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Abstract

The idea about the CyberBike came to Jens G. Balchen � the founder of the Department
of Engineering Cybernetics (ITK) at NTNU � in the 1980's. He wanted to make an
unmanned autonomus bicycle, i.e. a bike that could run by itself. The idea was picked
up by Amund Skavhaug, who started the CyberBike project in the late 80's. After being
de�ered for some years, the CyberBike has again gained some attention. This master's
thesis is based on Hans Olav Loftum's and Lasse Bjermeland's theses at the spring 2006
and the autumn project of John A. Fossum the same year.

The goal of the CyberBike project is to make the bike work as intended, i.e. as an
autonomous unmanned bicycle. This thesis naturally share this goal, although the bike
did not become able to take its �rst autonomous trip within the thesis' time frame.

At the start of the work, the bike were already equipped with a suitcase of computa-
tional hardware on its baggage rack, a small QNX Neutrino OS image was installed on
the industrial PC mounted in the suitcase, and drivers for the installed motors, tachome-
ters and potmeters were written. An Inertial Measurement Unit (IMU) was intended to
supply the control system with the necessary information about rotation, acceleration
and position, and the unit was purchased for the purpose. Also a driver was written, but
not properly tested. The IMU had to be installed and connected to the control system.
The bike's control theory was developed, but had never been put into action outside
computer simulations (due to the lack of acceleration measurements).

The various tasks that had to be addressed emerged as the development process ad-
vanced. First, the IMU had to be connected to the system, by making a signal tranceiver
circuit. A small printed circuit board was designed and laid out, mainly to include a
MAX233CPP iC2. Then the DB-9 serial connector on the bikes single board computer
(Wafer-9371A) could be used to read the UART signal from the IMU as RS-232. Then
some testing had to be done, and drivers updated.

A better and more advanced IMU (referred to as the �MTi�) was added to the project.
This unit needed no signal converting circuitry, but driver development and testing still
had to be done.

To enhance the CyberBike's navigation opportunities, a GPS module was purchased.
A signal transceiving circuit, similar to the one for the IMU, was made for this unit, as
well as software to read out the measurements from the device. By the end of this thesis,
no navigational algorithms are made, hence the GPS is currently not used, but available
for future e�orts made on this area.

Some hardware related tasks was carried out, as connecting and implementing func-
tionality to the pendulum limit switches, installation of a emergency stop switch and a
power switch, purchasing and installation of two 12V batteries and a cooling fan. An
operating system upgrade resulted in replacing the CyberBikePC's storage device, a

2integrated circuit



compact �ash card, with a mobile hard disk drive. Installation of a motor, for supply-
ing torque to the rear wheel, included setup and tuning of a hardware based velocity
controller in a Baldor TFM 060-06-01-3 servo module. However; this task is not to be
considered as accomplished, due to some unsolved problems on the system I/O-card's
output channels giving the motor controller card its reference voltage.

A bike model and controller realized in Simulink was made by Bjermeland. Hence
communicaton between Simulink and the device drivers had to be established, and this
was realized by using S-functions and Real-Time Workshop. Finally the controller could
be connected to the actual bike, but there was too little time left to explore this thor-
oughly, and make the system work properly. However, a foundation is laid for further
development of the control strategy, hopefully storing a bright future for the CyberBike.

ii



Chapter 1

Introduction

1.1 Motivation

The work on the CyberBike started back in the 1980's, when Amund Skavhaug picked
up Jens G. Balchen's idea of developing an autonomously running bicycle. The last few
years the CyberBike have again got some attention. The intention of the work behind
this thesis is to complete the work of the CyberBike, and take it to its �rst autonomous
outdoor ride.

The Department of Engineering Cybernetics' intentions is to use the bike to get
publicity at stands and guided tours at the department. The development of the theory
behind the bike's dynamics is also an interesting subject, owing to the fact that none � as
far as the candidate of this thesis know � has ever implemented an autonomous bicycle
this way, i.e. by controlling an inverted pendulum, the steering angle, and the propulsion
speed.

1.2 Problem

The goal of this work is to get the bike running. To do this the instrumentation system
has to be completed. A lot have been done at this point, but a working measuring
unit for acceleration and rotation have to be included in the system. This was the last
impediment for the predecessors of this thesis (see Section 1.3) before the control system
could be tested on the bike. From there some modi�cations and improvements of the
CyberBike and its control system are the main subjects of this work.

Some tasks are related to allowing the bike to move without cables attached. A
wireless ethernet card is supposed to replace the network cable between a stationary
QNX1 workstation � the host computer � which by the acquisition time of this project
is performing most of the network activities with the CyberBikePC via Qnet. Installing
batteries to eliminate the other cables, is also a part of the plan.

1An RTOS developed by QSSL

1
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1.3 Previous work

The most important previous work to be mentioned here is the master's theses of Loftum
[2006] and Bjermeland [2006]. In [Loftum, 2006], basically the development of the bikes
instrumentation system is described, with installation of an industrial PC with QNX
and creating drivers for the sensors and actuators. Bjermeland [2006] is dealing with
the dynamics and the mathematical aspects of the control system. Fossum [2006] is
describing some improvements and testing, basically focusing on the work of Loftum
[2006].

For a further description of previous work on bicycle dynamics and modeling, refer
to [Bjermeland, 2006, chap. 2].

1.4 A comment on outline and language

A comment on the outline of this thesis, and the language used would be appropriate.
Both Chapter 2 and Chapter 3 is to be considered as background chapters, describing
theoretical studies and the CyberBike's state at the point where the work on this thesis
started. The next chapter is discussing some various alternative solutions; which choices
were made and what turned out not to work. Then, in Chapter 5, the �nal solutions are
described. A recommendation on further work is put in Chapter 8 before the conclusion
part in Chapter 9. This feels natural for a project with a considerable part of work left
before it has reached its goal.

This thesis is written in English for two main reasons. The �rst is that the candi-
date wanted to gain the experience on carrying out a large technical report in English,
realizing that the close future as an employee includes a considerable amount of writing
on technical issues in this language. And second; the realization of an autonomous bicy-
cle, controlled by using an inverted pendulum substituting a leaning rider, has interests
beyond NTNU and Norway.



Chapter 2

Background

2.1 The CyberBike model

As previously mentioned, Bjermeland [2006] has developed a mathematical model of the
CyberBike, and a control algorithm that has been tested in simulations on the mathe-
matical model. To be able to connect the work done by Bjermeland and Loftum into a
complete functioning system, some understanding of the work done is necessary. This
section gives a short summary of the contents of [Bjermeland, 2006].

The task of his thesis was to develop a model, a controller and a simulator for the
bicyle, using steering and leaning (the inverted pendulum) as the manipulated variables.

2.1.1 Important assumptions and simpli�cations

Some assumptions and simpli�cations were made in the bike-modeling process.

First the bicycle is divided into �ve rigid bodies:

1. The front wheel

2. The rear wheel

3. The rear frame

4. The front frame (handlebars and front fork)

5. The inverted pendulum

Figure 2.1 shows a simpli�ed model of the CyberBike, where the center of mass for
all �ve rigid bodies are indicated. This assumption neglects elasticity in the frame and
other non ideal movements and deformations of the di�erent bodies.

The orientation in space used in the model is shown in Figure 2.2, where the z-axis
is pointing upwards, the x-axis is pointing in the bikes running direction when the yaw
angle ψ is zero.

3
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Figure 2.1: Main parameters for the bike model. Figure redrawn from [Bjermeland, 2006].
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Figure 2.2: Orientation within a right-handed coordinate system.
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For small angles, a rotation matrix could be approximated as shown in Equation (2.1):

Ra
b = Rz(ψ)Ry(θ)Rx(φ) (2.1)

=

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ


=

 cos(ψ) cos(θ) − sin(ψ) cos(φ) + cos(ψ) sin(θ) sin(ψ) sin(ψ) sin(φ) + cos(ψ) cos(φ) sin(θ)
sin(ψ) cos(θ) cos(ψ) cos(φ) + sin(φ) sin(θ) sin(ψ) − cos(ψ) sin(φ) + sin(θ) sin(ψ) cos(φ)
− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)


≈

 1 −ψ θ
ψ 1 −φ
−θ φ 1


This makes the rotation matrix linear. But it should be kept in mind that the model

will give a large error when the system starts to operate at wider angles.

Another important assumption made is that the bike is symmetric at its lengthwise
direction while in equilibrium. This is not true for the real CyberBike. As noted by
Bjermeland [2006, p. 90]) the placement of the steering motor to the left of the frame, is
violating this symmetry. But the introduction of the batteries, which are heavy compared
to most elements on the bike, will have a considerable e�ect on the rear frame's center
of mass.

It is also stated that constant velocity is a consequence of the linearized equations.

Another simpli�cation is that the bike is moving on a level surface (i.e. the pitch
angle are assumed to be zero at all times).

2.1.2 Modeling the di�erent parts

The position and parameters of the �ve rigid parts listed in the previous section, are
described as rotation and transformation matrices relative to an inertial frame i. Then
the rear wheel and rear frame, and the front frame and front wheel are connected together
to reduce the number of mass centers from �ve to three.

The positions of these mass centers are:

Rear frame and rear wheel mr:

ri
mr

=

 xrw + xr

yrw + xrψr − zrφr

zr

 (2.2)

where:
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• xrw and yrw forms the x- and y-component of the vector ri
rw, which is the position

of the point where the rear wheel is in contact with the ground surface

• xr, yr and zr are the wheel position of the center of mass.

• φr is the lean angle of the rear wheel/rear frame from the vertical

• ψr is the rear frame's yaw-angle (heading).

Pendulum mp:

ri
mp

=

 xrw + xp

yrw + xpψr − zpφr − hpφp

zp

 (2.3)

where:

• xp and zp is the position of the pendulum center of mass, relative to the rear wheel
to ground contact point

• hp is the length of the pendulum, from the rotating center, to the pendulum center
of mass

• φp is the pendulum angle

Front frame and front wheel mf :

ri
mp

=

 xrw + xf

yrw + uδ + xfψr − zfφr

zf

 (2.4)

where:

• xf and zf is the position of the mf related to the rear wheel to ground contact
point

• u is the lenght from the front fork to the mf center of mass point, measured in a
direction perpendicular to the front fork (i.e. π

2 − α from the horizontal forward
(x) axis).

• δ is the steer angle
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2.1.3 Other important parameters

To understand how to connect the Simulink model made by Bjermeland to the actual
CyberBike, an understanding of some of the various de�ned variables is needed. Two
important vectors used in the model are:

q =
[
q1
q2

]
=

 [
φr

δ

]
φp

 (2.5)

f =
[
f1

f2

]
=

 [
Mφr

Mδ

]
Mφp

 (2.6)

where:

• Mφr is the leaning torque on the total system

• Mφp is the leaning torque on pendulum rider

• Mφr is the steering torque

Controller design

The controller is designed to get a desired turn rate of the bicycle. This rate is either
measured or estimated through an observer described in [Bjermeland, 2006, chap. 6]. An
LQG1 control strategy was employed, which makes it possible to weigh the di�erent error
states of the physical system, and penalize excessive use of the actuators (i.e. motors
in the CyberBike's case). A principal block diagram of an LQG controller is shown in
Figure 2.3.

The observer states are shown in Equation (2.7) and (2.8), and the state space model
of the system is described in Equation (2.10) and 2.11).

1Linear quadratic Gaussian (control)
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Figure 2.3: LQG control block diagram, redrawn from [Bjermeland, 2006].

x1 =

 φr

δ
φp

 (2.7)

x2 = ẋ1

=

 φ̇r

δ̇

φ̇p

 (2.8)

u =
[
Mδ

Mφp

]
(2.9)

ẋ1 = x2 (2.10)

ẋ2 = M−1(−(K0 + v2K2)x1 − vC1x2 + u) (2.11)

where

• M is the 3× 3 Mass Matrix

• K0 is the 3× 3 Velocity Independent Sti�ness Matrix

• K2 is the 3× 3 Velocity Dependent Sti�ness Matrix

• C1 is the 3× 3 Velocity Dependent Damping Matrix

• v is the speed vector
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To trace all parameters in the matrices in Equation (2.11) back to variables introduced
in the previous sections, would require more space in this thesis than seems reasonable.
Thus; for a further description of the elements in Equation (2.11), it is re�ered to [Bjer-
meland, 2006].

Then the Kalman �lter is designed. In [Bjermeland, 2006, p. 60] it is stated that:

�It is assumed that the turning rate is estimated through the measurement of
the steering angle. The heading state is therefore omitted in the A-matrix,
and the turning rate is measured in the C-matrix from the steering angle and
angular velocity. This should be altered if the turning rate is measured with
other principles, such as a gyro.�

This would have some impact on the solution of this thesis, owing to the fact that a
gyro actually is used to measure the yaw, see Section 3.1.7 and Section 4.1.3.

Matlab and Simulink model

The main Simulink model made by [Bjermeland, 2006] is shown in Figure 2.4.

To make the model work as it is supposed to, it is necessary to run the �les shown in
Table 2.1. These �les are automatically loaded into the Simulink model at initialization.
A simulation GUI2 is popping up when the simulation is �nished (see Figure 2.5). This
could be deactivated in the menu that shows up when double clicking on the �Plotting�
block (located at the upper right corner in Figure 2.4).

Number in sequence File −→ Generates

1 load_parameters.m −→ parameters.mat

2 initModel.m −→ bikesystem.mat

3 get_lqg.m −→ kalman.mat

−→ lqr.mat

−→ speed.mat

Table 2.1: Matlab �les to initiate the parameters used in the Simulink model.

The solver used in Simulink for this model is a Runge-Kutta �xed step numerical
algorithm [see Egeland and Gravdahl, 2002, chap. 14].

2Graphical User Interface
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Figure 2.5: Screenshot of the simulation GUI, constructed by Bjermeland [2006].
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2.2 QNX Neutrino

QNX Neutrino is an RTOS3 made by QSSL4. The fundamental concepts of QNX Neu-
trino are message passing and resource managers, and thus the description in the follow-
ing two section are mainly in regard to these subjects, based on [Krten, 2001, chap. 2
and 5 respectively].

2.2.1 Message Passing

The QNX family of operating systems has a microkernel architecture, and achieves scal-
ability by making all service-providing components modular. When installing a QNX
Neutrino system, its consisting modules should be as independent of each other, that
every module could be considered optional. Thus it should be no problem to make the
system as small � or big � as possible. The key behind this is the message passing between
the modules.

The code, for instance for performing a read or write operation on a �le, will look
like standard POSIX C. The message passing part is done by the Neutrino C library,
which leads to the programmer not having to write message-passing functions if he is
developing code for a QNX system.

A great bene�t from the message passing architecture is that it is making network
distributed systems act all the same as one-node systems. The messages could just as
easily be sent to a module on another node as to the same node, as opposed to traditional-
kernel systems where local and remote (network) services are implemented in a totally
di�erent way.

Modules are divided into servers and clients. The key phrases used by Krten [2001,
p 111] are:

• �The client sends to the server.�

• �The client receives from the client.�

• �The server replies to the client.�

When the client wants to send a request to a server, it will get blocked until the server
has completed the request and the client has got its �answer�. First it has to establish
a connection with the ConnectAttach() function, which returns a connection ID (coid),
and then it could use this ID to send its message by the MsgSend() function.

The server has to create a channel, by using the ChannelCreate() function. This
makes the clients able to connect via ConnectAttach(). Then the server will block on a
MsgReceive(), until it get its request. Then the client will be blocked while the server is
processing the request. The answer is sent by MsgReply(), which unblocks the client.

3Real-Time Operating System
4QNX Software Systems Limited
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There is a need to follow a strict send-hierarchy in a message passing environment.
This means that two threads should never send messages to each other. Threads should
be organized in levels, where all sends goes from one level to a higher level. This is to
prevent deadlocks, because if two threads could send messages to each other, sooner or
later they both will get blocked, waiting for the other's to reply.

Sometimes, situations where the send hierarchy would have to be violated arise. Then
the non-blocking function MsgDeliverEvent() comes into use. As an example, consider
a client sending a time consuming request to the server, but is not interested in being
blocked while waiting for the server to �nish its task. Then it makes a struct sigevent,
which in turn is used by the server � as an argument in the MsgDeliverEvent() call � to
inform the client about its completion of the request.

Messages are always delivered in a priority order. That is; if two processes sends
a �simultaneous�5 message, then the entire message from the process with the highest
priority is delivered to the server �rst.

When a message sent by the client is bigger than the bu�er speci�ed in the server's
receive bu�er, the server could call the function MsgRead() to read out the rest of the
message from the clients address space, while the client is still blocked. Similarly, there
exist a function called MsgWrite() which makes the server write into the clients address
space. This is useful e.g. in cases where the server is a I/O6 driver, and the client asks
the driver for several megabytes of data. Then the server could write it directly into the
clients bu�er, instead of constantly running with a huge memory allocated for such large
requests.

To send multipart messages the IOV7 facilities in QNX could be used together with
the corresponding Msg*v functions8 (e.g. MsgWritev() and MsgReadv()). An IOV con-
tains a number of pointers to memory locations and theseMsg*v() functions take an IOV
and number of the vector parts as arguments, instead of the bu�er and its length.

Another mechanism of the message passing facility is pulses. This distinguishes itself
from the rest by the property that it is non-blocking. When a MsgReceive() returns 0
as receive ID it means that the message is a pulse. With pulses only 40 bits of content
can be sent. In cases where a pulse is the only type of message one want to receive, the
MsgReceivePulse() comes into play.

Finally it is worth mentioning that QNX Neutrino is doing priority inheritance on
the message passing threads, to avoid priority inversion. These terms might need a short
explanation:

Priority inversion is the phenomenon that arises when a low-priority thread is con-
suming all available (or preventing other threads from consuming) CPU9 time, even
if higher-priority threads are ready to run.

5On a single processor machine there is no such thing as absolute simultaneous processing.
6Input/Output
7I/O vector
8The character �*� is here used as a wildcard, and could be replaced for instance by �Write�, �Send�,

�Reply� or �Read�.
9Central Processing Unit
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Priority inheritance is the solution provided by Neutrino, and is a feature that makes
a receiving thread inherit the priority of the highest of all blocking clients.

For an explanation on how problems of priority inversion could occur, and why in-
heritance is the solution to the problem, refer to [Krten, 2001].

