =

 c1 0
. . .

0 cHp

 , ci =
[

1 0
]

(3.29)

We can now write the below, inserting Ỹk as given in equation (3.22), and defining
1 = [1 · · · 1]T ∈ Hp× 1 and I1 = [I · · · I]T ∈ nyHp×ny. Ek is introduced for constraint softening

C(Ỹk + I1y
N ) = C(Ψx̃k + Υũk−1 + Θ∆Uk + Φdk + I1y

N ) ≤ 1(w̄g,c2 + Ek) (3.30)

This can be written

CΘ∆Uk − 1Ek ≤ 1w̄g,c2 − C(Ψx̃k + Υũk−1 + Φdk + I1y
N ) (3.31)

Finally, we once again introduce Xk = [∆UT
k , ET

k ]T , and get the third constraint

[
CΘ −1

]︸ ︷︷ ︸
G

Xk ≤ 1w̄g,c2 − C(Ψx̃k + Υũk−1 + Φdk + I1y
N )︸ ︷︷ ︸

gk

(3.32)

In the different controllers, a constraint on the mass flow rate of gas through the second com-
pressor was defined. This constraint was due to a capacity limitation in the compressor. With a
pressure increase from 8 to 80 bar, the flow rate of the second compressor is limited to 471.6 kg/s
when operating at full speed, see Figure 1.1 on page 2. However, due to the nonlinearity of the
process together with the simplified topside model for the gas flow rate, a certain safety margin
should be kept when introducing this constraint to the linear MPC. Therefore, the constraint
to be denoted as w̄g,c2 in the specific controller introductions of the upcoming sections, was set
to 468 kg/s.

3.3.6 Summary

To sum it all up, we have the following optimization problem

min
Xk

hT
kXk + X T

k HXk s.t.

 E
F
G

Xk ≤

 e
fk

gk

 (3.33)

where hT
k and H are given in equation (3.25), e and E in (3.27), fk and F in (3.28) and gk and

G are given in equation (3.32).

The matrix and vector dimensions are as given in Table 3.4. See also Table 3.3 on page 21.
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Table 3.4: MPC1 vector and matrix dimensions

nx 18
nu 2
ny 2
nd 2
nE 1

∆Uk nuHu × 1
Ek nE × 1
Xk nuHu + nE × 1

E 2nuHu × nuHu + nE
F 2nuHu × nuHu + nE
G Hp × nuHu + nE

e 2nuHu × 1
fk 2nuHu × 1
gk Hp × 1

3.3.7 Kalman filter for well state vector estimation

The MPC needed an estimate of the state vector x̃k in equation (3.22). This was found using
a discrete linear Kalman filter. In a noise free environment, one could also have used a simple
Luenberger state observer. A Kalman filter has however the advantage that it is easily adapted to
a noisy environment. Also, with a Kalman filter, one does not have to deal with pole placement
issues explicitly. The physical system as seen from the Kalman filter is presented in equation
(3.34). The process disturbance vk can be thought to represent the difference between the linear
system response and the response of the actual nonlinear system. wk is the measurement noise.

x̃k+1 = Ax̃k + Bũk + Ωvk

ỹk = Cx̃k + Dũk + wk
(3.34)

The Kalman filter equations are presented below in equations (3.35) and (3.36). W is the
covariance matrix of the measurement noise and V is the covariance matrix of the unmeasured
process disturbances. These two matrices were set during the initialization of the simulations.
When simulating with no measurement noise added, W was set very small relative to V . When
not specified otherwise, Ω = I was used. This means that it was not assumed to be any coupling
between the process disturbance to the different states.

Prediction

¯̃xk+1 = Aˆ̃xk + Bũk

X̄ = AX̂AT + ΩV ΩT
(3.35)

Filtering

ˆ̃xk = ¯̃xk + K(ỹk − C ¯̃xk −Dũk)
X̂ = (I −KC)X̄
K = X̄CT (CX̄CT + W )−1

(3.36)
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In the above, the filtered state vector, ˆ̃xk, was used as an estimate of x̃k.

3.4 MPC2 - Direct choke valve and topside flow rate setpoint
control

In the control system setup denoted MPC1, only the wells were controlled using an MPC, while
the topside process was left to an ordinary decentralized PI control system. With MPC2, we will
also set some key setpoints in the topside process using an MPC, namely the flow rates through
the topside oil and water valves. The tank levels will be allowed to vary around a nominal level
setpoint, albeit at a penalty introduced in the cost function. The aim is to achieve a better flow
smoothing by utilizing the buffering capacity of the separator tanks better. The structure of the
MPC2 control system is shown in Figure 3.5.

MPC1 MPC2Inflow rate predictions

Wells

Choke valve 
openings

Topside processInflow rates

Flow rate control

Flow rate setpoints

Pressure control

Valve openings Compressor speeds

Oil rate
estimate

Compressor 2
gas rate Levels

Figure 3.5: Structure of control system MPC2. Feedback to flow rate and pressure control system is valve flow
rate estimate and pressure measurements, respectively.

A slightly modified version of MPC1 will be used for controlling the wells. Flow rate setpoints
for the four topside water and oil valves (see Figure 1.2) will be issued from MPC2, operating
on the supervisory control layer, down to the PI flow rate controllers situated in the regulatory
control layer. The PI flow rate controllers will in effect linearize the valves as seen from the
MPC. The separator tank pressure control will still be handled by the decentralized system
alone.

The control system setup denoted as MPC2 will be comprised of two different MPCs. Keeping
the well and topside controllers separated as specified above may lead to less optimal operation
than what might have been possible with one, large MPC controlling everything alone. On
the other hand, the separation into smaller MPCs should allow for easier tuning of the cost
functions, which is an advantage.

By introducing flow rate controllers to the topside process, we will need measurements of the flow
rates to be controlled, and, as Figure 1.2 illustrates, there are quite few flow rate measurements
in the topside process. The flow rates may however be obtained using a model based estimator,
such as a Kalman filter. Unfortunately, there was no time to develop these estimators within
the project time frame. Thus, for the simulations, it was assumed that these measurements were
readily available, and they were extracted directly from the model. Stange (2006) looks at the
application of an extended Kalman filter for flow rate measurements in three phase separator
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tanks, and represents a possible starting point in the development of the required flow rate
estimators.

Note that depending on the context, MPC2 may in the following mean either the isolated MPC
for topside flow rate control, or the overall control system setup combining MPC1 for well control
and MPC2 for topside flow rate control.

The structure of MPC2 is presented below.

3.4.1 Overall plant model

The state vector x [kg] is defined to be the oil and water mass holdups in each separator tank,
the input vector u [kg/s] is the flow rate setpoints for the four topside oil and water valves, and
the measurement vector y [m] is the oil and water levels in the two separator tanks. win,k [kg/s]
is a vector containing the oil and water inflow rates to the first separator tank

xk =


x1o,k

x1w,k

x2o,k

x2w,k

 , uk =


w1o,k

w1w,k

w2o,k

w2w,k

 , yk =


L1o

L1w

L2o

L2w

 , win,k =


w1o,in,k

w1w,in,k

0
0

 (3.37)

The mass balance of the two separator tanks was then found to be as given in equation (3.38),
where wi,in is the topside inflow rate from the wells and h is the MPC sampling time.

xk+1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A

xk +


−h 0 0 0

−hk1w −h 0 0
h 0 −h 0

hk1w 0 −hk2w −h


︸ ︷︷ ︸

B

uk + hwin,k (3.38)

In equation (3.38), k1w and k2w is the amount of water passing through the first and second
separator tank oil outlet valves per kg of oil passing through the valve in question. The two
parameters, which were found to be quite constant in all the simulations to be performed in
Chapter 4, are given in Table 3.5. They were found by averaging the tank outflow rates in the
simulation depicted in Figure 4.3 (the simulation will be introduced in the said chapter). The
flow rates in question are depicted in Figure 3.6.1

Table 3.5: Calculation of k1w and k2w. Data from Figure 3.6.

Outflow w̄o w̄w kiw = w̄o/w̄w

Sep1 89.12 69.02 0.77
Sep2 89.12 33.51 0.38

1Note that in an actual topside process, there is usually an electrostatic water separator in the end of the oil
train in order to clear out much of the remaining water contained in the oil flow. Thus, the final oil outflow will
usually be purer than the one obtained here.
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Figure 3.6: Flow rates out of the two separator tanks. Data from the simulation in Figure 4.3. Green-gas,
black-oil, blue-water.

With ỹk = yk − yN , x̃k = xk − xN and ũk = uk − uN , we have the following system (yN , xN

and uN are the linearization points, and in this case, uN = 0). The measurement matrix C was
found by model perturbation 2

x̃k+1 = Ax̃k + Bũk + hwin,k

ỹk = Cx̃k
(3.39)

3.4.2 MPC predictions

The structure of the topside MPC is mainly as given in Section 3.2. There is however a slight
difference due to the win,k term in equation (3.39).

