
June 2007
Bjarne Anton Foss, ITK
Kjetil Fagerholt, NTNU-IØT

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Optimization of water-borne crude oil
transport

Karsten Dånmark Vatn

Problem Description

The purpose of this work is to study a real, complex problem of world-wide waterborne transport
of crude oil and to develop, implement and test a heuristic solution method for optimising routing
decisions for the crude vessels involved.

Main contents:
1. Presentation of the studied planning problem.
2. A presentation of the proposed heuristic for solving the problem.
3. Implementation of the proposed heuristic.
4. Presentation of test results of the heuristic.
5. Discussion of the heuristic and the test results with regard to applicability for solving real-life
problems.

Assignment given: 18. January 2007
Supervisor: Bjarne Anton Foss, ITK

Optimization of water-borne crude oil transport

Report

Karsten Dånmark Vatn 1

Department of Engineering Cybernetics

Norwegian University of Science and Technology�NTNU

June 11, 2007

1
Email: karstend@stud.ntnu.no

Preface

This report is the result of work on a ship scheduling and routing problem. The work
was carried out at the Norwegian University of Science and Technology under the De-
partment of Engineering Cybernetics.

Much of the time used working on this assignment has been spent gaining knowledge of
TurboRouter and developing its existing software. With limited experience with regards
to both operational research and object oriented programming, a great deal of time and
many late nights have been spent acquiring the necessary knowledge.

I want to give a special thanks to PhD scholar Jarl Eirik Korsvik for his priceless help
with TurboRouter.

I also want to thank my supervisors, Professor Bjarne A. Foss, Kjetil Fagerholt, for great
support and motivation.

The source code in TurboRouter is con�dential, and belongs to MARINTEK. If exam-
ining this code is found necessary please contact Jarl Eirik Korsvik.

Trondheim, June 11, 2007

Karsten D. Vatn

i

Abstract

A ship scheduling problem in optimization of water-borne crude oil transportation has
been investigated. The classic optimization problem the most closely related to the prob-
lem at hand is the Multi-Vehicle-Pick-up-and-Delivery Problem with Time Windows (m-
PDPTW). In addition to the basic characteristics of the m-PDPTW, the studied problem
has an additional degree of freedom due to having pick-ups and deliveries that are not
matched. This extra freedom gives new possibilities when creating e�ective heuristics
when dealing with transportation problems. The studied problem has been presented in
relation to carefully selected background literature. On this basis a proposed heuristic
has been developed, and implemented using some already existing structures in the com-
mercial decision support system TurboRouter.

The studied problem is an industrial shipping problem, an operational mode where the
shipper owns the cargo to be transported. No income is therefore made directly from
transporting goods. Therefore the objective function chosen was net income, which in
this mode is the same as minimizing the net expenses.

A multi-start local search with pre-matching of pick-ups and deliveries heuristic was
chosen based on an assessment of problem size, problem type, real life applicability and
existing software. This heuristic consists of three main parts. First the pick-ups and
deliveries are matched and merged in a pre-matching heuristic, and then a large number
of initial solutions are generated by an insertion heuristic. The best initial solutions are
then improved by a local search. Two strategies were developed for pre-matching and
then tested. The one with the best test results was subsequently used in the heuristic.

This multi-start local search with pre-matching of pick-ups and deliveries heuristic has
been subject to rigorous testing and was compared to a single-start local search and mul-
tiple initial solutions heuristic. The solutions generated by the multi-start local search
heuristic were superior compared to those of the other heuristics, but the computation
time necessary was high and higher than those of the heuristics which it was compared
to. This high computation time is partially believed to be a result of �exible data sets
resulting in broad solution spaces. In addition some computationally expensive heuris-
tics were deployed, increasing the computation time. In real life applications, �nding
a solution relatively quickly is of importance. Therefore the heuristic may need to be
simpli�ed and used on "tighter" data sets than some sets used in testing to be real life
applicable.

ii

Contents

1 Introduction 1

2 Literature review 5

2.1 NP-Complete problems . 5

2.2 Classical routing problems . 6

2.2.1 The Travelling Salesman Problem (TSP) 7

2.2.2 The Vehicle Routing Problem (VRP) 8

2.2.3 The Pick-up and Delivery Problem (PDP) 10

2.2.4 The Pick-up and Delivery Problem with Time Windows (PDPTW) 12

2.3 Complete solution methods . 14

2.3.1 Set partitioning . 14

2.3.2 Column generation . 15

2.4 Heuristic solution methods . 15

2.4.1 Constructive heuristics . 16

2.4.2 Improvement heuristics . 18

2.5 Heuristic frameworks . 21

2.5.1 Local search . 21

2.5.2 Multi-start local search . 21

2.5.3 Meta-heuristics . 23

2.5.4 TurboRouter . 24

2.6 Discussion on the di�erent solution methods 25

iii

3 The problem at hand 27

3.1 Formulation of the complete problem at hand 27

3.1.1 Complete problem description . 28

3.2 Formulation of the reduced problem at hand 29

3.2.1 Reduced problem description . 30

3.3 Problem assessment and proposed solution method 32

3.3.1 Problem traits . 32

3.3.2 Proposed solution method . 32

4 Heuristic solution method 35

4.1 Multi-start with biased random insertion 35

4.2 Constructive heuristics . 36

4.2.1 Initial solutions of the multi-start local search heuristic 36

4.3 Improvement heuristics . 36

4.3.1 1-Resequence . 37

4.3.2 Reassign . 38

4.3.3 2-Interchange . 38

4.3.4 2-Resequence . 39

4.3.5 3-Interchange . 39

4.4 Overview of the total improvement heuristic 40

4.4.1 The �ow of the total improvement heuristic 41

5 Implementation 43

5.1 The data set . 43

5.2 The overall description of the solution . 44

5.3 The algorithm for matching deliveries and pick-ups 47

5.3.1 The main algorithm . 48

5.3.2 Sorting the deliveries . 48

5.3.3 Finding feasible pick-ups . 48

5.3.4 Finding feasible pick-up combinations 49

5.3.5 Finding possible order combinations 49

iv

6 Results 55

6.1 Data sets . 55

6.2 Test settings . 56

6.2.1 Settings for the multi-start constructive heuristic during testing . . 56

6.2.2 Settings for the local search heuristic used during testing 57

6.3 Results from testing the di�erent data sets 58

6.3.1 Finding the best matching heuristic 58

6.3.2 Testing with the best matching heuristic 59

7 Discussion 61

7.1 The Problem . 61

7.2 Strategic choices made . 61

7.2.1 Advantages and disadvantages . 62

7.3 Heuristics used . 63

7.3.1 Advantages and disadvantages . 64

7.4 Results . 64

7.5 Real world applicability . 66

8 Conclusion 67

9 Further Work 69

9.1 New constructive heuristics . 69

9.2 New improvement heuristics . 70

9.2.1 Neighbourhoods . 70

9.2.2 The Suez Canal . 72

9.3 Concluding remarks . 75

v

List of Figures

2.1 Relationship among complexity classes . 6

2.2 Example of a Travelling Salesman Problem (TSP) 7

2.3 Example of a Vehicle Routing Problem (VRP) 9

2.4 Example of a Pick-up and Delivery Problem (PDP) 11

2.5 Savings heuristic . 17

2.6 2-opt exchange heuristic . 19

2.7 2-opt* exchange heuristic (2-opt*) . 20

2.8 Or-opt exchange heuristic (Or-opt) . 20

4.1 1-resequence neighbourhood, as seen in (Brønmo et al. 2007, page 906) . . 37

4.2 Reassign neighbourhood, as seen in (Brønmo et al. 2007, page 907) 38

4.3 2-interchange neighbourhood, as seen in (Brønmo et al. 2007, page 907) . 39

4.4 2-resequence neighbourhood, as seen in (Brønmo et al. 2007, page 909) . . 40

4.5 3-interchange neighbourhood, as seen in (Brønmo et al. 2007, page 910) . 41

4.6 Flowchart of the local search heuristic, as seen in (Brønmo et al. 2007,
page 908) . 42

5.1 Ideal interaction with TurboRouter . 45

5.2 Actual interaction with TurboRouter . 45

5.3 Overview of the total solution . 46

9.1 New 2-interchange neighbourhood . 71

9.2 Transportation using the Suez Canal . 72

9.3 Transportation using the Sumed pipeline 73

9.4 Suez-Sumed Heuristic . 74

vi

List of Tables

6.1 Datasets . 56

6.2 Di�erent compositions of algorithms for testing 57

6.3 Parameter settings . 57

6.4 Results from comparing pre-matching heuristics, part 1 58

6.5 Results from comparing pre-matching heuristics, part 2 59

6.6 Results from testing, part 1 . 59

6.7 Results from testing, part 2 . 59

6.8 Overview of results . 60

vii

List of Algorithms

1 Local search . 21

2 Multi-start method . 22

3 Tabu search . 24

4 CreateOrdersVector() . 50

5 SortDeliveries() . 51

6 FindFeasiblePickups() . 51

7 FindFeasiblePickupCombinations(j) . 52

8 FindPossibleOrderCombi(i) . 53

9 New constructive heuristic . 70

viii

Nomenclature

AA All arcs in the model.
AA =

{
(imjnk) : i ∈ NA,m ∈ TWi, j ∈ NA, n ∈ TWj , k ∈ Kimjn, (imjnk)exists

}
AAv All arcs vessel v ∈ VA can physically sail.

Av =
{
(imjnk) : i ∈ NAv,m ∈ TWi, j ∈ NAv, n ∈ TWj , k ∈ Kimjn, (imjnk)exists

}
CA The set of all crude grades

Kimjn The set of routing options between node i ∈ NA in time window m ∈ TWi and
node j ∈ NA in time window n ∈ TWj if (imjn) exists

NA The set of all nodes

NAv The set of all nodes NA available for vessel v

ND The set of discharge ports (delivery nodes)

NDv The set of discharge ports ND available for vessel v

NP The set of loading ports (pick-up nodes)

NPv The set of loading ports NP available for vessel v

TWi The set of time windows for port i ∈ NA

VA The set of all vessels

VNi The set of all vessels v ∈ VA that generally can enter port i ∈ NA

VS The set of spot charged vessels

VT The set of company owned vessels

c Crude grade

CFUEL Fuel price in kUSD/ton

CLEGijkv Cost for sailing between port i ∈ NA and port j ∈ NA via route k for vessel
v ∈ VT in kUSD. This price includes pure sailing in ballast, or loaded and costs
for berthing and deberthing

ix

CPORTiv Port fee in port i ∈ NA for vessel v ∈ VT

d(v) Destination node for vessel v

Dijk Distance between port i ∈ NA and port j ∈ NA on route option k ∈ Kimjn

FIDLEv Fuel consumption for vessel v ∈ VT when waiting in tons/day

FPORTv Fuel consumption in port for vessel v ∈ VT in tons/day

i, j Index of the ports

limcv Load of crude grade c ∈ CA on board vessel v ∈ VA as it departs from port i ∈ NAv

in time window m ∈ TWv

m,n Time windows

o(v) Origin node for vessel v

Qcim Demand in discharge port i ∈ ND, time window m ∈ TWi and crude grade c ∈ CA.
For pick-up ports (i ∈ NP), Qcim is the amount of a certain crude grade to be
picked up in the certain time window

TBij Berthing time in between port i and j. This includes deberthing time in port i
and berthing time in port j

timv In nodes i ∈ NPv ∪ NDv: The time for start of loading/discharge for vessel v in
time window m ∈ TWi. If i = o(v) or i = d(v): The time for start and end of
service during the planning horizon

TMNim The opening time of time window m ∈ TWi in port i ∈ NA

TMXim The closing time of time window m ∈ TWi in port i ∈ NA

TQicv Load/Discharge rate (days/ktons) in port i ∈ NPv ∪ NDv for crude type c ∈ CA
and vessel v ∈ VA

TSijkv Sailing time on leg (imjnkv) ∈ AAv for vessel v ∈ VA. Berthing time TBij is
included

v Vessel

VCAPV v The volume capacity of vessel v

VCAPWv The weight capacity of vessel v

ximjnkv Boolean variable. ximjnkv = 1 if vessel v sails from port i ∈ Nv in time window
m ∈ TWi to port j ∈ Nv in time window n ∈ TWj via route option k ∈ Kimjn.
ximjnkv = 0 otherwise.

x

Acronyms

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Window

PDP Pick-up and Delivery Problem

PDPTW Pick-up-and-Delivery Problem with Time Window

m-PDPTW Multi-Vehicle-Pick-up-and-Delivery Problem with Time Window

I1 Solomon's insertion heuristic

k-opt k-opt exchange heuristic

2-opt* 2-opt* exchange heuristic

Or-opt Or-opt exchange heuristic

RTS Reactive Tabu Search

NPC NP-Complete

xi

Chapter 1

Introduction

Continuous growth in the world population, rising standard of living, road congestion
and increasing globalization, are all major factors increasing the already massive use of
seaborne shipping which is the major mode of transportation caused by international
trade today. With the monopoly the shipping industry has on long distance transporta-
tion of large volumes, mainly between continents, it is expected to se a further increase in
the total international seaborne trade which has increased by 87% since 1987 according
to Christensen et al. (2007).

By the end of 2003 the cargo carrying capacity of the world exceeded 857 million tons, an
increase of more than 25% from 1980. This increase in capacity has been followed by an
increase in utilization as well. The utilization of the worlds �eet has increased from 5.4
tons carried per deadweight ton in 1980 to 7.2 tons in 2003, see Christensen et al. (2007).
A vessel used in long distance transportation may easily cost tens of millions of dollars
to buy, and tens of thousands of dollars in daily operating costs. It goes without saying
that you want to use these vessels as e�ciently as possible and only slight improvements
may yield great bene�ts.

Consolidations in the manufacturing sector and tough competition between shipping com-
panies during the last decades have given increased market power to the cargo owners.
This imbalance has resulted in mergers of many shipping companies. As a result of this
�eets have become larger, and more information is spread across larger and geograph-
ically separated areas. This increased complexity in addition to increased competition
between shipping companies has rendered manual planning methods used in the past
insu�cient. These are some main reasons for the need for decision support systems.
Further arguments are given in Christensen et al. (2007).

Maritime transportation problems can be divided into three levels with regard to their
planning horizon according to (Christensen et al. 2007, page 8-9). These are strategic,

1

2 CHAPTER 1. INTRODUCTION

tactical and operational problems. Short term scheduling is the topic of this report.
Therefore strategic decisions such as optimal �eet and marine supply chains, described
in Christensen et al. (2004), are not discussed. Neither are operational problems such as
cruising speed selection, ship loading, and environmental routing.

There are three general operation modes in shipping, industrial, tramp and liner, see Ro-
nen (1993). In industrial shipping the cargo owner controls the ships, minimizing total
costs is therefore the something the industrial shippers strive towards. Tramp ships fol-
low the cargo like taxi cabs, normally having some contract cargoes to carry in addition
to trying to maximize the pro�t from other optional cargo. Liners are similar to buses, in
the way that they operate according to a published itinerary and schedule. In this report
we consider an industrial or term shipping problem, meaning that the operator owns the
cargo. Minimizing the cost is therefore the main issue. The �eets of industrial operators
often have the same characteristics as mentions above with regards to �eet size, and
widespread information. In addition they compete with other cargo owners delivering
the same product. Industrial operations are explained in greater detail in Christensen
et al. (2007).

Using the de�nitions in (Ronen 1993, page 325), routing is de�ned as the assignment
of sequences of ports to be visited by the vessels, and scheduling is de�ned as assigning
times (or time windows) to the events on the vessels route. A voyage is described in
(Christensen et al. 2007, page 13) as a sequence of port calls, starting with the port
where the vessel loads its �rst cargo and ending where the vessel unloads its last cargo
and becomes available again. It is also stated that a voyage may include multiple loading
ports and multiple unloading ports.