2.2.2 Resource Managers

Resource Managers (RM) are simply programs with some well-de�ned characteristics,
which have the goal of presenting an abstract view of a service. The abstraction is based
on the POSIX10 speci�cation. RM will almost exclusively be dealing with �le-descriptor
based functions. Clients that whish to use an RM usually initiates the communication
by an open() or fopen() call. In QNX Neutrino, such a call is routed as messages to
the Process Manager (PM), which will return which resource manager(s) that suits the
open() call (i.e. which �le was speci�ed as argument). Then a request to the referred
RM is sent. When the RM replies, the open() call returns.

The Resource Manager itself has to register which part of the pathname space it
whish to be responsible for.

The Resource Manager library provided by QSSL consists of some pieces:

• thread pool functions

• dispatch interface

• resource manager functions

• POSIX library helper function

The drivers devc-imu, devc-velo, devc-dmm32at written by Loftum [2006] for the
CyberBike, are all made as Resource Managers.

The most important function calls in an RM are:

dispacth_create() creates a dispatch structure which is used for blocking on the mes-
sage reception.

iofunc_attr_init() initializes the attribute structure used by the device. The struc-
tures contain information about a particular device and it exists one per device
name.

iofunc_func_init() initializes the two data structures cfuncs and ifuncs, which con-
tain pointers to the connect and I/O functions, respectively. The library is provid-
ing default POSIX versions of functions for handling connect and I/O messages,
and the iofunc_func_init() is binding these to the given function tables supplied
as arguments.

10Portable Operating System Interface
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resmgr_attach() creates a channel that the RM will use for receiving messages, and
talks to the PM to tell it which part of the pathname space this RM is going to
be responsible for. This is where the dispatch handle, pathname, and the connect
and I/O message handlers all get bound together.

resmgr_context_alloc() allocates a resource managers internal context block, which
contains information relevant to the message being processed.

resmgr_block() is the blocking call, making the RM wait for a message from a client.

resmgr_handler() is called once the message arrives from the client, to process the
request.

In [Krten, 2001] a �gure of the �big picture� is shown, which � according to Krten
� �contains almost everything related to a resource manager�. A version of this �gure is
shown in Figure 2.6.

event

control

thread

functions

io open

io unlink

io readlilnk

io read

io write

io devctl

io iseek
I/O

/dev/path2

/dev/path1

attr

connect

functions

mount

pool loop

chid

OCB

Figure 2.6: Architecture of a resource manager � the big picture. Figure redrawn from
[Krten, 2001] (OCB = Open Context Block).

The resource manager receives certain well-de�ned messages, as can be seen from
Figure 2.6, these can be divided into two categories; connect messages and I/O messages.
Connect messages are related to pathname-based operations, and may establish a context
for further work. The I/O messages arrive after a connect message, and indicate the
actual request from the client. QSSL provides a set of POSIX helper functions in the
resource manager library, that performs a lot of the work of dealing with these messages.
The function iofunc_func_init() (mentioned earlier) initializes a list of these to the
resource manager, but the functions one might want to give some extra functionality or
di�erent behaviour � i.e. the functionality one actually whish to achieve in the RM -
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could afterwards be overridden. Here the function calls iofunc_*_default() (where '*' is
meant to be replaced by the corresponding function, e.g. read, write, or devctl) might
come in handy.

The devctl() function, mentioned above, is important in regards to the subject of
Resource Managers. The function name is an abbreviation for DEVice ConTroL, and is
used by the client to control aspects of the RM. The devctl() function takes the following
�ve arguments:

fd is the �le descriptor of the resource manager that is receiving the devctl -request.

dcmd is the command itself, consisting of 2 bits describing the direction of the data
transfer (if any), and 30 bits describing the command.

dev_data_ptr is a pointer to a data area for sending to, receiving from, or both.

nbytes is the size of the dev_data_ptr data area.

dev_info_ptr is an extra information variable that can be set by the RM.

The CyberBike drivers devc-dmm32at, devc-velo and devc-imu all implements their
own version of devctl().

In most of these drivers a set of dispatch_context_alloc(), dispatch_block() and dis-
patch_handler() functions have been used instead of the corresponding resmgr_*() func-
tions, mentioned earlier. For instance the function resmgr_block(), which takes a vari-
able of type resmgr_context_t as an argument, is a special case of the function dis-
patch_block(), which takes a variable of the type dispatch_context_t in stead. The
resmgr versions should only be used with simple resource managers.
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Chapter 3

System description

This chapter describes the state of the CyberBike at the point where the work on this
thesis started. First the various hardware devices are introduced, and then a short
summary of the code that was delivered with the project.

3.1 Hardware

An overview of the CyberBike's hardware units at the starting point is shown in Figure 3.1.
Monitors, Ethernet connections, keyboards and mice are not shown. The IMU and
propulsion motor are included in the �gure, even though they were unmounted and not
connected by the start of this thesis, because a considerable e�ort were put into making
them available to the CyberBike before this thesis started.

3.1.1 Power supply

The power supply unit used for DC/DC converting (transformation) is a ACE-890C from
IEI Technology Corporation. Speci�c data for this module is shown in Table 3.1, which
is extracted from the vendor's website [IEI Technology Corp., 2005]. Figure 3.2 shows
the ACE-890C.

3.1.2 Computer

Figure 3.3 shows the computer used on the CyberBike project, and in Table 3.2 a sum-
mary of its speci�c data, extracted from the vendors website, are listed.

The card is a Wafer-9371A Single-board computer (SBC), with a 400 MHz1 Intel
Celeron processor, 256 MB2 SO-DIMM3 RAM4, and many di�erent possibilities for con-

1Mega Hertz
2Mega Byte
3Small Outline Dual In-line Memory Module
4Random Access Memory

19



20 CHAPTER 3. SYSTEM DESCRIPTION

Power source
Power supply unit (psu)

ACE-890C

Single Board Computer 
(SBC)

Wafer-9371A

I/O Card

Diamond-MM-32-AT

Motor controller card

Baldor TFM 060-06-01-3

Propulsion motor

Steering motor

Pendulum motor

Propulsion tachometer

Steering tachometer

Steering potmeter

Pendulum tachometer

Pendulum potmeter

Power

Power

PC/104 bus connectionPower

Reference signal

Measurement

Spark Fun IMU
Measure-

Ment
data

PWM
Power
signal

Figure 3.1: Overview of the CyberBike's various hardware devices by the start of this
work.

Figure 3.2: The ACE-890C power supply unit. Picture copied from [Loftum, 2006].
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Input

Voltage 18 ∼ 36VDC
Input Current 7A(RMS)@24VDC

Output
Voltage Min. load Max. load Ripple & Noise

+5V 0A 10A 50mV
+12V 0A 2.5A 100mV
-12V 0A 0.5A 100mV

General

Power 86W
E�ciency 70 %
MTBF 251,000hrs
Temperature 0 ∼ 50◦C (Operating)

-20 ∼ 85◦C (Storage)
Dimension 152.4× 89× 39mm

Table 3.1: Speci�c data for ACE-890C.

Figure 3.3: The Wafer-9371A SBC used at the CyberBike. Picture taken from [Loftum,
2006].
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Parameter Value

Product WAFER-9371A

Form Factor 3.5� SBC

CPU ULV Intel Celeron 400

Display CRT
36-bit TTL
2x18-bit LVDS

I/O Interface 1x EIDE
1x FDD(optional �oppy drive connector)
1x PS2 Keyboard connector
1x PS2 Mouse connector
1x RS-232/422/485
1x RS-232
1x LPT (parallel port connector)

Ethernet 10/100Mbps RTL8100C

USB 2x USB 1.1

Audio ALC655 5.1CH

IrDA 115kbps

WDT 1 ∼ 255 sec

Power Consumption 5V@2.01A ULV Celeron 400/256MB

Dimension 5.7� × 4�

Table 3.2: Speci�c data for Wafer-9371A.
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nection, as shown in the Table 3.2. PC/104 devices, screens, USB5-mice, keyboards,
USB-sticks, hard drives and serial communication devices can easily be attached to the
Wafer-9371A, and communication with the device is made simple by an Ethernet con-
nector.

COM1 is set up to be using RS-232 signals, but COM2 could be con�gured to com-
municate on RS-232, RS-422 or RS-485 by modifying the jumper JP4 settings on Wafer-
9371A. The location of JP4 is showed in Figure 3.4, and the pin con�guration is showed
in Figure 3.3.

Figure 3.4: The JP4 pin locations on Wafer-9371A. Figure taken from [IEI Technology
Corp., 2006].

PIN
COMBINATION DESCRIPTION

1-3 RS-232
3-5/2-4 RS-422
3-5/4-6 RS-485

Table 3.3: The Wafer-9371A JP4 settings to con�gure COM2.

3.1.3 Storage

When the work on this thesis started, the CyberBike was equipped with a compact �ash
card (CF) as storage medium, shown in Figure 3.5. This is a 1GB6 �TwinMOS UltraX
CompactFlash� card, with 140x reading transfer speed. It is important that this speed
is high, to avoid creating a bottleneck in the execution speed.

5Universal Serial Bus
6Giga Byte
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Figure 3.5: The Compact Flash card from TwinMOS.

3.1.4 I/O card

To be able to read the measurements from the CyberBike's potmeters and tachometers
into the CyberBikePC, and to put out a control voltage to the motor controller card,
an I/O card is needed. A Diamond-MM-32-AT 16-bit analog I/O module � referred
to as DMM-32-AT from now on � connected to the CyberBikePC's motherboard (The
Wafer-9371A, see Section 3.1.2) via a PC/104 connector. A picture of the card is shown
in Figure 5.1.

Figure 3.6: The DMM-32-AT-card, taken from [Diamond Systems Corporation, 2003]

The DMM-32-AT's features are listed in [Diamond Systems Corporation, 2003], and
the most relevant are listed here:
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Analog Inputs

• 32 input channels, may be con�gured as 32 single-ended, 16 di�erential, or 16 SE
+ 8 DI

• 16-bit resolution

• Programmable gain, range, and polarity on inputs

• 200,000 samples per second maximum sampling rate

• 512-sample FIFO7 for reduced interrupt overhead

• Auto calibration of all input ranges under software control

Analog Outputs

• 4 analog output channels with 12-bit resolution, 5mA max output current

• Multiple �xed full-scale output ranges, including unipolar and bipolar ranges

• Programmable full-scale range capability

• Auto calibration under software control

In addition the DMM-32-AT has 24 bidirectional digital I/O lines, a 32 bit counter/-
timer for A/D8 pacer clock and interrupt timing, and a 16 bit general purpose coun-
ter/timer, both with programmable input sources, and multiple-board synchronization
capability.

Headers

In this section it is attempted to give a short explanation of the DMM-32-AT's 9 headers,
with respect to the most CyberBike-relevant features. An overview of the headers is given
in Table 3.4.

The analog I/O pins are located at J3, and the digital ones at the J4 header. The
latter is unconnected in the CyberBike's case, but should be ready for use if digital
measurement units are to be connected in the future.

The analog input channels are con�gured as 16 single ended (i.e. referenced to analog
ground) plus 8 di�erential (i.e. measured by subtracting the low input from the high
input), by setting the J5 jumpers as shown in Table 3.5. The resulting pinout on the
analog out header is shown in Table 3.6. Di�erential input is useful when common mode
noise rejection is desired.

7First In - First Out
8Analog-to-Digital
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Name Description

J1 PC/104 8-bit bus header
J2 PC/104 16-bit bus header (only used for interrupt level)
J3 Analog I/O header (includes trigger and ctr/timer signals)
J4 Digital I/O header
J5 Analog input single-ended / di�erential con�guration
J6 D/A unipolar / bipolar / full-scale range con�guration
J7 Base address / DMA level / interrupt level / bus width
J8 Digital I/O pull-up / pull-down con�guration
J9 Test connector; not used in normal operation

Table 3.4: Overview of DMM-32-AT headers. Taken from [Diamond Systems Corporation,
2003, p. 5]

Jumper settings
Con�guration 1 2 3 4 5 6

0-7 SE, 8-15 DI, 16-23 SE 1 0 0 1 0 1

Table 3.5: Header J5 con�guration for analog in on DMM-32-AT

In Table 3.6 the signal Vref Out is a +5 volt signal from the on-board reference chip,
A/D Convert could be used to synchronize multiple boards, Dout 2 - Dout 0 are digital
output ports with counter/timer functions, Din 3 - Din 0 are digital input ports with
counter/timer and external trigger functions, +5V is connected to the PC/104 bus power
supply, and Dgnd is digital ground connected to the PC/104 bus ground.

Header J7 have jumpers set on position '7' and 'R', which means that a 1KΩ pull-
down resistor is connected to the IRQ line 7. Also a jumper is set on 'A', to set the base
address to default; 0x300.

Header J6 controls the D/A9 output, and jumpers are set like shown in Table 3.7
to give a bipolar ±5V output range. Other jumper settings could give ±10V (bipolar),
unipolar 0 − 5V or 0 − 10V , or even programmable unipolar or bipolar [see Diamond
Systems Corporation, 2003, p. 10]. The last pair of pins, the �R� position, controls the
�Power-up reset mode�, and is left open to reset to mid-scale (0V in bipolar mode).

I/O Register Map

The DMM-32-AT occupies 16 bytes in the system I/O address space. In [Diamond Sys-
tems Corporation, 2003, chap. 6 and 7] these registers are described. This is interesting
when the �Universal Drivertm� from the vendor is not used, which is the case for the
original devc-dmm32at driver made by Loftum. Furthermore, some problems on the
DMM-32-AT (see Section 6.5) made it necessary to understand how these registers work;
hence a summary of these chapters is following next.

9Digital-to-Analog
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AGND 1 2 AGND
Vin 0 3 4 Vin 16
Vin 1 5 6 Vin 17
Vin 2 7 8 Vin 18
Vin 3 9 10 Vin 19
Vin 4 11 12 Vin 20
Vin 5 13 14 Vin 21
Vin 6 15 16 Vin 22
Vin 7 17 18 Vin 23

Vin 8+ 19 20 Vin 8-
Vin 9+ 21 22 Vin 9-
Vin 10+ 23 24 Vin 10-
Vin 11+ 25 26 Vin 11-
Vin 12+ 27 28 Vin 12-
Vin 13+ 29 30 Vin 13-
Vin 14+ 31 32 Vin 14-
Vin 15+ 33 34 Vin 15-
Vout 3 35 36 Vout 2
Vout 1 37 38 Vout 0

Vref Out 39 40 Agnd
A/D Convert 41 42 Ctr 2 Out / Dout 2

Dout 1 43 44 Ctr 0 Out / Dout 0
Extclk / Din 3 45 46 Extgate / Din 2
Gate 0 / Din 1 47 48 Clk 0 / Din 0

+5V 49 50 Dgnd

Table 3.6: Header J3 (analog I/O) pinout on DMM-32-AT.

Jumper settings
Output Range 10 5 P B R

±5V 0 1 0 1 0

Table 3.7: Header J6 con�guration for D/A output on DMM-32-AT
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The I/O register map is shown in Table 3.8. Base address is set to 0x300 in this case,
due to the J7 settings mentioned earlier.

Base + Write Function Read Function

0 Start A/D conversion A/D LSB (bits 7 - 0)
1 Auxiliary digital output A/D MSB (bits 15 - 8)
2 A/D low channel register A/D low channel register readback
3 A/D high channel register A/D high channel register readback
4 D/A LSB register Auxiliary digital input port
5 D/A MSB + channel register Update all D/A channels
6 FIFO depth register FIFO depth register
7 FIFO control register FIFO status register
8 Miscellaneous control register Status register
9 Operation control register Operation status register
10 Counter/timer control register Counter/timer control reg. readback
11 Analog con�guration register Analog con�guration reg. readback
12 8254 / 8255 register 8254 / 8255 register
13 8254 / 8255 register 8254 / 8255 register
14 8254 / 8255 register 8254 / 8255 register
15 8254 / 8255 register 8254 / 8255 register

Table 3.8: DMM-32-AT I/O Register Map [from Diamond Systems Corporation, 2003,
chap. 6].

The available I/O devices that can be accessed in the last 4 registers in Table 3.8
are depending on the last two bits in the Base + 8 register (the Miscellaneous
control/Status register):

00 8254 type counter/timer

01 8255 type digital I/O

10 Reserved

11 Calibration

The control bit settings are shown in front of the device name in the above list. In the
CyberBike's case, the last setting is the most interesting, because this is the one used
in the initialization procedure of devc-dmm32at. The �rst register (Base + 12) would
then be the data register in an EEPROM10 read or write operation, or a data register
in a TrimDAC write operation. The next (Base+13) would specify an address in the
range 0 to 127 by its 7 LSB11. Register Base + 14 is used to initiate various commands
related to auto calibration, and register Base + 15 is used to set an EEPROM Access

10Electrically Erasable Programmable Read-Only Memory
11Least Signi�cant Bit
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Key to help preventing accidental corruption of the EEPROM contents. Base + 15 is
also used to read back the FPGA12 Revision Code.

Analog ranges and resolutions

The DMM-32-AT uses a 16-bit ADC13 for analog input, which provides a resolution
of 153µV per change in LSB when the full-scale range is set to ±5V , as shown in
Equation (3.1).

5V − (−5V )
216 − 1

= 153µV (3.1)

The value returned by the A/D converter is a two's complement number in the range
-32768 to 32767. Because the input range of the A/D is �xed This is regardless of the
input range.

Four analog outputs are provided by a 12-bit DAC14. This gives the resolution shown
in equation Equation (3.2). The resolution is the smallest possible change in output
voltage in this case.

5V − (−5V )
212 − 1

= 2.44mV (3.2)

Auto calibration

The DMM-32-AT is equipped with an octal 8-bit TrimDAC and high-precision, low-drift
reference voltages on the board. Whenever the programmer decides to call for it, this
circuitry works in conjunction with the driver software to perform an auto calibration.
The optimum TrimDAC values for each input range are stored in EEPROM.

For A/D calibration the entire process takes about one second for each input range.
The Universal Drivertm software provided by the Diamond Systems Corporation, have
two speci�c functions for this purpose; dscADAutoCal() and dscDAAutoCal, and a stan-
dalone DOS program to enable calibration without any programming.

