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Abstract

In many ways, the simple act of walking is one of the most complex

modes of locomotion there is. For control-system scientists the peri-

odic hybrid dynamical nature of walking systems presents a number of

unique challenges, many of which still lack satisfying solutions. This

thesis applies fairly recent concepts of motion generation and control

to generate steps and gaits for such a walking robotic system. The

robot, SemiQuad, developed and built at École de Nantes in France,

is a five degree of freedom, underactuated periodic hybrid dynamical

system.

This text presents a generic method of reparametrizing a given

smooth motion by the use of virtual holonomic constraints, and com-

ments on the conditions required for the method to succeed. It is

then shown how virtual holonomic constraints can be generated from

scratch, and certain properties of holonomically constrained systems

are investigated. From the generated constraints and associated mo-

tion, a controller based on the principle of transverse linearization is

created, and closed loop characteristics of the system are observed.
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Introduction

Motivation

The scientific endeavor to achieve legged locomotion is a work in progress.

Useful theoretical notions such as passive dynamics and zero moment point

have enabled us to create walking robots; however, state-of-the-art walking

robots of today still leave a lot to be desired when compared to their

biological counterparts. Robustness and efficiency are key elements on

which to work on to bridge the gap.

Walking dynamical systems present unique challenges for control-system

scientists for a number of reasons. First of all, a walking dynamical system

follows a periodic motion, and stabilizing this type of motion is quite dif-

ferent from, and arguably more difficult than, stabilizing an equilibrium.

Second, a proper walking system will often be desired to have intervals of

the gait period where the robot is locally unstable, prompting the definition

of new concepts of stability. Finally, a walking system is a natural hybrid

system, having intervals of continuous dynamics, and intervals of discrete

impacts. There seems to be a lack of generic mathematical principles for

systems like this, and solutions are often of an ad hoc nature.

However, recently, extensive research has been done presenting new tools

designed to cope with systems of this type. Papers on virtual holonomic

constraints [3, 6, 12, 14] have introduced new concepts and methods for

design, analysis and controller synthesis for underactuated, periodic hybrid

dynamical systems.

However, in papers where virtual holonomic constraints are used alongside
controllers based upon transverse linearization examples are often shown for
simple systems, and this thesis therefore contributes by applying this theory of
motion generating and orbital stabilization to a larger, five degree of freedom
system, SemiQuad.
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Background

Control-system scientists are, when all is said and done, concerned with sta-

bility. The scientific field of legged locomotion is graced with several such

concepts, from the overly restrictive to the not so restrictive where the only

real criterion of stability is to “not fall down”[9]. The oldest paradigm of

walking stability is that of static stability. Static stability means that the cen-

ter of mass should be kept within the support polygon spanned by the legs.

This is a very restrictive stability criteria, and drastically limits the speed

attainable. A huge leap forward was therefore made when Vukobratović in

the early 70’s introduced the concept of zero moment point. As the name

implies, the zero moment point (ZMP) criterion demands that the robots

center of pressure at all times lies beneath the stance leg. That is, beneath

the stance leg there should be a point about which there is no moment. The

ZMP-criterion is far less restrictive than static stability as it allows the center

of mass to move outside the support polygon, but it still leads to awkward

looking motion of speed and efficiency far inferior to that of human motion.

[9]

This leads us to the seminal paper of McGeer [10], published in 1990,

which introduces the concept of passive dynamic walking. Stability in the

context of passive dynamic walking is seen in light of the stability of the

limit cycle associated with the motion. This approach sparked a renewed

interest in the field of legged locomotion[7, 16, 17], and has been shown

to generate fluid gaits with impressive results in terms of efficiency and

passive stability.

In 2008 Freidovich, Mettin, Shiriaev and Spong [6] showed how to apply

the theory of virtual holonomic constraints to analyze the passive gait of

the compass-gait biped. The concepts of virtual constraints and transverse

linearized controllers are fairly recent, and are as tools very well suited for

periodic, hybrid dynamical systems [3, 6, 12, 14]. Applying this theory to

the legged robot, SemiQuad, therefore seemed like a natural contribution

to the field of legged locomotion.
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Project scope

This thesis will apply several tools related to the concept of virtual holo-

nomic constraints to generate motion for a robot SemiQuad, developed at

École de Nantes in France. First, an effort will be made to convert the

original motion devised at École de Nantes to a parameterization based on

virtual holonomic constraints. Then motion will be generated from scratch

in a general way that allows for simple optimization. Then, a controller will

be constructed using a control methodology called transversal lineariza-

tion. Due to particular properties of virtually constrained systems this type

of controller has been showed to work well for such systems.

Paper layout

Section 1 covers basic material related to dynamical systems and virtual

holonomic constraints. Section 2 then proceeds with a short review of the

SemiQuad system, both of the original dynamics and the new dynamics.

Section 3 presents a generic method of reparameterizing the motion of

a dynamical system to virtual holonomic constraints. Section 4 covers

the basic methodology of generating virtual holonomic constraints from

scratch, and an example gait for SemiQuad is generated. Section 5 briefly

restates on the theory of transversal linearization of dynamical systems, and

outlines the design of a controller designed to ensure orbital stability of the

motions designed previously. Section 6 briefly looks into the closed-loop

behavior of the controlled system. Section 7 contains a brief discussion of

the research done throughout this thesis. Section 8 ends the thesis with a

brief conclusion and a selection of prospects for future work.
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1 Preliminaries

The theory covered within this thesis requires a certain theoretical foun-

dation. This section starts with a brief restatement of the Euler-Lagrange

Formalism and how it applies to dynamical systems. From there, as an

extension of the Euler-Lagrange theory, the subject of virtual holonomic

constraints will be explained throughout the last part of this section.

1.1 Euler-Lagrange Formalism

The Euler-Lagrange Formalism provides a structured and elegant way of

modeling mechanical systems.

