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Abstract

We consider a scalar 1-D linear hyperbolic partial differential equation (PDE) for which infinite-dimensional backstepping
controllers have previsously been designed based on boundary actuation and sensing, and incorporate first order actuator and
sensor dynamics into the design. Two observer designs are proposed, and combined with a state-feedback into output-feedback
control laws which render the origin of the closed-loop system exponentially stable with arbitrary convergence rate. The theory
is verified in simulations.
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1 Introduction

Linear hyperbolic partial differential equations (PDEs)
can be used to describe flow and transport phenomena.
Typical examples are transmission lines [9], road traf-
fic [1], heat exchangers [19], oil wells [15], multiphase
flow [10], [12], time-delays [14] and predator-pray sys-
tems [18], to mention a few. These distributed parame-
ter systems therefore give rise to important estimation
and control problems.

The backstepping method for distributed systems is a
relatively new method for controller and observer design
for systems of partial differential equations. The method
was originally developed for parabolic PDEs in [16], with
the first result for hyperbolic PDEs published a few years
later in [14]. In [14], a scalar 1–D linear PDE is stabi-
lized using this technique, and convergence is achieved
in a finite time that corresponds to the propagation time
through the domain. Extensions to more complicated
systems of hyperbolic PDEs were derived a few years
later in [17], for two coupled linear hyperbolic PDEs, and
more general systems in [11] and [13]. Backstepping has
also found its use for adaptive systems containing linear
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hyperbolic PDEs in for instance [7], [8], [2], [3], [5]. When
using backstepping for PDE controller synthesis, an in-
vertible Volterra integral transformation and a control
law are introduced, that map the system of interest into
a ”target” system designed with some desirable stabil-
ity properties. The invertibility of the transform allows
for stating equivalent stability properties of the two sys-
tems.

All aforementioned papers consider actuation signals
that act directly at one or several of the PDEs bound-
aries, and hence neglect any actuator dynamics. Also,
all previously derived observers assume sensor signals
to be linear combinations of PDE boundary values,
ignoring any dynamics in the sensors. Sometimes, how-
ever, actuator and sensors may be slow compared to the
dominating dynamics of the plant, in which case their
dynamics cannot be ignored in the control design. Com-
mon examples are slow control chokes in flow pipelines
and noise filtering embedded in sensing devices.

In the present paper, we show how to incorporate actua-
tor dynamics in the control design for a scalar 1–D linear
hyperbolic PDE derived in [14]. In addition, we present
two different observer designs that use a measurement
with first-order dynamics. The observers are combined
with the state-feedback into output-feedback stabilizing
controllers. The finite-time convergence properties of the
controller in [14] is, due to the actuator and sensor dy-
namics, lost. However, the derived controllers achieve
exponential stability with arbitrary convergence rate.
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2 Problem statement

We consider a scalar system similar to the one investi-
gated in [14], but with actuator and sensor dynamics

vt(x, t)− µvx(x, t) = θ(x)v(0, t) (1a)

v(1, t) = η(t) (1b)

η̇(t) + ρ1η(t) = U(t) (1c)

ẏ(t) + ρ2y(t) = v(0, t) (1d)

v(x, 0) = v0(x) (1e)

η(0) = η0 (1f)

y(0) = y0 (1g)

defined for x ∈ [0, 1], t ≥ 0, where

θ ∈ C1([0, 1]), µ ∈ R, ρ1, ρ2 ∈ R. (2)

We assume the initial conditions v0, y0, η0 satisfy

v0 ∈ L2([0, 1]) y0, η0 ∈ R η0 = v(1, t). (3)

The goal is to design a stabilizing controller for system
(1), using the measurement y(t) only.