3.1.5 Motor controller card

The motors on the CyberBike are powered through a Baldor TFM 060-06-01-3, see
Figure 3.7. A summary of the speci�c data for this card is extracted from [Baldor ASR,
1988]:

• 4 quadrant operation

• 360 Watts possible continuous output power

12Field-programmable gate array
13Analog-to-Digital Converter
14Digital-to-Analog Converter
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• 6A continuous phase current

• 24V nominal DC15 bus voltage (which makes it possible to operate it from two 12V
batteries in series circuit)

• Double eurocard format

• Internal power supply, accepting 24 to 65 V as input

• Di�erential reference input, to avoid ground loops

• Short-circuit-proof between the outputs, and to ground

• Bandwith from DC (0 Hz) up to 2.5 kHz (≈ 14.7 % of the switching frequency of
the pulse width modulated output signal)

• Ca. 80 % e�ciency

Figure 3.7: The CyberBike's motorcontroller card, a Baldor TFM 060-06-01-3. Seen both
from the rear and the front. Pictures copied from [Loftum, 2006].

3.1.6 Motors

There are three motors installed on the CyberBike, to perform three di�erent tasks;
make the CyberBike move forward (propulsion), change the steering angle, and change
the pendulum angle.

Propulsion motor

The propulsion motor was not installed when the writer of this thesis took over the
CyberBike, but it was acquired and available at the start of the project. To be able
to connect and use the motor correctly, some information about it was collected, and

15Direct Current
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a slightly more detailed presentation of this motor than the other two follows in this
section.

Figure 3.8 shows the motor from [DtC-Lenze as, 2007], motor type 13.121.55.3.2.0
with worm gear SSN31. The digits in the motor type code have a special meaning
[Lenze, 2002]

13.: small DC motor

12 : permanent magnet motor with smooth housing

1.: speci�cation for A side: for worm gearboxes (SSN)

55.: describes the motor frame size

3.: gearbox size 31 / SSN31

2.: motor frame form: �ange mounting

0.: Speci�cation B-side: no attachments (e.g. brakes, tachometers or pulse encoders)

Technical speci�cation is shown in Table 3.9.

Name Variable Value Unit

Motor Rated power Pr 200 W
Rated torque Mr 0.64 Nm
Moment of inertia J 3.2 kg cm2

Rated rotational speed nr 3000 rpm
Outer diameter dout 80 mm
Motor weight (mass) mmot 3.7 kg
Rated current Ir 11.8 A
Armature resistance RA 0.19 Ω
Permissible radial load FR 340 N
Permissible peak current Imax 77 A

Gear Max continuous torque Mmax 16 Nm
Rated output torque M2 2.7 Nm
Ratio i 5
Operating factor c 5.15

Table 3.9: Speci�cation for the propulsion motor and gear.

Motor for the inverted pendulum

The pendulum motor is a ITT GR 63 x 55 TG11, according to [Loftum, 2006]. Some
speci�c data is given in Table 3.10. On the motor it is mounted a planetary gear with
ratio 79:1.
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Figure 3.8: The propulsion motor; a Lenze Worm Geared motor

Figure 3.9: The pendulum motor; an ITT GR 63 x 55 TG11 with planetary gear. Picture
taken from [Fossum, 2006].

Supply voltage ±24V
Nominal current 4A

Nominal rotating speed 3350min−1

Table 3.10: Speci�c data for the pendulum motor, read from its nameplate.
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Steering motor

The steering motor is an ITT GR 53 x 58 TG11. Its speci�c data is given in Table 3.11.

Figure 3.10: The steering motor; an ITT GR 53 x 58 TG11. Picture taken from [Loftum,
2006].

Supply voltage 24V
Nominal current 2.9A
Nominal rotating speed 3000min−1

Table 3.11: Speci�c data for the steering motor, read from its nameplate.

3.1.7 IMU - Spark Fun

The IMU16 (see Figure 3.11) consists of a small 2x2 inch motherboard, and 3 gyro cards
(see Figure 3.12). The motherboard contains a PIC16F88 µC17 with a built in DAC, and
a CD74HC4067 multiplexer. The multiplexer is collecting the 5 measurements provided
by each of the 3 gyro cards, and sends them to the µC, which in turn sends them out on
its UART18.

When the IMU receives an ascii character '7' it starts to deliver data over the serial
connection. The 34 bytes messages are delivered in a speed of 23.5Hz, and have a

16Inertial Measurement Unit
17microcontroller
18Universal Asynchronous Receiver Transmitter
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Figure 3.11: IMU with 6 Degrees of Freedom from Spark Fun Electronics. Picture is
copied from [Loftum, 2006]

Figure 3.12: Gyro card for the IMU shown from both sides, from [Spark Fun, 2005].
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speci�ed sequence. The data stream begins with the ascii character 'A' followed by the
16 DAC measurements (5 measurements from 3 units, plus battery voltage), shown in
the following list:

1. Pitch, Rate out

2. Pitch, 2.5 V

3. Pitch, Temperature

4. Pitch, YFilter

5. Pitch, XFilter

6. Roll, Rate out

7. Roll, 2.5 V

8. Roll, Temperature

9. Roll, YFilter

10. Roll, XFilter

11. Yaw, Rate out

12. Yaw, 2.5 V

13. Yaw, Temperature

14. Yaw, YFilter

15. Yaw, XFilter

16. Battery Voltage

The data stream is ended with an ascii 'Z', providing a simple way to synchronize
the data stream.

3.2 Software

The operating system running on the CyberBikePC at the starting point of this thesis'
work, was a minimal QNX Neutrino OS19 image, set up by [Loftum, 2006]. Only the most
important features of the operating system was included, in order to keep the system
simple and small. For instance; no graphical user interface � usually Photon in the QNX
case � was installed.

Some drivers were made to provide measurement data to the control algorithm. These
are shown in Figure 3.13. The drivers are made as resource managers, each providing a
set of device �le names under the /dev/ directory, see Section 2.2.2.

19Operating System
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DMM-32-AT

Control algorithm

IMU

devc-velo

devc-dmm32at devc-imu

Sensors and

actuators

Figure 3.13: Schematic overview of drivers developed by Loftum [2006]. Figure translated
and redrawn with modi�cations from his master thesis.
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Suggested solution

4.1 IMU alternatives

Information about how the CyberBike is moving is intended to be delivered to the con-
trol system by an Inertial Measurement Unit (IMU). An IMU from Spark Fun [2005]
have already been bought by the Department of Engineering Cybernetics for this pur-
pose. By the start of this work the IMU had just arrived from Spark Fun, due to some
reconditioning work.

Hence the �rst thing that had to be done was to test the unit. An IMU driver had
already been developed by Loftum [2006], but not thoroughly tested. The IMU has a
UART-interface, and this signal had to be transformed to a RS-232-signal to be able to
communicate with the CyberBikePC.

4.1.1 RS-232 to UART transceiver

The �rmware on the IMU is using the UART at baud rate of 57600bps.

The UART signals delivered from the IMU needed to get transformed to an RS232
signal, to be connected to the Wafer-9371A. For this purpose Maxim/Dallas Semicon-
ductors [2006] is providing the iC MAX233CPP, which is placed on its own PCB1.

Over this connection the output data of 34 bytes is delivered to the CyberBike's
computer. A picture of this PCB is shown in Figure 4.1, and the layout could be found
in Appendix F.

4.1.2 Driver issues

On the driver for the initial IMU from Spark Fun [2005], some problems were discov-
ered when the driver was started on the CyberBikePC in verbose mode, like shown in
Printout 4.1.

1Printed Circuit Board

37
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Figure 4.1: Photo of the IMU and UART-to-RS232-converter card, mounted in the Cy-
berBike's suitcase.

audun@audislappis:~/report$ telnet 129.241.154.76

Trying 129.241.154.76...

Connected to 129.241.154.76.

Escape character is '^]'.

login: root

# devc-imu verbose &

[1] 57360

# devc-imu: Verbose mode

devc-imu: Opening serial port ...

devc-imu: Port opened. File desc: 3

ImuThread: I'm alive! Filedesc: 3

ImuThread: Polling...

devc-imu: Running...

ImuThread: Read: 522 522 522 522 522 522 522 522 522 522 522 522 522 522 522 522

ImuThread: Polling...

Printout 4.1: Terminal dump of CyberBike-login and starting of IMU-driver.
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From there the terminal displays measurements only occasionally, and not in the
speed at 23.5Hz, as stated by Spark Fun [2005]. Nevertheless, the diode on the IMU is
still lit, indicating that the unit is in operation.

The �rst thing to check is if the IMU has ceased delivering the speci�ed amount
of measurements. The IMU was connected to the Windows XP development host PC's
serial port (RS232) to see if something was wrong with the unit. In Figure 4.2 the output
of the terminal window is shown.

Figure 4.2: Screenshot of terminal window, listening to the IMU.

The terminal has problems coping with the speed of the IMU, and the output on
the screen is lagging somewhat. When the IMU is reset by its own hardware button, it
takes some time before the terminal window has �ushed its bu�er to the screen. This
is assumed to be an indication that the IMU is delivering data at the speci�ed speed.
But here it is important to note that the IMU is supposed to send an ascii character 'A'
before its 16 measurements and the character 'Z', see Section 3.1.7. From the terminal
window it is di�cult to see whether the IMU is delivering the correct data stream �
because the terminal interprets the measurements as ascii characters on the screen � but
we clearly can see occurrences of 'ZA', between all the �nonsense�. This indicates the end
of a stream, and the beginning of the next.
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Later, when some adjustments of the IMU driver, devc-imu was tested, the serial
driver at the CyberBike devc-ser8250 had to be restarted (for a di�erent reason). Af-
terwards, when the IMU driver was restarted, it began to �ush loads of measurements
to the telnet terminal (similar to the last two lines in Printout 4.1). Hence something is
wrong about the way the serial driver is started at system boot.

In [Loftum, 2006, p 26] the build�le for the OS image originally running at the
CyberBike is shown. Here we can see that the serial driver is executed with the option
�-e�, which means that the stream is ASCII formatted. The default option �-E� means
raw output, and this explains why the IMU driver �suddenly worked� when the serial
driver was restarted without specifying any options.

Code sample 4.1 Part of the �le build�le velo.build made by Loftum [2006] where
speci�cation of how the serial driver devc-ser8250 should be started during system boot.

##############

# Script

##############

[+script] .script={

display_msg "QNX on Cyberbike"

seedres

devc-ser8250 -e -b57600 &

reopen /dev/ser1

This problem was part of the motivation for doing changes to the OS running at the
CyberBikePC. When the OS upgrade was done � as described in Section 4.2 � extended
functionality could be used to investigate the IMU driver further. The program qconn,
which was started at the CyberBikePC, made it possible to monitor the CPU consump-
tion for each process there, through the Momentics IDE2 running on the Development
PC (Windows XP).

When the serial driver was running alone it practically didn't use any CPU, but as
soon as the IMU driver was started, they used � together with the driver for terminal
I/O �ushing printouts to the screen � 100% of the available processing power. This is a
problem because the devc-velo, devc-dmm32at and the control algorithm (RT-Workshop
generated code) needs a signi�cant part of the CPU time, when the bike is operating.

Some code optimizations were performed, with practically no seemingly improve-
ments. The error was �nally found to be a wrong argument passed to the IMU driver,
when opening the serial device.

The code for opening the serial device in devc-imu.c is shown in Code sample 4.2.

2Integrated Development Environment
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The �ag O_NDELAY is speci�ed as a parameter in the open() call, making the message
passing operations (read() and devctl())to this device non-blocking. Hence the reading
thread in the IMU driver, would check if there was any available data at the serial port,
and if not; check again immediately. Practically this thread was performing a busy-
loop, doing less useful operations most of the time. This also explains why the code
optimization didn't give any results; the busy loop would eat up all the freed CPU time.

Code sample 4.2 Opening of the serial device in devc-imu. O_NDELAY is speci�ed.

printf("%s:\tOpening serial port ...\n",NAME);

if ( (serialFD=open(SERIAL_DEVICE,O_RDWR | O_NOCTTY | O_NDELAY)) == −1 ){
printf("%s:\tUnable to open port \n",NAME);

exit(1);

}
else{
printf("%s:\tPort opened. File desc: %d\n",NAME,serialFD);

tcsetattr(serialFD,TCSAFLUSH,0);

}

Changing the second code line in Code sample 4.2 as shown in Code sample 4.3,
solved the problem.

Code sample 4.3 Opening of the serial device in devc-imu correctly.

if ( (serialFD=open(SERIAL_DEVICE,O_RDWR | O_NOCTTY )) == −1 ){
...

The CPU consumption for the serial driver and the IMU driver in common, was
now reduced from 100% to approximately 14% as shown in the �old version� column
in Table 4.1. The �new version� percentages is when running the imu-driver whith the
improvements, mentioned above.

CPU consumption old version new version

devc-imu 2.5% 0.05%
devc-ser8250 11% 1%

Table 4.1: CPU consumption for the old and new version of devc-imu (approximate
values).

These improvements were based on the use of the function readcond() instead of
read().

The IMU driver is made by two threads running in loops; the �rst one is handling
the requests required by a QNX resource manager, and the second one is reading from
the serial device, and stores the values in a measurement array. The �rst loop is shown
in Code sample 4.4.
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Code sample 4.4 The �rst loop in devc-imu.

while(running) {
if((ctp = dispatch_block(ctp)) == NULL) {
fprintf(stderr, "%s:\tblock error\n", NAME);

return EXIT_FAILURE;

}
dispatch_handler(ctp);

}

This shows some of the elegance of the QNX resource manager utility. The dis-
patch_block() function call is blocking until someone performs a call to the IMU driver,
such as read(), write() or devctl(). Then the default function for the requested operation
is called, unless a new function is registered for that operation. In this case only a new
read() function (imu_read()) and a devctl() (imu_devctl()) function is registered. For
instance, if someone is trying to read the value from the roll gyro unit, like shown in
Printout 4.2, the dispatch_block() call will unblock, and the function imu_read() will
be called. This function is returning the requested value from the measurement-array
to the terminal. Access to the measurement array is synchronized by a POSIX mutex
val_mutex.

# cd /dev/imu/roll

# cat rateout

512

512

512

516

519

540

(... continues until hitting "ctrl+c" ...)

#

Printout 4.2: Reading the roll rateout from the IMU device.

The second loop is reading from the serial device. The old version (i.e. the code as it
was by the starting point of the work on this master's thesis) is shown in Code sample 4.6.

The �rst thing to note about this code is the �busy while loop� at the start, looking
for an 'A' in the measurements read from serial device (the variable fd is a �le descriptor
passed to the thread in the pthread_create() call, and is the same as the serialFD

variable in Code sample 4.3).

The second thing is the synchronization mechanism, a POSIX mutex, which is locked
at the start of the loop, and unlocked afterwards. This lock's purpose is to protect



4.1. IMU alternatives 43

Code sample 4.5 The second loop in devc-imu, old version.

while (running){
// Waiting for start character (A)

if (verbose){
printf("ImuThread:\tPolling...\n");

}
while ( ((iReadCnt = read(fd, &buffer, 1)) <= 0) || buffer!=`A`);

// Lock mutex

if (pthread_mutex_lock(&val_mutex)){
printf("ImuThread:\tCouldnt lock mutex.\n");

}
// For each of the 16 16-bits measurements:

// Fetching 2 8-bit values for each measurement,

// and shifting/putting them into the measurement array.

if (verbose){
printf("ImuThread:\tRead: ");

}
for (ii=0; ii<16; ii++){
while ( (iReadCnt = read(fd, &buffer, 1)) <= 0);

measurements[ii] = ((buffer � 8) & 0xFF00);

while ( (iReadCnt = read(fd, &buffer, 1)) <= 0);

measurements[ii] |= (buffer & 0x00FF);

if (verbose){
printf("%d ",measurements[ii]);

}
}
if (verbose){
printf("\n");

}
// Release mutex

if ( pthread_mutex_unlock(&val_mutex)){
printf("ImuThread:\tCouldnt unlock mutex!\n");

}
}
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the measurement[] array from being read from (by the imu_read() function mentioned
above) at the same time as it is written to by this thread.

When the 'A' is found, the loading of data into the measurement array is done by (at
least) 32 sequential read operations on the serial device.

The reason for using the readcond() function instead of read() was because an rec-
ommendation from the QNX online library reference [QSSL, 2007c] about readcond():

�This function is an alternative to the read() function for terminal devices,
providing additional arguments for timed read operations. These additional
arguments can be used to minimize overhead when dealing with terminal de-
vices.�

4.1.3 IMU - Xsens (MTi)

At ITK3 a more advanced (and more expensive) IMU was acquired mainly to be shared
among two master projects; the CyberBike and a project on development of an AUAV4

[see Bjørntvedt, 2007].

The �MTi� IMU from Xsens Motion Technologies is shown in Figure 4.3.

Figure 4.3: The �MTi� from Xsens, with integrated DSP and magnetometer

In [Xsens, 2006, chap. 1.1] it is stated:

�The MTi is a miniature, gyro-enhanced Attitude and Heading Reference Sys-
tem (AHRS). Its internal low-power signal processor provides drift-free 3D
orientation as well as calibrated 3D acceleration, 3D rate of turn (rate gyro)
and 3D earth-magnetic �eld data. The MTi is an excellent measurement unit
for stabilization and control of cameras, robots, vehicles and other equipment.�

3Department of Engineering Cybernetics
4Autonomus Unmanned Aerial Vehicle
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Code sample 4.6 The second loop in devc-imu, new version. Most of the error checking
and terminal printouts are removed in this sample to increase readability.

// Setting up the FORWARD quali�er for the serial device:

if (tcgetattr( fd, &termio ) == −1 ) {
perror("ImuThread:\tERROR when tcgetattr():\n");

}
termio.c_cc[VFWD] = `Z`;

if (tcsetattr( fd, TCSANOW, &termio ) == −1 ) {
perror("ImuThread:\tERROR when tcsetattr():\n");

}

while (running) {
if ( warningCnt > 500 ) {
printf("ImuThread:\tWarning: high warning limit.\n");

warningCnt = 0;

}
// tell the serial driver (fd) to return data in bu�er

// (within speci�ed size) and that it should be:

// - at least 34 characters, or

// - 1/10 second before timeout (a 'Z' is dropped/missing)

iReadCnt = readcond( fd, buffer, sizeof(buffer), 34, 0, 0 );

// A lot of error checking on iReadCnt not shown here.

// Errors handled by printing an error message, incrementing a �warning counter� variable

// and execute a �continue;� to start at the top of the while loop again.

// Find the 'A' �rst:

bi = 0;

while ( buffer[bi] != A ) {
bi++;

}
if ( (bi > iReadCnt − 34) || (buffer[bi+34−1] != `Z`) ) {
// something is missing in the frame. Do error handling.

