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Abstract—The prevalence of visual impairment around the
world is rapidly increasing, causing large numbers of people
to wear glasses. Glasses are generally considered an important
noise source in iris recognition; under objective metrics, they have
recently been shown to deteriorate the sample quality of near-
infrared (NIR) ocular images (consequently impairing the seg-
mentation accuracy and biometric performance). Automatically
and robustly detecting glasses in ocular images is therefore one of
the prerequisites for the acquisition of high quality iris samples.
While this issue has recently been addressed for NIR ocular
images, it remains an open issue in the visible wavelength (VW)
spectrum. As the popularity of VW iris recognition increases
(due to e.g. deployment of iris recognition in consumer grade
mobile devices and general improvements in VW recognition
algorithms), it becomes a matter of interest to quantitatively
evaluate the impact of glasses on such systems, as well as develop
methods for automatic detection of glasses in VW ocular images.

In this paper, the impact of glasses on VW iris segmentation
performance is investigated using the UBIRISv2 and MobBIO iris
databases. It is shown that the presence of glasses significantly
degrades the accuracy of iris segmentation. In addition, a state-of-
the-art iris segmentation method which can perform a semantic
segmentation of ocular images (including the segmentation of
glasses) is employed for the purpose of glasses detection. On the
used databases, correct classification rates (CCRs) of 98.57% and
83.62% are obtained, respectively.

Index Terms—biometrics, iris recognition, iris segmentation,
glasses detection

I. INTRODUCTION

In the past years, biometric recognition has become ubiq-
uitous in various applications ranging from automated border
control to forensic investigations. While some technologies,
e.g. face or fingerprint recognition, are already commercially
deployed in numerous application scenarios, the potential of
others still needs to be explored. In particular, non-cooperative
iris recognition based on images captured at VW represents a
challenging task [1]. In contrast to iris images captured under
NIR light, the iris tends to exhibit less textural information
when acquired at VW, depending on the eye colour of a
data subject. Furthermore, within VW iris images possible
artefacts, such as specular reflections or shadows, are more
pronounced. Those issues generally lead to an increased intra-
class variation, which can cause a severe drop in the biometric
performance. Accurate segmentation of the iris region in VW

images represents one of the most critical tasks [2] in the
processing pipeline and has also been the topic of several
competitions (e.g. MICHE [3], [4] and NICE [5], which
concentrated on mobile devices and noisy images, respec-
tively) aimed at improving the accuracy of the contemporary
algorithms. The segmentation of the iris involves a detection
of inner and outer iris boundaries, a detection of eyelids, an
exclusion of eyelashes and contact lense rings, as well as
scrubbing of specular reflections [6]. More recently, methods
based on deep learning, e.g. [7]–[10], revealed encouraging
results for the task of iris segmentation.

Visual impairment is becoming an increasingly common
affliction around the world. By some recent estimates (e.g.
[11], [12]), over 50% of adults in the developed world
are glass-wearers. In Eastern Asia, the prevalence of short-
sightedness (myopia) has been rapidly increasing to unprece-
dented levels [13]. Several researchers mention glasses as a
significant noise factor for iris recognition systems (e.g. [14]–
[16]). However, very little related work on this subject is
available in the contemporary scientific literature. In [17], the
impact of glasses on the pre-processing pipeline of NIR iris
images was evaluated in a small-scale study. Recently, a more
thorough investigation on the impact of glasses for NIR iris
images was done in [18]. In both works the drastic impact
of glasses on NIR iris image pre-processing and recognition
is demonstrated. Furthermore, in ISO/IEC 29794-6 biometric
sample quality standard [19], it is recommended to exercise
increased care during image acquisition from data subjects
wearing glasses, or to outright instruct them to remove their
glasses. Due to the non-trivial negative impact of glasses on the
biometric performance of iris recognition systems, as well as
the aforementioned pervasiveness of vision impairment (and,
consequently, of glasses in the world population), automatic
detection of glasses is an important matter in iris recognition.
This is particularly the case for automatic sample acquisition
systems, where higher sample quality could be facilitated
through interactive sample acquisition with a glasses detection
module.

In [18] methods based on texture descriptors, deep learning,
edge/reflection detection, and a fusion thereof have been
shown to achieve near-optimal results for glasses detection in



Fig. 1. Example images of the UBIRISv2 (top) and the MobBIO (bottom)
VW iris image databases.

TABLE I
OVERVIEW OF EMPLOYED VW IRIS DATABASES.

