
June 2010
Kristin Ytterstad Pettersen, ITK

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Coordinated Control with Obstacle
Avoidance for Robot Manipulators

Magnus Christian Bjerkeng

Problem Description
SINTEF and NTNU are, together with StatoilHydro, investigating how to remotely control
operations on offshore oil platforms by employing robots. One of the key challenges for remote
control of offshore oil platforms is how to endow an onshore operator with the right amount and
type of information so that the operator can remotely control the various operations needed to be
carried out on an oil platform (e.g., by controlling a robot manipulator which performs these
operations). This can be partly solved by having a robot manipulator act as an automated camera
platform that ensures a clear view of the robot operation carried out by a second robot controlled
by the operator.

In order to develop such a system, a controller is needed that endows the robot with the camera
mounted to follow the motion of the operator controlled robot without colliding with the other
robot, itself, or its environment. Hence, a controller with collisions avoidance capabilities for
coordinated control of robot manipulators is needed. Such coordinated control will be the topic of
this project.

Preliminary set of tasks:
1. Perform a literature study on coordinated control of robot manipulators with collision
avoidance.
2. Propose a strategy for coordinated control with obstacle avoidance for the two robot
manipulators in the lab
3. Implement a simulator for the robot manipulator
4. Verify the proposed strategy by simulations

Assignment given: 11. January 2010
Supervisor: Kristin Ytterstad Pettersen, ITK

Department of Engineering Cybernetics

Coordinated Control with Obstacle
Avoidance for Robot Manipulators

Magnus C. Bjerkeng

Norwegian University of Science and Technology
Department of Engineering Cybernetics

June 2010

Supervisor
Kristin Y Pettersen

co-supervisors
Erik Kyrkjebø
Aksel Transeth

ii

Summary

This thesis addresses the problem of robot synchronization with obstacle
avoidance. While these two fields have been studied extensively on their
own, they have not yet been considered together as one problem.

This thesis is divided roughly into four parts which are to some extent self
contained. The theory is presented in a narrative that culminates with the
stability proof of the proposed controller. Examples and figures are used in
order to keep the material manageable and readable.

The introductory part of the thesis consists of chapters 1 and 2. We present
the notation and some mathematical background which is necessary for the
theoretical analysis. We go on to review the diversity of ways in which one
may approach this problem from a control design standpoint.

We derive the robot dynamical model in chapter 3 as well as solve other
modeling specific problems. This chapter is of little theoretical interest, but
is needed to implement a simulator on which we may test our controller. This
chapter contains no new contributions but can be read as a guide to robot
modeling.

The first contributions in this thesis are found in chapter 4 where we propose a
real time implementable solution for solving the shortest distance estimation
problem. It is important to know the distance to an obstacle in order to
avoid it. The solution is a dynamic implementation of a steepest descent
optimization scheme which is suitable to run on-line.

Chapter 5 is an introduction to the involved control design found in chapter
6. We review results from obstacle avoidance literature and argue for our
choice of using the task space control design method.

The main contribution of this thesis is found in chapter 6. A controller
is developed and is shown to produce a stable closed loop system. We first
develop a controller considering only collision for the end effector, and then we

iii

iv

extend this to work with full robot collision. The response of the robot is such
that it will track a reference trajectory whenever it is locally possible. When
one cannot track the reference trajectory because of obstacles hindering the
movement, then the trajectory is tracked in all directions in which the robot
can move freely. The controller is simple and elegant, and does not rely on
heuristics common in traditional solutions to obstacle avoidance control.

Preface

This thesis is the culmination of my master studies at the department of
Engineering Cybernetics at the Norwegian University of Science and Tech-
nology. The thesis was written over a 5 month period ending the 14th of
June 2010.

I was guided throughout the process of writing this thesis by my main super-
visor Professor Kristin Y. Pettersen and co-supervisors PhDs Erik Kyrkjebø
and Aksel Transeth. They have provided me with theoretical support and
research ideas as well as editorial suggestions. They have always been posi-
tive and encouraging which has helped me tremendously especially in times
of slow progression. This thesis would not have been completed without their
patience and support. They deserve my deepest thanks. I look forward their
continuing support as I embark on my PhD starting fall 2010.

I would also like to thank my office mates Kristoffer Fikkan, Magnus Rørvik
and Idar Haugstuen which together have made the my day a joy throughout
the last year. Finally I would like to thank my family and especially my
girlfriend Nathalie who apart from enduring my endless robot rants without
going crazy, has given me lots of love and support throughout my master
studies.

————————————

Magnus C. Bjerkeng

Trondheim 14th June 2010

v

vi

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Preliminaries . 4

2 The Problem 9
2.1 Design considerations . 10
2.2 Overview of control design . 12

3 Modeling 17
3.1 Forward kinematics . 18
3.2 Inverse kinematics . 20
3.3 Velocity kinematics . 24
3.4 The singularities of the Jacobian 27
3.5 The joint space dynamical model 28
3.6 Task space mapping . 29

4 Geometry Representation and Distance Calculation 33
4.1 Obstacle representation . 33
4.2 Shortest distance between a convex shape and a line 38
4.3 Constructing the steepest descent system 40
4.4 Shortest distance between two convex shapes 47
4.5 Complexity considerations . 49

5 Collision Avoidance Control 51
5.1 Collision avoidance in path planning 51
5.2 How synchronization differs from path planning 52
5.3 The potential field . 52
5.4 Different potential fields . 53
5.5 Joint space vs Task space control 55
5.6 Feedback linearization . 56
5.7 Resolved acceleration . 56

vii

viii CONTENTS

5.8 Applying forces to the robot 59
5.9 Example: Elbow robot near a wall 59

6 The Synchronization Controller 67
6.1 The ideal controller . 67
6.2 Projected synchronization error 69
6.3 The controller . 71
6.4 Synchronization over curved and rotating surfaces 73
6.5 The controller . 78
6.6 The vector field f ‖ . 79
6.7 f ‖ for general obstacles . 83
6.8 The minimal representation of the obstacle tangent space . . . 88
6.9 Full robot collision for general obstacles 89
6.10 Multiple obstacle interaction 91
6.11 Self collision . 93
6.12 Similarities with force control 94

7 Simulation Results 95
7.1 No collision avoidance . 95
7.2 Planar obstacles for the end effector 97
7.3 Moving spherical obstacles for the end effector 101
7.4 Planar obstacles with full robot collision 103
7.5 Moving obstacles with full robot collision 105

8 Conclusion and Further Work 109
8.1 Conclusion . 109
8.2 Further work . 110

Bibliography 111

List of Figures

1.1 Two robots working in close proximity on a mock up process
plant in the NTNU Robot Lab. 4

1.2 Two vectors a and b and the projections of a parallel to b and
perpendicular to b. 5

2.1 The robot, represented by a triangle, has a large synchroniza-
tion error and the reference has moved along some trajectory . 10

2.2 Different handling of dissynchronization. 11
2.3 Different ways of avoiding a collision when the end effector is

given a reference passing through an obstacle. 12
2.4 Box-diagram of the different modules in the tracking controller

with obstacle avoidance at the guidance level. 13
2.5 An example of how failing to follow the collision-free reference

results in a collision. 14
2.6 Box-diagram of the different modules in the tracking controller

with integrated obstacle avoidance. 15

3.1 The KUKA KR16 robot with the rotational joints labeled A1−
A6 courtesy of KUKA. 17

3.2 The joints of the robot labelled A1 − A6 with coordinate sys-
tems following the DH-convention. The arrows indicate the
positive rotation direction. The lengths of the links are la-
belled ai, di. The dotted lines indicate the placement of the
coordinate axes. 18

3.3 The KUKA robot with the centers of gravity labeled pci for
each link. 25

4.1 A cube in R
2 given as the intersection of two inequalities. . . . 36

4.2 The function Z1 describing a cube in R
2. 36

4.3 A strange cross in R
2. 37

ix

x LIST OF FIGURES

4.4 Illustration of how collision is invariant under proportionate
rescaling of obstacle and robot sizes. 38

4.5 The shortest distance from a convex shape to a line segment
problem. 39

4.6 The "forces" involved in the shortest distance dynamical sys-
tem. 41

4.7 The steady state of the shortest distance system (4.15). . . . 42
4.8 Screenshots of a robot moving close to a box obstacle with the

dynamically computed shortest distances as lines. 46
4.9 The function Z2. We see that the gradient of Z2 points to-

wards the boundary of the box making the boundary of the
box globally convergent using steepest descent. 46

4.10 An elbow robot covered by ellipses where the shortest distance
to a superellipse is computed on-line. 49

5.1 The elbow/wall synchronization problem. 60
5.2 The elbow/wall synchronization problem in joint space close

to the steady state. 61
5.3 Two objects are approaching the robot at two different points

excerting equal force. Adding these together will not achieve
collision avoidance . 63

5.4 Two objects are approaching the robot at two different points
excerting equal force. Mapping these to the end effector re-
suslts in collision avoidance 65

6.1 An illustration of the decomposition of our vector field in the
vicinity of an obstacle. 69

6.2 A robot in the vicinity of complicated moving or stationary
obstacle. 73

6.3 The transformation we need to find a minimal representation
of W which is the tangent space of n. 75

6.4 The projection and similarity transformation aligning the nor-
mal vector with the z-axis making the system f ‖ scalar. 80

6.5 Different response for the two proposed repulsive forces. 81
6.6 A robot operating in the vicinity of a moving box hanging

from a cable. 84
6.7 The end effector error while following a trajectory moving

through an obstacle where rotating and translating obstacle. . 86
6.8 The elbow manipulator at different time instances. The refer-

ence is represented by a red cross, the end effector is alway in
synchrony projected into the moving wall. 87

LIST OF FIGURES xi

6.9 The robot seen from above is pushed sideways by an obstacle
moving towards its second joint. The obstacle force is mapped
to the end effector for which it will seem as an object is pushing
it back. Synchronization in the tangent plane to this apparent
obstacle is achieved. 89

6.10 The end effector has reached a corner and is stopped by virtual
forces excreted on the manipulator by the wall and the floor.
The tangent plane/line of the sum of the forces is indicated
by the dotted line. 92

6.11 Two different approaches to avoiding self collision. The ex-
plicit joint difference is used on the left. Some repulsive force
is constructed on the right. 94

7.1 Synchronization control in the absence of obstacles. 96
7.2 Synchronization control When the robot is confined within a

small room. 97
7.3 The robot tracking a reference while being confined in a small

room. 98
7.4 Synchronization control in the presence of planar obstacles

with the distance dependent repulsive force. The position
shown is the x-value. 99

7.5 Synchronization control in the presence of planar obstacles
with the velocity dependent repulsive force. The position
shown is the z-position, and the reference has moved through
the floor. 100

7.6 Synchronization control in the presence of planar obstacles
and a moving ball. The ball is moving straight down on top
of the robot. 101

7.7 Synchronization control in the presence of planar obstacles
and a moving ball. The position shown is the y-position. . . . 102

7.8 A screenshot of the simulation where the particular pose of
the robot prevents it from reducing the synchronization error. 103

7.9 Synchronization control in the presence of planar obstacles
with full robot collision avoidance. The position shown is the
x-value. 104

7.10 The elbow up initial condition for our experiment. 105
7.11 The robot in a workspace occupied by moving spheres under

full robot obstacle avoidance. 106
7.12 Synchronization control in the presence of planar and spherical

obstacles with full robot collision avoidance with the elbow up
initial condition. 107

LIST OF FIGURES 1

7.13 Synchronization control in the presence of planar and spherical
obstacles with full robot collision avoidance with the elbow
down initial condition. 108

2 LIST OF FIGURES

Chapter 1

Introduction

We consider the problem of synchronization with obstacle avoidance in this
thesis. The result of the thesis is a low level controller designed to achieve
this goal. The theoretical results derived are backed up by simulation results
and examples.

1.1 Motivation

Traditional industrial robots follow pre-programmed motion routines. This
works perfectly if the robot is set to perform a given task in repetition in a
static environment. The application we will consider is a space inhabited by
two or more robots. A follower robot has the objective of executing a move-
ment in synchrony with leader robot. The leader robot is controlled by some
external means, and moves independently of the follower. They operate on
an oil platform, where the environment may be changing over time, a picture
of the setup is seen i figure 1.1. In this scenario where robots are working
closely together it is imperative that the robots do not collide to prevent
them from damaging themselves and their environment. For this purpose
we need to bestow our robot with some apparent intelligence. We want the
follower robot to move in synchrony with the leader without colliding with
anything. When the robot is on a collision course we need it to take appro-
priate measures in order for it not to collide, but at the same time we want
the robot to perform its assigned task predictably and in a desirable way even
when its given task which is infeasible due to obstacles in its environment.

3

4 1. Introduction

Figure 1.1: Two robots working in close proximity on a mock up process
plant in the NTNU Robot Lab.

1.2 Preliminaries

We briefly present the notation we will be using and some background ma-
terial needed for the analysis.

1.2.1 Notation and terminology

Vectors and matrices are denoted by uppercase and lowercase letters respec-
tively. Dots denote differentiation with respect to time ẋ = dx

dt
. The notation

used is in compliance with the standard notation in control theory literature.

We adopt the following terminology from [10]. A configuration of a manip-
ulator is a complete specification of the location of every point on the ma-
nipulator. The set of all configurations is called the configuration space.
The vector q contains the joint angles of the robot labelled q1−q6. The joint
space is the vector space spanned by q. A robot has n degrees of freedom
(DOF) if its configuration has be minimally specified by n parameters. The
workspace of the robot is the set of all points that are reachable by the end
effector (the tip of the robot arm). SO(3) refers to the (special orthogonal)
group of rotational matrices. The Task space or Configuration space
is a vector space describing the position and orientation of the robots end
effector. This space is spanned by the composite vector [x,Φ] ∈ R3× SO(3)

1.2. Preliminaries 5

where x is a position and Φ describes the orientation of the end effector.

1.2.2 Vector projection

An introduction to vector projection can be found in [4]. We will denote
the projection of a vector a ∈ R

n along the vector b ∈ R
n as a‖b , and the

projection of a perpendicular to b as a⊥b , see figure 1.2.

Figure 1.2: Two vectors a and b and the projections of a parallel to b and
perpendicular to b.

We obtain them from the following relationship:

a⊥b = a− (aT b) b‖b‖2 , a
‖b = (aT b) b‖b‖2 (1.1)

We see that a = a‖b + a⊥b . If b has length one, then the expression simplifies
to:

a⊥b = a− (aT b)b, a‖b = (aT b)b (1.2)

The projection may also be expressed as a linear transformation using the
Transformation Matrix S(b)1 in the following way:

a⊥b = S(b)a, a‖b = (I − S(b))a (1.3)

Where I is the identity matrix. We can compute S in R
n as:

1This matrix is referred to as the select matrix in the field of hybrid force motion

6 1. Introduction

S =
[
∂a−[aT b]b
∂a1

∂a−[aT b]b
∂a2

. . . ∂a−[aT b]b
∂an

]
(1.4)

S may be computed as the following in R
3 and R

2 assuming b is normalized:

S3(b) =

⎡
⎢⎣1− b21 −b1b2 −b1b3
−b1b2 1− b22 −b2b3
−b1b3 −b2b3 1− b23

⎤
⎥⎦ , S2(b) =

[
b22 −b1b2
−b1b2 b21

]
(1.5)

S is symmetric, det(S(b)) = 0 for all b and it satisfies S(b)k = S(b) for all
positive integers k. The eigenvalues of S are either 0 or 1. The number of
one-eigenvalues corresponds to the dimension of the vector space one is pro-
jecting into and the number of zero-eigenvalues corresponds to the dimension
of the projected vector space of (I − S). We have in addition that a non-
trivial projection (S �= 0) is diagonalizable with real eigenvectors since S is
symmetric.

1.2.3 The model of a robot manipulator

A robot arm/manipulator is a kinematic chain of rigid bodies connected by
joints. Joints come in two flavours and may either be rotational or trans-
lational. The model of a n-link robot manipulator can be derived via La-
grange’s method and may be written on the standard form [10] p.290:

M(q)q̈ + C(q, q̇)q̇ +Bq̇ +G(q) = u (1.6)

Where q is the vector of generalized joint coordinates that is either rotation
or translation. M is the joint-space inertia matrix, C is the Coriolis and
centrifugal force matrix, B is the friction term and G accounts for the gravity.
u is the input vector of generalized forces corresponding to the generalized
coordinates, either force or torque.

It is known that Ṁ − 2C is a skew symmetric matrix. C may be written in
the following way:

C(q, q̇) =

⎡
⎢⎢⎣
q̇TC1(q)

...
q̇TC6(q)

⎤
⎥⎥⎦ (1.7)

1.2. Preliminaries 7

Where Ci ∈ R
n×n are symmetric matrices. We also know that M ∈ R

n×n is
symmetric positive definite and is norm bounded by constants.

8 1. Introduction

Chapter 2

The Problem

We consider the following synchronization problem for two 6-DOF robot
manipulators. One robot is the leader and the other is the follower. The
robots are placed in a space containing obstacles with known shape and
position. The leader is controlled by some unknown means such that no
future reference information is available.

The follower’s task is to move in synchrony with the leader in some predeter-
mined way as well as to avoid collisions with itself, the leader and obstacles
in the environment.

The control/synchronization problem pertaining to the follower will be stud-
ied in this thesis.

Definition 1 (State feedback synchronization with collision avoid-
ance problem) Consider a dynamical model of a 6-DOF robot manipulator
given in the task space:

ẋ = f(x, u) (2.1)

Where x ∈ R
12 is the state of the system and u ∈ R

6 is the control input.
Assume that a reference trajectory xr, ẋr is given. We also assume that there
exist some collision free reference trajectory xfd and input uf which satisfies
ẋ = f(x, xr, ur) such that x is collision free. Find an appropriate control law:

u = u(t, xr, x) (2.2)

9

10 2. The Problem

Such that the closed loop system is asymptotically stable and collision free:

lim
t→∞ ‖x(t)− x

f
d(t)‖ = 0 (2.3)

lim
t→∞ ‖ẋ(t)− ẋ

f
d(t)‖ = 0 (2.4)

2.0.4 Assumptions

We make the following assumptions regarding our system:

We have full reference trajectory information up to the present time. The
internal actuator dynamics in the joints are negligible. The robot is friction-
less, or has known friction such that we may remove it with a controller. The
robot it fully rigid, i.e. no joint flexibility. The geometry of the workspace is
known.