}

// Lock mutex

if (pthread_mutex_lock(&val_mutex)) {
printf("ImuThread:\tCouldnt lock mutex.\n");

}
bi++; // bi should now point to the element after 'A'

// When measurement is int:

for ( ii = 0 ; ii < 16; ii++ ){
measurements[ii] = ((buffer[bi]� 8) & 0xFF00);

measurements[ii] |= (buffer[bi+1] & 0x00FF);

bi += 2;

}
// Release mutex

if ( pthread_mutex_unlock(&val_mutex)) {
printf("ImuThread:\tCouldnt unlock mutex!\n");

}
}
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Figure 4.4: The MTi's S-system shown relative to the G-system. Figure copied from
[Xsens, 2006].

The MTi is delivered with cables for RS-232 and USB communication (the latter
have a serial to USB converter attached to the cable), some example applications, and a
�MT Software Development Kit�. This includes a C++ class for low-level communication,
which is the most important feature for this project. Direct low-level communication with
the MTi via RS-232/422 is recommended when real-time requirements are presented. An
example code for this kind of communication, which is compatible with and compileable
in both for Windows and Linux, is provided with the MTi. This makes development of
the driver for this device easier (see Section 5.2.1).

Output from the MTi is given from a calculation of the orientation between a sensor-
�xed (S) and an earth-�xed (G) reference co-ordinate system. The local earth-�xed
reference system is de�ned as a right handed Cartesian co-ordinate system with:

• X positive when pointing to the local magnetic North

• Y positive pointing westward; according to the previous point

• Z positive along the vertical axis

The output reference co-ordinate system could be reset to an object-�xed reference
system in four di�erent ways:

1. Heading reset; rede�nes the global coordinate's x-axis, while the z-axis is main-
tained along the vertical.

2. Global reset; resets all global axes to point in the direction of the current S-
coordinate system.

3. Object reset; de�nes how the sensor is oriented with respect to the coordinate axes
to which it is attached.

4. Alignment; a combined object/heading reset.
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The data could be received as rotation matrices, Euler angles (roll-pitch-yaw) or
quaternions. It is important to note that choosing Euler angles could cause some trouble
due to a mathematical singularity when the pitch angle is close to ±90◦, but in the
CyberBike's case this should not be an issue.

Connection

As mentioned earlier, the MTi could be connected using both USB and RS-232. Due to
some problems with the serial ports (described in Section 6.3), attempts to make the MTi
communicate with the CyberBikePC via USB seemed like a good option. A noticeable
amount of e�ort was put into this task, but with no positive result.

Without going too deep into the details of this part, it could be summarized as follows.
First, a search for virtual com port drivers in the QNX system and on the internet was
done, without �nding anything of particular interest. But some references to the QNX
USB Driver Development Kits (DDKs from now on) were found.

With a good framework as a basis, the development of a custom made driver for the
USB-to-serial converter seemed like an manageable task. The DDK for a USB printer
was downloaded from the QNX web page [QSSL]. The web page provides three di�erent
USB DDKs; mouse, keyboard and printer. Bulk transfer mode endpoints are only used
by the printer DDK, and therefore this was the most attractive starting point.

The information about the device, con�guration, classes, subclasses, interfaces, and
endpoints for the USB device from Xsens was obtained using the command shown in
Printout 4.3.

# usb -vvv | less

Printout 4.3: Listing the connected USB devices on a QNX system.

This command shows that the device has three endpoints; one control, and two for
bulk transfer (one for in and one for out transmissions).

The DDK was imported to the QNX Momentics IDE, and copied to a new project to
be con�gured for the speci�c purpose. The code was altered to only wait for incoming
connections from the Xsens' registered vendor id for, its speci�ed product and vendor
speci�c protocol. So far everything was working; when the device was plugged into the
USB port on the CyberBikePC, the insertion() function was called, and tried to set up
the device. But from there things got complicated. Receiving any data from the device
was never accomplished in any way. Seeking help on [OpenQNX], by reading a large part
of the USB-driver related threads, gave no result. However; a lot of people seemed to be
dealing with the same problem, and by this it was realized that the task was too big to
be solved within a reasonable amount of time in this project.

In the �nal solution the serial connection option was used instead of the USB cable.
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4.2 OS upgrade on the CyberBikePC

By the beginning of the work on this master's thesis, the CyberBikePC were running a
QNX Neutrino OS image, as described in Section 3.2. This image, developed by Loftum
[2006], was minimal, and just enough to get the CyberBikePC online and to run its
programs. Some enhancements to the image was desired, to make development and
testing a bit easier. The desired features to get into an upgraded system were:

qconn: the utility which makes connection from an IDE on a remote PC possible (i.e.
the Windows XP PC used for developing in this project). By using qconn, drivers
for the CyberBike could be tested and debugged on the bikes own CPU while
developed on another computer.

pidin: lists threads running on the node, and which state they are in.

devc-ser8250 options: the serial driver was executed with wrong options speci�ed in
the boot-script (see Section 4.1.2), and this should be corrected in this version of
the OS image.

updated drivers: some adjustments on the drivers have been performed, and the up-
dated versions should be put on the new image.

devc-gps: driver for the GPS5.

wireless-ethernet-driver: driver for the wireless Ethernet card.

keyboard setup: the keyboard connected to the CyberBike has a Norwegian layout, but
the CyberBikePC is assuming it is English, which makes typing a bit di�cult (i.e.
the letters on the actual keyboard does not correspond with the letters appearing
on the screen while typing).

.kshrc: the developer of the new OS image is familiar with Linux and Bash6 terminal
setup. Hence some settings to be performed during boot were preferable, to make
the ksh7 (shipped whith QNX Neutrino) to appear a bit more like Bash, e.g. TAB-
completion and some aliases (ls='ls -F' and ll='ls -l').

other additional commands: common Linux/Unix and QNX programs/commands to
make life easier:

• grep (print lines matching a pattern)

• �nd (search for �les in a directory hierarchy)

• less (similar to more, but enables backwards movements in the �le)

• ln (make links between �les)

• waitfor (wait for a name to exist (QNX))

5Global Positioning System
6Bourne-Again SHell
7Korn SHell
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4.2.1 First attempt: New OS image

The build�le velo_v2.build (see appended CDROM, Appendix A) was made to include
the changes mentioned in the list above. Then the commands given in [Loftum, 2006,
Section 4.2 and 5.2.1] were executed like shown in Printout 4.4. This generates loads of
output, not shown here. No error messages were found in the output.

# mkifs -v velo_v2.build velo_v2.ifs

Printout 4.4: Making OS image from build�le.

Then the Compact Flash (CF) was removed from CyberBikePC and put into a USB
card reader. Having some hard times �nding the card on the QNX host workstation,
the card reader was plugged into a laptop (running Ubuntu Linux) to be investigated.
Printout 4.5 shows the terminal input/output from this, indicating that the card is work-
ing as it should.

audun@audislappis:/dev$ sudo mkdir /mnt/flash

audun@audislappis:/dev$ sudo mount -t qnx4 /dev/sdb /mnt/flash

audun@audislappis:/dev$ ls -al /mnt/flash

total 1928

drwxrwxr-x 3 root root 4096 2006-06-05 08:59 .

drwxr-xr-x 9 root root 4096 2007-03-14 16:09 ..

-rw------- 1 root root 0 2006-06-05 08:59 .altboot

-r--r--r-- 1 root root 251904 2006-06-05 08:59 .bitmap

-rw------- 1 root root 1705616 2006-06-05 08:59 .boot

-r--r--r-- 1 root root 8192 2006-06-05 08:59 .inodes

-r--r--r-- 1 root root 0 2006-06-05 08:59 .longfilenames

Printout 4.5: Mounting CF card on Linux.

Plugged back into the QNX host machine, the card reader with the CF card inserted
had to be initialized. This was done by the commands shown in Printout 4.6.

An important note here is that io-usb was started with the �-duhci� option, as
opposed to �-dehci�, suggested by Loftum [2006]. The earlier mentioned problems on
�nding the CF card on the QNX machine arose because of this di�erence. The reason is
probably that another card reader was used in this case, than in Loftum's.

When the CF card was inserted into the CyberBikePC again, a message like shown
in Printout 4.8 appeared on the screen. This message is similar to the one described in
[Loftum, 2006, p 59], and means that no OS-signature is found.

Loftum solved this by running the command shown in Printout 4.9, but that approach
did not solve the problem this time.
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# io-usb -v -duhci &

[1] 1339429

# devb-umass

# Path=0 - QNX USB Storage

target=0 lun=0 Direct-Access(0) - Generic USB SD Reader Rev: 1.00

target=0 lun=1 Direct-Access(0) - Generic USB CF Reader Rev: 1.01

[1] + Done io-usb -v -duhci

# devb-umass cam pnp verbose

# ls /dev/hd*

/dev/hd0 /dev/hd0t79 /dev/hd1 /dev/hd2

# mount -t qnx4 /dev/hd2 /mnt/flash

# ls /mnt/flash/

./ .altboot .boot .longfilenames

../ .bitmap .inodes

#

Printout 4.6: Mounting CF card on QNX.

# fdisk /dev/hd2

# dinit -h -f velo_v2.ifs /dev/hd2

DINIT: You have specified the 'raw' disk, not a partition: continue (y/n) ? y

Using loader /usr/qnx630/target/qnx6/x86/boot/sys/ipl-diskpc2-flop

Disk '/dev/hd2' contains 2015232 blocks (1007616K).

#

Printout 4.7: Loading the OS image into the �ash memory.

Hit Esc for .altboot.......................................................

......................................S

Printout 4.8: Message appearing on the CyberBikePC after the putting new OS image on
the CF card.

# dinit -hb /dev/hd2

Printout 4.9: Solution suggested by Loftum [2006], but not su�cient this time.
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Then several attempts of getting the CyberBikePC to boot from the �ash card were
done, including:

• searching the internet for similar problems and suggestions

• putting the old original image onto the CF card again

• using IDE-card-readers in the CDROM8 slot on the QNX host workstation instead
of the USB card-reader

• calling Loftum for help

These attempts ended in an assumption that the card reader were playing tricks
with the boot sectors on the CF card. Loftum had used a di�erent card reader, but
the QNX workstation, most of the steps listed in his thesis and even the ifs-�le were
the same. Hence the card reader was causing the problems. If another card reader was
available (and even better; the same as Loftum used) it should have been tried, in order
to ensure that the source of the problem to be found. But after spending too much time
trying to solve this problem, alternative solutions became more attractive. This included
installation of a mobile hard drive, and is described in Section 5.1.

8Compact Disk Read Only Memory
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4.3 Propulsion motor

4.3.1 Placement

A new propulsion motor had to be mounted on the bike. The intention was to place it
where the old one was seated, as shown in picture Figure 4.5.

Figure 4.5: The CyberBike as it looked by the start of this work.

As it can be seen from Figure 4.5, the front mudguard is nearly touching the tachome-
ter on the motor. The tachometer and its cables should be shielded from the front wheel
in some way.

The solution to this was to mount the propulsion motor on the vertical tube. Another
problem that got solved by moving the motor, was a con�ict between the chain and the
battery-frame. When the motor is located at the upside of the pedal gear, it will not
lower the chain, and thus avoiding the con�ict between the chain and battery frame, as
shown in Figure 4.6.

The disadvantage by this solution is that the bike is getting an even higher center of
gravity, making it less stable. Still, this change should not make a crucial di�erence in
the bikes stability.

4.3.2 Connection to Baldor TFM 060-06-01-3

The motor was connected to the Baldor TFM 060-06-01-3, at the M1+ and M1- pins.
This is documented in Table E.3 in Appendix E.
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Pedal gear

Motor gear

Hub gear

Battery frame

Motor

Motor

Motor gear

Pedal gear

Battery frame

Hub gear

Figure 4.6: Left: Chain is not in con�ict with battery frame (black part). Right: here we
have a con�ict.

When applying a voltage across the V+ and V- pins, there was no reaction on the
motor, neither through software (see Printout 4.10) or through the I/O-card (DMM-32-
AT), nor by simply connecting an external power source to the pins. This last approach
eliminated any potentially errors in the system somewhere above9 the motor controller
card. But when disconnecting the motor from Baldor TFM 060-06-01-3, and power it up
directly from a power source, it runs like expected. Hence the motor controller card had
to be investigated.

# devc-dmm32at verbose &

[1] 577574

devc-dmm32at: Verbose mode.

devc-dmm32at: analog write, Inode 1

devc-dmm32at: Writing voltage: 2.500000

devc-dmm32at: Writing DMM value: 3071

DMM-32-AT: Writing: 0xbff (3071) to channel 1

(In another terminal window:)

# cd /dev/dmm32at/analog/out

# echo 2.5 > da1

#

Printout 4.10: Setting the control voltage for the propulsion motor by software.

In [Baldor ASR, 1988] it says that all the three motor axis have their own set of
potmeters, placed at the backside of the Baldor TFM 060-06-01-3:

1. Tacho voltage scaling

9To use the word �above� here, it is assumed that the whole system could be viewed hierarchical,
with the motors and actuators at the bottom, then the hardware connected to these, and then the
motherboard with its CPU before the software lies on top.
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2. Velocity loop gain

3. Current limit

4. O�set

Tuning these �nally made the motor start running.

4.4 GPS

For the CyberBike to know its absolute position, a GPS-module was suggested as a nice
device. The bike is considered to be used for PR purposes for the Department of Engi-
neering Cybernetics, and a GPS installed on a bike � which indeed is a bit uncommon �
extends the impression that the bike is utilizing cutting edge technology. This gives room
for some enhancements, like using the GPS measurements for comparing and adjusting
the speed measurements, and navigation algorithms (see Section 8.3).

A GlobalSat EM-411 GPS-module was ordered from [ELFA, 2007] for this pur-
pose. Figure 4.7 shows this unit. This is the same module used by Eriksen [2007] and
Bjørntvedt [2007] in their master's theses. Some bene�ts were drawn from the fact that
three students at ITK were using similar GPS modules at the same time.

Figure 4.7: The EM-411 GPS module from GlobalSat

The various messages that could be received and sent to the GPS module are de�ned
in [GlobalSat Technology Corporation]. Some speci�c data for the unit are given in
Table 4.2.

4.4.1 PCB

Eriksen made a circuit diagram and PCB layout in Eagle, which was also used in the Cy-
berBike project. The layout �les are included in the appended CDROM, see Appendix A.

After etching and soldering the PCB, it turned out that the photoresist was not
properly removed before the tin coat was applied to the board, but � due to the candidates
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General

Chipset SiRF Star III
Frequency L1, 1575.42 MHz
C/A code 1.023 MHz chip rate
Channels 20 channel all-in-view tracking
Sensitivity -159 dBm

Accuracy

Position 10 meters, 2D RMS
5 meters, 2D RMS, WAAS enabled

Velocity 0.1 m/s
Time 1µs synchronized to GPS time

Acquisition Time

Reacquisition 0.1 sec., average
Hot start 1 sec., average
Warm start 38 sec., average
Cold start 42 sec., average

Dynamic Conditions

Altitude 18,000 meters (60,000 feet) max
Velocity 515 meters /second (1000 knots) max
Acceleration Less than 4g

Power

Main power input 4.5V ∼ 6.5V DC input
Power consumption 60mA

Protocol

Electrical level TTL level, Output voltage level: 0V ∼ 2.85V
RS-232 level

Baud rate 4,800 bps
Output messages NMEA 0183 GGA, GSA, GSV, RMC, VTG, GLL

Table 4.2: Speci�c data for the GPS module from GlobalSat
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litlle PCB creating experience � this was not discovered until the soldering was done.
This resulted in a bad-looking soldering side of the board. The card was washed with
methylated spirit, and applied a new tin coat, and the soldering points were reheated
to improve the connections. Probing all connections on the board by the multimeter
(see Section 6.1.1) showed that the connections were good, even though the board looks
bad on that side. Figure 4.8 shows the soldering side of the board before and after the
resoldering.

Figure 4.8: The soldering side of the GPS board. Left: before resoldering. Right: after.

The component side of the PCB looks somewhat better, and is shown in Figure 4.9.
It could be seen from this �gure that a voltage controller, a LED10, a resistor, two
capacitors, two headers, a DB-9 connector, and two screw terminals (for Vcc and Gnd)
is soldered to the board. How the GPS-module is connected is also shown.

Figure 4.9: The component side of the GPS board.

10Ligth Emitting Diode
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4.4.2 The devc-gps driver

The driver for the GPS was made as a resource manager, similar to the devc-imu, with
a serial device reading thread, and a resource manager thread, handling client requests.
When a gps-message is received, it is parsed by the functions in gps-messages.c, called
by the serial device reading thread. There exist one parse function for each message that
could be received. These functions stores the values received in local variables, until they
by the end of each function locks a mutex before the parsed values are stored in a mea-
surement struct. Code sample 4.7 shows the measurement struct, and Code sample 4.8
shows an example on the writing process to the measurement struct, taken from the
parse_gpgll() function.

Code sample 4.7 The type of the measurement struct, de�ned in gps.h

typedef struct meas {
int date;

int hour;

int min;

int numberofsatellites;

int satellites[12];

double sec;

double latitude;

double longitude;

double hdop;

double altitude;

double geoidseparation;

double pdop;

double vdop;

double speed;

double course;

} meas_t;

In devc-gps.c the functions gps_devctl() and gps_read() are de�ned. Both is locking
the mutex the same way as shown in Code sample 4.8, before reading the requested data
out of the measurement struct. Some messages could be sent to the GPS module, in
order to con�gure and request speci�c data from the device. These messages are not
used in the current version of the driver, because it was assumed that the CyberBike's
GPS usage would be kept at a moderate level, and only the basic functionality provided
as default was desired.

The GPS resource manager is registering its device �les under the /dev/gps/ direc-
tory, and when the driver is running, there will exist a �le corresponding to each of the
elements in the measurement struct in Code sample 4.7.
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Code sample 4.8 Example from parse_gpgll() on storing values in measurement struct.