Database UBIRISv2 MobBIO
Total 2,250 800

Without glasses 1,931 656
With glasses 319 144

Resolution (pixels) 400×300 250×200

Sensor Canon EOS 5D Asus Eee Pad
Transformer TE300T

Light sources Natural and Natural and
artificial light artificial light

NIR ocular images. In VW ocular images, automated detection
of glasses is expected to be more challenging, since, in contrast
to a NIR acquisition, reflections as well as glasses frames
might be less pronounced. This work complements the study
of [18] by conducting a similar analysis and presenting a new
glasses detection method for VW ocular images: in section II,
the experimental setup is summarised. The impact of glasses
on VW iris segmentation performance is evaluated in section
III. Subsequently, a method to detect glasses in VW ocular
images is proposed in section IV. Finally, conclusions are
drawn in section V.

II. EXPERIMENTAL SETUP

Experiments are conducted on the UBIRISv2 [20] and the
MobBIO [21] iris image database, both acquired at VW. Figure
1 shows example images from the datasets, while table I
provides an overview of their properties. The groundtruth
labels (with/without glasses) had to be assigned to all the
images, which was done manually by a single researcher via
visual inspection.

For both databases segmentation groundtruth in terms of
binary segmentation masks indicating iris/non-iris regions
in each image are publicly available [22]. Images of both
databases are processed using the iris segmentation method
proposed in [10]. This algorithm has been shown to achieve
state-of-the-art iris segmentation performance and is capable
of performing a semantic segmentation of ocular images into
several classes including iris, specular reflections and glasses,
see section IV. The runtime of the algorithm is comparable
to other state-of-the-art methods of iris segmentation. Two
evaluations were conducted:

TABLE II
AMOUNT OF SPECULAR REFLECTIONS IN VW OCULAR IMAGES.

Database UBIRISv2 MobBIO same subjects
Without glasses 1.7% 3.7% 4.74%

With glasses 1.8% 5.6% 8.16%

• The impact of glasses on the sample quality (the amount
of specular reflections in the images) and thereby on
iris segmentation in terms of biometric performance is
measured in E1 errors, see section III. In a cross-
validation over 4 folds, 400 samples for training and
100 for testing are randomly selected and the average E1

errors are reported. The E1 evaluation measure proposed
in the first part of the Noisy Iris Challenge Evaluation
(NICE.I) [5] estimates the proportion of correspondent
disagreeing pixels:

E1 =
1

N ∗m ∗ n
∑

i,j∈(m,n)

G(i, j)⊕M(i, j), (1)

where N , m, n are the number, length and width of test
images, respectively. G and M are the groundtruth and
the generated iris mask respectively, and i, j are coordi-
nates in pixels of G and M . The symbol ⊕ represents the
XOR operation to assess the mismatching pixels between
G and M .

• The classification accuracy of the proposed glasses de-
tection approach is measured in CCR, see section IV.

III. IMPACT ON IRIS SEGMENTATION

Firstly, the amount of specular reflections present in ocular
images of subjects with and without glasses is estimated.
For this purpose, the iris segmentation method proposed in
[10], which automatically detects specular reflections, is used.
The average fraction of pixels in images showing specular
reflections is calculated for both databases. In addition, a
subset of 88 subjects of the UBIRISv2 database for which
images with and without glasses are available is used for this
calculation, see figure 2 for examples. Results are summarised
in table II. A rather small increase in the amount of specular
reflections present in ocular images of subjects wearing glasses
can be observed for the entire UBIRISv2 database. This is due
to the fact that many images in the UBIRISv2 database were
captured at larger distances and therefore tend to contain a
rather small amount of specular reflections. In contrast, for
the subset of same subjects’ images which were captured
from closer distances, a significant increase of the amount of
specular reflections can be observed for images with glasses.
Similar results are obtained for the MobBIO database.

Secondly, E1 errors obtained for images of subjects with
and without glasses for both databases are listed in table III.
Note, that the higher error rates for the MobBIO database
result from errors in the groundtruth masks which do not take
into account the specular reflections [10]. A relative increase
of 7.6% and 11.8% in terms of E1 segmentation error can
be observed for the UBIRISv2 and the MobBIO database,
respectively. Figure 3 depicts example images where specular



Fig. 2. Example images of same instances of subjects with (left) and without
(right) glasses.

TABLE III
E1 SEGMENTATION ERRORS.

Database UBIRISv2 MobBIO
Without glasses 1.43% 2.45%

With glasses 1.54% 2.74%

reflections caused by glasses lead to incorrect segmentation
results. In summary, the results shown in this section demon-
strate the negative impact of glasses on VW iris segmentation,
which generally leads to a decrease in the overall recognition
performance [1].

