
August 2009
Tor Arne Johansen, ITK
John Bernhard Rekstad, UIO

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Model Predictive Control of mixed solar
and electric heating

Erik Holth

Problem Description
A model of a heat system consisting of a heat storage, a solar collector and an application shall be
modeled. The heat storage shall supply the application with heat and hot water. The water in the
heat storage shall be heated by either a heating element or by flowing through a solar collector
exposed by solar radiation. Weather dynamics such as fluctuating solar radiation and outside
temperature shall be incorporated in the model. A controller shall be developed to maintain a
reference temperature in the application, with more efficient use of heating element power than
todays existing solutions.

Assignment given: 25. February 2009
Supervisor: Tor Arne Johansen, ITK

Contents

1 Summary 7

2 Introduction 9
2.1 Motivation . 9
2.2 Existing technology . 10
2.3 Weather Forecast . 13
2.4 Problem formulation . 13

3 Solar Energy 15
3.1 Optic theory . 15
3.2 Fixed surface radiation . 18
3.3 Approximation of radiation 21
3.4 Solar Collector . 23
3.5 Implementation . 27

4 Weather forecast 29
4.1 Matlab and XML . 29
4.2 Testing scenario . 30

5 Heat system 33
5.1 Modeling . 33
5.2 Deduction of equations . 35
5.3 Deduction of parameter values 38
5.4 Control specification . 40
5.5 Simulating uncontrolled system 41

6 Linearization 47
6.1 Linearizing the nonlinear heat system model 47
6.2 Applying Nominal Values . 51

7 Model predictive control 55
7.1 Introduction . 55
7.2 Model Predictive Control toolbox 58

7.2.1 Introduction . 58

1

2 CONTENTS

7.2.2 Prediction model . 58
7.2.3 State estimation model 59
7.2.4 State observer . 60
7.2.5 Cost function . 60
7.2.6 Horizons . 61

8 Heat system with mpc control 63
8.1 Overview . 63
8.2 Implementing linearized model 63
8.3 Simulation . 64

8.3.1 Setup . 64
8.3.2 Simulating with normal weight on input u1 67
8.3.3 Simulating with low weight on input u1 72
8.3.4 Energy consumption in the simulated scenarios 76

9 Discussion and Conclusion 77
9.1 Discussion . 77
9.2 Conclusion . 79

Appendix 81

A m files 83
A.1 main.m . 83
A.2 getWeatherData.m . 86
A.3 getRadiationPerM2.m . 88
A.4 getSolarTempOut.m . 90
A.5 mpcInit.m . 91

B Simulink diagrams 93
B.1 Heat system . 93

Bibliography 98

List of Figures

2.1 (a) Solar collector system supplied by gas, oil or pellet oven,
(b) solar collector system supplied by electricity 11

2.2 Hydraulic block connecting central heating and solar heating
circuits . 11

2.3 Apricus heating solution . 12
2.4 Solelec integral direct-gain solar heater 13

3.1 Angels and indices in Snell’s law 15
3.2 Polarized light vectors . 16
3.3 Solar radiation towards a fixed surface 18
3.4 Declination angle . 19
3.5 Global daily radiation . 20
3.6 Solar Collector from Aventa 25
3.7 Solar Collector Efficiency . 26
3.8 Solar collector functionality in embedded Matlab block 27

4.1 Temperature and cloudiness at our testing scenario starting
at 12 o’clock . 31

4.2 Radiation on the fixed surface with neglected cloudiness in
Longyearbyen starting at 12 o’clock 32

4.3 Radiation on the fixed surface with cloudiness in Longyear-
byen starting at 12 o’clock . 32

5.1 Heat system . 33
5.2 Needed power . 38
5.3 Heat storage temperature x4 with energy from heating ele-

ment u1 only . 41
5.4 Response of radiator and application temperature 43
5.5 Outside temperature v4, radiator temperature x3 and appli-

cation temperature x4 . 45

7.1 Strategy of mpc example showing prediction horizon P=9(a)
and control horizon M=4(b) 56

7.2 Plant and mpc controller . 57

3

4 LIST OF FIGURES

7.3 Basic structure of mpc . 57
7.4 Prediction Model . 58
7.5 State Estimation Model . 59

8.1 Temperature and radiation at testing scenario 64
8.2 Generic flowrate due to hot water tapping 65
8.3 States with normal weight on u1 69
8.4 Inputs with normal weight on u1 70
8.5 Temperature out of solar collector with normal weight on u1 . 71
8.6 States with low weight on u1 73
8.7 Inputs with low weight on u1 74
8.8 Temperature out of solar collector with low weight on u1 . . . 75

B.1 Heat System Overview . 93
B.2 Heat system . 94
B.3 Heat temperature x1 . 95
B.4 Heat storage mass x2 . 95
B.5 Radiator temperature x3 . 96
B.6 Application temperature x4 96
B.7 Heat model with mpc control (Notice that a filter with gain 1

and time constant 0.5 seconds is added on the outport on the
solar collector to avoid problems with algebraic loops when
simulating.) . 97

List of Tables

3.1 Approximated coefficients in 3.15 for Norway 21
3.2 Parameters of solar collector 23
3.3 Typical parameter range for η0 24
3.4 Typical parameter range for K1 and K2 25
3.5 Parameter values for Aventa solar collector 25

4.1 Geographical Coordinates of testing site 30

5.1 System variables and constants 37
5.2 System variable units . 38
5.3 System parameter values . 40
5.4 Variable limits under operation 40
5.5 Preset nominal states and disturbances 44
5.6 Equilibrium points based on preset values 44

6.1 Approximated Nominal Values 52
6.2 Calculated Nominal Values 52

8.1 mpc controller horizons . 65
8.2 Normal weights . 67
8.3 Normal constraints . 67
8.4 Energy consumption in kWh 76

5

6 LIST OF TABLES

Chapter 1

Summary

In this report we will model a heat system consisting of a heat storage tank
and an application. The heat storage tank is supplied by a heating element
and heated water from a solar collector. The main objective of the heat
system is to mainatian a reference temperature in the application (a house).
Weather forecasts will be used as weather data affecting the heat system.
We will assume that the weather forecasts and the actual weather will be
the same. The heat sytem will consist of simplified nonlinear differential
equations and be controlled by a model predictive controller (mpc). The
mpc controller will use a linearized model of the nonlinear process. The
average predicted outside temperature from the weather forecasts will be
used as nominal value for the same temperature in the linearized model
in the mpc controller. The mpc controller will measure some disturbances
to make more efficient control. The most imortant disturbance will be the
temperature of the water coming out of the solar collector, that will flow
into the heat storage. By measuring this temperature, the mpc controller
can apply it to its predictor and make sure that the power of the heating
element in the heat storage is reduced when solar collector heated water is
available. This is to make sure that the heat storage has enough capacity
to receive the heated water from the solar collector, while still maintaining
a reasonable temperature in the heat storage. Simulation with different
weighting of the inputs in the mpc controller will show that heating element
power consumption is influenced by these weights.

7

8

Chapter 2

Introduction

2.1 Motivation

Humanity is facing an energy problem. Frequently we come up with solu-
tions that are supposed to be more energy efficient, and that improve the
efficiency of technology further and further. In the past years, a focus re-
garding this issue has been in terms of pollution. How can we satisfy our
energy needs with less pollution of the environment? In addition to this,
researches have spent time searching for alternative energy sources and also
alternative methods of generating the same energy sources. While some of
the resulting methods are sustainable, most of them have a different nega-
tive effect on the environment. One example is the production of biofuel.
Generating energy from biofuel emits less carbon dioxide, but does not nec-
essarily mean that less carbon dioxide is emitted into the atmosphere. The
reason for this is that the source for making biofuel, usually different kinds
of plants, has a large environmently effect. Cutting down large areas of
plants to produce biofuel has a large effect on the state of the earth, since
plants play an important role in the greenhouse effect. Moreover, plants are
nutrition and housing for many types of of animals and organisms.

We want to find methods that make our energy consumption more ef-
ficient. Methods that minimizes the amount of energy that is wasted into
unwanted forms and locations.

Solar Power is an energy source that researchers spend time on. Some
of the leading researchers in the field are situated in countries like Norway.
There are also many products in the marketplace. Most of the solar col-
lectors that heats up water works on a "take when available" basis. This
means that a heat storage tank filled with water is heated up by circulating
its water through a solar collector when solar radiation is present. This can
supply applications with free heat. One often end up with two separate heat
storage tanks. One regular supplied by electric power and one supplied by
solar power. Since solar power is not always available, having an electric

9

powered backup is usually necessary. The problem is that such solutions re-
quire a lot of installation, and are often expensive. The bigger capacity one
wants on the heat storage tank of the solar collector, the the more expen-
sive and complicated installation is. With smaller tanks one often faces the
problem that the energy capacity is to small to fill up the potential amount
of heated water that the solar collector can deliver. Another problem is
that heat storage tanks which is only supplied by solar power has a fluc-
tuating temperature. When temperature is too low, unfavourable growth
of bacterias can occur, which precludes the use of the heated water in hot
water consumptions such as showering etc. The solutions that combine solar
collector with another type of energy supply to heat up one common heat
storage tank also face the capacity problem. Having used electric power to
fill up the capacity of the heat storage when solar radiation is available to
heat up water, is not cost effective.

2.2 Existing technology
Aventa [7] is a Norwegian company that does research in this field and de-
liver solar collectors. They also deliver a control system called mc:floor that
controls heated water that circulates through pipes in floors. These pipes
can be connected to their solar collectors. The control principle is based
on measuring inside and outside temperature, and to use feedback control
to compensate for those temperature changes. This control unit can be
equipped with a communication module that can send energy data. The
German Company Vaillant Group [4] is situated in many European coun-
tries, among others in Norway. Among all their energy research technologies
is the solar heat technology. They can deliver energy saving solutions in
many aspects that can adapt to the energy solution your application may
already have. Figure 2.1 shows two of their configurations.

10

Figure 2.1: (a) Solar collector system supplied by gas, oil or pellet oven, (b)
solar collector system supplied by electricity

Vaillant Group [4] can deliver all these systems with their network ser-
vice system vrnetDialog, which is a diagnostic tool that gives an alert if any
unusual behavior may appear. Their control system auroStep ensures that
the solar collector is emptied for water when not operating, to prevent frost
damage and overheating. If your application is supplied by central heating,
the circuit from this and the circuit from the solar collector has to be con-
nected. Vaillant Group delivers a hydraulic block that controls the energy
supply from these circuits. A picture of such a hydraulic block is shown in
figure 2.2.

Figure 2.2: Hydraulic block connecting central heating and solar heating
circuits

11

Simpler solutions are also available, like the solar collector of the global
company Apricus shown on figure 2.3

Figure 2.3: Apricus heating solution

The water in figure 2.3 is circulated through the copper header, while
the heat is transfered from the evacuated heating tubes exposed by the
radiation. This solution requires less installation and maintenance than the
ones from Aventa [7] and Vaillant Group [4] but is less efficient.

The Luxembourg company Solelec [10] delivers a different kind of so-
lar collector solution. Their solar collectors are installed outside dwellings,
typically on the roof or nearby. Nearly all models are the direct-gain type,
consisting of flat panels in which water circulates. Other types may use dish
or trough mirrors to concentrate sunlight on a collector tube filled with wa-
ter, brine or other heat transfer fluids. A storage vessel/container is placed
indoors or out. Circulation is caused by natural convection or by a small
electric pump. At night, or when insufficient sunlight is present, circulation
through the panel can be stopped by closing a valve and/or stopping the
circulating pump, to keep hot water in the storage tank from cooling. De-
pending on the local climate, freeze protection and prevention of overheating
will be incorporated in their design, installation, and operation. A picture
of one of their direct-gain solar heater panels with integral storage tank is
shown in figure 2.4.

12

Figure 2.4: Solelec integral direct-gain solar heater

2.3 Weather Forecast

Estimating the future weather is a task that requires much calculation power.
Supercomputers are used to do this and in Norway, The Institute of Mete-
orology is able to deliver predictions of fog, pressure, wind direction, wind
speed, cloudiness, low clouds, medium clouds, high clouds, humidity and
temperature in Norway. These data are updated twice a day, and gives the
mentioned forecast every hour and minimum 48 hours in to the future. For
every update all the data are updated based on new information available.
This means that data at a given time inside the data range an hour before
and an hour after update can be different. This also means that right after
update 12 hours are added and at least 60 hours of future detailed data
will be available. You can get forecasts further into the future but it’s not
detailed, which means that it’s less reliable and it’s not available for every
hour. Based on these forecasts, parameters in a model of an energy system,
for instance a home can be set.

2.4 Problem formulation

What if one could use weather predictions as a parameter in a control sys-
tem in an application such as a home with a solar collector. Since most
applications have limited capacity of storing energy, one regular problem is
that the unit that stores energy is already full when solar energy is available.
As we will see in chapter 5, we can make a model of such a system. Since
these systems most likely are nonlinear, we can make a linearization at cer-
tain nominal values to make control a lot easier. This means that we will
get better estimations of how the energy in the application will flow than

13

we would get if we just used linear models that was not adaptive. This in
combination with using feed forward control will make an improvement on
todays existing solutions mentioned in section 2.2. Matlab with Simulink
will be used through this whole demonstration on how we can use model
predictive control (mpc) to improve efficiency of a heat system supplied by
heated water from a solar collector. Predictions used will both be from a
predictor in a mpc controller and based on measured disturbances, which
will be used in a feed forward control.

14

Chapter 3

Solar Energy

3.1 Optic theory
The following optic theory is collected from [3]. By Snell’s law, we have
that:

n1sinθ1 = n2sinθ2 (3.1)

where θ1 and θ2 are the entrance and exit angles and n1 and n2 are refractive
indices shown in figure 3.1. P and Q in figure 3.1 are the light vectors and
v1 and v2 are the different velocities, since light changes velocity from one
medium to another.

Figure 3.1: Angels and indices in Snell’s law

15

When the solar light passes through the atmosphere, it will be partially
reflected and partially transmitted, depending of the angle and polariza-
tion of the light. We call the reflection coefficient R and the transmission
coefficient T. The sum of R and T equals one.

We will get different characteristics depending on how the light is po-
larized. Figure 3.2 shows the amplitude coefficients of reflection and trans-
mission denoted by the vectors r⊥,t⊥,r||,t|| which is directed towards an
interface.