// Lock mutex

if (pthread_mutex_lock(&val_mutex)){
printf("%s:\tCouldnt lock mutex.\n", NAME);

}
measurements.hour = hour;

measurements.min = min;

measurements.sec = sec;

measurements.latitude = latitude;

measurements.longitude = longitude;

// Release mutex

if ( pthread_mutex_unlock(&val_mutex)){
printf("%s:\tCouldnt unlock mutex!\n", NAME);

}

4.5 Pendulum Limit Switches

This section describes the �rst step in implementing an angle limiting function on the
inverted pendulum. The purpose is to avoid that the pendulum motor is giving a torque
that would move the pendulum to a bigger angle, when it reaches its end positions. These
end positions are given by the frame mounted around the lower part of the inverted
pendulum, providing a physical obstruction when the pendulum tries to move too far
away from its vertical position. On this frame two limit switches were mounted, but not
connected to the motor in any way. In the following, a description of how these switces
�rst were connected, and why this was wrong. For the busy reader, only interested in
how the implementation ended up, refer to Section 5.5.

Loftum [2006] suggested a way to implement the functionality for the switches. The
proposal included no software; only two diodes to disallow reference voltages into the
Baldor TFM 060-06-01-3 that would make the pendulum move further away from its
vertical position if a switch is trigged. The connection diagram is shown in Figure 4.10.

Di�erent alternatives were evaluated. The �rst one evaluated was to connect the
switches to the DMM-32-AT input ports, and implement the safety function in software.
As soon as the signal from the switches could be observed by the software, additional
functionality could be added, e.g. self-calibrating of the pendulum angle in a start-up
procedure.

But it is generally a bad idea to mix the control and safety related functions toghether.
As an example, consider the case where the control system stops as a consequence of
a software error (segmentation fault, over�ow, etc.), the safety function might not be
executed, and the the last value written to the DMM-32-AT would remain on its output
channels until it is powered down.
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Figure 4.10: Loftum's [2006] connection proposal for the pendulum limit switches.

Loftum [2006] also argues that the proposed hardware solution does not consume any
CPU. That is true, but with an interrupt based solution, the processing power used for
this function would be minimal during normal operation. This is based on the assumption
that the pendulum angle is kept small when the CyberBike is operating under normal
and stable conditions, and that the limit switches are to be used only when the system
is about to fail.

Figure 4.11 shows a circuit diagram of how the function was implemented at �rst. It
is the same system as shown in Figure 4.10, but with some added information on how it
is connected via the terminal block (X1), and which pins are connected where.

Even if the diodes is providing the pendulum angle limiting function, the signal from
the switches may still be connected to the input ports of the DMM-32-AT to provide
information about switch activation to the control system software, if it is desired. Some
capacitators to avoid transients when the switch is trigged is probably wise. Even if
the switches are providing a high or low signal, it should not be connected to the digi-
tal I/O channels on DMM-32-AT without some current limiting circuitry or decoupling
mechanism. The D/A output channels (which is connected to the switches other end),
is capable of delivering more current than the digital I/O can handle.

4.5.1 Testing and debugging

The soluton did not work as expected for the right switch, B2. A lot of probing and
testing was done to point out where the error was. This appeared to be more di�cult
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than expected. No wrong connections according to Figure 4.10 and Figure 4.11 could be
detected.

It is worth noting that pin 1 on DMM-32-AT, Agnd, was connected to the input pins
on B2, after the connection was forked o� to supply the negative reference signal to the
other two motor axis. If connected otherwise, all the other motors would also stop when
the B2-switch was activated.

Setting a voltage out to the pendulum motor had an impact on the other motors,
which indeed is undesirable. When the propulsion motor was running at a low speed,
it stopped when activating B2. Also, a voltage across the negative input references on
Baldor TFM 060-06-01-3 was observed when B2 was closed.

Then it was realized that cutting the ground connection from DMM-32-AT to the
motor controller card � as done in D2 � is not the same as setting the reference voltage
to zero. The internal circuitry of Baldor TFM 060-06-01-3 was playing a role in this case,
as well as the exact timing of when B2 cut the signal out on its normally closed (NC)
output pin and connects the normally open (NO) output pin to its input pin. To fully
understand what went wrong, a deep investigation of both devices should be made.

This investigation was not done. Instead it was assumed that cutting o� the ground
connection between DMM-32-AT and Baldor TFM 060-06-01-3 was the mistake done
here, and an alternative circuit was designed to correct it. This solved the problem.
Section 5.5 describes this solution. A note on such failure situations and debugging is
made in Section 7.4.
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Chapter 5

Solution

5.1 OS and storage upgrade

Some problems occured during the upgrade of the OS image on the CF memory, probably
related to the card reader that was used. This is described in detail in Section 4.2.

5.1.1 Installation of hard drive

An ordinary Fujitsu MHK2060AT [Fujitsu, 1999] hard disk drive was mounted to the
EIDE-slot on the Wafer-9371A. The disk was an older mobile 2.5 inch 44 pins ATA1

with approximately 6GB storage space. This is not very much for a new laptop, but for
the CyberBikePC it should be more than su�cient. The reasons for choosing this disk
were simple. It had already done its duty on a robot developed at ITK participating in
an Eurobot competition some years ago, and the disk was now unmounted and not used
anymore, hence a very cheap alternative for this project.

At this point, the Fujitsu FMHK2060AT mobile hard disk was plugged into the QNX
stationary host workstation instead of its current disk drive, and a QNX Neutrino RTOS
6.3.0 SP3 CD2 were put in its CDROM station. The IDE-slot at the workstation got
40 pins, hence the 4 pins for powering up the disk needed to be connected elsewhere. A
simple converter with a Molex plug for power was used for this purpose, see Figure 5.2.

QNX was then installed at the hard disk, as described in [QSSL, 2005, chap. 3]. At
the point where the installation procedure wanted to reboot the system for the �rst time,
the PC was entirely shut o� instead of rebooted, and the disk was unplugged from the
PC and put into the CyberBikePC. This was done because QSSL [2005] stated that

�After rebooting, your hardware will automatically be detected.�

and because it was known that both the QNX host PC and the CyberBikePCwere x86
intel based computers, and hence they could possibly use the same basic parts of the

1Advance Technology Attachment
2Compact Disk
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Figure 5.1: The Fujitsu MHK2060AT hard drive shown both from its over and under side.
A piece of plexi glass is glued to the underside of the disk to ease mounting.

Figure 5.2: 40 to 44 pins IDE connector converter.
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installation. When the CyberBikePC was powered up, its hardware was detected, and a
fully working QNX installation were running on the bike's baggage rack computer.

The disk was �nally mounted at the bottom plate in the suitcase, below the Bal-
dor TFM 060-06-01-3, to utilize space.

5.2 MTi

The MTi was connected to the Wafer by a serial cable into COM1. A protective housing
for the device was made to put the device in. This is shown in Figure 5.3. It was aimed
at mounting it as low as possible, in order to keep it away from the shaking from the
pendulum, and to be close to the position where the roll angle is de�ned in the control
system. Ideally, the MTi should have been placed at the point where the rear wheel is
touching the ground, but obviously this is hard to implement in real life.

Figure 5.3: The MTi protective housing.

5.2.1 Driver

The software driver for the MTi was made as a resource manager (see Section 2.2.2),
based on the code for the Spark Fun IMU made by Loftum [2006], and the example code
delivered with the kit from Xsens. The latter was written in C++, making it a natural
choice to use that language for the rest of the driver. It had small impact on the code in
this case.

First the example code was compiled in QNX, to make sure it really was compatible.
The only change that had to be made was in MTComm.cpp, where a non-POSIX command
had been used, see codesample Code sample 5.1. The solution to the compile error was
found by searching on [OpenQNX].

A new C++ project was made in the QNX Momentics IDE, called devc-mt, be-
fore the �les MTComm.cpp and MTComm.h was copied into it (with the changes shown in
Code sample 5.1). Then the code from devc-imu.c and from mt-example.cc (from the
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Code sample 5.1 The only change made in MTComm.cpp to make it compile in QNX.

// Disable hardware �ow control

options.c_cflag &= ∼CRTSCTS;

Changed to:

// Disable hardware �ow control

options.c_flag &= ∼IHFLOW;

options.c_flag &= ∼IHFLOW;

vendor) was merged into the master driver �le devc-mt.cc to reuse some already tested
and developed resource manager code, and at the same time make use of the example
calls to con�gure the MTi-communication. The resource manager was built around the
same structure as in the Spark Fun IMU case. Two threads were used: waiting for re-
quests by the dispatch_block() function call, and the other reading data from the serial
device, storing it in a shared measurement array. This array is protected by a mutual
exclusive semaphore mechanism, provided by POSIX.

The word �merge� used above is � strictly speaking � a simpli�cation. This operation
included some rewritings, variable and function name changes (e.g. from imu_read() to
mt_read() etc.), type changes, debugging and testing to get things correct.

Usage

The example code requested user inputs during initialization, to set up the correct serial
device, if calibration and/or orientation data should be presented on the screen, and if
the orientation data should be given as rotation matrices, quaternions, or Euler angles.

These settings could now be set from the command line, as arguments to the driver,
insted of via scanf() function calls during initialization. A usage example of the driver is
shown in Printout 5.1.

# devc-mt -vv -m3 -f2 -s /dev/ser2

Printout 5.1: Usage example of devc-mt.

This would start the driver in noisy mode, showing both calibration and orientation
data, using the COM2 serial port. Starting the driver in verbose mode (-v), will only
show debug related information, and not the measurements. A use�le is compiled into
the driver, enabling the use devc-mt command to give an explanation of how the driver
is started with its various options, similar to other QNX programs.
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The CyberBike is using the default settings for the driver, which is both calibration
and orientation data, the latter given as Euler angles. Using Euler angles yield some
singularities when the pitch angle is reaching 90◦, which makes quaternions or rotation
matrices a better choice for some users. This is not a problem in this project, and Euler
angles is chosen to integrate with the controller made by Bjermeland [2006].

Output from the resource manager is provided through the device �les registered
under the /dev/mt directory. In default mode, this includes the �les:

• /dev/mt/calib/acc/x holding acceleration in x direction [m/s2]

• /dev/mt/calib/acc/y holding acceleration in y direction

• /dev/mt/calib/acc/z holding acceleration in z direction

• /dev/mt/calib/gyr/x holding rate of turn in x direction [rad/s]

• /dev/mt/calib/gyr/y holding rate of turn in y direction

• /dev/mt/calib/gyr/x holding rate of turn in x direction

• /dev/mt/calib/mag/x holding the magnetic �eld in arbitrary units in x direction,
normalized to earth �eld strength

• /dev/mt/calib/mag/y similar in y direction as for the x

• /dev/mt/calib/mag/z as for x and y direction

• /dev/mt/orientation/roll the roll angle (φ) measured in degrees, between −180◦

and 180◦

• /dev/mt/orientation/pitch the pitch angle (θ)

• /dev/mt/orientation/yaw holds the heading angle (ψ)

• /dev/mt/samplecounter a timestamp put in the message from the MTi device

If another orientation output mode is chosen, the device �les would have correspond-
ing names, like orientation/q1 through orientation/q4 in quaternion mode, or all
letters from orientation/a to orientation/i in matrix mode. The latter is de�ned as
shown in Equation (5.1).

R =

 a b c
d e f
g h i

 (5.1)

The mt_read and mt_devctl functions are made to update the content in these �les.
No mt_write funtion is implemented by this resource manager. A large set of messages
de�ned by the MT-protocol for con�guring various aspects of the device [see Xsens,
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2005, p. 33], to be sent from the host to the devcie, and hence a write function could
be useful to control its behaviour from other programs (like devc-velo. But to keep the
system complexity at a moderate level, it was decided that this was unnecessary. If such
con�gurations is wanted in the future, this probably could be done throug hard-coding
it in the MTi driver, or add some functionality in the MT_DEVCTL_SETVAL block in the
mt_devctl() function.

5.3 Propulsion motor

In the CyberBike model by [Bjermeland, 2006], the bike velocity is not controlled by
feedback of any measurements in software. Also, the model and controller is designed for
being valid for a constant speed and on a level surface, leading to less demanding control
functions for this motor. A simple controller (i.e. PID3) in software would probably have
done the job, but using the available processing power a bit sparingly is preferred, and
therefore it was decided to go for other alternatives instead.

The Baldor TFM 060-06-01-3 is capable of performing speed control, by altering the
jumper settings for the particular axis, and connect a tachometer measurement back to
the controller. The propulsion tachometer's positive signal was connected to the motor
controller card's pins 2:c4 (via terminal 1 on block X1) and the negative signal was
connected into 2:c14 (via X1:12).

To get some velocity measurement data in the software running part of the control
system, it was desired to keep the tachometer connected to the DMM-32-AT. But using
the existing setup for the propulsion tachometer into A/D channel 0, would make the
tachometer be connected to Agnd on the I/O card, which in turn is connected to the
negative reference voltage on pins 2:c2, 2:a26 and 1:a16, at the same time as it is con-
nected to �Ref gnd� on 2:c14 at the Baldor card. These pins seems to be unconnected
inside the card [Baldor ASR, 1988].

DMM-32-AT is set up to have 8 di�erential input channels, previously unused. The
propulsion tachometer was connected into one of these, channel 8, to avoid any ground
loop problems. The devc-velo driver was updated to use the ad8 as its velocity mea-
surement device.

The propulsion motor controller is tuned by four potmeters at the Baldor TFM 060-
06-01-3's front side (at the very back of the bicycle). The parameters tuned by these
potmeters are described in Section 4.3. Due to some problems with the DMM-32-AT
output channels (see Section 6.5), the tuning of the motor was not applied very success-
fully. A small o�set seems to appear sometimes, as the components in the system gets
warmer, and the motor tend to be rotating with very low speed even if the reference
voltage is set to zero.

A proper tuning of the bikes velocity controller is left undone, as reasonably good
velocity control seems to be unattainable as long as the DMM-32-AT is giving unstable
output.

3Proportional-Integral-Derivative (controller)
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5.4 New driver for DMM-32-AT

During the work on this thesis, some problems with the CyberBike's I/O card was dis-
covered. Section 6.5 describes this process in detail. Several errors was discovered. Both
in hardware and software. When searching for ready-made download software from
the vendor as an attempt to eliminate the devc-dmm32at resource manager as an error
source, it was discovered that Diamond Systems Corporation [2007] provided a universal
driver-library for QNX systems.

Why this library wasn't used in the �rst place is unknown. Studying the dmm32at_analog_write()
implementation in dmm32at.c compared to the description of how to perform a D/A con-
version in [Diamond Systems Corporation, 2003, p. 36], showed that it probably would
have been wise. This erroneous code have been used on the bike for a long time. It might
have caused the hardware errors, but it is neither explored, nor discussed further in this
thesis.

Changing the code to use the uscud (Diamond Systems Corporation's Universal
Driver), a�ected mosly the dmm32at.c �le. The resource manager and thread setup was
kept as it was. The libdscud5.a had to be copied into a place where the QNXMomentics
IDE's compiler could �nd it. In the case for the installation on the Windows XP PC used
for development on the CyberBike, the library was placed in C:\QNX630\target\qnx6\usr\include\dscud5\,
and dscud5 and m (for the math-library) was added to the LIBS variable in the
devc-dmm32at projects make�le, common.mk.

How to use the universal driver is described thoroughly in [Diamond Systems Cor-
poration, 2007], by API and examples. The core of the code for the new read and write
functions are shown in Code sample 5.2. The actual code performs error handling, ini-
tialization and resetting of global variables, scaling of the return value (in the read case),
and some printouts's if in verbose mode, not shown here.

The library from Diamond Systems provided functionality for auto calibration, which
was at �rst put in the initialization function for the driver. But because of the hardware
errors, described in Section 6.5, this had to be put in a separate function; dmm32at_autocal().
An option to be used from the command line when starting the driver was then added
to make use of the autocalibration utility. This should only be used with the da0 chan-
nel disconnected from its pin on the DMM-32-AT's J3 header, because the result of the
autocalibration seems to be depending on the resistance on this pin. This should not be
a problem if the I/O card gets repaired. The autocal functionality is demonstrated in
Printout 5.2.

5.5 Pendulum limit switch - �nal implementation

The limit switches was �nally connected like shown in Figure 5.4 (schematic overview),
and Figure 5.5 (detailed; with terminal block connections indicated).

The most positive e�ect of the installation is that the motor will not be powered to try
to push the pendel any further when it reaches its end position (the frame). This prevents
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Code sample 5.2 Core of the new dmm32at_analog_read() and
dmm32at_analog_read() functions.

int dmm32at_analog_read(double ∗valptr, int channel){

// Step 1: Not shown, includes some initialization

// of the A/D setting structure, depending on if

// it is a tachometer (+/- 10V) or a potmeter (0-5V)

// Step 2: setup the driver for A/D operations:

dscADSetSettings(dscb, &dscadsettings);

// Step 3: perform A/D conversioin and get sample:

dscADSample(dscb, &dscsample);

adval = (int) dscsample;

// Step 4: not shown, includes scaling of return value,

// to a double value between -5 and +5

// (reused code from previous dmm32at-driver).

}

int dmm32at_analog_write(DSCDACODE val, BYTE channel){
dscDAConvert(dscb, channel, val);

return 0;

}
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# ./devc-dmm32at verbose autocal

devc-dmm32at: Verbose mode.

devc-dmm32at: Autocalibration will be performed during init.

devc-dmm32at: If DMM-32-AT-card still is buggy, you should not do this while p

in 38 (da0) on J3 is connected to anything.

DMM-32-AT: Performing D/A-auto calibration...

DMM-32-AT: Done D/A-autocalibration. Offset Error: -0.500, Gain Error:

0.350

DMM-32-AT: Performing A/D-auto calibration...

DMM-32-AT: Configuration Mode: 0, Offset Error: 0.180, Gain Error: 0.316

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 1, Offset Error: 0.450, Gain Error: 0.292

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 2, Offset Error: 0.080, Gain Error: 0.424

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 3, Offset Error: 0.320, Gain Error: 0.128

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 8, Offset Error: 0.430, Gain Error: 0.028

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 9, Offset Error: 0.270, Gain Error: 0.084

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 10, Offset Error: 0.420, Gain Error: 0.018

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 11, Offset Error: 0.020, Gain Error: 0.446

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 12, Offset Error: 0.724, Gain Error: 0.000

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 13, Offset Error: 0.022, Gain Error: 0.000

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 14, Offset Error: 0.456, Gain Error: 0.000

DMM-32-AT: Values for offset and gain met specified tolerance

DMM-32-AT: Configuration Mode: 15, Offset Error: 0.052, Gain Error: 0.000

DMM-32-AT: Values for offset and gain met specified tolerance

#

Printout 5.2: Usage example of new DMM-32-AT driver, running autocalibration.
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destroying the motor brushes, which is a problem for DC-motors in static operation.