2.1 Design considerations

We present two synchronization examples in order to illustrate the diversity
of possible solutions to our problem.

Example: Dyssynchrony handling

Consider an example where our robot is for some reason in severe dyssyn-
chrony, see figure 2.1.

Figure 2.1: The robot, represented by a triangle, has a large synchronization
error and the reference has moved along some trajectory

2.1. Design considerations 11

The question is how the controller should behave in order to catch up to
the reference. Should it move along the reference trajectory faster than the
reference to catch up? Or should it move as fast as possible towards the last
available reference position? These cases are illustrated in figure 2.2.

(a) The robot moves, possibly faster than the reference,
along the reference path.

(b) The robot tries to minimize the current synchronization
error as fast as possible.

Figure 2.2: Different handling of dissynchronization.

The difference is which synchronization error that gets penalized. If only
the last available measurement is of interest, then figure 2.2b is the optimal
solution. If the position error for all time is important then figure 2.2a
would be an appropriate solution. Whether spatial or temporal errors are
important depends on the task being carried out. Spatial errors would be
more important for a welding-type robot than for a robot trying avoid a
moving obstacle. A versatile design choice would seem to be a controller
that weighs spatial and temporal errors arbitrarily. A "fast enough" control
algorithm would nonetheless reduces the importance of this question.

12 2. The Problem

Example: Collision avoidance design

Some action has to be taken when an impending collision is detected. One
scenario is illustrated in figure 2.3 where the reference passes through an
obstacle. The end effector is the triangle and the rest of the robot arm is
suspended above the workspace.

(a) The controller stops moving in a di-
rection that will lead to a collision.

(b) The controller finds a way around the
obstacle.

Figure 2.3: Different ways of avoiding a collision when the end effector is
given a reference passing through an obstacle.

Each choice for a control strategy has its advantages and downsides. The
collision avoidance routine in scenario (a) is simple to implement, but results
in a large synchronization error in the x-direction. The routine in scenario (b)
gives a good steady state error, but is harder to implement. The end effector
has to wait for a reference point that is collision free in order to proceed
since no future reference information is available. And a trajectory then has
to be found by some path planning or constrained nonlinear optimization
algorithm. The result is a time period for which the synchronization error is
large since this is computationally expensive. Consider a human leader who
wants to operate on some thin plate and accidentally moves the reference
point through the plate. The controller (a) will inhibit this motion while the
controller (b) will try to move all the way around the plate. We therefore
assume that some higher level controller produces a less pathological reference
trajectory, and we chose the controller from scenario (a).

2.2 Overview of control design

We review two different controller implementations for the collision avoidance
problem. One at the guidance level and one lower level integrated collision

2.2. Overview of control design 13

avoidance controller.

2.2.1 Guidance level control design

The guidance level obstacle avoidance control scheme is traditionally imple-
mented in three steps. First some collision free curve is generated considering
only the geometry of the system using any path planning algorithm. This is
done without considering any robot dynamics and may easily produce infea-
sible or undesirable curves. The second step is to solve a trajectory planning
problem where a time parameterized trajectory is generated subject to cer-
tain constraints yielding a feasible trajectory. The last step is to solve the
control problem where the objective is to follow the reference trajectory as
closely as possible.

It is the job of the collision avoidance routine to produce a reference trajectory
which, if perfectly tracked, will not lead to a collision while being close to
the leader’s trajectory with respect to some error measure. The collision
problem is now removed from the controller since the reference trajectory
is now collision free, see figure 2.4. Any sufficiently good synchronization
controller may be implemented to follow the collision free reference trajectory.

��������	
���

��������

��������

�����	����

��������

���	����
�������

�����
��������

�������	�

�����	���

���������
����
�������	�

�����	���

�������

�����

��������

�����������

���	����
	������
 ��
	��������
����!��	�

Figure 2.4: Box-diagram of the different modules in the tracking controller
with obstacle avoidance at the guidance level.

The guidance level control design is attractive due to the simplicity arising
from its modular nature and ease of implementation. One problem with
this design is the following: We assuming that we have an algorithm that

14 2. The Problem

takes reference trajectory samples as an argument, and returns collision free
reference points. The collision avoidance problem is not yet solved even
though this algorithm works to perfection. The reason for this is that the
controller might not track this trajectory close enough, and deviations from
the collision-free trajectory might produce collisions, see figure 2.6.

Figure 2.5: An example of how failing to follow the collision-free reference
results in a collision.

We would need to implement a low level collision avoidance routine in addi-
tion to the path planning stage, to be certain that the robot does not crash.
Path planning algorithms are generally slower than low level controllers and
may be hard to implement for real time applications.

2.2. Overview of control design 15

2.2.2 Control level collision avoidance design

The shortcomings of the open-loop trajectory generating algorithm may be
avoided with a different control design. If we move the collision avoidance
down to the synchronization controller level then we may add feedback con-
trol to both the synchronization controller and the collision avoidance con-
troller. This effectively executes the three steps used in the guidance level
control at once.

���������	
�����
���������
����
���
������

��
�����������

����������
��
������

�������
�����

���������
��
��������

��
���� ���������"��������������
����
���

Figure 2.6: Box-diagram of the different modules in the tracking controller
with integrated obstacle avoidance.

This can be thought of as the increased performance gained from the two
controllers working together as opposed to working independently. This is
an attractive feature since feedback on this level is suitable for on-line imple-
mentation as no slow path planning stage is required. The design will also be
theoretically more interesting. We will for these reasons design our controller
on this low level.

16 2. The Problem

Chapter 3

Modeling

The robots dynamics is derived in this chapter. The analysis is text book
standard and no new ideas or methods are presented. This chapter may
be used as a guide to modeling a high degree of freedom revolute robot
manipulator. The robot in question is seen in figure 3.1. Readers looking
solely for obstacle avoidance theory may skip this chapter in its entirety. We
need to perform the modeling in order to implement a simulator on which
to test our controller, which is our motivation for including this chapter.
We will first derive the forward kinematics and then the inverse kinematics.
We will then present the robot model in full as well as derive som usefull
functions needed for our controller. An overview of the methods we will use
can be found in [10].

Figure 3.1: The KUKA KR16 robot with the rotational joints labeled A1−A6
courtesy of KUKA.

17

18 3. Modeling

3.1 Forward kinematics

The first step is to find the forward kinematics, i.e. the geometric relation-
ship between the configuration of the robot and the position and orientation
of the end effector. We derive this relationship using the DH-convention.
The Denavit-Hartenberg (DH) convention is an algorithm used to derive the
kinematics of a chain of rigid bodies using a small number of parameters, 4
instead of 6. This is achieved by cleverly choosing the coordinate axis for
each joint. The joint diagram and appropriate coordinate axes is seen in
figure 3.2.

Figure 3.2: The joints of the robot labelled A1−A6 with coordinate systems
following the DH-convention. The arrows indicate the positive rotation di-
rection. The lengths of the links are labelled ai, di. The dotted lines indicate
the placement of the coordinate axes.

We observe that the first three joints make up an elbow manipulator, and
the last three are composed as a spherical wrist as defined in [10] p.87. We
assign the right handed coordinate axis for each joint such that the zi-vector
is parallel with the rotation axis and the xi-vector is perpendicular to zi
and zi−1. The z vectors are placed such that the positive rotation angle
is as it is defined for the robot from the manufacturer. The origin of each
coordinate system is placed at the common normal between zi and zi−1 and
is arbitrary when they are parallel. The DH-parameters are given by the
transformations from coordinate system i to i + 1 via the rotational and
translational transformations given in (3.1)

3.1. Forward kinematics 19

q d a α
0 π

2 0 0 π
1 q1 −d1 a1 π

2
2 q2 0 a2 0
3 q3 + π

2 0 a3 −π2
4 q4 −d4 0 π

2
5 q5 0 0 −π2
6 q6 + π −d6 0 π

Table 3.1: The DH-parameters for the KUKA-16K robot where qi = 0 ∀ i
results in the pose of figure 3.2. qi are the joint variables.

T i+1
i = Rotz,qiTransz,diTransx,aiRotx,αi (3.1)

Where Rotz,qi denotes a rotation qi about z and Transx,ai means a translation
ai along x. The parameters are given in table 3.1.

We get the homogeneous transformation from the base coordinate system to
the end effector by multiplying the transformations in order:

T = T 6
b = T 0

b T
1
0 · · ·T 6

5 (3.2)

We denote the base frame, or the world frame as b. The columns of forward
kinematics homogeneous transformation is given by T = [T1, T2, T3, T4] where
si = sin(qi),ci = cos(qi) and c/sij = cos/sin(qi + qj).

T1 =

⎡
⎢⎢⎢⎣
−c6(c5(c1s4 − s23c4s1)− c23s1s5)− s6(c1c4 + s23s1s4)
s6(c4s1 − s23c1s4) + c6(c5(s1s4 + s23c1c4) + c23c1s5)

−c6(s23s5 − c23c4c5)− c23s4s6
0

⎤
⎥⎥⎥⎦ (3.3)

T2 =

⎡
⎢⎢⎢⎣
c6(c1c4 + s23s1s4)− s6(c5(c1s4 − s23c4s1)− c23s1s5)
s6(c5(s1s4 + s23c1c4) + c23c1s5)− c6(c4s1 − s23c1s4)

(s23s5 − c23c4c5)
0

⎤
⎥⎥⎥⎦ (3.4)

T3 =

⎡
⎢⎢⎢⎣
s5(c1s4 − s23c4s1) + c23c5s1
c23c1c5 − s5(s1s4 + s23c1c4)

−s23c5 − c23c4s5
0

⎤
⎥⎥⎥⎦ (3.5)

20 3. Modeling

T4 =

⎡
⎢⎢⎢⎣
s1(a1 + d4c23 − a3s23 + a2c2) + d6(s5(c1s4 − s23c4s1) + c23c5s1)
c1(a1 + d4c23 − a3s23 + a2c2)− d6(s5(s1s4 + s23c1c4)− c23c1c5)

d1 − a3c23 − d4s23 − a2s2 − d6(s23c5 + c23c4s5)
1

⎤
⎥⎥⎥⎦
(3.6)

3.2 Inverse kinematics

We derive the inverse kinematics of the robot in this section. This is a
necessity if one chooses to employ joint space control as one needs to map
the desired end effector trajectory to a trajectory given in the joint space. It
may also be used when performing task space control to provide information
about desirable poses. The inverse kinematics is the mapping from the end
effector to the joint space:

q = T−1(o,R) (3.7)

Where o = [x, y, z]T is the position of the end effector given in the base frame
and R is a rotation matrix describing the orientation of the end effector.
The problem of determining the inverse kinematics is in general a nontrivial
problem of solving 12 highly nonlinear equations with 6 unknowns. The
problem is however not that hard given the specific robot configuration from
figure 3.2 and forward kinematics in accordance with the DH-convention, [10]
p.96. This stems from the fact that the three last joints make up a spherical
wrist where the coordinate axes (4,5) have the same origin called the wrist
center, oc. We use this to split the inverse kinematics problem in two, a
procedure that is called Kinematic decoupling.

The location of the wrist center with respect to the base frame is uniquely
given by:

oc = o− d6R
⎡
⎢⎣0
0
1

⎤
⎥⎦ (3.8)

This allows us to first find q1,2,3 using oc, and then finding the last 3 using
the orientation of the end effector.

3.2. Inverse kinematics 21

3.2.1 The first three joint angles

We assume that the robot is in a nonsingular configuration. oTc = [xc, yc, zc]T
is the wrist center given in the base frame, using the translations from the
base to oc we see that:

oc =

⎡
⎢⎣s1(a1 + a2c2 + c23d4 − a3s23)
c1(a1 + a2c2 + c23d4 − a3s23)
d1 − a3c23 − a2s2 − d4s23

⎤
⎥⎦ (3.9)

We find q1 easily since since the location of oc in the xbyb−plane is a function
of q1, i.e.:

xc
yc

= tan q1 (3.10)

This gives us the two possible solutions for q1:

{q11, q12} = {Atan2(xc, yc),Atan2(xc, yc) + π} ; (3.11)

Where Atan2 ∈ [0, 2π) is the four quadrant arctangent function. There are
two possible values for q1, these refer to the right arm or left arm configura-
tions.

To find the second two angles we first rotate the robot into the ybzb−plane
since we know q1:

o2rot =

⎡
⎢⎣ 0
a1
d1

⎤
⎥⎦ ocrot = Rotzb,q1oc =

⎡
⎢⎣xc cos(q1)− yc sin(q1)
yc cos(q1) + xc sin(q1)

zc

⎤
⎥⎦ =

⎡
⎢⎣ 0
oc1
oc2

⎤
⎥⎦ (3.12)

We find q3 by observing that the distance between o2 and oc is a function of
q3:

d = ‖oc − o2‖4 = a22 + a23 + d24 − 2a2a3 sin(q3) + 2a2d4 cos(q3) (3.13)

The fourth power of the distance is used since the result is slightly simpler.
This gives us the two solutions for q3:

22 3. Modeling

{q31, q32} =
⎧⎨
⎩−2atan

⎛
⎝a3 +

√
a23 + d24 −D2

d4 +D

⎞
⎠ ,−2atan

⎛
⎝a3 −

√
a23 + d24 −D2

d4 +D

⎞
⎠
⎫⎬
⎭

(3.14)

Where D = (d− a22 − a23 − d24)/(2a2). If the plus sign is chosen, then we get
the q3 angle corresponding to q1,1. If Δi = a23 + d24−D2

i < 0 then we have no
solutions for the given q1i.

The solution for q2 is an exercise in trigonometry. The equations one needs
to solve is the wrist center position as a function of q2 and is given by:

[
oc1
oc2

]
=
[
a1 + d4c23 − a3s23 + a2c2
d1 − a3c23 − d4s23 − a2s2

]
(3.15)

It’s solution is:

q2k = Atan2(oc1 − a1, oc2 − d1)− Atan2
[
a2 + δ cos(q′3k),−δ sin(q′3k)

]
(3.16)

Where δ =
√
a23 + d24, q

′
3k = q3k + atan

(
a3
d4

)
and k ∈ {1, 2} refers to the

different solutions possible for q3.

The solution set now looks like:

Q1 =
{
{q11, q21, q31}, {q11, q22, q32}, {q12, q21, q31}, {q12, q22, q32}

}
(3.17)

Q2 =
{
{q11, q21, q31}, {q11, q22, q32}

}
(3.18)

Q3 =
{
{q12, q21, q31}, {q12, q22, q32}

}
(3.19)

{q1, q2, q3} ∈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q1 if Δ1,2 > 0
Q2 if Δ1 > 0,Δ2 < 0
Q3 if Δ1 < 0,Δ2 > 0
∅ if Δ1,2 < 0

Where Di corresponds to q1i and the angles within a bracket depends upon
each other in the following way:

3.2. Inverse kinematics 23

{q11, q21, q31} � {q11, q21(q11, q31), q31(q11)} (3.20)

We see that there are either zero,two or four solution for the first three angles.
They correspond to the permutations of the elbow-up/down, arm right/left
robot configurations as defined in [10] p.104.

3.2.2 The last three joint angles

The last three joint angles are the Euler parameter for a given rotation ma-
trix. We may construct the rotation matrix from the wrist center to the end
effector as a function of q4,5,6 since we now know the first three joint angles.
This is R3

6:

R3
6 = R0

3R = rij (3.21)

We know from the forward kinematics that:

R3
6 =

⎡
⎢⎣ s4s6 − c4c5c6 −c6s4 − c4c5s6 c4s5
−c4s6 − c5c6s4 c4c6 − c5s4s6 s4s5
−c6s5 −s5s6 −c5

⎤
⎥⎦ (3.22)

This gives us the solutions for the last angles:

{q41, q42} = {Atan2(r23, r13),Atan2(r23, r13) + π} (3.23)
{q51, q52} = {acos(r33),−acos(r33)} (3.24)
{q61, q62} = {Atan2(−r32,−r31),Atan2(−r32,−r31) + π} (3.25)

With the solution set:

{q4, q5, q6} ∈
{
{q41, q51, q61}, {q42, q52, q62}

}
(3.26)

There are two solutions to this problem given a triplet q1,2,3 and a nonsin-
gular configuration. So we either have zero, four or eight solutions for the
nonsingular inverse kinematics.

24 3. Modeling

3.2.3 Singularities of the inverse kinematics

A singular configuration of the robot is the case where there are an infinite
number of solutions to the inverse kinematics problem. Since we can cal-
culate the first three angles independently of the last three, we know that
the singularities for the first three joints are the same ones as for an el-
bow manipulator. This is when the wrist center is on the zb axis such that
oTc = [0, 0, ocz]. q1 hence becomes a free variable. The solution we use here is
to pick the last known value for q1 and use this to calculate the other angles
as before.

The spherical joint is in a singular configuration without self intersection
when q5 = 0. The matrix R3

6 now has the form:

R3
6 =

⎡
⎢⎣−c46 −s46 0
−s46 c46 0

0 0 −1

⎤
⎥⎦ (3.27)

As before we have a case where either q4 or q6 is a free variable. The solution
is to assume that q4 is the same as the last known value, and then get q6
from the expression:

q4 = Atan2(−r12,−r11); (3.28)

3.3 Velocity kinematics

We consider the velocity kinematics which is the next step in the modeling
procedure. The velocity kinematics describe the linear and angular velocity
of points on the robot as a function of the joint velocities. The velocity is
described by the Jacobian of the forward kinematics, and we specifically need
the velocity of the mass centers of the links.

