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Problem Description

The candidate shall put together a prototype Nonlinear Model Predictive Control (NMPC] tool for
models implemented in Modelica, using open-source components. Suggested components are
OpenModelica/JModelica.org for modelling and simulation, Ipopt for optimization and Sundials for
numerical integration. The NMPC optimization problem should be formulated using a sampled-
data (discrete-time] formulation.

Tasks:

1. Give a brief description of NMPC, and the modelling language Modelica.

2. Describe the chosen open-source software packages, and how they can be used in solving a
NMPC optimization problem.

3. Implement a "tanks in series”-model in OpenModelica. Investigate how the model can be
interfaced from other software using C/C++.

4. Make a C/C++ program that simulates the (Open-JModelica-model. Start by using forward Euler.
Discuss the use of, and if time allows, implement, more advanced integration routines, like e.g.
Sundials/CVODE(S).

5. Extend the program to calculate an NMPC objective function. Discuss methods for calculating
the gradient of the objective function.

6. Interface the objective function to the Ipopt optimization tool.

7. Suggest and, as far as time permits, implement, a framework for NMPC optimization.

Assignment given: 15. February 2010
Supervisor: Lars Imsland, ITK
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This work is the master thesis of my Industrial Engineering studies specialization on Automation. It has
been done during an academic exchange at Norwegian University of Science and Technology NTNU,
being the Polytechnic University of Catalonia UPC the origin university. Because of working in a different
country with a different language, an additional effort of communication and integration maked this
thesis more difficult but more interesting at the same time. Before start this thesis | had a general
scientific knowledge and specifically in automation and control technology, however | didn't know about
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implementing software and integrating some different open source tools, so this report also explains
theoretical bases but the most explanations are in how this implementation has been done.

| would like to express my gratitude to Professor Lars Imsland, who gave me an excellent guidance
throughout the project.

Carles Buqueras Carbonell, June 2010



Abstract

This thesis is about Model Predictive Control (MPC) method for process control. It describes how this
method could be implemented using some different open source software components, describing
functionalities of each one and showing how the implementation has been done. Finally the code is
tested to demonstrate effectiveness of this software in front of this kind of problems and to
demonstrate MPC main characteristics. The main goals of this thesis are these last ones, code
development and tests, so all mathematical and theoretical background are described but not as in
detail as development and tests.

Globally describing, MPC is a process control method where a previous knowledge of the plant is
needed, so the controller have a model to simulate and predict the behavior of the system to calculate
the best command signal. It has an optimization algorithm determining the optimal trajectory to bring
system from initial state to desired state. Optimization is done by iterative simulation and solved online
periodically at each sample time, initializing values at each time with measured feedback.
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1. Problem description

The candidate shall put together a prototype Nonlinear Model Predictive Control (NMPC) tool for
models implemented in Modelica, using open-source components. Suggested components are
OpenModelica/JModelica.org for modeling and simulation, Ipopt for optimization and Sundials for
numerical integration. The NMPC optimization problem should be formulated using a sampled-data

(discrete-time) formulation.

Tasks:

Give a brief description of NMPC, and the modeling language Modelica.

Describe the chosen open-source software packages, and how they can be used in solving a
NMPC optimization problem.

Implement a "tanks in series"-model in OpenModelica. Investigate how the model can be
interfaced from other software using C/C++.

Make a C/C++ program that simulates the (Open-)Modelica-model. Start by using forward Euler.
Discuss the use of, and if time allows, implement, more advanced integration routines, like e.g.
Sundials/CVODE(S).

Extend the program to calculate an NMPC objective function. Discuss methods for calculating
the gradient of the objective function.

Interface the objective function to the Ipopt optimization tool.

Suggest and, as far as time permits, implement, a framework for NMPC optimization.

Assignment given: 15 February 2010

Supervisor: Lars Imsland



2. Model Predictive Control

MPC is a process control method where the controller uses a model of the plant to simulate and predict
system behavior. This prediction is repeated iteratively and used by an optimizer to calculate the
optimal command values. These values are applied to the plant and the entire optimization problem is
solved again for next sample time. Initial values are always put up to date with measured output. MPC
special interests are that it can work with complex and non-linear systems and allow imposing a large
number of specifications and constraints. When system is non-linear, MPC is extended to Non-linear
Model Predictive Control (NMPC), having the same principles with a little differentiation in
mathematical development. Nowadays more and more specifications are required in control field
(economic performance, safety constraints or environment goals) being MPC a good tool for that. It has
been during the lasts 40 years when MPC has grown up and has acquired more and more popularity.

The most common applications of MPC/NMPC are [11] [15]:

e Distillation column

e Hydrocracker

e Pulp and paper plant
e Solar power plant

e Mobile robot

The principle of MPC is that controller has an optimizer based on Sequential Quadratic Programming.
Inside, an objective function is defined with all desired values (reference values) in order to direct the
optimization to desired goal. At each sample time optimizer simulate and predict states evolution with
different values until converge into an optimal solution. In fact, at each iteration a set of values are tried,
system behavior is simulated with these values and the objective function is evaluated in order to know
the cost (how much good is this solution). By a line search method, optimizer iterates until finding the
optimal values. The result is an input trajectory that bests bring states to their reference values. As MPC
works in a discrete-time formulation, only first value of this trajectory is applied to the plant and the
entire problem is reformulated again for the next sample time. Initial values are put up to date with
measured output. Predictions are done along a finite time length, along what is called a “prediction
horizon” as it is the time while future system response is predicted.
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Figure 1. Principle of Model Predictive Control. Along the prediction horizon, an input trajectory U is
checked and states evolution is predicted. Optimizer uses this prediction to evaluate objective function
and check how much good is the proposed U solution. Different U trajectories are tried until find the

optimal one [9].
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Figure 2. Overview concept of MPC. The controller gets reference values and measured output Z, it
runs the optimizer to find a control input U that best satisfies reference values. Optimizer tries
iteratively with different possible solutions and evaluates for each one their cost until finding the
optimal one. At each cost evaluation, a simulation is done with the model to predict process behavior
and to calculate how much close states are from reference values.



2.1. Mathematical formulation

MPC can work with linear or non-linear systems, in this second case we talk about Non-linear Model
Predictive Control NMPC. This is an extension on MPC and both use the same principle even if
mathematical development is a little bit different. Let’s show how is formulated the problem in each

case:
MPC
e It uses a linear model X = AX + Bu
e Quadratic objective function J=x' Qx+ u' Ru
e Linear constraints Hx+Gu<0
e Quadratic programmation
NMPC
e Non-linear model x=f (x,u)
e Objective function can be non quadratic J (X, U)
¢ Non-linear constraints h(X, U) <0

Non-linear programming

Predictive control is a good tool for linear systems as it allows working with large number of constraints
and considering a lot of criteria. However it is much more interesting on non-linear systems where own
to their non-linearities, control is more difficult with classical methods. In MPC/NMPC, model
mathematical representation can be either as ODE or DAE. For simplicity we assume that it is formulated
as a continuous ODE. In a Non-linear MPC case, the problem is formulated as:

x=f(xu,p), y=h(xu,p) , z=g(x,u,p).

Where X are state variables, U the controlled inputs, p the parameters, y the measured outputs (not

necessarily controlled) and Z the controlled outputs. As we are interested in expression above to
calculate states and outputs at the next sampling instant, we are interested to work in a discrete-time
representation.



X = X +J‘::+l f(X(T),Uk' P )df'

Y = h(X, U 55 Pes)s

Z = g(xk’uk—lv pk—l)'

The integration involved is in general solved by ODE solver routines. As the system above is used for
prediction, we are not concerned with the measured outputs, so we can omit these ones (not controlled
outputs). Then the time-varying discrete-time system can be represented as

X = fo(X U)y 2 = 9 (X, Uy yp)-
The quadratic objective function to minimize at each sample time is

_ 1 N-L
min ‘](XO’UO’ul""’uN—l)ZE D ((Zig = Zes )TQ(Zi+1 —Zpot )+ (Uj — U )! R(U;j = Uyer )
i—0

Where X, are present measured state variables used as initial state, U; future manipulated inputs, Z;

computed (predicted) output and Q and R are weighting matrices. Q=Q" >0, R=R' >0.