1.1.1 Dynamics of rigid bodies

The dynamics of robotic systems like the one described in this text are

commonly classified by the term rigid body dynamics. A rigid body is a non-

deformable object with an associated mass, a center of gravity, a moment

of inertia, and both translational and rotational degrees of freedom. A

robotic system will usually be composed of several rigid bodies – links
– interconnected by either revolving or prismatic joints. Revolving joints

enable the links to rotate relative to each other, and prismatic joints allow

for links to extend and retract. Each joint adds a degree of freedom (DOF)

to the system, and each joint is associated with a generalized coordinate de-

scribing the state of the joint. For each of the actuated joints there will also

be a generalized force or generalized torque. The generalized coordinates

describe how the links relate to each other, and how the links relate to the

surrounding environment. [11, 15]
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1.1.2 The Euler-Lagrange equations

The purpose of using the Euler-Lagrange Formalism is to obtain equations

which describe the relation between the generalized coordinates and the

generalized forces of the rigid body system. These equations will be second

order differential equations, one for each of the generalized coordinates.

To develop dynamical equations through the use of the Euler-Lagrange For-

malism one starts by formulating expressions of the systems’ total kinetic

and potential energy in terms of generalized coordinates. For systems of

more than one degree of freedom, these quantities are often written on the

matrix form

K(q, q̇) =
1

2
q̇TM(q)q̇ (1)

and

V(q) =
∑
i

mig
T rci (2)

where M(q) is a matrix composed of the masses and inertias of the links,

q is a vector of the generalized coordinates, mi is the mass of each link, g

is a vector specifying the direction and magnitude of gravity in the inertial

frame of reference, and rci is the position of the center of mass of link i.

From these quantities we define the Lagrangian as L = K − T , and the

dynamical equations are found by solving [15, 11]

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= τi. (3)

Performing the necessary calculus upon the above expression for each of

the generalized coordinates yields a system of differential equations often

presented on the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ (4)

where q and M(q) are defined as before, C(q, q̇) is the Coriolis matrix

and G(q) is a matrix of gravitational forces. B(q)τ is the generalized
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force being applied to each of the actuated degrees of freedom. If there

are unactuated degrees of freedom, as with the SemiQuad, the system

is labeled non-holonomic. Otherwise, the system is labeled holonomic. A

prime example of a holonomic system is the human arm. In fact, in terms

of degrees of freedom the arm is redundant, or overactuated, having more

degrees of freedom than strictly necessary to maneuver the hand within its

workspace1. For further details on the Euler-Lagrange Formalism and rigid

body dynamics the reader is referred to [15] and [11].

1.1.3 Computational simplifications

While calculating (3) will yield (4), several tricks can be used to lessen the

computational burden. First off all, from the expression for kinetic energy

(1) it can be seen that M(q) can be extracted by computing the Hessian

of K(q, q̇) = 1
2
q̇TM(q)q̇ with respect to the vector q̇. This procedure is

implemented by computing the kinetic energy Jacobian twice, transposing

the intermediary result between the two Jacobians.

M(q) =


∂2K

∂q̇1 ∂q̇1

∂2K
∂q̇1 ∂q̇2

. . . ∂2K
∂q̇1 ∂q̇n

∂2K
∂q̇2 ∂q̇1

∂2K
∂q̇2 ∂q̇2

. . . ∂2K
∂q̇1 ∂q̇n

...
∂2K

∂q̇n ∂q̇1

∂2K
∂q̇n ∂q̇2

. . . ∂2K
∂q̇n ∂q̇n

 (5)

With M(q) extracted, the Coriolis matrix C(q, q̇) can be obtained by calcu-

lating the Christoffel Symbols on the form

Ck, j =
1

2

(
∂

∂qi
Mk, j +

∂

∂qj
Mk, i −

∂

∂qk
Mi, j

)
q̇i (6)

1Workspace: The workspace of a manipulator is the total volume spanned by all
possible joint configurations.
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for all elements Cj, k for j, k = 1, . . . , n of C(q, q̇). Finally, G(q) can be

computed as the Jacobian of the potential energy V with respect to q

G(q) =


∂V
∂q1
∂V
∂q2
...
∂V
∂qn

 . (7)

These steps are easily implemented in a symbolic math environment like

Maple or in the symbolic toolbox of Matlab, and results in a set of differ-

ential equations on matrix form. Formulating the equations in such a way

makes the system easier to handle and analyze.

1.1.4 Contact forces

To account for external contact forces, the system needs to be augmented.

In this text, which ultimately is about walking robots, contact forces arise

where and when the feet touch the floor. Monitoring these forces is rele-

vant, as it will tell us about when the feet lift off the floor, and whether

or not the feet could end up sliding because of large horizontal forces. It

is important to ensure that the ratio between the normal and horizontal

forces are less than some assumed friction coefficient. This range of valid

ratios is commonly labeled the friction cone.

The contact forces are initially formulated [11, Chapter 6] as constraints on

the form R(q) = k where R(q) are the forward kinematics of the contact

point, and k is the point where the contact point is to remain stationary.

These constraints are then differentiated into Pfaffian constraints on the

form A(q)q̇ = 0 where A(q) now is the Jacobian of the point in touch with

the environment. To solve (4) with these constraints, the constraints are

differentiated again into A(q)q̈ + A′(q)q̇2 = 0, and then the augmented

7



dynamics are rewritten as[
M AT

A 0

][
q̈

λ

]
= −

[
C(q, q̇)q̇ +G(q)− τ

A′q̇2

]
(8)

which when solved numerically will yields not only the constrained dynam-

ics, but also the forces λ required to satisfy the constraints.

1.2 Virtual holonomic constraints

Virtual holonomic constraints is a powerful albeit fairly simple concept.

It paves the way for several mathematical tools which can simplify the

design and control of robotic systems. Holonomic constraints are geometric

relations on the form R(q) = 0 which in some way limit the positional

freedom of the system. They are as such are a natural part of most robotic

systems. As an example, a joint fixed at a certain angle or that through

some mechanical means is limited to some sort of predefined path is sub-

jected to holonomic constraints. Now, if the joint is actuated and the

constraint is maintained through actuator control, the joint is virtually
constrained.