The problem at hand is to the authors knowledge part of a new area of research within
maritime transportation, a �eld with observed signi�cant growth in research according
to (Christensen et al. 2007, 194). Finding literature on similar problems like the one
at hand, has not been possible, but it resembles the Multi-Vehicle-Pick-up-and-Delivery
Problem with Time Window (m-PDPTW) for which numerous heuristics have been de-
veloped according to Brønmo et al. (2007). Only in the m-PDPTW orders consist of a
load to be picked up at one location and delivered at another, within time constraints
called time windows. In the problem at hand, a load is available to be picked up at one
location, and a load is to be delivered at one location within time windows. But which
pick-up going where is not decided. This adds another dimension with regards to the
traditional m-PDPTW.

The problem at hand is a real world problem. It consists of creating the optimal (mini-
mum cost) sailing plan for a set of vessels servicing a set of pick-ups and deliveries that
are not matched in the way explains above. Ship scheduling problems are complex and
tightly constrained. Canals can only take limited sized ships, a cargo normally needs to

3

be picked up within a time window, not all ships may enter any port also due to size
restrictions, and the ships are of di�erent size and have di�erent sailing speed this only
being some factors to be considered in optimization. This complete problem description
has been simpli�ed to some extent to �t the scope of this report.

In theory, one would be interested in �nding the optimal sailing plan with regards to
cost. Due to constraints on time and computation power, �nding the best allocation
of cargoes on a �eet of vessels may not be possible. Therefore heuristic are employed.
Heuristics do not usually �nd the best allocation of cargoes, but the solution provided
by the right heuristic for a speci�c problem will normally give a good solution relatively
quickly.

The goal of the report is to develop, implement and test a heuristic for the problem at
hand. A pre-matching of pick-ups and deliveries followed multi-start local search heuris-
tic is presented. Two slightly di�erent types of pre-matching followed by multi-start local
search heuristic are tested, to �nd the best one of the two. The best pre-matching heuris-
tic is then tested thoroughly to investigate its characteristics and real world applicability.

The rest of the report is organized as follows. In Chapter 2 background literature and the-
ory on similar problems and solution methods, including complete methods and heuris-
tics, are presented. The traits and most importantly the strengths and weaknesses of
the di�erent methods are then discussed. Chapter 3, describes �rst the outline of the
complete problem at hand, then the simpli�cations made with regards to the scope of the
report are stated. The problem is then discussed considering the background literature,
and on this basis the solution method is decided. The framework of multi-start local
search heuristic is presented in Chapter 4, including the di�erent local search operators
used. Chapter 5 describes the characteristics of the data set, the overall description of
the solution, and the algorithms for matching deliveries and pick-ups.

Details on the testing of the heuristic solutions are described along with the results in
Chapter 6. Next, in Chapter 7 the solution methods used, the choices made, and their
real world applicability are discussed. The conclusions follow in Chapter 8. Several ideas
and possible areas of further work and development are included in Chapter 9. Due to the
complexity of the problem, and sheer workload necessary to construct software capable of
solving the problem at hand without pre-matching of pick-ups and deliveries. These ideas
have not been put to life in this report. The ideas are discussed, at the end of the chapter.

Finally some clarifying remarks with regards to terms used throughout this report: In
the literature review the term vehicle is used, while the terms vessel or ship is used when
describing the problem at hand. This because most of the literature on Vehicle Routing
Problem (VRP)s deals with land based transportation, while the problem at hand is a
problem of water-borne transportation. The terms vessel and ship are used interchange-

4 CHAPTER 1. INTRODUCTION

ably throughout the report, even though a vessel is a broader term than ship. Cargo and
order are also used interchangeably, in this report they are de�ned as a certain amount
of goods (crude oil) to be transported from one port to another. A pick-up is a certain
amount of crude oil to be loaded in a speci�c port, without having a designated unloading
port. Deliveries are certain amounts of crude oil to be unloaded in speci�c ports.

Chapter 2

Literature review

This chapter is a brief introduction to classical routing and scheduling problems and
heuristic solution methods used to solve them. The literature has been chosen on basis
of the outline of the problem at hand, which has many similarities with the m-PDPTW.
On this basis, a set of classical routing problems have been reviewed, after �rst giving
a brief outline of NP-Complete (NPC) problems. In order to best determine the way of
solving the problem, some common solution methods are then outlined. Both complete
methods and heuristics have been examined.

These methods and the ideas behind them will serve as introduction to, and motivation
behind the solution strategy. After the problem at hand has been thoroughly described
in Chapter 3, the traits of the problem and possible solution methods are discussed,
followed by an outline of which strategy to use in solving the problem. This strategy will
be further developed and re�ned in Chapter 4 and Chapter 5.

2.1 NP-Complete problems

NPC problems is a problem class, believed to be intractable by most computer scien-
tists since a give range of NPC problems have been studied to date, without there being
discovered a polynomial time solution to any of them, as stated in (Cormen et al. 2001,
page 968). NPC problems also have the trait that if one was to solve one such problem
in polynomial time, all NPC problems would have a polynomial time solution.

Problems are often divided into three classes. P, NP and NPC. The class P consists
of problems that are solvable in polynomial time, speci�cally meaning that they can be
solved in time O(nk), for some constant k, where n is the size of the problem. The class
NP consists of problems that are "veri�able" in polynomial time. NP-completeness is
almost always proved by reduction. This is done by reducing the problem at hand to a

5

6 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Relationship among complexity classes

problem already proved to be NPC.

The relationship between the complexity classes is by most researchers believed to be as
shown in Figure 2.1. If however a NPC problem was to be solved in polynomial time P
= NP. For more information on the complexity classes, see Cormen et al. (2001).

2.2 Classical routing problems

When seeking a solution to an optimization problem, it is crucial to be able to describe
the problem at hand with regards to real-world feasibility of any solution derived. There
is a broad base of literature concerning optimization problems, of di�erent types and
with di�erent constraints. Knowing the nature of the problem at hand will help when
searching for relevant literature.

In this chapter, a carefully selected range of routing and scheduling problems important
for the work behind this report will be described. These problems have been chosen
because they are closely related to the optimization problem at hand, which is explained
in great detail in Chapter 3. The general optimization problem that the most closely
resembles the problem at hand is the m-PDPTW.

Di�erent types of problems pose di�erent di�culties when trying to solve them. The
problems described here are described in a hierarchic order, by starting with the Travel-
ling Salesman Problem (TSP), and then generalizing the TSP to the VRP, which in turn
is generalized until �nally ending up at the Pick-up-and-Delivery Problem with Time
Window (PDPTW).

2.2. CLASSICAL ROUTING PROBLEMS 7

Figure 2.2: Example of a Travelling Salesman Problem (TSP)

2.2.1 The Travelling Salesman Problem (TSP)

Informal description of the TSP

This problem is quite easily described; given a set of nodes, the goal is to build a closed
tour that goes through each of the nodes, once and only once, and returning to the start-
ing node when �nished (the depot). This while at the same time minimizing the distance
travelled (or more generally a cost depending on time spent and distance travelled).

The nodes may represent customers to be visited, therefore the name Travelling Salesman
Problem. Minimizing the cost of the tour, the TSP may be reformulated as �nding the
minimum cost Hamiltonian cycle in a graph where the nodes represent customers, and
the arcs are valued. A Hamiltonian cycle is de�ned in (Cormen et al. 2001, page 967) as
a directed graph G = (V,E) that contains each vertex in V . The cost usually represents
the distance between the two nodes, connected by the arc.

The TSP may be extended to a problem with multiple salesmen. Now the problem
consists of a set of customers to be visited by two or more salesmen. The customers must
still only be visited once, and the salesmen must start and end their tours at the same
node, this node representing the depot. The problem consists of determining how the
salesmen should divide the customers between each other, making the total costs of the
system minimal.

8 CHAPTER 2. LITERATURE REVIEW

Mathematical model of the TSP

Let xij be a Boolean variable, where xij = 1 if node j is visited directly after node i and
xij = 0 otherwise. The cost of going from node i to node j is denoted Cij . The goal is
to minimize the total cost:

z = min

n∑
i=1

n∑
j=1

Cijxij (2.1)

Only one arc can leave each of the n nodes, this constraint is given by:

n∑
j=1

xij = 1, i = 1, ..., n (2.2)

Each node can also only entered by one arc:

n∑
i=1

xij = 1, j = 1, ..., n (2.3)

(2.2) and (2.3) together deal with the fact that the salesman only can visit each customer
once, and only once. Together with (2.1), they make up an assignment problem that al-
lows sub-tours. The TSP does not allow sub-tours, therefore additional constraints are
included. For a non empty set S of nodes, there are strictly less than |S| arcs linking
these nodes.

∑
i∈S

∑
j∈S

xij ≤ |S| − 1 (2.4)

In addition to (2.4), there has to exist at least one arc linking the nodes in set S to the
nodes in S:

∑
i∈S

∑
j∈S

xij ≥ 1 (2.5)

2.2.2 The Vehicle Routing Problem (VRP)

Informal description of the VRP

The VRP can according to (Bräysy et al. 2003a, page 3) be described as the problem of
designing least cost routes from one depot to a set of geographically scattered points, or

2.2. CLASSICAL ROUTING PROBLEMS 9

Figure 2.3: Example of a Vehicle Routing Problem (VRP)

nodes. These nodes may represent cities, stores, warehouses, customers etc. What the
nodes represent depends on the problem at hand. The routes must be designed in a way
that each node is visited only once by one vehicle. Routes must start and end at the
depot, and the capacity of each vehicle must not be exceeded by the sum of the demands
along one route. Di�erent real-world problems have di�erent constraints, a vessel cannot
show up at any port at any given time, two di�erent load may be mixable, two other
may not etc. The VRP model can be extended by side constraints, to create real-world
applicable methods and concepts for VRPs of di�erent types.

10 CHAPTER 2. LITERATURE REVIEW

Mathematical model of the VRP

The goal is to minimize the total cost, seen in (2.6). xijv is a Boolean variable, where
xijv = 1 if node j is visited directly after node i by vehicle v and xijv = 0 otherwise. The
cost of going from node i to node j is denoted Cij . V is the set of vehicles, NA is the set
of nodes and A is the set of arcs. All the nodes except the depot, which is represented
as node 0 and n + 1, are included in the set of customers NC.

z = min
∑
v∈V

∑
(i,j)∈A

Cijxijv (2.6)

Each arc must be used by one and only one vehicle:∑
v∈V

∑
j∈NA

xijv = 1, ∀i ∈ NC (2.7)

Each customer (i) has a demand Di. Stating that the vehicles are of the same type and
have the same capacity Q, this capacity cannot be exceeded:∑

i∈NC

Di

∑
j∈NA

xijv ≤ Q, ∀v ∈ V (2.8)

Every vehicle must start their tour at the depot:∑
j∈NA

x0jv = 1, ∀v ∈ V (2.9)

A vehicle can only leave node h ∈ NC if and only if it enters node h:∑
i∈NA

xihv −
∑

j∈NA

xhjv = 0, ∀h ∈ NC, ∀v ∈ V (2.10)

All the vehicles have to end at node n + 1 which represents the depot.∑
i∈NC

xi(n+1)v = 1, ∀v ∈ V (2.11)

2.2.3 The Pick-up and Delivery Problem (PDP)

Informal description of the PDP

The Pick-up and Delivery Problem (PDP) is according to (Bräysy et al. 2003b, page 3)
de�ned as a planning problem where one has one �eet of vehicles for serving a set of
transportation requests with given capacity and start and end locations. Each request
speci�es the size of the load to be transported, the location where the load is to be picked

2.2. CLASSICAL ROUTING PROBLEMS 11

Figure 2.4: Example of a Pick-up and Delivery Problem (PDP)

up, and the location where it is to be delivered. Each load has to be transported by one
vehicle from its origin to its destination, without any transhipment at other locations.
Figure 2.4 shows an example of a PDP with only one depot present. The �eet may be
stationed at multiple depots, but this possibility is not considered when deriving the
mathematical model presented below. The goal is to minimize the total transportation
costs. Pick-ups must be performed before their respective deliveries.

Mathematical model of the PDP

This model is represented in Savelsbergh & Sol (1995). It supposes that each customer i
requests the transportation of goods from an origin i+ to a destination i−. NC is the set of
customers, in other words i ∈ NC . N+ is the set of customers that ask for a pick-up and
N− is the set of customers that ask for a delivery. {0} is the depot. NA = {0}∪N+∪N−.
V is the set of vehicles and A is the set of arcs. xijv is a Boolean variable, where xijv = 1
if vehicle v ∈ V uses arc (i, j) ∈ A, and xijv = 0 otherwise.

Minimizing the following function is the goal:

12 CHAPTER 2. LITERATURE REVIEW

z = min
∑

(i,j)∈A

∑
v∈V

Cijxijv (2.12)

Each customer is to be visited by only one vehicle:∑
v∈V

∑
j∈NA

xijv = 1, ∀i ∈ N+ (2.13)

If a vehicle enters node i, it must leave it as well:∑
j∈NA

xijv −
∑

j∈NA

xijv = 0, ∀i ∈ N+ ∪N−, v ∈ V (2.14)

The same vehicle must make the pick-up i+ and the delivery i−:∑
j∈NA

xijv −
∑

j∈NA

xji−v = 0, ∀i ∈ NC , v ∈ V (2.15)

2.2.4 The Pick-up and Delivery Problem with TimeWindows (PDPTW)

Informal description of the PDPTW

As described in (Ropke & Pisinger 2006, page 455), the PDPTW is a PDP with its
requests and vehicles, with additional constraints on the timing of the pick-up's and
deliveries. A request consists of picking up goods at one location and delivering these
goods at another location. Two time windows are assigned to each request: a pick-up
time window specifying when the goods can be picked up and a delivery time window
that determines when the goods can be dropped o�. Service times are also included in
the PDPTW, this indicates the time that performing the pick-up or delivery will take. A
vehicle may arrive at a pick-up or delivery before the start of a time window associated
with that task speci�ed at the certain location, but it has to wait until the start of the
time window before initiating the operation. A vehicle may not arrive at a location after
the end of the time window of the location.

Each request is assigned to a set of feasible vehicles, this enabling the modelling of situ-
ations where some vehicles cannot enter certain locations because of physical constraints
related to the dimensions of the vehicle. The vehicles also have limited capacity and start
and end its duties at given locations. The start and end locations need not be the same
and for two vehicles these locations may be di�erent.

The PDPTW is a generalization of the Vehicle Routing Problem with Time Window
(VRPTW), which is NP-hard according to Ropke & Pisinger (2006). Therefore the
PDPTW must also be NP-hard.

2.2. CLASSICAL ROUTING PROBLEMS 13

Mathematical model of the PDPTW

This model is the same as that presented in Chapter 2.2.3, with time windows as addi-
tional constraints. It supposes that each customer i requests the transportation of goods
from an origin i+ to a destination i−. NC is the set of customers, in other words i ∈ NC .
N+ is the set of customers that ask for a pick-up and N− is the set of customers that
ask for a delivery. {0} is the depot. NA = {0} ∪ N+ ∪ N−. V is the set of vehicles and
A is the set of arcs. xijv is a Boolean variable, where xijv = 1 if vehicle v ∈ V uses arc
(i, j) ∈ A, and xijv = 0 otherwise.