3.3.1 Positions of the mass centers

We obtain the position of the mass centers using the forward kinematics. We
assume that the mass density in the joints are sufficiently uniform such that
the mass center will be located somewhere along the line between two joints.
We call these lengths ri, and we readily compute the mass centers given in
the base coordinate system:

3.3. Velocity kinematics 25

��
����

��

��

��

Figure 3.3: The KUKA robot with the centers of gravity labeled pci for each
link.

pbc1 =

⎡
⎢⎣ 0

0
r1

⎤
⎥⎦ pbc2 = o1 +Rb2

⎡
⎢⎣1
0
0

⎤
⎥⎦ r2

pbc3 = o5 +Rb4

⎡
⎢⎣0
1
0

⎤
⎥⎦ r3 pbc4 = o5 +Rb4

⎡
⎢⎣0
1
0

⎤
⎥⎦ r4

pbc5 = o5 +Rb5

⎡
⎢⎣ 0

0
−1

⎤
⎥⎦ r5 pbc6 = o5 +Rb5

⎡
⎢⎣ 0

0
−1

⎤
⎥⎦ r6

where

Rbk = Rb0R0
1 · · ·Rk−1

k , T
b
k =

[
Rbk o

b
k

0 1

]
(3.29)

26 3. Modeling

We note that the mass centers p3, p4 and p5, p6 are located on the same line.

3.3.2 The Jacobian

The Jacobian J is the mapping from the joint velocities to the linear and
angular velocities of any given point on the robot. The Jacobian derived in
this section is also referred to as the geometric Jacobian in order to separate
it from the analytic Jacobian which we will not use. The relationship is the
following:

vbi = Jvi q̇, ωbi = Jωi q̇ (3.30)
Where ω, v ∈ R

3×1 are respectively the linear and angular velocities and
Jωi , Jvi ∈ R

3×6. We get the Jacobian for the linear velocities of the mass
centers either by differentiation of the mass centers with respect to time.

vbi = ṗbci = Jvi q̇ ⇒ Jvi =
∂pbci
∂q

(3.31)

Where q = [q1, . . . , q6]T . Alternatively we may use the handy formula from
[10] p.133 which holds true for a fixed point p on the robot with revolute
joints:

Jp(q) =
[
z0 × (p− o0) z0 × (p− o1) . . . z0 × (p− o5)

]
(3.32)

Where the row i of Jp is the zero vector if p is not a function of qi. From [10]
p.133 we have the following Jacobian for the angular velocities given revolute
joints using the DH-convention:

Jωi =
[
zb0u(i− 1) zb1u(i− 2) zb2u(i− 3) · · · zb6u(i− 6)

]
(3.33)

Where u is the Heaviside function, u(x) = 1∀x ≥ 0, u(x) = 0∀x < 0 and zbi
is the z vector of the coordinate system i expressed in the base frame. We
have for instance that:

Jω3 =
[
zb0 z

b
1 z

b
2 0 0 0

]
=

⎡
⎢⎣Rb0

⎡
⎢⎣0
0
1

⎤
⎥⎦ Rb1

⎡
⎢⎣0
0
1

⎤
⎥⎦ Rb2

⎡
⎢⎣0
0
1

⎤
⎥⎦ 0 0 0

⎤
⎥⎦ (3.34)

3.4. The singularities of the Jacobian 27

The Jacobian for the first two mass centers are as follows:

J1 =
[
Jv1
Jω1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.35)

J2 =
[
Jv2
Jω2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1(a1 + r2c2) −r2s1s2 0 0 0 0
−s1(a1 + r2c2) −r2c1s2 0 0 0 0

0 −r2c2 0 0 0 0
0 −c1 0 0 0 0
0 s1 0 0 0 0
−1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.36)

We see that the linear velocity of the first mass center is zero and that
ω1 = −q̇1 as is apparent by inspecting figure 3.3.

3.4 The singularities of the Jacobian

The Jacobian does not in general have full rank. The angles where J looses
rank are called singularities and are of interest as a task space synchronization
controller uses the inverse of the Jacobian. These singularities are the same as
for the inverse kinematics as the nonsingularity of the Jacobian is a necessary
and sufficient condition for the forward kinematics to be a diffeomorphism.
These joint angle values have a physical interpretation as the robot looses
one or more degrees of freedom at a singularity. This happens for instance
when the robot is stretched out fully in one direction, and the end effector is
on the boundary of the reachable workspace.

We present the determinant of the jacobian for inspection as we have allready
considered the singularities in view of the inverse kinematics.

det{J} = a2s5 [a3c3 + d4s3] [a1 + d4c23 − a3s23 + a2c2] (3.37)

28 3. Modeling

3.5 The joint space dynamical model

We are now ready to state the dynamical robot model given in the joint
space. From [10] p.254 we have that the mass matrix M in equation (1.6) is
given by:

M(q) =
6∑
i=1

{
miJvi(q)TJvi(q) + Jωi(q)TRbi(q)IiRbi(q)TJωi(q)

}
(3.38)

Where mi are the mass of link i and Ii is the inertia matrix for link i about
the mass center expressed in the body attached frame. We see from figure
3.2 that he body attached frames to the mass centers [pc1 , pc2 , pc3 , pc4 , pc5 , pc6]
are in order [Rb1, Rb2, Rb3, Rb4, Rb5, Rb6]. We assume that the inertia matrices for
the last three joints are diagonal since the last three joint are small compared
to the first three, i.e:

Ik =

⎡
⎢⎣Ikxx Ikxy IkxzIkxy Ikyy Ikyz
Ikxz Ikyz Ikzz

⎤
⎥⎦ ∀ k ∈ {1, 2, 3}, Ik =

⎡
⎢⎣Ikxx 0 0

0 Ikyy 0
0 0 Ikzz

⎤
⎥⎦ ∀ k ∈ {4, 5, 6}

(3.39)

The full mass matrix is rather large, and we would need about 3 pages to
write it out explicitly assuming one page has 50 lines.

The Coriolis matrix C is given by:

C(q, q̇) =

⎡
⎢⎢⎣
q̇TC1(q)

...
q̇TC6(q)

⎤
⎥⎥⎦ (3.40)

Where the elements of Ck are given by:

Ck(i,j) = 1
2

{
∂M(k,j)

∂qi
+ ∂M(k,i)

∂qj
− ∂M(k,i)

∂qk

}
(3.41)

The Coriolis matrix is even larger than M and we would need about 5 pages
to write it down. We note that both M and C are independent of q1. This
is justified by observing that the robots kinetic energy is independent of its
base angle.

3.6. Task space mapping 29

The gravity vector G(q) is defined as:

G(q) = ∂P
∂q

(3.42)

Where P is the potential energy of the robot given in the world frame as:

Pi = migpbc1z (3.43)

Where pbc1z is the height of the centers of gravity for each link.

Some of the shortest elements of the system matrices are given by:

M(5,6) = 0
M(4,6) = I6zz cos(q5)
M(3,6) =M(2,6) = I6zz sin(q4) sin(q5)
M(4,5) = − cos(q6) sin(q5) sin(q6)(I6xx − I6yy)
C(5,5) = 1

2 q̇6 sin(2q6)(I6xx − I6yy)
C(6,6) = 0

3.6 Task space mapping

In order to express our dynamical robot model in the task space, we need to
do a little more work. We will need to find a representation of the orientation
of the end effector using a R

3×1 vector. We also need the derivative of the
Jacobian with respect to time. We will not explicitly derive the task space
dynamics as is common using the Analytic Jacobian [10] p.140. We will later
use the roll pitch yaw angle error in place of the actual roll pitch yaw angles
for the end effector when performing this mapping. We will see later why this
is advantageous. Writing down an analytic Jacobian for the orientation error
dynamics is possible, but one needs a matrix with a translational mapping
to achieve this. This will be the final step of our lengthy modeling exercise.

30 3. Modeling

3.6.1 A minimal representation SO(3)

We need to use a minimal representation of SO(3) in order to find a robot
model that is useful for task space control. The orientation information is
given as a rotation matrix, which is subject to three normality constraints
and three orthogonality constraints. So expressing an orientation using a ro-
tational matrix is highly redundant as only three degrees of freedom are left
after accounting for the constraints. Representing SO(3) by three parame-
ters may be done in a number of ways, but sadly there are no nonsingular
minimal representations of SO(3). That is, there exsists no mappings from
R ∈ SO(3) 	→ Φ ∈ R

3×1 such that the mapping and its inverse are defined
for all R ∈ SO(3) for both position and velocity. A nonsingular representa-
tion is however possible using quaternions, but a quaternion is not a mini-
mal representation and using quaternions will result in nonlinear closed loop
system. Commonly used minimal representations are axis/angle and Euler
angles. We will use Euler angles, and specifically roll-pitch-yaw angles to
parametrize orientation. We choose this parametrization since it is intuitive,
easily implementable, and it produces a linear orientation error system. Used
in a certain way it is also possible to place the singularity 90◦ away from the
desired orientation.

The roll pitch yaw angles are defined as the ZY X Euler parameters φ, θ, ψ
such that:

R = Rz(φ)Ry(θ)Rx(ψ) (3.44)

Where Rz(φ) denotes a rotational about the z-axis with φ radians. Given a
rotational matrix R, it is possible to extract the roll pitch yaw angles with:

ψ = Atan2(R32, R33)
φ = Atan2(R21, R11)
θ = Atan2(−R31, cos(φ)R11 + sin(φ)R21)

(3.45)

Where Atan2 is the two argument arcatan function. It is possible to find
a linear relationship between the velocity of the Euler parameters and the
angular velocity of a rotational matrix by differentiating the Euler parameters
with respect to time. If we denote Φ = [φ, θ, ψ]T as the vector consisting of
the roll pitch yaw angles, and the angular velocity ω given by the relationship
between the joint velocity and the geometric Jacobian ω = Jω q̇ then we have:

3.6. Task space mapping 31

ω = BΦ̇ =

⎡
⎢⎣0 − sin(φ) cos(φ) cos(θ)
0 cos(φ) sin(φ) cos(θ)
1 0 − sin(θ)

⎤
⎥⎦ Φ̇ (3.46)

3.6.2 The time derivative of the Jacobian

We will need the time derivative of the Jacobian in order to achieve a mapping
from the joint space to the task space. This motivates us to find a closed
form expression of the time derivative of the Jacobian as it is needed for our
controller.

We recall that J consists of two matrices Jvp and Jωp respectively mapping
the joint velocities to the linear velocity of a fixed point p on the robot and
its angular velocity. We assume that p is some point on the robot, the i’th
column of Jvp is either given by zi(q)× (p(q)− oi(q)) or it is the zero vector.
The i’th column of Jω is given by zi(q) or zero.

The time derivative of J may be taken column wise, so we may without loss
of generality consider a column of Jω:

d

dt
zi = ωi × zi = Jωi q̇ × zi (3.47)

The result is straightforward to derive, and the derivation identities used
may be found in [5] p.243. The derivative of a column of Jvp is given by:

[
zi(q)×(p(q)−oi(q))

]
= d
dt
zi(q)×(p(q)−oi(q))+zi(q)× d

dt
(p(q)−oi(q)) (3.48)

Where we have used the fact that the cross product obeys the product rule.
Substituting in żi, q̇ = Jvq q̇ and ȯi = Jvoi q̇ gives:

d

dt

[
zi(q)× (p(q)− oi(q))

]
= [(Jωi q̇)× zi]× (p− oi) + zi× [(Jvp−Joi)q̇] (3.49)

Where the k’th column of Jvp and Joi are given by:

32 3. Modeling

Colk{Jvp} = zk × (p− ok) (3.50)
Colk{Joi} = zk × (oi − ok) (3.51)

And are zero for k > i. All these expressions are given as explicit functions
of q and q̇ which make them suitable for on-line implementation.

Chapter 4

Geometry Representation and
Distance Calculation

Finding the distance from the robot to an obstacle in real time is the subject
of this chapter. The collision avoidance strategy we will implement uses
robot to obstacle distance information. If the robot had distance sensors,
then this section would be unnecessary. Our system however uses information
obtained from cameras to generate data about the workspace obstacles. This
obstacle representation was used in [9] together with a potential functions
for path planing in joint space. It is as far as the author knows the first
time the representation is utilized for real time distance estimation. Our
shortest distance solution, however trivial it may be, has not been found in
any publication.

4.1 Obstacle representation

We need to establish a framework for representing geometry which is both
efficient and notationally manageable. In this section we will present our
choice of obstacle representation, and see why it is a suitable choice for on-line
distance estimation. It is common, especially in computer games to represent
geometry as polytopes consisting of a set of vertices and normal vectors.
While this is an approach where collision detection software is available,
it is notationally hard to incorporate this into a dynamical system as the
data is represented by a big array of ordered vectors. We will instead use a
completely general implicit representation of an obstacle by a scalar function
of the spatial coordinates.

33

34 4. Geometry Representation and Distance Calculation

An implicit representation of an object in R
n given by βi(x) : R

n 	→ R.
We denote the interior of obstacle i as R

n as Ii, the boundary as Bi and
the exterior as Ei. An implicit representation βi(x) satisfies the following
properties:

βi(x) < 0 ∀ x ∈ Ii
βi(x) = 0 ∀ x ∈ Bi
βi(x) > 0 ∀ x ∈ Ei

(4.1)

We note that there are an infinite number of implicit representations of any
given obstacle. For a sphere in R

3 we see that β(x) = x2
1 + x2

2 + x2
3 − r2 is

correct implicit representation, and it is unique up to a constant multiple.
Using this method it is easy to check whether a given point is inside, on
the boundary of, or outside an obstacle. The normal vector pointing out of
the obstacle, which is convenient for a number of purposes is the gradient
evaluated at the boundary.

Implicit representations of shapes with a boundary defined as a solution to a
particular equation are readily given for simple geometric shapes like sphere
and ellipses. These basic shapes are nice due to their simplicity, and may
be used for a rough representation of the workspace. Their expressiveness is
however rather limited.

We shortly review how implicit representations for general shapes may be
obtained. For obstacles with piecewise continuous boundary we may use the
following representation from [11]. [11] presents a union and a intersection
function of k functions satisfying (4.1):

Z1(β1(x), β2(x), ..., βk(x)) = β1(x) ∩ β2(x) ∩ ... ∩ βk(x) (4.2)

Z2(β1(x), β2(x), ..., βk(x)) = β1(x) ∪ β2(x) ∪ ... ∪ βk(x) (4.3)

Where Z1,2 may be recursively defined for as:

Z1,2(β1, β2, ..., βk) = Z1,2(β1, Z1,2(β2, ..., βk)) (4.4)

With

Z1(β1, β2) = β1 + β2 + ‖β1 − β2‖ (4.5)

4.1. Obstacle representation 35

Z2(β1, β2) = β1 + β2 − ‖β1 − β2‖ (4.6)

To shortly motivate why these functions are appropriate we note that the
intersection function Z1 is zero if and only if one of its arguments are zero and
the other is negative, or both its arguments are zero. If one of its arguments
are zero and one is positive, the Z1 is positive. When both arguments are
of the same sign Z1 is has the same sign as its arguments. Thus Z1 satisfies
the properties of an implicit representation of a the intersection of its two
arguments.

These functions can be used to implicitly represent any shape in R
n as a

union and intersection of other implicit shapes with implicitly given bound-
ary. We present two examples to show their usage. The functions presented
in [11] are given as a lengthy expression of all k arguments. We will use just
the functions Z1 and Z2 composed by each other. This results in shorter
expressions and less computational expense than the form presented in [11].

Example 1

A cube in (x, y) ∈ R
2 placed at the origin with unit sides is given by the

intersection of following inequalities:

β1 = |x| − 1
2

β2 = |y| − 1
2

Where |x| is the absolute value. We may also have used β1 = x2− 1
2

2 for the
same result. Using Z1 to obtain the intersection we get:

β1 ∩ β2 = Z1(β1, β2) = |x|+ |y|+ ||x| − |y|| − 1

The boundary of the cube is given by Z1(β1, β2) = 0, see figure 4.1

A surface plot of Z1 is shown in figure 4.2 where we see that Z1 is negative
inside the boundary of the box we constructed.

36 4. Geometry Representation and Distance Calculation

�� �� �� � � � �
��

��

��

�

�

�

�

�

�

	�
 � 	��� � �

	���
 �	�
 �

Figure 4.1: A cube in R
2 given as the intersection of two inequalities.

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

β1(x, y) ∪ β2(x, y)

x

Figure 4.2: The function Z1 describing a cube in R
2.

4.1. Obstacle representation 37

Example 2

We present another example to illustrate the expressiveness of this method.
Two boxes and four unit circles in R

2 are represented by the inequalities:

β1 = |x| − 2, β2 = |y| − 1
2

β3 = |x| − 1
2 , β4 = |y| − 2

β5 = (x− 2)2 + y2 − 1
β6 = (x+ 2)2 + y2 − 1
β7 = x2 + (y − 2)2 − 1
β8 = x2 + (y + 2)2 − 1

The operation Z2(Z1(β1, β2), Z1(β3, β4)) takes the union of the two rectangles
and constructs a cross. The union of this cross and the circles gives the shape
seen in 4.3.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x

y

Figure 4.3: A strange cross in R
2.

In implicit representation of the cross and the circles is given by:

Z2(Z1(β1, β2), Z1(β3, β4), β5, β6, β7, β8) = (β1∩β2)∪(β3∩β4)∪β5∪β6∪β7∪β8
(4.7)

38 4. Geometry Representation and Distance Calculation

Z2 is negative in the interior of the strange cross, positive outside and zero if
and only if (x, y) is on its boundary. The closed form expression is lengthy,
the expression for the cross without the circles is:

Z2(Z1(β1, β2), Z1(β3, β4)) = ||x| − |y| − 3/2| − |||x| − |y|+ 3/2|
−||x| − |y| − 3/2||+ ||x| − |y|+ 3/2|+ 2|x|+ 2|y| − 5

(4.8)

4.2 Shortest distance between a convex shape
and a line

Distance estimation between our robot and obstacles in the workspace is
needed for our obstacle avoidance strategy to be successful. We need the
shortest robot to obstacle distance in order to implement the obstacle avoid-
ance potential function from [10]. This is straightforward for spherical ob-
stacles, but this may be to restrictive for an accurate representation of the
workspace obstacles. In this section we discuss an approach for the solu-
tion to the distance estimation problem for general obstacles. We finish the
analysis with an example.

We assume that all obstacles are convex, or are representable as a set of
possibly overlapping convex figures. We also assume that the robot is shrunk
to a connected link of line segments, see figure 4.4. This is appropriate if we
enlarge the workspace obstacle proportionally.

�����
�����		

Figure 4.4: Illustration of how collision is invariant under proportionate
rescaling of obstacle and robot sizes.