The method of using virtual holonomic constraints is at its core a device

for handling underactuated system, often where oscillatory motion is de-

sired. In the simplest case there is a single degree of underactuation. After

applying constraints to such a system its behavior will be uniquely defined

by it’s initial condition, and a single autonomous differential equation will

suffice to describe the entire evolution of the system. Virtual holonomic

constraints are defined as functions of a common scalar variable, by con-

vention named θ. This variable serves as a measure of progress throughout

the motion trajectory, and it will for certain purposes be desired that θ is

a monotonic function of time. In this case, an obvious and ever present

option of θ is the distance traveled along the orbit of the motion defined by

O(q?) = {[q, q̇] ∈ Rn × Rn : q = q?(t), q̇ = q̇?(t), t ∈ [0, Th]} , (9)
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but for many systems simpler choices are available. The constraints them-

selves are then formulated as smooth functions

θ = θ?(t), q1 = ϕ1(θ), q2 = ϕ2(θ) . . . qn = ϕn(θ) , (10)

with derivatives

θ̇ = θ̇?(t), q̇1 = ϕ′1(θ)θ̇, q̇2 = ϕ′2(θ)θ̇ . . . q̇n = ϕ′n(θ)θ̇ . (11)

As stated, there is one constraint for each actuated degree of freedom.

After substituting the constraints and their derivatives into the differential

equations, a system with one degree of underactuation can be written as

α1(θ)θ̈ + β1(θ)θ̇2 + γ1(θ) = 0 (12)

αi(θ)θ̈ + βi(θ)θ̇
2 + γi(θ) = τi, i = 2 . . . n . (13)

The first equation (12), often labeled the α-β-γ-equation , or the reduced
dynamics, will, when integrated, describe the full evolution of the scalar

quantities θ, θ̇ and θ̈, assuming that all constraints are held invariant. That

is, the equation is valid as long as there exist a controller which makes the

system respect the constraints applied. During design the constraints are

assumed to be held perfectly invariant, but for the actual dynamic system

this is obviously not the case. The autonomous α-β-γ-equation (12) is used

for planning motion, and by assuming the constraints to be invariant, a

desired motion trajectory can be generated.

By substituting the motion, [θ, θ̇, θ̈]T found during integration of the re-

duced dynamics (12), into the actuated equations (13), the nominal force

vector τ required to achieve the motion is obtained. This is a highly useful

property, as it allows force and torque to be taken into consideration when

designing motion, ensuring that the required forces are, at the very least,

feasible. Extrapolating, this property might also simplify the search for

force-optimal trajectories.

During a phase where constraints are to be generated it can for some

9



purposes be sensible to insert constraints on the form

θ = θ?(t), q1 = ϕ1(P, θ), q2 = ϕ2(P, θ) . . . qn = ϕn(P, θ) . (14)

This means that the constraints can be swapped effortlessly, and that nu-

merical methods can easily be implemented to take advantage of the re-

duced dynamics. The α-β-γ-equation is then written as

α1(θ, P )θ̈ + β1(θ, P )θ̇2 + γ1(θ, P ) = 0 (15)

where P is a vector of parameters like, for instance, coefficients of polyno-

mial constraints of a given order. Such a rewrite is of high practical value.

As stated, the fact that virtual holonomic constraints deal with purely ge-

ometrical constraints applied to underactuated systems means that the

method lends itself very well to generating oscillating motion. Oscillatory

motion will be shown to play a central role in generating gaits for Semi-

Quad.

1.2.1 Properties of the reduced dynamics

The behavior of the virtually constrained system (12) is very transparent

compared to the original system. Below, a few key properties central to the

later controller synthesis are restated.

Lemma 1 [12, Lemma 1] Along any solution [q(t), q̇(t)] of system the follow-
ing identity holds

d2

dt2
q(t) =

d

dq

(
1

2
q̇2(t)

)
(16)

Proof Applying the chain-rule to d2

dt2
q(t) leads to the line of equalities

d2

dt2
q(t) =

d

dt
(q̇(t)) =

d

dq
(q̇(t))

d

dt
(q(t)) (17)

= q̇(t)
d

dq
(q̇(t)) =

d

dq

(
1

2
q̇2(t)

)

10



where the equality of the first and last expression gives the identity (16).

The identity given in lemma 1 allows us to redefine our system, from a

second order differential equation like (12) to a first order differential

equation on the form

1

2
α(θ)

d

dθ
(θ̇2) + β(θ)θ̇2 + γ(θ) = 0. (18)

A system such as the above is integrable for any choice of α(θ), β(θ) and

γ(θ) assuming that α(θ) 6= 0 for the relevant interval of θ. Lemma 1 is

necessary for the next result, theorem 1.

The next result gives us a general integral of motion2 for the system.

Theorem 1 [12, Theorem 1] Along any solution θ(t) of the nonlinear system

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (19)

the integral function

I(θ, θ̇, θ(0), θ̇(0)) = θ̇2 − e−
R θ
θ(0)

2β(τ)
α(τ)

dτ θ̇2(0)

+

∫ θ

θ(0)

e
R θ
s

2β(τ)
α(τ)

dτ 2γ(s)

α(s)
ds

(20)

preserves its zero value I(θ, θ̇, θ(0), θ̇(0)) ≡ 0 for all t ≥ 0 for which the
solution θ(t) is defined.

Proof By using the identity (16) found in lemma 1 and performing the substi-
tution θ̇2(t) = Y (q(t)), we’re left with a linear, first-order differential equation
on the form

d

dθ
Y + a(θ)Y = b(θ) (21)

where a(q) = 2β(θ)
α(θ)

and b(q) = −2γ(θ)
α(θ)

. First order differential equations like

2A general integral of motion of a dynamical system is a function of the systems state
and initial conditions which remains constant along the solutions of the system[12].

11



this have a general solution on the form

Y = e
R θ
θ(0) a(τ) dτ

[
Y (0) +

∫ θ

θ(0)

e−
R s
θ(0) a(τ) dτb(s) ds

]
. (22)

By moving the right-hand side of (22) over to the left side, and by undoing
the previous substitutions we have proven (20).

Remark The source [12] presents a more general result, for Bernoulli equa-
tions, but the proof is essentially the same.

Theorem 1 provides a measure of to what degree the system is following its

predefined trajectory [12] and therefore also to what degree the constraints

are being respected. Failure of keeping the constraints invariant will result

in the general integral of the system deviating from zero, and it will be

shown to constitute an essential part of the controller design.