Minimizing the following function is the goal:

z = min
∑

(i,j)∈A

∑
v∈V

Cijxijv, (2.16)

Each customer is to be visited by only one vehicle:∑
v∈V

∑
j∈NA

xijv = 1, ∀i ∈ N+ (2.17)

If a vehicle enters node i, it must leave it as well:∑
j∈NA

xijv −
∑

j∈NA

xijv = 0, ∀i ∈ N+ ∪N−, v ∈ V (2.18)

The same vehicle must make the pick-up i+ and the delivery i−:∑
j∈NA

xi+jv −
∑

j∈NA

xji−v = 0, ∀i ∈ NC , v ∈ V (2.19)

Given that di is the depart time from customer i, and [TMNi+ , TMXi+] [TMNi− , TMXi−]
are the time windows of customer i. The time windows can be added using the following
equations:

TMNi ≤ di ≤ TMXi,∀i ∈ N+ ∪N− (2.20)

Given that tij is the travel time from node i to j:

di+ + ti+i− ≤ di− ∀i ∈ N (2.21)

Given that tij is the travel time from node i to j:

xijv = 1⇒ di + tij ≤ dj ∀(i, j) ∈ A, v ∈ V (2.22)

14 CHAPTER 2. LITERATURE REVIEW

2.3 Complete solution methods

Complete methods are concerned with computing the optimal solution of a problem.
If there are more than one equally optimal solution, complete methods will �nd one
but not necessarily all solutions. As described earlier the PDPTW is NP-hard. Ac-
cording to (Cormen et al. 2001, page 986), these problems are at least as hard as NP
problems which a veri�able in polynomial time. Signi�cant progress in solving NP-hard
optimization problems to optimality has been made in the recent decades. Researchers
have for a long time struggled with this topic, and even with the advances that have
been made, many problem types can only be solved for fairly small instances. In other
words generating an optimal solution of a large problem of this type, may not be possible.

The objective of this report is to develop and use heuristics to solve the problem at
hand. A selected few complete solution methods are included in the literature review to
show that these types of methods exists and how they work, but also to point out the
limitations of these methods.

2.3.1 Set partitioning

The m-PDPTW is mainly focused on which vehicle is to service which assignment. Every
combination of assignments possibly assigned to each vehicle, is here called an alterna-
tive route. A set partition model can then be used to decide which alternative routes
that should be chosen to service each assignment while minimizing the objective function.

z = min
n∑

i=1

cixi (2.23)

n∑
i=1

aijxij = 1 ∀j (2.24)

x ∈ 0, 1 (2.25)

The set partition model is shown in (2.23), (2.24) and (2.25). To explain the di�erent
variables used, lets consider a m-PDPTW with n assignments (sets of pickups and de-
liveries). The cost function z to be minimized (2.23), consists of ci which is the cost
of alternative i. If the binary variable xi = 1, this means that alternative i is used.
If alternative i is not used xi = 0. Every assignment must be ful�lled, therefore it is
necessary to control this. (2.24) deals with this aspect as aij = 1 if alternative i consists
of assignment j and aij = 0 otherwise.

2.4. HEURISTIC SOLUTION METHODS 15

Set partitioning models can be solved by commercial software like C-Plex and Xpress. If
the problems are too complex though, constructing all the possible alternatives may not
be possible. In some cases a column generation approach may be used.

2.3.2 Column generation

For the m-PDPTW, there exists an enormous amount of routing alternatives available
even for moderately sized problems. This is the reason for its NP-hardness. In stead of
creating all the alternatives, Column generation deals with this issue by generating these
alternatives dynamically, when they are needed. Dumas et al. (1991) presents a column
generation solution that is able to solve a m-PDPTW problem to optimality.

The idea behind column generation is dividing the problem into a master and a sub
problem as described in Lübbecke & Desrosiers (2005). The master problem is composed
by a su�ciently meaningful subset of variables. More variables are added only when
needed. The master problem is solved by set partitioning which gives dual variables that
in turn are used in the modi�ed objective function in a sub-problem. The implicit search
for a minimum reduced cost variable amounts to optimizing a sub problem. This being
a shortest path problem solved with dynamic programming. The reduced cost variable
is returned to the master problem, and it is used in its next iteration. If no reduced cost
variable is found however, the linear relaxation of the master problem is �nished. To
make sure that the integer solutions of the original problem is found, a column genera-
tion within a branch-and-bound framework is embedded.

(Lübbecke & Desrosiers 2005, page 28) states that an o�-the-shelf column generation soft-
ware to solve large scale integer programs is within reach reasonably soon; the necessary
building blocks are already available.

2.4 Heuristic solution methods

The drawbacks of the complete methods make it necessary to explore the search space
in alternative ways. Heuristics may be employed to facilitate searches in extensive and
complex datasets, where �nding the global optimum is not feasible due to the complexity
of the problem or constraints on the computation time.

For solving TSPs, VRPs, PDPs and PDPTWs there are two main types of heuristics.
These are algorithms that build one or more initial solutions, often referred to as con-
structive heuristics, and algorithms that improve given solutions. Improving heuristics
may be combined into heuristic frameworks like local search, and meta-heuristics. The

16 CHAPTER 2. LITERATURE REVIEW

multi-start local search heuristic combines constructive and improving heuristics, per-
forming a local search from several start points (initial solutions). The di�erent problem
types have di�erent constraints and particularities that will a�ect the way the heuristics
may be implemented, but the general ideas behind the heuristics can be viewed as general.

2.4.1 Constructive heuristics

Initial solutions are created by construction algorithms. These algorithms move through
partial solutions, by choosing the value on one decision variable at the time. Construction
algorithms usually stop when the �rst feasible solution is reached.

Savings heuristics

The savings heuristics developed by Clarke & Wright (1964) is one of the most well-
known construction heuristics. Initially it starts with a solution where every customer is
served directly by an individual route. By combining two of the routes, only servicing
one customer each, there will be a cost reduction denoted by Sij = di0 + d0j − dij . Here
the distance from customer i to the depot is denoted as di0, and the distance from the
depot to the customer j is denoted as d0j and dij is the distance from customer i to
customer j.

From Figure 2.5 the basic principle of the savings heuristic is demonstrated. The initial
solution is shown on the left side. Here each of the customers i and j, are serviced by
two separate routes. The cost reduction Sij is calculated for every possible combination
of two routes. If the savings heuristic �nds that the total distance will be reduced and
no constraints will be violated, the two routes that give the greatest reduction in cost
are chosen. The new and improved route is created by removing arch (i, 0) and (0, j),
the arch (i, j) is added. The saving heuristic procedure can be used iteratively. When
combining routes, partial routes can be designed for all the customers at the same time,
or one can add customers iteratively to a given route until the route if fully loaded.

Solomon's insertion heuristic (I1)

Solomon's insertion heuristic (I1) created by Solomon (1987) is also one of the most fa-
mous and used construction heuristics. Firstly a route with seeded customer is created.
The seeding may be based on which customers are the farthest, or which customer has
the earliest deadline (�rst closing time window). When the route has been initialized,
two criteria c1(i, u, j) and c2(i, u, j) are used at every iteration to decide which new cus-
tomer u to insert into the current partial route, between adjacent customers i and j on
the route. The current route is denoted as (i0, i1, i2, ..., im), where i0 and im represent

2.4. HEURISTIC SOLUTION METHODS 17

Figure 2.5: Savings heuristic

18 CHAPTER 2. LITERATURE REVIEW

the depot1.

For each non-routed customer, the best feasible insertion place in the emerging route is
calculated as

c1(i(u), u, j(u)) = min[c1(ip−1, u, ip)], p = 1, ...,m

Next, the best customer u to be inserted in the route is chosen as the one, that is
non-routed and feasible, for which

c2(i(u∗), u∗, j(u∗)) = optimum[c2(ip−1, u, ip)]

The customer u∗ is then inserted into the route between i(u∗) and j(u∗). When no more
customers with feasible insertions can be found, a new route is started by the method,
unless of course all customers have been routed.

I1 is one of three insertion heuristics described in (Solomon 1987, page 257), and it is
the one which gave the best results. It gives a more precise de�nition of c1 and c2.

c11(i, u, j) = diu + duj − µdij , µ ≥ 0

c12(i, u, j) = bju − bj

Here bju is the new time for customer j to be serviced, given that customer u is on the
route. The distance between customer i and u is denoted diu.

c1(i, u, j) = α1c11(i, u, j) + α2c12(i, u, j), α1 + α2 = 1

α1 ≥ 0, α2 ≥ 0

c2(i(, u, j) = λd0u − c1(i, u, j), λ ≥ 0

This an insertion heuristic that tries to maximize the bene�t of servicing a customer
trough a partial route being constructed, compared to servicing it on a direct route. By
weighting the di�erent parameters, the I1 focuses on di�erent aspects when optimizing the
routes. By setting α2 to zero, the new service times of existing customers is ignored when
deciding where a new customer could be inserted in the partial route. The parameter
λ, deals with how much the best insertion of an unserviced customer is a�ected by its
distance to the depot.

2.4.2 Improvement heuristics

When an initial solution has been derived, improvement heuristics are employed trying
to further ameliorate the routes that have been created.

1I1 is constructed with respect to the VRPTW, therefore the need to start and end at the depot

2.4. HEURISTIC SOLUTION METHODS 19

Figure 2.6: 2-opt exchange heuristic

k-opt exchange heuristic (k-opt)

The k-opt exchange heuristic (k-opt) created by Lin (1965), exchanges k arcs in the
current routes for k new links. This procedure is done iteratively, until the solution can
not be further improved. If N arcs are covered by a route, there are O(Nk) possible
ways of selecting the k arcs to be replaced. In Figure 2.6, one iteration of the k-opt is
performed, with k = 2, to improve an existing route.

2-opt* exchange heuristic (2-opt*)

According to Potvin & Rousseau (1995) the k-opt are not well adapted to problems with
time windows, because the orientation of the routes is altered by the exchanges. The
2-opt* exchange heuristic (2-opt*) was introduced to deal with such problems and it also
deals with problems of multiple routes. By adding the last customers of a given route at
the end of the �rst customers of another route. The �rst customers are typically those
with early time windows, and the last customers are those having late time windows.

The 2-opt* is useful when replacing arcs of di�erent routes, when dealing with intra-route
exchanges the k-opt is to be used. Figure 2.7 shows how the 2-opt* works on two selected
routes.

Or-opt exchange heuristic (Or-opt)

This approach is a well known node exchange heuristics . An Or-opt exchange heuristic
(Or-opt), considers one, two or three customers connected in sequence in the current

20 CHAPTER 2. LITERATURE REVIEW

Figure 2.7: 2-opt* exchange heuristic (2-opt*)

Figure 2.8: Or-opt exchange heuristic (Or-opt)

solution, and tries to improve the solution by inserting the customer(s) at a new loca-
tion. This heuristic is focused on nodes as compared to the arcs improvement strategies
described earlier in this section. Focusing on nodes rather than arcs, does not mean that
the Or-opt is completely di�erent than for example the k-opt. The Or-opt are subsets of
di�erent 3-opts. Potvin & Rousseau (1995) states that these subsets are more likely to be
feasible because only a small sequence of adjacent customers are moved and inserted at
a new location which preserves the orientation of the routes. This results in the Or-opt
generating solutions that are close to those of the 3-opt for problems with time windows,
only in less computation time.

Figure 2.8 shows how the Or-opt may work. The sequence of nodes a-b-c is moved to
improve the total distance to be travelled within the initial route. The Or-opt is in
addition to inter-route modi�cations also suitable for intra-route modi�cations.

2.5. HEURISTIC FRAMEWORKS 21

2.5 Heuristic frameworks

Heuristic frameworks are combinations of one or more solution methods united in a
structured method or strategy to search for the optimal solution of a problem.

2.5.1 Local search

Local search heuristics will try to improve a solution until it reaches a local or global
optimum, away from which any single move will worsen the solution. Meta-heuristics
work in another fashion in which they allow searching through inferior areas to render
possible the discovery of superior solutions. Algorithm 1 shows an overview over how a
local search heuristic generally works.

Algorithm 1: Local search

Input: An initial solution x0, with object function c(x0)
Output: An optimal solution(most likely a locally optimal solution)
i = 0
Find all points in neighbourhood N(xi)
Find xi+1 ∈ N(xi) so that c(xi+1) < c(xi)
while c(xi+1) < c(xi)∀xk ∈ N(xk) do

i = i+1
Find all points in neighbourhood N(xi)
Find xi+1 ∈ N(xk) so that c(xi+1) < c(xi)

end

return xi

The local search often consists of a combination of improving heuristics, put together
to �nd a local optimum relatively quickly. Tightly constrained problems may leave only
small areas of the solution space available for the local search to investigate. This and
the weakness that the local search has no means available to escape local optima, results
in the method only investigating the possibly small part of the solution space left after
creating the initial solution.

2.5.2 Multi-start local search

Local search heuristics su�er of the problem of being trapped in local optimum. Martí
(2003) argues that some kind of diversi�cation is often needed to allow searching by
such methods in alternative neighbourhoods, and overcome local optimums constraining
searches in local neighbourhoods. This is especially useful in cases that are closely con-
strained.

22 CHAPTER 2. LITERATURE REVIEW

Multi-start local search heuristics rely on diversi�cation of the initial solutions from which
the local search starts, to investigate a broader part of the solution space. According to
Martí (2003) multi-start methods consist of two phases: �rst the one where the solution
is generated and the second phase where the solution is improved if possible. After it-
erating through these two steps until some stopping condition is met, the best overall
solution is the algorithm's output.

Algorithm 2: Multi-start method

Input: Data to be optimized
Output: The best overall solution (minimal cost or object function)
Initialise i = 1
while Stopping condition not met do

Construct solution xi with object function c(xi)
while Local search not �nished do

Try to improve xi

xbest
i is the solution with object function c(xbest

i)
end

if c(xbest
i) < cbest then

xbest = xbest
i

cbest = c(xbest
i)

end

i = i + 1
end

return xbest

Martí (2003) discusses three key classi�cation elements in multi-start methods, when it
comes to creation of initial solutions. These are: memory, randomization and degree of
rebuild. Memory is based on bene�ting from knowledge gathered in previous searches,
and using this knowledge when creating new solutions, by incorporating actions that
have given good results in the past to a certain degree. Randomization, is a very simple
way of achieving diversi�cation. The problem is that one does not control the diversity
obtained. Randomization is often combined with deterministic rules, when creating solu-
tions. The degree of rebuild indicates the number of elements �xed from one generation
to another. Algorithm 2 is not concerned with the memory element, and it builds each
solution from scratch, thus it has no degree of rebuild.

Multi-start heuristics are e�ective on tightly constrained scheduling problems like vessel
scheduling problems, according to (Brønmo et al. 2007, page 904). Two major reasons
for this are that the local search neighbourhoods will not allow the searches to search far
in the feasible search space, and the relative easy construction of initial solutions. These
features are typical features of ship scheduling and routing problems.

2.5. HEURISTIC FRAMEWORKS 23

2.5.3 Meta-heuristics

In Chapter 2.4.2 improvement heuristics were introduced. These can be employed to
search the neighbourhoods of initial solutions to try to ameliorate these. Improvement
heuristics have the weakness that they are greedy, and this may lead the search to be
trapped in a local optimum. Meta-Heuristics allow non-pro�table moves when searching,
in order to explore di�erent neighbourhoods, thus reducing the probability of trapping
the searching in an inferior area.

Tabu search

The Tabu search uses a local or neighbourhood search procedure to iteratively move
from one solution to a new solution in the neighbourhood of the �rst solution, until some
stopping criterion has been satis�ed. To explore regions of the search space that would
be left unexplored by the local search procedure to escape local optimality, Tabu search
modi�es the neighbourhood structure of each solution as the search progresses. The so-
lutions admitted in the new neighbourhood, are determined through the use of special
memory structures. The search now progresses by iteratively moving from one solution
to a new solution in the neighbourhood. To avoid cycling, solutions possessing some
attributes of recently explored solutions are temporarily declared tabu or forbidden and
added to the tabu list. This unless their cost is less than a so-called aspiration level, see
(Cordeau et al. 1997, page 107). Some implementations allow for intermediate infeasible
solutions. The neighbourhood where the solution is allowed to move is N(xi, TL), where
TL is the tabu list.