We will assume throughout the analysis that the gradient of Z is continuous
for all points in R

n. This is not true for the box from example 1 as the normal
vector changes discontinuously at a corner. This did not present a problem
in simulation however, but applying theory of solutions to vector fields with
discontinuous right hand side is beyond the scope of this chapter.

4.2. Shortest distance between a convex shape and a line 39

The problem is to find the shortest distance from each link to each obstacle
in real time for moving links and obstacles. To that end, we consider an
arbitrary line segment oi, oi+1 ∈ {x1, x2, x3} and an arbitrary convex shape
given implicitly in the workspace as Z(x) ≤ 0.

Figure 4.5: The shortest distance from a convex shape to a line segment
problem.

The end points of the line segments are readily given by the robot forward
kinematics, and an implicit representation of an obstacle is constructed as in
4.1. We consider a point on the line segment oi + p(oi+1 − oi) parametrized
by p ∈ [0, 1] and a point on the boundary of the obstacle ψ. We use the
square brackets to denote set inclusion. This gives us the following nonlinear
optimization problem:

min
d

s.t. Z(ψ) = 0, p ∈ [0, 1] (4.9)

Where d = ‖oi + p(oi+1 − oi) − ψ‖ is the distance between a point on the
line segment parametrized by p and a point on the boundary of the obsta-
cle. This could be solved as a nonlinear optimization problem using of the
shelf optimization algorithms, but this may not be acceptable for real time
implementation.

We propose a dynamical system as an optimization algorithm which will
be more suitable for on-line implementation. Solving optimization problems
using dynamical systems has for instance been used in [1] where it is applied
to a path planning problem. We construct dynamical system with a stable
equilibrium being the solution to (4.9). The system uses normalized steepest
descent search and is continuous.

40 4. Geometry Representation and Distance Calculation

4.3 Constructing the steepest descent system

We will in this section construct the steepest descent dynamical solution to
(4.9). Consider first the slightly simpler problem of finding a point ψ on
the obstacles surface. If we assume that Z is constructed using linear and
quadratic arguments such that ∇Z2 has a globally stable equilibrium where
Z = 0, then we will find this point in finite time with the steepest descent.
This assumption is valid since the construction of Z is up to us.

ψ̇ = −K1
(∇Z2)T

‖∇Z2‖ = −K2SignZ(ψ)n (4.10)

∇ denotes the gradient row vector:

∇(Z2(ψ)) = 2Z∇(Z) = 2Z
[
∂Z

∂x1
,
∂Z

∂x2
,
∂Z

∂x3

]
(4.11)

And K1 > 0 is a constant defining the convergence speed, see figure 4.9 for
an illustation. We have also written the system as a function of n(ψ) =
∇Z(ψ)/‖∇Z(ψ)‖ which is the normal vector pointing out of the shape in
question. Its form now resembles a sliding mode controlled system. Notice
that we do not need ψ to be on the boundary of the shape for n to describe
the normal vector.

We consider next the problem of finding the closest point on a line given a
point ψ. This problem is solvable in closed form and the solution for the
parameter p is given by:

p(ψ) = Sat
{

(oi − oi+1)T (oi − ψ)
l2i

}
(4.12)

Where li = ‖oi−oi+1‖ is the length of link i and Sat is the saturation function
between 0 and 1. So far we have managed to find a point on the boundary of
an obstacle, and the closest point to this on a line. The last step we need is
to find the closest point on the shape to the line. We will achieve this using
a force perpendicular to n pulling ψ along the boundary of the obstacle. If
we denote a "force" pulling ψ in the direction of p, as Fψ, we have:

Fψ = oi + p(oi+1 − oi)− ψ (4.13)

4.3. Constructing the steepest descent system 41

The projected force along the boundary of the obstacle is given by:

F⊥nψ = S(n)(oi + p(oi+1 − oi)− ψ) (4.14)

Where S is the projection matrix of the appropriate dimension found in (1.4).
See figures 4.6 and 4.7 for an illustration.

Figure 4.6: The "forces" involved in the shortest distance dynamical system.

If we combine the steepest descent towards the obstacle and the descent along
the obstacle we have:

ψ̇ = K2
F⊥nψ
‖F⊥nψ ‖

+K1
∇(Z2(ψi))T
‖∇(Z2(ψi))‖ (4.15)

Where we also define

F⊥nψ = 0 ⇒ F⊥nψ
‖F⊥nψ ‖

= 0 (4.16)

Z(ψ) = 0 ⇒ ∇(Z2(ψi))T
‖∇(Z2(ψi))‖ = 0 (4.17)

We will see that this system achieves finite time convergence to a point ψs, ks
which describe the shortest distance between the robot and a convex obstacle.

42 4. Geometry Representation and Distance Calculation

Figure 4.7: The steady state of the shortest distance system (4.15).

4.3.1 Equilibrium analysis

We will shortly discuss the stability of our system, and we start by finding
the equilibria. We know by direct calculation that oi + ps(oi+1 − oi) is the
closest point on the line segment {oi, oi+1} to the obstacle, so we only need to
consider the stability of ψ. For ψ̇ = 0, ψ ⇒ ψs we have to solve the following
equation:

K2
F⊥nψ
‖F⊥nψ ‖

−K2SignZ(ψ)n = 0 (4.18)

Since F⊥n is perpendicular to the gradient field vector at any ψs we see
that for this to be zero, then the two terms individually have to be zero.
∇x(Z2(ψs))T = 2Z(ψs)∇x(Z(ψs))T is by construction zero if and only Z = 0
and ψs is on the boundary of the obstacle.

F⊥nψ is zero if and only if F⊥n is parallel to the normal gradient field ∇Z(ψs).
This happens for point ψs on a convex obstacle, one at the closest point, and
one at the point farthest away from the robot on the boundary of the obstacle.

4.3. Constructing the steepest descent system 43

The closest of these two points satisfy the closest distance property. If we let
the initial condition ψ0 be somewhere closer to the robot than the obstacle,
we know that we will converge on the correct equilibrium.

4.3.2 The gradient of Z

An efficient implementation of the shortest distance algorithm uses the gra-
dient of the implicit representation of a shape. It would be convenient to
have an easy way to compute this since Z may in general be quite complex.
We therefore derive the gradient in closed form.

Remember that a given shape may be represented by a composition of in-
tersection and union functions of k inequalities. We denote the composed
functions with a superscript by slightly abusing notation.

Z(β1(x), ..., βn(x)) = Z1(β1, Z
2(β2, Z

3(. . . , Zn−2(βn−2, Z
n−1(βn−1, βn) . . .))

(4.19)

With Z(a, b) = a+ b− |a− b|. We have by the chain rule:

∂Z

∂xi
= ∂Z
∂β1

∂β1

∂xi
+ · · ·+ ∂Z

∂βn

∂βn
∂xi

(4.20)

We define the following functions which are derivatives of Zi with respect to
their first argument of the union and intersection function:

φi = ∂Z
i
1(βi, Zi+1

1)
∂βi

= 1− sign(βi − Zi+1) (4.21)

φi = ∂Z
i
2(βi, Zi+1

2)
∂βi

= 1 + sign(βi − Zi+1) (4.22)

We observe that the derivative of Zi with respect to its second argument is
given by 2− φi from the definition of Z, i.e:

∂Zi(βi, b)
∂b

= 2− φi (4.23)

This enables us to write the partial derivatives of Z with respect to βi as:

44 4. Geometry Representation and Distance Calculation

∂Z

∂β1
= ∂Z

1

∂β1
= φ1

∂Z

∂β2
= ∂Z

1

∂Z2
∂Z2

∂β2
= (2− φ1)φ2

∂Z

∂β3
= ∂Z

1

∂Z2
∂Z2

∂Z3
∂Z3

∂β3
= (2− φ1)(2− φ2)φ3

...
∂Z

∂βn−1
= φn−1

n−2∏
i=1

(2− φi)

∂Z

∂βn
=
n−1∏
i=1

(2− φi)

We now the gradient is given by:

∇xZ =

⎡
⎢⎣Zx1

Zx2

Zx3

⎤
⎥⎦ = JTβ P (4.24)

Where the subscripts indicates the partial derivative. where Jβ is the Jaco-
bian of all the βi with respect to x1, x2, x3.

Jβ =

⎡
⎢⎢⎢⎢⎢⎣

∂β1
∂x1

∂β1
∂x2

∂β1
∂x3

∂β2
∂x1

∂β2
∂x2

∂β2
∂x3...

∂βn
∂x1

∂βn
∂x2

∂βn
∂x3

⎤
⎥⎥⎥⎥⎥⎦ (4.25)

and P are the partial derivatives of Z with respect to β stacked on top of
each other.

P =

⎡
⎢⎢⎢⎢⎣

φ1
(2− φ1)φ2

...∏n−1
i=1 (2− φi)

⎤
⎥⎥⎥⎥⎦ (4.26)

4.3. Constructing the steepest descent system 45

4.3.3 Example

We present a simple example with a planar elbow robot and a prismatic
obstacle. A box in R

2 with position [xb, yb], width and height w, h and
rotation θ is given by the intersection β1 ∩ β2 where βi may be represented
by the following inequalities:

β1 = ‖ cos(θ)(x− xb)− sin(θ)(y − yb)‖2 − w2 (4.27)
β2 = ‖ sin(θ)(x− xb) + cos(θ)(y − yb)‖2 − h2 (4.28)

The intersection is:

Z = β1 + β2 + ‖β1 − β2‖; (4.29)

If we define φ1 = 1 + sign(β1 − β2) = 2u1(β1 − β2) then the gradient of Z is
given by:

∇ZT =
[
∂Z
∂x
∂Z
∂y

]
=
[
∂β1
∂x

∂β2
∂x

∂β1
∂y

∂β2
∂y

] [
φ1

2− φ1

]
(4.30)

∇ZT =
[
2(x− xb)c2θ − (y − yb)s2θ 2(x− xb)s2θ + (y − yb)s2θ
2(y − yb)s2θ − (x− xb)s2θ 2(y − yb)c2θ + (x− xb)s2θ

] [
2u1(β1 − β2)
2u1(β2 − β1)

]
(4.31)

A simulation trail is shown in figure 4.8

46 4. Geometry Representation and Distance Calculation

−1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

x

y

Figure 4.8: Screenshots of a robot moving close to a box obstacle with the
dynamically computed shortest distances as lines.

−1
−0.8−0.6

−0.4
−0.20

0.2
0.40.6

0.81

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

y

x

Z(x, y)2

Figure 4.9: The function Z2. We see that the gradient of Z2 points towards
the boundary of the box making the boundary of the box globally convergent
using steepest descent.

4.4. Shortest distance between two convex shapes 47

4.4 Shortest distance between two convex shapes

Representing the robot as a link of line segments is inefficient if the geome-
try of the robot is asymmetric or irregular. This is because obstacles in the
workspace have to be grown proportionate the outermost point on the robot.
This will render the free configuration space much smaller than strictly nec-
essary, and will make good synchronization harder to achieve. This motivates
us to present a steepest descent system to find the shortest distance between
two convex shapes. The algorithm is similar to the one previously stated and
relies heavily on vector decomposition.

Given two convex shapes in the workspace β1(x), β2(x), and two points ψ1, ψ2
we present the following system which will in finite time converge to the
steady state ψs1, ψs2. These points have the property of being the closest
points between the shapes, and ‖ψs1 − ψ2

2‖ is the shortest distance. This is
the system:

ψ̇1 = F⊥n1

‖F⊥n1‖
+Kψ1

∇x(β2
1(ψ1))T

‖∇x(β2
1(ψ1))‖ (4.32)

ψ̇2 = − F
⊥n2

‖F⊥n2‖
+Kψ2

∇x(β2
2(ψ2))T

‖∇x(β2
2(ψ2))‖ (4.33)

n1 and n2 are the normalized gradient vectors of β1 and β2 respectively.
Where F⊥n1 is the orthogonal complement of ψ2 − ψ1 with respect to the
vector pointing out of n1 evaluated at ψ1:

F⊥n1 = S(n1)(ψ2 − ψ1) (4.34)

And F⊥n2 is similarly given by:

F⊥n2 = S(n2)(ψ2 − ψ1) (4.35)

We do not need to consider the stability of (4.32) as these two systems are
independently identical to (4.15) and the convergence properties we need
follow directly.

48 4. Geometry Representation and Distance Calculation

4.4.1 Example

We revisit the planar elbow with a box example. We now assume that the
robot is covered by ellipses. The following ellipse will cover the line segment
{o0, o1} with length l1:

x2
1
a2

+ x
2
2
b2
− (l1 + ε)2 = 0 (4.36)

For some small ε ≥ 0. We place the two ellipses over the joints given the
forward kinematics.

β2 = h1(x, q)2

a2
+ h2(x, q)2

b2
− (l2 + ε)2 (4.37)

Where

h(x, q) = T−1
1 (q)

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
x1
x2
0
0

⎤
⎥⎥⎥⎦− 1

2(o0 + o1)

⎞
⎟⎟⎟⎠ (4.38)

Where T1 is the homogeneous transformation from the base to the first joint.
β2 in closed form is given by:

β2 =
(x1 cos(q1) + x2 sin(q1)− l12)2

a2
+ (x2 cos(q1)− x1 sin(q1))2

b2
− (l1 + ε)2;

(4.39)

The ellipse for the second joint is given by:

β3 = g1(x, q)
2

a2
+ g2(x, q)

2

b2
− (l2 + ε)2 (4.40)

Where

g(x, q) = (T1T2)−1(q)

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
x1
x2
0
0

⎤
⎥⎥⎥⎦− 1

2(o1 + o2)

⎞
⎟⎟⎟⎠ (4.41)

4.5. Complexity considerations 49

Where T1T2 is the homogeneous transformation from the base to the first
second joint. An illustration of the system is shown with a superelliptical
obstacle with a = 1, b = 0.2.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

x1

x
2

β3

β2

β1
ψs

1

ψs
1

Figure 4.10: An elbow robot covered by ellipses where the shortest distance
to a superellipse is computed on-line.

4.5 Complexity considerations

Shortest distance estimation is computationally expensive, and even though
finite time convergence has been achieved we have no explicit bounds on
the convergence time. In addition we need to perform distance estimation
between each convex portion of the robot and each obstacle. While this
number grows linearly with the number of obstacles one would spend a con-
siderable time just for distance estimation for each time sample given a dense
workspace. The method utilizes temporal coherency to a great extent if one
assumes that the obstacles and the robot have not moved far over any given
time sample. Optimization may be obtained by moving the ψi attached to

50 4. Geometry Representation and Distance Calculation

the robot in accordance with the movement of the robot such that when ψi
reaches the robots surface it will stay there. Variable step length by using for
instance the Wolfe conditions will speed up the convergence at the expense
of continuity.

Chapter 5

Collision Avoidance Control

In this chapter we will review strategies for collision avoidance control and
robot control in general. We will justify the design choices which we will use
in the control design in the next chapter.

5.1 Collision avoidance in path planning

Collision avoidance for robot manipulators has been studied heavily in the
field of path planning. The path planning problem is the following: Give two
points a and b and a set of obstacles, find an executable trajectory between
a and b such that no collision occurs. This problem seem similar to the
synchronization with obstacle avoidance problem. We will therefore shortly
review some results in the field of path planing.

One of the first successful solutions to the path planning is known as the
probabilistic road map method, [6]. One first needs to construct the config-
uration space obstacle, then randomly occupy it with way points. A tree
of feasible vertices are added, and then the shortest path is used to gener-
ate a trajectory. Another solution paradigm is called the artificial potential
field method introduced in [7]. The essence of the controller is that is gen-
erates forces repelling the robot away from obstacles, and forces pulling the
robot towards the control objective. The robot converges to the goal given
a properly constructed potential field. The potential field is in this setting
referred to as a navigation function. A third solution strategy is called the
elastic strip method [1], which to some extent is a combination of the po-
tential field approach and the road map method. The proposed solution is

51

52 5. Collision Avoidance Control

to construct an elastic strip between the start and goal point consisting of
way points. The elastic strip is deformed by a obstacle potential field and
contracts such that a short collision free trajectory is generated as the equi-
librium is reached. The elastic strip method may be used for global path
planning or path deformation if a path is already given.

Different variations on these methods broadly represent the suggested solu-
tions in path planning literature.

5.2 How synchronization differs from path plan-
ning

The path planning problem does seem like a similar problem to ours. The
biggest difference is that we do not have a goal point, but a goal trajectory
with unknown future behavior. Another crucial difference is that none of
the methods impose any real time constraints on the trajectory or the speed
at which it is executed. The elastic strip method may be used to deform
an already provided trajectory, and can be said to account for trajectory
restrictions, but we do not have a predefined trajectory to deform. The
potential field approach may provide convergence to some goal point, but
how the robot behaves between a and b cannot easily be specified. These
strategies are also developed in joint space, which requires the construction
of the joint space obstacle. These strategy cannot be applied directly to our
problem as the configuration space obstacle is computationally infeasible to
compute on-line even for a mildly complex workspace. So a solution to the
path planning problem is not a solution to the synchronization with obstacle
avoidance problem, but we will use ideas from the artificial potential field
approach to develop a local synchronization controller.

5.3 The potential field

The potential field method was introduced by Khatib in 1986, [7] and has
since then gained wide popularity in the control theory community. Our
choice to use artificial potentials for our controller are due to the following:
It produces a closed loop system which readily susceptible to stability analysis
unlike heuristic tree-traversing methods. Different potentials may be used for

5.4. Different potential fields 53

different applications making the method highly flexible. The method is also
simple to implement.

The artificial potential field is a potential field in that it is the gradient of
a scalar function, and it is artificial as it is imposed through control input
unlike for instance gravity. We want the potential field to produce a force on
the robot ensuring collision avoidance.

We impose the following restrictions on our repulsive force: We want the
repulsive force to exert little or no influence far away from an obstacle. The
magnitude of the force must tend to infinity close to the obstacle to ensure
collision avoidance. We also want a continuous force such that we have
existence of classical solutions.

The simplest approach is to construct a force solely dependent on the distance
to the nearest obstacle. We have shown how to find the shortest distance
from the robot to the workspace obstacle, and we will use this to construct
a repulsive force.