When the pendulum motor is moving towards its endpoint, it will still fall against
the pendulum frame due to gravity and the speed it had when it reached the switch.
This was not an unexpected nor unintelligible result. If the Baldor TFM 060-06-01-3
had been set up to control the speed of the pendulum motor instead of its torque, the
behaviour would probably be di�erent. The frame gets some rough treatment � less than
before � but still it could be damaging to the equipment. Maybe some rubber knobs to
absorb some of the momentum when the pendulum hits the frame would improve this,
but this have not been tested.

In Section 4.5, connection of the switch signal into the DMM-32-AT was discussed as
an option. The reason for this, was that it might could be used in the control system for
detecting where the pendulum actually is, and to calibrate the pendulum potmeter value
from this signal in a startup procedure. This is not implemented. The most important
reasons is:

• The switching mechanism is assumed to give a less correct impression of where
the pendulum actually is than the potmeters for the particular angles. The knob,
mounted on the pendulum bar to push the switches, covers a relatively large area,
which makes the switches closed for a wide range of angles.

• It is desired to keep the connection complexity in the CyberBike's suitcase as low
as possible, to ease maintenance and debugging.

• No particular need for the information from the switches were detected in the
control system. But it should be noted that the work in this thesis does not
include su�cient amount of testing and tweaking of the control algorithm, to claim
that the pendulum angle calibration functionality is not needed.

5.6 Emergency Stop Button

The 3 DC motors have the potential to being dangerous to people around. In an industrial
environment such moving devices as rotating gears with chains, and swinging bars have
to be put inside boxes or behind covers. The CyberBike is not equipped with many safety
related devices and installations. Before serious testing is done, at least an emergency
stop button should be mounted.

A button, switch, and a front adapter for mounting was ordered from [ELFA, 2007],
and is shown in Figure 5.6. The switch-part is of type NC4.

From [Baldor ASR, 1988, p. 1] it could be found that:

�It is possible to switch o� the power stage on each axis via the disable inputs.
The motor is without torque in this condition.�
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Figure 5.6: The emergency stop button and switch. Picture taken from [EAO, 2007].
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Figure 5.7: Circuit diagram of how the emergency button is connected.
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And from that, the emergency switch was connected as shown in Figure 5.7.

The button was mounted at the back of the suicase, to let the operator stay behind
the bike, away from the moving pendulum and handlebars, etc. Testing of this safety
function worked as expected, and has shown to be useful in many cases. For instance;
this button should be activated while starting up the system when the chain, connecting
the propulsion motor to the rear wheel is installed. Else the bike might be moving a
due to small disturbances during startup. The propulsion motor seems to be the most
unstable at this point, because the speed controller on the motor controller card have
some small stationary errors, �uctuating with the various components' temperature.

5.7 Fan

To give cooling to the PC and other boards and components, a fan was mounted in the
CyberBike suitcase wall. This installation is particularly useful during tests of the bike,
when the suitcase should be closed. An old and well-worn 12V fan was an inexpensive
and easy solution, see Figure 5.8.

To be able to get the bottom plate up from the the suitcase, which is useful to access
for instance the CF card slot under the Wafer-9371A, a part of the bottom plate was cut
out to make it pass the fan.

Figure 5.8: The cooling fan mounted at the CyberBike's suitcase.

It turned out that the fan was a bit noisy, and sitting beside it while developing and
testing was a annoying. To solve this, a switch, shown in Figure 5.9, was mounted to cut
the power when the suitcase is open.

5.8 Batteries

During the development process, a power source from Farnell (shown in Figure 6.3) was
used, but for activities which includes forward motion of the bike, two sealed lead acid

4Normally Closed
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Figure 5.9: The fan switch mounted to be activated when suitcase is closed.

batteries from [ACT Batteries] was ordered. It was important that the batteries were
either sealed, or were using gel instead of acid. There is no guarantee that the bike would
stay on its wheels on every test run. Battery acid leaks has to be avoided. The sealed
batteries seemed to be less expensive than the gel-batteries, and gives about the same
amount of safety.

A tradeo� between size, weight, cost and amount of ampere-hours had to be made.
The ATU12-35 model was chosen. The speci�cation for these batteries are given in
Table 5.1.

Variable Size unit

Nominal voltage 12 V
Rated Capacity 35 Ah
Length 195 mm
Width 130 mm
Case height 154 mm
Total height including terminal 184 mm
Approximate weight 10.5 Kg

Table 5.1: Speci�c data for the ATU12-35 batteries, from [ACT Batteries].

The batteries were placed in their dedicated frame, on each side of the bike. Cable
shoes that were big enough for the batteries terminal screws were pinched to three wires,
making the connection that can be seen in Figure 5.10. Two fuse holders with 15A
fuses were soldered on to the wire close to the positive terminals, to provide protection
from short circuiting and similar events. The right battery and its fuse are shown in
Figure 5.11.

Now a switch is useful to be able to power down the system, without disconnecting
any wires. This is mounted on the suitcase's foremost wall, and the positive wire from
the batteries are cut connected via this switch, as seen from the connection diagram in
Figure 5.10. The switch is shown in Figure 5.12.
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Circular

4-pole

connector

++ - -

15A fuse
15A Fuse

12V battery12V battery

ACE

Baldor card

Power switch

Suitcase wall

Figure 5.10: Connection diagram for the batteries.
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Figure 5.11: 12V battery from [ACT Batteries]. The 15A fuse and its fuse holder is
soldered to the wire, close to the positive battery pole.

Figure 5.12: The power switch.
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5.9 Driver summary

To compare the state of the CyberBike's software by the start and the end of this work,
a �gure comparable to Figure 3.13 is used to give an overview.
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Chapter 6

Tests and experiments

6.1 Test equipment

6.1.1 Multimeter

The multimeter used during the work on this thesis is an �Escort EDM 168� with serial
number 11116249, see Figure 6.1. The multimeter has got the most usual functions
expected from such a device, including voltmeter, amperemeter, ohmmeter, DC and
AC1 setting, capacitance measurements, connectivity check (�beeping�), etc.

Figure 6.1: Escort EDM 168 Multimeter

6.1.2 Oscilloscope

An oscilloscope of type �Hameg HM507 Analog Digital Scope� (see Figure 6.2) with the
serial number 021540457 was used in cases where the multimeter was inadequate, e.g. to
check if a RS-232 signal could be detected on a wire.

1Alternating current

83
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Figure 6.2: Hameg HM507 oscilloscope

6.1.3 Power sources

Two power sources were used; a �Farnell LS-30 Autoranging Power Supply� and a �TTi
EL302T Triple Power Supply� with serial numbers 000666 and 256134 respectively. Both
are shown in Figure 6.3.

Figure 6.3: Power sources. Left: Farnell LS-30. Right: TTi EL302T.

6.2 The pendulum motor

Fossum [2006, p 31] did not run a test drive on the pendulum motor in a �decent way�2

early in his project, because the motor was mounted too elaborately. But he states that
the motor have been connected to a power source and tested in both directions, to see
that it worked. Later he told that the motor was having trouble lifting the pendulum
when the 2kg weight was placed in its outermost position, and the pendulum was lying
down to its side.

Therefore it was decided to unmount the pendulum motor to get a real test of it,
without the pendulum. The way it was mounted made the work somewhat complicated,

2His own words in Norwegian was �på en skikkelig måte�
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and the pendulum had to be removed from the motor after both were unmounted from
the bike.

Without load, the motor seemed to work �ne when applying 24V to its terminals.
Further, the idea was to put the motor in a vise, and use a torque wrench on the axis.
But the risk of damaging the motor by allowing too much current to �ow through it
while blocking the armature from rotating, made another approach more attractive. The
alternative that came up was to tie a rope with a weight at its end on to the axis, while
the motor was set in the vise. An approximation of how heavy the load would be, had
to be calculated.

The weight mw is 2kg, and have a length of about 9cm and is placed at the end of
the lever (pendulum), see Figure 6.4. The lenght of the lever lp is approx. 0.62m, hence

w

9 cm

62 cm

mw = 2kg

mp = 0.5kg

Figure 6.4: Sketch of the horizontal pendulum with weight at the end.

the weight's center of mass xcm,w would be about 0.57m, which is the distance from the
rotating center of the pendulum. The lever itself, mp is about 0.5kg, and would have its
center of mass xcm,p at the middle of the lever, that is 0.31m. The center of mass of the
two items can be derived by:

xcm = xcm,p +
(xcm,w − xcm,p) ·mw

mw +mp

= 0.31m+
(0.57m− 0.31m) · 2kg

2kg + 0.5kg
(6.1)

= 0.52m

A mass of 2.5kg on a lever 0.52m from the rotating axis gives the torque:

T = xcm · Fg

= xcm · (mw +mp)g (6.2)

= 0.52m · 2.5kg · 9.81m/s2

≈ 12.8Nm

which the motor have to deliver as a minimum to raise the pendulum. In the case
with a rope with a weight at the end tied to the motor axis, the weight corresponding to
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the pendulum would be:

mcorresponding =
T

g · raxis
(6.3)

=
12.8Nm

9.81m/s2 · 0.01m
= 130kg (6.4)

approximating the axis radius to 1cm. The inaccurate measurements (the axis radius
in particular) will have a large impact on this calculation, however; the calculations show
that with that load amount, this is not the way to do the motor test.

Therefore the pendulum was mounted back to the motor. Then the motor could be
tested with the actual load. The test showed no problems lifting the pendulum with
the 2 kg weight placed at the end, from horizontal to vertical position. The problem is
residing somewhere else.

The Farnell power source (see Section 6.1.3) was tuned to give a voltage and a current
at approximately 24 V and 3.5 A respectively (close to the nominal values for the motors;
24V and 4A). When the current was reduced to 1 A, the motor could not manage to raise
the pendulum. The delivered current from the motor controller card should probably be
the next place to check. A current at about 2 A seemed to be su�cient, but since the
torque of the pendulum depends on this current, it should be tuned to match the control
system.

Later test runs with the Baldor card, showed no problems on moving the pendulum,
as long as the current limit potmeter (see Section 4.3.2) is tuned correctly.

6.3 COM ports

The Wafer-9371A is equipped with two serial (COM) ports, where one is capable of
receiving RS-232 signals, and the other could be con�gured to receive RS-232, RS-422 or
RS-485 by modifying the settings on jumper JP4 on the SBC (Single-board computer),
as shown in Table 3.3.

Some problems occured with these serial ports during this project. The �rst one to
fail was the COM2 port. The jumper con�guring the second serial port was checked.
Jumpers, connecting pin 1-3 and 2-4 were installed. Due to Table 3.3 this is introducing
some ambiguity. The 2-4 connection is indicating that the RS-244 is used, and the 1-
3 connection set RS-232. It is worth noting that the RS-232 connection was actually
working under these circumstances earlier in the project. The jumper closing pin 2-4 was
removed in order to be sure to use the RS-232 signal.

The cable used to connect to the COM2 port is shown in Figure 6.5. All lines were
tested by the �beeping� function on the multimeter, to check for some broken wires or
connections, but it seemed to be �ne.
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Figure 6.5: The serial cable provided with the Wafer-9371A, to be connected to the COM2
header.

Then the BIOS settings were evaluated, to be sure that no other devices was set up
to use the speci�ed address for the ports. The settings were COM1 on 3F8 and COM2
on 2F8, as expected, and no IrDA or ASK IR was enabled.

This had to be tested in another operating system, to be sure QNX was not playing
a part in this error.

6.3.1 Linux installation

Linux was installed at the compact �ash card by using a USB memory stick as a source.
The stick (shown in Figure 6.6) was borrowed from another student, ready con�gured
and set up by the procedure described in [Canonical Ltd.]. The Fujitsu hard drive was
disconnected, in order to be sure not to owerwrite the QNX installation, when installing
Linux on the CF.

Figure 6.6: The USB memory stick used as source storage medium when installing Ubuntu
Linux on CyberBikePC.

When powering up the CyberBikePC, �DEL� was hit to enter BIOS setup, and the
USB stick was entered as the �rst boot device. �Save and exit� from the BIOS setup
menu, made the installation process begin shortly afterwards. The installation procedure
is made as a guided tour through the various settings by Ubuntu. The only di�erences
made from the default settings, was to uncheck the �Ubuntu desktop� box, to get a
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minimal installation3, and to not set up a swap disk. The latter choise was based on the
fact that a normal compact �ash card does not allow more than 10,000 to 1,000,000 write
cycles [Wikipedia], and that the number of writing cycles to a Linux swap disk would
probably exceed this limit fast and shorten the expected lifetime of the CF card.

The CyberBikePC was booted into Linux as described in Appendix C, and a root
user and a regular user �cyberbikerider� was created, both with password �deluxe�4 to
keep things simple.

6.3.2 Testing of COM2

The serial ports were tested by simply reading from the serial devices at the terminal
prompt, like shown in Printout 6.2. Here the GPS device was used as the signal source
for two reasons. The �rst one is that it sends nice ascii-coded messages at a slow and
easy-to-read rate. Second; it does not need to receive any messages to start delivering
data, in contrast to � for instance � the Spark Fun IMU, which needs to receive a 0x07
signal to start transmitting measurement output. Printout 6.2 shows how the procedure
was done on the COM1 port at �rst, to ensure that the GPS was delivering signal, and
that a command for setting the correct baud rate was used.

$ su

<enter password>

# stty -F /dev/ttyS0 ospeed 4800 ispeed 4800

# cat /dev/ttyS0

$GPGGA,004151.029 ...

...

<ctrl+c to stop reading from the GPS>

#

Printout 6.1: Testing the COM1 port before testing COM2.

Then the GPS serial cable was connected to the second com port, using the RS-232
connection at the serial cable shown in Figure 6.5. The same procedure was applied to
this serial device, as stated in Printout 6.1. No output was printed to the terminal. By
this it was concluded that the second serial port was defect.

Comment

During this test, the source of the problem was not found, and the problem was not
corrected in any way. The return of the test was a strong indication that the error was

3This was actually not done correctly the �rst time, and the installation process stopped un�nished
due to memory shortage on the CF card.

4This password was chosen by reading the front brand tag on the bike, which says �Øglænd Perfekt
deLuxe�.
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# stty -F /dev/ttyS1 ospeed 4800 ispeed 4800

# cat /dev/ttyS1

<ctrl+c to stop waiting>

#

Printout 6.2: Testing the COM2 port.

residing in the hardware in the Wafer-9371A. Some testing and probing had already
been performed, which could be the reason for the damage (see Section 7.4). Another
possibility was the two jumpers connected on J4, but the writer of this thesis has not
found any statements in [IEI Technology Corp., 2006] that indicates that this would be
harmful to the Wafer-9371A.

6.3.3 Testing of COM1

Very late in this project, the �rst serial port also started to behave erroneously. The MTi
driver was not able to get through its initialization process, and ended with the message
�No device connected�. But closer inspection of the output from the driver showed that it
actually did open /dev/ser1 without problems. It was not until the driver tried to send
a message to put the device in con�g mode, the error was returned. A quick read on the
serial device, using the command cat /dev/ser1, �ushed loads of output to the screen,
indicating that the device actually was transmitting something on the COM1 port.

Then the CyberBikePC was booted into DOS as described in Appendix D, with a
terminal program tplus1_4 from [Lightsey] loaded into the USB-stick. The terminal was
tested with the GPS module connected to the serial port. Setting the baud rate to 4800
made the output from the GPS visible on the screen. Then the IMU from Spark Fun
was tested. The baud rate was set to 57600, as done in Section 4.1.1.

Pressing the reset button on the IMU sends some characters to over the serial connec-
tion, and this was also the case this time. But trying to put the device in measurement
state by sending 0x07 to the device, did not work.

6.3.4 Comment

It is not done su�cient testing to ensure that the COM port is corrupted. But there are
strong indices that the transmit line on the port is damaged, since the GPS is acting as
it should, but as soon as data is to be sent back to a device, it does not work.

6.4 GPS driver testing

While testing the GPS driver some abnormal results occured. The following debug
process gained some knowledge about how to get the resource managers to work better,
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and is therefore described here.

When devc-gps was running, the content in its registered device names were garbled,
as could be seen in Printout 6.3.

# cd /dev/gps/out/

# cat altitude

X0000

X0000

X0000

X0000

X0000

X0000

X0000

X0000

X0000

X0000

X0000

X0000

X0000

# cat utctime/hour

oooooooooooooooooooooooooooooooooooooooooooooooo

#

Printout 6.3: Reading the GPS device �les.

The GPS was sending its data, and starting the driver in verbose mode showed that
it was parsing the messages, and that it tried to write to its device �les. The values can
be seen in Printout 6.3.

After some debugging, it was discovered that if a �xed long value were put in the
bu�er to be written to the device, some of it was shown in the �le, but parts of it was
garbled.

This indicated that something else was writing to the memory location where the
value was stored, before it was read out from the device �le.

Thanks to Øyvind Bjørnson-Langen, which once had a similar problem, the error
was found. The bu�er that the gps_read() function was writing the output data to, was
de�ned as a local variable to that function. At the end of the function, an IOV (see
Section 2.2.1) was set up to send the data back to the requesting client. This implies
that the address of the bu�er is handed over to the resource manager utility to be read
back to the device �le. Then the gps_read() returns, and its occupied memory space is
free to be used by other functions. When �nally the data is transmitted to the receiving
client, some other function had been writing to to the memory where the return bu�er
was stored, and the data was corrupted.

Furthermore; to make the bu�er a global variable instead of an autovariable, solved
the problem. By closer inspection of the other resource managers developed for the
CyberBike so far, this error seemed to be done in all of them. But obviously, it have not
made itself visible in all cases.



6.5. DMM-32-AT issues 91

6.5 DMM-32-AT issues

When the porpulsion motor was connected to the Baldor TFM 060-06-01-3 (see Section 4.3.2),
some calibration of it was needed. Then it was discovered that the DMM-32-AT was giv-
ing erroneous output from its D/A converter. This section covers a description of the
debugging process of this card.

When performing a write operation on the DMM-32-AT-resource manager devc-dmm32at,
like shown in Printout 4.10, the output on J3-pin 38 was not as expected. The pin were
measured by an oscilloscope (see Section 6.1.2).

Possible errors were:

• Hardware error in the DMM-32-AT, as a consequence of possible connection mis-
takes, causing too high currents or voltages on the output ports.