12



2 SemiQuad

At the core of this thesis is a robot named SemiQuad. SemiQuad has been

designed and constructed at École de Nantes in France. While the name

might imply quadrupedal motion, the robot only has two legs. However,

as the motion is limited to the sagittal plane3, the robot is designed for

motions resembling that of a quadruped. Specifically, SemiQuad walks

using what is know as a curvet gait. SemiQuad is a seven DOF robot

with four joint variables q1, q2, q3, q4, and three variables α, x, y defining

the absolute orientation of the robot relative to the environment. α is

the absolute angle of the torso, relative to the horizontal axis, and x, y

represents the absolute position of the torso center.

2.1 Assumptions related to the gait of SemiQuad

SemiQuad is designed for a particular type of gait defined by the following

points:

There is no flight phase during the gait cycle. The robot is always in

contact with the ground surface, and the motion therefore consists

of two distinct phase types: an underactuated single support phase

and an overactuated double support phase.

During the double support phase both feet are in contact with the sur-

face. The robot is at this point overactuated, and may freely alter its

configuration as long as the contact between the legs and the surface

is respected. That is, as long as the robot is in double support phase,

the distance between the legs remains constant. As virtual holonomic

constraints relate to underactuated systems, this part of the motion

will not be modeled.
3Sagittal plane: For bilaterally symmetric objects, the sagittal plane is an imaginary,

two-dimensional plane which separates the left part of the body from the right. Alterna-
tively, the sagittal plane can be said to be the plane on which the silhouette of the robot
will fall when viewed from the side.
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The single support phase is characterized by the robot only having one

leg in contact with the surface. The robot is underactuated due to

the lack of actuation of the first “joint”, between the ground and the

link in contact with the ground. The leg in contact with the floor,

the stance leg, is assumed to neither slide nor lift. The other leg,

the swing leg, moves freely. This is the phase for which motion will

be generated. Due to not modeling the double support phase,

the single support phase of gaits are assumed to begin with zero

initial velocity.

Impacts are, due to the impact model chosen, assumed to instantly damp

the motion of SemiQuad upon impact, resulting in no bounce or

slipping. Post impact the robot enters double support phase, and any

effect the impact could have had on the robot configuration can be

counteracted during this phase.

The gait cycle step is considered to begin in double support phase. Then

the front leg is elevated, and the robot enters a single support phase.

While in single support phase, the front leg is extended forward some

distance before it again touches the ground. At this point the robot

again enters double support phase, and may freely alter its configu-

ration. The robot then completes the gait cycle by raising its hind leg

and dragging it forward, entering a configuration where the distance

between the two legs is equal to that of the initial configuration.

Forward gait direction is considered to be towards the right in the sagittal

plane.

2.2 The original model

The dynamic equations of the system have been found through the use of

the Euler-Lagrange Formalism, and have a structure similar to (4). M(q)

and C(q, q̇) were 7× 7 matrices, G(q) was a 7× 1 matrix and the vector of

generalized force τ had one entry for each of the four actuated joints.

14



Figure 1: The entire curvet gait cycle. First step is an extension of the front
leg. Second step is a retraction of the hind leg.

To account for the feet being in contact with the ground, the dynamics

were augmented as shown in section 1.1.4, leading to the model being

formulated asM(q) AT1 AT1

A1 02×2 02×2

A2 02×2 02×2


 q̈

λ1

λ2

 = −

C(q, q̇)q̇ +G(q)− τ
A′1q̇

2

A′2q̇
2

 . (23)

During single support phase, the constaint corresponding to the swing

leg was switched off, making the dynamics usable both during single and

double support phases. Switching a constraint off meant reformulating the
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dynamics asM(q) AT1 AT1

A1 02×2 02×2

02×7 02×2 I2×2


 q̈

λ1

λ2

 = −

C(q, q̇)q̇ +G(q)− τ
A′1q̇

2

A′2q̇
2

 , (24)

for the case where the leg corresponding to the second constraint was free.

The dynamics would even be valid for flight phases. However, for applying

virtual holonomic constraints we wanted a model of a more straightforward

structure.

2.3 The simplified model

This original formulation was very flexible; however, for our purposes –

generating motion for the single support phase only – a simpler model with

fewer degrees of freedom was desired. According to the assumptions listed

in section 2.1, the stance leg neither leaves the ground nor slides along

the surface. Assuming this to be true, this simplification meant that the

five-link robot could be represented by five degree of freedom dynamics,

with a single unactuated joint. Note that when designing steps later on,

confirming that the ratio between the vertical and horizontal force between

the stance leg and the ground is within the friction cone is prudent.

2.3.1 The single support phase

During the single support phase the robot can be modeled as a five-link

robot with revolving joints. The stance leg is connected to the ground via

an unactuated revolving joint. The generalized coordinates are chosen in

such a way that nominal joint values will be on the interval qi ∈ (0, π)

during the first period of the gait.

To develop this model, all joint angles had to be defined in absolute co-

ordinates. For complex systems in three dimensional space it would be
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Figure 2: The new five-link SemiQuad model. The model represents the
robot dynamics during single support phase, where motion is restricted to
the sagittal plane.

natural to introduce Denavit-Hartenberg Parameters [15] and homoge-

neous transformation matrices at this point. However, as this system is

two-dimensional and of a fairly straightforward structure, a much simpler

approach did equally well. Based on the choice of joint variables the

absolute coordinates of the system were defined by

a1 = q1,

a2 = a1 − q2,

a3 = a2 − q3,

a4 = a3 − q4,

a5 = a4 − q5. (25)
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From this, the position of mass centers for all links was computed to be

p1 = [(l1 − s1) cos(a1), (l1 − s1) sin(a1)]

p2 = [l1 cos(a1) + (l2 − s2) cos(a2),

l1 sin(a1) + (l2 − s2) sin(a2)]

p3 = [l1 cos(a1) + l2 cos(a2) + s3 cos(a3),

l1 sin(a1) + l2 sin(a2) + s3 sin(a3)]

p4 = [l1 cos(a1) + l2 cos(a2) + l3 cos(a3) + s4 cos(a4),

l1 sin(a1) + l2 sin(a2) + l3 sin(a3) + s4 sin(a4)]

p5 = [l1 cos(a1) + l2 cos(a2) + l3 cos(a3) + l4 cos(a4) + s5 cos(a5),

l1 sin(a1) + l2 sin(a2) + l3 sin(a3) + l4 sin(a4) + s5 sin(a5)] (26)

where li denotes the lengths of the individual links and si denotes the

distance between a link’s first joint and its center of mass. From these

vectors, the kinetic energy was calculated as

K(q, q̇) =
1

2

5∑
i=1

(miṗi · ṗi) +
1

2

5∑
i=1

(Iyiȧi · ȧi) +
1

2

5∑
i=2

(
Iai−1q̇

2
iN
)