The design of the repulsion force is entirely up to the designer, and may
vary between different types of obstacles. An object where the goal is to
actually crash, like the act of pushing a button, another force will need to
be used. We will not consider cases like this, but it is important to recognize
the versatility of the design methodology.

5.4 Different potential fields

A repulsive force with magnitude proportional to the inverse of the collision
distance would meet the properties required to construct a proper repulsion
force. To ensure that the force is zero outside a specified security zone around
the obstacle we have from [10] p.172:

Fi(q) =
⎧⎨
⎩ηi

(
1
d(q) − 1

ρ0

)
1
d(q)2

pi−pci
‖pi−pci‖

di(q) ≤ ρ0
0 di(q) > ρ0

(5.1)

Where ρ0 is the security distance where the obstacle exerts a force on the
robot, pi is a point on the robot closest to the obstacle i and pci is a point
on the obstacle closest to the robot.

This repulsive force field is easily implementable for time-varying obstacles
where the closest robot/obstacle distance is known at every time instance.

54 5. Collision Avoidance Control

There are however several reasons why this is not an ideal choice. If for
instance the synchronization objective is close to the boundary on obstacle,
then even steady state convergence is infeasible as a local equilibrium will be
located some distance away from the obstacle. The approach to this point
may also be oscillatory. Other less than optimal behavior is the fact that
obstacle exert repulsive forces even while moving away from, or parallel to
the robot.

One way to remedy this is to use another force dependent on the estimated
time to collision. Using the time to collision for obstacle avoidance hs been
considered in [3]. The form of the repulsive force is however very different
from the one used in [3].

This employs velocity information of the manipulator and its environment
and is inherently designed to handle a time varying workspace. Assuming
that a velocity estimate ḋ of the distance d is available, then the distance at
time t+ T assuming constant velocity is by the Taylor theorem:

d(t+ T) = d(t) + ḋ(t)T +O(T 2) (5.2)

We want an estimate for the time to collision, i.e. a time T = Tc such that
d(t + T) = 0. A linear estimate produces the following time to collision
estimate:

Tc = −d(t)
ḋ(t)

(5.3)

Tc is negative if the obstacle is moving away from robot, and infinite if the
robot is moving parallel to, or is relatively stationary to the obstacle sur-
face. One simple controller based upon the estimated time to collision is the
following:

Fi(q, q̇) =
⎧⎨
⎩ηi

(
1
Tc
− 1
T0

)
1
T 2
c

pi−pci
‖pi−pci‖

Tc ≤ T0

0 Tc > T0 or Tc < 0
(5.4)

Where T0 is the threshold time to collision where the controller kicks in. pi
is the point on the robot closest to the obstacle, and pci is a point on the
obstacle closest to the robot, and ηi > 0 is the gain. As opposed to keeping
the robot at a fixed distance from the obstacle, the controller seeks to keep
the robot above some fixed positive time to collision. This results in the robot

5.5. Joint space vs Task space control 55

slowing down relative to an obstacles speed as opposed to be pushed back by
it. It will also allow the robot to move arbitrarily close to an obstacle as long
as the relative speed towards the obstacle approaches zero. It will also give
avoidance priority to avoiding obstacle moving very fast in the workspace. A
more thorough analysis if found in section 6.6.2.

5.5 Joint space vs Task space control

Control of robot manipulators is traditionally carried out in two different
design methodologies. These are joint space control and task space control.
Perhaps the most crucial design choice one has to make when performing
robot control is whether to use joint space control or task space control.
We shortly review their strengths and weaknesses for our control problem to
clarify our choice.

5.5.1 Task space control

A task space1 control algorithm is carried out explicitly on the end effector
position and orientation. The task space is the physical space inhabited by
the robot plus the orientation space. This makes the task space approach
more intuitive. We note the following: The synchronization objective is given
in the task space. The robots geometry and the geometry of the obstacles
are given in the task space. A minimal representation is however needed
for orientation control as the orientation reference is given as a rotational
matrix.

5.5.2 Joint space control

Joint space control is carried out considering desired joint angles and veloci-
ties. The control objective is not uniquely given in joint space, but is mapped
to the joint space from the task space via the inverse kinematics. The global
joint space obstacle is generally infeasible to compute on-line, but it is not
needed as distance information in the task space may be mapped to the joint
space. The robot is represented by a point mass in the joint space, which
makes path planning conceptually easier. One does not need to consider

1This space is also referred to as the "work space" or "operational space" in robot control
literature.

56 5. Collision Avoidance Control

minimal representations of SO(3) as the end effector orientation is mapped
to a joint reference. The synchronization controllers in [8] is developed in
joint space, and building upon these would be simpler in joint space. The
robots dynamical model is also given in joint space, but is easily mapped to
the task space by a change of coordinate given a minimal representation of
SO(3). A drawback with joint space control which is rarely discussed is the
case where there are no solutions to the inverse kinematics, i.e. the trajectory
is infeasible. While this problem is solvable in a number of ways, it would be
preferable not to have to worry about it.

5.6 Feedback linearization

We will shortly review a technique used commonly in control of robot ma-
nipulators. The robot model (1.6) is on the input affine form, and is hence
susceptible to feedback linearization. Assuming perfect state information we
see that the input:

u =M(q)u2 +G(q, q̇)q̇ +G(q) (5.5)

Will yield a linear closed loop double integrator:

q̈ = u2 (5.6)

The linearized system is desirable since is easy to control and analyze. Per-
fect feedback linearization is however impossible in practice due to model
assumptions and uncertainties.

5.7 Resolved acceleration

Resolved accelerations is a technique used for mapping the joint space robot
model to the task space. The Analytic Jacobian is also used for this purpose,
but using it directly is not advisable when using roll pitch yaw angles as the
minimal representation of SO(3). This is because the mapping is undefined
for certain configuration called representation singularities. We will limit
the possibility of representation singularities using a angle error mapping. A
review of the method for common parameterizations of SO(3) can be found
in [2].

5.7. Resolved acceleration 57

We start with the feedback linearized system given in the joint space:

q̈ = u2 (5.7)

We want to map the system to the task space. We use the geometric Jacobian
J , and we know that

[
ẋ
ω

]
= J(q)q̇,

[
ẍ
ω̇

]
= J(q)q̈ + J̇(q)q̇ (5.8)

Setting u2 to the solution of this with respect to q̈ gives us a mapping to the
task space given in the variables x for position and ω for angular velocity of
the end effector. We construct the input:

u2 = J−1(u3 − J̇ q̇) (5.9)

Given a nonsingular Jacobian then the closed loop system becomes:

q̈ = J−1(u3 − J̇ q̇) ⇐⇒ Jq̈ − J̇ q̇ = u3 ⇐⇒
[
ẍ
ω̇

]
= u3 (5.10)

We will now split up the systems explicitly into the position system ẍ = up
and the orientation system ω̇ = uo. If we first consider the position system,
then a stable linear tracking controller is:

up = ẍd −Kp(x− xd)−Kd(ẋ− ẋd) (5.11)

With the closed loop error system e = x− xd:

ë = −Kpe−Kdė (5.12)

which is exponentially stable for all Kp, Kd > 0.

58 5. Collision Avoidance Control

5.7.1 The roll-pitch-yaw error system

We now need to parametrize SO(3) to construct a system similar to (5.12) for
the orientation. We may extract the roll pitch yaw angle difference directly
from RTRd using (3.45):

Φe = f
(
RT (q)Rd

)
(5.13)

Where Φe = [φe θe ψe] �= [φd − φ θd − θ ψd − ψ] is a measure of the roll pitch
yaw angle difference. This is advantageous since representation singularities
will occur only for an orientation synchronization error of θ = k π2 . If we
used the roll pitch yaw angles directly, then a desired pitch of 90◦ would be
impossible to achieve.

Φ̇e and Φ̈e are given by:

ωe = ωd − ω = R(q)B(Φe)Φ̇e (5.14)

ω̇e =
(
d

dt
R(q)B(Φe)

)
Φ̇e +R(q)B(Φe)Φ̈e, (5.15)

Choosing uo = ω̇d−
(
d
dt
R(q)B(Φe)

)
Φ̇e+R(q)B(Φ)(KpoΦe+KdoΦ̇e) gives the

closed loop orientation system:

ω̇ − ω̇d +
(
d

dt
R(q)B(Φ)

)
Φ̇e = R(q)B(Φe)(KpoΦe +KdoΦ̇e) (5.16)

If we write the angular acceleration as a function of Φ̈ using (5.14) we get:

−ω̇e +
(
d

dt
R(q)B(Φ)

)
Φ̇ = −R(q)B(Φe)Φ̈e = R(q)B(Φe)(KpoΦ̇e +KdoΦe)

(5.17)

Which gives us the exponentially stable closed loop system given Kpo, Kdo >
0:

Φ̈e = −KpoΦ̇e −KdoΦe (5.18)

We have now successfully mapped the system to the task space and produced
an exponentially decreasing tracking error in position and orientation.

5.8. Applying forces to the robot 59

5.8 Applying forces to the robot

Now that we have mapped the system to the task space and designed appro-
priate obstacle repulsion forces, we need to map these forces to the robot.
If we assume that a force Frep acts on the end effector then we can simply
write:

ẍ = u2 = u3 + Frep (5.19)

By Newtons 2d law, which gives us the closed loop system:

ë = −Kpe−Kdė+ Frep (5.20)

The orientation system remains unchanged since no torque is exerted on the
end effector by the obstacle. This is one of the differences between traditional
hybrid force motion control and our approach as we may apply the force
where we see fit as opposed to a "real" force which will appear in both the
orientation system and the position system.

We now present an example which will illustrate our choice of performing
task space control.

5.9 Example: Elbow robot near a wall

We present a simple example in order to motivate our design for choosing
between the two robot representations. Consider a planar elbow robot in
the vicinity of a static wall. Assume that the synchronization objective is
a static point. The synchronization objective lies beyond or inside the wall
and is infeasible. We want the robot to place the end effector close to the
wall and with the same height as the desired value. This way we can at least
say that we can achieve synchronization in height.

In figure 5.1 we see the setup.

On the left we see the steady state of a simple joint space controller, and
on the left is a task space controller showing some initial configuration at t1
and the steady state at t2. xod is the optimal end effector position. qd are
the desired joint values obtained from passing the desired end effector point
xd to the inverse kinematics. Frep is a force induced on the robot from the

60 5. Collision Avoidance Control

Figure 5.1: The elbow/wall synchronization problem.

obstacle via some properly constructed vector field. Fq is the force of some
controller in joint space, and Fx is a force on the end effector in the task
space.

We observe that the task space controller has achieved partial synchroniza-
tion while the joint space controller robot has settled into some undesirable
steady state.

Lets analyze the behavior of the controllers:

Joint space controller

We assume that feedback linearization has been composed with a PD con-
troller such that the closed loop system is given as:

q̈ = −Kp(q − qd)−Kd(q̇) + JTv (q)Frep(q) (5.21)

Where the repulsive force is mapped to the joint space via the velocity end
effector Jacobian. The steady state, q̈ = q̇ = 0 is given by:

Kp(qs − qd) = JTv (qs)Frep(qs) (5.22)

This equation is hard to solve analytically but solving it numerically gives the
solution shown if figure 5.1. The controller seeks to minimize the angle error,
in 5.1 we see that q2 − q2d is approximately zero. However we don’t want to

5.9. Example: Elbow robot near a wall 61

minimize this error as we want to synchronize the end effector position. The
picture becomes clearer if we look at the configuration space obstacle seen if
figure 5.2.

1.3 1.35 1.4 1.45 1.5 1.55
−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

q1

q 2

Joint space
obstacle

Free configuration
space

qs

qd(xd)

JTFrep

Kp(qs − qd)

qo
d(x

o
d)

qs(xo
d)

Figure 5.2: The elbow/wall synchronization problem in joint space close to
the steady state.

The joint space obstacle is defined by o2x(q) = cos(q1) + cos(q1 + q2) > ocx
where oc defines the position of the wall and o2x is the x-coordinate of the
end effector. We see that the minimum angle error with respect to the
configuration space obstacle, qs is not close to the projected reference qod. Also
shown is the steady state where qod has been used as the reference position.
The steady state error in this case is still not zero projected into the task
space obstacle, even though it is closer than before.

One intuitive strategy to make the joint space controller work better is to
explicitly project the reference point onto the obstacle surface, and then
extract the desired joint angles from this point. We now get qpd such that
h(qpd) = xod where h is the robots forward kinematics. The closed loop steady
state is now:

Kp(qs − qpd) = JTv (qs)Frep(qs) (5.23)

We see that the xos is guaranteed to be reached if Frep = 0. To have a repulsive
force from an obstacle be zero on the obstacle surface is not advisable, so we
would need to move the projected point some way away from the obstacle.

62 5. Collision Avoidance Control

And even then we are not guaranteed that to have zero projected error. To
make matters worse, consider the case where the reference is moving in and
out of an obstacle. If we choose a certain distance from the obstacle at which
we project the reference, then the time derivative of the error used in the
controller is not defined at the time of projection since it not continuously
differentiable at this point. So one either needs to slow the robot down to
zero speed as one approaches this point, or filter the reference with some
lowpass filter for classical solutions to the closed loop system to exist. If one
employs a velocity error observer however, then this filtering is already carried
out, making the problem less severe for systems without explicit velocity
information. Even with all this work we further need to impose constraints
on Frep in order for the objective to be feasible. The point is that this
approach is complicated, and we will show below why a task space controller
is better suited for end effector synchronization with obstacle avoidance.

Workspace controller

We assume that a mapping to the task space has been done and feedback
linearization has been employed with a PD controller with scalar gains such
that the closed loop system is:

ẍ = −kp(x− xd)− kd(ẋ) + Frep (5.24)

The steady state of the system is given by:

−kp(x− xd) + Frep = 0 (5.25)

We see that the vectors −kp(x− xd) and Frep are pointing in opposite direc-
tions and are of the same length. If we assume that the vector Frep(xs) is
normal to the obstacle surface then we know that we are situated at some
point where the error normal to the surface is zero. More formally we have
that the projected error into the wall (x−xd)p is the orthogonal complement
of (x− xd) along Frep which is:

(x− xd)p = (x− xd)−
[
(x− xd)TFrep

] Frep
‖Frep‖2 (5.26)

Substituting in (x− xd)T = Frep/kp gives us:

5.9. Example: Elbow robot near a wall 63

(x− xd)p = (x− xd)− 1
Kp

[
F TrepFrep

] Frep
‖Frep‖2 (5.27)

Which gives us that the projected error into the obstacle surface is zero:

(x− xd)p = (x− xd)− 1
kp
Frep = 0 (5.28)

Which is the desired behavior of obstacle avoidance controller in this case.
Notice how much simpler the analysis is in the task space. The complexity
in this approach is in the mapping from the joint space to the task space.
Notice also that we have not imposed any explicit restrictions on qd, such
that either of the two possible robot poses are feasible steady state solution.

5.9.1 Mapping a contact force to end effector

We will now consider the how we map a force acting on an arbritrary point
on the robot to the end effector. It would be nice if we could map a force from
any point on the robot by simply adding them togeter in the position system
as we did with the forces acting on the end effector. We have illustrated a
case in figure 5.3 why this cannot be done. A scenario is shown where the
sum of the forces are zero while a crash is imminent.

Figure 5.3: Two objects are approaching the robot at two different points
excerting equal force. Adding these together will not achieve collision avoid-
ance

The mapping of a force Fp acting on a given fixed point p on the robot to
the joint space is given by JTp Fp, [10].

64 5. Collision Avoidance Control

M(q)q̈ + C(q, q̇)q̇ +G(q) = u+ JTp Fp (5.29)

Where JTp denotes the geometric Jacobian for the point p. If we now revisit
the mapping from a force acting on the end effector to the position system
which we added in the following way:

ë = f(e, ė) + Fx (5.30)

Which is consistent with Newtons 2d law given a point mass. In doing this
however we are actually performing an implicit mapping of a force from the
jointspace to the task space from (5.29) to (5.30). We derive this mapping by
applying the jointspace to task space mapping through intput with feedback
linearization assuming that p is the end effector position:

M(q)q̈+C(q, q̇)q̇+G(q) =M(q)(J−1u2−J̇ q̇)+C(q, q̇)q̇+G(q)+JTF (5.31)
[
ẍ
ω̇

]
= u2 + JM−1(q)JTF (5.32)

We observe that the force is mapped to the end effector with the linear
transformation JM−1(q)JTp . This is called the mobility tensor in the litera-
ture. Since we added the force F in the system (5.32) without the mobility
tensor, it is appearant that the implicit mapping we were performing was
Fx = (J−TMJ−1)(JM−1J)Fp such that (5.29) and (5.30) are consistent. We
may interpret this as scaling the force given in the taskspace such that the
end effector is a point with unit mass. So to keep our force mapping consis-
tent we need to apply the mapping from an arbitrary point on the robot to
the end effector as:

Fxp = (J−TMJ−1)(JM−1Jp)Fp = J−TJTp Fp (5.33)

If we consider (5.17) then we see that the mapping from a general force to
the rotation system is:

Fo = B−1(Φe)R(q)TWo (5.34)

Where Wo is the last three elements of J−TJTp Fp.

5.9. Example: Elbow robot near a wall 65

Example

We see how one maps forces to the end effector in the scenario presented in
figure 5.3. We consider an elbow robot where a force F1 is applied to the
second joint a force F2 to the end effector. The robot has links of unit length,
and the Jacobian for the second joint o1 and the end effector o2 are:

Jo1 =
[− sin(q1) 0

cos(q1) 0

]
Jo2 =

[− sin(q1 + q2)− sin(q1) − sin(q1 + q2)
cos(q1 + q2) + cos(q1) cos(q1 + q2)

]

We assume that at some time t0 the robot is in the pose q1 = π/4, q2 = −π/2
and the obstacle avoidance forces F1 = [0 −1]T is applied to the point o1 and
the force F2 = [0 1]T is applied to the end effector. We map these forces to
the end effector and add them together to find the resulting repulsive force
felt by the end effector.