To allow the search to go through an inferior area, short term memory structures are
used, namely the tabu list. This list contains solutions that have been visited in the
recent past, and these are not allowed in new neighbourhood. The tabu list may also
contain structures prohibiting solutions having certain attributes, speci�c to the problem
being solved.

A Reactive Tabu Search (RTS) is a robust search technique that enhances classical Tabu
search by allowing the algorithm to automatically adjust the search parameters based
on the state and the quality of the search. It allows the algorithm to choose strategies
and parameter values at each iteration, instead of using constant parameters or choosing
from a prede�ned set of parameters. The RTS allows the detection of chaotic attractor
basins as well as providing a method to escape from such basins and continue the search
in new and unexplored areas, (Nanry & Barnes 2000, page 110)

Tabu search is regarded as an e�ective heuristic for many problems like the VRPTW and
the PDPTW. Nanry & Barnes (2000) has used a variant of the search on a m-PDPTW,
with good results. It has been regarded as the most e�cient approach for a number of

24 CHAPTER 2. LITERATURE REVIEW

Algorithm 3: Tabu search

Input: An initial solution x0, with object function c(x0)
Output: The best solution found by the Tabu search
Initiate the tabu list TL
i = 0
while Convergence criterion not met do

Find all points in neighbourhood N(xi, TL)
Chose xk ∈ N(xi, TL) so that c(xi) is minimized without xi being in TL
Update the TL
i = i + 1

end

return xi

problems, see (Brønmo et al. 2007, page 905). For more information on the Tabu search,
see Glover & Laguna (1997).

2.5.4 TurboRouter

TurboRouter is a decision support system developed by MARINTEK2 in collaboration
with NTNU3. TurboRouter is aimed at helping the planners which have historically done
the routing and scheduling manually, not replacing them. The software is developed to
have a quick response time, giving high quality results, while developing practical solu-
tions applicable to the real world, and allowing interaction between user and software.

Heuristics are employed to balance �nding high quality results, and the need for a quick
response time. The di�erent heuristics available are described in Brønmo et al. (2007).
A multi-start local search heuristic is used, with a part of each initial solution created in
a pseudo random manner to diversify the start solutions. The user has the possibility to
specify the frequency of which each neighbourhood is visited.

There are many parameters available for the user to choose from giving a high degree of
interaction. This may be di�erent cost structures, cargoes with di�erent priorities, search
speci�cations, and the possibility to manually alter schedules created by the heuristic core
of the software.

TurboRouter is unfortunately not modularized, meaning that any attempt to modify the
program is di�cult. It has been under constant development, and its speci�cation has
been changing on the basis of new clients having di�erent needs. This is the reason for
the lack of modularity. The documentation of the software was also found inadequate.

2Norwegian Marine Technology Research Institute
3The Norwegian University of Science and Technology

2.6. DISCUSSION ON THE DIFFERENT SOLUTION METHODS 25

The software is built on the basis of having orders with an amount of a certain product to
be transported from a loading port to an unloading port within possible time windows,
and assigning them on a given �eet of vessels. Being commercially available software, it
is considered thoroughly tested and relatively bug free.

2.6 Discussion on the di�erent solution methods

There are two major types of solution methods for the type of optimization problem
which is being discussed. Complete methods and heuristic methods. Complete methods
guarantee the globally optimal solution, while heuristics only can guarantee a relatively
good solution (a local optimum).

Both types of solution methods are subject to constant research and amelioration, and
with computing speed and power constantly increasing, a variety of new tools are bound
to be available in the near future. At the present complete methods have solved prob-
lems of relatively small size and complexity, but it is time consuming and unsuitable
when dealing with larger problems. Constraints such as time windows and load capacity
may rule out a large set of the possible cargo combinations, which is useful in column
generation, but this method is still time consuming if it can derive a solution at all.

While complete methods guarantee the global optimum (if solvable), heuristics guarantee
local optimum. Local optimum is considered a "trap" by many optimizers, see Martí
(2003). Therefore techniques to enable searching a lager part of the solution space,
have been developed. The meta-heuristic, Tabu-search and the multi-start local search
heuristic are examples of ways to "escape" local optimum. The Tabu-search allows
moves that worsen the objective function, while the multi-start method uses di�erent
start points to investigate a larger part of the solution space. E�ective heuristics are fast
compared to complete methods, will always �nd a solution if the problem is solvable, but
it is very probable that the solution found will not be the best solution possible.

26 CHAPTER 2. LITERATURE REVIEW

Chapter 3

The problem at hand

The problem at hand consists of optimizing crude water-borne oil transport from mul-
tiple loading ports, to multiple unloading ports in di�erent regions. Of all the di�erent
types of VRPs, this problem most closely resembles the m-PDPTW, seen in Chapter
2.2.4.

This chapter focuses on describing the problem at hand. The complexity of the complete
problem is too great for the scope of this report. The important parts of the complete
problem at hand will be explained, trying to minimize the use of mathematical notation
for reader friendliness motivated by Cordeau & Laporte (2003). A reduced problem to be
solved, consisting of the most important features of the real problem is then described.
Since the crude oil to be transported is being transported term or company vessels,
minimizing cost is the essence. The objective function to be minimized consists of variable
costs for the �eet of term vessels available.

3.1 Formulation of the complete problem at hand

Loads in general water-borne transportation will usually have the following attributes:

• loading port

• unloading port

• time windows for loading and unloading

• amount to be transported

• product type

• rate (USD/ton)

27

28 CHAPTER 3. THE PROBLEM AT HAND

In the general PDPTW, all orders have pick-up and delivery nodes de�ned as seen above.
In the problem at hand, this is not the case. There are deliveries to be ful�lled at di�erent
ports in di�erent regions. These deliveries are complete with amount, crude grade and
time windows in which the oil may be discharged and other properties described below.
To ful�l the deliveries, di�erent amounts of the crude oil grades are to be picked up at
di�erent ports during pick-up speci�c time windows, and if necessary several pick-ups
may have to be performed to ful�l a delivery. A formulation of the problem at hand is
found below. Some assumptions and simpli�cations have been made on the complete ini-
tial problem, in adherence with the scope of the report. These simpli�cations are clearly
stated.

3.1.1 Complete problem description

The problem at hand is de�ned on a complete graph G = (NA,AA). The set of all nodes
is denoted NA, and the set of all arcs is denoted as AA. The nodes are representations of
the di�erent ports, indexed by i, j in this problem. NP is the set of loading ports (pick-
up nodes) and ND is the set of discharge ports (delivery nodes). Initially each vessel v
is situated in an arti�cial node denoted by o(v), and at the end of the tour it will be
situated at the arti�cial destination d(v). NA = NP ∪ ND ∪ {o(v)d(v)}. Di�erent ports
have di�erent characteristics with regards to draft and height restrictions, therefore not
all ports are accessible for all vessels. NPv is the set of all pick-up nodes NP generally
available for visit by vessel v, NDv is the set of all delivery ND nodes generally available
for visit by vessel v. Out of all nodes NA, the nodes available for vessel v is the set
NAv = NPv ∪ NDv ∪ {o(v)d(v)}. In addition to knowing which ports a vessel may visit,
there is also the set VNi of all vessels v ∈ VA that generally can enter port i ∈ NA.
Di�erent canals will also pose restrictions on which vessels may enter these, this can be
regarded asAAv which is the set of all the arcs in the model that can be visited by vessel v.

AA are all arcs in the model.
AA =

{
(imjnk) : i ∈ NA,m ∈ TWi, j ∈ NA, n ∈ TWj , k ∈ Kimjn, (imjnk)exists

}
.

AAv is the set of all arcs vessel v ∈ VA can physically sail.
Av =

{
(imjnk) : i ∈ NAv,m ∈ TWi, j ∈ NAv, n ∈ TWj , k ∈ Kimjn, (imjnk)exists

}
All vessels v ∈ VA are either time/term (company owned) vessels in the set VT, or spot
chartered vessels in the set VS. This gives the set of all vessels VA = VT ∪ VS. Note that
each spot vessel can be used once during each planning period.

Di�erent grades of crude oil are indexed by c, and c ∈ CA where CA is the set of all crude
grades.

3.2. FORMULATION OF THE REDUCED PROBLEM AT HAND 29

Qcim is the demand in discharge port i ∈ ND, time window m ∈ TWi and crude grade
c ∈ CA. For pick-up ports (i ∈ NP), Qcim is the amount of a certain crude grade to be
picked up in the certain time window. An amount qimcv is loaded at port i ∈ NP in time
window m ∈ TWi or discharged at port i ∈ ND in time window m ∈ TWi. Departing
from port i ∈ NAv in time window m ∈ TWi, limcv is the load of crude grade c on board
vessel v ∈ VA.

The problem at hand includes time windows. TWi is the set of time windows for port
i ∈ NA. TWi = {1, ...,Mi}, with Mi being the number of time windows in port i. TMNim

is the opening time of time window m ∈ TWi in port i ∈ NA. The closing time of time
window m ∈ TWi in port i ∈ NA is TMXim. More precisely the opening and closing times
of the time windows are denoted as [TMNim, TMXim]∀m ∈ TWi.

Kimjn is the set of routing options between node i ∈ NA in time window m ∈ TWi and
node j ∈ NA in time window n ∈ TWj if (imjn) exists. ximjnkv is a Boolean variable.
ximjnkv = 1 if vessel v sails from port i ∈ Nv in time window m ∈ TWi to port j ∈ Nv in
time window n ∈ TWj via route option k ∈ Kimjn. ximjnkv = 0 otherwise.

Due to time restrictions, consisting of time windows and the planning horizon, it's crucial
to know the durations of the di�erent actions made by the vessels. Loading/Unloading
time is dependent on the amount qimcv to be loaded/unloaded onto/o� and vessel v ∈ VA
in port i ∈ NPv ∪ NDv and the load/discharge rate (days/ktons) in that port for crude
type c ∈ CA. The berthing time in between port i and j is denoted TBij . This includes
deberthing time in port i and berthing time in port j. The time needed to sail leg
(imjnkv) ∈ AAv for vessel v ∈ VA including berthing time TBij , is TSijkv.

The objective function to be minimized is a result of the total cost of the deployment of
all term vessels VT, and potential costs of spot vessels VS. Fixed costs can be disregarded
as it has no in�uence on �nding the optimal routes and schedules, see (Christensen et al.
2007, page 223). The term vessels have three operational modes. These modes are idle,
loading/unloading and transit(including berthing and deberthing). The cost structure
of the vessel varies with the mode the vessel is in, and is explained more closely in the
reduced problem description where it is used in the objective function. CPORTiv is the
port fee in port i ∈ NA for vessel v ∈ VT. The port cost is a function of the port visited
and the size of the vessel, see (Christensen et al. 2007, page 224).

3.2 Formulation of the reduced problem at hand

As stated earlier the complete problem is too complex considering the scope of this report.
A reduced problem has been deduced, and this is the problem to be solved. The reduced

30 CHAPTER 3. THE PROBLEM AT HAND

problem is less complex than the complete problem, but it has many of the same features
and constraints.

3.2.1 Reduced problem description

This problem consists of matching pick-ups and deliveries with the following restrictions,
assumptions and objectives. In addition important di�erences between the real and the
reduced problem are stated here.

1. Spot vessels are not allowed, only company owned term vessels are used in this
problem.

2. All vessels v ∈ VT are initially without loads, their start time of service and start
position may vary from one vessels to the next.

3. The total amount of di�erent crude grades of oil to be delivered at the ports i ∈ ND
is equal to the amount to be picked up at the ports i ∈ NP.

4. The load on board any vessel v ∈ VA does not, at any time, exceed the vessels
weight capacity VCAPWv, or volume capacity VCAPV v.

5. A delivery may be split between several vessels v ∈ VT.

6. Several pick-ups can be made by v ∈ VA before making one or more deliveries.

7. One vessel may make several deliveries of di�erent crude grades while on one par-
ticular voyage.

8. All pick-ups and deliveries must be performed within certain time windows
[TMNim, TMXim].

9. The �eet of vessels VA is considered to be heterogeneous.

10. Spot vessels are not used.

11. The pick-up amount may vary in the full problem, in the reduced problem it is
�xed.

12. Port costs are excluded from the objective function. Port costs in the complete
problem at hand are dependent of the size of vessel used. In the reduced problem
the data set only considers vessels of the VLCC type which fall into the same price
category, therefore we only look at the fuel costs.

13. Restrictions when it comes to the Suez canal are outside the scope of this report.
No vessels will have a choice between going through the Suez canal, and around
the south of Africa when necessary. Canal costs are therefore disregarded.

3.2. FORMULATION OF THE REDUCED PROBLEM AT HAND 31

14. The total routing costs of all vessels is minimized.

The total objective function is to be minimized. This is a function of the distance between
ports, fuel consumption of the di�erent vessels. In port this vessel has a fuel consumption
denoted FPORTv in tons/day. Vessel v ∈ VT has a fuel consumption FIDLEv in tons/day
while being idle. The amount of fuel used is dependent on the distance travelled and the
vessel v deployed. Dijk is the distance between port i ∈ NA and port j ∈ NA on route
option k ∈ Kimjn. CFUEL is the fuel price (kUSD/ton). The cost for sailing between
port i ∈ NA and port j ∈ NA via route k for vessel v ∈ VT in kUSD is then derived
from some of the variables above. This price CLEGijkv includes pure sailing in ballast,
or loaded and costs for berthing and deberthing.

The objective function to be minimized is a result of the total cost of the deployment of
all term vessels VT. The cost of completing the di�erent legs including the port costs is
seen bellow:

z1 =
∑

v∈VT

∑
(imjnk)∈AAv

(CLEGijkv) · ximjnkv (3.1)

The di�erence in being idle, and in port loading crude is seen in this equation:

z2 =
∑

v∈VT

∑
i∈NPv

∑
m∈TWi

∑
c∈CPim

(FPORTv + FIDLEv) · CFUEL · TQicv · qimcv (3.2)

The di�erence in being idle, and in port unloading crude is seen in this equation:

z3 =
∑

v∈VT

∑
i∈NDv

∑
m∈TWi

∑
c∈CDim

(FPORTv + FIDLEv) · CFUEL · TQicv · qimcv (3.3)

For a vessel that remains idle for the entire period, the cost is as follows:

z4 =
∑

v∈VT

FIDLEv · CFUEL · (td(v)1v − to(v)1v) (3.4)

The total objective function is:

z = min(z1 + z2 + z3 + z4) (3.5)

32 CHAPTER 3. THE PROBLEM AT HAND

3.3 Problem assessment and proposed solution method

With regards to the theory on this type of problem and solution methods described in
Chapter 2, the most important traits of the reduced problem at hand is discussed. Then,
on the basis of the problem traits and the strengths and weaknesses of the di�erent
solution methods, a solution strategy is chosen.

3.3.1 Problem traits

The reduced problem at hand, resembles the m-PDPTW, the only major di�erence being
the lack of prede�ned orders. With the type of goods in the problem at hand being bulk
(crude oil of di�erent grades), where the goods are transported from does not matter as
long as the correct crude grade is delivered at the right port at the right time. This allows
more �exibility when routing the vessels, but it also makes the problem more complex.

Time windows in which the cargo is to be loaded and unloaded are included. These
are quite tight restrictions as the di�erent harbours have limited capacity, meaning that
any bu�er available time wise will be relatively small. Soft time windows discussed in
Christensen et al. (2004), allowing time window violation in return of an inconvenience
cost is an interesting topic, but outside the scope of this report.

With regards to the potential size of the problem, this is considered to be quite large. The
data sets made available suggest a �eet size in excess of 15 vessels, and approximately
50 pick-ups and deliveries. Given that the m-PDPTW is NP-hard, which is veri�able
but not solvable in polynomial time, because of its exponentially growing number of
solutions with problem size. Any solution method must consider the feasibility of any
solution method, in addition to the time aspect.