• Hardware error in the Wafer-9371A, giving the I/O card wrong instructions via the
PC/104 connector.

• Software error in the way QNX is communicating with the I/O card.

• Software error in the resource manager devc-dmm32at.

6.5.1 The DOS Diagnostic Test Utility from Diamond Systems

By using the DOS Diagnostic Test utility included in Util-dscud5.91.zip, downloaded
from [Diamond Systems Corporation, 2007] the possibility for errors in the devc-dmm32at
could be tested (see Appendix D).

Running the menu element; "9. D/A 'QUICK' Diagnostic Test", gives the result
shown in Printout 6.4. Both for A/D and D/A the tests passed, and the range was
correctly set to ±5V .

D/A is detected as -5.00V to 5.00V. If not, then board has error or

is not calibrated correctly. (...)

*================== D/A Diagnostic Test ==================*

D/A Output Expected A/D Sampled A/D Difference Pass/Fail

0 -16384 -16388 4 PASS

1000 -8385 -8382 3 PASS

2000 -386 -381 5 PASS

3000 7612 7618 6 PASS

4000 15611 15622 11 PASS

Printout 6.4: DOS Diagnostic Test, using the �D/A 'Quick' Diagnostic test output�, while
no probes are attached at the D/A channel 0.

Then the positive probe of the oscilloscope was connected to J3 PIN38 to measure
Vout 0 (PIN40, Agnd, was already connected to the oscilloscope's negative terminal).
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Running the same feature again gives a quite di�erent output than earlier, shown in
Printout 6.5

Da is detected as -5.00V to 0.25V (...)

*================== D/A Diagnostic Test ==================*

D/A Output Expected A/D Sampled A/D Difference Pass/Fail

0 -16387 -16385 2 PASS

1000 -12188 -8385 3803 FAIL

2000 -7990 -383 7607 FAIL

3000 -3791 816 4607 FAIL

4000 406 820 414 FAIL

Printout 6.5: DOS Diagnostic Test, using the �D/A 'Quick' Diagnostic test output�, while
a probe are attached at the D/A channel 0.

The same behaviour can be observed when using the menu elements "4. D/A Autocal
Test" and "10. D/A User Select Test": It looks correct when the positive oscilloscope
probe is unconnected to Vout 0, and gets wrong when it is connected. Setting the value to
4095 by "10. D/A User Select Test" while probe is unconnected gives a correct behaviour
on screen (range ±5V and it says the output voltage is set to 4.995V). But the voltage
is measured to be about 0.25V. Giving code 0 gives -5V output in any case.

Channel 3 and 1 works �ne independent of the oscilloscope being connected, and
channel 2 doesn't work at all. But it is only channel one who changes the range printed
to the screen dependent on if it is connected or not.

In Section 3.1.4 it was stated that the Base +15 is controlling an EEPROM Access
Key Register. In [Diamond Systems Corporation, 2003, p. 25] it is stated that:

�The user must write the value 0xA5 (binary 10100101) to this register each
time after setting the PAGE bit in order to get access to the EEPROM. This
helps prevent accidental corruption of the EEPROM contents.�

Assuming the PAGE bits mentioned is the last two bits in the Miscellaneous
Control Register (Base + 8); P1 and P0, this might be an error in the in the
init_dmm32at() function, in the original devc-dmm32at driver code (see Code sample 6.1).

Code sample 6.1 The contents of init_dmm32at() in the DMM-32-AT driver;
devc-dmm32at.

out8(BASE_ADDR+MISC_CTL_REG,0x23); // reset and calibration

out8(BASE_ADDR+MISC_CTL_REG,0x00); // (un-reset)

out8(BASE_ADDR+OP_CTL_REG,0x00); // operation ctrl reg

out8(BASE_ADDR+AN_CONF_REG,0x39); // -5-5V bipolar
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In the �rst code line the value 0x23 (binary 100011) is set to this register. The last two
bits is controlling the paging of the calibration device to the last 4 registers in Table 3.8.
It is set to zero straight afterwards in the second line, but an error might have happened
as a consequence of not writing the speci�ed value 0xA5 to the EEPROM Access Key
Register.

Another possible, but probably insigni�cant error in the original devc-dmm32at driver,
is that the FIFO memory never becomes reset. This should be done each time before
an A/D operation is started, in order to be sure to get the current data. In the case of
the current driver the FIFO is not enabled, but actually it is still used in an one-to-one
correspondence between sampling and reading, where the FIFO contents never exceed
one sample.

6.6 Testing the control algorithm

The control system made by Bjermeland [2006] was tested � within a limited amount
� with the hardware. Matlab S-function for reading data from the devc-velo resource
manager was implemented, and a �rst attempt to connect the data from the control
algorithm was made.

Block diagram for the main blocks in the Cyberbike simulink model is shown in
Figure 6.7. The main blocks is � except �The CyberBike� � just a rearrangement of the
system made by Bjermeland [2006]. The CyberBike block contains the S-function block
performing the driver communication, and signal selection, scaling and integrating.

For a tutorial in how to compile and use the S-functions, refer to appendices in
[Fossum, 2006]. The main code in the bike_io S-function is found in the function
bike_io_Outputs_wrapper() in bike_io_wrapper.c, and is shown in Code sample 6.2.

The device �les are opened and closed in two functions, called upon initialization and
termination respectively. These functions are shown in Code sample 6.3

Various results occured during the test runs of the code, depending on how many
devices the system was speci�ed to sample from, and and how much of the model of
Bjermeland [2006] that was included. The current model, appended on the CDROM, is
terminated after just a few samples. There has not been done enough testing to point out
where the problem resides. The �rst that came in mind, was that the sampling rate was
too high (0.02s) compared to the calculation/computing task that had to be performed.
The Wafer-9371A CPU is only running at 400 MHz, which is no problem to exhaust,
running a complex matlab code with observer and a bike model.

Further testing on this was discontinued by the occurrence of the last COM port
problems, discussed in Section 6.3.2.
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Code sample 6.2 The main code performing the I/O operations to the actual bike in
bike_io_wrapper.c.

//���������������������//

// Reading from the CyberBike: //

//���������������������//

for (i = 3; i < NumVeloDevices; i++ ) {
ret = devctl( fd[i], VELO_DEVCTL_GETVAL, &meas, sizeof(meas), NULL );

if ( ret == −1 )

fprintf(stderr, "%s:\tERROR when performing devctl(getval) \

%on %s:\t%s\n", NAME, velo_devnames[i], strerror(ret) );

else

∗(devs[i]) = (real_T) meas;

}

//���������������������//

// Setting the output: //

//���������������������//

for ( i = 0; i < 2; i++ ) {
output = ∗(devs[i]);
ret = devctl(fd[0], VELO_DEVCTL_SETVAL, &output, sizeof(output), NULL);

if ( ret == −1 )

fprintf(stderr, "%s:\tERROR when performing \

devctl on %s:\t%s\n", NAME, velo_devnames[i], strerror(ret) );

}
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Code sample 6.3 The bike_start() and bike_stop() functions in bike_io_wrapper.c.

int bike_start() {
int i;

int openflag = 0;

printf("Running bike_start() procedure.\n");

// the �rst 3 devices are motors, and needs to be

for (i = 0; i < NumVeloDevices; i++) {
openflag = ( i < 3 ? O_RDWR : O_RDONLY ); // The �rst 3 devices are motors,

// and will be written to

fd[i] = open( velo_devnames[i], openflag);

if (fd[i] == −1) {
perror("open() returned with error:");

return fd[i];

}
}
return 0;

}

int bike_stop() {
int i;

int retval = 0;

double output = 0;

printf("Running bike_stop() procedure.\n");

for (i = 0; i < NumVeloDevices; i++ ) {
retval |= devctl(fd[0], VELO_DEVCTL_SETVAL, &output, sizeof(output), NULL);

if ( retval == −1 )

fprintf(stderr, "%s:\tERROR when performing devctl on %%s:\t%s\n",

NAME, velo_devnames[i], strerror(retval) );

if(close(fd[i]) == −1)

retval |= EXIT_FAILURE;

}
return retval;

}



Chapter 7

Discussion

An overview of the CyberBike's hardware situation at the end of the work on this thesis
is illustrated in Figure 7.1. It is put here to be comparable to Figure 3.1, to see the
achieved hardware extensions during this work. Switches and buttons are not shown.

7.1 Choice of storage medium

The reasons for choosing the hard drive instead of the �ash card have been described in
detail in Section 4.2.1. Generally it could be stated that the choice was made to get a
quick solution to the OS-image problems. The disk is mounted at the suitcase's bottom
plate, beneath the motor controller card.

One thing that have been left to possibly be discovered during future testing, is if the
hard drive could put up with the disturbances imposed to it. The suitcase and its content
would probably be exposed to shaking and mechanical vibration from the pendulum and
rapid changes in steering angle, wheels running at an uneven surface could cause vertical
perturbations, and even worse; if the bike collides or tips over, many kinds of mechanical
shocks could occur.

A better mounting solution might partly solve the problem. An example is shown
in Figure 7.2, where elastic rubber bands (or another suitable material) is used to damp
the disk housing accelerations, relative to the bikes movements.

The reason for not mounting it this way, was partly because there is little space left in
the suitcase. But, unfortunately, the most crucial reason was that it was not thoroughly
considered when the disk was mounted. This could lead to future problems, but was not
yielding any problems during the work on this thesis.

7.2 IMU Choice

When the �rst IMU (from Spark Fun) was ready and connected to the Simulink controller
via S-functions, it was realized that a lot of tuning and calculations of the IMU-data had

97



98 CHAPTER 7. DISCUSSION

Power source

(Batteries)

Power supply unit (psu)

ACE-890C

Single Board Computer 
(SBC)

Wafer-9371A

I/O Card

Diamond-MM-32-AT

Motor controller card

Baldor TFM 060-06-01-3

Propulsion motor

Steering motor

Pendulum motor

Propulsion tachometer

Steering tachometer

Steering potmeter

Pendulum tachometer

Pendulum potmeter

Power

Power

PC/104 bus connectionPower

Reference signal

Measurement

Spark Fun IMU
Measure-

Ment
data

PWM
Power
signal

MTi

GPS

Power

Rotational velocity feedback

Fan

Power

Figure 7.1: Overview of the CyberBike's various hardware devices by the end of this work.
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Figure 7.2: Suggestion for better physical mounting of the disk drive.

to be done in order to make them useful. The MTi contains its own digital signal
processor, giving the user the possibilities to choose between di�erent representations of
the data. If Euler angles is chosen, as is the case for the CyberBike, the device is sending
calibrated ready-to-use �roll-pitch-yaw angles� to the host. It also supports di�erent
user-speci�ed baud rates and sensor-update frequencies, making it possible to optimize
it better for the speci�ed task.

Consequently, there is reason to believe that the MTi would give a better result, with
less e�ort put into it, than the Spark Fun IMU. Hence; it seems like a wise decision to
start using the MTi instead1 of the original IMU.

Perhaps the MTi should have been included at an earlier stage, in order to get closer
to the goal of the project. It should not be necessary to connect two IMU to the bike
at the same time, and if the MTi is present, the original IMU is super�uous. A voting
mechanism could be implemented if both are to be used, but for a non-critical application
like the CyberBike, this is not very interesting, generating an even more complex system,
with enhanced error possibilities.

7.3 GPS

When the GPS module was ordered, it was not clear whether it should be used at all,
but it seemed like a practical and easy solution to order an extra similar module, when
Eriksen [2007] was sending his orders anyway. He also made the layout of the PCB to
connect it to a serial port, which made creating the hardware easier. Using his software
for this project was also considered, but when connecting the GPS to the CyberBikePC
was about to be done, using the resource manager for the IMU as a framework to get a
QNX compatible driver seemed easier than to modify and integrate Eriksen's LabView
solution.

The GPS functionality implementation process, including making the PCB, solder the
components, making the communicating software and mounting the unit to the suitcase
went reasonably well, without too much time spent on debugging and coding. Still;

1Actually; the Spark Fun IMU is still mounted on the CyberBike, in case the MTi gets unavailable.
The MTi is at this point in time as mentioned in Section 4.1.3, shared with another project.
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reading and understanding the module's manual, writing the message parsing code, and
etching and soldering the PCB takes some time.

At the end, the information from the GPS was not used in the control algorithm as
planned. Maybe it was unwise to spend time at all on this task, but the time spent on
the GPS-development at this stage, is hopefully saved in the subsequent.

7.4 Debugging hardware

As noted earlier, for instance in Section 4.5, Section 6.5 and Section 6.3, some hardware
related errors have occured during the project. The downside of such errors span much
wider than just the �wasted� time on debugging. In situations, like the one described in
Section 4.5, the complete overview of what the various connections in the system actually
does was lost. This leaves the system in a very dangerous state. Voltages and currents
above the absolute maximum ratings for the hardware may destroy iCs and other circuit
components.

A human weakness is that they make mistakes. Long series of probing with multi-
meter may sooner or later result in short circuiting of pins lying close to one another, or
probings with the multimeter set up incorrectly.

Therefore, the connections in the system should be kept as easy to understand and as
well arranged as possible. If an earlier realization of how much additional connections and
probing that had to be done, a replacement of the connection system in the CyberBike's
suitcase might have been a good idea. An example is to replace the long pins from the
Baldor TFM 060-06-01-3 with a connector for soldering on a PCB. The circuit board
would hold all the wires and route them correctly to connectors, which in turn could be
connected by short dedicated ribbon cables to DMM-32-AT and the terminal block on
the suitcase's outside.

The layout of the PCB could have been simulated in software, to point out and remove
a lot of the errors before connecting it to the physical system. Using a Programmable
Logic Device (PLD) such as a FPGA's or GAL could also be done, to ease tasks like
the pendulum limit switches, or simply to �wire� the connections between two points in
software, before burning the circuit to the PLD.

7.5 Re�ection

Defects on the I/O-card (DMM-32-AT), used for data acquisition (A/D converting) and
to output motor reference voltages (D/A converting), were pointed out during the work
on this thesis. These errors entry-time and -cause are unknown, but what is known is
that it resulted in a considerable retardation of the project's progression. At the end,
the errors were partly bypassed by using channels that did work.

It turned out that the amount of errors inherent in the system, were larger than
expected at the starting point of the thesis' work. This, in conjunction with the I/O-card
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and COM port problems, and the late change of IMU-strategy, made too big impediments
to reach the goal of a real outdoor CyberBike autonomous test run.

With the bene�t of hindsight, some questions that should be answered here is; Were
the choices made during this thesis reasonable? Would other choices have got us closer
to the goal?

As already pointed out, the tasks involving GPS was performed somewhat too early,
considering that it ended up unused by the control algorithm by the end point of this
thesis. But if the CyberBike-project is seen as a whole, the introduction of the GPS is
indeed useful, and it was believed that the time left would be su�cient to implement
useful functionality around it. Also; introducing the MTi at an earlier stage would
have saved some development time on the original IMU. This is maybe the most grave
compliant to the completion of the work in this thesis. But still it could be argued that
the IMU had to be tested and used to explore its qualities and limitations.

Time is obviously generally involved in most of the issues discussed in this chapter.
The thesis' writer hereby take the opportunity to emphasize that debugging in instru-
mentation systems like the CyberBike's do take a lot of time. It is important to note
that a lesson learned by the work in this thesis, is that very often none of the parts in
the system could be fully trusted. Using several hours trying to �nd errors in newly self-
written software � usually considered to be the most obvious place to start � more than
once resulted in discovering that the error was lying in a hardware unit; fully operative
until recently and believed to be thoroughly tested.



102 CHAPTER 7. DISCUSSION



Chapter 8

Further Work

This chapter describes what has to be done next, and what could be interesting to get
implemented. An attempt to set the various tasks in a prioritized order is suggested here.

The �rst task to be assigned to the projects subsequent student, should be to get the
defect hardware to work properly. This includes the serial ports on the Wafer-9371A(see
the following section), and the output channels on DMM-32-AT. The decision on how to
solve it has to be made quite early in the work on a new thesis. If a solution involving
recondition of existing hardware is to be carried out, make sure that the hardware will
be returned within reasonable time.

This said; it is believed that a �fth year student at ITK, e�ectively and rationally
putting an e�ort into the CyberBike-project, during the spring term project, would be
able to execute the bikes �rst autonomous test run.

8.1 Correction of the serial connection problem

The problems in Section 6.3 need to be solved in some way or another. Maybe the
Wafer-9371A vendor IEI Technology Corp. is able to check and repair the board for a
reasonable price, but this has to be checked before mailing it all the way to Taiwan.

As the situation is right now, there are three devices to be connected to the Cyber-
BikePC. The two serial ports provided on the board are not su�cient to connect both
IMUs and the GPS at the same time. In that case some kind of serial port extension
should be purchased. An example of such a board is the CA-104 from MOXA [AS],
which would �t in the PC/104 stack in the CyberBike's suitcase. A USB-to-serial device
might not be a good option, owing to the fact that such devices have proved di�cult to
cooperate in QNX (see Section 4.1.3).

However; this might not be of interest if the COM ports on the SBC gets repaired,
since one of the IMUs should be able to do the job. The cost of the Wafer-9371A
reconditioning must be weighted against the price on a new serial port extension board.
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8.2 Wireless ethernet connection

The CyberBike is supposed to move around without any wires attached. By now Matlab,
Simulink and Real-Time workshop have been used to control the bike from a host ma-
chine. To be able to keep the system like this, installation of a wireless ethernet adapter
on the bike seems like the most obvious solution. Some kind of remote control should
be implemented anyway, and an ethernet connection could be used to cover most of the
demands in one link.

An antenna to be used for radio commuication is installed on the bike, but is not
being used recently. But to base a solution on this technology would lead to di�culties
in allocating enough bandwith to perform tasks including Real-Time Workshop and the
like, mentioned earlier.

The easiest solution is probably a device to be plugged into the RJ-45 connector on
the outer side of the suitcase, sending the signal further through the air. Then searching
for WiFi cards with QNX compatible device drivers would not be an issue.

8.3 Line of sight

The GPS is now mounted and is communicating with the CyberBikePC1, but not used
for anything particular. Bjermeland [2006] states that a Line Of Sight (LOS) algorithm
would �t for the bike. Then a route could be given to the CyberBike by de�ning some
waypoints, and the placement calculations � developed from the speed and heading angle
measurements � would be used to control the bike to reach these points. The GPS would
be necessary to correct and update the placement calculations along the way. For a
further description of the LOS algorithm, refer to [Fossen, 2002].