The problem is subject to constraints

u. <u <u k=0,.N-1

max ’
ZminSZkzgk(Xk!uk_l)SZmax, k:].,-..N —1

Optimal solution is then the command trajectory U that best controls the process. Once the optimal

trajectory is obtained, only the first value U, is sent to the plant, the output is measured and the entire

problem is reformulated again for the next sample time. Note that objective function contains all the
performance specifications and all the desired criteria, each one weighted according to its importance.

In figure 1 we saw an optimal input trajectory U taking predicted states X to the set point. We could
easily believe that applying U trajectory to the plant we would get exactly the predicted state values X.
Later we will demonstrate that measured output is never exactly as predicted because prediction
horizon has a finite length and it ignores future values beyond this horizon. In addition, as integration
routines are not exact, and because model mistakes and external perturbations, there is also more
error.

This method has a discrete-time formulation, it runs on a cyclic way, sampling the output to get the
feedback, solving periodically the optimization problem and sending discrete command values at each
sample time. It has the advantage to use all the possibilities of computation that discrete time



technology offers. As MPC is a real-time routine, a special attention to computation effort should be
given. Heavy calculations with short sampling periods could make control not fast enough to satisfy real

time exigencies.
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Figure 3. Basic structure of MPC. Optimizer uses the Model to predict outputs, to compare these
outputs with reference values and to find a solution in accordance with cost function and constraints.[9]

There are three types of MPC methods using SQP: Single Shooting (or Sequential Approach),
Simultaneous Approach and the Multiple Shooting Approach.

2.1.1. Single Shooting or Sequential Approach

Here only manipulated variables U are free optimization variables[13]. X(u) and z(u) are
implicit functions which are obtained by simulation. In each step of the optimization
algorithm, system simulation and optimization are performed sequentially. This procedure is
robust only when the system contains stable modes. Otherwise, finding a feasible solution for
a given set of control parameters may be difficult. This is the method we used for
implementing.

2.1.2. Simultaneous Approach
In this case both U, X and Z are optimization variables [14]. Constraints can be added on X
and Z during optimization, for example path constraints to guide trajectories. There’s more

control so it’s better for unstable or highly non-linear systems but as optimization takes more
variables, computation is harder.

10



2.1.3. Multiple Shooting Approach

Multiple Shooting is a method between Sequential and Simultaneous approach. The
prediction horizon is divided into many sub-horizons and extra equality constraints are added
to join the end of each sub-horizon with the next one. Dividing the horizon the non-linearities
are spread out on smaller sub-horizons and there is more control over the simulation.
Inequality constraints for states and controls can be imposed directly at each horizon
begining.

2.2 Sequential Quadratic Programming SQP

MPC optimizers normally use a SQP for finding an optimal solution. This is an effective method for
optimization problems subject to non-linear constraints, unlike Lagrangians Methods that works with
linear constraints. SQP generates a search direction by solving a sequence of quadratic programs (QP)
and it iterates until converge into a solution [4]. The operating mode is considering an objective function

J(X) subject to constraints ¢(X) =0.
min J(x)
Subject to c(x)=0

We define current iterate by X, and next iteration X, ,, = X, + P, where P, is the search direction. The

Lagrangian function is defined by L(X,ﬂ,) =J (X) - ﬂTC(X) . Then A(X) is the jacobian matrix of the

constraints A(X)" =[Vc,(X),VC,(X),..., VC, (X)] where C;is the ith component of the vector C(X). If

we had only equality constraints we could use Newton’s method. However let’s also consider inequality
constraints:

min J(x)
Subject to c(x)=0
c(x)>0

There are two types of SQP: Inequality-constrained Quadratic Programming IQP and Equality-
constrained Quadratic Programming EQP.

11



2.2.1. Inequality-constrained Quadratic Programming (IQP)

At each iteration this method solves the quadratic subprogram QP defined by
. 1
minJ, +VJ, p+=p'ViLp
p 2
and with the linearized constraints
T
VCi(xk) p+ci(x)=0
T
vci(xk) p+¢(x)=0
This QP can be solved applying Newton’s method to the Karush-Kuhn-Tucker (KKT) conditions

([4] chapter 16). The solution is then used as a guess of the main problem, defining a search
direction and speeding the resolution of it.

2.2.2. Equality-constrained Quadratic Programming (EQP)

At each iteration this method selects a subset of constraints in accordance of which it detects
are active, this subset is called working set. These constraints are imposed as equalities and all
other constraints are ignored. The problem is then:

minJ, +VJ; p+%pTV§XLkp
p

Ap+c, =0

Working set is up to date at each sample time by rules based on Lagrange multiplier estimates
or by solving an auxiliary subproblem. The advantage of this method is that equality-
constrained quadratic subproblems requires in general less computation efford than solve the
QP as in IQP. An important thing in this method is how the working set is choosen.

2.3. Gradient computation

Optimization algorithm needs to know the derivative values of the objective function. This information
should be provide to SQP so it can determinate the searching direction of the optimal solution. For a
general function f(X) we can approximate its gradient using the Forward-difference formula [4]:

12



Slf(x); f(x+ee)—f(x)
X &£

where g, represents a small change in the value of a single component of X (the ith component). & is

the step difference. The Hessian matrix of the Lagrangian Function is also needed. It is expressed as [5]:

o V(%) + Y A4V20, (%)

i=1

First term comes from the Hessian of the objective function and the other ones from the Hessian of
constraints. As each term evaluates second derivatives, we also use Forward-difference approximation
in its double derivative extension [4]. For a general function f(X) this approximation is:

5 f 0 fx+ o0 +ee,)- f(x+2¢c,ei)— fx+ee, )+ f(x)+o(8)
OX;OX; &£

where O(é‘) is the error of the approximation.

However, the optimizer we used in our implementation (lpopt), offers a method for calculating the
Hessian without need of implementation. It is based on Quasi-Newton method.

2.4. Quasi Newton Method

This method is used to get the Hessian matrix without the need to provide second derivatives and
without the need to calculate the whole matrix each time. In fact it provides an up to date of the
Hessian at instant k+1 based on the Hessian at instant k and observing changes in gradient of objective
function. This is similar to the line search Newton method but here instead of the true Hessian we use

an approximate one. For X, , a quadratic model of the objective function fk is created by Taylor series
form[4]:
_ .I: fT 1 T
m (p) = f +Vf, P+2 P Bp
Where B, is a matrix put up to date at each iteration. Then the Hessian will be obtained by the inverse

relation with B, matrix: H, =B,'.  p, is the search direction who defines next iteration as:

13



X = X 4 Py
Where ¢, is the step length. The gradient of m, ., match the gradient of the objective function f as:
vm,., (=, p) = Vi, — B P = VF,
Following equations are then defined:
S =X —X and Y =Vf,, —Vf

From here there are some different Quasi Newton methods to finish this problem: BFGS, SR1, DFP and
Broyden. Let’s only descrive BFGS and SR1 as they are the most used.

2.41. BFGS

A search direction is computed by
p =—H, Vi,
and
X = Xy T Py
where % is computed satisfying Wolfe conditions.
Then Bia is computed by the formula:

T T

_ B S, Sk By " YiYi
T T

Sk BySy Yy Sk

Bk+1 = Bk

As Hessian matrix is the inverse of B , applying Sherman-Morrisson formula we obtain the
updated Hessian matrix

HyyiH, ss,
Hyy = H, — il ) S
Y He Vi Y Sk

14



24.2. SR1

The solution depends of these 3 cases:

o If (yk_Bksk)Tsk;éo

B., =B, + (Y — Bes MY ~Bis)
(Vi — B )" s

Again, Sherman-Morrisson formula is applied to obtain the updated Hessian matrix.