IV. DETECTION OF GLASSES

As previously mentioned, the proposed detection approach
is based on the iris segmentation method proposed in [10].
In order to achieve a more robust iris segmentation in un-
constrained environments, this method performs a semantic
segmentation of ocular images into several classes listed
in table IV. Semantic segmentation aims at assigning each
pixel within an image to a pre-defined object class, where
encouraging results have been achieved by employing fully
convolutional neuronal networks (FCN) [23] in the recent
past. For the task of iris segmentation, a manually annotated
semantic groundtruth segmentation1 of the training set from
the NICE.I [20] database containing 500 ocular images was
done by a single researcher in [10]. These publicly available
annotations were built at pixel level2, i.e. each pixel is an-
notated with its corresponding class number. An example of
an annotated ocular image of this database can be seen in
figure 4. In [10], this database is used for transfer-learning over
two FCNs proposed for general semantic image segmentation3,
i.e. fcn8s-at-once and fcn-alexnet, which were fine-
tuned from the pre-trained VGG-16 [24] and AlexNet [25]

1Multi-class iris segmentation groundtruth:
https://dasec.h-da.de/research/biometrics/MCIS/

2Object Labeling Tool:
http://dhoiem.cs.illinois.edu/software/

3FCNs for Semantic Segmentation:
https://github.com/shelhamer/fcn.berkeleyvision.org

Fig. 3. Examples of incomplete iris segmentations caused by glasses. White
pixels represent the detected iris texture.

TABLE IV
SEMANTIC CLASSES IN OCULAR IMAGES DEFINED IN [10].

Nr. Semantic class Colour
1 iris
2 pupil
3 specular reflections
4 sclera
5 eyelids / eyelashes
6 eyebrows
7 periocular skin
8 hair
9 glasses frames/edges

10 background

models, respectively. Best results were reported for using the
fcn8s-at-once FCN with all semantic classes summarised
in table IV. Note, that the list of semantic classes also includes
glasses frames/edges (number 9). The size of the trained
models is between approximately 256 and 512 megabytes,
which makes it feasible to utilise the proposed segmentation
and glasses detection systems also in mobile and embedded
devices.

In order to detect glasses in ocular images, they are pro-
cessed with the best segmentation method proposed in [10].
If the “glasses frames/edges” class occurs in the output of
the segmentation method, then the image is classified as
containing glasses, otherwise not. Hence, the detection of
glasses can be seamlessly performed during the iris segmen-
tation stage. Obtained detection accuracies are summarised in
table V. As can be seen, high detection accuracy is achieved
on the UBIRISv2 database. That is, the approach of [10]
appears to be suitable to reliably detect glasses in ocular
images, too. However, significantly lower detection accuracy
is obtained on the MobBIO database. A manual inspection
of misclassified images of the MobBIO database revealed
that in many cases hair at the image borders was incorrectly
classified as glasses frames. Such errors might be prevented
by analysing the form of segmented glasses. In addition, it
was found that many correctly classified images contained an



Fig. 4. Example of manually annotated semantic segmentation of [10].

TABLE V
RESULTS OF PROPOSED GLASSES DETECTION METHOD.

Database UBIRISv2 MobBIO
CCR 98.57% 83.62%

incomplete segmentation of glasses, e.g. due to transparent
or non-existent frames. Examples of these cases are shown
in figure 5. Lastly, it is important to note that the manually
annotated database used for transfer-learning contains only 71
images in which subjects are wearing glasses. In case more
annotated training images with glasses were to be used for
transfer-learning, the detection performance would be expected
to improve significantly.

V. CONCLUSIONS

Glasses can have a detrimental effect on the biometric
performance of iris recognition by deteriorating the sample
quality and thereby making the segmentation stage more
challenging. It has been shown that, on two publicly available
VW iris image databases, the iris segmentation performance
is significantly degraded if the data subjects wear glasses. A
system capable of automatically detecting glasses in ocular
images is therefore of interest, as it would allow to handle such
images separately or to perform re-acquisition after requesting
the data subject to remove their glasses. In this paper, an
automated detection of glasses in VW ocular images based
on a previously presented method for deep-learning based iris
segmentation [10] has been proposed. Said approach, which
performs a semantic segmentation, has been shown to be
additionally capable of detecting glasses. The detection per-
formance could potentially be further improved by increasing
the amount of training data, as well as a detailed analysis of
the segmentation results and errors.
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