3 Controller design

3.1 Previous result: The backstepping controller

We will start by stating a state-feedback stabilizing con-
troller for the case η(t) = U(t). Such a controller was
originally derived (for µ = 1) in [14], but we include it
here for later reference. Consider the control law

Ub(t) =

∫ 1

0

k(1− ξ)v(ξ, t)dξ (4)

where k is the solution to the Volterra integral equation

µk(x) =

∫ x

0

k(x− ξ)θ(ξ)dξ − θ(x). (5)

Lemma 1 Consider system (1), and suppose U(t) is de-
signed so that

η(t) = Ub(t) (6)

holds, where Ub is defined in (4). Then v ≡ 0 for t ≥ d1,
where

d1 = µ−1. (7)

PROOF. Consider the backstepping transformation

α(x, t) = T [v(t)](x)

= v(x, t)−
∫ x

0

k(x− ξ)v(ξ, t)dξ (8)

where k is the solution to (4). We will show that the
transformation (8) and the control law (6) map the α-
subsystem in (1) into

αt(x, t)− µαx(x, t) = 0 (9a)

α(1, t) = 0 (9b)

α(x, 0) = α0(x) (9c)

for some α0 ∈ L2([0, 1]).

From differentiating (8) with respect to time, inserting
the dynamics (1a) and integration by parts, we find

vt(x, t) = αt(x, t) + µk(0)v(x, t)

−
[
µk(x)−

∫ x

0

k(x− ξ)θ(ξ)dξ
]
v(0, t)

+ µ

∫ x

0

k′(x− ξ)v(ξ, t)dξ. (10)

Similarly, differentiating (8) with respect to space gives

vx(x, t) = αx(x, t) + k(0)v(x, t)

+

∫ x

0

k′(x− ξ)v(ξ, t)dξ (11)

Inserting (10) and (11) into the dynamics (1a) yields

vt(x, t)− µvx(x, t)− θ(x)v(0, t) = αt(x, t)− µαx(x, t)

−
[
µk(x)−

∫ x

0

k(x− ξ)θ(ξ)dξ

+ θ(x)

]
v(0, t) = 0. (12)

Using (5) gives the dynamics (9a). Inserting x = 1 into
(8) and using (1b) gives

α(1, t) = η(t)−
∫ 1

0

k(1− ξ)v(ξ, t)dξ, (13)

from which (6) gives (9b). From inserting t = 0 into (8),
it is clear that the initial condition α0 is given from v0 as

α0(x) = T [v0](x). (14)

System (9) is identically zero for t ≥ d1 and from the
invertibility of the backstepping transform (8), the result
follows.

3.2 State-feedback controller

It is clear that we should seek to design U(t) so that the
relationship (6) is achieved. Towards that end, we define
the state feedback

Usf (t) = (k(0)µ− γ1)η(t) + θ(1)v(0, t)
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+

∫ 1

0

(k′(1− ξ)µ+ (ρ1 + γ1)k(1− ξ)) v(ξ, t)dξ (15)

for some design gain γ1 > −ρ1.

Theorem 2 Consider system (1), and let the control law
be taken as

U(t) = Usf (t) (16)

where Usf (t) is defined in (15). Then, there exist con-
stants c1, c2 > 0 so that

|η(t)| ≤ c1(|η0|+ ||v0||)e−(ρ1+γ1)t (17)

and for t ≥ d1, where d1 is defined in (7)

|v(x, t)| ≤ c2 (|η0|+ ||v0||) e−(ρ1+γ1)t, ∀x ∈ [0, 1]. (18)

PROOF. From differentiating Ub defined in (4) with
respect to time, inserting the dynamics (1a) and inte-
grating by parts, we find

U̇b(t) = k(0)µv(1, t)− k(1)µv(0, t)

+

∫ 1

0

k′(1− ξ)µv(ξ, t)dξ

+

∫ 1

0

k(1− ξ)θ(ξ)dξv(0, t)

= k(0)µη(t) + θ(1)v(0, t)

+

∫ 1

0

k′(1− ξ)µv(ξ, t)dξ (19)

where we in the last equality used the definition of k in
(5). From (19) and (4), it is observed that the control
law Usf (t) defined in (15) can be written as

Usf (t) = −γ1η(t) + U̇b(t) + (ρ1 + γ1)Ub(t). (20)

Inserting (20) into (1), we obtain

vt(x, t)− µvx(x, t) = θ(x)v(0, t) (21a)

v(1, t) = Ub(t) + p(t) (21b)

ṗ(t) + (ρ1 + γ1)p(t) = 0 (21c)

v(x, 0) = v0(x) (21d)

p(0) = p0 (21e)

where we have defined

p(t) = η(t)− Ub(t) (22)

with initial condition

p0 = v(1, 0)− Ub(0)

= η(0)−
∫ 1

0

k(1− ξ)v0(ξ)dξ. (23)