Hk = Hk +(Sk_Hkyk)(Sk _Hkyk)T
+ T
(Sk ~H. ) Vi

e Ify, =B;s, then
Bi.s = By

e Andif y, #B,s, and (yk - B, s, )T S, =0 BFGS method should be used.

See [4] chapter 6 for a step by step formula demonstration.
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3. Open source tools

As we saw, MPC needs a model to predic system behavior, so that we need software to modelize,
simulate and optimize. As it is a master thesis done in a universitary context, the most appropriate is to
try to use open source tools as universities are the main developers. Despite in this thesis there’s no
intention to provide improvements to this software, it wants to demonstrate its efectiveness and to give
a practical application as MPC. Once decided to use open source software, we should determinate which
one.

In modelizing world, there are a lot of different languages: Modelica, AMPL, APMonitor, Domain-specific
modeling (DSM), General Algebraic Modeling System (GAMS), Matlab, etc. Modelica is one of the most
popular languages, it’s easy and compatible with a large variety of open source components. In addition
a lot of libraries and documentation has been developed and there are a lot of modularities already
implemented that makes developing easily. Therefore it is a good tool and that’s why we choose it. For
modeling we did not use an environnment because the simplicity of the chosen problem let us to write
model directly in a file without so much problem. This file has a .mo extension and it has all the process
information synthesized inside: the dynamic equations, all variables definitions and parameters. If
system where more complex, the use of an evironnment would be necessary. Some free environments
are OpenModelica and SCICOS. Between these two we would choosen OpenModelica as it is the most
popular and more tutorials are written about it. OpenModelica it’s not only a modeling environment but
also an optimizer, compiler and simulator. Once we had the model written in modelica, we tryed to use
OpenModelica to compile it into a c file. However in OpenModelica an optimization problem must be
defined. As we only wanted the model in ¢ without beeing optimized, we looked for another alternative.
In fact, we wanted to have the model file separated of the optimization so it was flexible and easy to
integrate to the main code and to work with it. We found Python component from Jmodelica platform
that is able to do that. In addition, Python generated file allows to use the large library JMI of Jmodelica
for evaluating the model. The generated C file has all needed information about the system and also
some functions already implemented that easily allows accessing all the information and evaluating
dynamic equations. The interest of having the model in c is that it becomes compatible with the main
control algorithm, already implemented in c. In addition Python deliver some XML files with also
information about the model such as name of variables, parameter values, etc. Finally we shoud choose
the optimizer, an utiliy able to solve a non-linear problem and flexible enough to integrate into our MPC
structure. In this thesis statement, the Ipopt tool was suggested. In addition we saw that this software
uses approximative methods as Quasi-Newton on computation, so we though it was a fast optimizer,
that’s why we choose it. However there are some other non-linear optimizers as SNOPT, Trust Region
SQP solver, MINOS, CONOPT or KNITRO.

Once we have the model in ¢, we have JMI libraries to acced this file and we have choosen the
optimizer, is time to implement an algorithm that integrate all these elements and who has the control
routine for executing control. See the global structure of our implementation in figure 4.

16



model.mo

Python

application

model.c

Jmodelica MPC Ipopt
libraries algorithm optimizer

Optimal trajectory

Figure 4. Basic structure of implementation. A Modelica model is written, compiled into a c-file by
Python and interfaced with main algorithm through Jmodelica libraries. Main algorithm uses Ipopt
optimizer to solve the problem and to get the optimal trajectory. Note that model.c is always evaluated
through functions defined in Jmodelica libraries.

Let’s now describe in detail each tool.

3.1. The Modelica language

Modelica is a modeling language born from the international effort of university community and of
some small enterprises. Before Modelica, each one had their own modeling language, it was on 1996
when they did an effort to unify all concepts to create the Modelica language. The main goal was to
have the possibility to exchange models, libraries and predevelopped modules to share technology
advances in object oriented programming. Nowadays, this language is a good tool for working with
complex systems as mechanical, electrical, thermal, hydraulic, pneumatic, fluid, etc. Models can be
written in a differential way, algebraic or as discrete equations and developing can be done using a
graphical editor like Simforge or just typing directly in a file. There are few Modelica simulation
environments, commercial and free. Below there is a list of the most important.

17



Free Modelica Simulation Environments (alphabetical list)

e SCICOS from INRIA, France

e OpenModelica from Linképing University, Sweden

Commercial Modelica Simulation Environments (alphabetical list)

e Dymola from Dynasim AB,Sweden

e MapleSim from MapleSoft, Canada

e CATIA Systems from Dassault Systemes

¢ LMS Imagine.Lab AMESim from LMS International

e MathMdelica from MathCore AB,Sweden
¢ SimulationX from ITI GmbH, Dresden, Germany

Table 1. Most important Modelica Simulation Environments classified between free and commercial [a].

The main Modelica libraries are [a]:

e Libraries for electric, electronic and magnetic components

e Libraries for mechanical components
e Libraries for fluid components

e Libraries for control systems

e Libraries for functions

Mode details about libraries on appendix 8.2 .

3.2. Open Modelica

Open Modelica is a free compilation and simulation environment for models written in Modelica
language. Open Modelica has about 40 different modules that includes from edition, compilation, debug
to execution. Here there is the overall architecture of the OpenModelica environment. Arrows denote

data and control flow.

Eclipse Plugin

Graphical Model
Editor/Browser

.' M Editor/Browser \
|
Interactive

-» Emacs  qe—=""| session handler

Editor/Browser

/

!

'\__’

Textual
Model Editor

Model Editor

Execution

Modelica
Compiler

N7

i Modelica
Debugger

'
]

|

]

]

: DrModelica // \
' NoteBook

]

1

]

i

]

]

Figure 5. The overall architecture of the OpenModelica environment [c].
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Compilation and execution process passes through all these steps:

Modelica
Source Code

| |*—-——-—— Modelica model

Translator

4 E*-—---—- Flat Model
Analyzer

lyﬂ"‘“‘“‘"‘ Sorted equations
Optimizer

U - Optim_ized sorted

equations

Code

Generator

i}q—-—-—-—-—- C Code

C Compiler

! - Executable

Simulation

Figure 6. Steps from model to simulation in Open Modelica [c]. The source code is analyzed and as
OpenModelica can also optimize problemes, it is optimized for then being compiled and simulated.

3.3. Jmodelica.org

Jmodelica.org is an open source platform composed by some different components working with
Modelica language. These different components allow modeling heterogeneous and complex systems,
and also compiling and optimizing through Optimica language (an extension of Modelica). The diferent

components are:

e Modelica compiler

e Optimica compiler

e JModelica.org Model Interface (JMI) C Runtime library
e Optimization algorithm

e Python user environment

e Functional Mockup Interface (FMI) compliance

e XML export

From this platform we used Python and some JMI Runtime Libraries. Python is an environment for
scripting, developing applications and algorithm integrating. It is divided in packages Numpy and Scipy in
order to provide support for numerical computation as matrix and vector operations, basic linear
algebra and plotting.
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Figure 7. Structure of Jmodelica platform. Model is compiled into a c and xml files and interfaced to user
applications through JMI Runtime Library [b].

In figure 7 we can see on the left the Modelica model and the Optimica optimization problem. Jmodelica
compiles these files into .c and .xml files. As you can see on the bottom right, users applications can then
interface their algorithms with generated c and xml files through the APl (Application Programming
Interface) and take profit of the JMI libraries (top right). These libraries has implemented functions for
create a new jmi structure (an instance of the model into the code), functions for initialize that
structure, for evaluate dynamic equations, for optimization, etc. While using Jmodelica during our
implementation, we have not used the optimization tools as Optimica language and optimization
functions in Jmodelica libraries. In our implementation, Jmodelica is only used to interface the model
with all the other parts of the MPC. That is, optimization is done by Ipopt independently of Jmodelica
optimization resources.

