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Abstract

This paper proposes an innovative framework for fast
image registration of UAV surveillance video frames by
fusing the data from a GPS receiver high-frequency IMU
sensor (Piccolo autopilot) and a feature-domain registra-
tion method through a non-linear filter. The high-frequency
imprecise data from the Piccolo autopilot is refined by
the low-frequency precise data from our feature-domain
based random M least squares (RMLS) method. The
projective transformation model is chosen to achieve high
precision. The state and measurement models are non-
linear to approximate the real-world imaging dynamics.
A periodic hybrid particle filter (PHPF), composed of
extended Kalman filter (EKF) and unscented Kalman
filter (UKF), is proposed to minimize running time while
maintaining accuracy. Both the efficiency and effectiveness
of the proposed algorithm will be evaluated through our
experiments.

Keywords: Registration, Sensor Fusion, Periodic Hy-
brid Particle Filter

1. Introduction

In modern surveillance systems, a real-time analysis re-

quirement has become more and more important in recent

years. Image registration is the basis for advanced image

post-processing (e.g,mosaicking, de-noising, tracking and

super-resolution). Primitive registration methods such as

the block-matching [1] and frequency-domain registration

[2] suffer from drawbacks such as operation time or model

limitations. The feature-based random M Least squares [3]

(RMLS) Method can significantly improve the precision of

the registration; however, due to the computation required

for locating and matching feature points, the RMLS still

has room for significant time-efficiency improvement. In

our experiments, it usually costs about 0.8-1.5 seconds, de-

pending on the precision requirement, to register one frame

by RMLS. Thus, running-time becomes a bottleneck for

registration without extra knowledge. Fortunately, UAV

autopilots are typically equipped with GPS and IMU sen-

sors, which can provide flight information such as position

and angle speed. In our experiments, the Piccolo autopilot

from Cloud Cap Tech. [4], which has a kalman GPS/IMU

built-in filter, is adopted to obtain the flight data of our cus-

tomized UAV. Then the flight data can be utilized to calcu-

late the transformation matrix between two frames (Which

we named direct piccolo registration (DPR)). Since the in-

put data of piccolo is from the GPS/IMU, which is im-

precise because of the loss of GPS signal and inertial os-

cillation, the DPR is treated as measurements/observations

in our algorithm. Comparatively, the RMLS registration

method is much more accurate, and is chosen as the initial

state for each loop.

The extended Kalman particle filter(EPF) [5] and un-

scented Kalman particle filter (UPF) [5] are popular candi-

dates to to solve the non-Gaussian/non-linear estimations.

Generally, the EPF can provide equal precision as the UPF

when dealing with linear-like, non-linear system, which re-

quires less running-time. While dealing with the typical

non-linear system, the UPF’s accuracy dominates the EPF.

Synthesizing the benefits of the two filters, we propose a ro-

bust and fast particle filtering method with a hybrid Kalman

filter to update the particles. Meanwhile, incorporated with

the periodic correction by RMLS, we can avoid the aug-

mentation of estimation bias. To achieve both accuracy and

time-efficiency, we choose 10 frames in one group, apply-

ing the RMLS method with sufficient iterations on the first

two frames as initialized state, and recursively recover the

transformation matrix from the direct Piccolo registration

(DPR).

This paper is organized as follows. Section 2 will intro-

duce DPR the RMLS methods, while Section 3 will cover

the state/measurement model with our periodic hybrid par-

ticle filter (PHPF). Section 4 describes the experimental re-

sults and conclusions.

2. Frame Registration

The Piccolo autopilot is sophisticated equipment that

provides flight data for the aircraft. These data can be used

to calculate the parameters of the transformation matrix.

The random M least squares feature-based registration [3]

method adopts the scale invariant feature transformation [6]
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to process an iterative non-linear least squares optimization.