The backstepping transformation (8) then straight for-
wardly produces the target system

αt(x, t)− µαx(x, t) = 0 (24a)

α(1, t) = p(t) (24b)

ṗ(t) + (ρ1 + γ1)p(t) = 0 (24c)

α(x, 0) = α0(x) (24d)

p(0) = p0. (24e)

Solving (24c) and (24e) explicitly for p, we find

p(t) = p0e
−(ρ1+γ1)t. (25)

Now, we have using the triangle and Cauchy-Schwarz’
inequalities

|p0| =
∣∣∣∣η(0)−

∫ 1

0

k(1− ξ)v0(ξ)dξ

∣∣∣∣
≤ |η0|+

∣∣∣∣∫ 1

0

k(1− ξ)v0(ξ)dξ

∣∣∣∣
≤ |η0|+ ||k||||v0||, (26)

which gives the bound (17). Moreover, from (24a) and
(24b), we have for t ≥ d1(1− x)

α(x, t) = α(1, t− d1(1− x)) = p(t− d1(1− x))

= p0e
(ρ1+γ1)d1e−(ρ1+γ1)d1xe−(ρ1+γ1)t. (27)

which gives

|α(x, t)| ≤ (|η0|+ ||k||||v0||)e(ρ1+γ1)d1e−(ρ1+γ1)t (28)

valid for all t ≥ d1. The invertibility of the transform (8)
gives the bound (18).

4 Observer designs

The control law of Theorem 2 requires η(t) to be mea-
sured, as well as distributed measurements of v(x, t). We
will here present two different observer designs for es-
timating the states of system 1. The first one has the
simplest dynamics, but estimates a state u(x, t) which
is a filtered transformation of the state v(x, t). An ac-
tual estimate of v(x, t) can be generated from inversely
performing the filtered transformation. The second ob-
server estimates the state v(x, t) directly, but involves a
slightly more complicated dynamics and analysis.

4.1 Design 1: Observer using a filtered transformation

4.1.1 Filtered transformation

Consider the system

ut(x, t)− µux(x, t) = θ(x)u(0, t) (29a)

u(1, t) = cTσ(t) (29b)
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σ̇(t) = Aσ(t) + bU(t) (29c)

y(t) = u(0, t) (29d)

u(x, 0) = u0(x) (29e)

σ(0) = σ0 (29f)

where u(x, t) is defined for x ∈ [0, 1], t ≥ 0, and is ν(t)
defined for t ≥ 0, and

σ(t) =

[
η(t)

ν(t)

]
, σ0 =

[
η0

ν0

]
(30a)

A =

[
−ρ1 0

1 −ρ2

]
b =

[
1

0

]
, c =

[
0

1

]
, (30b)

with

u0(x) = y0e
−d1ρ2x

+ d1

∫ x

0

e−d1ρ2(x−s) (v0(s)− θ(s)y0) ds (31a)

ν0 = u0(1). (31b)

We note that the pair (A, cT ) is observable.

Lemma 3 System u in (29) is related to (1) through the
filtered transformation

ut(x, t) + ρ2u(x, t) = v(x, t). (32)

PROOF. From differentiating (29a) with respect to
time, we obtain

utt(x, t)− µutx(x, t) = θ(x)ut(0, t). (33)

Moreover, from (32), we have

vt(x, t) = utt(x, t) + ρ2ut(x, t) (34)

and

vx(x, t) = utx(x, t) + ρ2ux(x, t). (35)

Using (34), (35) and (32) we form

vt(x, t)− µvx(x, t)− θ(x)v(0, t)

= utt(x, t)− µutx(x, t)− θ(x)ut(0, t)

+ ρ2 [ut(x, t)− µux(x, t)− θ(x)u(0, t)] , (36)

from which (29a) and (33) give (1a).

From inserting (29a) into (32), multiplying by d1 = µ−1

and evaluating at t = 0, we find the following ODE for
the initial condition u0

u′0(x) + d1ρ2u0(x) = d1v0(x)− d1θ(x)u0(0), (37)

which, by requiring u0(0) = y0, can straightforwardly be
solved to yield (31a). Similarly, inserting x = 1 into (32)

ut(1, t) + ρ2u(1, t) = v(1, t) = η(t), (38)

which can be written as (29b)–(29c) with initial condi-
tion ν(0) = ν0 given as (31b).