3.4. Ipopt

Ipopt (Interior Point Optimizer) is an open source package for optimizing non-linear problems. It
implements a point line search filter, a SQP method, which aims to find a local solution. It has been
designed flexible so that it could be used in a large number of applications. The problem is formulated as

[5]:

min  f(x)

xeR"
st. g-<g(x)<g”

xt < x<xY
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It finds a solution of X variables that minimize f(X) objective function while respecting g(X)

constraints and bound valuesg", g", x

“and x”. f(x) and g(X) functions can be linear or non-

linear, convex or non-convex but must be double differentiable.

For solving the problem, Ipopt needs the following information:

1. Problem dimensions
e number of variables (n)
e number of constraints (m)
2. Problem bounds
e variable bounds ( x" and x" )
e constraint bounds (g " and gU )
3. Initial starting point
¢ Initial values for the primal x variables
¢ Initial values for the multipliers (only required for a warm start option)
4. Problem Structure
e number of nonzeros in the Jacobian of the constraints
¢ number of nonzeros in the Hessian of the Lagrangian function
e sparsity structure of the Jacobian of the constraints

e sparsity structure of the Hessian of the Lagrangian function

5. Evaluation of Problem Functions (Information evaluated using a given point
Ipopt)
e Objective function, f(X)

« Gradient of the objective VT (X)
« Constraint function values, g(X)
e Jacobian of the constraints, Vg(X)"

e Hessian of the Lagrangian function,

X, 4,0

coming from

Lagrangian function is f(xX)+g(x)" 2

m
And the Hessian of the Lagrangianis o,V f (Xk)—i-z/livzgi (%)

i=1

First term comes from the Hessian of the objective function, while the other
ones from the Hessian of constraints. As lpopt can ask independently for
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constraints Hessian, a factor o; is introduced in front of the objective

function to enable it if it's needed. A, are the multipliers of constraints.
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4. Implementation

Once the theoretical background is described, we proceed to define a particular problem to implement
it. This problem will serve us as an example for testing and to make sure we did a good integration of
open source components and a good implementation of MPC.

4.1. Tank in series problem

We choose a problem consisting on two tanks communicated in series, see figure 8. The first tank gets
an external flow that also corresponds to global system input. Tank one output is regulated by a valve
and sends the flow to tank two, this flow is then the input of tank two. The output of the second tank is
also regulated by a valve.

! =D‘EH
—
Tank 1 Tank 2

Cl q1 CZ

Figure 8. System used in the implementation. It consists in two tanks connected in series. The global
system has an input flow going to tank 1, and an exit flow going out from tank 2. Valves are not
manipulated variables, they are considered constant parameters to reduce exit flows.

System variables are:

g=tank 1 input flow (m?/s)

a:= tank 1 output flow and tank 2 input flow (m?/s)
d,= tank 2 output flow (m>/s)

h,=tank 1 level (m)

h,=tank 2 level (m)
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Parameters:
C,=2 tank 1 surface (m?)
C,=2 tank 2 surface (m?)
R1=0.5 valve 1 opening coefficient (no dimension)
R, =0.5 valve 2 opening coefficient (no dimension)

Dynamic model is represented by the equations:

gll—q—q

dt !
h,
R, =0,

dh, _

dt

Cl

Cz a, _qz

The goal is here to control h, level by input g. We want to take h; level from 0 m initial state to 5 m.
Putting together the equations above we gets a system of two equations.

_hi_hz

a, "R
dt C,

h—h, h2
d, R R,
dt C,

The objective function should be defined with the purpose to achieve h,=5 m, so a reference value
h, ref =5 should be defined. In addition, in order to optimizer converge faster into a solution, we set
reference values for the other variables (g and h,).

The objective function is:
f =R(q—q_ref ¥ +Q,(h, —h _ref ) +Q,(h, —h, _ref )

WhereR,Q, and Q, are weighting coefficients determining the importance of each element in the

solution. This is one equation with one manipulated variable (q) and two controlled variables (h; and h;).
To be sure this function pretends to achieve a possible state, reference values must also represent a
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possible state. If we want to have h,=5 m, g_ref and h;_ref must be set in accordance to system
equations in steady state. That is, in steady state derivatives are zero so system is:

h, —h
q- 1R 2
0= L
Cl
hl_h2 _h72
O= Rl R2
C2

And when h,=5 = h;=10 and g=10, so reference values should be these ones:

g_ref =10m.
h, ref = 10 m.
h,_ref = 5m.

So we make sure that all reference values can be achieved at the same time, so objective function is
pointing to a possible state.

The result of evaluate the objective function is the cost of the solution of the optimization problem, the
goal is to minimize this value. We remember that this objective function could be expressed considering
some other criteria as safety, economics, etc. To ensure a long life of actuators and to avoid damages on
them, we impose an input constraint. That is, we don’t want sudden changes on command so the
difference between two sequential commands is bounded as:

_2<q(k)—q(k —1) <2

The problem is now already defined, it should be written in Modelica language for compile and
transform into a c file. As we saw, having the model in c language make it compatible with all control
algorithm and optimization.
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4.2. Modelica model

Controller needs the model of two tanks system for simulate and predict the behavior. Modeling
according to Modelica standard we obtain:

class TwoTanks.TwoTanks

input Real g "entry flow (m3/s)";
parameter Real R1 = 0.5 "valve 1 resistance coefficient" ;

parameter Real R2 = 0.8 "valve 2 resistance coefficient ";
parameter Real C1l

3 "tank 1 surface (m2)";
parameter Real C2 2.5 "tank 1 surface (m2)";
parameter Real hl_init(initial value) = 10;
parameter Real h2_init(initial value) = 10;
Real hl(start = hl_init,fixed = true) "water level iIn tank 1(m)";
Real h2(start = h2_init,fixed = true) "water level in tank 2(m)";

equation
der(hl) = (g - (Chl - Ch2)) /7 (R1)))/ (Cl1);
der(h2) = ((ht - (h2)) /7 (RL) - ((h2) 7 (R2))) 7 (C2);

end TwoTanks.TwoTanks;

Model of the system expressed in Modelica language.

Note that there are two different parts, the first one containing information about variables and
parameters, and the second one information about dynamic behavior. Probably modeling is the most
complicated part of MPC implementation as systems are often very complex and non-linearities should
be identified. Modeling processes could be a long task because of identifying all parameters, dynamic
expression, non-linearities, etc., and normally some validation tests should be done. During our
implementation we avoid all these steps and we assume that taken equations well represents real
process.

4.3. Optimization parameters

Let’s now implement the optimization problem and define all parameters needed by Ipopt. We want to
know the command values that will bring system to desired h; level in an optimal way. That is, we want
to know at every moment the values of g that better controls the system. As a result, Ipopt will give us a
trajectory of q input flow expressed as a vector X[i =0...n—1], each X[i] corresponds to aq(k). n is

then the prediction horizon of the MPC strategy.
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1. Problem dimensions
¢ number of variables: n =15 Prediction horizon.

e number of constraints: m=n We need a constraint at each sample time to
define soft changes of command and avoid
actuator damages. For each x(i) we impose that
-2<= x(i)-x(i)<=2, so number of constraints is n.

2. Problem bounds

e variable bounds : X" =0 A negative input flow is physically impossible.
Lower bound is set at 0.

X~ =13 We consider that input can’t be higher than 13
3
m>/s.

e constraint bounds:

=2 As seen before, each constraint
g(x) = x(i) = X(i —1) cannot be bigger
than 2 m*/s or smaller than -2 m®/s to avoid

sudden command changes, so constraints
bounds are set on that way.

3. Initial starting point

 Initial values for the primal x variables: X(i) = q_applied

The problem is initialized with the previous
value sent to the plant ((k —1) =q_applied. If

the algorithm is on the first sample time
(k =0), g_applied=0.