For higher precision, we adopt the homography transfor-

mation (1) in our algorithm. Section 3.1 explains the direct

piccolo transformation (DPT), and Section 3.2 describes the

RMLS method.
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2.1 Direct Piccolo Registration

The Piccolo autopilot is mounted on the UAV airframe

to provide flight information, such as the latitude, longitude

,altitude ,roll, pitch and yaw. According the multi-view ge-

ometry model, we can project the Piccolo parameters to the

homography matrix according to the following equations:

Figure 1. Dynamics of Aircraft
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Here, the H1, LO1, LA1, θ1,γ1 and α1 are the altitude,

longitute, latitute, yaw, pitch and roll of Frame 1, respec-

tively. Meanwhile, the same symbols apply to Frame 2.

2.2 Feature-Based Registration by Ran-
dom M Least Sqaures

The scale-invariant feature transformation [6] approach

is used to detect the local feature points, which are invari-

ant to rotation, noise, illumination, and scaling. Once the

feature points are found, they are merged into a k-d [7] tree.

The four nearest neighbors are found with a computational

complexity of O(NlogN). Next, a standard RANSAC [8]

routine is chosen to reject the feature points outside the

overlapping region. The homography transformation model

is then adopted as in equation (1) and (1) can be rewritten as

(2) for least-square solution.The algorithm of feature-based

registration is summarized in Table [1].

Table 1. Procedure of Random M-Least
Square Algorithm for Image Registration

1. Using all of the match pairs in the match set, generate

Atotal according to the matrix on the lefthand side of equation

(3) and Btotal according to the vector on the righthand side of

equation (3) and then assign the accepted error according to

the desired precision, ε.

2. Randomly Choose M (approximately one

quarter of the total number of matched pairs, based on

our testing results) points from the match set, generate the

matrix AM and vector BM , calculate the transformation

matrix using the least squares fit and the total

tolerance :

h = LeastSquareSolve(AM , BM )
tol = ||Atotalh − Btotal||
3. Use the parameters derived by Step 2 to fit all of the

elements in the match set and find the total fitted

number less than the accepted error:

Totalnum = Count(Σ(Atotalh − Btotal)2 < ε2)
4. Repeat the above steps a suitable number of times,

updating the transformation matrix when the following

condition is satisfied:

||tolnew|| < tol and Totalnumnew > Totalnum

Equation (1) can be rewritten as
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From this representation, we see that if we have more than

four matching pairs, this problem is overdetermined, and we

use the algorithm described in Table 1 to derive the required

transformation matrix from coarse to fine.

3 Periodic Hybrid Particle Filter

3.1 State and Measurement Model

Although the Piccolo autopilot has a built-in INS/GPS

filter, it has unavoidable measurement error caused by two

factors, the inertial oscillation and the loss of GPS signal.

As a robust motion estimation method, RMLS registration

can provide more accurate transformation parameters. The

drawback of the RMLS method is relatively expensive com-

putation. In the proposed framework, to utilize the benefits

of high accuracy by RMLS and high speed of DPR, the state

vector X , measurement vector Z, processing noise N , and

measurement noise V are defined as follows:
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(
Xk = f(Xk−1) + g(Nk−1); Zk = l(Xk) + Vk;

)
(4)

From a Bayesian perspective, the estimation problem

is to calculate the Xk at time k from observations Z1:k.

Thus, to reconstruct the pdf p(Xk|Z1:k) is important. Since

Z0 can be replaced by the RMLS registration X0, the

p(X0|Z0) = p(X0). Therefore the p(Xk|Z1:K) could be

obtained recursively by equations (5), (6), and (7).

p(Xk|Z1:k) =
p(Zk|Xk)p(Xk|Z1:k−1)

p(Zk|Z1:k−1)
(5)

p(Xk|Z1:k−1) =
∫

p(XK |XK−1)p(Xk−1|Z1:k−1)dXk−1

(6)

p(Zk|Z1:k−1) =
∫

p(Zk|Xk)p(Xk|Z1:k−1)dXk (7)

3.2 Filtering Method

Particle Filtering (PF) [9] is the sequential Monte Carlo

method for simulation-based estimation, which replaces the

integrals of equations (6) and (7) with sums of random sam-

ples (particles). Therefore, the posterior distribution can be

constructed from the following equation:

p̂(X0:t|Z1:t) =
N∑

i=1

w̃
(i)
t δ

X
(i)
0:t

(dX0:t) (8)

The normalized importance weights w̃
(i)
t can be calculated

from: ⎛
⎜⎝
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t )p(X̂
(i)
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(j)
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⎞
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q(X̂(i)
t |X(i)

0:t−1, Z1:t) denotes the arbitrary probability dis-

tribution from the generated samples. After the importance

weights are drawn, N random samples (particles) X
(i)
0:t are

selected by multiplying the samples X̂
(i)
0:t with the high im-

portance weights w̃
(i)
t . Then, the re-sampled particles are

applied to equation (6) to obtain the posterior distribution.