Inserting x = 0 into (32) gives

ut(0, t) + ρ2u(0, t) = v(0, t) (39)

which is the same dynamics as for y in (1d), provided
u(0, 0) = y0, which from (31a) is the case.

4.1.2 Observer equations

Consider now the observer for u

ût(x, t)− µûx(x, t) = θ(x)y(t)

+ cT ed1Axκ(y(t)− û(0, t)) (40a)

û(1, t) = cT σ̂(t) (40b)

˙̂σ(t) = Aσ̂(t) + bU(t)

+ ed1Aκ(y(t)− û(0, t)) (40c)

û(x, 0) = û0(x) (40d)

σ̂(0) = σ̂0 (40e)

where

σ̂(t) =
[
η̂(t) ν̂(t)

]T
(41)

for some design vector κ ∈ R2 chosen so that the ma-
trix A − κcT is Hurwitz, and some initial conditions
û0 ∈ L2([0, 1]), σ̂ ∈ R2. Consider also an estimate v̂ of
v generated from û as

v̂(x, t) = ût(x, t) + ρ2û(x, t). (42)

Theorem 4 Consider system (29) and the estimate (42)
generated using the observer (40). Then, for t ≥ d1, the
following inequalities hold

|σ̃(t)| ≤ |σ̃0|e−δ1t (43a)

|ṽ(x, t)| ≤ c3|σ̃0|e−δ1t (43b)

for some constant c3 > 0, where ṽ = v−v̂, σ̃0 =
[
η̃0 ν̃0

]T
and δ1 = −max Re(eig(A− κcT )).

PROOF. The observer errors ũ = u − û and σ̃ = σ −
σ̂ =

[
η̃ ν̃
]T

can straightforwardly, using (1) and (40),

be shown to satisfy the dynamics

ũt(x, t)− µũx(x, t) = −cT ed1Axκũ(0, t) (44a)
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ũ(1, t) = cT σ̃(t) (44b)

˙̃σ(t) = Aσ̃(t)− ed1Aκũ(0, t) (44c)

ũ(x, 0) = ũ0(x) (44d)

σ̃(0) = σ̃0. (44e)

The error dynamics (44) is a special case of those con-
sidered in [14], for which the stability proof proceeds by
showing that the transformation

w(x, t) = ũ(x, t)− cT e−d1A(1−x)σ̃(t) (45)

maps (44) into the target system

wt(x, t)− µwx(x, t) = 0 (46a)

w(1, t) = 0 (46b)

˙̃σ(t) = Fσ̃(t)− ed1Aκw(0, t) (46c)

w̃(x, 0) = w̃0(x) (46d)

σ̃(0) = σ̃0 (46e)

where

F = A− ed1AκcT e−d1A (47)

has the same eigenvalues asA−κcT , and is thus Hurwitz.
From (45), we find

ũt(x, t) = wt(x, t) + cT e−d1A(1−x)Aσ̃(t)

− cT ed1Axκũ(0, t) (48)

and

ũx(x, t) = wx(x, t) + cT d1e
−d1A(1−x)Aσ̃(t). (49)

Inserting (48) and (49) into (44a), we find

ũt(x, t)− µũx(x, t) + cT ed1Axκũ(0, t)

= wt(x, t)− µwx(x, t) = 0 (50)

which gives the dynamics (46a). Evaluating (45) at x = 1
and inserting the boundary condition (44b) give

w(1, t) = ũ(1, t)− cT σ̃(t) = cT σ̃(t)− cT σ̃(t) = 0 (51)

verifying the boundary condition (46b). Inserting (45)
into (44c), we obtain

˙̃σ(t) = (A− ed1AκcT e−d1A)σ̃(t)− ed1Aκw(0, t) (52)

which using the definition of F in (47), is the dynamics
(46c). The fact that F is Hurwitz can be seen from using
a similarity transformation ed1A on A.