¢ Initial values for the multipliers (only required for a warm start option):
Not defined.
4. Problem Structure
e number of nonzeros in the Jacobian of the constraints: nnz_jac_g=2m-1

As we will see later, number of nonzeros in the
Jacobian of the constraints is related with the
number of constraints m as 2m-1.

¢ number of nonzeros in the Hessian of the Lagrangian function

Not defined because Quasi Newton method
option is set on. No need to implement it.

e sparsity structure of the Jacobian of the constraints

Nonzero values are in the diagonal and in the
subdiagonal of the matrix.
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e sparsity structure of the Hessian of the Lagrangian function

Not defined.

. : . . : X A0 .
5. Evaluation of Problem Functions (Information evaluated using a given point f coming from
Ipopt)
e Objective function:

min f =R(q—q_ref ¥ +Q,(h, —h, _ref ) +Q,(h, —h, ref¥

« Gradient of the objective Vf (X) .

It is set by Forward-differences formula

:f(x); f(x+ee)—f(x)
X

i &

And implemented with the following algorithm

Number xe[n];

double eps=le-6;

int j;

for (Index 1=0; i<n; i++) {
for (3=0;j3<n;j++){
) xe[J1=x111;

xe[i1]=xe[i]+eps;
grad_f[i] = (cost(n,xe)- cost(n,x))/eps ;

b

Forward-differences implemented code.

Where xe is &€, the epsilon difference added only in the i th component of vector X . Cost() is the

function name that evaluates f (X) and n is the length of X vector.

e Constraint function values

—2<g(xX)=x(1)-x(1-1) <2

28



e Jacobian of the constraints,

Vg(x)" =
0 -1 1

So that number of non-zeros in the jacobian of the constraints is 2m-1.

m
+ Hessian of the Lagrangian function, o V? f (Xk)+2“livzgi (X,)
i1

Not defined. We use Quasi-Newton method

4.4, Implemented algorithm

All implemented code is separated in two parts; the first corresponding to the controller and all the MPC
structure (simulation, optimization and control), and the second one that is a substitutive of the process
as we don’t dispose of a real one. That is, this second one only simulates real process. Control algorithm
puts together and makes compatible all different parts; model, optimization code and objective function
evaluation. We consider four logical levels, each one developed in one different file:

e Main.c
e MyNLP.c
e Cost.c
¢ Model.c

Main.c, is the most important and is where the optimization problem is called repeatedly at each
sample time. We have decided to execute the program along 40 sample times, so that Main.c calls to
solve the optimization problem also 40 times. In a real case, the execution should never stops and runs
continuously to ensure a non-stop control.

MyNLP.c has all the information about optimization problem (all parameters described in 4.3. It creates
the vector x(i=0,...,n-1) and try iteratively with different values. With these values it calls objective
function in Cost.c to get the cost value and determine if the proposed values are the optimal ones.
Cost.c has then the objective function and the code to simulate and evaluate model. Effectively, whet
Cost.c gets vector x, it simulates system behavior and uses objective function to calculate cost value
(how much good is proposed x solution). Cost is sent back to MyNLP.c

Model.c has the model and some functions to evaluate the dynamic equations. All these functions are
called from Cost.c.
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When executing, this program generates a Results.txt text file with all the values that need to be
plotted. With a Matlab script, this file is loaded and results are plotted in a window. As it is not the
purpose of this thesis to implement code for plotting, we were looking for the easyest way to do it, even
if it means to use non-open-source software as Matlab.

See appendix 8.1 for complete code.
4.5. Tests and results

First of all we show that the implemented program runs according to MPC principle. Below there are 4
different graphs corresponding on optimal solution found at different k instants. We can observe that
execution length is 40 sample times and the trajectories are only 15, this trajectories length is the
predicted horizon. Note that trajectories starts according with the previous one, the optimization
problem at instant k initializes with k-1 values.

Optimal input Optimal input

g input qinput
reference value 16 reference value

. [ | R

L L . . . L L L L L L . . .
0 3 10 15 20 25 30 35 0 3 10 15 20 25 30 35
k sample time k sample time

Figure 9. Optimal input trajectory Figure 10. Optimal input trajectory

calculated at instant k=0 for a 15 samples calculated at instant k=5.

horizon.
20 . Oplima\‘input » . Opt\ma\lmpul

18+ q input b 18+ q input

reference value reference value

16 16

14 14l J
12} 1 121 J
0} ; - 10b S
8 8

6 6

4 4

2 2

0 0

L . L . L L . | L L L . . L
0 3 10 15 20 25 30 35 0 5 10 18 20 25 30 35
k sample time k sample time

Figure 11. Optimal input trajectory
calculated at instant k=15.

Figure 12. Optimal input trajectory
calculated at instant k=25.



First value of each trajectory is sent to the plant, so all the values sent generates also a trajectory along
all execution time, see figure 13.

Optimal input

8L q input
reference value

12t /\
10

. . . . . . .
0 5 10 15 20 25 30 35
k samole time

Figure 13. Input sent to the plant along all the execution time. It is generated with the first value of
each optimal trajectory calculated.

In figure 14 we compare the predicted behavior of hl and h2 variables at instant k=0 with real output
measured in process. We can see that predicted and real trajectories are not coincident, there’s a small
error due to the short length of the predicted horizon and integration routines. In fact it is only 15 units
so it doesn’t consider future values on prediction. Later we will demonstrate that error decreases as
predicted horizon length is set longer. Here perturbations are not considered, however in a real case are
almost always present.

Comparison Real Output / Predicted

Real h1
Predicted h1
Real h2
Predicted h2

L

0 5 10 15 20 25 30 35
k sample time

Figure 14. Measured states (colored) compared with predicted states in first optimization (black). Note
that trajectories are not coincident.

Up to now, all graphics displayed respected constraints and bounds. Let’s have a look what happens
when they are not respected.

31



Optimal input

q input 4
reference value

0 1 I 1 I 1 1 1
0 ] 10 15 20 25 30 35

k sample time

Figure 15. Input sent to the plant when neither

constraints nor bounds are defined in problem.

On Figure 15 input q at k=0 is above 14 m?/s so it does a very sudden change considering that initially it
was at Om?/s. To avoid that, on Figure 16 input changes are restricted by a constraint. In addition no

Optimal input

q input R
reference value

0 I I I I I I I
0 5 10 15 20 25 30 35

k sample time

Figure 16. Input sent to the plant with input
constraint —2 < (1) —q(i —1) <2 but

without bounds.

graph is bounded so maximal values achieves 14 m>/s instead of the limit of 13 m?®/s imposed before.

In a real case, model is never perfect and it does not reflect exactly the process. It's easy to make
mistakes during modeling and the process can also be subject to interference or perturbation. That's
why we will also check how our MPC runs in this case and we will compare it with the ideal case. As we
are also using a model to simulate the real process, this model will be the same when testing an ideal

case and after we will change it a little bit to have a realistic approach.

l. Ideal case: Control model is exactly the same as process.

We call the same model while optimizing than simulating real process.
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Model A
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Optimizer
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Ref values u z
Contraller Process

Figure 17. Structure of the algorithm when controller and process are based on the same model.
Ideal case.

When using the same model, intuition could make us to expect same results on prediction than in
process output, we already demonstrates that it is not true. The length of predicted horizon makes
prediction a little bit different from real behavior as it ignores the future values beyond the horizon. In
addition, integration routines, external perturbations and model mistakes also casues error. Let’s
demonstrate now that increasing the horizon, error decreases. We increases from 15 to 80 sample times
and we note that goal is achieved before, so control is better.

Figure 18 is only for 15 sample times prediction horizon. h2 is measured at k=50 and its value is
h2=4.582.