(27)

where mi is the link mass, Iy is the link inertia, and where Ia and N is

the motor inertia and the gearing ratio, respectively. Finally, the potential

energy was calculated as

V(q) =
5∑
i=1

(mi[0, g] · pi) . (28)

From the kinetic and potential energies the Lagrangian was defined, and

the model computed according to the method listed in section 1.1.3. For

the complete Maple code used, see appendix A. The single support phase

dynamics could then be defined by equations on the form (4).
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2.3.2 The double support phase

As an exercise, the simplified dynamics were initially augmented with con-

tact constraints for the front leg to cope with the double support phase.

However, as the system is overactuated during double support phase, vir-

tual holonomic constraints are not really applicable. Adding the contact

constraint to the autonomous constrained system is almost equivalent to

constraining a one-link robot – effectively hindering the motion altogether.

Of course, there does exist virtual holonomic constraints which will allow

motion in spite of the front leg being constrained, for instance, moving

the robot in a parallelogram-fashion obviously works. However, for more

useful motions adhering to this extra constraint adds severe complexity.

For this reason the double support phase was omitted, meaning that the

generated motion should be assumed to begin the moment either one of the

legs left the floor, in contrast to the alternative where the double support

phase kick-off is included as part of the motion. In other words, the motion

generated later will begin with zero velocity.

2.3.3 Transformation of the generalized coordinates

There is a simple, algebraic transformation (29) between the old gener-

alized coordinates and the new. This allows us to completely map the

relevant single support phase motion generated for the old 7-DOF model

to the new 5-DOF model. 
q1

q2

q3

q4

q5

 =


α + q̂1 + q̂2

q̂1 − π
q̂2 − π
q̂3 − π
q̂4 − π

 (29)

The vector [q̂, α] consists of the old coordinates and the vector q corre-

sponds to the new choice of coordinates.
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3 A Method for Reparameterizing an Existing

Motion in Terms of Virtual Holonomic Con-

straints

In this section, an attempt was made to closely imitate the original motion

of SemiQuad as designed by the researchers at École de Nantes. The

method used is generic and should be capable of reparameterizing arbitrary

motions. The motion to be parameterized consisted of a single gait cycle,

and from this cycle only the underactuated single support phases were

relevant in the context of virtual holonomic constraints. Reparameterizing

the motion of SemiQuad was a two step procedure. First, a monotonically

increasing function θ = F (q) had to be found. Second, some sort of smooth

mapping ϕi(θ) between each of the joint variables qi and the θ found in the

first step had to be found. This mapping should be accurate. Finally, as

the constraints was substituted back into the dynamics, the behavior of

the reduced dynamics should be as close to that of the original motion as

possible.

3.1 The original motion

The original motion was generated by a series of polynomial references.

At any time each of the actuated joints was guided by one such reference,

and several sets of references then lead the robot through various phases

of the gait cycle. PD-controllers were used to keep the joints variables on

reference. The motion, in vectors of position, velocity and acceleration,

was recorded during the gait cycle, and the intervals of single support were

extracted – from the instant either leg cleared the ground to the moment it

touched back down. The samples were given in terms of the original seven

degree of freedom system, and had to be converted to the new five degree

of freedom system using the mapping given previously (29).
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3.2 Finding a measure of progress

As noted above, θ = F (q) was required to be monotonically increasing.

When generating motion from scratch, this is not necessarily the case;

however, for the purpose of imitating an existing motion, it is required.

Why this is the case will be explained shortly. For some systems, there

might be an obvious choice of θ. It might, for instance, be the distance

traveled along a trajectory or simply the monotonic evolution of an angle

of a joint during the motion.
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Figure 3: Discrete samples of the original motion during an interval of the
single support phase.

For the motion recorded earlier, none of the states q = [q1, q2, q3, q4, q5 ]

were monotonically increasing during the relevant interval of time, and

therefore neither of them could be used alone. Therefore, a generic method

of generating θ was used for this system. It is clear that while neither of the

states are monotonically increasing it should be possible to formulate some

sort of function F (q) of the states that would be. Finding a monotonically

increasing F (q) is a matter of finding a sign-definite F ′(q)q̇.

I will illustrate the method used: First, a function θ = F (q, α) was defined,
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in this case a function on the form

F (q, α) =
5∑
i=1

(
αi,1qi + αi,2 cos(qi) + αi,3 cos(

qi
2

) + αi,4 cos(
qi
4

)
)

(30)

where α is a set of unresolved parameters. Simpler functions with fewer

terms were tried initially, but it seemed like a certain amount of indepen-

dent terms had to be added to F (q, α) for the procedure to work. The idea

then is simple: First, sample the original state trajectory at fixed intervals

as shown in figure 3. The sampling needs to be dense enough to not lose

any important characteristics of the original data, and sparse enough to

allow for reasonably quick computation.

Then, an object function was generated by differentiating F (q, α) with

respect to time

O(q, q̇, α) =
d

dq
(F (q, α)) q̇

=
5∑
i=1

(
αi,1q̇i − αi,2 sin(qi)q̇i − αi,3 sin(

qi
2

)
q̇i
2
− αi,4 sin(

qi
4

)
q̇i
4

) .
(31)

The trick is then to find a set of αi,j which makes (31) sign-definite for

each of the points sampled from the original state trajectory. That is, for

all samples O(qi, q̇i, α) for i = 1, . . .m should be either strictly positive, or

strictly negative. In addition, the absolute value of this function should

ideally be as large as possible at each sample, as the resulting mapping of

θ to q then will be of higher resolution.

To clarify the issue of monotonicity and resolution: Should (31) become

zero at any point during the motion, θ = F (q, α) will become constant

for the corresponding interval. This means that the subsequent mapping

of θ and q, dealt with in the next section, will not be unique, as multiple

consecutive values of q will share a common θ. Conversely, a θ spanning

over a large range will provide a better mapping, less sensitive to noise and
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numerical degradation. It is clear from the structure of (31) that this occurs

whenever | q̇ | = 0. This happens at several points during the single support

phases of the original motion. The problem was solved by separating the

motion into separate intervals at these points, ending up with intervals of

motion without zero-crossings.