Figure 3.2: Polarized light vectors

If the light is polarized such that the electric field of the light is perpen-
dicular to the plane of incidence in figure 3.2, we will only have a r⊥ and
t⊥. If the light is polarized such that the electric field of the light is in the
plane of incidence in figure 3.2, we will only have a r|| and t||. These vectors
give amplitude, but we are interested in the the reflection and transmission
coefficients denoted by R⊥,T⊥,R||,T||. In some formalisms they satisfy:

R = r2 (3.2)

T =
(
n2 cos θ2
n1 cos θ1

)
t2 (3.3)

Augustin-Jean Fresnel has deduced the following equation for reflection
and transmission coefficients of light

R⊥ =
[
sin(θ2 − θ1)
sin(θ2 + θ1)

]2
(3.4)

R|| =
[
tan(θ2 − θ1)
tan(θ2 + θ1)

]2
(3.5)

where θ1 and θ2 are the same as in figure 3.1.

16

Using Snell’s law given by (3.1) on (3.4) and (3.5) we get:

R⊥ =
[n1cosθ1 − n2

√
1− (n1

n2
sinθ1)2

n1cosθ1 + n2
√

1− (n1
n2
sinθ1)2

]2
(3.6)

R|| =
[n1

√
1− (n1

n2
sinθ1)2 − n2cosθ1

n1
√

1− (n1
n2
sinθ1)2 + n2cosθ1

]2
(3.7)

Since the solar light is unpolarized, i.e an equal mix of the two coeffi-
cients, the reflection coefficient is given by [3]:

R =
R⊥ +R||

2 (3.8)

Since R is the amount of light reflected, the transmitted amount T is:

T = 1−R (3.9)

We can see from (3.9) that the sum of reflected and transmitted light
equals 1. Since neither T nor R can be negative, this means that:

1 ≥ R ≥ 0 (3.10)
1 ≥ T ≥ 0 (3.11)

17

3.2 Fixed surface radiation
We have to be able to calculate how much radiation effect that radiates
towards a solar collector, which in our case is a fixed plane surface mounted
on the roof of the application (a house). To be able to do this calculation,
equations gathered from [8] has been used. Figure 3.3 shows directed solar
radiation towards a plane, which in our case is the solar collector.

Figure 3.3: Solar radiation towards a fixed surface

Figure 3.3 shows the majority of the angles needed for this calculation.
The axis on the figure is oriented towards true north (N on figure 3.3) The
only angle we are interested in is θ, which is angle between the solar beam
and the perpendicular vector of the fixed plane. This angle depends on
φ, ω and β on figure 3.3. The angle φ is the azimuth angle, that is the
angle between the orientation of the fixed plane and south (S). The angle
ω is the time angle, that is the angle between the horizontal projection of
the sun beam and south (S). We will have ω = 0 at the longitude that
passes through London at 12 o’clock GMT(Greenwich Mean Time). Then
the longitude degree of any location on earth can be used to determine the
angle ω at that particular location. The earth is divided into longitudes
with 15◦ between them and it’s exactly one hour (sun time) time difference
between each. This means that ω will increase 15◦ per hour. The angle β
is simply the tilt angle of the fixed plane. Very often the solar collector is
mounted on the roof, fixed to the roof surface as shown in figure 2.1. In that
case the tilt of the roof and of the solar collector β will be the same.

Since the earth orbits around itself and the sun, these angles will change
with respect to time. The angle θ will also be dependent on the declination
angle δ. This angle will vary through the year because the earth is tilted in
terms on its travel path around the sun. This is shown on figure 3.4.

18

Figure 3.4: Declination angle

Because of this tilt, the declination angle δ will vary depending on where
the earth is located on its path around the sun. The equation of δ is given
by [8]:

δ = 23.45◦sin
[
360◦ (284 + n)

365

]
(3.12)

where n is the daynumber of the year. Leap years are neglected.
The latitude angle ϕ is fixed in time at a fixed location. The latitude is

0 at equator, -90◦ at the south pole and 90◦ at the north pole.
The total radiation flux towards the surface is I0Acos(θ) where I0 is the

directed radiation, A is the surface area and the last term is cosine of the
described angle θ. The term cos(θ) is deducted in [8] to be:

cos(θ) = sin(δ)sin(ϕ)cos(β)− sin(δ)cos(ϕ)sin(β)cos(φ)
+ cos(δ)cos(ϕ)cos(β)cos(ω) + cos(δ)sin(ϕ)sin(β)cos(φ)cos(ω)
+ cos(δ)sin(β)sin(φ)sin(ω)

(3.13)

where the different angels in 3.13 were explained above and in figure 3.3

19

We will get a characterization on the radiation shown on figure 3.5.

Figure 3.5: Global daily radiation

Figure 3.5 also shows the added effect if the solar collector followed the
sun to set the term cos(θ) equal to one at all time. The radiation from the
sun still has to travel through a thicker layer of atmosphere when the sun
is not right above the surface. This is the reason why the radiation still
decays before and after 12.00 on figure 3.5. Figure 3.5 also shows the effect
of diffuse radiation, which we will neglect in this case.

20

3.3 Approximation of radiation

We want to approximate the radiation weakening through the atmosphere.
The solar radiation hits the atmosphere with an angle called θ1. θ1 is the
same angle as in figure 3.1, assuming the interface is the atmosphere. We
will assume θ1 to be the same as equation (3.13), but with with tilt angle
β set to zero. It’s reasonable to assume that the atmosphere has no tilting.
The equation for θ1 then simplifies to be:

cos(θ1) = sin(δ)sin(ϕ)cos(β) + cos(δ)cos(ϕ)cos(β)cos(ω) (3.14)

In reality, n1 and n2 in 3.1 are difficult to estimate because the atmo-
sphere have many different layers. Aventa [7] have deducted an approxima-
tive formula for the radiation transmitted fraction T according to the theory
mentioned above and measured data. The formula is:

T = 1− a√
cos(θ1)︸ ︷︷ ︸

reflection

−
(

1− a√
cos(θ1)

)(
b

cos(θ1) + c

)
︸ ︷︷ ︸

absorption

(3.15)

The reflection term of (3.15) represents the reflection of the radiation,
which increases when θ1 in (3.14) increases. The absorption term in (3.15)
represents the absorption, which only acts on the non reflected part of the
radiation. When θ1 increases, the radiation will also have a longer distance
to travel, which increases the absorption in the atmosphere. Refraction in
the atmosphere is small and will be neglected in this case. The coefficients
a, b and c in (3.15) are approximated by measurements by Aventa [7] in the
Norwegian city Oslo. We will use these constants in the case study. The
coefficients a, b and c are shown in table 3.1.

constant value
a 0.15
b 0.14
c 0.1

Table 3.1: Approximated coefficients in 3.15 for Norway

Clouds on the sky play an important role on how much radiation that
reach the surface of the earth. This means that we can not neglect that
factor. Measurements done by Aventa [7] says that on a typical summer
day in Norway, about 960 W

m2 of maximum radiation flux passes through the
atmosphere and reaches a directed surface, assuming no clouds on the sky.
If the sky is 100 % covered by clouds, measurements say that about 20 W

m2

21

reaches the same surface. Based on these measurements, a linear subtraction
will be used to incorporate the radiation that reaches the surface, that is 9.4

W
m2∗%cloudiness . %cloudiness is the cloudiness percentage that will be available
from weather forecasts, which we will come back to in chapter 4. The solar
constant Isol is the directed irradiation flux received by a surface from the
sun outside the atmosphere. According to Aventa [7] Isol = 1360 W

m2 . We
can then calculate the resulting Irradiation flux IA where A is the surface
area. The equation is approximated to be:

I

A
= (Isol ∗ T − (9.4 ∗%cloudiness))︸ ︷︷ ︸

I0

cos(θ) (3.16)

where I0 in (3.16) is the directed radiation flux mentioned in section
3.2, T is from equation (3.15), cos(θ) is from equation (3.13) and %cloudiness
is the cloudiness percentage mentioned. In reality, the exact radiation that
passes through the atmosphere and clouds will be much more complicated to
calculate. The %cloudiness that is gathered from weather forecasts discussed
in chapter 4, gives a percentage of how big part of the sky is covered by
clouds. The thickness and location of the clouds will have a big impact on the
amount of solar radiation that hits a surface. In many situations, clouds can
increase the irradiation flux. This can happen when the clouds don’t block
the directed radiation beams towards the fixed surface, but reflects beams
with other directions. One will then get a positive contribution by the clouds
and not negative as in equation (3.16). The apparent positive contribution
by the clouds is the biggest among the denoted diffuse radiations shown
in figure 3.5. Reflection from surrounding topography also contributes to
diffuse radiation.

22

3.4 Solar Collector

The operational equations of the solar collector based on average tempera-
ture are gathered from [8]. The equations are:

PG = cw
dm

dt
A(Tout − Tin) (3.17)

Tw = Tin + Tout
2 (3.18)

η = PG
IA

(3.19)

η = η0 −
K1
I

(Tw − T0)− K2
I

(Tw − T0)2 (3.20)

where the different letters are as explained in table 3.2.

letter explenation unit
PG power gain on flowing water W
cw heat capacity of water J

kg◦C
dm
dt flowrate of water per area kg

m2s
A area of collector m2

Tin water temperature in to collector ◦C
Tout water temperature out of collector (later called v1) ◦C
Tw average water temperature in collector ◦C
T0 outside temperature (later called v4) ◦C
η collector efficiency due to Irradiation unitless
η0,K1,K2 collector efficiency parameters unitless
I Irradiation to collector W

m2

Table 3.2: Parameters of solar collector

We call I irradiation since the solar collector receives radiation from the
sun. Equation (3.17)-(3.20) are based on average water temperature, and
don’t give the temperature of the water in terms of differential equations
or as a function of the location in the solar collector. The simplification
will be used when modeling the solar collector, but it has its limitations
as we have not deducted any differential equations for it. Optimizing the
amount of energy supplied to the water that runs through the collector at a
particular irradiation flux and outside temperature will not be possible with
the simplified modeling method used in equations (3.17)-(3.20).

Inserting (3.17) into (3.19) and (3.18) into (3.20) gives:

23

η =
cw
dm
dt (Tout − Tin)

I
(3.21)

η = η0 −
K1
2I (Tout + Tin − 2T0)− K2

4I (Tout + Tin − 2T0)2 (3.22)

Since we are interested in finding Tout, we insert (3.21) into (3.22) and
solve in terms of Tout and we get the second order equation:

BT 2
out + CTout +D = 0 (3.23)

where:

B = 1
4K2 (3.24)

C = cw
dm

dt
+ 1

2K1 + 1
2K2Tin −K2T0 (3.25)

D = (−cw
dm

dt
+ 1

2K1 + 1
4K2Tin − K2T0)Tin + (K2T0 − K1)T0 − Iη0

(3.26)

Because of the physical limits of the solar collector, η in (3.19) and (3.20)
is limited to:

η0 ≥ η ≥ 0 (3.27)

We can see from equation (3.20), that the variable η depends on the so-
lar collector parameters η0, K1 and K2. These parameters varies dependent
on the kind of solar collector chosen. You can get different types of collec-
tors with different quantity of cover glass, which affects these parameters.
Typical parameters for η0 is shown in table 3.3.

cover glass η0
without 0.95
single sheet 0.87 - 0.90
double sheet 0.75

Table 3.3: Typical parameter range for η0

Typical range of parameter K1 and K2 is shown in table 3.4.
Equation (3.19) and (3.20) shows that it’s desirable to have η as high

as possible, which means that we want the parameter η0 as high as possible

24

parameter range unit
K1 2 - 3 W

m2◦C
K2 0.02 - 0.04 W

m2◦C2

Table 3.4: Typical parameter range for K1 and K2

and the parameters K1 and K2 as low as possible. Unfortunately one will
face a trade off situation. Less cover sheets on the solar collector results in
a higher η0, which can be seen on table 3.3. With fewer cover glasses, the
parameters K1 and K2 will also be higher. The reason for this is that more
of the energy that is radiated on the solar collector will be emitted back to
its surroundings due to less isolation. More cover glasses results in a lower
η0, but also a reduction in K1 and K2. What choice one should take of these
trade off parameters, depends on what the solar collector shall be used for.
If one wish to operate with small temperature difference between desired
water temperature in the solar collector and its surroundings, a high η0 is
desirable (few or no cover glass). Then those temperatures will be reached
fast. If one wish higher temperatures in the water in the solar collector,
one should consider using a collector with one or several cover glasses, since
more cover glass results in less loss to the surroundings.

The parameters of the chosen solar collector in this task is received by
Aventa [7]. The parameters of this type of collector is given in table 3.5.

parameter value unit
η0 0.8 unitless
K1 3 W

m2◦C
K2 0.03 W

m2◦C2

Table 3.5: Parameter values for Aventa solar collector

A picture of the solar collector with the parameters in table 3.5 is shown
in figure 3.6.

Figure 3.6: Solar Collector from Aventa

Inserting the parameters given in table 3.5 and taking the inequality
mentioned in (3.27) into account, we get the feasible region with graph for
η shown in figure 3.7.

25

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(T
w

−T
0
)/I

η
η

0

Figure 3.7: Solar Collector Efficiency

26

3.5 Implementation
Radiation flux is implemented in getRadiationPerM2.m in the appendix A.3.
The radiation flux require some weather data (weather forecasts), which was
shown in equation (3.16). This will be explained in chapter 4. The radiation
flux and the irradiation flux will of course be the same, since the radiation
minus loss sent by the sun to a particular surface will be the same as the
irradiation received by the same surface. So when radiation and irradiation
are mentioned, it will be the same, but seen from either the sun or from
the solar collector. The radiation flux is implemented such that it can’t
be negative, that is set to zero whenever equation (3.16) gives a negative
number.

The implementation of the solar collector is coded in getSolarTempOut.m
in appendix A.4. The code implements the valves many solar collectors have.
These valves makes sure that Tout ≥ Tin and that Tout ≤ 100◦C to avoid
boiling. If all the water carrying components in the system operates at a
pressure over 1 atm (standard), boiling would have been prevented at 100
◦C, but it is neglected in this case. The code is implemented in an embedded
matlab function block, which looks like on figure 3.8.