Comparison Real Qutput / Predicted

Real h1
Predicted h1
16| Real h2
Predicted h2
14+ reference values |

1
0 10 20 30 40 50 60 70
k sample time

Figure 18. Measured states (in color) copared with predicted states in the first optimization
(black). Measured level h2 at k=50: h2=4.582.

We increase now the horizon length to 80 (the same as execution time). Note on figure 19 that real and
predicted trajectories are almost overlapped and when k=50 h2=4.65 instead of 4.582 measured before.
We agree then that more prediction horizon is long, more quality has the control. However control is

33



executed continuously without stop while prediction horizon is always finite so there is always error
caused by prediction horizon.

Comparison Real Output / Predicted

Real h1 B
Predicted h1
161 ——Real h2 1
Predicted h2
reference values | |

I
0 10 20 30 40 50 60 70
k sample time

Figre 19. Measured states (color) compared with predicted states in the first optimization (black).
Here prediction is done with a long horizon, so measured and predicted trajectories are almost
coincident.

I. Real case: Control model is not exactly as process

Model A
t i
Cost
Optimizer Model B
"
Ref values u z
Fa— Controller Process "

Figure 20. Structure of the algorithm when controller and process are based on different models.
Consider now some modeling mistakes, C2 is set at 2 m* when real tank 2 surface is 2.1 m”. Consider

also that R2 coefficient is set to R2=0.5 when really is R2=0.4. These differences make control more
difficult and cause steady state error.
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Figure 21. Measured states when control and Figure 22. Input when control and process
process models are different. Note that there is a models are different. Trajectory don’t
steady state error. achieve reference value.

Note that all state variables and also input have steady state error. That’s because when MPC model has
mistakes, reference values don’t corresponds to a possible state for real process. It is not possible that
all variables achieve reference values at the same time. Dinamic equations in model don’t reflect real
process and previous calculation for setting reference values is also wrong, and objective state is
impossible to achieve. As our objective function tries to satisfy as much as possible reference value of
all variables, the solution is then a mid point where all variables are close to its reference value but there
is no one who really achieved it. We can always set objective function weight parameters different,
giving more importance in one variable than others. Is here where performance criteria are set.
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5. Discussion

Model Predictive Control is an efficient control strategy specially designed for problems subject to a
large number of constraints. Is especially interesting its extension to the non-linear world (NMPC) as it
allows working with complex systems. In MPC we can set as many performance specifications as
needed, related on economical reasons, security, or environmental, what makes this method very useful
in practice for a large quantity of applications. It uses a complex computation structure where process
behavior is simulated until algorithm finds an optimal control command. Simulating iteratively requires a
hard computation, so optimization efficiency is a very important aspect and a line of work for future
thesis. Actually this efficiency can be improved by using approximative methods as Forward-difference
or Quasi-Newton on derivative calculation. Line search methods will also help to have lightweight
computation, more they are better less iterations are needed. It would be interesting to study if it is
possible to use MPC in fast processes, where control response must be given fast. Here we only
concentrate in software and we talked about approximative methods that simplify computation, but a
qguestion remains in the air: Is existent hardware fast enough to run MPC on time? Will real-time
exigences be satisfied in all kind of processes?

In this thesis we did both investigation and implementation, so it is a balanced work between theori and
practice. Maybe a more detailed work could be done if we developped only one aspect. However |
consider more interesting having done both as | saw all method in a global view.

Regarding modeling, open source world offer a large variety of tools and most of them are compatibles
each other through Modelica language. A lot of international effort has been done from universities and
companies on developing this language and their modeling libraries, so we are in front of a large
guantity of knowledge available for everybody. We have seen how a model mistake causes steady state
error, what should make us consciously of the existence of gaps in robustness and therefore the
importance on modeling. A more detailed modeling study should be done in future works. Together
with modeling tools, there is also a set of programs for compiling and optimizing. All this software is a
very good help for developers and now for us for implementing the MPC, so all this public knowledge
should be preserved and developed for future works.

With the implementation we put in practice MPC method, we also demonstrate the efficiency of all
open source tools applied on this type of control. We have also demonstrated a set of properties like
dependence between control quality and prediction horizon length: more long is the horizon less error is
prodced, however long horizons require more computational effort. We saw the importance to well
define the objective function with all criteria weighted according to performance specifications.
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6. Future Steps

Once the MPC structure is implemented, it would be good to test it with other derivative calculation
methods different than Forward-Differences and Quasi-Newton. Try also with some other optimizers
different than Ipopt, using some other SQP method. Then do a comparative study, check properties
(advantages and disadvantages), quality of solutions and computation time required. Check if due to
approximations the quality of results decreases significantly. In addition, a set of tests should be made
for checking stability and robustness in all operation rang, detecting instability zones and critical points.

As a model error causes error in control, it would be good to study the possibility to use models with
variable coefficients. Adaptive models using the same principle as Kalman filter for model identification,
coefficient tuning and correction of steady state error. Measuring the output and observing the error
over a certain time could be used to get experience and modify model. It would also be very useful for
correcting perturbations. To avoid model mistakes, an acurate invetigation in modeling world would be
interesting; look for object oriented programming techniques, parameter identification, non-linearities
detection, model validation tests, etc. Even if Modelica is already a well developed language, is always
interesting to continue developing new libraries according on technological advances.

In a practical way we should think about how to integrate all this MPC structure into a hardware device.
Formulate questions about if it is possible to install MPC in an existing commercial Programmable
Controller (like Programmable Interface Controller PIC, Programmable Automation Controller PAC, etc.).
Have these devices power enough in computation to run MPC? What are the minimal requirements?
Which reliability they have? Would it be safe enough for being used in critical processes? All theory
shown in this thesis should be tested on real processes for verifying effectiveness of MPC, robustness
and to check compatibility in small hardware structures.

37



7. Conclusion

This thesis is a complete work, where there is both theorethical and practical work so it allowed to learn
globally MPC and about open-source tools. We saw that MPC is a powerful control tool but complex at
the same time, it requires a big software structure with a perfect and exact model in order to avoid
control error. We demonstrate effectiveness of used free software and aproximative methods that
simplifies computation. Some questions remain regarding practical application. Future investigation
works should continue developping theory but also should check how this method responses in real
cases.
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8. Appendix
8.1. Implemented code

8.1.1. Main.c

//*** Main.c Fkx

#include <iostream>

#include "lIplpoptApplication.hpp"
#include "lIpSolveStatistics.hpp"
#include "MyNLP_hpp™

#include “jmi.h"

using namespace lpopt;
int k; // length of the execution

int main(int argv, char* argc[])
{

FILE * hFile;

FILE * iFile;

FILE * jFile;

// Create an instance of a Non Linear Problem NLP
SmartPtr<TNLP> mynlp = new MyNLP();

// Create an instance of the lIpoptApplication

SmartPtr<lIpoptApplication> app = lpoptApplicationFactory();
app->Options()-> SetStringValue(*'hessian_approximation™,limited-memory');
ApplicationReturnStatus status;

// Open files for writing results and plotting
iFile = fopen( "ZSimulation.txt", "w");
fclose(iFile);

JjFile = fopen( "ZReal_Input.txt"”, "w'");
fclose(JFile);

hFile = fopen( ""ZReal_Output.txt™, "w");
fclose(hFile);

//Execution during 80 sample times
for (k=0;k<=79;k++){

// Initialize the IpoptApplication and process the options
status = app->Initialize();

if (status != Solve_Succeeded) {
printf("'\n\n*** Error during initialization!\n");
return (int) status;

¥

status = app->OptimizeTNLP(mynlp);

if (status == Solve_Succeeded) {
// Retrieve some statistics about the solve

Index iter_count = app->Statistics()->IterationCount();
Number final_obj = app->Statistics()->FinalObjective();

}

system("'PAUSE™) ;

return (int) status;
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8.1.2. MyNLP.c

// MyNLP.c

#include <iostream>

#include ""MyNLP_hpp"

extern "C" {

#include "cost.h"

by

#include "model .h"