Summarizing, the problem at hand is very complex, due to its size, the vast amount of
variables and restrictions that governs its behaviour. Even after reducing the problem,
and decreasing some of its complexity, deriving a good way of solving the problem will
be an extensive task.

3.3.2 Proposed solution method

Ideally, �nding the global optimum would be the ultimate way of solving any optimiza-
tion problem, or any type of problem for that manner. Unfortunately today's technology
has constraints with regards to computing power and speed. This makes �nding global
optimum, very time consuming if not impossible. Operations research is focused on �nd-
ing solutions which are applicable in the real world, where time is an important factor.

3.3. PROBLEM ASSESSMENT AND PROPOSED SOLUTION METHOD 33

After the assessment of the problem at hand, and the possible solution methods, the
following judgment has been made: Complete methods are not suitable based on their
computation time ,need for computing power, and because the initial goal of this report
has been to develop heuristics to solve the reduced problem at hand.

Several heuristic frameworks have been investigated, and among these the reactive Tabu
search in Nanry & Barnes (2000) and the multi-start local search presented in Brønmo
et al. (2007) both have been thoroughly documented and have shown good results. The
reactive Tabu search is quite complicated to implement, and therefore a multi-start
seemed to be the best strategy for the purpose of solving the reduced problem at hand.

In addition the reduced problem at hand is relatively complex. Building, implementing
and testing a solution that deals with all the aspects of the problem is a large task.
With the limited scope of this report, building everything from scratch was not deemed
feasible. TurboRouter, a decision support system described in Chapter 2.5.4, is developed
and implemented for related problems to the one at hand. It is not modularized, which
makes altering its behaviour and further development di�cult. Still the bene�ts were
believed to weigh more heavily than the inconveniences. TurboRouters' constructive
and multi-start local search heuristics are explained in Chapter 4. The implementation
work done to modify TurboRouter in order to solve the problem at hand is described in
Chapter 5.

34 CHAPTER 3. THE PROBLEM AT HAND

Chapter 4

Heuristic solution method

This chapter describes a multi-start local search heuristic very similar to the one pre-
sented in Brønmo et al. (2007). TurboRouter, used in the tramp sceduling problem at
hand, has many of these heuristic features implemented. These strategies, or neighbour-
hoods will be described in this chapter.

To the authors' knowledge there has been limited research on local search based heuris-
tics for ship scheduling problems, outside the work of Brønmo et al. (2007). In general
related routing problems like the VRPTW, and the m-PDPTW, several heuristics have
been developed. The meta-heuristic Tabu search has also emerged as an e�ective tool in
a number of problems, as seen for instance in Nanry & Barnes (2000).

In Chapter 4.1 the multi-start heuristics method, which is the method to be used in this
report, will be brie�y explained. This method consists of initial solutions explained in
Chapter 2.4.1, and a local search which explores di�erent neighbourhoods explained in
Chapter 4.3. Finally in Chapter 4.4, an overview of the total local search heuristic with
regards to usage of the di�erent neighbourhoods is given.

4.1 Multi-start with biased random insertion

The multi-start local search heuristic starts by generating several initial solutions. These
may be based on some sort of bias random insertion. This meaning that some of the
elements in each initial solution are, in a biased random way, inserted into each initial
solution. Thereby creating several di�erent start points from which the local search can
begin. Each initial solution is subject to a set of di�erent improving heuristics combined
in a local search trying to ameliorate the solution, and �nding a local optimum. Once a
region has been thoroughly explored, the search restarts from a new initial solution.

35

36 CHAPTER 4. HEURISTIC SOLUTION METHOD

4.2 Constructive heuristics

Constructive heuristics create initial solutions to optimization problems. These heuris-
tics are to a large extent greedy in the way that they are short sighted in taking the best
solution for the current task at hand, not considering the global scope of the problem.
Some common constructive heuristics are described in Chapter 2.4.1

4.2.1 Initial solutions of the multi-start local search heuristic

The initial solutions are very important for the performance of multi-start local search
heuristics. Initial solutions of high quality, which at the same time are diverse may ease
bringing the seach to the optimal solution, or at least close to it. A biased random inser-
tion procedure is used to construct a part of each initial solution, this creates diversity.
High quality is brought to the solution by having the rest of the solution constructed
by a deterministic insertion heuristic. Combining the biased random insertion procedure
and the deterministic insertion heuristic gives initial solutions which after a local search
may give good results as seen in Brønmo et al. (2007).

The biased random insertion procedure takes out a percentage of the cargoes, this per-
centage is prede�ned. A part of the solution is then created by this set of cargoes. A
deterministic insertion heuristic is then used to create the rest of the solution. The
heuristic processes every cargo in the list sequentially. Each cargo is assigned to the
available ship that gives the highest pro�t. For further information see (Brønmo et al.
2007, page 905)

4.3 Improvement heuristics

In Brønmo et al. (2007), the local search is split into a quick and an extended part.
The reason for splitting the search in to parts is run-time considerations. The run-time
considerations in this report are not as important, therefore one extended local search
has been chosen.

The local search explores �ve di�erent neighbourhoods to improve the solution. The
search continues until a local optimum is found. The neighbourhoods are of two major
types: Inter-route and Intra-route operators. Intra-route operators are conserned with
making improvements on the schedule of one ship, while inter-route operators try to make
improvements by moving cargoes between di�erent ships. The di�erent neighbourhoods
will be explained in the following sub-chapters.

4.3. IMPROVEMENT HEURISTICS 37

4.3.1 1-Resequence

The 1-resequence neighbourhood is an intra-route operator. The schedule of ship v is
visualized by a string of circles. The di�erent circles represent port nodes. The number
of cargoes on the ship is N . Node i represent the loading (pick-up) port for cargo i, while
node N + i represents the unloading (delivery) port of cargo i. In Figure 4.1, cargo i is
removed from the schedule of ship v, and then re-inserted into the schedule at the best
possible place.

Figure 4.1: 1-resequence neighbourhood, as seen in (Brønmo et al. 2007, page 906)

38 CHAPTER 4. HEURISTIC SOLUTION METHOD

4.3.2 Reassign

The principles of the reassign neighbourhood, which is also an intra-route operator, is
shown in Figure 4.2. Cargo i is removed from the sailing plan of ship v, recalling that
cargo i is to be picked up at port i and delivered at port N + i. The best insertion into
each of the other ships is found, and the cargo is inserted into the ship that gives the best
feasible insertion. In this example ship u. If there is one or more cargoes that have been
previously rejected (i.e. that have not been possible to assign so far by the heuristic),
the reassign operator tries to insert it into the schedule of ship v.

Figure 4.2: Reassign neighbourhood, as seen in (Brønmo et al. 2007, page 907)

4.3.3 2-Interchange

The 2-interchange neighbourhood is an intra-route operator that tries to change one
cargo on one ship v, with another cargo on ship u. Figure 4.3 shows how the neighbour-
hood works. Cargo i is removed from ship v, and cargo j is removed from ship u. Then
if possible cargo i is inserted at best position in the schedule of ship u, and cargo j is

4.3. IMPROVEMENT HEURISTICS 39

inserted in the schedule of ship v.

Figure 4.3: 2-interchange neighbourhood, as seen in (Brønmo et al. 2007, page 907)

4.3.4 2-Resequence

2-Resequence is an inter-route operator, and the neighbourhood is shown in Figure 4.4.
Cargoes i and j are removed from the schedule of ship v. Firstly cargo i is reinserted at
the best possible place on the schedule of ship v, then cargo j is reinserted at the best
possible place.

4.3.5 3-Interchange

3-interchange is the same as the 2-interchange neighbourhood. The only di�erence is
that it involves three ships. Cargoes i, j, k are removed from ships u, v, w, in that order.
Then cargoes are inserted into the schedules of ships v, w, u, respectively. Figure 4.5
shows how this neighbourhood works.

40 CHAPTER 4. HEURISTIC SOLUTION METHOD

Figure 4.4: 2-resequence neighbourhood, as seen in (Brønmo et al. 2007, page 909)

4.4 Overview of the total improvement heuristic

The di�erent neighbourhoods have di�ering computational complexities. Therefore Brønmo
et al. (2007) argues that only a subset of the neighbourhoods are to be used at each it-
eration. It is further argued that complex neighbourhoods should not be used as often
as simpler ones. This is the way that the local search heuristic used in this report is
implemented in TurboRouter.

4.4. OVERVIEW OF THE TOTAL IMPROVEMENT HEURISTIC 41

Figure 4.5: 3-interchange neighbourhood, as seen in (Brønmo et al. 2007, page 910)

4.4.1 The �ow of the total improvement heuristic

The di�erent heighbourhoods are indexed from 1 to S, S beeing the total number of
neighbourhoods available. In this case S would be 5. As the heuristic iterates it uses
the di�erent neighbourhoods at iterations speci�ed by a frequency FREQs ,which is
the number of iterations between each time neighbourhood s is used, and a �rst itera-
tion FIRSTs, the iteration where the neighbourhood s is �rst used. For example with
FIRSTs being set to 3, and FREQs set to 4, the neighbourhood would be used in it-
erations 3, 7, 11, etc. The test f(s, iter) = TRUE? checks which neighbourhoods are
allowed, with regards to FIRSTs and FREQs and which iteration it is.

If no improvements have been found in an iteration one would normaly assume that a
local optimal solution had been found. However this scheme does not investigate ev-
ery neighbourhood at every iteration. Therefore it is necessary to investigate all the
neighbourhoods in S that have not been investigated in this iteration to determine if the
current solution is a local optimal solution. If so local optimum is reached, and the local
search heuristic terminates.

42 CHAPTER 4. HEURISTIC SOLUTION METHOD

Figure 4.6: Flowchart of the local search heuristic, as seen in (Brønmo et al. 2007, page
908)

Chapter 5

Implementation

This chapter describes the data set and solution strategies used in the implementation
behind this report. The goal here is not to describe every detail of the implementation,
but give the reader an overview of the work that's been done. Important topics have
been more closely visited when found necessary for the readers understanding. Some of
the algorithms already implemented in TurboRouter are described in Chapter 4. The
data set is �rst described, before giving an overview of the entire solution. Finally the
algorithm matching pick-ups and deliveries is introduced, and pseudo code is to some
extent used to describe the di�erent algorithms necessary.

5.1 The data set

Having a data set that is realistic is important in any simulation. In the problem at
hand, developing a useful tool for vessel scheduling, the solution needs to be applicable
in real life. There is no point in creating an academic solution with no base in reality,
or practical usefulness what so ever. This goes for the experimental work as well. Simu-
lating on a dataset that closely resembles actual problems, will give a good indication of
how well the solution works.

The problem at hand closely resembles a m-PDPTW, the only di�erence is that in a m-
PDPTW the pick-ups and deliveries are matched as described in Chapter 2.2.4. Matching
pick-ups and deliveries is a key topic in this report. The data set is very likely to have
several, and most of the time mostly perfectly matched pick-ups and deliveries, easily
merged into orders with pick-up and delivery ports, two time windows etc. By "perfect
match" being used to describe pick-up and delivery combinations of exactly the same
amount of the same product. This because basically, if one has a delivery to ful�l, one
usually tries to �nd one or more pick-ups to ful�l it. This work is done manually in
most cases today. If only one single pick-up is available (or can be made available), in

43

44 CHAPTER 5. IMPLEMENTATION

a port near the delivery, to ful�l a delivery. It makes common sense to book this. After
matching these "perfect matches" and merging them into orders the problem is like the
m-PDPTW. "Perfect matches" are not always the case unfortunately. Sometimes there
needs to be performed several pick-ups to ful�l a delivery, and the di�erent pick-up ports
may be located in di�erent areas of the world. This makes the matching and merging into
orders more complicated. While the di�culty of matching is a result of the availability of
pick-ups and deliveries, there needs to be a mass balance of the amount of the di�erent
products, or in this case crude grades, to be picked up and delivered.

Time windows, vessels, and draft restrictions also need to be taken into consideration.
The mass balance may be in place, but if there is no way that certain deliveries may be
serviced by respective pick-ups with regard to time windows, the data set would not have
basis in real life. When booking pick-ups and deliveries, and knowing the loading times
of the di�erent ports, distances between ports and sailing speed of the di�erent vessels.
One would book pick-ups and deliveries with time windows that are compatible. One
would also know the draft restrictions of the di�erent ports, and the size of the di�erent
vessels. Draft restrictions are excluded from the scope of this report, but this type of
restriction is an important factor in routing and scheduling. Distances between the ports
are not given exactly, because there is some secrecy surrounding this matter due to safety
measures and competition between companies. The approximate location of the ports is
known, in addition to the approximate sailing distances. These needn't be exact because
the di�erent areas for loading ports and unloading ports are scattered around di�erent
parts of the globe.

Summarizing, the data set should contain pick-ups and deliveries where each crude grade
is mass balanced, time windows should be compatible, etc. There is also great likelihood
of the occurrence of "perfect matches", based on the argumentation above.

5.2 The overall description of the solution

Initially the strategy for solving the problem at hand was to expand TurboRouters func-
tionality, to be able to handle orders consisting only of a pick-up, or a delivery. This
would give an extra degree of freedom compared to the order concept already imple-
mented in TurboRouter, with orders being de�ned as a set of goods to be transported
from one place to another. A simpli�ed outline of this model is shown in Figure 5.1. A
great deal of work was put into this strategy, but the further down into the software one
got, the more complex were the couplings and connections of the orders with the rest of
the software. An alternative strategy was therefore sought. Work and ideas on heuristics
for this type of problem is described in Chapter 9.

5.2. THE OVERALL DESCRIPTION OF THE SOLUTION 45

Figure 5.1: Ideal interaction with TurboRouter

With the order concept being a core element in the software, allowing it to remain a
core element was the derived solution. This was achieved by pre-matching the pick-ups
and deliveries, and thereby merging them into orders by a constructive heuristic, which
could be easily integrated into the existing software in TurboRouter. This way of "lock-
ing" pick-ups and deliveries together was not optimal, and did not leave any possibility
to divide orders into pick-ups or deliveries if the initial merger would turn out to be
sub-optimal. One degree of freedom was removed from the solution space, but given the
nature of TurboRouter and the scope of this report, there was no real alternative. The
implemented and actual model is shown in Figure 5.2.

Figure 5.2: Actual interaction with TurboRouter

With regards to the overall �ow of the program, it starts by loading the data set. Then,
when wanting to assign orders (matching orders and vessels), the matching and merging
of pick-ups and deliveries into orders are done. The next step is �nding a good allocation
of the di�erent orders given the �eet available, minimizing the objective function consist-
ing of the total variable costs of the �eet except port costs. The heuristic being used is

46 CHAPTER 5. IMPLEMENTATION

the multi-start local search described in Chapter 4. The multi-start local search heuristic
generates a number of initial solutions, of which a chosen number of the best solutions
are used as start points for the local search. The selected initial solutions or start points
are used iteratively. The local search starts from the �rst start point, from which it
searches the solution space until a local optimum is found. Then the next starting point
is used, and once more the local search commences. When every start point has been
ameliorated, the best solution found is the one returned. The �ow and overview of the
total solution is shown in Figure 5.3.

Figure 5.3: Overview of the total solution

5.3. THE ALGORITHM FOR MATCHING DELIVERIES AND PICK-UPS 47

5.3 The algorithm for matching deliveries and pick-ups

The �rst box in Figure 5.3 is described in the rest of this chapter. When matching
pick-ups and deliveries and merging them into orders, one degree of freedom is removed,
and once the orders are created they can not be split up into their original form. This
because the lack of modularity in TurboRouter discussed in Chapter 2.5.4, resulted in the
solution strategy seen in Figure 5.2. Therefore it is absolutely crucial that the matching
and merging is done in an intelligent way, as the quality of the orders will be likely to
in�uence the objective function of the problem. One way of doing this is to look at how
pick-ups and deliveries are booked in the real world and consider the issues that are taken
into account when doing this.