From the target system (46), it is evident that w ≡ 0 for
t ≥ d1, and hence (46c) reduces to

˙̃σ(t) = Fσ̃(t) (53)

which is an exponentially stable system with bound
(43a). Moreover, from (45) with w ≡ 0 for t ≥ d1, we get

ũ(x, t) = cT e−d1A(1−x)σ̃(t) (54)

and

ũt(x, t) = cT e−d1A(1−x)Fσ̃(t) (55)

which together with the relationship

ṽ(x, t) = ũt(x, t) + ρ2ũ(x, t) (56)

that immediately follows from (32) and (42), gives the
bound (43b).

4.2 Design 2: Direct estimation of v

Consider the observer

v̂t(x, t)− µv̂x(x, t) = θ(x)v̂(0, t)

+ L(x)(y(t)− ŷ(t)) (57a)

v̂(1, t) = η̂(t)− θ(1)(y(t)− ŷ(t)) (57b)

˙̂η(t) + ρ1η̂(t) = U(t) + γ2(y(t)− ŷ(t)) (57c)

˙̂y(t) + ρ2ŷ(t) = v̂(0, t) + γ3(y(t)− ŷ(t)) (57d)

v̂(x, 0) = v̂0(x) (57e)

η̂(0) = η̂0 (57f)

ŷ(0) = ŷ0 (57g)

for some initial conditions v̂0 ∈ L2([0, 1]), η̂0, ŷ0 ∈ R,
and where

L(x) = µθ′(x) + (ρ2 + γ3)θ(x) + γ2e
d1ρ1(1−x). (58)

Let γ2, γ3 be chosen so that the matrix

G = B −

[
γ2

γ3

]
cT , (59)

is Hurwitz,

B =

[
−ρ1 0

ed1ρ1 −ρ2 + θ(0)

]
(60)

and c defined in (30b). This is always is possible since
the pair (B, cT ) is observable.

Theorem 5 Consider system (1) and the observer (57).
Then, for t ≥ d1, the following inequalities hold

|η̃(t)| ≤ (|η̃0|+ |ỹ0|)e−δ2t (61a)

|ỹ(t)| ≤ (|η̃0|+ |ỹ0|)e−δ2t (61b)

|ṽ(x, t)| ≤ c4(|η̃0|+ |ỹ0|)e−δ2t (61c)

where δ2 = −max Re(eig(G)).
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PROOF. The observer error ṽ = v − v̂, η̃ = η − η̂,
ỹ = y − ŷ can straightforwardly, using (1) and (57) be
shown to satisfy the dynamics

ṽt(x, t)− µṽx(x, t) = θ(x)ṽ(0, t)− L(x)ỹ(t) (62a)

ṽ(1, t) = η̃(t) + θ(1)ỹ(t) (62b)

˙̃η(t) + ρ1η̃(t) = −γ2ỹ(t) (62c)

˙̃y(t) + ρ2ỹ(t) = ṽ(0, t)− γ3ỹ(t) (62d)

ṽ(x, 0) = ṽ0(x) (62e)

η̃(0) = η̃0 (62f)

ỹ(0) = ỹ0 (62g)

where ṽ0 = v0 − v̂0, η̃0 = η0 − η̂0, ỹ0 = y0 − ŷ0.

We will show that the transformation

z(x, t) = ṽ(x, t)− ed1ρ1(1−x)η̃(t)− θ(x)ỹ(t) (63)

maps the error dynamics (62) into the target system

zt(x, t)− µzx(x, t) = 0 (64a)

z(1, t) = 0 (64b)

˙̃
φ(t) = Gφ̃(t) + hz(0, t) (64c)

z(x, 0) = z0(x) (64d)

φ̃(0) = φ̃0 (64e)

where

φ̃(t) =

[
η̃(t)

ỹ(t)

]
, φ̃0 =

[
η̃0

ỹ0

]
, h =

[
0

1

]
. (65)

From differentiating (63) with respect to time and space,
respectively, and inserting the dynamics (62b)–(62c), we
find

ṽt(x, t) = zt(x, t)− θ(x)ṽ(0, t)− ed1ρ1(1−x)ρ1η̃(t)

− (ρ2 + γ3 + ed1ρ1(1−x)γ2)θ(x)ỹ(t) (66)

and

ṽx(x, t) = zx(x, t)− d1ρ1ed1ρ1(1−x)η̃(t) + θ′(x)ỹ(t).
(67)

Substituting (66) and (67) into (62a) yields

ṽt(x, t)− µṽx(x, t)− θ(x)ṽ(0, t) + L(x)ỹ(t)