F1x =
[
J−1
o2

]T
JTo1F1

∣∣∣∣
q1(t0),q2(t0)

= 1
2

[
1 1
1 1

] [
0
−1

]
=
[−1

2−1
2

]
(5.35)

Fx =
[
J−1
o2

]T
JTo1F1 +

[
J−1
o2

]T
JTo2F2 =

[−1
21

2

]
(5.36)

Applying the force Fx, which now is not equal to zero, to the end effector
will result in the robot successfully avoiding the collision. An illustration of
the scenario is seen in figure 5.4.

Figure 5.4: Two objects are approaching the robot at two different points
excerting equal force. Mapping these to the end effector resuslts in collision
avoidance

66 5. Collision Avoidance Control

Chapter 6

The Synchronization Controller

The results derived in this chapter are the primary contributions to the field
of obstacle avoidance and synchronization found in this thesis.

The synchronization controller is proposed in this chapter. It is developed in
the framework of artificial repulsion forces. The obstacle avoidance controller
is based upon the original found in [7], and is extended to also achieve partial
synchronization. The novelty of this chapter lies in the combination of the
two problems of synchronization with collision avoidance in a new way which
allows us to present proofs regarding partial synchronization in the proximity
of obstacles. The main contribution in this thesis is found in the problem
formulation. The problem formulation is stated in a way which allows us to
split the system up in different parts which we may look at independently.
These subsystems are analyzed using standard stability theorems.

We begin by considering collision avoidance for only the end effector and
planar obstacles. We then generalize this to include general obstacles. The
last and most general case is where the entire robot is subject to collision
from general obstacles.

6.1 The ideal controller

We now have everything we need in order to develop a synchronization with
obstacle avoidance controller. We will do so in the workspace using feedback
linearization and resolved acceleration. We develop the controller assuming
perfect information. That is full state measurement and known synchroniza-
tion position, velocity and acceleration for both position and orientation. We

67

68 6. The Synchronization Controller

also assume that the shortest distance to the workspace obstacle is known.
We will first only consider collision between the end effector and the obsta-
cles, and we assume that the distance to the obstacles and its time derivative
is given. The problem becomes:

Given the dynamical system:

M(q)q̈ + C(q, q̇) +G(q) = u (6.1)

And a synchronization objective:

{xd(t), Rd(t)}, {ẋd(t), ωd(t)}, {ẍd(t), ω̇d(t)} (6.2)

Find an input u such that:

lim
t→∞ ‖x(t)− xd(t)‖ = 0 (6.3)

lim
t→∞ ‖R(t)−Rd(t)‖ = 0 (6.4)

lim
t→∞ ‖ω(t)− ωd(t)‖ = 0 (6.5)

lim
t→∞ ‖ω̇(t)− ω̇d(t)‖ = 0 (6.6)

If there is no collision. x(t), R(t) are the position and orientation of the
end effector, and ẋ(t), ω(t) are the linear and angular velocities. If we are
in danger of colliding we want to achieve synchronization in the feasible
movement direction. This means that we want to synchronize the robot as
much as possible without colliding with an obstacle. If we denote xf , Rf
as the set of feasible trajectories which will not lead to a collision, then we
want:

lim
t→∞ ‖x

f (t)− xfd(t)‖ = 0 (6.7)

lim
t→∞ ‖R

f (t)−Rfd(t)‖ = 0 (6.8)

lim
t→∞ ‖ω

f (t)− ωfd (t)‖ = 0 (6.9)

lim
t→∞ ‖ω̇

f (t)− ω̇fd (t)‖ = 0 (6.10)

When we are in danger of a collision.

6.2. Projected synchronization error 69

6.2 Projected synchronization error

We assume that the controller (5.19) has been applied to the system, and
we are close to an obstacle such that Frep �= 0. We obviously cannot achieve
perfect synchronization since we cannot at some point move further in the
direction of Frep. What we can achieve however is perfect tracking in the
other directions directions orthogonal to Frep. If we assume that Frep =
n‖Frep‖ where n is the normal vector pointing out of the obstacle, then we
can try to achieve synchronization in the tangent plane of n. This means that
we don’t care about the synchronization error along Frep as it is infeasible.
The orthogonal projection of the error vector field ë = f(e, ė) is ë⊥n =
f⊥n(e⊥n , ė⊥n), see figure 6.1. We will write e⊥n = e⊥ and drop the n in the
superscript as n is the only vector which will be used for projection.

Figure 6.1: An illustration of the decomposition of our vector field in the
vicinity of an obstacle.

6.2.1 The vector field f⊥

We begin by finding the vector field perpendicular to the obstacle and we
derive the conditions under which it is well behaved. The projection of the
error e into the tangent plane with the normal vector n is:

e⊥ = e− [eTn]n = S(n)e (6.11)

70 6. The Synchronization Controller

We will use the transformation matrix S since it is notationally short. We
differentiate this twice to obtain the projected dynamics.

ė⊥ = Ṡe+ Sė (6.12)
ë⊥ = S̈e+ 2Ṡė+ Së (6.13)

When we are not close to an obstacle such that Frep = 0, then we set n = 0
and the projection becomes the identity projection. We get the following if
we assume that the normal vector is constant, or changing slowly such that
ṅ = n̈ = 0⇒ Ṡ(n) = S̈(n) = 0:

ë⊥ = S(n)ë = S(n)f(e, ė) (6.14)

This is applicable to flat surfaces such as walls, floors, slightly curved sur-
faces and is globally applicable if we choose to bound obstacles by bounding
boxes, a common strategy in video game design. If we expand the simplified
projected vector field (6.14) we get:

ë⊥ = S(n)(−Kpe−Kdė+ n‖Frep‖) = −S(n)Kpe− S(n)Kdė+ S(n)n‖Frep‖
(6.15)

The repulsive force in the projected system is zero as can be seen by S(n)n =
n− (nTn)n = 0. This is and important step as we now don’t need to worry
about Frep to show stability. The projected dynamics now look similar to a
mass spring damper:

ë⊥ = −S(n)Kpe− S(n)Kdė (6.16)

Which gives us a system dependent on the new state (Kpe)⊥ and (Kdė)⊥
which is not what we need since we need the states to be the same throughout
the system. What we want is ë⊥ = f⊥(e⊥, ė⊥). We need to have Kp, Kd such
that S(n)Ke = K̃S(n)e where K̃ is a constant positive definite matrix. To
find a solution for this we set K = I3×3k:

S(n)Ke = S(n)kIe = kIS(n)e (6.17)

We see that K̃ = K = kI3×3 where k > 0 is a scalar constant is a solution.
We set Kp = kpI,Kd = kdI to find our projected system:

6.3. The controller 71

ë⊥ = −kpS(n)e− kdS(n)ė (6.18)

Since Ṡ = 0, we have from (6.12) that ė⊥ = Ṡe+Sė = Sė. This allows us to
write the closed loop projected error as:

ë⊥ = f⊥(e⊥, ė⊥) = −kpe⊥ − kdė⊥ (6.19)

Which immediately tells us that the projected error system is exponentially
stable for any scalar gain kp, kd > 0. The only assumption we imposed on
the repulsive force Frep was that it is pointing out of the obstacle. So we
are assured projected synchronization even for a badly designed repulsion
force as long as e is not unstable. We note that there are special cases where
stability is ensured even for kp, kd not being scalar constants. This happens
when the eigenbasis of S is the same as for the base coordinate system. We
need to assume that the gains are scalar for the result to hold in general
however.

So we now have successfully mapped the system to the task space, and we
produced an exponentially decreasing tracking error in position if Frep =
0 and a globally exponentially stable orientation error irrespective of Frep.
The fact that the repulsive force does not appear in the orientation system
means that we can achieve perfect orientation tracking irrespective of any
obstacles. It also means that the robot will not alter the pose of its spherical
wrist in order to comply with the environment. This will limit the robots
possible movement when avoiding a collision as it effectively now only has
three degrees of freedom to use for obstacle avoidance. The choice however
makes the stability analysis simple for the orientation.

6.3 The controller

To reiterate, the controller which achieves perfect orientation and projected
position tracking in the presence of static planar obstacles assuming that Frep
is designed such that the system f ‖ stable, is:

u = C(q, q̇)q̇ +G(q) +M−1J−1(U − J̇ q̇) (6.20)

Where U is given by

72 6. The Synchronization Controller

U =
[

ẍd − kp(x− xd)− kd(ẋ− ẋd) + Frep
ω̇d −

(
d
dt
R(q)B(Φe)

)
Φ̇e +R(q)B(Φ)(KpoΦ̇e +KdoΦe)

]
(6.21)

Where kp, kd ∈ R
+ and Kdo, Kdo ∈ R

3×3 and are positive definite constant
matrices. Φe is given from the expression:

ψe = Atan2(Re32, R
e
33) (6.22)

φe = Atan2(Re21, R
e
11) (6.23)

θe = Atan2(−Re31, cos(φ)Re11 + sin(φ)Re21) (6.24)

With Re = RT (q)Rd(t).

B =

⎡
⎢⎣0 − sin(φ) cos(φ) cos(θ)
0 cos(φ) sin(φ) cos(θ)
1 0 − sin(θ)

⎤
⎥⎦ (6.25)

And d
dt
R(q)B(Φe) can be shown by direct differentiation to be:

d

dt
R(q)B(Φe) = Ṙ(q)B(Φe) +R(q)Ḃ(Φe) = S(ω)R(q)B(Φe) +R(q)Ḃ(Φe)

(6.26)

Where:

Ḃ(Φe) =

⎡
⎢⎣0 −φ̇e cos(φe) −φ̇e cos(θe) sin(φe)− θ̇e cos(φe) sin(θe)
0 −φ̇e sin(φe) φ̇e cos(φe) cos(θe)− θ̇e sin(φe) sin(θe)
0 0 −θ̇e cos(θe)

⎤
⎥⎦ (6.27)

And we may find Φ̇ from inverting (5.14).

Φ̇e = B−1(Φe)R(q)Tωe (6.28)

It is here that the nonsingularity of B is important.

6.4. Synchronization over curved and rotating surfaces 73

Remarks

We have used projections on obstacle tangent planes in order to verify the
stability of the closed loop system. It is important to note that no explicit
projection is carried out in the controller. We simply add a repulsion force
normal to the obstacle, add a scalar PD-gain, and then the stability results
follow without us needing to perform any conditioning on the reference. This
is a crucial property as no slow high level path planning or trajectory modi-
fication stage is included. The stability proof also provides us with a system
describing the motion in the direction of the obstacle surface. It will be
substantially easier to pick Frep intelligently as this system tells us how the
robot moves in the collision direction.

6.4 Synchronization over curved and rotating
surfaces

We will now try to develop a controller equivalent to (6.90) for more complex
surfaces.

Figure 6.2: A robot in the vicinity of complicated moving or stationary
obstacle.

This means that we no longer assume that the normal vector is constant. An
obstacle with a nonconstant normal vector is sufficiently expressive for the
representation of any moving rotation arbitrarily shaped obstacle. We will, as
before, derive the dynamics in the tangent plane to the obstacle taken at the
closest point between the end effector and the obstacle. The full dynamics
of the projected vector field is given by:

74 6. The Synchronization Controller

ë⊥ = S̈e+ 2Ṡė+ Së (6.29)

Our strategy is to find a new input un = u + γ such that the closed loop
system similar or identical to (6.19). The closed loop error system is then
ë = −kpe− kdė+ Frep + γ. If we substitute this into (6.29) we get:

ë⊥ = S[−kpe− kdė+ Frep + γ] + 2Ṡė+ S̈e (6.30)

If we expand we have:

ë⊥ = −kpSe− kdSė+ Sγ + 2Ṡė+ S̈e (6.31)

We cannot say that −kdSė = −kdė⊥ since since n is no longer constant. We
add and subtract the term kpṠe to get ė⊥ from (6.12).

ë⊥ = −kpSe− kd[Sė+ Ṡe] + kdṠe+ Sγ + 2Ṡė+ S̈e (6.32)

We can now write the desired projected system since ė⊥ = Sė+ Ṡe:

ë⊥ = −kpe⊥ − kdė⊥ + kdṠe+ Sγ + 2Ṡė+ S̈e (6.33)

We write this in terms of the desired projected system f⊥ and the undesirable
disturbances F .

ë⊥ = f⊥(e⊥, ė⊥) + Sγ + F (e, ė, n, ṅ, n̈) (6.34)

Where the vector F is zero when the the normal vector is constant. It is hard
to say anything about the stability of this system as F is nonlinear. Our aim
is to find a γ such that S(n)γ + F = 0. The equation we need to solve is:

Sγ = −F (e, ė, n, ṅ, n̈) (6.35)

Since S is singular for all n then equation (6.35) has no solutions, and the
strategy seemingly failed. The reason that this equation is unsolvable how-
ever is the fact that we are representing a projected vector field into R

2 by
vectors in R

3. So our representation is redundant as one of the three equa-
tions of (6.29) are linearly dependent upon two others. So we will need to

6.4. Synchronization over curved and rotating surfaces 75

remove this redundancy in order to proceed. If we go back to the beginning,
we know that:

e⊥ = S(n)e, e ∈ R
3, e⊥ ∈ R

2 (6.36)

Since we are using a vector in R
3 to describe the projected dynamics which

actually is in R
2, we should be able to express the projected dynamics by

its minimal representation. We will see that a time dependent equivalence
transformation will suffice for this purpose. The transformation we want is
the following:

e⊥ = S(n)e, e⊥m = P (t)e⊥ such that e⊥m =

⎡
⎢⎣e
⊥
m1
e⊥m2
0

⎤
⎥⎦ (6.37)

An illustration of the transformation is seen in figure 6.3

Figure 6.3: The transformation we need to find a minimal representation of
W which is the tangent space of n.

One such transformation is a rotation which rotates the projected system
onto its own basis, making one of its elements zero. A seemingly more elegant
approach is to use the diagonalization of S to express e⊥ is the eigenspace
of S(n). We know that it is possible to diagonalize S for all S �= 0. This
is not a problem for us since if S = 0, then we are not in the vicinity of an
obstacle, and we do not need to perform any projection. The diagonalization
of S may be written without loss of generality as:

S(n) = E(n)ΛE−1(n) = E(n)

⎡
⎢⎣1 0 0
0 1 0
0 0 0

⎤
⎥⎦E−1(n) (6.38)

76 6. The Synchronization Controller

Where Λ is a diagonal matrix containing the eigenvalues, being either zero or
one, and E is the eigenvector matrix. The choice to place the zero eigenvalue
in the bottom row is arbitrary. Placing it anywhere else will not change the
result. We will see that using the eigenvectors or a rotation matrix will show
the same result. So if we premultiply (6.39) by E−1 we have:

e⊥ = S(n)e = E(n)ΛE−1(n)e ⇐⇒ E−1(n)e⊥ = ΛE−1(n)e (6.39)

If we call the new projected error e⊥m = E−1(n)e⊥ we have that e⊥m3 = 0. The
steps involved in this transformation is first a projection, then we multiply
the system by an invertible matrix, which is an equivalence transformation.
We have succeeded in eliminating the dependent degree of freedom. We may
now explicitly remove this zero row and construct a new reduced system.
We will however keep the zero row in order to keep our matrices square.
The choice has no impact on the result. The minimal representation of the
projected matrix is given by:

e⊥m = ΛE−1e (6.40)

We differentiate this twice to find a non redundant expression for the pro-
jected dynamical system.

ė⊥m = Λ[Ė−1e+ E−1ė] (6.41)

ë⊥m = Λ[Ë−1e+ 2Ė−1ė+ E−1ë] (6.42)

We substitute the closed loop system with the added input γ to get:

ë⊥m = ΛE−1(−kpe− kdė+ Frep + γ) + Λ[Ë−1e+ 2Ė−1ė] (6.43)

We need to add and subtract kdΛĖ−1e to find the desired vector field in
closed form.

ë⊥m = −kpΛE−1e−kd(ΛE−1ė+ΛĖ−1e)+kdΛĖ−1e+Λ[E−1γ+ Ë−1e+2Ė−1ė]
(6.44)

Where we also use ΛE−1Frep = 0. This simplifies to:

6.4. Synchronization over curved and rotating surfaces 77

ë⊥m = −kpe⊥m − kdė⊥m + Λ[E−1γ + Ë−1e+ 2Ė−1ė+ kdĖ−1e] (6.45)

We can factor out Λ such that we now need to solve the equation:

E−1γ = −Ë−1e− 2Ė−1ė− kdĖ−1e (6.46)

It is possible to solve this directly since we now have E−1 instead of S as
before. Since we have E readily available as the eigenvector matrix of S we
solve the equation as:

γ = −E(Ë−1e+ 2Ė−1ė+ kdĖ−1e) (6.47)

Or if we used a rotation matrix Rn we would have:

γ = −Rn(R̈nT e+ 2Ṙn
T
ė+ kdṘn

T
e) (6.48)

And we have found the γ we need to achieve closed loop stability. The closed
loop system is now given by:

ë⊥m = −kpe⊥m − kdė⊥m (6.49)

where ë⊥m3 = 0 for all e(t), n(t). We note that γ = 0 for n = 0 such that this
new feedback term will not interfere when we are not in danger of colliding
with an obstacle.

We can now seemingly achieve perfect position synchronization orthogonal
to any obstacles given that the Jacobian is nonsingular, B is nonsingular and
that the system f‖ is stable.

6.4.1 Feasibility considerations

Even though it might not seem evident, the derived controller will only be
implementable given planar or slightly curved surfaces. This is because we
use the acceleration of the normal vector of Frep in the controller. This will be
a function of the obstacles acceleration as well as the robots acceleration given
a curved surface. Since the robots acceleration is a function of γ, then our
closed loop system is now no longer given in state space form. The dynamics
are now given as an implicit equation in ë which will manifest itself discrete

78 6. The Synchronization Controller

implementation as a recurrence equation also called an algebraic loop. If we
assume that ë was available for us to use in control, then we could derive
nonsensical results. Consider for instance the closed loop system:

ë = u (6.50)

If we use the input u = ë− e we get the algebraic equation:

e = 0 ∀ t (6.51)

Which is clearly not feasible in any physical system. The best we can hope
for is that the term Ë−1e is small such that it will not perturb our solutions
too much.