Introducing ∆uk+i = ũk+i − ũk+i−1 as before, we have

x̃k+1 = Ax̃k + B(ũk−1 + ∆uk) + hwin,k

ỹk+1 = Cx̃k+1

= C(Ax̃k + B(ũk−1 + ∆uk) + hwin,k)

(3.40)

Further, we have

x̃k+2 = Ax̃k+1 + B(ũk−1 + ∆uk + ∆uk+1) + hwin,k+1

= A(Ax̃k + B(ũk−1 + ∆uk) + hwin,k) + B(ũk−1 + ∆uk + ∆uk+1) + hwin,k+1

= A2x̃k + (B + AB)ũk−1 + (B + AB)∆uk + B∆uk+1 + Ahwin,k + hwin,k+1

ỹk+2 = C[A2x̃k + (B + AB)ũk−1 + (B + AB)∆uk + B∆uk+1 + Ahwin,k + hwin,k+1]
(3.41)

The structure of the topside MPC can then be written as given below, with Ỹk, Ψ, Υ, Θ and
∆Uk as defined in Section 3.2 (note that in the case of MPC2, D is a zero matrix)

Ỹk = Ψx̃k + Υũk−1 + Θ∆Uk + ΓWin,k (3.42)

2As before, we use ỹk, x̃k and ũk instead of the normal convention ∆yk, ∆xk and ∆uk in order to reserve ∆
for control input moves in the MPC.
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with

Win,k =


win,k

win,k+1
...

win,k+Hp−1

 ∈ nxHp × 1 (3.43)

and

Γ =


Ch 0 · · · 0

CAh Ch
. . .

...
...

. . . 0
CAHp−1h · · · Ch

 ∈ nyHp × nxHp (3.44)

MPC integral action is applied as given in Section 3.2, yielding

Ỹk = Ψx̃k + Υũk−1 + Θ∆Uk + ΓWin,k + Φdk (3.45)

3.4.3 Optimization state vector with constraint softening

As for MPC1, constraint softening was included for feasibility reasons. If the constraints had
not been softened, the MPC would have halted with an error message if a constraint was broken
during run-time.

Introducing constraint softeners for the four level constraints (to be presented in more detail
shortly), the optimization state vector was chosen as follows

Xk =


∆Uk

ELo1,k

ELw1,k

ELo2,k

ELw2,k

 =
[

∆Uk

E2,k

]
∈ (nuHu + 4)× 1 (3.46)

As for MPC1, this meant that Θ of equation (3.42) needed to be stuffed with zeros in order to
fit with the optimization vector

Θ =
[

Θ 0 0 0 0
]
∈ nyHp × (nuHu + 4) (3.47)

3.4.4 Cost function

The cost function of the topside MPC is as follows

min
∆Uk,Ek

V2 = ‖∆Uk‖2
R2

+ ‖Ek‖2
RE2

+ ‖Ỹk‖2
P2

(3.48)

with
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R2 =

 R2,1 0
. . .

0 R2,Hu

 , R2,i =

 r2,1 0
. . .

0 r2,nu

 =


r2,1 0

r2,2

r2,3

0 r2,4



P2 =

 P2,1 0
. . .

0 P2,Hp

 , P2,i =

 p2,1 0
. . .

0 p2,ny

 =


p2,1 0

p2,2

p2,3

0 p2,4



RE2 =

 RE2,1 0
. . .

0 RE2,nE2

 =


rE2,1 0

rE2,2

rE2,3

0 rE2,4


(3.49)

Cost function in terms of optimization vector Xk

In order to write the cost function V2 of equation (3.48) in terms of the new optimization state
vector Xk, we must rewrite Ỹk to a function of ∆Uk. In the below result, c is a constant not
given by future input moves ∆Uk, and can thus be removed from the MPC equations

| Ỹk‖2
P2

= (Ỹk)TP2Ỹk

= (Ψx̃k + Υũk−1 + Θ∆Uk + ΓWin,k + Φdk)T

·P2(Ψx̃k + Υũk−1 + Θ∆Uk + ΓWin,k + Φdk)
= 2(Ψx̃k + Υũk−1 + ΓWin,k + Φdk)TP2Θ∆Uk + ∆UT

k ΘTP2Θ∆Uk + c

(3.50)

With Xk as defined in equation (3.46), we finally get the following cost function

V2 =
[

2(Ψx̃k + Υũk−1 + ΓWin,k + Φdk)TP2Θ 0
]
Xk

+X T
k

[
R2 + ΘTP2Θ 0

0 RE2

]
Xk

= hT
2,kXk + X T

k H2Xk

(3.51)

3.4.5 Constraints

There were two types of constraints in this MPC implementation, namely an input constraint
and a constraint on the separator tank levels.

u ≤ uk ≤ ū [−]
yk ≤ L̄ + E2k [m]
yk ≥ L− E2k [m]

(3.52)

With Xk as defined in equation (3.46), we can write the input constraint as follows, where
I ∈ nu × nu
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

I 0 · · · 0 0nu×nE2

...
. . . . . .

...
...

...
. . . 0

...
I · · · · · · I 0nu×nE2

−I 0 · · · 0 0nu×nE2

...
. . . . . .

...
...

...
. . . 0

...
−I · · · · · · −I 0nu×nE2


︸ ︷︷ ︸

F2

Xk ≤



ū− uN − ũk−1
...
...

ū− uN − ũk−1

−u + uN + ũk−1
...
...

−u + uN + ũk−1


︸ ︷︷ ︸

f2,k

(3.53)

Defining I2 = [I1 · · · IHp ]T ∈ nyHp×ny = nE2Hp×nE2 , we can write the following for the upper
tank level constraint

Yk = Ỹk + I2y
N ≤ I2L̄ + I2E2k

Ψx̃k + Υũk−1 + Θ∆Uk + ΓWin,k + Φdk + I2y
N ≤ I2L̄ + I2E2k

(3.54)

Once again introducing Xk, we can write the above as[
Θ −I2

]︸ ︷︷ ︸
G21

Xk ≤ I2(L̄− yN )− (Ψx̃k + Υũk−1 + ΓWin,k + Φdk)︸ ︷︷ ︸
g21,k

(3.55)

For the lower tank level constraint, we have

−Yk = −(Ỹk + I2y
N ) ≤ −I2L + I2E2k

−(Ψx̃k + Υũk−1 + Θ∆Uk + ΓWin,k + Φdk + I2y
N ) ≤ −I2L + I2E2k

(3.56)

which in terms of Xk finally yields[
−Θ −I2

]︸ ︷︷ ︸
G22

Xk ≤ I2(−L + yN ) + (Ψx̃k + Υũk−1 + ΓWin,k + Φdk)︸ ︷︷ ︸
g22,k

(3.57)

3.4.6 Summary

In summary, we have the following optimization problem

min
Xk

hT
2,kXk + X T

k H2Xk s.t.

 F2

G21

G22

Xk ≤

 f2,k

g21,k

g22,k

 (3.58)

where hT
2,k and H2 are defined in equation (3.51), F2 and f2,k in (3.53), G21 and g21,k in (3.55),

and G22 and g22,k are defined in equation (3.57).

The vector and matrix dimensions of the topside MPC2 controller are shown in Table 3.6. See
also Table 3.3 on page 21.
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Table 3.6: MPC2 vector and matrix dimensions

nx 4
nu 4
ny 4
nd 4
nE2 4

∆Uk nuHu × 1
E2,k nE2 × 1
Xk nuHu + nE2 × 1

F2 2nuHu × nuHu + nE2

G21 nyHp × nuHu + nE2

G22 nyHp × nuHu + nE2

f2,k 2nuHu × 1
g21,k nyHp × 1
g22,k nyHp × 1

Win,k nxHp × 1
Γ nyHp × nxHp

3.4.7 Kalman filter for tank mass holdup estimation

The topside MPC controller in MPC2 needs an estimate of the current tank mass holdups of
oil and water for level constraint handling. Since the mass holdups are not measured directly,
they will be estimated using a linear Kalman filter. The topside inflow win,k in the below also
needs to be estimated.3 The linear model used for representing the system in the Kalman filter
is given below. vk is an unmeasured process disturbance and can be thought to be caused by a
mismatching model in particular. wk is measurement noise.

x̃k+1 = Ax̃k + Bũk + hwin,k + Ωvk

ỹk = Cx̃k + Dũk + wk
(3.59)

The Kalman filter structure is as given below. W and V are the covariance matrices of the
measurement noise and the unmeasured process disturbance, respectively.

Prediction
¯̃xk+1 = Aˆ̃xk + Bũk + hwin,k

X̄ = AX̂AT + ΩV ΩT
(3.60)

Filtering

ˆ̃xk = ¯̃xk + K(ỹk − C ¯̃xk)
X̂ = (I −KC)X̄
K = X̄CT (CX̄CT + W )−1

(3.61)

The filtered state vector, ˆ̃xk, is used as the estimate of the tank mass holdups.