To find the coefficients α, a Matlab routine was implemented which calcu-

lated the object function (31) for the vectors of motion previously recorded.

The routine returned the minimum value of the resulting vector, as a mini-

mum value larger than zero would mean that the function was sign-definite.

The routine was optimized4 with respect to the vector α, returning the

coefficients which maximized the minimum value of (31).

By plugging the optimal coefficients back into (30) a monotonically increas-

ing measure of progress for the motion had been found as a function of the

states alone. One such measure can be seen in figure 4 where θ is displayed

along with the corresponding sign-definite θ̇.
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Figure 4: A monotonic θ = F (q) found for some interval of the step motion.

3.3 Finding constraints

Having obtained a monotonically increasing θ, creating the mapping of

qi = ϕi(θ) was a matter of making an approximation of the states q versus
4Optimizing routine: A genetic algorithm [1] was employed for the optimization, due

to irregularity of the object function d
dqn

(F (qn, α)) q̇n.
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θ = F (q). To ensure that the fit was good, the first and second derivative

of ϕi(θ) was included in the approximation as well. The constraints ϕ(θ)

were chosen to be polynomials of fixed order, and the derivatives of these

functions were thus easily computed as

qi =ϕi(θ) = bnθ
n + bn−1θ

n−1 + . . .+ b0

q̇i =ϕ
′

i(θ)θ̇ = nbnθ
n−1θ̇ + (n− 1)bn−1θ

n−2 + . . .+ b1θ̇ (32)

q̈i =ϕ
′

i(θ)θ̈ + ϕ
′′

i (θ)θ̇
2 .

The fitting was formulated as a least-squares-problem on the form

Ax = q (33)

where A was populated by the variables of θi, θ̇i, θ̈i of the constraints (32),

while x was a vector of the corresponding coefficents b0, . . . , bn. The poly-

nomial variables θi, θ̇i and θ̈i were easily calculated by differentiating the

function θi = F (qi) found in the previous section. Finally, the vector q

consisted of samples from the original motion of the joint variable for which

the approximation was done.



1 θ1 θ2
1 . . . θn1

...
...

...

1 θm θ2
m θnm

0 θ̇1 2θ1θ̇1 . . . nθn−1
1 θ̇1

...
...

...

0 θ̇m 2θmθ̇m nθn−1
m θ̇m

0 θ̈1 2θ1θ̈1 + 2θ̇2
1 nθn−1

1 θ̈1 + (n− 1)nθn−2
1 θ̇2

1
...

...
...

0 θ̈m 2θmθ̈m + 2θ̇2
m . . . nθn−1

m θ̈m + (n− 1)nθn−2
m θ̇2

m




b0

b1

...

bn

 =



q1

...

qm

q̇1

...

˙qm

q̈1

...

q̈m


(34)

The least squares fitting outlined above was run five times, once for each of
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the joint variables, leading to what should have been a very good approxi-

mation of the original motion. From the plots in figure 5 it is clear that the

polynomial fittings were not sufficiently accurate, and this is assumed to be

due to a lack of smoothness of the original motion. As can be seen from

the stippled blue line in figure 5 the accelerations of the original motion

had certain points of very abrupt changes, and the procedure outlined

in this section relies on the motion to be imitated having some level of

smoothness.
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Figure 5: Plots of 15th order polynomial approximation for joint variables
q4 and q5 during a interval of the single support phase. Each subplot consists
of three curves of, from top to bottom, position, velocity and acceleration.
The blue, stippled line is the original motion, while the green solid line is
the approximation. Note the jump of acceleration circled.

3.4 Discussion and remarks

As indicated there were pitfalls with imitating the original motion. Drawing

conclusions from this section the following issues should be pointed out:
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1. The original trajectory had several points at which all joint velocities

reached zero more or less simultaneously. This lead to θ becoming

constant and thus to poor mapping of constraints ϕi(θ). This prob-

lem was partially solved by splitting the trajectory into several sub-

intervals, each without velocity zero-crossings. Still, the fact that all

velocities converged towards zero at the ends of these sub-intervals

meant that F (q, α) ended up with less than ideal performance.

2. The biggest obstacle with the reparameterizing approach, and the fac-

tor which ultimately decided against continuing trying to imitate the

original motion, arose due to what was perceived to be unfortunate

properties of the original motion. As noted earlier, the original motion

trajectory parameterization consisted of several sets of polynomials.

It looked as if the changing of one set of reference trajectories to

another created instant jumps in reference. This caused very abrupt

fluctuations in torque and acceleration. Note the jumps of accelera-

tion in figure 5.

The fact that the original motion made discrete jumps in accelera-

tion made it very difficult to approximate the motion with smooth

constraints. As the polynomial approximation took not only q and

q̇ into consideration, but q̈ as well, the resulting constraints were

inaccurate. This problem resurfaced when the constraints were sub-

stituted into the α-β-γ-equation (12) later on, which then exhibited a

behavior very unlike the original motion. A possible solution might

have been to not include the accelerations in the approximation and

rather create a new, smooth acceleration profile based on the position

and velocity data alone.

The method used to parameterize the original motion using virtual holo-

nomic constraints here is very generic, and initially seemed to be very

promising. A numerical optimization method was used to find a suitable

measure of progress, and a least-squares-approximation made to gener-

ate the constraints. The positive thing about this procedure is that it’s

completely generic. The negative thing is that the generated θ and ϕi(θ)
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will tend to be large and numerically cumbersome, and that undesirable

properties of the original motion will at best be reflected in the results, and

may in worst case distort the results altogether.
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4 Generating New Motion via Virtual Holonomic

Constraints

While imitating motion via the use of virtual constraints and the method

outlined above is certainly possible, generating motion from scratch of-

fers much more freedom and flexibility, and where constraints created for

imitated motion will tend to be complicated, constraints generated from

scratch will often be both elegant and simple. Additionally, being liberated

from having to stay faithful to the original motion, entirely new types of

steps could be created. A variety of steps were tried and tested, however,

all steps found could be divided into two general categories: leap steps and

balanced steps.