#ifdef HAVE_CSTDIO // for printf
# include <cstdio>

#else

# ifdef HAVE_STDIO_H

# include <stdio.h>

# else

# error "don"t have header file for stdio"
# endif

#endif

float hl_simulat,h2_simulat,hl_mesured,h2_mesured,u_applied;
float *apuntador_u;

extern int k;

using namespace lIpopt;

/* Constructor. */
MyNLP: :MyNLP()

{3
MyNLP: :~MyNLP()
{

bool MyNLP::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g, Index& nnz_h_lag, IndexStyleEnum&
index_style){

n 15; /7 to input q flow at diferent sample times q[0].q[1],---q[n-1]
m n; // equality constraints g(x)

nnz_jac_g = 2*m-1; // nonzeros in the jacobian of the constraints g(x)
index_style = C_STYLE; // C index style for row/col entries

return true;

}

bool MyNLP::get_bounds_info(Index n, Number* x_I, Number* x_u,
Index m, Number* g_I, Number* g_u){

for (i=0; i<n; i++) { // lower bounds of the variables
= 0.0

for (i=0; i<n; i++) { // upper bounds of the variables
X_u[i] = 13.0;
}

// bounds of the constraints
for (i=0; i<m; i++) {

g_I[i] = -2.0;

g_u[i] = 2.0;

3

return true;

bool MyNLP::get_starting_point(Index n, bool init_x, Number* x,bool init_z, Number* z_L, Number*
z_U,Index m, bool init_lambda,Number* lambda){

int j;

assert(init_x == true);
assert(init_z == false);
assert(init_lambda == false);
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apuntador_u = &u_applied;

iT(k==0){ // initialize to the given starting point
*apuntador_u = O;
hl_mesured=0;
h2_mesured=0;

}

for (g=0;j<n;j++){
x[J1 = u_applied;

return true;

}

bool MyNLP::eval_f(Index n, const Number* x, bool new_x, Numberé& obj value){
obj_value = cost(n,x);

return true;

}

bool MyNLP::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f){

Number xe[100];

double eps=1le-6;

int j;

for (Index i1=0; i<n; i++) {
for (g=0;j<n;j++){
;e[i]=X[i]:

xe[i]=xe[i]+eps;
grad_f[i] = (cost(n,xe)- cost(n,x))/eps ;

}

return true;
}
bool MyNLP::eval_g(Index n, const Number* x, bool new_x, Index m, Number* Q)
{

// return the value of the constraints: g(x).

int i;

g[0] = x[0]-u_applied;

for (i=1; i<m; i++) {

gli] = x[i]-x[i-1];

return true;

}

bool MyNLP::eval_jac g(Index n, const Number* x, bool new_x,
Index m, Index nele_jac, Index* iRow, Index *jCol,
Number* values){

int i;

if (values == NULL) {
// return the structure of the jacobian
for (i=0; i<m; i++) { //setting the structure for the diagonal
iRow[i] = i; jCol[i] = i;
3

for (i=m; i<2*m-1; i++) { //setting the structure for the sub-diagonal
iRow[i] = i-m+1; jCol[i] = i-m;

}
Yelse {
// return the values of the jacobian of the constraints
for (i=0; i<m; i++) { //filling the values of the diagonal
values[i] = 1.0;

3
for (i=m; i<2*m-1; i++) {
values[i] = -1.0;
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}
}
return true;

}

bool MyNLP::eval_h(Index n, const Number* x, bool new_x,Number obj factor, Index m, const Number*
lambda,bool new_lambda, Index nele_hess, Index* iRow,Index* jCol, Number* values){

return false;

void MyNLP::finalize_solution(SolverReturn status,Index n, const Number* x,const Number* z_ L,
const Number* z_U,Index m, const Number* g, const Number* lambda,Number obj_value,const poptData*
ip_data, IpoptCalculatedQuantities™ ip_cq){

FILE * jFile;

int i;
JjFile = fopen( "ZReal_Input.txt"™, "a");//We write sent input to a txt file for plotting
fprintf (gFile,"%i %f 10\n",k,x[0]);

fclose(JFile);

u_applied=x[0]; //Up to date of sent input for initialize next problem

escriu_simulacio(n,k,x); //escribim la simul®laci6 optima trobada

//calculem el comportament del sistema real 1 l"escribim en un fitxer
calculate_output(n,k,x);

8.1.3. Cost.c

#include <iostream>
#include "jmi_h"
#include "model .h"

#define hl_ref 10.0
#define h2_ref 5.0

extern float hl_simulat,h2_simulat,hl_mesured,h2_mesured;

double cost(Index n, const Number* u) {

Jmi_t* jmi;

double* x; // states
double* dx; // derivatives

int i,j; // counters

double costvalue=0;
double u_ref=10.0;
double R[100],Q[2]; //weight vectors

jmi = gmi_t*) calloc(l,sizeof(gmi_t));
dx = (double*) calloc(1,N_x*sizeof(double));
X = (double*) calloc(1,N_x*sizeof(double));

Jmi_new(&jmi);

_R1_ = .5;
_R2_ = .5;
_C1_ = 2;
_C2_=2;

// Initial states
x[0] hl_mesured;
x[1] h2_mesured;
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//Weight vectors

Q[0]=1;
Qr1]1=2;
for (i=0; i<n;i++)
{
RLi1=1;
3

// Simulate using simple forward differences
for (i=0; i<n;i++)

{
// Set states
_q_ = u[i]:
_hl_ = x[0];
_h2_ = x[1];

// Call model to get derivatives evaluated at these values.
model_dae F(mi,(mi_ad_var_vec_p) &dx);
// Update state
for (=0; j<N_x; j++){
x0il = xO1 + 0.1*dx[j1;

costvalue = costvalue + R[Li]*((double)u[i]-u_ref)*((double)u[i]-u_ref) + Q[O]*(x[O0] -
hl_ref)*(x[0] - hl_ref) + Q[11*(X[1] - h2_ref)*(x[1] - h2_ref);

}

return costvalue;

}

int calculate_output(lndex n,int k,const Number* u){

FILE * hFile;

Jmi_t* jmi;

double* x; // states
double* dx; // derivatives
int i,j; // Counters

jmi = @gmi_t*) calloc(l,sizeof(mi_t));
dx = (double*) calloc(1l,N_x*sizeof(double));
X = (double*) calloc(l,N_x*sizeof(double));

Jmi_new(&jmi);

_R1_ = .5;

_R2_ = .6;

_C1_ = 2;

_C2_=1,9;

it (k==0){
h1l_mesured=0;
h2_mesured=0;

3

// Initial states
X[0] = hl_mesured;
X[1] = h2_mesured;
hFile = fopen( "ZReal_Output.txt", "a');

// Simulate using simple forward Differences

_a_ = u[0];
_hl1_ = x[0];
_h2_ = x[1]7;
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// Call model to get derivatives evaluated at these values.
model_dae_F(mi,(mi_ad_var_vec_p) &dx);

// Update state
for (3J=0; j<N_x; j++){
xO1 = x01 + 0-1*dx[j1:

fprintf (hFile,"%i %f %f 10 5\n",k,x[0],x[1]);
fclose(hFile);

h1l_mesured=x[0];

h2_mesured=x[1];

return O;

}

int escriu_simulacio(lndex n,int k, const Number* u){
FILE * hFile;
Jmi_t* jmi;
double* x; // states

double* dx; // derivatives
int 1,j; // Counters

hFile = fopen( "ZSimulation.txt", "a');

Jjmi = @gmi_t*) calloc(l,sizeof(mi_t));

dx = (double*) calloc(1,N_x*sizeof(double));
X = (double*) calloc(l,N_x*sizeof(double));
Jmi_new(&jmi);

.5;

“R2_ = .5:
c1_ = 2;
“c2_ = 2;

// These values (parameter values, and also initial states and perhaps other values)
// should be read from the Modelica-model (via a XML-file?), but I haven®t figured which
// function that does this.