Figure 3.8: Solar collector functionality in embedded Matlab block

27

28

Chapter 4

Weather forecast

4.1 Matlab and XML
The weather forecasts of the Norwegian Institute of Metrology (MET) was
mentioned in the introduction. To be able to gather weather forecasts from
MET, xml must be used. All the data is published through the application
programming interface (API) called locationforecast in MET’s weatherapi
[6]. All the forecasts available are published in xml format and the publishing
method was mentioned in section 2.3. As can be seen in the API, one inputs
the graphical coordinates i.e. latitude and longitude. An optional choice of
height above sea level can be included if wanted. This option will be set to
zero if not specified.

To be able to import the xml file to Matlab for navigation and extract-
ing of data, Matlab’s Document Object Model (DOM) has to be used. The
function xmlread in Matlab reads a URL or filename and returns a Docu-
ment Object Model node representing the parsed document [5]. One can
then navigate through the node and extract all the necessary information
one wants to use. The collection of data is done in the Matlab file main.m
in appendix A.1 and the Matlab function getWeatherData.m shown in ap-
pendix A.2. The collection method used is adaptive, and it collects all the
hours available of detailed weather forecasts.

29

4.2 Testing scenario
Temperature and cloudiness starting at 12 o’clock (12.00) July 1 2009 in
Longyearbyen in Svalbard was chosen as testing scenario. This location has
been choosen since the outside temperature is low and solar radiation is
present. Then heating will be required at all time, and contribution from
the solar collector will be a part of the heating of our later modeled system.
We will set our time t = 0 at the first data point, that is at 12 o’clock.
The coordinates of the location where found using Google Earth, and the
coordinates are shown in table 4.1.

coordinates value unit
latitude 78.11 degrees
longitude 15.34 degrees
altitude above sea 40 meters

Table 4.1: Geographical Coordinates of testing site

Temperature and radiation with cloudiness are the weather forecasts
that will be used as actual weather surroundings in our model. One could
choose more weather forecast types than those two to make the model more
realistic, but it would also make the model more complicated to model. The
coordinates and time of the location will be used to calculate the radiation at
any given time using equation (3.14) and (3.16). When the weather forecast
was collected from the testing scenario, it was available with 54 data points.
We will use the temperature data in the forecast to find nominal value of
the outside temperature when simulating a heat system with and without
control. The temperature forecast will also be used as a disturbance in form
of actual outside temperature in the system we will come back to in chapter
5. Cloudiness will be used to reduce the radiation as shown in equation
(3.16) at the same heat system. In figure 4.1 temperature and cloudiness
are shown at our testing scenario. Because of our number of data points,
the duration of the data will be from t = 0 to t = 53, where t is in hours.
The duration of our simulations will therefore be limited to t = 53, when
we apply these surroundings to our simulations. When we apply these data
ass surroundings to our heat system, Lagrangian interpolation will be used
between the hourly data points, since our simulation will be done in seconds.

30

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

2

4

6

8
temperature

time (hours)

° C

4 8 12 16 20 24 28 32 36 40 44 48 52
0

20

40

60

80

100
cloudiness

time (hours)

%

Figure 4.1: Temperature and cloudiness at our testing scenario starting at
12 o’clock

Our solar collector will be oriented with tilt angle β = 45◦ directed
towards the east (φ = 90◦) where β and φ are the angles from equation
3.13 in chapter 3. It is usually more desirable to to direct the solar collector
towards south (φ = 0◦), but the timing of the cloudiness resulted in more
radiation hitting the fixed surface with the chosen direction in our testing
scenario.

The radiation flux at this location is shown in figure 4.2 if we neglect the
cloudiness. Radiation on the same collector with cloudiness incorporated,
deducted from equation (3.16) in chapter 3, is shown in figure 4.3.

31

0 4 8 12 16 20 24 28 32 36 40 44 48 52

100

200

300

400

500

600

700

800
Radiation flux

time (hours)

W
/m

2

Figure 4.2: Radiation on the fixed surface with neglected cloudiness in
Longyearbyen starting at 12 o’clock

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

100

200

300

400

500

600

700

800
radiation flux

time (hours)

W
/m

2

Figure 4.3: Radiation on the fixed surface with cloudiness in Longyearbyen
starting at 12 o’clock

The radiation with cloudiness and the temperature at this testing sce-
nario will be used further, when we are going to expose a simplified system
to influence by weather surroundings.

32

Chapter 5

Heat system

5.1 Modeling

To demonstrate the control principle, we are going to model the dynamics
of a simplified heat system with a solar collector. The system will consist of
an application (for example a house), which will be heated by energy stored
in a heat storage tank. Figure 5.1 shows the heat system.

Figure 5.1: Heat system

The application is heated by water running through a radiator which
is placed in the application in the heat system. The heat system will be

33

simplified in terms that we use approximation in our modeling of the energy
flow. The system will be nonlinear, but will be linearized around nominal
values when we apply control to it in chapter 8.

We can see from figure 5.1 that we have a water source where we assume
unlimited water supply. This is general water supply in to the system from
the water supplier. We will assume that this water has a constant temper-
ature at 5◦C, which will be the lower bound of the temperature v1 in to
heat storage tank. The water then goes through the solar collector with
flowrate u2. The solar collector will either heat up the water, or maintain
the same temperature depending on the presence of solar radiation. If the
solar collector shall be able to heat up the water, it must be exposed to
radiation. The flowrate in and out of the solar collector is the same since
the solar collector has no excess storage. We assume that the solar collector
is full of water at all time for simplification. This flowrate together with
the radiation and the outside temperature v4 decides how much the solar
collector heats up the water flowing through it. The water then goes out of
the solar collector with temperature v1 and flowrate u2 and into the heat
storage. The heat storage is a tank consisting of water. The heat storage is
placed inside an isolated room with constant temperature v3. The heat stor-
age has a heating element which can be supplied by electric power u1. This
power can help heating up the water when the water temperature out of
the solar collector can’t reach up to the heat storage’s desired temperature.
The heat storage has temperature x1 and we assume that the temperature
is the same everywhere in the heat storage. (If needed this can be achieved
with stirring, but is a reasonable simplification). The heat storage has mass
x2 with specific heat capacity cw. The coefficient of surface conductance
between heat storage and heat storage room is g1. The water can then go
from the heat storage through either the radiator or to generic flow (general
hot water tapping). The radiator has temperature x3, contains water with
constant mass mr and specific heat capacity cw. The coefficient of surface
conductance between radiator and application is g2. The heat storage tank
can also be tapped by generic flowrate v2. When the water passes through
the radiator, it will heat up the application, which has a temperature x4,
a mass and specific heat capacity product mroom ∗ croom and a coefficient
of surface conductance between application and surroundings g3. After the
water has passed either the radiator or to the generic consumption, it ends
up in the drain.

34

5.2 Deduction of equations

It’s known from [1] that the accumulation of energy E per time is:

dE

dt
= mc

dx

dt
(5.1)

for a given mass m with specific heat capacity c and temperature x.
A simplified cooling law will be used in our system, which says that

the power removed from a given mass is proportional to the temperature
difference between the mass itself and its surroundings.

The overall system consists of states denoted by x, inputs denoted by u
and disturbances denoted by v, while the rest is considered constants. Ba-
sically we have five contributions to the energy stored in the heat storage.
These are power to heating element u1, water flow in with a given flowrate
u2 and temperature v1, water flow out with a given flowrate u3 and tem-
perature x1, generic flowrate in terms of hot water tapping with flowrate v2
and temperature x1 and power loss due to temperature difference of heat
storage and surroundings. We assume by simplification that there is no heat
capacity in the heating element, which means that all the power supplied to
the heating element goes directly into the water in the heat storage with no
delay. Since the heat capacity in the heating element is much faster than in
the water in the heat storage, this simplification is reasonable. The water
flow out of heat storage is divided in two parts. The first is flow to radiator
in application with flowrate u3 and temperature x1. The other is the generic
flowrate v2. The differential equations of the last two states, radiator tem-
perature x3 and application temperature x4 consists of fewer parts, since the
simplified model has fewer contributions. The radiator has constant water
mass mr, which means that it’s full of water at all time. Otherwise equation
(5.4) and equation (5.5) are deducted the same way as equation (5.2), that
is by adding all the contributions and the use of (5.1). The coefficient of sur-
face conductance g1, g2 and g3 will be proportional coefficient used with the
simplified cooling law. These coefficients would in reality not be constant,
but be variables depending on many factors. The assumed constant g1 will
for instance in reality be dependent on the temperature and mass in the heat
storage tank. The coefficient of surface conductance g2 will in reality depend
on the radiator temperature x3. The constant g3 would be dependent on
many factors, like the application temperature x4, the outside temperature
v4, complicated weather conditions (wind, humidity etc.) and topographi-
cal influences on the application. The heat capacity product mroom ∗ croom
would in reality depend on the actual temperature x4 in the application, and
many other factors. The temperature v3 in the room of the heat storage is
assumed to be constant, but would in reality depend on temperature of its
surroundings and the temperature in the heat storage itself. We have also

35

assumed that the heat storage room is separated from the application, such
that the heat storage only affects the application temperature x4 through
the radiator and not through the heat loss of the heat storage. The four
differential equations we end up with is listed in (5.2)-(5.5), while table 5.1
lists up all the variables and parameters in those equations. Table 5.2 lists
all the units for the states, inputs and disturbances, where ◦C is degree Cel-
sius, kg is kilograms, ls is liters per second and kW is kilowatt. We assume 1
l
s = 1 kgs , due to the density of water. This means that the system equations
will be:

dx1
dt

= 1
cwx2

(1000u1 + cwu2v1 − cwx1u3 − cwx1v2 − g1(x1 − v3))(5.2)

dx2
dt

= u2 − u3 − v2 (5.3)

dx3
dt

= 1
mrcw

((cw(x1 − x3)u3 − g2(x3 − x4)) (5.4)

dx4
dt

= 1
mroomcroom

(g2(x3 − x4)− g3(x4 − v4)) (5.5)

The factor 1000 in (5.2) is due to u1 being given in kW in order to achieve
favorable scaling of equation for numerical reasons, as explained in section
8.2.

Equation (5.2) is sensitive to a low heat storage mass x2. According to
the equation, the heat storage temperature x1 → ±∞ when x2 → 0 if we
assume that the expression (1000u1 + cwu2v1 − cwx1u3 − cwx1v2 − g1(x1 −
v3)) 6= 0. The temperature would in reality never go to infinity with zero
mass, but damage would probably occur if heating element power is applied
to an empty heat storage tank.

36

variables explanation
states:
x1 heat storage temperature
x2 heat storage mass
x3 radiator temperature
x4 application temperature
inputs:
u1 heating element power
u2 flowrate through solar collector and into heat storage
u3 flowrate out of heat storage and into radiator
disturbances:
v1 temperature in to heat storage tank (out of solar collector)
v2 generic flowrate due to hot water tapping
v3 constant surrounding temperature in heat storage room
v4 outside temperature

parameters explanation
mr mass of water in radiator
cw specific heat capacity of water
mroomcroom energy per temperature multiplicity in application
g1 coefficient of surface conductance between heat storage and heat storage room
g2 coefficient of surface conductance between radiator and application
g3 coefficient of surface conductance between application and surroundings (outside)

Table 5.1: System variables and constants

37

variable unit
x1

◦C

x2 kg
x3

◦C

x4
◦C

u1 kW
u2

l
s

u3
l
s

v1
◦C

v2
l
s

v3
◦C

v4
◦C

Table 5.2: System variable units

5.3 Deduction of parameter values

To deduct our constants in our application, we have to decide its dimensions.
The application case used will be consisting of a 100m2 house with standard
roof height and an average proportion of walls and windows. The solar
collector has an area of 30 m2 and will be placed on the roof. The solar
collector will be oriented towards east (φ = 90◦) with tilt angle β = 45◦.
The angles φ and β were explained in chapter 3 and shown in figure 3.3.
This is the same orientation as we had collected weather forecasts from
in chapter 4. We will start by deducting the power requirement for this
example. Measurements done by Aventa [7] shows that a simplified house
requires 45 W

m2 to maintain a normal indoor temperature with an outside
temperature at −20◦C. A linear simplification of power required to maintain
a given inside reference temperature Tref is shown in figure 5.2.

Figure 5.2: Needed power

38

By measurements [7] it’s also known that regular human activity in such
a home contribute with approximately 5◦C. We assume this contribution
in our modeling of the system. This means that whatever temperature the
heating system gives to our application, we will get an extra temperature
contribution of 5◦C for free due to this human activity. This contribution
will be implemented as a bias in the application temperature model. This
means that the actual room temperature x4 will be:

Troom = Tref + Tfree (5.6)

If we want a reference temperature of x4 at 20◦C, Tref in figure 5.2 will be
15◦C. The coefficient of surface conductance g3 in our example will then be
the gradient of the linear line shown in figure 5.2. Since our application is a
100 m2 house we get:

g3 = −dP
dT

= 4500W
Tref + 20◦C ≈ 130W◦C (5.7)

The negative sign before dPdT is because we need g3 to be positive since it’s a
proportional constant of loss and we subtract it in (5.5).

The coefficient of surface conductance g1 will vary according to the water
level or mass in the heat tank. Our simplification sets g1 to a constant of
100 W
m2 . The choice of value is verified by Aventa [7].
To deduct the coefficient of surface conductance for the radiator g2 a

little trial and error has been done. We want this coefficient of surface
conductance to be sufficiently larger than g1, but small enough to give a
reasonable time constant to differential equation (5.5). This has therefore
been set to 500 W

m2 . Such a radiator gives in average 12 W
m2◦C [9]. By examine

the dimensions of such a radiator, it will contain approximately 50 kg of
water, with a total area of 40m2. The mass and heat capacity of a house is
rather complicated to calculate. This is because of the walls and isolation,
which carries most of this factor. The mass and heat capacity of the air
in the house is neglectable. The product mroomcroom has therefore been
deducted from measurements by Aventa [7]. They have given a mean of
measurements to 5kWh◦C in a 100m2 house where h is hour, which is the same
as 1.8 ∗ 107 J

◦C . Parameter values are listed in table 5.3.