During a leap step, there will be a point during the step after which the

robot will be unable to abort the motion. The robot will have to commit to

the step. The impact will typically be rough, as during the last phase of the

step the center of mass of the robot will often be more or less free-falling

towards the ground. It is quite easy to optimize these steps for walking up

slopes and stairs, and clever choices of optimization criteria can limit the

impact velocity as well, reducing the force of the impact. A leap step could

be very long, and might lead to a post impact robot configuration where

the robot will be unable to move its center of gravity outside the statically

stable area. This means that the robot will not be able to complete the gait

with a follow-up step starting with zero velocity – one of our assumptions

when generating these virtual constraints (see sec 2.3.2). For this reason,

parameterizing a complete gait in this manner wasn’t done, only front leg

steps were created.

A balanced step, on the other hand, is characterized by the property that

that at any point during the motion, even after the tip of the leg has

impacted with the floor, the step can be aborted. This means that all the

constraints of which the step is made are periodic motions by themselves.

This allows for the creation of steps with far greater control and of poten-
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tially zero impact velocity; however, the balanced step is more restricted

than the leap step, and, in my experience, more difficult to generate.

The main restriction with balanced steps arises from having to move the

center of mass outside the polygon spanned by its legs to create torque

around the stance leg. This then means that the possible distance between

the legs is limited.

While a large variety of leap steps were constructed, for a variety of op-

timization criteria, the search for a gait focused on balanced steps. As

constructing a balanced step is searching for constraints for which the

reduced dynamics have stable periodic motion, it is particularly relevant

in the context of virtual holonomic constraints.

There is also a choice of how many sets of constraints one wishes to use

when constructing the motion. Using more sets of constraints might allow

the use of simpler constraints, and vice versa. The motion generated within

this section was designed to use two constraints per step. This means that

at a point during each of the steps, the sets of constraints are swapped.

These points are called “switching surfaces”.

Using two sets of constraints allows us to use simpler constraints. As gener-

ating constraints might in some cases be difficult, this was important. Next,

using two periodic sets of constraints allowed us to illuminate a special

property of periodic motions of the reduced dynamics. This property, which

will be elaborated later, in section 4.3, indicates that certain motions will in

fact require two or more sets of constraints to achieve the desired motion.

4.1 Creating a measure of progress

As stated in the previous section, generating virtual holonomic constraints

for a dynamic system takes place in two steps, and as before a θ = F (q)

has to be found. However, this function needed not necessarily be

monotonically increasing, as is required when imitating motion. In
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fact, certain choices of constraints will yield stable oscillations with corre-

spondingly oscillating θ. This behavior can be of great use when generating

motion, and in particular when generating motion such as the balanced

steps discussed previously.

There is freedom in the choice of θ. There exists numerous metrics of

progress for a robot like SemiQuad, several of which could yield satisfying

motion. For instance, choosing the position of the robot’s center of mass, or

the vertical position of the freely swinging leg could work. However, for this

thesis the choice of θ should preferably be one of computational simplicity

and of predictable behavior. For the motion generated for SemiQuad in

this text, the choice fell on the unactuated joint of the robot’s first link.

Choosing

θ = q1

will later be shown to allow sensible motion using very simple constraints.

4.2 Creating new constraints

Two sets of constraints per step were to be found, both for the leap steps

and balanced steps. The first set to elevate the swing leg from the ground,

and the next to extend or retract the swing leg, finishing with an impact to

the floor. The constraints were chosen to be linear and cubic functions of θ,

and each set provided one constraint for each actuated joint. Analogue to

what’s shown in the introductory section on virtual holonomic constraints

1.2, constraints on the form

ϕi(θ) = Pi1θ
n + Pi2θ

n−1 + . . .+ Pin

were inserted into the α-β-γ-equation (12), creating reduced dynamics on

the form of (15). By inserting the chosen constraint coefficients and inte-

grating, the evolution of the reduced dynamics was obtained for the corre-

sponding set of constraints. By then substituting θ into the constraints and
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solving for the joint variables, the full motion characteristics of SemiQuad

could be visually observed and qualitatively analyzed.

When finding constraints for this type of systems, there are a few properties

of the reduced dynamics which can be of great use. First of all, for a set of

constraints an equilibrium is found whenever

γ(θ0) = 0 .

In short, this means that the center of mass of the robot at this point

generates no torque around the stance leg. This property easily proved

by inserting θ, θ̇ = 0 into the α-β-γ-equation (12). It also means that if

γ(θ) becomes 0 at some point during the motion, the motion might exhibit

useful, periodic behavior. Whether or not the oscillation is stable will

obviously depend on how the center of mass of the robot moves on either

side of the equilibrium. The stability of the equilibrium can be determined

by
d

dθ

γ(θ)

α(θ)

∣∣∣∣
θ=θ0

> 0, (35)

where θ0 is equilibrium in question [3]. If (35) is positive, then the mo-

tion of the reduced dynamics is captured in a vector field loop, and will

perpetuate this motion until the vector field is altered.

4.2.1 Initial conditions

The initial configuration of the robot was chosen in such a way that the

center of mass generated counter-clockwise torque around the stance leg

from the very start. A stable oscillation of the first set of constraints C1

was created by moving the center of mass forward, halting the counter-

clockwise motion as the front leg reached its elevated apex. The reduced

dynamics would then retract its motion in reverse direction, completing the

cycle. Various versions of this elevating constraint constituted the basis of

both balanced and leap steps.
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4.2.2 Leap step optimization

First, a framework was created in Matlab to facilitate the optimization of

a single leap step. All steps started with the same initial set of constraints,

C1, which simply elevated the front leg. The conditions for swapping the

constraints and the parameterization of the following set of constraints

were left variable. This way an solution could be found, with respect to

a very limited number of parameters. A sanity check was run at the end

of each optimization iteration to ensure that the robot configuration was

feasible. That is, joints should stay within a certain interval during motion,

joint velocities should be within certain limits and the robot should at

all times stay above the surface. A number of optimization criteria were

tested, and based on a calculated sum of one or more criteria some metric

of optimality was attained.

Below is a brief outline of the routine used to optimize the various steps.