On basis of the real world implications described in Chapter 5.1, that will govern the
way data sets as the sets used in this report are constructed. Deliveries and pick-ups, to
a large extent, will be matched in advance to make sure the di�erent deliveries can be
delivered. New pick-ups and deliveries will often be generated on the basis of the deliv-
eries and pick-ups already in place. Algorithm 4 is created with this in mind. Exploiting
"perfect matches" is a key focus, as it is stated in Chapter 5.2 that making this solution
compatible with TurboRouters already existing software was a necessity.

In addition to focus on "perfect matches", treating the deliveries which have the fewest
feasible pick-ups with matching crude grade c, is a principal issue. Leaving deliveries
with few, or even one single feasible pick-up to be dealt with at the end of the algo-
rithm turning pick-ups and deliveries into orders, heavily increases the possibility that
the feasible pick-ups for these deliveries will be "given" to other deliveries, rendering
them unful�lled. All these issues have been taken into consideration when creating the
constructive heuristic, creating the orders.

Based on the amount of feasible pick-ups for each delivery starting with those with the
fewest matching possibilities, the existence of perfect matches is sought. If more than one
is feasible, the �rst solution chooses the one with the latest opening time window TMNim

that will arrive at the delivery port i ∈ ND with the slowest vessel v ∈ VA including
docking, loading and sailing time is chosen. This is done so that pick-ups needed by
other deliveries are not taken by deliveries that do not necessarily need them. In the
second solution the one with the �rst opening time window TMNim is chosen. This may
leave a greater degree of �exibility time wise for the vessel being assigned this order to
pick-up or deliver other loads while on route. The downside is possible unnecessary wait-
ing, or blocking other deliveries from being ful�lled, because the pick-up used was the
only possibility for some other delivery. To determine if there was a di�erence between
the two solutions, testing was used, and the solution with the best results in an initial
test was considered superior and used in more extensive testing. The tests and results
are explained in Chapter 6.

48 CHAPTER 5. IMPLEMENTATION

When the order is created as a result of �nding a "perfect match", the rest amount of the
pick-ups used is set to zero. If no perfect match is available, a set of order combinations
associated with the delivery was created. The one consisting of the fewest pick-ups was
chosen.

When more than one order combination consisted of the same minimal number of orders,
the one with the shortest distance was chosen. Distance here meant that if the minimum
number of orders in the order combination was one, the distance was the distance be-
tween the pick-up port i ∈ ND, and the delivery port i ∈ NP. If the order combination
consisted of more than one order, distance was chosen to mean the distance between the
di�erent pickup ports i ∈ ND. This was done because the di�erent pick-ups ports were
clustered together in one area, except for one pickup port which was far away from the
others. The di�erent pick-ups were sorted in an increasing manner, this so that if many
pick-ups were needed, the smallest ones were used in their entirety, so that there were
not many small amounts left at di�erent ports for the last deliveries to utilize.

5.3.1 The main algorithm

The outline of the solution is shown in Algorithm 4. The language of the pseudo code is
kept as close to that of the solution implemented in TurboRouter, to simplify examina-
tion and development of this work. Function calls and variables have kept their function
names, when bene�cial. Algorithm 4 uses several other methods like for example Find-
FeasiblePickups(), these are described later in this chapter.

5.3.2 Sorting the deliveries

Deliveries with the earliest closing time windows are chosen to be dealt with �rst, because
these may have fewer possible matching pick-ups. They are therefore sorted by closing
time window. This is seen in Algorithm 5.

5.3.3 Finding feasible pick-ups

Finding the feasible pick-ups for each delivery is crucial. This because it is the num-
ber of feasible pick-ups that determine which deliveries are matched with one or more
pick-ups and merged into one or more orders. The feasible pick-ups of each delivery are
determined before any orders are created, therefore one delivery may have fewer pick-ups
available when it is matched and merged. This is seen in Algorithm 6.

5.3. THE ALGORITHM FOR MATCHING DELIVERIES AND PICK-UPS 49

5.3.4 Finding feasible pick-up combinations

The Algorithm 7, �nds combinations of pickups that may satisfy a delivery i. Satisfying
a delivery, means that the pick-ups in one combination combined have an equal or lager
amount of the right crude grade compared with the delivery. No more pick-ups are added
to any combination that has a su�cient amount of crude oil of the right grade.

No combination may exceed 4 pickups. This due to the real world implications of having
a large amount of pick-ups considering costs and time constraints. This algorithm does
not create the di�erent orders, but continues to add pickups to the vector possiblePick-
upCombination until its total amount is su�cient. Order creation is described later on.

5.3.5 Finding possible order combinations

This algorithm is called with a speci�c delivery as an argument. It deals with creating
order combinations out of the feasible pick-up combinations in Algorithm 7, with i called
at the very beginning of Algorithm 8. It takes every pick-up combination, and creates
corresponding order combinations. These are pick-up combinations, only merged into
orders with speci�c amounts. This because pick-up combinations do not have speci�c
amounts declared, although it is known that they can satisfy the delivery. There needs
to be decided how much of each pick-up is to be used when creating potential orders.
Having a large number of small leftovers spread around in di�erent ports is not desirable,
therefore the strategy here is to use all the smaller pick-ups completely, and leave any
leftover from the largest pick-up.

50 CHAPTER 5. IMPLEMENTATION

Algorithm 4: CreateOrdersVector()

Input: allPickups, allDeliveries, HarbourList
Output: Orders resulting from matching deliveries and pickups
Load allDeliveries and allPickups, SortDeliveries()
FindFeasiblePickups(), max = FindMaxNumberOfFeasiblePickups()
foreach max i do

foreach delivery j do
if j has i + 1 feasiblePickups then

foreach sortedFeasiblePickup k do
Look for perfect matches
if perfect match found then

perfectMatches ← k
end

end

if numPerfectMatches ≥ 1 then
foreach perfectMatches l do

if perfectMatch is bestPerfectMatch then
bestPerfectMatch ← l

end

if l ≡ numPerfectMatches then
new order = bestPerfectMatch + delivery j
delivery j → assigned
pickup bestPerfectMatch → restAmount= 0

end

end

end

end

end

foreach delivery m do

if m notAssigned then

if m has i + 1 feasiblePickups then
FindPossibleOrderCombi(m)
foreach possibleOrderCombi n do

Find the possibleOrderCombi consisting of the fewest orders
if if num of Combinations consisting of fewest orders > 1 then

Find bestOrderCombi with shortest distance
end

if if num of combinations consisting of min num orders = 1

then
bestOrderCombi ← this

end

foreach bestOrderCombi o do
new order = [o]
m set assigned
pickup in [o] → rest− =order.amount()

end

end

end

end

end

end

5.3. THE ALGORITHM FOR MATCHING DELIVERIES AND PICK-UPS 51

Algorithm 5: SortDeliveries()

Input: initialDeliveries
Output: Deliveries sorted by earliest closing time window in vector deliveries
foreach initialDelivery i do

foreach delivery j do
if i.unloadStop() ≤ j.unloadStop() then

noDeliveries = noDeliveries +1
break

end

if j ≡ noDeliveries then
add i at position j in deliveries

end

end

end

Algorithm 6: FindFeasiblePickups()

Input: allPickups, allDeliveries, allvessels
Output: Finds all the feasible pickups associated with every delivery
foreach delivery i do

i.GetUnloadStop()
i.GetCrudeGrade()
foreach pickup j do

if pickups crude grade c is a match then
calculateEarliestArrivalTime()

end

if EarliestArrivalTime ≤ unloadStop then
add j to feasiblePickups for i

end

end

end

52 CHAPTER 5. IMPLEMENTATION

Algorithm 7: FindFeasiblePickupCombinations(j)

Input: sortedFeasiblePickups
Output: Finds all feasiblePickupCombinations associated with every delivery i
amount = deliveries[i].getAmount()
foreach sortedFeasiblePickup j do

if j.getRestAmount() ≡ 0 then
continue

end

if j.getRestAmount() ≥ amount then
ppc = new PossiblePickupCombination()
ppc.Add(j) i.Add(ppc)

else
totAmount + = j.getRestAmount()
k = j + 1
foreach sortedFeasiblePickup k do

if k.getRestAmount() ≡ 0 then
continue

end

if k.getRestAmount() + totAmount ≥ amount then
ppc = new PossiblePickupCombination()
ppc.Add(j,k)
i.Add(ppc)

else
totAmount + = k.getRestAmount()
l = k + 1
foreach sortedFeasiblePickup l do

if l.getRestAmount() ≡ 0 then
continue

end

if l.getRestAmount() + totAmount ≥ amount then
ppc = new PossiblePickupCombination()
ppc.Add(j,k,l)
i.Add(ppc)

else
totAmount + = k.getRestAmount()
m = l + 1
foreach sortedFeasiblePickup m do

if m.getRestAmount() ≡ 0 then
continue

end

if m.getRestAmount() + totAmount ≥ amount then
ppc = new PossiblePickupCombination()
ppc.Add(j,k,l,m)
i.Add(ppc)

end

end

end

end

end

end

end

end

5.3. THE ALGORITHM FOR MATCHING DELIVERIES AND PICK-UPS 53

Algorithm 8: FindPossibleOrderCombi(i)

Input: feasiblePickupCombinations
Output: Finds all the possibleOrderCombinations for delivery i
FindFeasiblePickupCombinations(i)
foreach feasiblePickupCombination j do

delAmount = i →GetAmount()
poc = new PossibleOrderCombination()
if noPickups in Combination ≤ 0 then

error

else

foreach pickupInCombination k do
pickAmount = k →GetAmount()
if pickAmount ≥ delAmount then

amount = delAmount
delAmount= 0

else
amount = pickAmount
delAmount− = pickAmount

end

end

order = CreateOrder(i, k,amount)
poc ← Add(order)

end

i← Add(poc)
end

54 CHAPTER 5. IMPLEMENTATION

Chapter 6

Results

To evaluate the possible pre-matching strategies presented in Chapter 5.3, and the e�ect
of having multiple starting points and/or a local search, extensive testing consisting of
246 computer simulations was completed. 5 sets of optimization problems were con-
structed from a main data set, and used in testing.

Finding the best pre-matching strategy was the �rst target, and this strategy was then
used in the remanding tests. Secondly, tests to compare the e�ect fullness of the di�erent
modules in the multi-start local search heuristic described in Chapter 4 were employed.
To determine the e�ect of a local search, of multiple start points, and the multi-start
local search heuristic 5 tests were created, some having multi-start with varying initial
solutions, some having a local search incorporated, and the rest having both multiple
start points and a local search.

6.1 Data sets

The data sets were a result of the description in Chapter 5.1. The data set was split into
several smaller sets with varying size and complexity, to help identify the behaviour of
the heuristics to be tested. The complete data set was also used as one of the sets in
testing. Every set had been mass balanced and was possible to match with regards to
time windows. Information on the data sets can be seen below.

Set 5 was the complete set of pick-ups and deliveries, and the other sets are sub-sets.
The �eet was heterogeneous, and the initial position and starting time was ship speci�c.
The �eet was chosen such that every cargo was serviceable.

55

56 CHAPTER 6. RESULTS

Set 1 Set 2 Set 3 Set 4 Set 5

Case descriptions

Planning horizon 53 66 53 61 15

Number of deliveries 18 40 14 42 55

Number of pickups 18 38 12 38 51

Number of vessels 10 15 10 17 19

Number of crude grades 4 11 4 12 15

Table 6.1: Datasets

6.2 Test settings

To investigate the behaviour of the di�erent data sets and the e�ciency of the di�erent
improving heuristics several tests were created. These tests consisted of combinations of
improving heuristics, and multiple initial solutions. Having tests consisting of di�erent
heuristics are used to test the e�ect of the di�erent heuristics. The multi-start local
search heuristic with elements of randomization are implemented in TurboRouter, and
explained in Chapter 4.

TurboRouter is a decision support system for routing and scheduling software that fo-
cuses on optimal vessel allocation on prede�ned orders. Three main parameters available
for optimization are net income, net daily income, and capacity utilization. The goal
of this report is to minimize the total costs while ensuring that as many deliveries as
possible are allocated to a vessel. Therefore net income is chosen as main parameter.

This is an industrial shipping problem, therefore no income was associated with any de-
livery. Only the cost of servicing the �eet was calculated. Port costs were disregarded on
basis of reduction of the problem at hand in Chapter 3.2. Net income will therefore be
negative, and transporting cargo would increase the costs. Given that initial solutions
may not contain every cargo to be transported; these would have a better net income
than initial solutions with complete allocation of all cargos. The result of this was that
even after improving heuristics, some cargoes were left unassigned. This e�ect was not
desirable, and was countered by giving each cargo a lump sum greater than the cost of
transporting it. The total lump sum was subtracted from the objective function found
by simulation to give correct results.

6.2.1 Settings for the multi-start constructive heuristic during testing

Randomization in the initial solutions of the multi-start local search heuristic results in
a great chance that the best solution will vary from one test to another with otherwise
identical settings. The amount of randomly inserted elements is denoted as a percentage

6.2. TEST SETTINGS 57

of the total number of elements to be inserted. These were chosen without memory and
degree of rebuild, key elements described by Martí (2003).

Test 1 Test 2 Test 3 Test 4 Test 5

Multistart No Yes Yes Yes Yes

Number of initial solutions 1 100 1000 100 1000
Number of used initial solutions 1 20 20 0 0
Random percentage of initial solutions 0 15 15 15 15
Local Search Yes Yes Yes No No

Table 6.2: Di�erent compositions of algorithms for testing

Multi-start indicates if multiple start points are employed. The number of initial solutions
varying from 1-1000 was the number of initial solutions created. Of these initial solutions,
a number of initial solutions were used as start points. The best initial solutions were
then used. If the test employed the local search, the local search row is marked with a
YES.

6.2.2 Settings for the local search heuristic used during testing

The settings used are taken from (Brønmo et al. 2007, page 912). Settings F5, seen in
Table 6.3 were chosen there on basis of response time, and quality of results. Recalling
Chapter 4.4.1 di�erent neighbourhoods are visited with di�erent frequencies, and �rst
iteration when the neighbourhoods are �rst visited. Figure 4.6 gives a good overview of
how the di�erent neighbourhoods are used in the local search heuristic.

Parameter settings

FREQs FIRSTs

1-resequence 1 1

Reassign 2 2

2-interchange 5 5

2-resequence 3 3

TryInfeasible 4 4

3-interchange 100 100

Table 6.3: Parameter settings

58 CHAPTER 6. RESULTS

6.3 Results from testing the di�erent data sets

The test were performed on an Intel Centrino Duo R©, 1,73 GHz processor, and 1 GB
ram under Windows XP R©. The heuristic was developed in C++ R©. Each test was per-
formed 10 times, due to the partial randomization of initial solutions. The global optimal
solutions for each of the sets were not known, therefore the best result found for each
set was used as a benchmark against which all other results for this set were measured.
The results consist of minimum, average, and CPU time as seen in Figure 6.4. Minimum
(Min) is the di�erence between the best value of this test, and the overall best result for
the entire set. Average (Avg) is similar to minimum, only it is the average of the 10 tests
compared to the best result. CPU time is the average computation time for the speci�c
test on the speci�c set.

6.3.1 Finding the best matching heuristic

To determine which strategy was the best, when having two or more "perfect matches"
as described in Chapter 5.3, an initial test was performed. Strategy S1 was to use the
pick-up with the latest closing time window that was feasible to ful�l the delivery at
hand. Strategy S2 was the exact opposite, in stead of taking the "perfect match" with
the latest closing time window, the one with the �rst closing time window was chosen.
Both cases were tested on the same data set, namely Set 5 described above. This set
was used because the slight di�erence between S1 and S2 had an e�ect on the matching
for this set, but not for sets 1, 2 and 3. All results were compared the solution with the
best objective function found. It can be noted that Test 1 consists of only one starting
point, therefore the Avg. gap (%) has been omitted from this test.