39

parameter value unit
mr 50 kg
cw 4184 J

kg◦C

mroomcroom 1.8 ∗ 107 J
◦C

g1 100 W
◦C

g2 500 W
◦C

g3 130 W
◦C

v3 20 ◦C

Table 5.3: System parameter values

5.4 Control specification
The capacity of the heat storage tank will be 1000 kg, which means that
the heat storage mass x2 can’t surpass that. We will have an upper limit
on heating element power u1 set to 10 kW. The flowrates u2 and u3 will
be upper limited to 0.1 ls . This also applies to the generic flowrate v2. We
also want to limit the temperature in the heat tank to 100◦C to prevent
the water from boiling. The lower limit of heat temperature x1 is set to
the temperature of the incoming water from the water supplier. We assume
this temperature is 5◦C. For the heating system to have full control over
the application temperature x4, outside temperature must be lower than
inside reference temperature. If not cooling must take place, which our
system can not do. In this case the system will be turned off. This means
that we don’t allow the flowrates u2 and u3 to be negative. Neither the
radiator temperature x3 nor the application temperature x4 can exceed the
heat storage temperature x1 under operation, assuming a reasonable outside
temperature. This means that the limits shown in table 5.4 are operational
limits, not physical limits.

variable lower limit upper limit unit
x1 5 100 ◦C

x2 0 1000 kg
x3 5 100 ◦C

x4 v4 100 ◦C

u1 0 10 kW
u2 0 0.1 l

s

u3 0 0.1 l
s

v2 0 0.1 l
s

Table 5.4: Variable limits under operation

40

5.5 Simulating uncontrolled system
We will first start by simulating the heating of the uncontrolled system (5.2)-
(5.5) to verify that the deducted parameters are reasonable. An overview of
the system in Matlab is shown in B.1. All our simulations will be done in
Simulink.

We will start by simulating the heating of the water in the heat storage
from 5 to 70◦C at maximum heating element power u1 at 10 kW. This is
to illustrate the dynamics of the heat storage. The heater storage mass x2
will be at its maximum of 1000 kg at all time, and the flowrate of incoming
water u2 and outgoing water u3 will be set to zero. This means that no
energy will come from the solar collector. The generic flowrate v2 will also
be set to zero. The heat storage room temperature v3 will be set to 20◦C
as mentioned in table 5.3. We get the response shown in figure 5.3.

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

80

Heat storage temperature x
1

time (hours)

° C

Figure 5.3: Heat storage temperature x4 with energy from heating element
u1 only

Figure 5.3 shows that it almost takes 10 hours before all the water in the
1000 kg tank is heated up to 70◦C. If we integrate equation (5.1) on both
sides we get that:

E = mc∆x (5.8)

where E is energy, m is mass, c is heat capacity and ∆x is the temper-
ature difference. Inserting m = 1000 kg, c = cw mentioned in table 5.3 and
∆x = 70 - 5 = 65◦C, (5.8) gives the amount of energy needed to make this
increase in temperature:

41

E = mc∆x = 1000kg ∗ 4184 J

kg◦C
∗ 65◦C ≈ 2.72 ∗ 108J (5.9)

With 10 kW of input power which is 10000 Js , we find the time required
to heat up the water is:

10000J
s
∗ t = 2.72 ∗ 108J ⇒ t ≈ 27196s ≈ 7.55hours (5.10)

where t is time and s is seconds in (5.10). The reason that our system
takes longer time to reach 70◦C than the solution of equation (5.10), is
that the heat system incorporates energy loss to the heat storage room.
The solution of equation (5.10) assumes no loss to its surroundings, but is
calculated to show that the deducted system parameters and dynamics are
reasonable.

Now we will simulate the heating of the application temperature x4 to
20◦C in two scenarios.

Scenario 1:
We want to illustrate the dynamics of the application temperature x4.

The heat storage temperature operates at a constant temperature x1 at 70
◦C and with maximum heat storage mass x2. We assume for simplicity that
the solar collector heats up all the passing water to the heat storage’s steady
state temperature at 70◦C. This means that the only heating element power
we need to use is to compensate for the heat storage loss to its surroundings.
We set the flowrates u2 and u3 at its maximum at 0.1 ls . Then we maintain
maximum heat storage mass x2. We assume the generic flowrate v2 to be
zero also in this case. The surrounding temperature in the heat storage room
v3 is a constant 20◦C. The incoming and outgoing energy carried with u2
and u3 are equal. We then find out by solving equation (5.2) that the heating
element power u1 must be 5 kW to compensate for the heat storage energy
loss to its surroundings. We assume a constant outside temperature v4 at
5◦C. We also assume that the application has only been heated by human
activity. This means that the initial application temperature x4 will be
5◦C, since equal temperature between application and surroundings leads
to no conduction. The initial radiator temperature x3 will then also be 5
◦C. With constant heat storage temperature x1 at 70◦C and heat storage
mass x2 at 1000 kg, we get the response for radiator temperature x3 and
application temperature x4 shown in figure 5.4.

42

0 1 2 3 4 5 6 7

10

20

30

40

50

Radiator temperature x
3

time (hours)

° C

0 1 2 3 4 5 6 7
5

10

15

20

25

Application temperature x
4

time (hours)

° C

Figure 5.4: Response of radiator and application temperature

From figure 5.4 we can see that it takes between 6 and 7 hours before the
application temperature x4 reaches its desired temperature at 20◦C. The
radiator temperature x3 has a much quicker response due to much less energy
needed to heat it up. It flats out after about 1 hour since the convection
between radiator and application increases.

Scenario 2:
We want to illustrate how the application temperature x4 is influenced by

variation in the outside temperature. We start by deciding a set of nominal
values for the different states, inputs and disturbances. The same method
will be used in chapter 6 when we want to linearize the model for use with
control. The decided set of nominal values are shown in table 5.5.

43

states value unit
x1 70 ◦C

x2 750 kg
x4 20 ◦C

disturbances value unit
v1 70 ◦C

v2 0 l
s

v3 20 ◦C

v4 4.796 ◦C

Table 5.5: Preset nominal states and disturbances

The nominal outside temperature v4 is the average of the temperature
forecast gathered from our testing scenario at Longyearbyen shown in chap-
ter 4. The inputs u1, u2, u3 and the state x3 are found by finding the
equilibrium points for equation (5.2)-(5.5), that is inserting the preset val-
ues in table 5.5 and set the equation (5.2)-(5.5) equal zero. This gives the
values shown in table 5.6.

states value unit
x3 23.953 ◦C

inputs value unit
u1 5 kW
u2 0.0103 l

s

u3 0.0103 ◦C

Table 5.6: Equilibrium points based on preset values

Replacing the the outside temperature v4 with the temperature data
gathered from the weather forecast at our testing scenario, gives the response
shown in figure 5.5 during the 53 hours we had of available data.

44

0 5 10 15 20 25 30 35 40 45 50 55

4

6

8

Outside temperature v
4

time (hours)

° C

0 5 10 15 20 25 30 35 40 45 50 55
23.5

24

24.5

Radiator temperature x
3

time (hours)

° C

0 5 10 15 20 25 30 35 40 45 50 55
19.5

20

20.5

Application temperature x
4

time (hours)

° C

Figure 5.5: Outside temperature v4, radiator temperature x3 and application
temperature x4

We will later introduce control to our system. The solar collector in figure
5.1 will then be exposed to the radiation flux with incorporated cloudiness
from our testing scenario shown in figure 4.3 from chapter 4. The outside
temperature will be the same as in figure 5.5.

45

46

Chapter 6

Linearization

6.1 Linearizing the nonlinear heat system model

To make control of our nonlinear system (5.2)-(5.5) simpler, a linearization
is favorable. The system linearization will be on the form:

∆ẋ = A∆x+B∆u+ C∆v (6.1)

where x is states, u is inputs and v is disturbances. ẋ is the time deriva-
tive dxdt .

If we call fi = dxi
dt in (5.2)-(5.5) we get:

47

∂f1
∂x1

= − 1
x2

(u3 + v2 + g1
cw

) (6.2)

∂f1
∂x2

= − 1
x2

2
(1000u1

cw
+ u2v1 − x1u3 − x1v2 −

g1
cw

(x1 − v3)) (6.3)

∂f3
∂x1

= u3
mr

(6.4)

∂f3
∂x3

= −(u3
mr

+ g2
mrcw

) (6.5)

∂f3
∂x4

= g2
mrcw

(6.6)

∂f4
∂x3

= g2
mroomcroom

(6.7)

∂f4
∂x4

= − g2 + g3
mroomcroom

(6.8)

∂f1
∂u1

= 1000
cwx2

(6.9)

∂f1
∂u2

= v1
x2

(6.10)

∂f1
∂u3

= −x1
x2

(6.11)

∂f2
∂u2

= 1 (6.12)

∂f2
∂u3

= −1 (6.13)

∂f3
∂u3

= x1 − x3
mr

(6.14)

∂f1
∂v1

= u2
x2

(6.15)

∂f1
∂v2

= −x1
x2

(6.16)

∂f1
∂v3

= g1
cwx2

(6.17)

∂f2
∂v2

= −1 (6.18)

∂f4
∂v4

= g3
mroomcroom

(6.19)

where the different components goes in the matrices as follows:

48

A =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f4
∂x1

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4

 (6.20)

B =


∂f1
∂u1

∂f1
∂u2

∂f1
∂u3

∂f2
∂u1

∂f2
∂u2

∂f2
∂u3

∂f3
∂u1

∂f3
∂u2

∂f3
∂u3

∂f4
∂u1

∂f4
∂u2

∂f4
∂u3

 (6.21)

C =


∂f1
∂v1

∂f1
∂v2

∂f1
∂v3

∂f1
∂v4

∂f2
∂v1

∂f2
∂v2

∂f2
∂v3

∂f2
∂v4

∂f3
∂v1

∂f3
∂v2

∂f3
∂v3

∂f3
∂v4

∂f4
∂v1

∂f4
∂v2

∂f4
∂v3

∂f4
∂v4

 (6.22)

and the components in A, B and C that are not listed in (6.2)-(6.19) are
zero.

Since we want to minimize the use of the actual input u1 and not the
deviation from it’s nominal value, we have to incorporate an offset into the
linearized model. Since:

∆x = x− xnominal (6.23)
∆u = u− unominal (6.24)
∆v = v − vnominal (6.25)

where xnominal, unominal and vnominal are the nominal values used to
linearize the nonlinear differential equations in (5.2)-(5.5). Inserting (6.23)-
(6.25) into (6.1) gives:

∆ẋ = Ax+Bu+ Cv + (−Axnominal −Bunominal − Cvnominal)︸ ︷︷ ︸
offset values

(6.26)

which we can rewrite as:

∆ẋ = Ax+Bu+ Cv +


bias1
bias2
bias3
bias4

 (6.27)

49

where the bias elements are the components in the 4x1 vector containing
the offset values.

If the nonlinear model of the plant is described as:

ẋ = f(x, u, v) (6.28)

then an approximated expression for the differential equation described
by ẋ is:

ẋ ≈ f(xnominal, unominal, vnominal) + ∆ẋ (6.29)

where f(xnominal, unominal, vnominal) is a vector with constant coefficients.
These coefficients is the differential parts of the nonlinear model (5.2-5.5) af-
ter inserting the nominal values. We will choose our nominal values at equi-
librium points in (5.2-5.5). This means that the term f(xnominal, unominal, vnominal)
will be zero. We then end up with:

ẋ ≈ Ax+Bu+ Cv +


bias1
bias2
bias3
bias4

 (6.30)

The offset values gives a constant 4x1 vector. These values can be seen
as a constant disturbance, and we can can extend the number of distur-
bances by four to incorporate these offsets. We can rewrite our linearized
model where the inputs and disturbances are collected into one vector. The
rewritten linearized system will be:

ẋ = Ax+Dw (6.31)
y = Gx+Hw (6.32)

While A in (6.31) remains as in (6.20), D will include the matrices (6.21),
(6.22) and the offset values. A measurement state y (6.32) has also been
created. This will be equal to x, such that the matrix G will be the identity
matrix with same dimension as A. The H matrix will contain only zeros with
the same dimension as D. Since we will measure the states, the matrix G
and H are redundant, that is (6.32) could be simplified to y = x. Since our
controller in chapter 8 requires these measurement matrices, (6.32) contains
G and H.

We use the following partition of D which goes in to the linearized model
in (6.31):

50

D = [D1D2] (6.33)

where

D1 =


∂f1
∂u1

∂f1
∂u2

∂f1
∂u3

∂f1
∂v1

∂f1
∂v2

∂f1
∂v3

0
0 ∂f2

∂u2
∂f2
∂u3

0 ∂f2
∂v2

0 0
0 0 ∂f3

∂u3
0 0 0 0

0 0 0 0 0 0 ∂f4
∂v4

 (6.34)

D2 =


bias1 0 0 0

0 bias2 0 0
0 0 bias3 0
0 0 0 bias4

 (6.35)

where the partial derivatives that equals zero are set to zero in 6.34. The
w vector becomes:

w =
[
u1 u2 u3 v1 v2 v3 v4 v5 v6 v7 v8

]T
(6.36)

and the elements v5 - v8 are constant disturbance set to 1.

6.2 Applying Nominal Values
Since we need to find nominal values, i.e. operating points which we linearize
the model, we must first make some assumptions for some of the variables
described in table 5.1. We want specific reference values in heat storage
temperature, heat storage mass and application temperature. Maintaining
a comfortable application temperature is the main objective of the heat
system, but it must be done under controlled conditions, i.e. maintaining
reasonable values in the the other states. Water can not be too hot, and
water mass of the heater storage can not be negative or exceed its maximum
capacity. Since we can not do anything with the disturbances, we must ap-
proximate some operational values for them. Since we have four differential
equations (5.2)-(5.5), we can calculate 4 variables at steady state by setting
these equations to zero.

We will insert the values of our scenario calculated at Longyearbyen in
Svalbard. The chosen linearization values are shown in table 6.1, and the
rest of the values will be calculated by setting the time derivative in the the
nonlinear equations (5.2)-(5.5) to zero, i.e. equilibrium.