The update of the particles is particularly important in

the PF method. Since our state and measurement model are

assumed non-linear, the extended Kalman filter(EKF)[5]

and unscented Kalman filtering (UKF) [5] methods are the

reasonable candidates. Basically, the EKF is the first or-

der series Taylor approximation of nonlinear equations and

UKF is a non-linear recursive minimum mean-square-error

(MMSE) estimator in itself . By dealing with the linear-

like, nonlinear system, the EKF can provide equal precision

as UKF with much less run-time. While there is no signif-

icant change of pitch and yaw, the state and measurement

model could be treated as linear-like. Thus, a hybrid particle

updating method is proposed to guarantee precision while

improve the timing efficiency. Meanwhile, utilizing the re-

correction by RMLS, we propose our algorithm called peri-

odic hybrid particle filter (PHPF), which is summarized in

the Algorithm 1. The threshold for switching between the

UKF and EKF is 0.0007, according to our experiments.

Algorithm 1 Periodic Hybrid Particle Filter

for t = 1 : T : ∞ do
Register the first two frames by RMLS and apply the

direct Piccolo registration to every frame

if Δγ < Thresh1 and Δα < Thresh1 then
for i = 1, ...., N, do

Initialization : Draw the particles x
(i)
0 from the

p(x0)
end for
for t = 1 : T do

for i = 1, ..., N do
1. Update the particles with EKF

2. Evaluate and normalize the importance

weights by equation (9)

end for
Select the N particles and obtain the posterior dis-

tribution by equation (8)

end for
else

for i = 1, ...., N, do
Initialization : Draw the particles x

(i)
0 from the

p(x0)
end for
for t = 1 : T do

for i = 1, ..., N do
1. Update the particles with UKF

2. Evaluate and normalize the importance

weights by equation (9)

end for
Select the N particles and obtain the posterior dis-

tribution by equation (8)

end for
end if

end for

4. Experimental Results

The PHPF algorithm was applied to our real UAV data,

and experimental results were generated to verify its effi-

ciency and effectiveness. As a comparison, 40 frames are

registered utilizing the RMLS method, direct Piccolo regis-

tration (DPR), unscented particle filter (UPF), periodic un-

scented particle filter (PUPF), and the periodic hybrid par-

ticle filter(PHPF), respectively. Figures 2 (c)-(g) show the

absolute differential image in the overlapped region after

we register Frame 31 to Frame 30 by these methods. From

Figure 2, we can see the DPR and the UPF will produce ap-

parent registration error, while the RMLS, PUPF and PHPF

generate similar outputs. Figure 3 provides the comparison

of quantitative precision, which is based on the mean of ab-

solute error (MAE). It is reasonable the RMLS can provide
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higher precision, as it is adopted as the State Correction Fac-

tor (SCF) in our algorithm. The PUPF and PHPF methods

provide the similar precision, which elaborates for linear-

like, non-linear system, the EKF does perform a accurate

approximation. The Time-efficiency is elaborated in table

2, which shows if there is linear-like transformation exist-

ing in the system, the PHPF does improve time-efficiency.

And the time-efficiency improvement is increased with the

linearity of the system.

(a) Frame 1 (b) Frame 2

(c) RMLS Registration (d) DP Registration

(e) UPF Registration

(f) PUPF Registration (g) PHPF Registration

Figure 2. Precision Comparison

Table 2. Time-efficiency of Registration (Unit:
seconds/ten frames)

RMLS PUPF PHPF UPF PD

9.126 5.339 4.043 4.478 0.5

8.714 5.008 3.746 4.213 0.5

7.368 3.747 1.978 3.085 0.5

7.795 4.627 2.321 3.953 0.5
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