= zt(x, t)− µzx(x, t)

+

(
L(x)− µθ′(x)− (ρ2 + γ3)θ(x)

− γ2ed1ρ1(1−x)
)
ỹ(t) = 0. (68)

Inserting (58) gives the dynamics (64a). Evaluating (63)
at x = 1 and inserting the boundary condition (62b)
immediately gives (64b). Inserting (63) into (62c)–(62d),

we find

˙̃η(t) = −ρ1η̃(t)− γ2ỹ(t) (69a)

˙̃y(t) = ed1ρ1 η̃(t) + (−ρ2 + θ(0)− γ3)ỹ(t)

+ z(0, t) (69b)

which can be written as (64c).

From the target system (64), we have z ≡ 0 for t ≥ d1,
after which (64c) reduces to

˙̃
φ(t) = Gφ̃(t) (70)

which is an exponentially stable system with bounds
(61a)–(61b). Moreover, from (63) with z ≡ 0 for t ≥ d1,
we have

ṽ(x, t) = ed1ρ1(1−x)η̃(t) + θ(x)ỹ(t) (71)

for t ≥ d1, from which the bound (61c) immediately
follows.

Remark 6 The transient performance of the observer
of Theorem 5 can be slightly improved by choosing the
initial condition ŷ0 equal to y0, which should be possible
since y is measured.

5 Output feedback controllers

Consider the controller U(t) = Uof (t), where

Uof (t) = (k(0)µ− γ1)η̂(t) + θ(1)v̂(0, t)

+

∫ 1

0

(
k′(1− ξ)µ

+ (ρ1 + γ1)k(1− ξ)
)
v̂(ξ, t)dξ (72)

with v̂ and η̂ being estimates of v and η.

5.1 Output feedback controller 1

Theorem 7 Consider system (1) and let the controller
be taken as

U(t) = Uof (t) (73)

where Uof (t) is defined in (72), with v̂ and η̂ generated
using the observer of Theorem 4. Then, there exists a
constant c5 > 0 so that

|v(x, t)| ≤ c5(|η0|+ ||k||||v0||+ |σ̃0|)e−a1t (74)

for t ≥ 2d1, where

a1 = min{ρ1 + γ1, δ1}. (75)
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PROOF. Inserting the control law (73) into (1), and
adding and subtracting terms, we obtain

vt(x, t)− µvx(x, t) = θ(x)v(0, t) (76a)

v(1, t) = p(t) + Ub(t) (76b)

ṗ(t) + (ρ1 + γ1)p(t) = ε(t) (76c)

v(x, 0) = v0(x) (76d)

p(0) = p0 (76e)

where p is defined in (22) with p0 given in (23), and ε is
given as

ε(t) = −(k(0)µ− γ1)η̃(t)− θ(1)ṽ(0, t)

−
∫ 1

0

(
k′(1− ξ)µ

+ (ρ1 + γ1)k(1− ξ)
)
ṽ(ξ, t)dξ (77)

which from Theorem 4 converges exponentially to zero
for t ≥ d1, and hence there exists a constant c7 > 0 so
that

|ε(t)| ≤ c7|σ̃0|e−δ1t (78)

for t ≥ d1. The backstepping transformation (8) gives

αt(x, t)− µαx(x, t) = 0 (79a)

α(1, t) = p(t) (79b)

ṗ(t) + (ρ1 + γ1)p(t) = ε(t) (79c)

α(x, 0) = α0(x) (79d)

p(0) = p0. (79e)

The dynamics of p constitute an exponentially stable
system, driven by an exponentially stable signal ε, and
hence there exists some constant c8 > 0 such that

|p(t)| ≤ c8(|η0|+ ||k||||v0||+ |σ̃0|)e−a1t (80)

for t ≥ d1, where a1 is defined in (75), and where we
have used (26). Following the same steps as for the state-
feedback case, we obtain the bound (74) for some con-
stant c5 > 0, valid for t ≥ 2d2.