51

set letters value unit
x1 70 ◦C

x2 750 kg
x4 20 ◦C

v1 70 ◦C

v2 0 l
s

Table 6.1: Approximated Nominal Values

The different letters in table 6.1 were explained in table 5.1.
This leaves us with remaining 5 unknowns, that is the state x3, the inputs

u1, u2 and u3 and the disturbance v4 also explained in 5.1. The nonlinear
equations described in (5.2)-(5.5) will be used to decide four of the remain-
ing five linearization points, since we have only four equations. The outside
temperature v4 will be set to the average temperature of the temperature
graph gathered from our testing scenario in Longyearbyen in Svalbard. The
remaining 4 unknowns will be calculated setting the four differential equa-
tions in (5.2)-(5.5) to zero, which lead to the following equations:

x3 = x4(1 + g3
g2

)− g3
g2
v4 (6.37)

u3 = g2(x3 − x4)
cw(x1 − x3) (6.38)

u2 = u3 (6.39)

u1 = 1
1000(−cwu2v1 + cwx1(u3 + v2) + g1(x1 − v3)) (6.40)

Calculating the remaining values based on (6.37)-(6.40) gives the values
shown in table 6.2.

calculated value unit
v4 4.7963 ◦C

x3 23.953 ◦C

u1 5 kW
u2 0.0103 l

s

u3 0.0103 l
s

Table 6.2: Calculated Nominal Values

These values will then be inserted in the partial derivatives (6.2)-(6.19)
which goes into the matrices (6.20)-(6.22) of the linearized model.

The used method of finding nominal values based on equilibrium points
works fine in many cases. In this case we can immediately see that this
causes problems for one partial derivative (6.3) which was:

52

∂f1
∂x2

= − 1
x2

2
(1000u1

cw
+ u2v1 − x1u3 − x1v2 −

g1
cw

(x1 − v3)) (6.41)

By comparing (5.2) and (6.41), we can see that they are similar due to
derivative rules. This means that (6.41) will be equal to zero, which is true
if all the other values stays at their nominal values. Once we operate outside
the exact nominal values, it means that the linearized model interprets that
the derivative of the temperature in the heat storage x1 as independent of
the mass x2 in the tank, which is not true. Differential equation (5.2) is
strongly nonlinear with respect to x2. The reason for this is due to division
by x2

2 which can be seen in equation (6.41). These kind of problems can
be solved in several ways. One way is to use other nominal values than
equilibrium values in which to linearize our model. Since equation (6.41) is
strongly nonlinear, linearizing around other values would still be inaccurate.
Another solution to the problem is to introduce constraint on the heat stor-
age temperature x1 around its chosen nominal value when applying control
to the system, which will reduce the problem of the nonlinearity.

53

54

Chapter 7

Model predictive control

7.1 Introduction
Model predictive control (mpc) [2] is a control strategy that uses a model
of a process to predict its output at future time instants within a prediction
horizon. The controller then calculates a control sequence that minimizes
an objective function subject to physical and operational constraints. The
future outputs for a determined prediction horizon P are predicted at each
instant t using this process model. These predicted outputs y(t+k|t) for k =
1...P depends on the known values up to instant t(past inputs and outputs)
and on the future control signals u(t+k|t), k=0...P-1, which are the control
signals sent to the system and calculated. The set of future control signals
are calculated by optimizing a determined set of reference criterions. The
control horizon M decides how many inputs are calculated. If the control
horizon is less than the prediction horizon, the final computed move usually
fills the remainder of the prediction horizon. The criterion usually takes
the form of a quadratic function of the errors between the predicted output
signal and the reference. These errors can be weighted according to what
outputs is important to keep close to the reference. Constraints on inputs
and outputs can also be incorporated in the objective function. The first
control signal calculated is applied while the rest of the signals are rejected.
Rejecting the rest of the control signals is done since new information (one
more set of inputs and outputs) are available. The horizon is displaced
one step towards the future and the controller recalculates a new control
sequence. An example of the mpc strategy mentioned is shown in figure 7.1
[5] with prediction horizon P = 9 and control horizon M = 4. The input
constraints umin and umax, output constraints ymin and ymax and output
reference r are also shown. The example is single input single output (SISO).

55

Figure 7.1: Strategy of mpc example showing prediction horizon P=9(a)
and control horizon M=4(b)

Figure 7.2 shows a general plant with a mpc controller. The plant con-
tains measured disturbances v(k), unmeasured disturbances d(k), references
r(k), a constant unmeasured disturbance on the output and the measured
output ym(k). The plant model may be nonlinear, while the model of the
plant in the mpc controller is linearized. We see in figure 7.2 that both the
measured output and the measured disturbance are fed into the mpc con-
troller. Since the heat system deducted in chapter 5 only had one unmea-
sured disturbance, we chose to denote it v(the same letter as the measured
disturbances). Even though we have denoted the unmeasured disturbance
v in the heat system, d wil be used in this chapter to seperate the different
disturbance types.

56

Figure 7.2: Plant and mpc controller

The basic structure of the mpc controller [2] in figure 7.2 is shown in
figure 7.3. The past inputs in figure 7.3 are calculated from the mpc con-
troller itself, while the measured disturbances are measured from the original
plants input and fed into the mpc controller. This is a sort of feed forward
control. The past outputs are delivered from the measured outputs of the
plant being controlled.

Figure 7.3: Basic structure of mpc

57

7.2 Model Predictive Control toolbox

7.2.1 Introduction

The Model Predictive Control (MPC) toolbox [5] is a collection of software
that helps you design, analyze, and implement an advanced mpc algorithm.
The Toolbox is available in the Simulink library in Matlab [5].

7.2.2 Prediction model

The linear model used in the MPC Toolbox for prediction and optimization
is shown in figure 7.4.

Figure 7.4: Prediction Model

The model of the plant in figure 7.4 is a linear time-invariant (LTI)
system described by the equations:

x(k + 1) = Ax(k) +Buu(k) +Bvv(k) +Bdd(k) (7.1)
ym(k) = Cmx(k) +Dvmv(k) +Ddmd(k) (7.2)
yu(k) = Cux(k) +Dvuv(k) +Ddud(k) +Duuu(k) (7.3)

where x(k) is the nx-dimensional state vector of the plant, u(k) is the nu-
dimensional vector of manipulated variables (MV), i.e., the command inputs,
v(k) is the nv-dimensional vector of measured disturbances (MD), d(k) is the
nd-dimensional vector of unmeasured disturbances (UD) entering the plant,
ym(k) is the vector of measured outputs (MO), and yu(k) is the vector of
unmeasured outputs (UO). The overall output vector y(k) collects ym(k)
and yu(k). In the above equations d(k) collects both state disturbances
(Bd 6= 0) and output disturbances (Dd 6= 0). The MPC toolbox collects
matrices with the same capital letter into one matrix. The same applies to
the vectors being multiplied by those matrices. They are just separated in
parts in (7.1)-(7.3) to show the different contributions.

If the actual plant being controlled consists of unmeasured disturbance,
the input disturbance model in figure 7.4 is the linear model:

58

xd1(k + 1) = Āxd1(k) + B̄nd(k) (7.4)
d(k) = C̄xd1(k) + D̄nd(k) (7.5)

where xd1(k) is the state of the unmeasured input disturbance model
and d(k) is the actual unmeasured input disturbance. White noise is chosen
as input in equation (7.4) and (7.5) in figure 7.4.

7.2.3 State estimation model

At the beginning of each sampling instant the controller estimates the cur-
rent plant state. Accurate knowledge of the state improves prediction accu-
racy, which, in turn, improves controller performance. Figure 7.4 shows the
model used for state estimation

Figure 7.5: State Estimation Model

The measurement noise can be modeled with a linear model driven by
Gaussian white noise or other forms of inputs. The Gaussian white noise
nm(k) and nd(k) has zero mean and unit covariance matrix. If white noise
is chosen as input, the measurement noise model on figure 7.5 will be the
linear model:

xm(k + 1) = Ãxm(k) + B̃nm(k) (7.6)
m(k) = C̃xm(k) + D̃nm(k) (7.7)

where xm(k) is the state of the measurement noise model and m(k) is
the measurement noise.

The output disturbance model xd2(k) in figure 7.5 is a collection of in-
tegrators driven by white noise on measured outputs.

59

7.2.4 State observer

The state observer in mpc toolbox is designed to provide estimates of x(k),
xd(k), xm(k), where x(k) is the state of the plant model, xd(k) is the overall
state of the input and output disturbance model, xm(k) is the state of the
measurement noise model. The estimates are computed from the measured
output ym(k) by the linear state observer:

 x̂(k|k)
x̂d(k|k)
x̂m(k|k)

 =

 x̂(k|k − 1)
x̂d(k|k − 1)
x̂m(k|k − 1)

+M(ym(k)− ŷm(k)) (7.8)

 x̂(k + 1|k)
x̂d(k + 1|k)
x̂m(k + 1|k)

 =

 Ax̂(k|k) +Buu(k) +Bvv(k) +BdC̄x̂d(k|k)
Āx̂d(k|k)
Ãx̂m(k|k)

 (7.9)

ŷm(k) = Cmx̂(k|k − 1) +Dvmv(k) +DdmC̄x̂d(k|k − 1)
+ C̃x̄m(k|k − 1) (7.10)

where "m"’ denotes the rows of C,D corresponding to measured outputs.
The states x̂ and ŷ are estimations of states and outputs, k is the different
time instants and the matrices in (7.8)-(7.10) was listed in equation (7.1)-
(7.3), (7.4)-(7.5) and (7.6)-(7.7). M is a gain matrix designed using Kalman
filtering techniques, if noise or unmeasured disturbance are present.

7.2.5 Cost function

The cost function in the mpc toolbox is on the form:

J =
( u(0)

...
u(p− 1)

−
 utarget(0)

...
utarget(p− 1)

)TW 2
u

( u(0)
...

u(p− 1)

−
 utarget(0)

...
utarget(p− 1)

)

+
(y(1)

...
y(p)

−
r(1)
...
r(p)

)TW 2
y

(y(1)
...
y(p)

−
r(1)
...
r(p)

)+ρεε2

(7.11)

where u is input is, y is measurements and r is reference. Wu andWy are
the different weights on the deviations and p is the prediction horizon. Notice
that the weights are squared. The term ρεε

2 incorporates the constraints.
The constraints on u and y are relaxed by introducing the slack variable

60

ε ≥ 0. Usually only constraints on outputs are relaxed, but the MPC
toolbox can relax inputs as well. The weight ρε on the slack variable ε
penalizes the violation of the constraints. The larger ρε with respect to
input and output weights, the more the constraint violation is penalized.
The algorithm implemented in the mpc toolbox uses different procedures
depending on the presence of constraints when optimizing. If all the bounds
are infinite, the slack variable ε is removed, and the problem in equation 7.11
is solved analytically. Otherwise a Quadratic Programming (QP) solver is
used.

7.2.6 Horizons

The mpc toolbox contains three properties for horizons. The control interval
sets the elapsed time between successive controller moves. The prediction
horizon sets the number of control intervals over which the controller predicts
its outputs when computing controller moves. The control horizon sets the
number of moves computed. If less than the prediction horizon, the final
computed move fills the remainder of the prediction horizon.

61

62

Chapter 8

Heat system with mpc
control

8.1 Overview

Recall the heat system described by equations (5.2)-(5.5) in chapter 5 with
states, disturbances, inputs and parameters described in table 5.1 and with
parameter values listed in table 5.3. The heat system will be controlled with
model predictive control, i.e Matlab’s MPC toolbox. The heat system will
also include the solar collector exposed by radiation deducted in chapter 3
and outside temperature gathered from chapter 4. The effect of the outside
temperature on the solar collector is also incorporated. The chosen testing
scenario in Longyearbyen in Svalbard from chapter 4 will be the location of
our controlled system. Recall from figure 5.5 in chapter 5, that the duration
of the simulation of the uncontrolled system was 53 hours, due to the length
of the available weather forecast. This also holds for the controlled system.
The Simulink model of the controlled heat system is shown in appendix B.7.

8.2 Implementing linearized model

Recall our linearized system (6.31)-(6.32) of our nonlinear heating process
from chapter 6 with:

ẋ = Ax+Dw (8.1)
y = Gx+Hw (8.2)

where all the states are collected in the x matrix and all the inputs
(manipulated variables and disturbances) are collected in w from (6.36).
The matrix A and D is as mentioned in (6.20) and (6.33). G and H are
just measurement matrices and in our case G equals I (identity matrix) and

63

H will consist off only zeros. As mentioned in chapter 6, the measurement
matrices G and H were required in the MPC toolbox.

Our nonlinear process from equation (5.2)-(5.5) is implemented with no
output disturbances nor measurement noise. This means that we set the
output disturbance component xd2 from figure 7.5 and the measurement
noise component xm from equation (7.4) to zero in our linearized model of
the process.

The linearized system is discretized using the matlab function c2d, with
a sampling time of 15 minutes. We put these matrices into the mpc toolbox
in Simulink. Recall the states, inputs and disturbances from table 5.1 in
chapter 5. We set the states x1-x4 as measured outputs and their nominal
values as references listen in table 5.5 and 5.6.The disturbances v1, v3 and v4
will be set to measured disturbances. So will also the constant disturbances
v5-v8 set to 1 from (6.36), which took care of our biases from (6.35). We had
one unmeasured disturbance, which was the generic flowrate v2 (hot water
consumption). The disturbance v2 will be considered to be zero most of the
time, which means that we will choose to set the disturbance component xd1
from equation (7.4) to zero as well. Our manipulated variables will be the
inputs u1-u3. The heating element power u1 is scaled in kW to avoid numer-
ical problems in the QP solver of the mpc controller. The implementation
of this mpc controller is done in the m-file mpcInit.m in appendix A.5.

8.3 Simulation

8.3.1 Setup

The simulation in Simulink is done in seconds, that is a 190800 second
duration (53 hours). The temperature and radiation with cloudiness data
from our testing site is recalled in figure 8.1.

0 4 8 12 16 20 24 28 32 36 40 44 48 52

3

4

5

6

7

8

Outside temperature v
4

time (hours)

° C

0 4 8 12 16 20 24 28 32 36 40 44 48 52

100

200

300

400

500

600

700

800
Radiation on solar collector

time (hours)

W
/m

2

Figure 8.1: Temperature and radiation at testing scenario

64

These two data vectors are inserted into the temperature and radiation
block in the controlled system. Lagrangian interpolation is used to fill the
necessary points between every hour. These blocks will act as simulated
surroundings. The generic flowrate v2 is implemented as a square pulse in
the middle of the simulation duration, that is between the 26’th and 27’th
hour. The pulse lasts for 15 minutes with amplitude 0.1 ls as shown in figure
8.2.