8.4 Optimization of devc-dmm32at

The DMM-32-AT is not utilized the way it could. The card has got the capabilitiy of using
a FIFO memory, scan sampling with a programmable time between samples between
20 and 5µs, interrupt based sampling for controlled-rate sampling, and channel-range
sampling. The CyberBike's control algorithm is supposed to use a constant sampling
rate of all input-signals for every step, and this could have been performed a lot more
e�cient by using some of these features provided by the I/O card.

In [Diamond Systems Corporation, 2003, p. 31] an overview of di�erent sampling
methods are described, and for which types of application the di�erent methods �t.

But before this is investigated further, the CPU utilization for the driver should
be evaluated to decide if this is really needed. If the current sampling method makes
the driver satisfy the real-time constraints (considerations on delay and jitter2) for the

1as soon as more serial interfaces are added to the system
2variation in delay
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CyberBike, and the total CPU utilization on the CyberBikePC is su�ciently low when
all the necessary drivers are running, it might not be worth the e�ort.

8.5 Videocamera

It would be interesting to see and record the trip from the CyberBike's point of view,
when the bike is going for an autonomous ride. For this purpose a simple web camera
would be su�cient. An analog camera with its own unit for transmitting data is assumed
to be the simplest solution here, to ease installation and to avoid an overload of the WiFi
connection and the CyberBikePC's CPU consumption. A webcamera with USB interface
would require support from the QNX Neutrino system running on the CyberBikePC,
and hence might also generate some additional compatibility problems. To get the best
possible real-time properties on the system, the load on the CPU should be lower than
100%, and this is also a relevant argument for not letting the camera signal go through
the CyberBikePC's CPU.

8.6 Adaptive IMU-signal converting

In Section 7.2 it was argued that the MTi is a far better solution than the original IMU
from Spark Fun. But since the original IMU already is purchased and available, it could
be interesting to put some e�ort into making it a better device, releasing one or the other
to other projects. If an algorithm, similar to the one running at the MTi's DSP, could
be derived, the IMU's utility value would increase.

From [Xsens, 2006] it could be read that the physical sensors inside the MTi are
calibrated according to a physical model of the sensors' response to various physical
quantities. Temperature is named as an example. The combo boards (the three cards
with embedded accelerometers and gyros) on the Spark Fun IMU also provides temper-
ature measurements, included in the 16 values transmitted from the IMU motherboard.
Xsens [2006] states that the basic model used at the MTi is linear, and according to the
relation given in Equation (8.1), where KT is a unique gain matrix, given by the factory
calibrations, bT is the bias vector, u is the sampled voltages.

s = K−1
T (u− bT ) (8.1)

It is also noted that the model actually used by Xsens is much more complicated than
the Equation (8.1), and that their model is continously being developed.

An alternative way to develop the model, or the parameters in the above equation,
would be to use an adaptive algorithm, reading the data from the IMU and from the
actual known accelerations and rotation speeds.

The suggestion for further work given in this section, is not yielding the CyberBike
project any real progression as long as the MTi is available. It is mentioned here because
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it might be an interesting task to be assigned as a separate project or thesis in the future,
or if sharing the MTi between two or more projects gets too complicated.

8.7 Connection database

If serious reorganizing or adding of several connections and devices to the CyberBike's
suitcase, it might be worth to consider using a database tool to keep the documentation
of the connections up to date. In Appendix E some tables showing the connections are
presented. These probably get out of date as soon as hardware related upgrades are done
to the CyberBike. Parts of the information are presented in more than one table. This
complicates the update process of the documentation, and makes it harder to keep an
overview. However, if changes to the hardware has to be made, an update of the existing
tables is probably preferable.

Onshus [2006, chap. 16] is describing how documentation of large control systems
should be done, and mentions a few examples on computer assisted documentation soft-
ware packages. Using these would probably be an overkill in this case, but maybe simpler
alternatives exist to be used in the CyberBike's case.
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Conclusion

A project on an autonomous unmanned bicycle � the CyberBike � has been going on at
the Department of Engineering Cybernetics (ITK) at NTNU for some years. The goal of
the project is to make the bike ride on its own, by controlling the steerangle, the bike's
velocity, and an inverted pendulum substituting the leaning rider. To achieve this, three
motors are used to apply torque to the steering, the rear wheel, and the pendulum. But
to control these, measurement devices and a calculating unit is necessary, as well as a
controller.

The work on this thesis includes various tasks, mainly focusing on software and
hardware development for the instrumentation parts of the control system. A part of the
assignment, was to �nd out what had to be done. Measurements from two new devices
have been made available to the controller; an Inertial Measurement Unit (IMU) and
a Global Positioning System module (GPS). Some devices already included or partly
attached to the system needed further development to work properly with the rest of the
system. This introduced code and hardware maintenace tasks as some of the biggest and
most demanding parts of the work to be done. To be more concise; the driver for the
I/O card (DMM-32-AT) needed a thorough investigation and rewriting, the propulsion
motor connection and setup had to be completed, the IMU initially used in the CyberBike
project (from Spark Fun Electronics) needed a UART-to-RS232 signal transceiver circuit
to enable measurement transmission. The same IMU also needed some code maintenance
to work properly, and the pendulum motor needed functionality implemented to its
already mounted limit switches.

Finally some pure hardware related tasks were carried out. These included installa-
tion of a fan for cooling the electronic devices in the control system, batteries to power
up the system without using cables, and an emergency stop switch.

Some attempts to use the measurements from the various devices together with a
previously developed CyberBike model and controller in Simulink, using S-functions,
were performed. But to get any speci�c test results from this, not su�cient time was left
for the exercise.

When the �rst IMU (from Spark Fun) was installed and tested, it was realized that
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a large e�ort on converting and calibrating the data received from the unit had to be
done, to be able to use the measurements to controlling the bike. It was then decided
to try the other and more advanced IMU (the MTi) instead. This unit contains its own
digital signal processor, converting the measurements to ready-to-use variables directly
from the device, hence better results were expected by using this unit.

By this, it is believed that the CyberBike-project is far closer to its �nite goal, yielding
a better foundation for further development and progression on the project.
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Appendix A

Contents on CDROM

The contents on the appended CDROM is:

Code contains the drivers and various testprograms for the bike. Available drivers are:

• devc-dmm32at

• devc-dmm32at-old

• devc-gps

• devc-imu

• devc-mt

• devc-velo

Connection_diagrams contains an Excel spreadsheet with the source of the various
connection diagrams, presented in Appendix E, and generated LATEX �les.

Eagle-PCB-layout contains the Eagle-�les for both signal transceiving PCBs made in
this project (GPS and IMU).

Litterature includes electronic versions (pdf) of some of the articles, manuals and
datasheets relevant for the CyberBike.

matlab contains �les to make Real-Time Workshop cooperate with QNX.

Report contains this report, with �gure sources, LATEX-�les, and �nal pdf.

Scripts contains some small scripts made to do often performed operations in QNX.
Particularly the nfs_script have been useful.

Simulink contains some simulink models, with S-functions to communicate with the
CyberBike's drivers.

Software contains software used, such as the various programs and libraries provided
by the DMM-32-AT's vendor, programs to make a DOS bootable USB-stick, Ter-
minals, NFS server program, etc.
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Appendix B

How to start the CyberBike system

This chapter is intended to give a �ying start of how to start the system.

1. Push the emergency button, and make it stay in activated position (no torque on
motors)

2. Put the power switch in o�-condition (a zero is visible at the top of the switch).

3. Connect a power source to the rightmost circular 4-pins connector at the suicase
(marked 24V), either from the batteries, or from an external power supply (e.g. as
showed in Section 6.1.3).

4. Make sure the MTi is inside it's housing right behind the front wheel.

5. Plug a screen cable (from an available screen) to the VGA connector on the Wafer-
9371A (SBC).

6. Connect a keyboard into the PS2 connector at the Wafer-9371A.

7. Plug an ethernet cable into the RJ-45 slot on the outer side of the suitcase, and
into an available network connection slot.

8. Connect a mouse (if wanted) into the USB connector at the outside of the suitcase.
Make sure the USB cables connectors are connected to the 9-pins contact at the
Wafer-board inside the suitcase.

9. Make also sure that the hard drive are connected to the EIDE1 connector on the
board. The hard drive is placed under the motor controller card (Baldor TFM 060-
06-01-3).

10. Connect the desired serial device to the available com port (a D-SUB 9 connector)
directly on the wafer board. In the present moment of writing, only this serial

1Enhanced IDE
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device is working. The three available devices that could be plugged in are the
MTi, the IMU from Spark Fun, and the GPS. If the MTi is chosen, make sure it
is powered by the three-pins contact, from the ACE-890C. This connector is made
such that it has ground on pin 1 and 3, and Vcc on the pin in the middle. This is
to avoid destroying the device if plugging it in upside down.

11. Push the power button. If an external power source is used, it should be set to
24V. Make sure it could deliver enough current. Rememember that the motors are
capable of using 11, 8A + 2.9A + 4A = 18.7A at rated speed. The fuses on the
batteries are chosen to be 15A, which should be more than su�cient for the load
applied to the motors in this case.

12. If the suicase is closed (be careful if cables are hanging out) make sure the fan is
running. The fan is a bit noisy, and therefore a switch, placed at the foremost left
corner in the suitcase, is made such that the fan stops when the suitcase is open.

13. The QNX Neutrino login screen should appear on the screen. Press the �Superuser�
icon, or type �root�. No password is needed.

14. If another PC with the QNX Momentcs IDE are to be used for development, go
through the QNX Quickstart guide [QSSL, 2005], to set up the host system (the
target system; CyberBikePC, should not be altered).

15. The emergency button should now be deactivated by turning it counterclockwise,
if some output on the motors are desired.

16. Start the drivers on the target machine by typing:

# devc-dmm32at

# devc-imu

# devc-mt

# devc-gps

# devc-velo

in a terminal window. The devc-velo has to be started last. Device �les should
be accessible from the /dev/ directory when the drivers are successfully started.

17. An NFS-server have been used to share �les between the development host and the
CyberBikePC. If this is not set up, an NFS-server is put on the CDROM appended
with this thesis. Setup instructions could be found in [Fossum, 2006, Vedl. 5].

18. Some scripts to make working with the CyberBikePC easier is put on the CDROM
(see Appendix A). For instance, the nfs_script, which takes the last octet in the
IP-address as an argument (assuming the �rst three octets stays the same inside
NTNU2 for a while).

2Norwegian University of Science and Technology
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19. To start developing from Matlab and Real-Time Workshop, see appendices in [Fos-
sum, 2006] for quick introduction tutorials.

20. For developing in QNX, see Section 2.2, [Krten, 2001] and [QSSL, 2007c].
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Appendix C

How to boot CyberBikePC in Linux

When testing the COM ports at the Wafer-9371A, another operating system was desired,
to make sure that QNX was not the one to blame for the non-working COM2 port. An
Ubuntu Linux-installation is now kept on the CF card (see Figure 3.5).

To boot into Linux, do the following:

• Power down the PC

• Remove the hard drive ribbon cable from the EIDE slot on the Wafer-9371A.

• Insert the compact �ash card into it's slot inder the Wafer-9371A. Slim �ngers are
advantageous to get it in place.

• Power up the PC.

• Hit �DEL� to enter BIOS1 setup.

• Choose �Auto-Detect Hard Disks�. In the menu showing up, the CF card should
be visible as secondary master.

• In the �Advanced CMOS Setup�, make sure the PC is set up to boot from IDE-0,
as it's �rst speci�ed boot device.

• Save and exit BIOS setup.

• The CyberBikePC should now boot up in Linux. Login as cyberbikerider with
password deluxe (same as the bicycle-brand). To get root privileges, run the
command through sudo, or just type su to switch to super user. The super user
password is the same as the regular user, to keep it simple, and because it normally
would be the same person.

• To get back into QNX, type halt as superuser or through sudo, and shut the power
o� when told to.

1Basic Input/Output System
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• Remove the CF card.

• Insert the gray hard drive ribbon cable into the 44 pins EIDE connector on Wafer-
9371A.

• Power up the PC again, hit �DEL� to enter setup and do the same procedure as
when booting Linux. The hard drive should be detected as primary master.

• Sometimes, it was experienced that the BIOS didn't detect the newly changed
connections the �rst time, but this was solved by booting down the pc, power it
o�, and boot up again.

If Linux is something that has to be used frequently, and it is desired to keep both
OSes available without all this rebooting, a boot loader that makes the user choose
which operating system to boot during startup should be installed. An example of such
a bootloader is grub, but how the QNX compatibility is for that bootloader is neither
explored nor tested.



Appendix D

How to boot CyberBikePC in DOS

The CyberBikePC is capable of booting from USB-memory, which makes a straightfor-
ward option to connecting CDROM or �oppy drives to test the pc with other OSes. Note:
changes to the BIOS settings could in�ict the ability to boot from USB devices. If such
problems occur, refer to [IEI Technology Corp., 2006, chap. 4].

First, an USB �ash memory has to be con�gured to look like a DOS boot diskette.
This is the not so quite straightforward part of the task, but at last a simple solution
was found:

1. Put an USB �ash memory without any important content into an available USB
connector on a PC running Windows XP.

2. Download windows_enabler.zip from [Hewitt, 2002], or from the CDROM (see
Appendix A).

3. Unzip the �le. Make sure all �les ends up in the same folder. Start the application
by double clicking on Windows Enabler.exe. An icon similar to the one just double
clicked will show up in the system tray.

4. Left click on the icon in the system tray bar to activate the Windows Enabler
application. The icon should now be showed with the text �On� in the foreground.

5. Open �My Computer� in XP, and right click on the icon representing the USB �ash
memory. Choose �format� in the drop down menu.

6. In the window that now appears, select check the �Create an MS-DOS startup disk�
box. This option is by default not possible to use on a USB memory like this, but
here Windows Enabler comes into play. Format the USB-drive.

7. Right click on the windows enabler system tray icon, and select �Quit�.

8. Stop and unmount the USB storage medium by left clicking on its system tray icon.

To start the CyberBikePC from the USB drive, do the following:
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1. Insert the bootable USB device into the USB-connector on the Wafer-9371A, via
the �10-pin-to-USB� cable provided with the in the Wafer kit.

2. Power up the CyberBikePC. Hit �DEL� to enter BIOS setup.

3. Choose the �Advanced CMOS setup�.

4. A menu similar to the one showed in Figure D.1 appears. Make sure the USB-
device is booted from before any other devices (i.e. set �1st Boot Device� to USB
and �2nd Boot Device� to IDE-0).

5. Save and exit BIOS setup, to restart system.

Figure D.1: Screenshot of the Advanced CMOS setup menu, taken from [IEI Technology
Corp., 2006].

To get back into QNX, powering down the CyberBikePC, remove USB device, and
power up again should be su�cient. If not, go into the BIOS setup again to make sure
IDE-0 is speci�ed as �1st Boot Device�.



Appendix E

Connection tables

This appendix provides tables covering most of the connections in the CyberBike project.
A lot of information is presented in more than one table, to make it easier to get an
overview of connections while debugging, making additional connections, etc. This should
be kept in mind when updating or changing the tables, to keep the documentation
consistent, see Section 8.7.

The tables here is made in Microsoft Excel, and exported to LATEX by an excel2latex-
macro (see [Marder, 2001], and the enclosed CDROM, see Appendix A).
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E.1 Terminal block outside suitcase

Legend: NO = Normally Open
NC = Normally Closed
B1 = left switch
B2 = right switch
BX - in = connected to DMM-32-AT
BX - NC-out; connected to positive side of diode
BX - NO-out; connected to negative side of diode



E.1. Terminal block outside suitcase 127

L
ow

er
te
rm

in
al
s

U
p
p
er

te
rm

in
al
s

P
ot
m
et
er

st
ee
ri
n
g;
si
gn
al

2
1

T
ac
h
om

et
er

p
ro
p
u
ls
io
n

T
ac
h
om

et
er

st
ee
ri
n
g

4
3

P
ot
m
et
er

p
en
d
u
lu
m
;
si
gn
al

6
5

T
ac
h
om

et
er

p
en
d
u
lu
m

8
7

10
9

T
ac
h
om

et
er

p
ro
p
u
ls
io
n
;
G
N
D

12
11

T
ac
h
om

et
er

p
en
d
u
lu
m
;
G
N
D

14
13

T
ac
om

et
er

st
ee
ri
n
g;
G
N
D

P
en
d
u
lu
m

sw
it
ch
;
B
2
-
N
O
-o
u
t

16
15

P
en
d
u
lu
m

sw
it
ch
;
B
2
-
N
C
-o
u
t

P
en
d
u
lu
m

sw
it
ch
;
B
1
-
in

18
17

P
en
d
u
lu
m

sw
it
ch
;
B
2
-
in

P
en
d
u
lu
m

sw
it
ch
;
B
1
-
N
O
-o
u
t

20
19

P
en
d
u
lu
m

sw
it
ch
;
B
1
-
N
C
-o
u
t

22
21

P
ot
m
et
er

p
en
d
u
lu
m
;
5V

24
23

P
ot
m
et
er

st
ee
ri
n
g;
5V

P
ot
m
et
er

p
en
d
u
lu
m
;
0V

26
25

P
ot
m
et
er

st
ee
ri
n
g;
0V

T
a
b
le

E
.1
:
T
er
m
in
al

b
lo
ck

ou
ts
id
e
su
it
ca
se
.



128 APPENDIX E. CONNECTION TABLES

Terminal Connection

1 Tachometer propulsion
2 Potmeter steering; signal
3 Potmeter pendulum; signal
4 Tachometer steering
5 Tachometer pendulum
6
7
8
9
10
11
12 Tachometer propulsion; GND
13 Tacometer steering; GND
14 Tachometer pendulum; GND
15 Pendulum switch; B2 - NC-out
16 Pendulum switch; B2 - NO-out
17 Pendulum switch; B2 - in
18 Pendulum switch; B1 - in
19 Pendulum switch; B1 - NC-out
20 Pendulum switch; B1 - NO-out
21
22
23 Potmeter steering; 5V
24 Potmeter pendulum; 5V
25 Potmeter steering; 0V
26 Potmeter pendulum; 0V

Table E.2: Sorted two-column version of Table E.1.
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Figure F.1: Schematic design of PCB.
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Figure F.2: Layout of PCB, all layers showed.

Figure F.3: Layout of PCB, bottom surface print

Figure F.4: Layout of PCB, top surface print.