5.2 Output feedback controller 2

Theorem 8 Consider system (1) and let the controller
be taken as

U(t) = Uof (t) (81)

where Uof (t) is defined in (72), with v̂ and η̂ generated
using the observer of Theorem 5. Then, there exists a
constant c6 > 0 so that

|v(x, t)| ≤ c6(|η0|+ ||k||||v0||+ |η̃0|+ |ỹ0|)e−a2t (82)

Fig. 1. System state v in the open-loop case.

for t ≥ 2d1, where

a2 = min{ρ1 + γ1, δ2}. (83)

PROOF. The proof is similar to the proof of Theorem
7 and therefore omitted.

6 Simulations

System (1), the state-feedback controller of Theorem
2, the observers of Theorems 4 and 5, and the output-
feedback controllers of Theorems 7 and 8 were imple-
mented in MATLAB, using the system parameters

µ = 2, θ = 2 + 3 sin(x), ρ1 = 5, ρ2 = 1. (84)

The design parameters γ1, κ, γ2 and γ3 were chosen so
that

γ1 = 1 eig(F ) = eig(G) = {−4,−2}. (85)

The system’s initial conditions were set to

v0(x) = x, y0 = 0 η0 = 1 (86)

while all initial conditions for the observers were set to
zero. System (1) with parameters (84) is unstable in the
open-loop (U ≡ 0) case, as seen from the open-loop
simulation in Figure 1.

In the closed loop cases, the system states are seen from
Figures 2–4 to be bounded and converge to zero. The
convergence time is faster for the state-feedback solu-
tion than for the output-feedback solutions, as seen from
the state norms displayed in Figure 5. This is due to the
convergence time of the observers, the estimation errors
for which can be seen in Figure 6. It is observed that the
convergence times of the observers are approximately
the same, but that the initial transient of the observer
of Theorem 4 is better than for the observer of Theorem
5. This difference in initial transient performance is re-
duced if the eigenvalues of F and G are moved further

7



Fig. 2. System state v in the state-feedback case.

Fig. 3. System state v when using the output-feedback con-
troller of Theorem 7.

Fig. 4. System state v when using the output-feedback con-
troller of Theorem 8.

to the left. This is illustrated in Figure 7, where the ob-
servers of Theorems 4 and 5 are implemented with gains
chosen so that

γ1 = 1 eig(F ) = eig(G) = {−20,−10}. (87)
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Fig. 5. System states’ norm ||v|| in the state-feedback (solid
red) and output-feedback cases of Theorems 7 (dashed-dot-
ted blue) and 8 (dashed green).
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Fig. 6. Observer estimation error norm ||v − v̂|| when using
the controllers of Theorems 7 (dashed-dotted blue) and 8
(dashed green).
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Fig. 7. Observer estimation error norm ||v − v̂|| when using
the controllers of Theorems 7 (dashed-dotted blue) and 8
(dashed green) with faster convergence times.

7 Conclusions and further work

We have derived a controller for output-feedback stabi-
lization of a 1–D linear hyperbolic PDE with first-order
actuator and sensor dynamics. The convergence rate of
the closed-loop is governed by the rate at which the
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ODE-part of the observer converges, which can be arbi-
trarily chosed by design gains.

A possible extension is to solve the problem for more
general actuator and sensor dynamics, that is, dynamics
of any order. Also, systems of coupled PDEs can be con-
sidered. The extension to a more general 1-D linear hy-
perbolic PDE, with actuator and sensor dynamics, say
for instance

ut(x, t)− µ(x)ux(x, t) = f(x)u(x, t) + g(x)u(0, t)

+

∫ x

0

h(x, ξ)u(ξ, t)dξ (88a)

u(1, t) = k1η(t) (88b)

η̇(t) + ρ1η(t) = U(t) (88c)

ẏ(t) + ρ2y(t) = k2u(0, t) (88d)

u(x, 0) = u0(x, t) (88e)

y(0) = y0 (88f)

for some functions µ, f, g, h and nonzero constants k1, k2,
with u0 ∈ L2([0, 1]), y0 ∈ R, is covered by the above so-
lution. This is due to the fact that system (88) is equiv-
alent to system (1) by a series of invertible transforma-
tions and a scaling of the actuation signal, as was shown
in [6].

The problem of incorporating pure actuator or sensor
delays is solved for the non-adaptive case in [14], and the
adaptive case in [4]. This problem is quite simple, since
the delays can be modeled by simple linear hyperbolic
PDEs, and incorporated by extending or remapping the
PDE domain.
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