26 27

0

0,1

Generic flowrate v
2

time (hours)

l/s

Figure 8.2: Generic flowrate due to hot water tapping

The mpc controller is set with the three horizon properties

property value unit
control interval 15 minutes
prediction horizon 24 hours
control horizon 2 hours

Table 8.1: mpc controller horizons

Taking into account the dynamics of the heat system, the duration of
the simulation and the desire to have a long prediction and control horizon,
these horizons are reasonable. The prediction and control horizons could
be increased, but it would take much longer to simulate since much more
calculations has to be done. If the linearized model of the nonlinear process
is inaccurate, the gain of having long prediction and control horizons are
also limited.

We start by tuning the mpc controller for normal operation. We want to
put weights on the inputs u1-u3, that is how much we want to penalize the
usage of them. With normal weighting, we want to penalize the use of heat-
ing element power u1 in the heat storage tank to save power consumption.
With low weighting we want to see how much more power is used doing the
same job, that is keeping the application temperature x4 at its reference
value at 20◦C. This means that we will also use weight on the output x4,
to penalize the deviation from its reference value.

65

Recall the problem with the partial derivative (6.41) from chapter 6. We
found out that our linearized model of the nonlinear process (5.2)-(5.5) was
implemented in such a way that the linearized model interpreted that the
temperature in the heater tank x1 was independent of the change in mass x2
in the tank. If we penalize the use of u1, this means that our controller will
increase the usage of the flowrate u2 into the heat storage tank, thinking
that it will increase the temperature since it carries energy. Neglecting the
negative contribution from the increase in heat storage mass will be a big
mistake, and will cause the heating of the application to fail. That is why we
will use constraint on the heat storage temperature x1. Since our linearized
model is inaccurate due to the partial derivative problem 6.41, we will reduce
this problem by introducing the mentioned constraint, which will result in
the heat storage tank operating closer to its nominal value. We want to
keep the temperature x1 in the heat storage tank as low as possible when
it’s supplied by heating element power to minimize energy loss. However, the
heat storage temperature x1 must be high enough to supply the application
with heat and to avoid bacterias. We will set an upper limit on x1 to
avoid boiling, which means x1 will be constrained between 70 and 100◦C.
The constraint may still be violated, due to for instance, inaccuracy of the
linearized model or a large unexpected disturbance. In any case, a constraint
will limit a states violation of the desired constraint interval.

The initial values of the states, inputs and disturbances will be set to
their nominal values listed in table 6.1 and table 6.2.

66

8.3.2 Simulating with normal weight on input u1

The set of weights on inputs u1-u3 used in the normal operating case is
shown in table 8.2 and the constraints are shown in table 8.3. The units
were listed in table 5.4.

weights value
u1 10
u2 100
u2 100
x1 0
x2 0
x3 0
x4 1000

Table 8.2: Normal weights

variable lower limit upper limit
x1 70 100
x2 0 1000
x3 0 100
x4 0 100
u1 0 10
u2 0 0.1
u3 0 0.1

Table 8.3: Normal constraints

Even though we don’t care about the usage of input u2 and u3 inside
its constraints, we have weighted it to avoid singularities in the QP solver
in the mpc algorithm. Besides the mentioned constraint on heat storage
temperature x1, the rest of the states and inputs are constrained based on
what was listed in table 5.4. We have relaxed the lower constraint of x3 and
x4 to zero compared to table 5.4.

The response of the states when simulating under these conditions is
shown in figure 8.3. Figure 8.3 shows that all the states over or undershoots
until a few control intervals has passed. The application temperature x4
tracks well on its reference value after these few intervals. We also see the
effect of the generic flowrate v2, which makes the heat storage temperature
x1 drop a little under its constraint until it tracks back. Figure 8.4 shows
the the inputs under the same simulation. Notice the descent of heating
element power u1 when the temperature of the incoming water v1 rises as
shown in figure 8.5. The middle peak on both u1 and u2 in figure 8.4 is due
to the generic flowrate v2 that taps a lot of energy from the heat storage

67

tank.

68

0
4

8
12

16
20

24
28

32
36

40
44

48
52

607080

H
ea

t s
to

ra
ge

 te
m

pe
ra

tu
re

 x
1

tim
e

(h
ou

rs
)

°C
0

4
8

12
16

20
24

28
32

36
40

44
48

52
50

0

10
00

15
00

H
ea

t s
to

ra
ge

 m
as

s
x 2

tim
e

(h
ou

rs
)

kg

0
4

8
12

16
20

24
28

32
36

40
44

48
52

203040

R
ad

ia
to

r
te

m
pe

ra
tu

re
 x

3

tim
e

(h
ou

rs
)

°C

0
4

8
12

16
20

24
28

32
36

40
44

48
52

19
.520

20
.5

tim
e

(h
ou

rs
)

°C

A
pp

lic
at

io
n

te
m

pe
ra

tu
re

 x
4

Fi
gu

re
8.
3:

St
at
es

w
ith

no
rm

al
w
ei
gh

t
on

u
1

69

0
4

8
12

16
20

24
28

32
36

40
44

48
52

46810

H
ea

tin
g

el
em

en
t p

ow
er

 in
 h

ea
t s

to
ra

ge
 u

1

tim
e

(h
ou

rs
)

kW

0
4

8
12

16
20

24
28

32
36

40
44

48
52

0,
02

0,
04

0,
06

0,
080,

1

F
lo

w
ra

te
 th

ro
ug

h
so

la
r

co
lle

ct
or

 a
nd

 in
to

 h
ea

t s
to

ra
ge

 u
2

tim
e

(h
ou

rs
)

l/s

0
4

8
12

16
20

24
28

32
36

40
44

48
52

−
0.

050

0.
050.

1

F
lo

w
ra

te
 o

ut
 o

f h
ea

t s
to

ra
ge

 a
nd

 in
to

 r
ad

ia
to

r
u 3

tim
e

(h
ou

rs
)

l/s

Fi
gu

re
8.
4:

In
pu

ts
w
ith

no
rm

al
w
ei
gh

t
on

u
1

70

0
4

8
12

16
20

24
28

32
36

40
44

48
52

10203040506070809010
0

T
em

pe
ra

tu
re

 o
ut

 o
f s

ol
ar

 c
ol

le
ct

or
 v

1

tim
e

(h
ou

rs
)

°C

Fi
gu

re
8.
5:

Te
m
pe

ra
tu
re

ou
t
of

so
la
r
co
lle

ct
or

w
ith

no
rm

al
w
ei
gh

t
on

u
1

71

8.3.3 Simulating with low weight on input u1

We want to simulate with lower weighting on u1 to demonstrate the effects.
We reduce the weight on u1 from 10 to 1, that is a reduction of a factor of
100 (since the weights are squared in (7.11)). The rest of the weights will
be the same as in table 8.2. Since the weights on the input u1 are lower,
it will be more desirable for the mpc controller to heat up the application
temperature x4 with high heating element power u1 and the flowrates u2 and
u3 as low as possible. This will cause the controller to desire to heat up the
heat storage temperature x1 to an unreasonable temperature. It will also
try to empty the heat storage tank, to minimize the total usage of u2 and u3,
while still satisfying the reference of the application temperature x4. Recall
that our linearized model interpreted that the heat storage mass x2 did not
have any effect on the derivative of heat storage temperature x1. When
the mass of the heat storage tank x2 → 0, the heat storage temperature
x1 →∞. Because of the upper constraints on the heat storage temperature
x1, the peak will be limited. Oscillations is still unavoidable because of this
linearization choice. The oscillations can be reduced by having a higher
lower constraint on the heat storage mass x2, which have been done in this
case. The lower constraint on x2 has been set to 500 kg.

We can see from the plots of the states in figure 8.6, that the heat storage
temperature x1 is leaping against its upper constraint on temperature due
to the low weighting on heating element power u1. We also see that the heat
storage mass x2 is leaping on its lower constraint on 500 kg, just as expected.
We also see the oscillations on the radiator temperature x3 and the small
oscillations on the application temperature x4 around its reference point.
The oscillations are also reflected on the inputs in figure 8.7. We see that
the heating element power u1 runs at the upper constrained power until the
heat storage temperature x1 reaches its upper constraint. Then the power
drops until the heat storage temperature x1 drops, and the heating element
power u1 goes back to top. As we can see it’s a struggle between optimizing
with respect to the given weights, while still maintaining the constraints.
The total use of heating element power u1 is substantially higher with low
weight on u1 as expected. The temperature of the incoming water v1 is
shown in figure 8.8. It also oscillates a lot more than with the normal
weighting. Recall that the lower limit of the temperature out of the solar
collector v1 was 5◦C. The part of figure 8.8 where v1 reaches zero is when
no water is flowing through the solar collector, as is defined and coded in
getSolarTempOut.m in appendix A.4.

72

0
4

8
12

16
20

24
28

32
36

40
44

48
52

5010
0

15
0

H
ea

t s
to

ra
ge

 te
m

pe
ra

tu
re

 x
1

tim
e

(h
ou

rs
)

°C
0

4
8

12
16

20
24

28
32

36
40

44
48

52

50
0

1
00

0

H
ea

t s
to

ra
ge

 m
as

s
x 2

tim
e

(h
ou

rs
)

kg

0
4

8
12

16
20

24
28

32
36

40
44

48
52

203040

R
ad

ia
to

r
te

m
pe

ra
tu

re
 x

3

tim
e

(h
ou

rs
)

°C

0
4

8
12

16
20

24
28

32
36

40
44

48
52

19
.520

20
.5

tim
e

(h
ou

rs
)

°C

A
pp

lic
at

io
n

te
m

pe
ra

tu
re

 x
4

Fi
gu

re
8.
6:

St
at
es

w
ith

lo
w

w
ei
gh

t
on

u
1

73

0
4

8
12

16
20

24
28

32
36

40
44

48
52

681012

H
ea

tin
g

el
em

en
t p

ow
er

 in
 h

ea
t s

to
ra

ge
 u

1

tim
e

(h
ou

rs
)

kW

0
4

8
12

16
20

24
28

32
36

40
44

48
52

−
0.

050

0.
050.

1

F
lo

w
ra

te
 th

ro
ug

h
so

la
r

co
lle

ct
or

 a
nd

 in
to

 h
ea

t s
to

ra
ge

 u
2

tim
e

(h
ou

rs
)

l/s

0
4

8
12

16
20

24
28

32
36

40
44

48
52

−
0.

050

0.
050.

1

F
lo

w
ra

te
 o

ut
 o

f h
ea

t s
to

ra
ge

 a
nd

 in
to

 r
ad

ia
to

r
u 3

tim
e

(h
ou

rs
)

l/s

Fi
gu

re
8.
7:

In
pu

ts
w
ith

lo
w

w
ei
gh

t
on

u
1

74

0
4

8
12

16
20

24
28

32
36

40
44

48
52

10203040506070809010
0

T
em

pe
ra

tu
re

 o
ut

 o
f s

ol
ar

 c
ol

le
ct

or
 v

1

tim
e

(h
ou

rs
)

°C

Fi
gu

re
8.
8:

Te
m
pe

ra
tu
re

ou
t
of

so
la
r
co
lle

ct
or

w
ith

lo
w

w
ei
gh

t
on

u
1

75

8.3.4 Energy consumption in the simulated scenarios

As was mentioned, the energy consumption when simulating with normal
weight on input u1 was substantially lower than with low weight on the same
input. The total energy consumption is found by numerical integrating the
two u1 graphs using the trapezoid method. Converting to kWh (kilowatt-
hours) we get the total consumption under the 53 simulated hours shown in
table 8.4.

weight on u1 Energy consumption
normal 363.85 kWh
low 515.8 kWh

Table 8.4: Energy consumption in kWh

76

Chapter 9

Discussion and Conclusion

9.1 Discussion

The modeled heat system consisting of an application (a house) and a heat
storage tank, with supplied energy from heating element power and a solar
collector was very simplified. However, it was created to show a principle,
that is that on can fill a energy storage in a more efficient way using model
predictive control. Many variables that influences such a heat system were
neglected. Components like wind, diffuse radiation and humidity were disre-
garded. Parameters such as coefficient of surface conductance was regarded
as constants, while they will vary depending on many variables in reality.
Cloudiness was regarded as a negative contribution to the solar radiation,
while in many occurrences it can contribute positively with diffuse radia-
tion. Since the weather forecasts did not give any information on where the
clouds were located on the sky at a particular time, we had to simplify.

The model of the the solar collector was based on average temperature.
We ended up with solving a second order equation to find the temperature
of the water coming out of the solar collector. More complicated models of
the temperature of the water in the solar collector can be developed. Models
consisting of differential equations, where one can describe the differential in
temperature of a particular water particle as a function of flowrate, radiation
and location in the solar collector can be modeled. Such a solar collector
model can be incorporated into the dynamics of the heat system. One can
then use a controller to optimize the amount of energy gathered from the
solar collector, by tuning the flowrate, while still using a mpc controller to
ensure that the heat storage has enough capacity to receive the solar heated
water. This will lead to less consumption of electric power, and will be a
much better way to model the solar collector.

Recall that the hot water used in the radiator or as generic hot water
consumption ended up in the drain after it was used. This was done to
simplify the model. It is however an inefficient solution. Circulating the

77

water from the radiator and back through the solar collector or directly into
the heat storage, depending on whether solar radiation is available is more
efficient. A lot less energy would then be removed form the heat system,
which would again lead to less consumption of electric power. Other forms
of backups to the solar collector than a heating element supplied by electric
power could be incorporated in the heat system. Oil, gas and pellets is a
possibility used in many systems. Extension and modification of the model
would then had to be done.

The only exploit of the weather forecasts in our heat system was applying
the average temperature as a nominal value when linearizing the nonlinear
model (5.2)-(5.5). Otherwise the weather forecast was only used as actual
surroundings to be able to simulate a scenario. A more advanced controller
could be developed based on all the available weather forecast data, that is
an adaptive controller that incorporated the weather forecasts in the pre-
dictor of the mpc controller. This would have resulted in more efficient mpc
controller if the weather forecasts were accurate. If the solar collector in
addition were modeled with differential equations, as mentioned above, the
weather forecast could be incorporated in the linearized mpc model in a
more predictive way. The weather forecast data could then be incorporated
as a bias in the differential equations in such a way that for every hour in
the prediction horizon, the bias in the differential equations were changed.