3As stated earlier, designing a Kalman filter for the topside flow rate estimates was unfortunately not possible
within the project time frame. See Stange (2006) for a study in the design of such Kalman filters.
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3.4.8 PI flow rate controller tuning

The topside PI flow rate controllers were tuned as follows. Note that relatively large costs on
MPC input changes means that the flow rate setpoints will vary slowly, and the purpose of the
PI controllers is merely that of sustaining the flow rate prescribed by the MPC.

The tuning was performed by choosing an initial controller gain approximately equal to the
inverse of the maximum achievable flow rate through the valve in question. The integral time
was initially set to 10s. The maximum steady state flow rate through the valves was computed
according to equation (3.62), setting u = 1, ρ equal to the average mass density of the phase
flowing through the valve, while ∆p was set equal to the steady state pressure difference over
the valve

w = uKv

√
ρ∆p [kg/s] (3.62)

After some tuning, the parameters of Table 3.7 was chosen. The integral time was decreased
from 10s to 3s, as it yielded a lower flow rate variance through faster setpoint tracking. In a
more noisy environment, the integral time might need an increase, and the controller gain may
be further decreased.

Table 3.7: Parameters used in the topside PI flow rate controllers of the MPC2 control system setup

Controller Initial gain Tuned gain Integral time

Sep1 oil 1/320 = 0.00313 0.00210 3
Sep1 water 1/750 = 0.00133 0.000653 3
Sep2 oil 1/204 = 0.00490 0.00330 3
Sep2 water 1/46 = 0.0217 0.0107 3

3.4.9 Changes to the MPC1 well controller

As stated earlier, the MPC2 control system used two separate MPCs for well and topside control.
An overview of the MPC2 control system structure is shown in Figure 3.5 on page 29. The well
control system MPC1 could be used almost without changes from the setup presented in Section
3.3.

First of all, there was no need to change the topside process model in MPC1. The gas dynamics
were controlled with the same decentralized pressure controller as before, yielding much the same
closed loop dynamics as before. Further, the oil flow rate dynamics were previously represented
by a simple gain of 1 (meant to represent the oil flow rate steady state gain from the inlet to
the outlet of the topside process), which still would hold now that MPC1 was predicting the oil
outflow rate from the wells.

One slight modification was needed however, namely in the calculation of the prediction error
dk. Previously, when MPC1 predicted the oil outflow from the topside process, it could use the
topside oil outflow rate measurement for prediction corrections as this was readily available in
the process. There is however no flow rate measurements available at the well outlet. Thus,
there was need for a topside inflow rate estimate. However, as stated before, it turned out that
it would not be possible to design such estimators within the project time frame. Thus, the
topside inflow rate estimates were instead obtained by extracting the needed parameters from
the topside simulation model directly. Stange (2006) looks at the development of the required
flow rate estimator based on an extended Kalman filter.
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3.5 DC1 - Decentralized choke valve control

The second gas compressor stage has been established as the main limiting factor of the topside
process model (in other words, this compressor stage can be looked at as the process bottleneck).
Setting the production rate at the bottleneck is a common way of maximizing the process
throughput. This practise is discussed in more detail in Skogestad (2004).

The purpose of DC1 is to control the gas feed rate of the second compressor stage by manipu-
lating the choke valves at the topside process inlet, thereby attempting to maximize the process
throughput. DC1 was realized using two simple PI controllers (one per controlled well), both
using measurements of the second compressor gas flow rates as feedback, albeit with different
flow rate setpoints (to be explained shortly). The tank level and pressure PI controllers were
configured similarly as in the case of MPC1. See Figure 3.7 for an overview of the DC1 control
system structure.

Flow rate control

Wells

Choke valve 
openings

Topside processInflow rates

Level control Pressure control

Valve openings Compressor speeds

Compressor 2
gas rate

Figure 3.7: Structure of control system DC1. Feedback to level and pressure control system is tank level and
pressure measurements, respectively.

3.5.1 Design principle

The basic idea for DC1 is to use the choke valve of the well with the highest GOR (gas-oil
ratio, GOR = Qg/Qo) for gas flow rate control under normal conditions, while letting the
other controlled well stay at maximum production. However, when closing in on the gas rate
constraint, for instance due to excessive disturbances, the other controlled well will also have to
act in order to keep the process within its bounds.

Design principle example

Assume for a moment that X8 is controlled using a PI controller FIC1, while X6 is kept con-
stantly at full production. See Figure 3.8 for an illustration. The flow rate setpoint of FIC1 is
set somewhat backed off from the highest allowable gas flow rate. FIC1 will control the valve of
X8 in order to sustain the wanted gas flow rate. However, for the simulation case depicted in
the said figure, we get a pressure increase in the separator tanks around t=1200s. The reason
for this is that there is too much gas entering the second compressor. Although the X8 valve is
choking the inflow down, it is not able to compensate fast enough due to its slow stroke time.
Thus, there is need for additional compensation from the valve of X6, which will be controlled
by FIC2. By setting the flow rate setpoint of FIC2 above the setpoint of FIC1, but still below
the defined gas rate constraint, we get the desired effect. X6 will normally operate with full
production, but if the second compressor gas rate exceeds a threshold level, the valve of X6
starts choking down.
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Figure 3.8: Close-up view of a portion of the simulation of Figure 4.13. X6 is kept constantly at full opening,
while X8 is used for constraint control. Red lines: (Solid: FIC1 setpoint), (Dashed: FIC2 setpoint), (Dotted:
Maximum flow rate capacity of second compressor without tank pressure increases). Choke valve control signals:
X6 solid, X8 dotted. Note that although the setpoint of FIC2 is shown here, FIC2 is not actually used in this
simulation, as its output is kept constantly at maximum.

Design principle summary

See Figure 3.9 for an illustration. We need one PI flow rate controller for each controlled well.
The gas flow rate in the second gas compressor is the measurement for both controllers. The
resulting controller can thus be categorized as a SIMO controller (single input, multiple output).
The well with the highest GOR will be used for flow rate control under normal conditions, and
its flow rate setpoint is somewhat backed off from the desired gas rate constraint. The well with
the lower GOR will only be choked down if necessary. This is ensured by setting its flow rate
setpoint less backed off than that of the other well.

FIC1

FIC2

X8

X6

Plant
r1

r2

u1

u2

wg,c2

wX8

wX6

Figure 3.9: Control system structure of DC1. wg,c2 is the gas flow rate through the second compressor stage.
The overall SIMO flow rate controller is contained within the dashed box.
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3.5.2 Constraint change feedforward by setpoint manipulation

The flow rate controller setpoints are computed as offsets from the gas flow rate constraint.
The principle is illustrated in Figure 3.10. In order to accommodate for the choke valve stroke
time as well as the transient flow rate response, the setpoint must be lowered in advance if the
constraint is being lowered. This is solved using feedforward by setting the flow rate setpoint as
given in equation (3.63), with c being the constraint offset, ST being the number of sampling
points corresponding to the choke valve stroke time, and w̄g,c2,i being the flow rate constraint
at time sample number i

rk = min(w̄f
g,c2,k)− c , w̄f

g,c2,k = [w̄g,c2,k w̄g,c2,k+1 · · · w̄g,c2,k+ST ] (3.63)

By considering the flow rate constraints in the time interval starting now and lasting ST samples
into the future, there should be time for the choke valve to adjust to approximately the required
opening in advance of any possible constraint change.

wg,c2 [kg/s]

Flow rate constraint
Control setpoint

t

Choke valve stroke time

Figure 3.10: Constraint change handling principle

3.5.3 Disturbance feedforward

Known future disturbances can be compensated for using feedforward control. However, de-
pending on the situation at hand, it may not be straight forward how the feedforward should be
implemented when the target system is a PID controller. In our case, the choke valve stroke time
poses a challenge, as we must start the choke valve compensation in advance in order to have the
needed compressor capacity available when the known future disturbance actually occurs. Two
different feedforward strategies will be examined. In the first approach, all of the feedforward
data will be used. In the second approach, only the largest inflow changes will be fed forward,
while the rest of the disturbance will be tackled using feedback control.