6.4.2 Remarks

The choice for the equivalent transform mapping the projected system to a
minimal representation is not unique. Generalized inverse solutions operating
directly on S could also be employed. We chose the diagonalization as a
basis for our transformation given its simplicity. We could also find γ using
generalized inverse solutions of S, this would be less intuitive. Our choice
will however not have an impact on the result.

6.5 The controller

To reiterate once again, assuming that Frep is designed such that the system
f ‖ stable, then the controller which achieves perfect orientation and projected
position tracking in the presence of a moving and rotating planar obstacles
is:

u = C(q, q̇)q̇ +G(q) +M−1J−1(U − J̇ q̇) (6.52)

Where U is given by

U =
[

ẍd − kp(x− xd)− kd(ẋ− ẋd) + Frep + γ
ω̇d −

(
d
dt
R(q)B(Φe)

)
Φ̇e +R(q)B(Φ)(KpoΦ̇e +KdoΦe)

]
(6.53)

6.6. The vector field f ‖ 79

And γ is given as:

γ = −E(n)(Ë−1(n)e+ 2Ė−1(n)ė+ kdĖ(n)−1e) (6.54)

Where E(n) is a matrix containing the eigenvectors of the projection matrix
S(n).

6.6 The vector field f ‖

We know that it is possible to achieve partial synchronization in the presence
of an obstacle provided that the system f ‖ is stable. This system describes
the dynamics in the direction of Frep. We will call this system ë‖.

6.6.1 f ‖ for planar obstacles

We will start by assuming that ṅ = n̈ = 0. The full system ë = ë⊥ + ë‖ is
stable if and only if both ë⊥ and ë‖ are stable. We know this since they are
orthogonal systems. We have that:

ë‖ = (I − S(n))ë = S‖(n)ë (6.55)

We substitute in the vector field f , Frep is invariant under a projection onto
itself and remains unchanged.

ë‖ = S‖(−kpe− kdė+ Frep) = −kpe‖ − kdė‖ + Frep (6.56)

We use the diagonalization of S‖ to map the system such that it is explicitly
scalar. We can take the projection matrix assuming n3 �= 0:

ΛE−1 =

⎡
⎢⎣0 0 0
0 0 0
0 0 1

⎤
⎥⎦
⎡
⎢⎢⎣
−n1n2 n

2
1 + n2

3 −n2n3
−n2

2+n2
3

n3
n1n2
n3

n1
n1 n2 n3

⎤
⎥⎥⎦ =

⎡
⎢⎣ 0

0
nT

⎤
⎥⎦ (6.57)

The condition that n3 �= 0 does not limit the generality because if n3 = 0 then
we may use another projection matrix giving the same result. The projected
system now has the particularly simple form, the single nonzero row of ë⊥m is:

80 6. The Synchronization Controller

ë‖m = nTf(e, ė) + nTFrep = −kpe‖m − kdė‖m + nTFrep (6.58)

Where −kpe‖m ∈ R, see figure 6.4.

Figure 6.4: The projection and similarity transformation aligning the normal
vector with the z-axis making the system f ‖ scalar.

The stability of this system is not that easy to analyze since it is time varying
and nonlinear and it depends upon our particular choice of repulsion force.
If we use the repulsive force Frep which is only a function of the distance
to the obstacle given in (5.1) such that whenever we are close enough to an
obstacle we have:

F =
(

1
d(x) −

1
ρ0

)
1
d(x)2 (6.59)

Where d(x) is the distance to the obstacle as a function of the end effector
position x and e = x− xd. Since the shortest distance to the obstacle also is
colinear with n we may write:

F =
(

1
d(xm) −

1
ρ0

)
1

d(xm)2 (6.60)

Where xm is a scalar. The only interesting case we need to consider is when
−kpe‖m − kdė‖m is negative such that we are on a collision course. nTFrep will
be greater than or equal to zero for all collision free initial conditions.

6.6. The vector field f ‖ 81

6.6.2 Qualitative analysis of f ‖

We compare the response of the two potential fields (5.1) and (5.4) on our
scalar system: The obstacle in the following plots is static and is situated at
x = 1, and we plot the error e = x − xd for a constant reference, see figure
6.5. The time invariance is needed to keep the plots in 2D. Simulation with
time varying a reference and obstacle are qualitatively similar.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

e
‖
m

ė‖ m

(a) The end effector position and veloc-
ity error using (5.1) showing an oscilla-
tory convergence on a point some dis-
tance away from the obstacle.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

e
‖
m

ė‖ m

(b) The end effector position and veloc-
ity error using (5.4) showing a conver-
gence to a point on the obstacle while
slowing down linearly with the distance.

Figure 6.5: Different response for the two proposed repulsive forces.

The collision free equilibrium point for the distance dependent repulsive force
is the solution es to:

−kpes + ηi
(

1
d(es)

− 1
ρ0

)
1
d(es)2 = 0 (6.61)

Which is unique and approaches the obstacle as kp → ∞. It is also linearly
stable with complex eigenvalues with negative real part. We also note that
for any initial condition arbitrarily close to the boundary we have an arbi-
trarily larger positive acceleration assuring that we cannot cross the collision
boundary unless we start on the boundary. There are in other words no
solutions bringing our system to a collision.

82 6. The Synchronization Controller

The analysis for the velocity dependent repulsive force is slightly more in-
volved. To see why the approach to the obstacle using the velocity dependent
repulsive force is the way it is, we must look at the equilibrium of the system:

ë = −kpe− kdė+ ηi
(
− ḋ(t)
d(t) −

1
T0

)
ḋ2(t)
d2(t) (6.62)

Where we denote e as the scalar error projected along the normal vector. If
we assume that solutions to this system exist, and solution converge on some
equilibrium then we must have a real steady state es such that:

lim
e,ė→0
−kpe− kdė+ ηi

(
− ḋ(t)
d(t) −

1
T0

)
ḋ2(t)
d2(t) = 0 (6.63)

If we substitute in ė = ḋ = 0, then this means that e = 0 ⇒ x = xd,
which means that we have collided. We know that no solutions exist passing
through the obstacle however, so this implies that both d→ 0 and ḋ→ 0, so
we need to take some care in evaluating the limit. If we convert the limit for
to polar coordinates in d taking d = r cos(θ) and ḋ = r sin(θ) and let r go to
zero, we find:

lim
r→0
Fref (d, ḋ) = −kpes + ηi

(
− sin(θ)

cos(θ) −
1
T0

)
sin2(θ)
cos2(θ) = 0 (6.64)

This limit is independent of r and does not exist in the normal sense of limits
in R

2. But we have assumed that a solution does exist, so we need to consider
the dependence of the angle of approach θ. This means we have to find a θ
such that:

kpes + ηi
(

tan(θ) + 1
T0

)
tan2(θ) = 0 (6.65)

There is one real solution to this equation which is dependent on kp, T0 and
ηi. All the solution however fall in the region θ ∈ [0,−π/4] such that the
trajectories are slowing down as they approach the obstacles. We have that
θ = −π/4 for kp/ηi → ∞ and θ = 0 for T0 → ∞. These correspond to the
limiting cases of extremely fast approach and extremely slow approach. So
assuming that a solution to (6.62) exists with a collision free initial condition,
then solutions approach the closest possible collision free point on the obstacle

6.7. f ‖ for general obstacles 83

as t→∞. We will in fact collide with the obstacle at t =∞, but this happens
however with zero speed relative to the obstacle.

We conclude that the system f‖ with collision free initial conditions will
not result in a collision and is stable since all other scenarios are inherently
collision free.

6.7 f ‖ for general obstacles

We consider the possibility of a collision when n is not constant. The minimal
representation of the error along n was found to be:

e‖m = nT e (6.66)

And the dynamics in R is given by:

ë‖m = n̈T e+ 2ṅT eT − kpe‖m − kdė‖m + nTFrep (6.67)

We note that nTγ = 0 such that our synchronization error does not interfere
with the dynamics in the direction of the obstacle. We may now attempt
to remove these disturbances using another control input. This would be
required if one wants to design an approach trajectory to the obstacle for
manipulating a changing environment. We only want to avoid the obstacle
however, so we will not do this. We will limit our analysis by assuming that
n is continuously changing, such that ‖ṅ‖ and ‖n̈‖ are bounded function
of time. It is now apparent that a collision is impossible using the same
argument as for a constant normal vector.

84 6. The Synchronization Controller

6.7.1 Example

We see how the method applies to a planar elbow robot in the vicinity of
a curved and/or moving obstacle. One such scenario is where a robot is
carrying out some task in the vicinity or on a box dangling from a cable, see
figure 6.6.

Figure 6.6: A robot operating in the vicinity of a moving box hanging from
a cable.

If we ignore the orientation as this a two-valued function of the position, then
the geometric Jacobian of the elbow manipulator is quadratic. This makes
the elbow manipulator conceptually analogous to our full 6DOF robot in
the plane as it is non redundant. The closed loop system after feedback
linearization and task space mapping is:

ë = −kpe− kdė+ Fn+ γ (6.68)

We identify the projection matrix S as:

S(n) =
[
n2

2 −n1n2
−n1n2 n2

1

]
(6.69)

The eigenvector matrix E(n) and the eigenvalue matrix Λ is given by:

6.7. f ‖ for general obstacles 85

E(n) =
[
n1 −n2
n2 n1

]
Λ =

[
1 0
0 0

]
(6.70)

If we check, we will find that E(n) ∈ SO(2)1 The minimal projection is now
given as:

ΛE−1 =
[−n2 n1

0 0

]
(6.71)

So e⊥m2 = 0 as desired. The minimal representation of the projected error
into n in the vicinity of the obstacle is now a scalar.

e⊥m = Sr(n)e = ΛE−1e =
[
e2n1 − e1n2

0

]
(6.72)

We get the closed loop projected system by differentiating (6.72) twice:

ë⊥m = Λ[Ë−1e+ 2Ė−1ė+ E−1ë] (6.73)

ë⊥m =
[−n̈2 n̈1

0 0

] [
e1
e2

]
+ 2

[−ṅ2 ṅ1
0 0

] [
ė1
ė2

]
+
[−n2 n1

0 0

] [
ë1
ë2

]
(6.74)

If substitute in our closed loop system ë = −kpe− kdė+ Frep + γ we have:

ë⊥m = Λ[Ë−1e+ 2Ė−1ė+ E−1(−kpe− kdė+ Frep + γ)] (6.75)

We remove the repulsive force as ΛE−1Frep = 0 and we collect the terms we
want to keep for the projected system.

ë⊥m = f⊥m(e⊥m, ė⊥m) + Λ[kdĖ−1e+ Ë−1e+ 2Ė−1ė+ E−1γ] (6.76)

Where the first row of f⊥m is given in terms of e and n as:

f⊥m1 = kp(e1n2 − e2n1) + kd(ṅ2e1 − ṅ1e2 − ė2n1 + ė1n2) (6.77)
1Actually we have det(E) = −1, but we may choose to multiply one of the rows of E

by −1 such that det(E) = 1 since the eigenvectors are invariant under scaling

86 6. The Synchronization Controller

And written in terms of e⊥m:

f⊥m1 = −kpe⊥m1 − kdė⊥m1 (6.78)

The rest of the terms cancel out given our choice of γ:

kdĖ
−1e+ Ë−1e+ 2Ė−1ė+E−1 [−E(Ë−1(n)e+ 2Ė−1(n)ė+ kdĖ(n)−1e)]︸ ︷︷ ︸

γ

= 0

(6.79)

Which is what we wanted. Perfect tracking perpendicular to the obstacle
is ensured for any moving and rotating box. And the controller is given in
closed form as:

u = G(q)+C(q, q̇)q̇+M(q)(J−1(ẍd−kp(x−xd)−kd(ẋ− ẋd)+Frep+γ− J̇ q̇))
(6.80)

We note that the control input γ only produces gain perpendicular to an
obstacle when the end effector is in the vicinity of an obstacle. Simulation
results are seen in 6.7.

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

t

e1(t)

e2(t)

The reference
moves through
the obstacle

(a) The end effector position error.

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

t

det{J(t)}
e⊥1 (t)

e⊥2 (t)

The reference
moves through
the obstacle

(b) The projected end effector position
error. The robot moves through a singu-
larity where J is singular. The damped
inverse has been used to prevent a crash.

Figure 6.7: The end effector error while following a trajectory moving through
an obstacle where rotating and translating obstacle.

6.7. f ‖ for general obstacles 87

Snapshots of a simulator is shown in figure 6.8.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Figure 6.8: The elbow manipulator at different time instances. The reference
is represented by a red cross, the end effector is alway in synchrony projected
into the moving wall.

88 6. The Synchronization Controller

6.8 The minimal representation of the obsta-
cle tangent space

We have seen how one may use the eigenvectors of the projection matrix to
express the dynamics on a tangent plane using only two parameters. The
proof will however work with any such mapping, and we therefore present two
alternative representations. The first relies on explicitly rotating the normal
vector to align with the z-axis in the world frame. This can be achieved with
the following operation given n:

θ1 = Atan2(n1, n2) (6.81)
n
′ = Rz(θ1)n (6.82)
θ2 = Atan2(n′2, n

′
3) (6.83)

n
′′ = Rx(θ2)n

′ (6.84)

Now n′′ = [0 0 1]T and Rx(θ2)Rz(θ1) is the rotation matrix aligning the tan-
gent space basis with the standard orthonormal basis in R

3. We may com-
pute a simple expression for this matrix if we use arctan instead of the two
argument inverse tangent function:

R(n) =

⎡
⎢⎢⎢⎣

n2√
n2

1+n2
2

−n1√
n2

1+n2
2

0
n1n3√
n2

1+n2
2

n2n3√
n2

1+n2
2
−
√
n2

1 + n2
2

n1 n2 n3

⎤
⎥⎥⎥⎦ (6.85)

This matrix is not defined for n = [0 0 1]T , but we can make the defini-
tion consistent if we define R([0 0 1]T) = I. Using this we would write the
projected error as

e⊥m = R(n)S(n)e (6.86)

If we use the eigenvector directly, we need to compute them, for the zero
eigenvalue we have:

S(n)v0 = 0 (6.87)

6.9. Full robot collision for general obstacles 89

Which has the solution v0 = n. For the one eigenvectors we have:

(S(n)− I)v =

⎡
⎢⎣−n1(n1v1 + n2v2 + n3v3)
−n2(n1v1 + n2v2 + n3v3)
−n3(n1v1 + n2v2 + n3v3)

⎤
⎥⎦ = 0 (6.88)

Which tells us that any two linearly independent vectors v that satisfies
n · v = 0 will satisfy as eigenvectors. Since the rotational matrix R expresses
a basis for n and the tangent space of n, then see that RT is an eigenvector
matrix of S.

6.9 Full robot collision for general obstacles

We have up to now only considered the case where the end effector interacts
with the workspace obstacle. We obviously need a controller which will pre-
vent the entire robot from colliding. We will show that this seemingly more
complicated problem is conceptually identical to the end-effector collision
problem which we have solved. We know from section 5.9.1 how to map a
any force to the end effector.

Figure 6.9: The robot seen from above is pushed sideways by an obstacle
moving towards its second joint. The obstacle force is mapped to the end
effector for which it will seem as an object is pushing it back. Synchronization
in the tangent plane to this apparent obstacle is achieved.

The closed loop system is for this case given by:

ë = −kpe− kdė+ J−TJTp Fp (6.89)

90 6. The Synchronization Controller

Our system now looks similar to the ones we have solved, apart from two
things. The force now also appears in the orientation system since the three
bottom elements of J−TJTp Fp are not in general zero. So we cannot as easily
state any asymptotic stability property on the orientation. This will appear
in the equation as an apparent torque acting on the end effector. The force
which acts on the end effector is now not perpendicular to the actual obstacle,
but is a complex function of the obstacle as well as the robots geometry and
pose.

It is not as geometrically intuitive to apply projection mappings to the ori-
entation system in order to achieve partial synchronization as it is for the
position system. The form of the two equations are however identical, and
we will handle it identically to the position system. This means that if we
take the normal vector of Fo, and apply the projection transformation to it
as we did for the position, all the results apart from the stability analysis of
f ‖ hold. What we now are achieving partial synchronization with respect to
is the feasible movement directions and feasible orientations for the robot.
In other words, the robot will move towards the synchronization objective
along some apparent curved surface which describes the boundary in which
it can move without a collision in R

6.

A question one might ask is whether or not this is the behavior we want.
We will achieve synchronization tangent to some apparent obstacle which is
a function of the robots pose and geometry, which will not necessarily trans-
fer to any intuitive geometrical partial synchronization objective as before.
Another question is whether or not we can do any better than this.

6.9.1 Full robot collision avoidance synchronization con-
troller

Assuming that f ‖ is stable we have the following controller which will achieve
partial synchronization for full robot collision avoidence. Since we now are
concerned with the projected movement also in orientation we need to limit
Kpo, Kdo to be scalars kpo, kdo. The controller in full is given by:

u = C(q, q̇)q̇ +G(q) +M−1J−1(U − J̇ q̇) (6.90)

If we write J−TJpFp = [Wp Wo]T the U is given by:

6.10. Multiple obstacle interaction 91

U =
[

ẍd − kp(x− xd)− kd(ẋ− ẋd) +Wp + γ
ω̇d −

(
d
dt
R(q)B(Φe)

)
Φ̇e +R(q)B(Φ)(kpoΦ̇e + kdoΦe +B−1(Φ)R−1(q)Wo + β)

]
(6.91)

γ is given as:

γ = −E(n)(Ë−1(n)e+ 2Ė−1(n)ė+ kdĖ(n)−1e) (6.92)

Where E(n) is a matrix containing the eigenvectors of the projection matrix
S(n) where n = Wp/‖Wp‖ and n = 0 for Wp = 0.

β is given as:

β = −E(no)(Ë−1(no)Φe + 2Ė−1(no)Φ̇e + kdĖ(no)−1Φe) (6.93)

Where E(no) is a matrix containing the eigenvectors of the projection matrix
S(no) where no = B−1(Φ)R−1(q)Wo/‖B−1(Φ)R−1(q)Wo‖. and no = 0 for
B−1(Φ)R−1(q)Wo = 0.

6.10 Multiple obstacle interaction

We have seen how one can achieve synchronized tracking in the vicinity of an
obstacle. What we have yet to discuss is the case where there robot comes in
conflict with more than one obstacle. Consider a case where the end effector
reference has moved into a corner, such that two repulsive forces are added
in the controller, Frep = Fwall + Ffloor. See figure 6.10 for an illustration.