A more complicated nonlinear mpc controller could also be used to avoid
the problems of linearizing a nonlinear model with strong nonlinearities. The
nonlinear mpc controller is however more complicated and requires more
computer power. Piecewise linear models can also be used, with different
nominal values depending on measurements from the nonlinear process.

Recall that our testing scenario from chapter 4 was chosen since it is a
cold place even during summer, with low outside temperature. This means
that a heat system exposed by these surroundings, requires a positive energy
supply to be able to maintain the reference temperature in the application
in the heat system. One can imagine other scenarios where the outside
temperature is higher than the reference temperature of the application.
Cooling would then be required, which the system deducted in chapter 5 is
not able to do. If cooling is required, one can have a controller in the input
of the radiator which switches to another water circuit. The other circuit
could come directly from the water supplier to the radiator with low water
temperature. The reverse effect of the one deducted in chapter 5 would
then occur, which means that the radiator would cool the application. The
water in the radiator, which would be heated from the application, could
then be circulated back through the solar collector or directly in the heat
storage to conserve that energy. If no radiation was present at that particular
time, it would be unnecessary to pass the water through the solar collector.
No radiation during the whole testing scenario would also make the mpc
controller used in chapter 8 redundant, since all the required heating would

78

have to come from the heating element in the heat storage tank. All the
mentioned functionality requires however more circuits which results in more
complicated modeling with more comprehensive equations.

9.2 Conclusion

We have found out that using model predictive control on a heat system
containing a solar collector can be efficient. Our goal was to be able to re-
duce consumption of electric power when heating an application in order to
reduce consumption of electric power. We wanted to be able to fill the heat
storage in our heat system with heated water from the sun, and to prevent
that the heat storage had already filled up its capacity when heated water
from the solar collector was available. Weather data in forms of forecasts
was collected from a testing scenario and used with deducted formulas to
create surroundings which the heat system was exposed by. The testing
scenario was chosen from a location far north, to ensure that the outside
temperature would be lower than the inside reference temperature of the
application. The average temperature from the weather forecast was used
as a nominal value for the linearization of the nonlinear model (5.2)-(5.5).
The mpc controller managed by a sort of feed forward, to decrease the usage
of electric power in the heat storage tank when heated water from the solar
collector was available. The controller measured the water temperature out
of the solar collector and applied it to its predictor. The outside temperature
was also measured and applied in the same way. With normal weight on
heating element power u1 and constraint on the heat storage temperature
x1, we managed to have a low power loss while still maintaining a reasonable
temperature in the heat storage tank to avoid bacterias. It also resulted in
the heat storage having capacity to receive heated water from the solar col-
lector when it was available. The heat storage temperature had to be lower
constrained, since our linear model was inaccurate. The linearized model
was inaccurate due to the the strong nonlinearity in the differential equation
(5.2) describing the heat storage temperature in the nonlinear model.

When the heating element power u1 was low weighted, we saw that a lot
more energy was used to maintain the same objective, namely to hold the
reference temperature in our application. With the low u1 weighting, the
heat storage temperature had to be upper constrained, due to the mentioned
linearized inaccuracy. The low weighting on u1 made it more optimal to
use much electric power and with low flowrates in and out of the tank.
This resulted in the heat storage having significantly less capacity to receive
heated water from the solar collector. It also resulted in oscillations in both
states and inputs, since the low weight on u1 resulted in the heat storage
temperature x1 pushing against its upper constraint.

Using constraints on the outputs in the controlled simulations made the

79

inaccurate linearized model of the nonlinear process acting more reasonable.
This was also expected, since the different weights on inputs have less to say
in the cost function of the mpc controller when a state is close to one of
its constraints. It’s also well known that a mpc controller works better the
more accurate the linearized model describing the nonlinear process is.

The chosen testing scenario represented the situation where the outside
temperature was low enough that the application needed to be heated. Solar
radiation was also present in the test scenario. As mentioned in section 9.1,
a cooling functionality would have had to be incorporated if the outside
temperature was higher than the reference temperature of the application.
If enough hot water was tapped from the heat storage tank in terms of hot
water consumption, the application of the heat system could also have had
problems maintaining its reference temperature. Other energy contributions
mentioned in section 9.1 could then be used to contribute to ensure that the
heat system had enough energy to maintain the reference temperature in the
application and in the heat storage. The heating element power u1 would
also run on full power if the energy consumption from the heat storage tank
was high enough. This means that the mentioned conclusions only holds
for scenarios where solar radiation is present, and where moderate amounts
of energy are drawn out of the heat storage. If for instance the outside
temperature is to low, the heating element power u1 would have to run at
maximum power to maintain the reference temperature of the application.
At low temperatures, less solar radiation is usually present and the loss in
the solar collector is also higher. It is also reasonable that the less free
energy that is present, the less gain is obtained by controlling flow of free
and costly energy. The big dilemma is that free energy is present when one
need it least, and storing energy gained during summer for use during winter
is very difficult.

Despite of all the simplifications and assumptions made, we have been
able to show a principle that can be developed further with more accurate
and complicated models and controllers.

80

Appendices

81

Appendix A

m files

A.1 main.m
1
2 global latitude;
3 global longitude;
4 %Geografic coordinates
5 %Max 4 desimal resolution
6 latitude=’78.11’;
7 longitude =’15.34’;
8 metersAboveSea=’40’;
9

10 %Tilt and orientation of solar collector
11 tilt = 45; %in degrees, zero degrees is flat
12 orientation = 90; %in degrees (0=south),(90=east),(180=north) and (270=west)
13
14 %% script for collecting data
15
16 close all;
17 %Deleting old Error file
18 if (exist(’Error.txt’))
19 delete(’Error.txt’);
20 end
21
22 %Errorfile and written to status
23 global Error;
24 global ErrorStatus;
25 ErrorStatus=1;
26
27 Error = fopen(’Error.txt’,’a’);
28
29 %API version
30 api=’1.6’;
31
32 %Create URL, check URL and load in and save data
33 url=strcat(’http://api.met.no/weatherapi/locationforecast/’,api,’?lat=’,latitude,’;lon=’,...
34 longitude ,’;msl=’,metersAboveSea);
35 xmlFile=’weather.xml’;
36 xmlCheck=’check.xml’;
37
38 [check,status] = urlwrite(url,xmlCheck);
39
40 if (status)
41 delete(xmlCheck);
42 urlwrite(url,xmlFile);
43 else
44 fprintf(Error,’Could not read from URL \n’);
45 ErrorStatus = 0;
46 end
47
48 %Create DOM list from XML
49
50 DOMnode = xmlread(’modelvalidation.xml’);
51 listMeta = DOMnode.getElementsByTagName(’meta’);
52
53
54 %Get length of list
55 global from;

83

56
57 from = char(listMeta.item(0).item(1).getAttribute(’from’));
58 to = char(listMeta.item(0).item(1).getAttribute(’to’));
59
60 temp = regexp(from, ’T’, ’split’);
61 temp = temp(2);
62 temp = regexp(char(temp), ’:’, ’split’);
63 fromTime = str2num(char(temp(1)));
64 temp = regexp(to, ’T’, ’split’);
65 temp = temp(2);
66 temp = regexp(char(temp), ’:’, ’split’);
67 toTime = str2num(char(temp(1)));
68
69 clear temp;
70
71 if (fromTime < toTime)
72 extraLength = toTime - fromTime;
73 elseif (fromTime > toTime)
74 extraLength = toTime+24 - fromTime;
75 else
76 extraLength = 0;
77 end
78
79 global totalLength;
80 totalLength = 49+extraLength;
81
82 %Get element list
83 global allListItems;
84 allListItems = DOMnode.getElementsByTagName(’location’);
85 %%
86
87 %Data info
88
89 %Available Hour Data in Norway
90
91 %fog : unit = "percent"
92 %pressure : unit="hPa"
93 %temperatureProbability : #unit="probabilitycode" (Only available every six’th hour)
94 %highClouds : unit = "percent"
95 %windDirection : unit = "deg"
96 %mediumClouds unit = "percent"
97 %windSpeed : unit = "mps"
98 %cloudiness : unit percent
99 %lowClouds : unit="percent"

100 %windProbability : #unit="probabilitycode" (Only available every six’th hour)
101 %humidity : unit="percent"
102 %temperature : unit="celcius"
103
104 %# probabilitycode : certainty values.
105
106 %0 : [90% , 100%]
107 %1 : [50% , 90%>
108 %2 : [0% , 50%>
109
110 %%
111
112 %Check if coordinates is inside boundary
113 name = char(listMeta.item(0).item(1).getAttribute(’name’));
114
115 if (strcmp(name,’YR’))
116
117 %start getWeatherData
118
119 global cloudiness;
120 global temperature;
121
122 temperature = getWeatherData(’temperature’);
123 cloudiness = getWeatherData(’cloudiness’);
124 %end getWeatherData
125
126
127
128 %start getRadiation
129 radiation = getRadiationPerM2(tilt,orientation); %getRadiation(tiltAngle [degrees], Orientation [degrees])
130 %end getRadiation
131
132 else
133 fprintf(Error,’Outside coordinate boundary \n’);
134 ErrorStatus = 0;
135 end
136
137 %closing Error.txt
138 fclose(Error);
139

84

140 %Deleting Error.txt if it’s empty or exit run of script if not empty
141 if (ErrorStatus)
142 delete(’Error.txt’);
143 else
144 return;
145 end
146
147
148 mpcInit;

85

A.2 getWeatherData.m

1 function weatherData = getWeatherData(dataType)
2
3 %global values
4
5 global totalLength;
6 global allListItems;
7 global Error;
8 global ErrorStatus;
9

10 %end global values
11
12 switch dataType
13
14 case ’fog’
15 normalListnumber = 1;
16 extendedListnumber = 1;
17 data = ’percent’;
18
19 case ’pressure’
20 normalListnumber = 3;
21 extendedListnumber = 3;
22 data = ’value’;
23
24 case ’temperatureProbability’
25 normalListnumber = 5;
26 extendedListnumber = 5;
27 data = ’value’;
28
29 case ’highClouds’
30 normalListnumber = 5;
31 extendedListnumber = 7;
32 data = ’percent’;
33
34 case ’windDirection’
35 normalListnumber = 7;
36 extendedListnumber = 9;
37 data = ’deg’;
38
39 case ’mediumClouds’
40 normalListnumber = 9;
41 extendedListnumber = 11;
42 data = ’percent’;
43
44 case ’windSpeed’
45 normalListnumber = 11;
46 extendedListnumber = 13;
47 data = ’mps’;
48
49 case ’cloudiness’
50 normalListnumber = 13;
51 extendedListnumber = 15;
52 data = ’percent’;
53
54 case ’lowClouds’
55 normalListnumber = 15;
56 extendedListnumber = 17;
57 data = ’percent’;
58
59 case ’windProbability’
60 normalListnumber = 19;
61 extendedListnumber = 19;
62 data = ’value’;
63
64 case ’humidity’
65 normalListnumber = 17;
66 extendedListnumber = 21;
67 data = ’value’;
68
69 case ’temperature’
70 normalListnumber = 19;
71 extendedListnumber = 23;
72 data = ’value’;
73
74 end
75
76
77 delta = 5;
78 forLength1 = (totalLength-5)*delta;
79 delta=4;
80 forLength2Start = forLength1+delta;
81 forLength2Stop = forLength1+(3*delta);

86

82 clear delta;
83 l=1;
84
85
86
87 for k=0:5:forLength1
88
89 thisListItem = allListItems.item(k);
90
91 if (strcmp(dataType,thisListItem.item(normalListnumber).getTagName))
92
93 valueList(l) = str2num(thisListItem.item(normalListnumber).getAttribute(data));
94 l=l+1;
95
96 elseif (strcmp(dataType,thisListItem.item(extendedListnumber).getTagName))
97
98 valueList(l) = str2num(thisListItem.item(extendedListnumber).getAttribute(data));
99 l=l+1;

100
101 elseif (strcmp(dataType,’temperatureProbability’)||strcmp(dataType,’windProbability’))
102
103
104 else
105 fprintf(Error,’Problem with ListIndecies in loop 1 for %s \n’,dataType);
106 ErrorStatus = 0;
107 end
108
109 end
110
111 for k = forLength2Start:4:forLength2Stop
112
113 thisListItem = allListItems.item(k);
114
115 if (strcmp(dataType,thisListItem.item(normalListnumber).getTagName))
116
117 valueList(l) = str2num(thisListItem.item(normalListnumber).getAttribute(data));
118 l=l+1;
119
120 elseif (strcmp(dataType,thisListItem.item(extendedListnumber).getTagName))
121
122 valueList(l) = str2num(thisListItem.item(extendedListnumber).getAttribute(data));
123 l=l+1;
124
125 elseif (strcmp(dataType,’temperatureProbability’)||strcmp(dataType,’windProbability’))
126
127 else
128
129 fprintf(Error,’Problem with ListIndecies in loop 2 for %s \n’,dataType);
130 ErrorStatus = 0;
131 end
132
133
134 end
135
136
137 k=k+3;
138 thisListItem = allListItems.item(k);
139
140 if (strcmp(dataType,thisListItem.item(normalListnumber).getTagName))
141
142 valueList(l) = str2num(thisListItem.item(normalListnumber).getAttribute(data));
143
144
145 elseif (strcmp(dataType,thisListItem.item(extendedListnumber).getTagName))
146
147 valueList(l) = str2num(thisListItem.item(extendedListnumber).getAttribute(data));
148
149 elseif (strcmp(dataType,’temperatureProbability’)||strcmp(dataType,’windProbability’))
150
151
152 else
153
154 fprintf(Error,’Problem with ListIndecies in loop 3 for %s \n’,dataType);
155 ErrorStatus = 0;
156 end
157
158
159
160 weatherData = valueList;
161 end

87

A.3 getRadiationPerM2.m

1 function radiation = getRadiationPerM2(tiltAngle, orientation)
2
3 %global values
4
5 global from;
6 global totalLength;
7 global latitude;
8 global longitude;
9 global cloudiness;