DC1 FF1 - First feedforward scheme

The first feedforward algorithm to be used by DC1 is shown below, written in Matlab code. ii
is the current iteration number, the choke valve stroke time is 480s, measurement is the gas rate
measurement to be passed to the flow rate controller, feedforwardData is a vector consisting
of the values of the disturbance estimate throughout the simulation run, and maxFlowRateSin-
gleWell is the defined maximum gas flow rate from a well, used for scaling purposes. The latter
value can be found in Table 2.3.
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maxOnHorizon = max(feedforwardData(ii:ii+480));

indexOfMax = find(feedforwardData(ii:ii+480)==maxOnHorizon,1);

relIndexOfMax = indexOfMax/480;

relMaxDisturbance = (maxOnHorizon-feedforwardData(ii))/maxFlowRateSingleWell;

if relIndexOfMax <= relMaxDisturbance

measurement = measurement + maxOnHorizon - feedforwardData(ii);

end

The idea behind the above algorithm is to examine the future disturbance data on a horizon
equal to the choke valve stroke time. Depending on the size of the maximum disturbance up to
the horizon, control action is performed at an appropriate time. See Figure 3.11. For instance,
if the maximum disturbance relative to maxFlowRateSingleWell, relMaxDisturbance, is 1.0,
control action will be taken immediately (that is, the measurement passed to the controller will
be changed as specified in the algorithm). If the disturbance on the other hand for instance was
0.7, control action will be postponed until it has moved 0.3 times the choke valve stroke time
closer to the current time on the horizon.

t
tnow

t
tnow

11

Figure 3.11: Disturbance feedforward principle as presented in Section 3.5.3. Black: Valve opening. Red:
Relative size of predicted disturbance. Left: Large disturbance need immediate action. Right: Smaller disturbance
allows us to postpone the reaction.

DC1 FF2 - Second feedforward scheme

In this feedforward approach, only the largest inflow disturbance changes will be fed forward,
while the rest of the disturbance will be handled using ordinary feedback control. The idea is
that the valves must be prepared for the largest flow rate disturbances due to the long valve
stroke time, while it should be possible to capture the smaller flow rate changes using feedback
control. Due to the inevitable difference between the predicted disturbances and the actual
disturbances, additional feedback compensation is needed in any case.

The feedforward algorithm of DC1 FF2 is shown below, written in Matlab code. minStepSize
can be set to a desired level. See FF1 for further variable explanations.

minStepSize = 0.6*max(feedforwardData);

maxStepOnHorizon = max(feedforwardData(ii:ii+480)) - feedforwardData(ii);

if maxStepOnHorizon >= minStepSize

measurement = measurement + maxStepOnHorizon;

end

3.5.4 Tuning

Using data from Table 2.3, it is easily verified that the well named X8 has the highest GOR
of the two controlled wells. Thus, the flow rate control will be mainly done through FIC1 by
manipulating the valve of X8.
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In the following, the tuning of the two PI controllers FIC1 and FIC2 in Figure 3.9 will be
presented.

The proportional gain Ki of controller i was initially set roughly equal to the inverse of the
process gain from u (valve opening) to y (gas mass flow rate) of well i. The reason for this was
that a well producing large amounts of gas would need less control action in order to achieve a
certain flow rate change, as its process gain was large in itself (it’s the other way around for wells
with less gas production). The gas flow rate gain of the different wells can be found in Table
2.3.4 Since this only was a starting point, K was initially set equal to 1/20 for both controllers.
It was since moved further back to 0.25/20 in order to remove some input oscillations.

PI controllers for flow rate control are often tuned using a short integral time. TI of FIC1, which
would be used for constraint control under normal conditions, was set to 10s. TI of FIC2 was
set to 5s. The particularly short integral time of FIC2 was chosen since fast action would be
needed whenever FIC2 started choking down on X6, as the gas flow rate would be closing in on
its constraint.

The controller setpoints of FIC1 and FIC2 were set as presented in Section 3.5.2, with their
back-off set to 3.6 and 1.6 kg/s, respectively. In a real world, noisy environment, one should
expect the need for using a larger back-off due to lower measurement quality. Note that the
controller setpoints would be dynamically updated throughout the simulations in accordance
with changing constraints. Their constraint back-off were however held at a constant level.

The controller tuning is summarized in Table 3.8.

Table 3.8: DC1 flow rate controller tuning summary

Controller Controlling K TI Setpoint constraint back-off

FIC1 X8 0.25/20=0.0125 10s 3.6
FIC2 X6 0.25/20=0.0125 5s 1.6

4As was pointed out in the beginning of Section 3.3 and quantified in equation (3.15), there is little difference
between the gas outflow rate from the well and from the topside process.
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Chapter 4

Simulation results

In this chapter, three simulation cases will be examined for each realized controller. The cases
are as follows

1. Startup of additional well. A third well, simulated using OLGA, will be opened up for
production after some time. Its choke valve opening will be set at a fixed level and held
constant. This change in production will be known in advance and thus feedforward
control will be applied. An inflow disturbance model will be used in order to illustrate
the benefits of automatic control in relation to well startup. The disturbance model will
contain a representation of the dynamic startup response of the third well, obtained from
an earlier test run. See Section 2.4 for further details.

2. Slugging well. A third, slugging well will be introduced. The slugs will be represented
using a pre-generated sawtooth inflow sequence. The disturbance will not be known in
advance by the controllers, and in the case of the MPCs, at any given time, the disturbances
detected by the integral action of the controllers will be assumed to be held at the present
level for all future time. It will thus be handled as any other prediction error.

3. Reduced gas processing capacity. There will be a planned change in the second compressor
gas rate constraint after some time. This constraint change will be known in advance, and
the controllers will have to reduce the gas inflow rate accordingly. In a practical setting,
this constraint change can be due to a number of reasons, such as repairs and maintenance
work, for instance. One could also consider lowering the constraints a bit in advance of
and during the startup phase of new wells (see case 1 ), in order not to break any physical
process constraints. The constraint is reduced by 60% of the average peak gas flow rate
from wells X6 and X8, that is, 60% of an average well inflow (see Table 2.3 on page 8).

Plot scaling

The simulation plots in this chapter has been scaled as given in Table 4.1 when nothing else is
specified.

43
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Table 4.1: Simulation plot measurement scalings

Measurement Maximum deviation

Sep1, Level oil 0.2 [m]
Sep1, Level water 0.2 [m]
Sep2, Level oil 0.2 [m]
Sep2, Level water 0.2 [m]
Sep1, Pressure 1.0 [bar]
Sep2, Pressure 0.25 [bar]

4.1 MPC1 - Direct choke valve control

The measurements in the upcoming simulation results were scaled as given in Table 4.1.

The case 1 simulations were performed using two different feedforward schemes MPC1 FF1 and
FF2, with FF1 having a more detailed startup model than FF2. See Section 3.3.2 for further
details. The FF1 and FF2 results are presented in figures 4.1 and 4.2, respectively.

The two different case 2 simulations were performed using two different costs on control input
changes. In the first setup, see Figure 4.3, the standard costs as given in equation (4.1) were
used, while in the second setup, see Figure 4.4, r1 and r2 were changed from the initial 250 to
1000.

The case 3 simulation was performed two times, the latter of which was performed using an
erroneous well model in order to demonstrate the importance of applying the correct model in
the MPC. The model error was introduced by increasing the oil flow rate gain of X8 by a factor
of 1.5 in the linear MPC model, thereby making X8 seem more economically profitable than
X6, although it is the other way around in the actual OLGA well model. Both simulations were
performed using the standard tunings as presented in Section 4.1.1. The simulation results are
shown in figures 4.5 and 4.6.

Look to Section 5.1 for comments on the results.

4.1.1 Controller setup

The costs as defined in equation (3.21) were chosen as follows in the controller setups where
nothing else is specified (q: oil production profit, ri: input change cost, si: output change cost,
rE : constraint softening cost)

q = 2 ,

[
r1

r2

]
=
[

250
250

]
,

[
s1

s2

]
=
[

1.0
0.1

]
, rE = 1000 (4.1)

The prediction and control horizons were chosen as given below

Hp = 2000s , Hu = 2000s (4.2)

The MPC sampling time was set to 40 s, while the low level PID controllers were operating with
a 1 s sampling time.

With a pressure increase from 8 to 80 bar, the flow rate of the second compressor is limited
to 471.6 kg/s when operating at full speed, see Figure 1.1 on page 2. However, due to the
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nonlinearity of the process together with the simplified topside model for the gas flow rate, a
safety margin should be kept when introducing this constraint to the linear MPC. Therefore,
the constraint w̄g,c2 was set to 468 kg/s. This rather small back-off worked quite well here, but
in other cases, larger back-offs may be needed.

Being in a noise free environment, the Kalman filter for state estimation was set up with co-
variance matrices V and W as follows. The state covariance matrix X was initiated to the
nonzero matrix 0.001I. Otherwise, it can be seen from equations (3.35) and (3.36) that the
state estimates would not be able to change from their initial values.