Test 1 Test 2 Test 3

Min. Avg. CPU Min. Avg. CPU Min. Avg. CPU
gap(%) gap(%) (s) gap(%) gap(%) (s) gap(%) gap(%) (s)

S1 8.55 - 111 0 4.18 3896 1.32 3.17 4250

S2 9.26 - 96 0.48 1.63 5568 0.098 1.98 4641

Table 6.4: Results from comparing pre-matching heuristics, part 1

Strategy S1 gave the solution with the best objective value, but the overall results of
Strategy S2 were superior, hence it was chosen as the strategy used in the remaining
tests. S2 also had a longer computation

6.3. RESULTS FROM TESTING THE DIFFERENT DATA SETS 59

Test 4 Test 5

Min. Avg. CPU Min. Avg. CPU
gap(%) gap(%) (s) gap(%) gap(%) (s)

S1 10.85 16.36 135 8.66 12.10 1070

S2 5.87 8.72 141 3.71 6.18 1088

Table 6.5: Results from comparing pre-matching heuristics, part 2

6.3.2 Testing with the best matching heuristic

With the pre-matching heuristics tested, the best one was used to determine the e�ciency
of a local search, multiple start points, or a combination of the two in the multi-start
local search.

Test 1 Test 2 Test 3

Min. Avg. CPU Min. Avg. CPU Min. Avg. CPU
gap(%) gap(%) (s) gap(%) gap(%) (s) gap(%) gap(%) (s)

Set 1 13.68 - 9 0.01 2.91 4112 0 3.95 765

Set 2 44.75 - 61 6.14 10.66 2954 0 9.12 1931

Set 3 0 - 1 0 0 31 0 0 91

Set 4 4.16 - 64 0 4.11 1218 1.67 3.05 1664

Set 5 9.15 - 96 0.38 1.53 5568 0 1.88 4642

Table 6.6: Results from testing, part 1

Test 4 Test 5

Min. Avg. CPU Min. Avg. CPU
gap(%) gap(%) (s) gap(%) gap(%) (s)

Set 1 0 6.43 30 0 3.95 257

Set 2 25.72 28.96 76 17.44 23.03 556

Set 3 0 0 9 0 0 71

Set 4 2.61 7.12 81 1.86 4.31 643

Set 5 5.77 8.61 141 3.61 6.08 1087

Table 6.7: Results from testing, part 2

With regards to the di�erent sets results varied greatly, both in terms of computation
time and gap from best solution found. In Set 3, the same solution was found every
time. Compared to Set 2 with a gap of 44.75 % from the result in test 1 by a single-start
local search, compared to the best solution found by the multi-start local search in test
3. The best solution found for Set 1 was found in three tests, namely Tests 3, 4 and 5.
Computation times varied greatly, from 1 second to 5568 for the largest set being tested

60 CHAPTER 6. RESULTS

by Test 2.

Best solution Worst solution Range response time

Test 1 0 3 1-61

Test 2 1 0 31-5568

Test 3 2 0 91-4642

Test 4 0 1 9-141

Test 5 0 0 71-1087

Tie between Test 3-5 1 - -

Tie between all tests 1 - -

Table 6.8: Overview of results

Regarding the quality of the heuristics, Test 3 was the largest multi-start local search
heuristic, and it found 4 out of 5 of the best solutions although 2 of these were ties. In
the other end of the scale was the single-start local search heuristic in Test 1, �nding the
"worst" solution in 3 of 5 sets. One may also note that for Set 3 the best solution was
found in all tests. Thereby actually leaving 4 possible "worst" solutions. At least one of
the two tests using multi-start local search heuristics was among those �nding the best
solution for each set. Tests 4 and 5, consisting of multiple initial solutions found the best
solution on two occasions. One time tied with Test 3, and the other time all tests found
the same solution.

Considering the time aspect of the di�erent tests, Test 1, a single-start local search
heuristic was the fastest, followed by Test 4 which created 100 initial solutions and
returning the best one. Tests 2 and 3, both multi-start local search heuristics, were the
most time consuming, with Test 2 using an average of 5568 seconds to solve Set 5. In
addition the tests without local search (Test 4 and 5), had very predictable computation
times within 3 % of the average computation time. For the multi-start local search on the
other hand, computation times varied much more. In the most extreme case the lowest
computation time was 1/3 of the average computation time for that speci�c Test/Set
combination. The complete results can be reviewed on the enclosed compact disc.

Chapter 7

Discussion

7.1 The Problem

Optimization of water-borne crude oil transport was the topic of this report. Maritime
transportation is a �eld with observed signi�cant growth in research according to Chris-
tensen et al. (2007). The studied problem was an industrial shipping problem, and a
great deal of literature is available for similar problems. Industrial shipping problems
focus on minimizing the expenses, therefore net income was chosen as the objective func-
tion.

There is a signi�cant di�erence between the problem at hand and traditional water-borne
transport optimization problems. Traditionally optimization of maritime transportation
has been focused on �nding the best allocation of a given set of cargoes on a given �eet,
and in some cases the �eet can be extended by the use of available tramp ships. In
addition each cargo traditionally has a speci�ed loading port and unloading port. In the
studied problem on the other hand, there were decoupled pick-ups and deliveries, needing
to be matched as opposed to cargoes in the traditional sense.

7.2 Strategic choices made

Optimization problems like the one at hand are very complex, and there is a multitude
of factors to be considered. Creating heuristics applicable to real world problems is the
objective of this report. The problem was therefore reduced, and factors that were con-
sidered of more academic than practical sort were disregarded. Still after reducing the
problem, the task ahead seemed massive considering the scope of this report.

Object oriented programming languages are well suited for problems like the one at hand,
due to the large amount of entities (ships, ports, pick-ups, deliveries) in the problem.

61

62 CHAPTER 7. DISCUSSION

Therefore the solution was decided to be programmed in an object oriented program-
ming language. There were three alternatives of how to implement the solution: building
everything from scratch, reusing some code from TurboRouter and building the rest of
the necessary structures, or further development of TurboRouter. TurboRouter is a de-
cision support system, developed for cargo based traditional water-borne optimization
problems.

Ideally one would build the solution from scratch, with a speci�cation �t to serve the
demands of the problem. Due to the problem complexity combined with the relatively
small amount of object oriented programming experience of the author, this strategy was
considered to big a task. TurboRouters lack of modularity and documentation left reuse
of code a complicated solution strategy. Some code and certainly many of the basic data
structures could have been copied and used, while leaving freedom to develop a program
for the speci�c task ahead. The other real alternative was using TurboRouter as it was
and modifying it to �t the requirements of the problem at hand. This with the known
lack of modularity and documentation, but also with most of the structures needed al-
ready implemented and tested.

Development of TurboRouters already existing code was chosen because it was believed
that it was possible to modify the software to successfully deal with the problem a hand in
spite of the lack of modularity. Therefore using TurboRouters already existing software
was thought to result in less work having to be spent constructing the basic functionality
of the program, and more e�ort could be spent developing heuristics to solve the problem
at hand. Being a commercially available software package, the need for testing of existing
software for bugs and errors would also be minimal. Testing and veri�cation is normally
a quite time consuming and complicated task. Reusing parts of the existing code in
TurboRouter, was considered a good alternative, but it was believed that construction
of basic functionality would be to demanding. Such a solution would also need extensive
testing.

7.2.1 Advantages and disadvantages

By deciding to further develop TurboRouter, many of the necessary tools were in place,
reading from �le was available with little modi�cation, sailing plans, and a graphical user
interface. The main challenge was modifying it to make it able to deal with the problem
at hand. After extensive and tireless e�ort over a signi�cant period of time this plan was
abandoned due to its lack of modularity. The order/cargo structure was linked to mostly
every other part of the software, and removing or changing it would mean that most of
the program had to be changed. It was simply not possible to modify the order structure
imbedded in the software, consisting of traditional cargoes with loading and unloading
ports, to deal with pick-ups and deliveries that were not matched, within the scope of

7.3. HEURISTICS USED 63

the report.

With the deadline of the report closing in, an alternative solution was sought. Because
the orders/cargoes are such integral parts of the software, they could not be removed.
Therefore a solution based on keeping and using these was derived. The problem at
hand still consisted of pick-ups and deliveries which were not matched. In order to
use TurboRouters existing functionality, orders needed to be created. By utilizing a pre-
matching heuristic, the pick-ups and deliveries could be matched and merged into orders.
The orders could then be passed to the already existing structures of TurboRouter, and
a similar heuristic framework to the one presented by Brønmo et al. (2007) was used to
�nd a good allocation of the orders on a given �eet.

This �nal way of implementing the solution was not optimal. The pre-matching resulted
in a loss of one degree of freedom when constructing heuristics, because no order could
be split into pick-up and delivery once it has been created within the existing function-
ality of TurboRouter. This property of having separate pick-ups and deliveries was an
important part of the problem at hand, and would have made possible a whole new class
of neighbourhoods to be investigated. Ideas and background for further work on such
neighbourhoods is presented and discussed in Chapter 9.

7.3 Heuristics used

The objective of this report was to construct, implement and test di�erent heuristics
for the problem at hand. Complete methods were also investigated to some extent, but
mainly to identify strengths and weaknesses of such methods. Two major frameworks
were identi�ed. Improving heuristics and more precisely a local search or a multi-start
local search, and meta-heuristics like the Tabu-search. Improving heuristics improve a
given solution until a local optimum is found, while a Tabu-search allows moves that
temporarily degrade the solution, in order to escape local optimum. Both the Tabu
search and the local search are dependent on an initial solution from which the search
can begin. Normally some sort of greedy constructive heuristic is used to generate an
initial solution. Neither a local search nor a Tabu search may return a "worse" solution
than its initial solution, but often an improved solution is returned.

Multiple start points is a strategy employed by Brønmo et al. (2007) and Martí (2003)
in order to investigate a broader part of the solution space. The pseudo randomization
in the constructive heuristic generates a set of starting points for a local search, thus
increasing the probability of �nding several optimums of which the best one is chosen.
A multi-start local search framework has already been implemented in TurboRouter and
was used in testing, in addition to the pre-matching heuristic constructing orders from
pick-ups and deliveries.

64 CHAPTER 7. DISCUSSION

The pre-matching was constructed on the basis of the real world implications of book-
ing pick-ups and deliveries. Existence of "perfect matches"(pick-ups and deliveries of
matching goods and times) was a result of these implications. This trait was at the
centre of the pre-matching, in addition to making the orders as cost e�ective as possible,
and matching the deliveries which had the fewest pick-ups to service them �rst. Making
them cost e�ective was done by using as few pick-ups to ful�l any delivery as possible,
and making sure that if more than one pick-up was to be used they were at ports as
close together as possible. Two di�erent pre-matching strategies were created and tests
were performed to determine which one was the better for the problem at hand. Pre-
matching could have been done in a variety of ways. The deliveries could have been
sorted by amount to be delivered, based on time windows, crude type etc. The strate-
gies used were chosen based on the focus it had on the nature of the problem to be solved.

7.3.1 Advantages and disadvantages

Choosing a heuristic solution method means that �nding the global optimal solution
is considered less important than �nding a good solution relatively quickly, or that a
generating a solution with a complete method is not possible for the problem at hand.
Complete methods are focused on �nding the global optimal solution, but in addition to
being very time consuming, such methods may not work on large problems.

The Tabu search is relatively di�cult and complicated to implement, but it allows
searches in a broader part of the solution space and is e�ective for the PDPTW ac-
cording to Nanry & Barnes (2000). Improving heuristics �nish searching when they
reach a local optimum. Creating multiple starting points is a way to ensure that a larger
part of the solution space is investigated.

The two pre-matching heuristics were quite similar, only separated by how they allocated
multiple "perfect matches". The �rst one focused on choosing the pick-up with the
latest opening time window, this was done not to ruin opportunities for deliveries nor
yet allocated. The other strategy has the exact opposite strategy and chooses the pick-
up with the earliest opening time window. This strategy can give more �exibility with
regards to performing other tasks in between loading and delivering this goods.

7.4 Results

Before discussing the results, it should be noted that the optimal solutions of the di�er-
ent data-sets were not known. The results of the di�erent tests were therefore compared
to each other within each data set. This to determine their relative behaviour, and the
quality of their solutions.

7.4. RESULTS 65

The two strategies proposed used in pre-matching they were tested on Set 5. Strategy S2
gave the best results, giving an indication that time wise matching and merging pick-ups
and deliveries that are a bit separated in time give better results than having them close
together. This is believed to be a result of this strategy leaving more �exibility for the
ship having been assigned the given cargo to perform other pick-ups or deliveries in be-
tween loading and unloading of the cargo in question. Further evidence for this increased
�exibility and with that a broader solution space is the higher computation times for this
strategy seen in Chapter 6.3.1.

Testing the e�ects of the multi-start local search heuristic was done by comparing it
to a single-start local search heuristic, and multiple initial solutions heuristics. The
multi-start local search was superior compared to the other heuristics, and especially
the single-start local search which found the worst solution in 3 out of 4 data sets. In
Set 3 all heuristics found the same solution. Port and canal costs are not considered,
therefore the di�erences in percentages are larger than they may have been with these
costs included.

Comparing results from tests 4 and 5, it is not surprising to see that the higher number
of initial solutions created when a part of that solution is randomized, the better the
best initial solution found normally is. This property is not so clear when considering
tests 2 and 3. Remembering that Test 2 created 100 initial solutions, and used the 20
best solutions as starting points for a local search. For Test 3 the respective numbers
were 1000 and 20. Test 3 had slightly better results, but the di�erence was not large. In
addition it is interesting to see that Test 2 has higher computation times for 3 of the sets.
Because the computation time of the constructive heuristic is close to linearly dependent
on the number of initial solutions in the respective data set, the local search must be
the reason for this unexpected result with regards to computation time. One possible
explanation can be that generating a large amount of initial solutions in a relatively small
set. This may have lead to many similar solutions among the best 20 solutions which in
turn may have been start points leading to quick local searches.

Set 1 and 3 give the perception of being very similar. They have an identical �eet avail-
able, the same number of crude grades, and a relatively similar number of pick-ups and
deliveries. Their computational results are very di�erent. Set 1 had relatively high com-
putation times and varying results in the di�erent tests. Set 3 on the other hand had the
lowest computation time in every test, and the same solution was found by every test
performed. Looking more closely into the data set an important di�erence is found. Set
1 consists of many small pick-ups and deliveries, resulting in a great number of possible
combinations, while Set 3 had more large pick-ups and deliveries. In addition a great
deal of the pick-ups and deliveries in Set 3 had only one or two possible vessels to be
transported by. These characteristics greatly reduced the number of possible combina-
tions which in turn reduced the solution space in which the constructive heuristic and

66 CHAPTER 7. DISCUSSION

local search could operate. A smaller area in which to search would mean quicker searches.

7.5 Real world applicability

With regards to real world applicability computation times are essential. Having a worst
case computation time of nearly two hours and an average of one and a half hour for the
largest set is to long even though it can be reduced by using a more powerful computer.
In addition it may be noted that the used existing code in TurboRouter, and the addi-
tional code added has not been focused on reducing arithmetic operations, and there is a
bit of redundancy slowing down the computation. Implementation in an object oriented
programming language like C++ will also result in the software spending some of its
computation time creating and destroying objects.

Time is of the essence in most real life applications of optimization tools. Response time
of the di�erent tests will vary for every set containing a degree of randomization, this
because constructive and especially improving heuristics depend greatly on their initial
conditions. A great deal of variation was seen in the tests consisting of multi-start local
search. This variation was due to the local search having a computational time depend-
ing on the start point. One start point may lead to a time consuming local search, while
another may for example be a local optimum. The variation in computation time is an
important feature to be aware of if implementing such methods in real life applications.
Because knowing the run time of a simulation may be important. One other reason
behind the high computation time may be excessive �eet size used in the data sets which
broadened the solution space. The relation between the size of the solution space and
the computation time was evident regarding the computation times for Set 1 and Set 3.