10
11 %end global values
12
13 latitudeNum = str2num(latitude);
14 longitudeNum = str2num(longitude);
15
16 %days in the different months of year starting with january. We neglect
17 %leap year for simplification
18
19 month = [31 28 31 30 31 30 31 31 30 31 30 31];
20
21
22 temp = regexp(from, ’T’, ’split’);
23 temp1 = temp(1);
24 temp2 = temp(2);
25 fromDate = regexp(char(temp1), ’-’, ’split’);
26 fromClock = regexp(char(temp2), ’:’, ’split’);
27
28 fromMonth = str2num(char(fromDate(2)));
29 fromDay = str2num(char(fromDate(3)));
30 firstWholeHourGMT = str2num(char(fromClock(1)));
31
32 clear temp1 temp2;
33
34 % Calculation of which day of the year the prediction starts
35
36 daynumberStart = sum(month(1:fromMonth-1)) + fromDay;
37
38
39 %omega is angle in degree between south and the horizontal projection of the sun beam.
40
41 delta = 15;
42
43 if(firstWholeHourGMT < 12)
44
45 omegaStart = 360-(12-firstWholeHourGMT)*delta+longitudeNum;
46
47 elseif(firstWholeHourGMT > 12)
48
49 omegaStart = (firstWholeHourGMT-12)*delta + longitudeNum;
50
51 else
52 omegaStart = longitudeNum;
53 end
54
55
56 omega = [omegaStart:15:omegaStart+15*totalLength];
57
58
59
60 %Checking how many hours left of the day to set right daynumber
61
62 hoursLeftOfDay = 24-firstWholeHourGMT; %variable between 1 and 24;
63 k = totalLength-24-hoursLeftOfDay;
64
65 if (k>24)
66
67 l = k-24;
68 extraDays = [zeros(1,hoursLeftOfDay) ones(1,24) 2*ones(1,24) 3*ones(1,l)];
69
70
71 else
72 extraDays = [zeros(1,hoursLeftOfDay) ones(1,24) 2*ones(1,k)];
73
74 end
75
76 clear k l;
77
78 %Calculating declination vector
79
80 for k=1:totalLength
81

88

82 declinationVector(k) = 23.45*sind(360*(284+daynumberStart+extraDays(k))/365);
83
84 end
85
86 clear k;
87
88 %Calculating cosTheta1 which is angle divider through atmosphere. Since
89 %atmosphere has no tilt beta = 0
90
91 for k=1:totalLength
92 cosAtmosphereAngle(k) = sind(declinationVector(k))*sind(latitudeNum) +...
93 cosd(declinationVector(k))*cosd(latitudeNum)*cosd(omega(k));
94
95 end
96
97 %Calculating cosFixedPlaneAngle which is projection angle between fixed normal line of plane and
98 %sun beam
99

100 for k=1:totalLength
101
102 cosFixedPlaneAngle(k) = sind(declinationVector(k))*sind(latitudeNum)*cosd(tiltAngle)-...
103 sind(declinationVector(k))*cosd(latitudeNum)*sind(tiltAngle)*cosd(orientation)+...
104 cosd(declinationVector(k))*cosd(latitudeNum)*cosd(tiltAngle)*cosd(omega(k))+...
105 cosd(declinationVector(k))*sind(latitudeNum)*sind(tiltAngle)*cosd(orientation)*cosd(omega(k))+...
106 cosd(declinationVector(k))*sind(tiltAngle)*sind(orientation)*sind(omega(k));
107
108
109 end
110
111
112
113 %Start of Calcualting Radiation per m^2
114
115 ISol = 1360; % The solar Constant ISol = 1360 W/m^2
116
117 a=0.15; %Constants approximated for Oslo
118 b=0.14;
119 c=0.1;
120
121 for k=1:totalLength
122
123 %radiation will be set to zero if any of these angles are negative
124 if(cosAtmosphereAngle(k) <=0 || cosFixedPlaneAngle(k)<=0)
125
126 valueList(k) = 0; %radiation
127
128 else
129 %radiation and reduction because of cloudiness. Approximated
130 %reduction is 9.4 W/m^2%
131
132 valueList(k) = (ISol*(1-(a/sqrt(cosAtmosphereAngle(k))+((1-a/sqrt(cosAtmosphereAngle(k)))...
133 *(b/(cosAtmosphereAngle(k)+c)))))-(9.4*cloudiness(k)))*cosFixedPlaneAngle(k);
134
135
136 if(valueList(k) <= 0)
137
138 valueList(k) = 0; %can’t have negative radiation
139 end
140 end
141 end
142
143 %end of Calcualting Radiation if clear skies
144
145 radiation = valueList;
146
147
148 end

89

A.4 getSolarTempOut.m
1
2 function solarTempOut = getSolarTempOut(litrePerSek,radiationPerM2,T0)
3
4 % function that takes in flowrate in to collector, radiation and
5 % outside temperature
6
7 tIn = 5; %[Celsius] assuming constant temperature in to collector
8
9 if (radiationPerM2 <=0) % No point calculating anything if radiation is zero or less

10 solarTempOut=tIn;
11 return
12 end
13
14 if (litrePerSek == 0)
15 solarTempOut = 0;
16 return
17 end
18
19
20 cw = 4184; %[J/Celsius*kg] Heat capacity of water
21
22 %CollectorParameters
23 eta0 = 0.8;
24 k1 = 3; %[W/m^2Celsius]
25 k2 = 0.03; %[W/m^2Celsius^2]
26 collectorArea = 30; %[m^2]
27 %end CollectorParameters
28
29
30
31 litrePerSekPerM2 = litrePerSek/collectorArea;
32
33 b = 0.25*k2;
34 c = cw*litrePerSekPerM2+0.5*k1+0.5*k2*tIn-k2*T0;
35 d = (-cw*litrePerSekPerM2+0.5*k1+0.25*k2*tIn-k2*T0)*tIn + (k2*T0-k1)*T0 - eta0*radiationPerM2;
36
37
38
39 %have to check that eta stays innside it’s boundry. It must be between
40 %zero and eta0. an outside temperature varmer than water temperature
41 %will not give positive contribution to eta
42
43 temp1 = (-c/(2*b))+(sqrt(c^2-4*b*d))/(2*b); %temporary temperature
44
45 temp2 = eta0-(k1/radiationPerM2)*(((temp1+tIn)/2)-T0)-(k2/radiationPerM2)*(((temp1+tIn)/2)-T0)^2; %temporary eta
46
47 if (((temp1+tIn)/2)< T0 || (c^2-4*b*d)< 0) %keeps (tW-T0)/I positive and checks that tOut is real
48 eta = 0.8;
49 tOut1 = (eta*radiationPerM2)/(cw*litrePerSekPerM2) + tIn;
50
51 elseif (temp2<0)
52
53 tOut1 = tIn;
54
55 else
56
57 tOut1 = temp1;
58
59 end
60
61 if (tOut1 >= 100)
62
63 tOut1 = 100;
64 end
65
66 solarTempOut=tOut1;
67 end
68
69

90

A.5 mpcInit.m

1 %% initiating constants
2
3 mr = 50; %[kg]
4 cw = 4184; %[j/(kg celsius)]
5 g1 = 100; %[w/celsius]
6 g2 = 500; %[w/celsius]
7 g3 = 130; %[w/celsius]
8 mRoomCroom = 1.8e7; %[j/celsius]
9

10
11 %% getting global data
12 global temperature;
13 global totalLength;
14
15
16 %% initial linearization points
17
18 %states
19 x1 = 70; %[degrees celsius]
20 x2 = 750; %[litres]
21 x4 = 20; % [degrees celsius]
22
23 %disturbances
24 v1 = 70; %[degrees celsius]
25 v2 = 0; %[litres/s]
26 v3 = 20; %[degrees celsius] [constant]
27 v4 = sum(temperature)/totalLength; %[degrees celsius]
28
29
30 %% Finding rest of nominal values
31 % solving by setting all nonlinear derrivatives to zero and back
32 % substitution
33
34 x3 = x4*(1+(g3/g2)) - (g3/g2)*v4;
35 u3 = (g2*(x3-x4)) / (cw*(x1-x3));
36 u2 = u3;
37 u1 = ((-cw*u2*v1 + cw*x1*(u3+v2) + g1*(x1-v3)))/1000;
38
39 %inserting in vectors
40 xNom = [x1 x2 x3 x4]’;
41 uNom = [u1 u2 u3]’;
42 vNom = [v1 v2 v3 v4]’;
43
44 %% Obtaining matrix components
45
46 a11 = (-1/x2)*(u3+v2+(g1/cw));
47 a12 = (-1/x2^2)*(((1000*u1)/cw)+(u2*v1)-(x1*u3)-(x1*v2)-(g1/cw)*(x1-v3));
48 a31 = u3/mr;
49 a33 = -((u3/mr)+(g2/(mr*cw)));
50 a34 = g2/(mr*cw);
51 a43 = g2/(mRoomCroom);
52 a44 = -((g2+g3)/mRoomCroom);
53
54 b11 = 1000/(cw*x2);
55 b12 = v1/x2;
56 b13 = -(x1/x2);
57 b22 = 1;
58 b23 = -1;
59 b33 = (x1-x3)/mr;
60
61 c11 = u2/x2;
62 c12 = -(x1/x2);
63 c13 = g1/(cw*x2);
64 c22 = -1;
65 c44 = g3/mRoomCroom;
66
67 A = [a11 a12 0 0 ; 0 0 0 0 ; a31 0 a33 a34; 0 0 a43 a44];
68 B = [b11 b12 b13 ; 0 b22 b23 ; 0 0 b33 ; 0 0 0];
69 C = [c11 c12 c13 0 ; 0 c22 0 0 ; 0 0 0 0 ; 0 0 0 c44];
70
71 temp = -A*xNom-B*uNom-C*vNom;
72 temp1 = temp(1);
73 temp2 = temp(2);
74 temp3 = temp(3);
75 temp4 = temp(4);
76
77 W = [temp1 0 0 0 ; 0 temp2 0 0 ; 0 0 temp3 0 ; 0 0 0 temp4];
78
79 clear temp temp1 temp2 temp3 temp4;
80
81 D = [B C W];

91

82 G = eye(4);
83 H = zeros(4,11);
84
85 %creating discrete model
86 ts = 900;
87 model = c2d(ss(A,D,G,H),ts);
88
89 %clear D G H;
90
91 %Assign types of I/O variables
92 model=setmpcsignals(model,’MV’,[1 2 3],’MD’,[4 6 7 8 9 10 11],’UD’,[5]);
93
94
95
96 %Assign names to I/O variables
97
98 model.InputName = {’u1’;’u2’;’u3’;’v1’;’v2’;’v3’;’v4’;’v5’;’v6’;’v7’;’v8’};
99 model.Outputname = {’x1’;’x2’;’x3’;’x4’};

100
101
102 %Define I/O constraints and units
103 clear InputSpecs Outputspecs;
104
105 InputSpecs(1) = struct(’Min’,0,’Max’,10,’RateMin’,-Inf,’Ratemax’,Inf,’Units’,’kW’);
106 InputSpecs(2) = struct(’Min’,0,’Max’,0.1,’RateMin’,-Inf,’Ratemax’,Inf,’Units’,’liters per second’);
107 InputSpecs(3) = struct(’Min’,0,’Max’,0.1,’RateMin’,-Inf,’Ratemax’,Inf,’Units’,’liters per second’);
108
109 Outputspecs(1) = struct(’Min’,70,’Max’,100,’Units’,’degrees celsius’);
110 Outputspecs(2) = struct(’Min’,0,’Max’,1000,’Units’,’kg’);
111 Outputspecs(3) = struct(’Min’,0,’Max’,100,’Units’,’degrees celsius’);
112 Outputspecs(4) = struct(’Min’,0,’Max’,100,’Units’,’degrees celsius’);
113
114
115
116 %Define prediction and control horizon and set up the MPC object
117 p = 96;
118 m = 8;
119
120 Weights = struct(’ManipulatedVariables’,[10 100 100],’ManipulatedVariablesRate’,[0 0 0],...
121 ’OutputVariables’,[0 0 0 1000]);
122
123 MyMPC = mpc(model,ts,p,m,Weights,InputSpecs,Outputspecs);
124 setoutdist(MyMPC,’remove’,[1 2 3 4]);
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

92

Appendix B

Simulink diagrams

B.1 Heat system

Figure B.1: Heat System Overview

93

Figure B.2: Heat system

94

Figure B.3: Heat temperature x1

Figure B.4: Heat storage mass x2

95

Figure B.5: Radiator temperature x3

Figure B.6: Application temperature x4

96

Fi
gu

re
B
.7
:
H
ea
t
m
od

el
w
ith

m
pc

co
nt
ro
l(

N
ot
ic
e
th
at

a
fil
te
r
w
ith

ga
in

1
an

d
tim

e
co
ns
ta
nt

0.
5
se
co
nd

s
is

ad
de

d
on

th
e

ou
tp
or
t
on

th
e
so
la
r
co
lle

ct
or

to
av
oi
d
pr
ob

le
m
s
w
ith

al
ge
br
ai
c
lo
op

s
w
he

n
sim

ul
at
in
g.
)

97

98

Bibliography

[1] Jens G. Balchen, Trond Andresen, and Bjarne A. Foss. Regulering-
steknikk. Institutt for teknisk kybernetikk, fifth edition, 2004.

[2] E.F Camacho and C. Bordons. Model Predictive Control. Springer,
2005.

[3] S.J. Frank L. Pedrotti, Leno M. Pedrotti, and Leno S. Pedrotti. IN-
TRODUCTION TO OPTICS. Pearson Prentice Hall, third edition,
2007.

[4] Vaillant Group. Vaillant, 2009. http://www.vaillant.com/.

[5] Mathworks. Matlab, 2009. http://www.mathworks.com/access/helpdesk/help/helpdesk.html.

[6] Norwegian Institute of Metrology. Weather API, 2009.
http://api.met.no/weatherapi/locationforecast/1.6/documentation.

[7] John Rekstad. Aventa, 2009. http://www.aventa.no.

[8] John Rekstad and Michaela Meir. ENERGY AND PHYSICS. Depart-
ment of Physics, University of Oslo, Norway, 2008.

[9] Sintef. niprox, 2002. http://www.niprox.com/.

[10] Solelec. Solelec, 2009. http://www.solelec.lu/.

99