V = 1000I , W = 0.001I (4.3)
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Figure 4.1: MPC1 using feedforward scheme FF1. Startup of well W3. w̄o,s2 = 88.54 [kg/s], var(wo,s2) = 0.22
[(kg/s)2]. Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.2: MPC1 using feedforward scheme FF2. Startup of well W3. w̄o,s2 = 88.47 [kg/s], var(wo,s2) = 0.19
[(kg/s)2]. Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.3: MPC1. Slugging well - Less cost on input change. w̄o,s2 = 89.19 [kg/s], var(wo,s2) = 0.34 [(kg/s)2].
Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.4: MPC1. Slugging well - More cost on input change. w̄o,s2 = 89.19 [kg/s], var(wo,s2) = 10.96
[(kg/s)2]. Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.5: MPC1. Gas rate constraint change. Green-gas, black-oil, blue-water. w̄o,s2 = 87.58 [kg/s],
var(wo,s2) = 0.81 [(kg/s)2]. Choke valve control signals: X6 solid, X8 dotted.
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Figure 4.6: MPC1. Gas rate constraint change, with erroneous well model. Green-gas, black-oil, blue-water.
w̄o,s2 = 87.32 [kg/s], var(wo,s2) = 1.06 [(kg/s)2]. Choke valve control signals: X6 solid, X8 dotted.
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4.2 MPC2 - Direct choke valve and topside flow rate setpoint
control

The measurements in the upcoming simulation results were scaled as given in Table 4.1 on page
44.

The results from simulation case 1, 2 and 3 are shown in figures 4.7, 4.8 and 4.9, respectively.

Look to Section 5.1 for comments on the results.

4.2.1 Controller setup

MPC1 was set up as presented in Section 4.1.1.

The costs of MPC2, as defined in equation (3.49), were selected as follows where nothing else
is specified (r2,i: input change cost, p2,i: tank level setpoint deviation cost, rE2,i: constraint
softening cost). In the middle column, the weights are scaled with respect to the approximately
maximum expected flow rates and level deviations, for easier tuning


r2,1

r2,2

r2,3

r2,4

 =


10000/88
5000/430
50000/88
5000/35

 =


114
12
568
143




p2,1

p2,2

p2,3

p2,4

 =


5/0.2
5/0.2

0.5/0.2
0.5/0.2

 =


25
25
2.5
2.5


rE2,i = 104 ·max

j,l
(r2,j , p2,l) = 5.68 · 106 ∀i

(4.4)

The terminal cost (the costs of the last iteration on the horizon) was increased by a factor of 1000
in order to help enforcing convergence towards zero control input change and level deviation.

As in the case of MPC1, the MPC2 prediction and control horizons were chosen as given below

Hp = 2000s , Hu = 2000s (4.5)

Further, the MPC2 sampling time was set to 40 s, while the low level PID controllers were
operating with a 1 s sampling time.

The upper and lower tank level constraints were chosen such that all level deviations were smaller
than 0.2 m, except for the upper water level constraints, which were limited to 0.18 m in order
to stay clear of the tank weir top. Referring to the tank dimensions illustrated in Figure 3.1, it
is clear that this is quite a conservative setting which could easily have been relaxed if needed.

The lower constraints on the control input (flow rate setpoints) were set to zero. The upper
limits were calculated using the valve flow equation shown in equation (3.62), setting the valve
opening u = 1, ρ equal to the average mass density of the phase flowing through the valve
(approximated to 800 kg/m3 for the oil valves and 1000 kg/m3 for the water valves), while ∆p
was set equal to the steady state pressure difference over the valve in question. This yielded
upper bounds {w̄s1,o , w̄s1,w , w̄s2,o , w̄s2,w} = {320 , 750 , 204 , 46} [kg/s]. The upper flow
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rate bounds were needed in order to ensure that the MPC was not commanding greater flow
rates than what was achievable in practice.

The Kalman filter for state estimation was set up with covariance matrices V and W similarly
to that of MPC1. The state covariance matrix X was initiated to the nonzero matrix 0.001I.

V = 1000I , W = 0.001I (4.6)
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Figure 4.7: MPC2. Startup of well W3. w̄o,s2 = 88.55 [kg/s], var(wo,s2) = 0.02 [(kg/s)2]. Green-gas, black-oil,
blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.8: MPC2. Slugging well - Less cost on input change. w̄o,s2 = 89.14 [kg/s], var(wo,s2) = 0.05 [(kg/s)2].
Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.9: MPC2. Gas rate constraint change. Green-gas, black-oil, blue-water. w̄o,s2 = 87.50 [kg/s],
var(wo,s2) = 0.28 [(kg/s)2]. Choke valve control signals: X6 solid, X8 dotted.
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4.3 DC1 - Decentralized choke valve control

The measurements in the upcoming simulation results were scaled as given in Table 4.1 on page
44.

As for MPC1, the case 1 simulations of DC1 were also performed using two different feedforward
schemes, denoted DC1 FF1 and FF2. The essential difference between the two schemes is that
FF2 only feeds forward the larger expected inflow rate changes and leaves the rest to the feedback
control. Look to Section 3.5.3 for further details on the different schemes. The results obtained
using FF1 and FF2 are shown in figures 4.10 and 4.11, respectively.

In simulation case 2, two simulation runs were carried out. However, there is one main simulation
result (Figure 4.12), with the other being included to illustrate the benefit of applying additional
control action when closing in on the process constraint (Figure 4.13).

Figure 4.14 shows the results obtained in simulation case 3 using the controller DC1. The
constraint change handling principle is presented in Section 3.5.2.

Comments on the simulation results can be found in Section 5.1.
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Figure 4.10: DC1 using feedforward scheme FF1. Startup of well W3 - X6 and X8 choke valves are controlled.
w̄o,s2 = 88.50 [kg/s], var(wo,s2) = 0.23 [(kg/s)2]. Green-gas, black-oil, blue-water. Choke valve control signals:
X6 solid, X8 dotted. W3 bold.
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Figure 4.11: DC1 using feedforward scheme FF2. Startup of well W3 - X6 and X8 choke valves are controlled.
w̄o,s2 = 88.55 [kg/s], var(wo,s2) = 0.23 [(kg/s)2]. Green-gas, black-oil, blue-water. Choke valve control signals:
X6 solid, X8 dotted. W3 bold.
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Figure 4.12: DC1. Slugging well - X6 and X8 choke valves are controlled. w̄o,s2 = 89.24 [kg/s], var(wo,s2) = 0.16
[(kg/s)2]. Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.13: DC1. Slugging well - only X8 choke valve is controlled. w̄o,s2 = 89.24 [kg/s], var(wo,s2) = 0.18
[(kg/s)2]. Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.14: DC1. Gas rate constraint change - X6 and X8 choke valves are controlled. Green-gas, black-oil,
blue-water. w̄o,s2 = 87.57 [kg/s], var(wo,s2) = 0.89 [(kg/s)2]. Choke valve control signals: X6 solid, X8 dotted.
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4.4 Manual choke valve control

The measurements in the upcoming simulation results were scaled as given in Table 4.1 on page
44.

Figures 4.15 and 4.16 show two different manual operating strategies for simulation case 1.

In the case of Figure 4.16, the flow rate of both wells are lowered in advance of the largest gas
flow rate peak which occurs at the opening of the third well. Then, the choke valves are moved
to the expected position of the steady state valve openings (we know the steady state valve
openings by looking at the results of for instance MPC1 in Section 4.1, while the operators must
act from experience).

Figure 4.15 shows a choke valve handling strategy where the chokes are used a bit more actively,
trying to keep closer to the gas rate constraint throughout the entire well startup interval.

Slugging wells are often dealt with by backing off from the process constraints when the wells are
operated manually. The concept is that by setting the choke valves at sufficiently low openings,
there should be room left for the disturbances when they occur. The result obtained using this
strategy for simulation case 2 is shown in Figure 4.17.

Simulation case 3 is quite easily performed using manual control, see Figure 4.18. The difficulty
would be that of timing the choke valve change, and also finding the right opening level to
achieve a certain gas flow rate. In our case, this is achieved by looking at the MPC1 case 3
results (see Figure 4.5), whereas the operators will have to rely on experience in order to get it
right. Thus, the simulation results may be representing a somewhat best case scenario.

Once again, look to Section 5.1 for comments on the simulation results.
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Figure 4.15: Manual choke valve control. Startup of well W3. w̄o,s2 = 88.20 [kg/s], var(wo,s2) = 0.95 [(kg/s)2].
Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.16: Manual choke valve control. Startup of well W3. w̄o,s2 = 87.62 [kg/s], var(wo,s2) = 0.77 [(kg/s)2].
Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.17: Manual choke valve control. Slugging well. w̄o,s2 = 87.27 [kg/s], var(wo,s2) = 0.54 [(kg/s)2].
Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted. W3 bold.
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Figure 4.18: Manual choke valve control. Gas rate constraint change. w̄o,s2 = 87.48 [kg/s], var(wo,s2) = 1.01
[(kg/s)2]. Green-gas, black-oil, blue-water. Choke valve control signals: X6 solid, X8 dotted.