If we try to synchronize the end effector in the plane perpendicular to Frep
then we see that we can not succeed since we cannot freely move in this
plane. What we need to do in order to find a projected system where we
can guarantee synchronization is to project the system into the wall and the
floor. if we denote the normal vector to the wall as nw and the vector normal
to the floor as nf then we use the mapping:

e⊥nw,nf = S(nw)S(nf)e = S(nf)S(nw)e (6.94)

We loose one degree of freedom for each linearly independent contact force.
If two forces were parallel, between two walls, then we only loose one DOF.

92 6. The Synchronization Controller

Figure 6.10: The end effector has reached a corner and is stopped by virtual
forces excreted on the manipulator by the wall and the floor. The tangent
plane/line of the sum of the forces is indicated by the dotted line.

If the robot in figure 6.10 is operating in R
3, with basis vectors {i, j, k} then

we have the projected system which is now given in R:

ë⊥i,j = ëk = f⊥i,j(ek, ėk) (6.95)

Such that we can achieve synchronization along the z−axis. The proof of
this follows directly by iteratively applying the method given in 6.4 to the
system. If we approach a corner in of a room, then we are restricted by three
linearly independent forces, which means that the position synchronization
error e⊥ is zero and ë⊥ = 0. Our projected state space has been reduced
to the trivial vector space consisting only of the zero vector. This means
that we cannot move in any direction with a decreasing position error. By
our measure however, perfect synchronization is achieved. This example illus-
trates the usefulness of our interpretation as we can achieve perfect projected
synchronization even when we cannot move in any directions. Orientation
synchronization may however still be feasible. For the system f ‖ it however
suffices to consider the sum of the forces and our previous arguments will
suffice.

6.11. Self collision 93

6.11 Self collision

One important collision scenario we have yet to discuss is the possibility of
the robot colliding with itself. It is important to account for self collision in
order to keep the robot from damaging itself. This is an easier problem to
tackle than the ones we have previously discussed for the following reason.
The geometry of the robot is known and is constant, this means that we may
calculate the global joint space obstacle in closed form represented by joint
angle intervals. Self collision avoidance may be handled in hardware, or on
a low control level as joint saturation. We may also solve this problem using
artificial repulsive forces. It is simplest to tackle this in joint space since the
self collision problem is inherently given in this space. But it is possible to
map the controller to the task space. We consider a joint qi and its collision
free set given in joint space as:

qifree ∈ (qimin(q), qimax(q)) (6.96)

We use the parentheses to denote exclusion. Note that the limits for the joint
angle may be constant or a more complex function of other joint angles and
the robots geometry. We construct the following new control input uc : after
feedback linearization

M(q)q̈ + C(q, q̇)q̇ +G(q) = u ⇐⇒ q̈ = u2 + uc (6.97)

Where an element uci of uc is given by:

uci = −ηi
(

1
|qi − qimin|

− 1
ρ0

)
1

(qi − qimin)2 +ηi
(

1
|qi − qimax|

− 1
ρ0

)
1

(qi − qimax)2

(6.98)

And the two terms are zero if |qi− qimin/max| > ρ0. ηi > 0 is scalar gain and ρ0
defines a distance where the control input is turned on. Notice that the first
term is negative. This is all we need to define the direction of the control
gain. This control input may be mapped to the task space by multiplying
with the inverse transposed Jacobian.

Another approach which is more compatible with the previously developed
strategy is the following: Construct an artificial force between two links in
danger of collision, then map this to the end effector, see figure 6.11.

94 6. The Synchronization Controller

Figure 6.11: Two different approaches to avoiding self collision. The explicit
joint difference is used on the left. Some repulsive force is constructed on the
right.

We now also have a choice of exactly where we wish to place the force. This
design choice between these two approaches is again up to the designer. The
second approach fits nicely into the developed framework, while the first is
simpler and may be easier to tune. Note that the joint force uc is mapped to
the task space as a force, such that these two approaches may be considered
equivalent.

6.12 Similarities with force control

The method proposed in this chapter for collision avoidance is largely sim-
ilar to techniques used in the field of force motion control. In force control
one actually wants to crash, and then one impose limitations on the move-
ment of the end effector through constraints imposed using control inputs.
Differences between our solution and a typical force motion controller is the
following: We have full control of the forces which are applied to the robot as
we generate them. This gives us flexibility in terms of design freedom. One
does not have this freedom in force control as the force is something "real".
We do not impose any explicit constraints on our robot through control. We
solve the problem of constrained motion through imposing restrictions on
the PD-controller used in the inner control loop. We also have the possibil-
ity of achieving synchronized motion close to a moving surface using a feed
forward term. Given the similarities between the controllers, it would seem
like a promising prospect to achieving hybrid control, obstacle avoidance and
synchronization control using one unified controller.

Chapter 7

Simulation Results

We perform simulations of the full 6DOF robot in various scenarios to test
our controller. We use the damped inverse Jacobian instead of the inverse
Jacobian with damping constant 10−3 to prevent the controller from crash-
ing in a singular configuration, [10]. We construct a desired trajectory which
the leader robot will try to follow. The leader is fitted with a badly tuned
PD controller such that we can see that the follower is actually tracking the
leader. The follower will attempt to follow the leaders trajectory while avoid-
ing collisions. We only plot one value for the position and and orientation
when we compare the reference, leader and follower in order to keep the plots
readable. The orientation measurements are given as roll pitch yaw angles
in radians. One important thing to note throughout these simulations is the
fact that perfect synchronization is not possible most of the time. The robot
recovers gracefully after some time whenever an obstacles pushes it out of its
desired trajectory.

7.1 No collision avoidance

The simplest case is where there are no obstacles to avoid. The simulation
output is seen in figure 7.1. We see that the position and orientation error
have minor disturbances, this disturbance comes from passing through a
singular position. We have also plotted the determinant of the Jacobian, we
see that singular configurations is common for the generated trajectory.

95

96 7. Simulation Results

0 1 2 3
0

0.5

1

1.5
Position

time [s]

Reference

Leader

Follower

0 1 2 3
−3

−2

−1

0

1

2

3
Orientation

time [s]

Reference

Leader

Follower

0 1 2 3

−0.2

0

0.2

0.4

Position error

time [s]
1 2 3

−0.2

−0.1

0

0.1

0.2

0.3

Orientation error

time [s]

0 1 2 3
−1

−0.5

0

0.5

1

1.5
det(J (t))

time [s]
0 1 2 3

−500

0

500
Control input

time [s]

Figure 7.1: Synchronization control in the absence of obstacles.

7.2. Planar obstacles for the end effector 97

7.2 Planar obstacles for the end effector

The robot is placed in the middle of a square room where the obstacle consists
of four walls and the floor. Only the end effector is effected by the obstacles.
The leader which is placed somewhere else and is purposefully generating
a trajectory which will lead the robot to a collision. The controller used is
from section 6.3. We see the end effector position traced out by the leader
and the follower in figure 7.2.

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

0

0.5

1

1.5

2

Figure 7.2: Synchronization control When the robot is confined within a
small room.

98 7. Simulation Results

We also show the errors projected into the walls and the floor in figure 7.3.
Notice that tracking perpendicular to the wall is achieved.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) XY view.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) ZY-view
−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) YZ-view

Figure 7.3: The robot tracking a reference while being confined in a small
room.

7.2. Planar obstacles for the end effector 99

Time plots of the key values of a trail with a reference which is harder to
follow is seen in figure 7.4. We will test both the distance dependent repulsion
force (figure 7.4) and the velocity dependent repulsive force (figure 7.7).

0 0.5 1
0

0.5

1

1.5

2
Position

time [s]

Reference

Leader

Follower

0 0.5 1
−3

−2

−1

0

1

2

3
Orientation

time [s]

Reference

Leader

Follower

0 0.5 1
−1

0

1

2

3

4
Projected position error

time [s]
0 0.5 1

−3

−2

−1

0

1

2

3
Orientation error

time [s]

0 0.5 1
0

0.1

0.2

0.3

0.4
Collision distance

time [s]
0 0.5 1

−2000

−1000

0

1000

2000
Control input

time [s]

Figure 7.4: Synchronization control in the presence of planar obstacles with
the distance dependent repulsive force. The position shown is the x-value.

100 7. Simulation Results

0 0.5 1
−1

0

1

2

3
Position

time [s]

Reference

Leader

Follower

0 0.5 1
−3

−2

−1

0

1

2

3
Orientation

time [s]

Reference

Leader

Follower

0 0.5 1
−1

0

1

2

3
Projected position error

time [s]
0 0.5 1

−3

−2

−1

0

1
Orientation error

time [s]

0 0.5 1
0

0.5

1

1.5

2
Collision distance

time [s]
0 0.5 1

−5000

0

5000
Control input

time [s]

Figure 7.5: Synchronization control in the presence of planar obstacles with
the velocity dependent repulsive force. The position shown is the z-position,
and the reference has moved through the floor.

7.3. Moving spherical obstacles for the end effector 101

We notice that the collision distance is less oscillatory when using the velocity
dependent repulsion force, but the control gain is larger.

7.3 Moving spherical obstacles for the end ef-
fector

The robot is placed in the middle of a square room where the obstacle consists
of four walls and the floor as well as a ball moving around. Only the end
effector is effected by the obstacles. The ball is on a collision course at the
start of the simulation. The robot successfully manges to navigate around the
ball and recovers gracefully. The controller used is from section 6.5 without
the accleration term in γ.

Figure 7.6: Synchronization control in the presence of planar obstacles and
a moving ball. The ball is moving straight down on top of the robot.

102 7. Simulation Results

0 0.5 1
−2

−1

0

1

2

3
Position

time [s]

Reference

Leader

Follower

0 0.5 1
−3

−2

−1

0

1

2

3
Orientation

time [s]

Reference

Leader

Follower

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
Projected position error

time [s]
0 0.5 1

−0.5

0

0.5

1

1.5
Orientation error

time [s]

0 0.5 1
−0.1

0

0.1

0.2

0.3

0.4
Collision distance

time [s]
0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5
x 104 Control input

time [s]

Figure 7.7: Synchronization control in the presence of planar obstacles and
a moving ball. The position shown is the y-position.

7.4. Planar obstacles with full robot collision 103

7.4 Planar obstacles with full robot collision

The next simulation involves the robot confined in a small room where the
entire robot is subject to collision. The robot is placed in a pose which will
subject its third joint to collide with the floor. We will for the rest of the
simulations only consider the distance dependent repulsion force.

We will now not achieve the same performance as before in orientation track-
ing because obstacle forces now also effect the orientation system. In figure
7.9 we show data from this simulation. The projected error is now not pro-
jected along the forces applied to different points on the robot. We have
chosen to only use that obstacle tangent plane for the projection so we will
easily see the actual end effector error achieved. Note that the error intro-
duced by being in a bad pose may be removed by choosing another pose for
our robot by some heuristic.

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 −2

−1

0

1

2

0

0.5

1

1.5

The third join
cannot move

further

Leader

Reference

Figure 7.8: A screenshot of the simulation where the particular pose of the
robot prevents it from reducing the synchronization error.

104 7. Simulation Results

0 0.5 1 1.5 2
−1

0

1

2

3
Position

time [s]

Reference

Leader

Follower

0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
Orientation

time [s]

Reference

Leader

Follower

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5
Projected position error

time [s]
0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5
Orientation error

time [s]

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4
Collision distance

time [s]
0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5
x 104 Control input

time [s]

Figure 7.9: Synchronization control in the presence of planar obstacles with
full robot collision avoidance. The position shown is the x-value.

7.5. Moving obstacles with full robot collision 105

7.5 Moving obstacles with full robot collision

The last experiment is the most complex. The robot is yet again placed
in a room, this time we will use full robot obstacle avoidance with moving
spheres representing the leader and other moving obstacles. We will now plot
the actual position error as opposed to the projected error as the projected
error along a general contact force is hard to interpret from a plot. We
perform two trails, one with the elbow up pose as the initial condition, and
the other with the elbow down initial configuration. The data output is seen
in figures 7.12 and 7.13. We will see that the performance is heavily effected
by the initial condition as the projected reference is not feasible from the
elbow down position. Snapshots of the animation with the elbow up pose
is seen in figure 7.11. We have not included the feedforward term γ in the
controller from section sec:controller3 in order to better simulate feasible
obstacle information.

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 7.10: The elbow up initial condition for our experiment.

106 7. Simulation Results

7.11.

−3
−2 −1 0

1 2 3 −3
−2

−1
0

1
2

3

0

0.5

1

1.5

2

2.5

3

3.5

4

(a)

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

0

1

2

3

4

(b)

−3

−2

−1

0

1

2

3

−3
−2

−1
0

1
2

3
0

0.5

1

1.5

2

2.5

3

3.5

4

(c)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(d)

Figure 7.11: The robot in a workspace occupied by moving spheres under
full robot obstacle avoidance.

7.5. Moving obstacles with full robot collision 107

0 0.5 1
−3

−2

−1

0

1

2

3
Position

time [s]

Reference

Leader

Follower

0 0.5 1
−3

−2

−1

0

1

2

3
Orientation

time [s]

Reference

Leader

Follower

0 0.5 1
−2

−1

0

1

2

3
Position error

time [s]
0 0.5 1

−1

−0.5

0

0.5
Orientation error

time [s]

0 0.5 1
0.05

0.1

0.15

0.2

0.25

0.3
Collision distance

time [s]
0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5
x 104 Control input

time [s]

Figure 7.12: Synchronization control in the presence of planar and spher-
ical obstacles with full robot collision avoidance with the elbow up initial
condition.

108 7. Simulation Results

0 0.5 1
−2

−1

0

1

2

3
Position

time [s]

Reference

Leader

Follower

0 0.5 1
−3

−2

−1

0

1

2

3
Orientation

time [s]

Reference

Leader

Follower

0 0.5 1
−1

0

1

2

3
Position error

time [s]
0 0.5 1

−2

−1

0

1

2
Orientation error

time [s]

0 0.5 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16
Collision distance

time [s]
0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5
x 104 Control input

time [s]

Figure 7.13: Synchronization control in the presence of planar and spheri-
cal obstacles with full robot collision avoidance with the elbow down initial
condition.

Chapter 8

Conclusion and Further Work

8.1 Conclusion

A controller was developed which achieved full obstacle avoidance for any
stationary, moving and rotating obstacle. synchronization in feasible move-
ment direction was achieved for moving and rotating planar obstacles. The
controller was developed in the framework of artificial potential functions. A
simulator of a 6DOF robot was developed on which the controller was tested.
The controller is developed in a general framework making it possible to em-
ploy it for a wide variety of applications. The controller is implementable in
a low level of control and does not rely on any heuristics which are common
in the development of collision avoidance controllers. The stability of the
solution is local in the sense that the robot may not converge on an optimal
solution even if one exists. Efficient heuristics may be employed to remedy
this with the cost of losing generality.

A general representation of the workspace environment is presented along
with a method which will dynamically solve the shortest distance problem.
The representation is compatible with the camera sensors provided. The
results in this thesis are verified using numerical simulations and examples
are provided in order to illuminate and motivate the development.

The mathematical development in this thesis is apart from the modeling
chapter largely self contained. The developed framework in which stability is
proven is constructive in that it gives us a scalar system where detailed design
of task specific behavior may be easily studied for different repulsion forces.
This generality allows us to use one controller for a multitude of different

109

110 8. Conclusion and Further Work

tasks. The control framework is highly compatible with controllers developed
in the field of hybrid force motion control. This opens up the possibility of
uniting the three field of hybrid force motion control, synchronization control
and obstacle avoidance control in an elegant and provably correct manner.

8.2 Further work

This work will be carried on in a PhD thesis starting fall 2010. The crucial
next step in the development of this controller is to make it robust with
respect to uncertainties in state measurements, synchronization objective,
obstacle representation and modeling errors. This is important as limited
information is a reality in robotics. It is however a necessity to first study the
nominal system in order to pinpoint how this lack of information will impact
our system. Further work also includes the combination of our system with
hybrid force motion control. This is a logical step as a useful robot system
will not only need to avoid collision, but also manipulate its environment.
We are hopeful that results will follow as the first step on the way to a
practical implementation of a synchronization with obstacle avoidance system
is complete.

Bibliography

[1] A. Ahmadzadeh, N. Motee, A. Jadbabaie, and G. Pappas. Multi-vehicle
path planning in dynamically changing environments. In Proceedings of
the 2009 IEEE international conference on Robotics and Automation,
pages 2148–2153. Institute of Electrical and Electronics Engineers Inc.,
The, 2009.

[2] F. Caccavale, C. Natale, B. Siciliano, and L. Villani. Resolved-
acceleration control of robot manipulators: A critical review with ex-
periments. Robotica, 16(05):565–573, 1998.

[3] S.I. Choi and B.K. Kim. Obstacle avoidance control for redundant ma-
nipulators using collidability measure. Robotica, 18(02):143–151, 2000.

[4] C.H. Edwards and D.E. Penney. Elementary linear algebra. Prentice-
Hall Englewood Cliffs, New Jersey, USA, 1988.

[5] O. Egeland and J.T. Gravdahl. Modeling and simulation for automatic
control. Marine Cybernetics, 2002.

[6] LE Kavraki, P. Svestka, J.C. Latombe, and MH Overmars. Probabilistic
roadmaps for path planning in high-dimensionalconfiguration spaces.
IEEE transactions on Robotics and Automation, 12(4):566–580, 1996.

[7] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. The International Journal of Robotics Research, 5(1):90, 1986.

[8] H. Nijmeijer and A. Rodriguez-Angeles. Synchronization of mechanical
systems. World Scientific Pub Co Inc, 2003.

[9] E. Rimon and D.E. Koditschek. Exact robot navigation using artificial
potential functions. IEEE Transactions on robotics and automation,
8(5):501–518, 1992.

[10] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and
control. Wiley New Jersey, 2006.

111

112 BIBLIOGRAPHY

[11] OV Zenkin. Analytical description of geometrical shapes. Cybernetics
and Systems Analysis, 6(4):481–489, 1970.

	Title Page
	Problem Description
	robot.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