The heuristic framework used in this assignment incorporates a large number of neigh-
bourhoods, and to determine the computation time of each neighbourhood they should
be tested. If the total computation time needs to be reduced some of the more computa-
tional expensive neighbourhoods could be removed, or visited less frequently. In addition
the number of start points could be reduced, and a quick and extended local search as
presented by Brønmo et al. (2007) can be used. One single local search, or constructing
multiple initial solutions were much quicker heuristics, but again they generally delivered
lower quality solutions

Chapter 8

Conclusion

A ship scheduling and routing problem in optimization of water-borne crude oil trans-
portation has been investigated, and presented in relation to carefully selected back-
ground literature. On this basis a proposed heuristic has been developed, and imple-
mented supplementing structures already available in TurboRouter. A multi-start local
search with pre-matching of pick-ups and deliveries heuristic was chosen based on an
assessment of problem size, problem type, real life applicability and existing software.
The heuristic has been subject to rigorous testing, and the results have been carefully
examined, presented and discussed.

Two strategies have been developed for pre-matching and then tested. Strategy S2 gave
the best results, giving an indication that time wise matching and merging pick-ups and
deliveries that are a bit separated in time give better results than having them close
together.

Testing the e�ects of the multi-start local search heuristic was done by comparing it with
a single-start local search heuristic, and a multiple initial solutions heuristics. The multi-
start local search generated superior solutions compared to the other heuristics, but it
is computationally too expensive and therefore removing or less frequently visiting some
neighbourhoods should be considered if this framework is to be real world applicable. The
data sets may also have been too �exible because of the excessive �eet available. This
�exibility would lead to a large solution space, in which searching can be time consuming.

Pre-matching of pick-ups and deliveries and then using constructive and improving
heuristics was not the ideal way of solving the problem. This choice was a result of
its size and complexity. It is recommended to build a solution from scratch, possibly
using some of the structures TurboRouter, to investigate heuristics created speci�cally
for problems of this kind. Ideas not implemented in this report and further work is
presented in Chapter 9.

67

68 CHAPTER 8. CONCLUSION

Chapter 9

Further Work

Because of the di�culties encountered when trying to modify TurboRouter, some ideas
and work was not implemented and tested. They are instead described here, in case of
further development on problems like the problem at hand. Maintaining the degree of
freedom, provided by pick-ups and deliveries not being merged into orders, would pro-
vide more possibilities when it comes to both constructive heuristics and improvement
heuristics.

The multi-start local search framework presented in Chapter 4, is used as a starting
point for the search for new heuristics. Improvements and alternative heuristics to those
presented in that chapter are introduced below.

9.1 New constructive heuristics

The constructive heuristic used in this report deals with assigning orders already created.
This means that even the global optimal allocation of these orders, may still possibly
give a suboptimal solution because the orders created may not have been created in an
optimal manner. Remembering that global optimum and complete methods are not the
focus of this report, it is still a goal to create the best heuristics possible.

In Brønmo et al. (2007) the list of unassigned cargoes is �rst sorted increasingly by the
start of the pick-up time window, or decreasingly by cargo quantity. In the constructive
heuristic used in the main part of this report the cargoes, or orders being the term used
here, are only sorted by start of time windows. But one is free to sort by any variable one
likes in this form of constructive heuristic. After this has been done each of the cargoes
or orders are assigned to the available vessel that gives the highest pro�t

69

70 CHAPTER 9. FURTHER WORK

It would be interesting to test a similar heuristic, which not only matches order and vessel
in a greedy manner, but matches a delivery with the pick-up(s) and available vessel that
gives the highest pro�t. This manner of matching is done considering the �eet available,
and not blindly like in the constructive heuristic described in Chapter 4.

Algorithm 9: New constructive heuristic

Input: pickupList, deliveryList, shipList
Output: An initial solution
Sort the deliveryList by one or more criteria
while not iterated through all deliveries do

Get next sorted delivery from deliveryList
match delivery i with the pick-up(s) and vessel that gives the highest pro�t

end

return solution

Algorithm 9 shows an outline of a proposed constructive heuristic. Placing it in a multi-
start framework would be a good idea, and the start points should be based on both
di�erent sorting criteria, and a degree of randomization.

9.2 New improvement heuristics

Having the extra degree of freedom also leaves new possibilities when it comes to creating
e�ective heuristics. The ones proposed in Brønmo et al. (2007), are focused on orders
with pick-up ports and delivery ports. Therefore in order to move an order from one
vessel to another, both pick-up and delivery node corresponding to that order must be
removed from the vessels sailing plan. This can be seen in Figure 4.3 for example, where
orders i and j, represented by pick-up nodes i and j and delivery nodes N + i and N + j
are interchanged between two vessels.

9.2.1 Neighbourhoods

Recalling Chapter 4.3, the neighbourhoods were categorized as either Inter-route or Intra-
route operations. There may not be a great deal to improve in the intra-route operations.
In the 1-resequence neighbourhood, both pick-up and delivery node are removed and re-
inserted. This may alternatively be done by resequencing the pick-up nodes �rst, and
then the delivery nodes. This because transportation of water-borne crude oil, normally
consists of loading the vessel at one or more ports, then sailing to one or more ports to
deliver the crude oil before returning for more pick-ups. The downside of this way of

9.2. NEW IMPROVEMENT HEURISTICS 71

inter-route operation is that the optimal sequencing of the pick-up nodes, only consid-
ering the pick-up nodes, may give a poor solution when the delivery nodes are added.
Testing will give an indication of the performance of this neighbourhood, but the author
is not overly optimistic.

The potential of inter-route operations seems greater. Here the possibility of only inter-
changing two pick-up nodes or two delivery nodes is possible, in stead of interchanging
both pick-up and delivery node at the same time.

Figure 9.1: New 2-interchange neighbourhood

Figure 9.1 shows an interchange neighbourhood where nodes i and j may both represent
either two pick-up nodes, or two delivery nodes. This extra degree of freedom o�ers
a great deal of �exibility optimization wise, and several other neighbourhoods may be
constructed with this in mind. Especially the 3-interchange neighbourhood may use this
freedom. There are of course limitations on these neighbourhoods. Size and crude grade
of the nodes to be interchanged must match, and time constraints must be met. Often,
and in the complete problem at hand, there is some slack when it comes to the amount
to be picked up. Often in the + − 10 % range. This increases probability of �nding
matches that are interchangeable.

72 CHAPTER 9. FURTHER WORK

9.2.2 The Suez Canal

The Suez Canal is an interesting topic with regards to water-borne transportation of
crude oil. This canal is heavily priced. It also poses draft and size restrictions on the
vessels wanting to use it, which means that it can not handle the two largest classes of
crude carriers which are above the size limit of 200.000 dwt.

The Sumed pipeline is a 320 km long oil pipeline in Egypt, which runs from Ain Sukhna
terminal on the Gulf of Suez to Sidi Kerir on the Mediterranean. It provides an al-
ternative to the Suez Canal for transporting oil from the Persian Gulf region to the
Mediterranean. The Suez Canal and the Sumed pipeline together create a quite complex
environment in which to create e�ective optimization tools. Not passing through the
canal, would yield substantial economic bene�ts from avoiding the canal costs, but also
the economic bene�ts of being able to use larger vessels. The Suezmax is the largest
crude carrier capable of accessing the canal, leaving the two largest classes VLCC (those
above 200.00 dwt) and ULCC unable to use the canal.

Figure 9.2: Transportation using the Suez Canal

Figure 9.2 shows water-borne transportation using the Suez Canal. AG stands for the
Arabian Gulf which is the main area for loading cargo in the problem at hand, but may
represent any port in the Indian or Paci�c Ocean transporting goods through the Suez
Canal. US means the United States of America, and EU means Europe.

An alternative way of transporting crude oil is shown in Figure 9.3. Here the oil is trans-
ported by pipeline from Ain Sukhna to Sidi Kerir. Sumed may be considered as two

9.2. NEW IMPROVEMENT HEURISTICS 73

Figure 9.3: Transportation using the Sumed pipeline

ports, Ain Sukhna for unloading, and Sidi Kerir for loading. There is a time delay from
when the oil is unloaded, and when it is available for loading. This due to the length of
the pipeline.

Considering �eet size and mix are considered strategic problems see Christensen et al.
(2007), and are therefore not discussed in great detail here. But one possibility is having
a set of vessels only occupied with transporting oil from Sidi Kerir to the markets in
Europe and North-America, and another set of vessels transporting oil from the Arabian
Gulf to Ain Sukhna. A combination of having a few designated vessels on both sides of
the canal and some that pass through it from time to time may also be possible. These
ideas can be tested in a type of constructive heuristic, where some vessels can be set to
operate each side of the canal. A combined version may also be tested.

On a more strategic level testing the potential of these solutions, should also incorporate
pick-up and delivery times aimed at facilitating these routes, as sailing times are known.
In order to make such a solution possible and well functioning, pick-ups and deliveries
must be well timed. Having a relatively long time horizon, booking "good" time windows
for this purpose should be a feasible task.

With regards to improving heuristics created on the basis of the existence Sumed pipeline
there is a potential neighbourhood consisting of rest of voyage exchange, which can be
investigated. If two vessels are to approach the Suez Canal around the same period, one
from the Mediterranean side, the other from the Gulf of Suez an interesting opportunity

74 CHAPTER 9. FURTHER WORK

arises. In this situation with a similar problem to the one at hand in this report, any
vessel approaching the Suez Canal would be empty (except when transporting crude oil
from West Africa). Vessels on route towards the Suez Canal arriving at the Gulf of Suez
would be loaded with crude oil. These vessels may exchange their next pick-up and de-
livery nodes.

Figure 9.4: Suez-Sumed Heuristic

Figure 9.4, shows a possible voyage interchange heuristic. It principally works much in
the same manner as the 2-interchange, only it interchanges the rest of pick-ups and de-
liveries in the sailing plan of each vessel (ship u and ship v) in the example. Ship v is on
route from doing pick-ups (nodes marked with p are pick-up nodes) in the Arabian Gulf
(AG), and Ship u is returning from deliveries (nodes marked with d are delivery nodes)
in Europe. In stead of both vessels passing through the Suez Canal, their sailing plans
as they would have been after passing the canal are interchanged. In addition the nodes

9.3. CONCLUDING REMARKS 75

Ain Sukhna and Sidi Kerir are added. Ain Sukna as a delivery port and Sidi Kerir as a
pick-up port.

Alternatively the interchange could only include the rest of the current voyage for ship
v, and next voyage for ship u. Remembering that a voyage is de�ned as a sequence of
port calls, starting with the port where the vessel loads its �rst cargo and ending where
the vessel unloads its last cargo and becomes available again. This way of interchanging
may possibly create problems with regards to time windows.

9.3 Concluding remarks

Concluding there is a range of new heuristics to be created and tested for problems with
decoupled pick-ups and deliveries. Such problems have an extra degree of freedom that
can be exploited when trying to optimize them. A new insertion heuristic matching de-
livery, pick-up and ship has been presented along with a new version of the 2-interchange
neighbourhood, and these can be regarded as examples of ways of utilizing the freedom
available in the problem.

If such neighbourhoods were to be proven e�ective, one could also consider always trying
to create this degree of freedom in problems that are not necessarily decoupled of nature.
In problems like the one discussed, di�erent products are transported between di�erent
ports. The same product type may be available for pick-up at di�erent ports, before
being delivered at a given set of ports. If pick-up and delivery is matched before assign-
ing it to a vessel, which is the standard way in which things are done in real life, and
if it is not made possible to break up this match, any solution derived may already be
sub-optimal. Industrial shipping problems with the same goods available at several ports
for pick-up and then is to be delivered at other ports , have the characteristics necessary
to possibly bene�t from removing the constraint of having pick-ups and deliveries that
are matched and merged.

The Suez Canal, is an interesting optimization obstacle. The problem including the Suez
Canal and the Sumed pipeline has been described, and a possible heuristic has been
presented in Figure 9.4. This Suez-Sumed heuristic reduces the use of the Suez canal,
possibly resulting in reduced costs .

On a �nal note, and outside the scope of the report are strategic considerations and using
a holistic approach when optimizing ship scheduling and routing problems. The �eet
could be dimensioned to service the needs of the shipper. Pick-ups and deliveries should
be planned and time-windows should be booked to �t the �eet at hand, with regards to
size, sailing speed, dead weight and availability. If deliberate use of the Sumed Pipeline

76 CHAPTER 9. FURTHER WORK

is deemed bene�cial, strategic measures like permanently positioning parts of the �eet
on each side of the canal may be an interesting approach to the problem.

References

Brønmo, G., Christensen, M., Fagerholt, K. & Nygreen, B. (2007), `A multi-start local
search heuristic for ship scheduling - a computational study', Computers & Operations

Research 34, 900�917.

Bräysy, O., Gendreau, M., Hasle, G. & Løkketangen, A. (2003a), `A survey of heuristics
for the vehicle routing problem, part i: Basic problems and supply side extensions',
Technical Report, Molde University College .

Bräysy, O., Gendreau, M., Hasle, G. & Løkketangen, A. (2003b), `A survey of heuristics
for the vehicle routing problem, part ii: Demand side extensions', Technical Report.
Molde University College .

Christensen, M., Fagerholt, K., Nygreen, B. & Ronen, D. (2007), Maritime Trans-

portation, Handbook in operations research and management science: transportation,
Vol. 14, Barnhart C, Laporte G, editors.

Christensen, M., Fagerholt, K. & Ronen, D. (2004), `Ship routing and scheduling: Status
and perspectives', Transportation Science 38(1), 1�18.

Clarke, G. & Wright, J. W. (1964), `Scheduling of vehicles from a central depot to a
number of delivery points', Operations Research 12(4), 568�581.

Cordeau, J.-F., Gendreau, M. & Laporte, G. (1997), `A tabu search heuristic for periodic
and multi-depot vehicle routing problems', Networks 30(2), 105 � 119.

Cordeau, J.-F. & Laporte, G. (2003), `A tabu search heuristic for the static multi-vehicle
dial-a-ride problem', Transportation Research Part B 37, 579�594.

Cormen, T. H., Leiserson, C. H., Rivest, R. L. & Stein, C. (2001), Introduction to algo-

rithms, second edition, The MIT Press.

Dumas, Y., Desrosiers, J. & Soumis, F. (1991), `The pickup and delivery problem with
time windows', European Journal of Operation Research 54, 7�22.

Glover, F. W. & Laguna, M. (1997), Tabu search, Springer.

Lübbecke, M. E. & Desrosiers, J. (2005), Column Generation, US: Springer.

77

78 REFERENCES

Lin, S. (1965), `Computer solutions of the traveling salesman problem', Bell Systems
Technical Journal 44, 2245�2269.

Martí, R. (2003),Multi-Start Methods, In Glover FW, Koechemberger GA, editors. Hand-

book of metaheuristics, Berlin: Springer.

Nanry, W. P. & Barnes, J. W. (2000), `Solving the pickup and delivery problem with time
windows using reactive tabu search', Transportation Research Part B 34, 107�121.

Potvin, J.-Y. & Rousseau, J.-M. (1995), `An exchange heuristic for routing problems with
time windows', The Journal of the Operational Research Society 16(12), 1433�1446.

Ronen, D. (1993), `Ship schedulig: The last decade', European Journal of Operational

Research 71(3), 325�333.

Ropke, S. & Pisinger, D. (2006), `An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows', Transportation Science 40(4), 455�
472.

Savelsbergh, M. W. P. & Sol, M. (1995), `The general pickup and delivery problem',
Transportation Science 29, 17�29.

Solomon, M. M. (1987), `Algorithms for the vehicle routing and scheduling problems with
time window constraints', Operations Research 35(2), 254�256.