Chapter 5

Discussion

5.1 Performance comparison

In Table 5.1 the performance of the various controllers are compared to the results obtained using
manual control. w̄o,s2, the average oil outflow rate from the second separator tank, is used as a
performance measure. The variance of wo,s2 is also calculated for the various simulations. The
data were obtained in the simulations of Chapter 4. Note that the first 1000s of the simulations
were excluded from the calculations of w̄o,s2 and var(wo,s2) in order to avoid transient startup
differences. The simulation results are commented in the sections below.

Table 5.1: Controller performance comparison. w̄o,s2 is the average oil outflow rate from the second separator
tank. wo,bias = 81.90 kg/s is the bias added during simulations representing the other wells as illustrated in
Figure 1.2, and was merely used to fill the process capacity. (*: more aggressive, **: erroneous model)

Case Controller Figure var(wo,s2) w̄o,s2 w̄o,s2 − wo,bias Increase over
[(kg/s)2] [kg/s] [kg/s] manual

1 - Startup MPC1, FF1 4.1 0.22 88.54 6.64 16%
MPC1, FF2 4.2 0.19 88.47 6.57 15%
MPC2 4.7 0.02 88.55 6.65 16%
DC1, FF1 4.10 0.23 88.50 6.60 15%
DC1, FF2 4.11 0.23 88.55 6.65 16%
Manual* 4.15 0.95 88.20 6.30 10%
Manual 4.16 0.77 87.62 5.72 -

2 - Slugging MPC1 4.3 0.34 89.19 7.29 36%
MPC2 4.8 0.05 89.14 7.24 35%
DC1 4.12 0.16 89.24 7.34 37%
Manual 4.17 0.54 87.27 5.37 -

3 - Constraint MPC1 4.5 0.81 87.58 5.68 2%
change MPC1** 4.6 1.06 87.32 5.42 -3%

MPC2 4.9 0.28 87.50 5.60 0%
DC1 4.14 0.89 87.57 5.67 2%
Manual 4.18 1.01 87.48 5.58 -

67
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5.1.1 Simulation case 1 - Startup of additional well

MPC1

Two feedforward schemes, denoted FF1 and FF2, were tested for MPC1. The schemes were
presented in Section 3.3.2, and the simulation results obtained using FF1 and FF2 are shown in
Figures 4.1 and 4.2, respectively.

MPC1 deals with the planned W3 startup rather nicely in the case of both feedforward schemes,
with X6 and X8 approximately inverting the W3 gas inflow rate in both cases. By keeping the
total gas outflow rate as close to its constraint as possible, the process throughput is maximized
while the system is kept in the feasible region of operation.

Recalling that FF1 requires more modeling effort than that of FF2, it is interesting to note that
apart from during the very initial phase of the W3 startup, the flow rates achieved using the
FF2 feedforward scheme is actually somewhat smoother than that of FF1. However, on the
other hand, the FF1 average oil outflow rate is slightly higher than that of FF2.

MPC2

As Figure 4.7 shows, MPC2 utilizes the buffering capacity of the separator tanks quite ex-
tensively. Also note that the tank levels are kept within the defined constraints at all times.
Without the use of MPC integral action, the controller might have broken the constraints, due to
the nonlinearity of the tank cross section. Further, we see that the levels of the second separator
tank varies more smoothly than the levels of the first tank. The overall effect of the applied
topside MPC is a smooth oil outflow from the second separator tank, which of course is an
advantage for process equipment further downstream.

Comparing figures 4.1 and 4.7, we also see that the wells are operated quite similar in the case of
MPC1 and MPC2. This is as expected, since the MPC controlling the wells is set up practically
in the same way in both cases, with the same cost function.

DC1

Figure 4.10 shows that the feedforward algorithm FF1 of DC1 (presented in Section 3.5.3)
worked quite well. There are very small pressure variations in the tanks. Also note that the
choke valves start choking down prior to the disturbances, and by looking for instance at the
peak of the gas inflow disturbance, we see that the down choking of the valves is timed quite
well with the arrival of the disturbance.

The DC1 feedforward algorithm FF2 was also presented in Section 3.5.3, and its simulation
result is shown in Figure 4.11. It is pleasing to see that the simpler feedforward scheme works at
least just as well as that of FF1, with a somewhat smoother gas flow rate and a slightly higher
average oil outflow rate. As long as the choke valves are prepared for the most abrupt flow rate
changes, the feedback control can take care of the smaller flow variations by itself, acting much
in the same way as for the case of the slugging wells.

Manual choke valve control

Figure 4.16 shows an example of how an operator might be setting the choke valves during the
startup of a third well. As the said figure illustrates, there is quite a lot of unused processing
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capacity available during the well startup using this simple manual operating strategy (the
topside gas outflow rate is generally far below its constraint).

Although it heightens the average oil outflow rate of the process, it also leads to less smooth flow
rates and increased pressure variations in the tanks. This illustrates the difficulty of operating
closer to the process constraints when using manual choke valve control.

Summary

The case 1 simulations are shown in figures 4.1, 4.2, 4.7, 4.10, 4.11, 4.15 and 4.16.

The use of feedforward during well startup shows a good potential. It is also clear that much can
be achieved by controlling the wells a bit more actively in the manual well control case. However,
as Figure 4.15 illustrates, operating closer to the process constraints can be challenging when
using manual choke valve control - the flow rates may become less smooth and the tank pressure
variations may increase. Note that the measured performance increase will only be present until
the newly opened well reaches stable production.

Figures 4.2 and 4.11 indicate that a lot can be achieved during startup of additional wells
using ordinary feedback control (integral action in the case of the MPC). The prerequisite is
that the largest abrupt disturbances are fed forward, either manually by setpoint or constraint
manipulation, or automatically by the controller. This is because the choke valve stroke time is
too long for the choke valve to be able to compensate for these disturbances instantaneously.

It is also worth pointing out that there is not a straight-forward answer to how one should
implement feedforward in a PI controller regime. On the other hand, the ease of implementing
feedforward is one of the big advantages of the MPC. However, the feedforward implementations
for PI controllers presented in Section 3.5.3 proved to work to satisfaction in our simulation case.

By comparing the topside oil outflow rate variance achieved using MPC2 to that of the other
controllers, see Table 5.1, it is clear that a properly designed MPC can improve the utilization
of the buffer tanks to a great extent, potentially leading to an almost constant topside outflow
rate.

5.1.2 Simulation case 2 - Slugging well

MPC1

The slugging flow from well W3 is illustrated in Figure 2.9. Two different MPC input change
cost choices were used. In the first setup, used in Figure 4.3, the cost on input usage changes
were relatively low compared to the setup used in the simulations of Figure 4.4, where r1 and
r2 were changed from the initial 250 to 1000.

A relatively high cost on input changes yields a smoother control input. While a smooth control
input is generally desirable, it may at the same time degrade the system performance. The effect
of a too high input change cost is illustrated using the controller of Figure 4.4, which, compared
to the controller of Figure 4.3, achieves a much poorer inflow disturbance rejection. The result
is considerably larger tank pressure variations and less smooth topside process outflows in the
setup used in Figure 4.4.

The controller of Figure 4.3 performs quite well, and is keeping the tank pressure at a rather
constant level. This simulation case demonstrates the versatility of even a simple MPC when it
is equipped with integral action.
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It is worth noting that if the rise and fall time of the slugs become too short, any controller will
eventually have to give up as the choke valve stroke times give an ultimate bound on what can
be achieved with respect to inflow disturbance rejection by choke valve manipulation.

MPC2

MPC2 was able to smoothen out the effect of the unmeasured inflow disturbance from the
slugging wells to a great extent, see Figure 4.8. It did however yield some pressure variations in
the separator tanks. Recalling that the pressure control is managed by a decentralized control
system alone, it is likely that this problem could have been reduced by additional controller
tuning effort.

Looking at the said figure, it is apparent that the buffering capacity of the second separator
tank could have been utilized even better. Note however that the cost function was tuned to
perform well in all three simulation cases, and if it was tuned more specifically to this case, it
might have performed less good in the other cases.

DC1

The controller used in Figure 4.12 handles the slugging well disturbance nicely, with practically
no pressure changes in the separator tanks. Further, the oil outflow rate from the second
separator tank is rather smooth.

In Figure 4.13, the X6 choke valve has been left in a fully open position throughout the simu-
lation. As is seen here, there is a slight pressure increase at one occasion. Comparing the two
aforementioned figures, it becomes clear that FIC2 controlling the X6 choke valve succeeds in its
purpose of working against pressure increases in the tanks, and by acting only when absolutely
needed, FIC2 ensures that X6 will be at full production under normal operation and only choked
down when needed.

Manual choke valve control

By backing off from the process constraints in order to have capacity for slugs entering the
topside process, the operators must accept a lower production rate. Figure 4.17 illustrates the
effect of this practice. Note that the loss will depend on the severeness of the slugs, as smaller
disturbances will warrant for smaller back-offs. As can be seen, there are some tank pressure
variations in addition to the lower production rate, and the outflow rates are not particularly
smooth.