// Therefore, instead, they are hardcoded here. The defines are defined in the generated C-file.

// Initial states
x[0] = hl_mesured;
X[1] = h2_mesured;

// Simulate using simple forward Differences
if (k==0){

for (i=0; i<n;i++)

{

uli];

x[0];

x[1];

model_dae_F(@mi,(mi_ad_var_vec_p) &dx);

_a_
_hi_
_h2_

for (g=0; j<N_x; j++){
x[31 = x[J1 + 0-1*dx[j]:

if (hFile == NULL){
// Error, file not found
Yelse{
// Process & close file
fprintf (hFile,"%i %i %f %f %f 10\n",k,i,u[i],x[0],x[1D);

44



b
3
fclose(hFile);
return O;
3

8.1.4. Model.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <jmi.h>

static const int N_ci = 0O;

static const int N_cd = 0;

static const Int N_pi = 6;

static const int N_pd = O;

static const int N_dx = 2;

static const int N_x = 2;

static const int N_u = 1;

static const int N_w = 0O;

static const int N_eq_F = 2;
static const int N_eq R = 0;
static const Iint N_eq_FO = 2 + 2;
static const int N_eq_Fl = 3;
static const int N_eq_Fp = 0;
static const Iint N_eq_ RO = 0 + O;

#define _R1_ ((*@mi->z))[Jmi->offs_pi+0])
#define _R2_ ((*mi->z))[jmi->offs_pi+l])
#define _Cl_ (C*mi->z))[mi->offs_pi+2])
#define _C2_ ((*@mi->z))[mi->offs_pi+3])
#define _hl_init_ (C*Qgmi->z))[Jmi->offs_pi+4])
#define _h2_init_ (C*Qgmi->z))[Jmi->offs_pi+5])
#define _der_hl_ ((*mi->z))[jmi->offs_dx+0])
#define _der_h2_ (C*mi->z))[mi->offs_dx+1])
#define _hl_ ((*@mi->z))[Jmi->offs_x+0])
#define _h2_ ((*@mi->z))[Jmi->offs_x+1])
#define _qg_ (C*@mi->z))[jmi->offs_u+0])
#define time ((*@mi->z))[Jmi->offs_t])

#define _ci(i) (C@mi->z))[mi->offs_ci+i])

#define _cd(i) (C*@mi->z))[mi->offs_cd+i])

#define _pi(i) ((CAmi->z))[Jmi->offs_pi+i])

#define _pd(i) ((Ami->z))[Jmi->offs_pd+i])

#define _dx(i) (C@mi->z))[mi->offs_dx+i])

#define _x(i) (C@mi->z))[mi->offs_x+i])

#define _u(i) ((*@mi->z))[jmi->offs_u+i])

#define _w(i) ((*@mi->z))[jmi->offs_w+i])

#define _t ((*@mi->z))[mi->offs_t])

#define _dx_p({,i) (Ami->z))[jmi->offs_dx_p + \
J*gmi->n_dx + jmi->n_x + jmi->n_u + jmi->n_w)+ i])

#define _x p(,1) (Cgmi->z))[jmi->offs_x p + \
J*@mi->n_dx + jmi->n_x + jmi->n_u + jmi->n_w) + i])

#define _u_p{,i) (A@mi->z))[jmi->offs_u_p + \
J*gmi->n_dx + jmi->n_x + jmi->n_u + jmi->n_w) + i])

#define _w_p(.,i1) (CCgmi->z))[jmi->offs_w p + \
J*gmi->n_dx + jmi->n_x + jmi->n_u + jmi->n_w) + i])

static int model_dae F(mi_t* jmi, jmi_ad_var_vec_p res) {

(*res)[0] = jmi_divide(q_ - ( jmi_divide(Chl_ - ( _h2_ ), R1 ,"Divide by zero: ( hl1 - ( h2)
)/ (R1 )™ ), Cl1_,"Divide by zero: (g - (C(Chl-(Ch2))7 (R1))) /7 (C1)™) -
(_der_h1);
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(*res)[1] = jmi_divide(mi_divide(_hl_ - ( _h2_ ), R1_,"Divide by zero: ( hl1 - (h2) ) 7 (
R1 )™ - ( jmi_divide(_h2_, R2_,"Divide by zero: ( h2 ) /7 ( R2 )"™) ), _C2_,"Divide by zero: ( ( hl
- (h2))Y /7 (RL)Y -C(Ch2) /7 (R2) D))/ (C2)") - (der_h2);

return O;

static int model_init_FO@mi_t* jmi, jmi_ad_var_vec_p res) {

(*res)[0] = jmi_divide(_ q_ - ( jmi_divide(_hl_ - ( _h2_ ), R1_,"Divide by zero: ( hi - ( h2)
)/ CR1L )™ ), C1 ,"Divide by zero: (q-(C(ht-(Ch2))7/7 (RL))) /7 (C1)") -
(_der_h1);

Cres)[1] = jmi_divide(jmi_divide(_hl_ - ( _h2_ ), R1 ,"Divide by zero: (hl - (h2) ) 7 (
R1 )™) - ( jmi_divide(_h2_,_R2_,"Divide by zero: ( h2 ) /7 ( R2 )"™) ),_C2_,"Divide by zero: ( ( hl
-(h2) )7 (R1 ) - ((h2)Y 7 (R2)Y)))D) 7 (C2)Y) - (der_h2);

);

(res)[2] = _init_ - (_hl
*res)[3] = 2_init_ - (_h2);
return O;
3
static int model_init_F1(@mi_t* jmi, jmi_ad_var_vec_p res) {
(*res)[0] = 0.0 - _q_;
(*res)[1] = 0.0 - _der_h1_;
(*res)[2] = 0.0 - _der_h2
return O;
3
int jmi_new(mi_t** jmi) {
Jmi_init(@mi, N_ci, N_cd, N_pi, N_pd, N_dx,
N_X, N_u, N_w, N_t_p);

// Initialize the DAE interface
Jmi_dae_init(*jmi, *model_dae F, N_eq_F, NULL, O, NULL, NULL,
*model_dae_R, N_eq_R, NULL, O, NULL, NULL);

// Initialize the Init interface
Jmi_init_init(jmi, *model_init_FO, N_eq_FO, NULL,

0, NULL, NULL,

*model_init_F1, N_eq_F1, NULL,

0, NULL, NULL,

*model_init_Fp, N_eq Fp, NULL,

0, NULL, NULL,

*model_init_RO, N_eq_RO, NULL,

0, NULL, NULL);

return O;
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8.2. Modelica main libraries

1. Libraries for electric, electronic and magnetic components
a. Analog electric and electronic components
b. Digital electrical components
c. Electrical machines
d. Lumped magnetic networks
e. Controlled electrical machines:

2. Libraries for mechanical components
a. 1-dim. mechanical, translational systems
1-dim. mechanical, rotational systems
3-dim. mechanical systems
Vehicle dynamics:
Power trains and planetary gearboxes:
Flexible beams and FE-based flexible bodies (with stress stiffening):
Flexible bodies from Nastran, Genesis, and Abaqus:

Sm 0 a0 T

VDLMotorsports library:

i. Beltdrive systems:
3. Libraries for fluid components

a. Fluid media
1-dim. thermo-fluid flow
Simple thermo-fluid pipe flow
Thermal power plants:
Air conditioning systems:
Hydraulics Library:
Pneumatics Library:

Sm 0 a0 T

CombiPlant Library:

Thermal comfort feeling in air conditioning systems:

4. Libraries for control systems
a. Input/output blocks
b. Controller blocks with two levels of detail (continuous and discrete)
c. Hierarchical state diagrams
d. Safe hierarchical state diagrams with action blocks

5. Libraries for functions
a. Functions operating on vectors and matrices
b. functions operating on strings, streams, files
c. Functions for analysis and synthesis of continuous and discrete linear systems
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