Summary

The case 2 simulations are shown in figures 4.3, 4.4, 4.8, 4.12, 4.13 and 4.17.

The potential of achieving a performance improvement by using automatic control for slugging
well compensation is quite apparent when looking at the figures of Table 5.1. It should however
be noted that the improvement depends on the nature of the slugs. Smaller slugs may allow
for a higher production rate also under the manual control regime. Likewise, more abrupt slugs
may force the automatic controllers to a larger back-off from the process constraints nominally,
thereby lowering the production rate towards that of the manual control case.
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Also here, we note that the variance of the oil outflow rate from the topside process is particularly
low for MPC2, which uses an MPC for topside flow rate control.

The gas flow rate out of the second compressor is somewhat less varying for DC1 than for MPC1
and MPC2. Even though the tank pressures, and thereby the compressor gas flow rates, were
controlled using the same decentralized controllers in all cases, it is suspected that the MPC well
controller could have performed better in those respects if the gas topside dynamics had been
more thoroughly modeled. Another possibility is to have MPC involvement in the pressure and
compressor control, but this may prove to be a challenge due to fast gas dynamics.

The simulation case with slugging wells is particularly interesting since the problem with slugging
wells may persist for long periods of time once it first appears. Being able to operate closer to
the process constraints throughout such disturbances could yield a significant economic gain.

5.1.3 Simulation case 3 - Reduced gas processing capacity

MPC1

Figure 4.5 illustrates that the MPC with a correct well model is capable of handling the planned
constraint change nicely, keeping the flow rates at a high level as long as possible. Recalling
that the steady state gain of the process is quite nonlinear (see Figure 2.3), it is pleasing to see
that the second compressor gas flow rate is still kept below its constraint during the constraint
change. This is not expected to have been possible without the help from the MPC integral
action.

Figure 4.6 illustrates that also the MPC with an erroneous well model copes with the constraint
change as such to satisfaction. However, by comparing figures 4.5 and 4.6, we see that the MPC
has chosen to choke down on X6 in the case with the erroneous linear MPC model, although
this is actually the more profitable well. The consequence of this can be seen in Table 5.1, where
we see a lowered average oil flow rate in the simulation of Figure 4.6. The loss may not seem
too severe, but this is due to the two wells X6 and X8 producing somewhat similar amounts of
oil (see Figure 2.6, remembering that in the MPC, the thin black line of X8 is now increased
by a factor of 1.5). If the difference between the wells had been greater, the loss would have
increased too.

MPC2

As Figure 4.9 shows, MPC2 yields a very smooth oil outflow also in simulation case 3. It does
however result in quite a large tank holdup drop in the two separator tanks, and the holdup
takes a long time to recover. This is not a big problem here, but if the topside inflow rates were
further reduced due to a disturbance, the tanks would not be able to compensate for very long
due to a lower holdup prior to the disturbance. One should however be able to better upon this
situation by increasing the cost of level control deviations in the cost function of MPC2.

DC1

The gas flow rate constraint change in the simulation of Figure 4.14 results in a smooth and
concise flow rate change, indicating that the setpoint manipulation strategy of equation (3.63)
is a reasonable one. The flow rate is on target at the time of the actual constraint change. The
overall system behavior is smooth. Note however that if the constraint change is large enough,
there might be a need for an earlier initiation of the controller action in order to satisfy the
constraint on time.
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Manual choke valve control

Constraint change handling is quite easily performed using manual control, see Figure 4.18.
One difficulty is however that the operator does not necessarily know which steady state valve
opening is needed in order to reach a certain flow rate, so some adjustments will normally be
needed. Note that there are some smaller variations in the compressor flow rates during the
change. Other than this, the overall process flow rates are rather smooth during the transition.
There is also the difficulty of timing the valve opening right in order not to start the valve
opening change before it is strictly necessary.

Summary

The case 3 simulations are shown in figures 4.5, 4.6, 4.9, 4.14 and 4.18.

Although there was a small gain in oil production when changing from manual to automatic
control in simulation case 3, one of the main advantages of using automatic control is in this
case considered to be that of the convenience factor, as timing the flow rate change with the
arrival of an upcoming constraint change may be more easily achieved using automatic control.

The gas flow rate change is neatly timed with the constraint change using MPC1 and MPC2.

One disadvantage with MPCs is demonstrated in the simulation of Figure 4.6. In this simulation,
an error was introduced to the linear well model of the MPC, and as the said figure shows,
MPC1 chokes down on the most profitable well during the constraint change, due to the model
identifying it as the less profitable one. For a comparison, look to the simulation of Figure 4.5,
which is run with the correct well model. The resulting performance decrease in this particular
simulation case can be found in Table 5.1. Although the loss was not too extensive here, it may
be larger in other cases. One of the important lessons to be learned here, is that at least the
mutual steady state gain between the different modeled wells should be correct in order to get
the well choking priorities right.

The timing of the flow rate change when using a PI controller is largely dependent on the
controller implementation, as the choke valve stroke time must be considered when deciding
when to change the controller setpoint. In the case of DC1, it was decided to base the controller
setpoints on the constraint one whole stroke time into the future, in order for the valve to be
able to move over its entire opening range in time, should that be needed. This worked well in
this case, but would have lead to an unnecessarily early valve opening change if the constraint
change warranted only minor valve opening movements.

The realized topside oil outflow rate is quite smooth with all the different controller setups.
However, the setup with the MPC2 topside flow rate controller stands out as particularly smooth
also in this case. MPC2 achieved this by exchanging level deviation recovery speed for outflow
smoothness.

5.2 Robustness

MPC1 and MPC2 need a backup control system which will be used if the MPCs should fail
for some reason. Being model based, they should also have a system for easy model updates,
especially for updating the well model (at least the steady state gain for the different phase
components of the individual wells). One possible effect of an erroneous MPC process model
was demonstrated in the simulation of Figure 4.6. Look to the MPC1 part of Section 5.1.3 for
further comments on the simulation in question.
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The MPC2 topside PI flow rate controllers are dependent on flow rate estimates in order to
function properly. It is clear that the performance of MPC2 is closely linked to the quality of
these estimates, at least for flow rate smoothing. With a lower estimate quality, one may consider
a slower tuning of the flow controllers in order to avoid too much flow rate variations. Note that
the simulations were performed using direct flow rate measurements in stead of estimates due to
project time constraints. Thus, the simulation results may be considered to represent a best-case
scenario.

The MPC integral action helps to robustify the MPCs by compensating for measurement predic-
tion errors. It is highly likely that the realized linear MPCs would not have worked to satisfaction
without integral action, much due to the extensive nonlinearity of the well flow rate steady state
gains, as illustrated in Figure 2.2.

Further, the softening of process variable constraints is crucial to the feasibility of the MPCs.
Without constraint softening, the MPCs would simply halt with an error message in the case of
constraint violations. Thus, one could argue that the constraint softening is a very important
step in the robustification of the MPCs. Note that control input set by the MPC alone need not
be softened.

The PI controller based DC1 has the advantage of not being dependent on a model during
operation. The robustness properties of the PI controller is largely dependent on the parameter
tuning and its applicability over the whole operational range of the process. However, MPC1
and MPC2, DC1 also needs a well priority system for deciding which wells which will be adjusted
when the operational conditions change, and this priority setup should be easily updateable in
order to avoid income loss.

Manual well control can be thought to be quite robust, as it only depends on the human operator
and the choke valves, with in principle very little hardware and software in between. It does
however depend on the experience and readiness of the operator, and may cause process shut-
downs due to human failure.

All of the realized automatic controllers depend on a flow rate measurement in the gas com-
pression train. This measurement may be infested with a considerable amount of noise. Conse-
quently, one may consider using a flow rate estimator for cleaning up this measurement. Note
however that the flow rate measurement in question is already used in closed loop in actual
topside processes for controlling the recycle flow rate for compressor surge avoidance (the gas
recycle loops are not included in the model used in this project). Thus, this measurement may be
of adequate quality already. Also, considering the slow choke valve dynamics, one could consider
using an average gas flow rate measurement for feedback in stead of using the instantaneous flow
rate directly.

5.3 Other comments

Although DC1 generally performed to satisfaction in the simulations carried out in this report,
the situation may change in a case with a larger number of wells, as realizing a decentralized well
choking priority scheme for a large number of wells may not be straight forward. One possibility
for simplifying the decentralized control design in such a situation is to bundle the wells into
a small number of priority groups and treat the groups as one well each, thereby reducing the
problem size.

As a side note, the situation discussed above is where the MPCs are expected to really outshine
their competition, as the implementation of the MPC should be just as easy for many as for
few wells. Note however that with an increasing number of wells, the work required to keep the
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well models (at least the steady state gains of the different phases in each well) up to date will
increase as well.



Chapter 6

Conclusion

The objective of this thesis was to design and compare the performance of a decentralized and
an MPC based control system for integrated automatic well and topside process control.

The work of this thesis can mainly be separated into three parts, namely

• Topside process and well model establishment and interconnection

• Controller design

• Simulation study and result assessment

6.1 Models

The topside process model and two OLGA well models were provided by Hydro at project
startup. However, the well models needed some tweaking, as was also the case for the decen-
tralized topside control system. The Matlab platform model and the OLGA well models were
connected through the OLGA Matlab Toolbox. By using the pressure of the first separator
tank as a boundary condition in the OLGA model, it was ensured that the model connection
would be two-way interactive.

6.2 Controller design

One decentralized controller and two MPCs were designed in the work of this thesis. As part of
the design, linear models of the topside process and the wells needed to be established. The basic
properties of the different controllers are summarized in Table 6.1. Two different feedforward
schemes were tested for both MPC1 and DC1, the difference in both cases being that the simpler
feedforward scheme only fed forward the largest abrupt predicted inflow rate changes, leaving
the rest to feedback control. Interestingly, the simpler schemes performed just as well as the
more detailed feedforward schemes.
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Table 6.1: The realized controllers

Controller Well control Topside control Introduction Illustration

MPC1 MPC Decentralized PI Section 3.3 Figure 3.2
MPC2 MPC MPC for PI setpoint control Section 3.4 Figure 3.5
DC1 Decentralized PI Decentralized PI Section 3.5 Figure 3.7

6.3 Simulation results

For the simulation study, three disturbance scenarios were defined in cooperation with Hydro.
The cases, which were presented in the beginning of Chapter 4, are listed below. Note that in
the first and third simulation cases, feedforward is being used by the controllers.

1. Startup of third dynamic well

2. Slugging third well

3. Reduced gas processing capacity

The simulations were performed using the realized controllers as well as on a system with manual
well control, thereby enabling a performance comparison with the results obtained using today’s
control conventions. The simulation results were discussed in Chapter 5, with a quantified
performance comparison given in Table 5.1.

6.3.1 Outflow smoothness

Using the same decentralized topside control system, MPC1 and DC1 performed comparably
with respect to the topside oil outflow rate smoothness. MPC2 achieved a considerably lower
variance in the oil outflow rate due to better separator tank buffering volume utilization. The
manual well control system resulted in larger outflow variations than its competition due to less
smooth well outflow rates, despite using the same topside control system as MPC1 and DC1.

6.3.2 Oil throughput

In terms of oil throughput, the performance of the production system was optimized by max-
imizing the gas flow rate through the second topside compressor stage, which was identified
as the process bottleneck. In order to avoid tank pressure build-ups, this meant keeping the
compressor gas flow rate close to an upper flow rate constraint.

The automatic controllers performed quite similarly throughput-wise. Having subtracted the
inflow bias (see Figure 1.2), which was merely added to fill the process capacity, the production
system showed an oil throughput increase in the area of around 15% and 35% in simulation case
1 and 2, respectively, when comparing to the manual well control simulations. Note that the
case 1 production increase will only last until the newly opened well reaches stable production,
while the increase seen in case 2 may last for as long as the flow rates of the slugging well stay
unstable. In simulation case 3, the throughput increase is more negligible. Here, the automatic
controllers are considered to be more of a convenience factor, providing an easy way of timing
the flow rate change to the arrival of the constraint change.
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6.3.3 Remark

An important remark is that although the simple DC1 control system seems favorable with
its comparable performance to that of MPC1 and MPC2 while at the same time requiring a
lot less modeling effort, it should be noted that its throughput may decrease relative to that
of its competition as the number of controlled wells increases, since designing a decentralized
well choking priority scheme may not be straight forward with a large number of wells. One
possibility is bundling the wells into a small number of priority groups, and treat the groups
as one well each. The implementation of the MPCs is not expected to increase in complexity
when the number of wells increases, except for the extra well modeling effort. Consequently, it
is expected that there will be an increased performance difference in favor of the MPCs in a
system with a larger number of wells.

6.4 Conclusion summary

It has been demonstrated that there is a potential for a significant economic gain using an
automatic integrated control system for the wells and topside process of modern day production
systems for oil and gas.

DC1 showed a similar gain as MPC1 and MPC2, despite its simpler structure and modeling
requirements. It is however expected that the MPCs may outperform DC1 as the number of
wells increases, due to possible difficulties in designing an optimal decentralized well priority
scheme in the case of DC1 with an increased number of wells. Also note that feedforward
from known disturbances is generally more easily realized in an MPC than in a decentralized
controller.

Finally, we note that by applying a supervisory MPC to the topside control system, MPC2
achieved significantly smoothened topside outflow rates, compared to what was achieved in the
case of MPC1 and DC1.
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Chapter 7

Further work

Topside flow rate estimators

For MPC2, one of the next steps could be to implement the topside flow rate estimators which
are needed by the topside PI flow rate controllers. Stange (2006) may be a place to look for
ideas on how to approach this problem.

Larger number of simulated wells

A simulation study with a larger number of simulated wells may also be of interest, enabling
the testing of different well priority schemes for the decentralized well controller. It is expected
that the MPCs will perform better than the decentralized controllers in a simulation case with
a larger number of wells.

Extremum seeking

One should choke down on the least profitable wells first when needed. One way of identifying
those wells adaptively online is to apply an extremum seeking scheme to the system, slowly
perturbing the control inputs slightly and observing the effect on some selected measurements
or combinations thereof (for instance the ratio between the gas train outflow rate and the second
separator tank oil outflow rate). The concept of extremum seeking is presented in Krstic and
Wang (2000). Note that extremum seeking may be best suited for use with the decentralized
well control scheme.

A few issues does however need to be addressed if extremum seeking is to be applied. First,
input constraints must be dealt with, as it is not clear how one should perturb the input when it
is pushing against its upper and lower constraints. Secondly, there is the problem of parameter
constraints, as the parameter which is sought for, the choking split fraction, is constrained
between choking 100% on one well and 100% on the other well, but there is no facilities for
constraining the parameter estimate which is found in the extremum seeking algorithm. Thus,
the estimate may wind up past the constraint. In this case, the algorithm may correctly find
the optimum being to choke mainly on one well, but may not be able to detect later changes in
the optimum once it saturates.
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Input blocking

During simulation runs of MPC2, it was observed that the topside MPC used about 10% of the
CPU time, with the well controlling MPC and the OLGA model splitting most of the remaining
time about equally (note that the MPCs were running with a 40s sampling time, while the
minimum sampling time of the OLGA model, internally in OLGA, was 1.25s, and the topside
model simulation and the low level controllers were running at 1s sampling time).

One could consider applying input blocking a while into the MPC horizon, particularly for the
well controlling MPC, constraining the control input to stay at the same values for several con-
secutive iterations, thereby cutting optimization time. Note that this means that the constraint
on the input rate of change need to be incremented for the input blocked iterations.

MATLAB MPC Toolbox

It seems that the Matlab MPC Toolbox only supports quadratic reference tracking with positive
costs with respect to the measurements in the cost function. It would seem that this doesn’t
comply very well with our defined cost function for the production well controller, which tries
to maximize the oil flow rate measurement (one can look at this as maximizing the flow rate
deviation from a thought zero reference).

However, if desired, it should be possible to use the Matlab MPC Toolbox as the MPC imple-
mentation environment by applying a small change to the cost function. By defining a somewhat
unrealistically high flow rate reference for the oil flow rate, it would still in effect be maximized.
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Appendix A

Topside process key parameters

The tables below hold parameter values used in the topside process model. The model was
presented in Section 2.1.

Table A.1: Parameters separator tank 1

Parameter Value Unit

Diameter 3.1540 m
Length 8.4667 m
Weir height 1.0000 m
Weir position 5.5350 m
Temperature 350 K

Kv,o,1 0.0150
√

kg·m3

s2·Pa

Kv,w,1 0.0300
√

kg·m3

s2·Pa

pext,w,1 1.75 · 105 Pa

Table A.2: Parameters separator tank 2

Parameter Value Unit

Diameter 3.1540 m
Length 5.8922 m
Weir height 1.0000 m
Weir position 5.5350 m
Temperature 350 K

Kv,o,2 0.0200
√

kg·m3

s2·Pa

Kv,w,2 0.0040
√

kg·m3

s2·Pa

pext,w,2 1.00 · 105 Pa
pext,o,2 1.00 · 105 Pa

III



IV

Table A.3: Parameters compressor 1

Parameter Value

c0 8.0000
c1 0.0600
c2 -0.0080
Nmax 1.4000
Nmin 0.4000

Table A.4: Parameters compressor 2

Parameter Value

c0 130.0000
c1 0.0600
c2 -0.0010
Nmax 1.4000
Nmin 0.4000
pext,g 80.00 · 105 [Pa]