Optimization criteria tested includes: lowest maximum sum of joint veloci-

ties during trajectory; lowest vertical impact speed of swing leg on impact;

and highest reach of swing leg during trajectory.

Procedure Outline of optimization flow

IN is a vector of parameters generated by the optimizing routine
OUT is a scalar score indicating proximity to optimum

repeat
k ←− IN
P = CreateConstraints(k)
t, x = IntegrateReducedDynamics(P )
Y = = CalculateScore(t, x)
OUT = Y .

until until minimum value is reached

From the elevated position a step could also be defined by the initial po-

sition of the robot, and a desired end configuration. The then unresolved

parameters of the trajectory were then available for optimization. By using

this method step length was defined explicitly. By using cubic or constraints
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of higher order, more parameters were available for optimization, and this

way interesting and useful step trajectories could be generated.

4.2.3 Balanced step gait

A periodic gait was sought as a basis for the later development of the

transverse linear controller. Balanced steps were chosen for this purpose

due to their simple structure. To further simplify the motion design, the

constraints were chosen in such a way that the same constraints could be

applied for both steps of the gait, although, in reversed order. That is,

for the first, front leg step, one constraint C1 elevated the swing leg. As

before, this set of constraints was designed to be stably oscillating, and

could perpetuate the motion indefinitely, back and forth, up and down. To

advance the motion, a switching surface was defined at the point where

the swing leg reached its apex, and at this point the constraints, C1 and

C2, were swapped. The switching surface could, however, been defined

at any point along the C1 trajectory. The second set of constraints C2 was

stably oscillating as well, however, now extending the swing leg during the

declining motion, as seen in figure 6. Together, these constraints could be

used for both extending the front leg and retracting the hind leg, by merely

reflecting the constraints about the vertical axis.

Figure 6: Figure showing how a gait can be designed to take advantage
of symmetric properties of the robot. Note that the switching surface
where the constraints are swapped could be placed at any point, and not
necessarily at θ̇ = 0.

Still, finding these constraints was an exercise in gentle tuning. Numerical

methods may perform well for designing certain some types of steps as
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noted in the previously, but for balanced steps it might be hard to define

suitable criteria for optimization. Still, the simplicity of the constraints

found made tuning a worthwhile effort. The linear constraints were defined

by the initial conditions at the beginning of the motion, and the desired

configuration at the point midway between the two extremes. This way,

for given initial conditions, the five states of the trajectory midpoint defined

the motion alone. The constraints were on the form

ϕi(θ) = K(θ − θp) + ϕp,i (36)

and could be easily computed on the basis of the defined states as shown

below. The computed constraints were inserted into the reduced dynam-

Procedure Computing the linear constraint coefficients

Input: Initial configuration θ0, ϕ0,i

Input: Midpoint configuration θp, ϕp,i
Output: Coefficients PQ

for i = 0 . . . 4 do
Ki = (ϕ0,i − ϕp,i)/(θ0 − θp)
PQi = [Ki , ϕp,i −Kiθp]

end

ics, which upon integration would reveal whether the motion was periodic

or not. The first constraints, C1 was defined by the following initial and

midpoint configuration

θ0 = 2.895, ϕ0 = [ 0.53, 2.243, 0.57, 0.571 ]

θp = 2.86, ϕp = [ 0.3, 2.7, 0.9, 0.9 ]
(37)

and for this set of constraints the reduced dynamics produced a stable

periodic motion with period T = 2.0668 seconds. As noted above, this

set of constraints lifted the leg from the ground. Characteristics of this

periodic motion can be seen in figure 7 where it can be seen that γ(θ) is

stably oscillating. In the middle plot the positive vertical force means that

the stance leg is firmly in contact with the ground at all times. Further, the
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Figure 7: Plot showing characteristics of the periodic motion corresponding
to the constraints (37) C1.

ratio of the vertical and horizontal force is large enough to assume that the

stance leg will not slide on most surfaces. Observe in the rightmost phase

plot of the reduced dynamics that the θp chosen as algebraic midpoint for

the constraints will not in general be the actual midpoint of the dynamical

system.

Similar characteristics can be seen in figure 8 for the second set of con-

straints C2. These constraints were defined by

θ0 = 2.79, ϕ0 = [ 0.29, 2.65, 0.09, 0.09 ]

θp = 2.9, ϕp = [ 0.6, 2.1, 0.4, 0.4 ]
. (38)

From these constraints the chosen gait was formed. It was a slow gait,

with a period of 4.78 seconds, not counting the intermediary double sup-

port phase. The reduced dynamics of the systems subjected to the two

constraints can be seen in figure 9 where each system runs for half a period

in a clockwise direction, for a range of initial conditions. The switching

surface was defined to be at θ̇ = 0. Specifically, the plot in figure 9 shows

the motion of the reduced dynamics during a forward step.
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Figure 8: Plot showing characteristics of the periodic motion corresponding
to the constraints (38) C2. As in 7 the thick red line of the middle plot is
the horizontal force vector on the stance leg.

The gait is characterized by ending each step with close to zero vertical

velocity. Further, when extending the front leg, gravitational force from the

robot’s center of mass isn’t put on the swing leg until after the swing leg is in

contact with the surface. Consider the case of a person walking on slippery

stones in a river. In that case most people might instinctively perform some

form of probing action with the swing leg while putting no real weight

upon it, ensuring that they have a firm foothold before transferring weight

from the stance leg to the swing leg. The extending leg is then balanced

by moving the arms and torso in the other direction. The gait created here

follows the same principles.

In figure 10 an animation is shown detailing robot configuration and re-

duced dynamics phase plots for both steps. By correct controller synthesis,

similar motion should be attained for the unconstrained SemiQuad dynam-

ics.

It is clear that just about any type of step might be created using virtual
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of linear constraints for a variety of initial conditions. Note that both
constraints are periodic with a clockwise motion, and that the constraints
are swapped at θ̇ = 0, after each of the “constraints” have run for half a
period. This switching surface is represented by the thick line.

holonomic constraints, and the constraints could easily be designed to

perform perfectly well by any chosen criteria through optimization. The

above constraints were chosen for the following reasons: the motion should

preferably constitute a periodic gait; the constraints should be simple; and

there should be multiple sets of constraints per step.

4.3 Properties of a stable periodic motion

For a given set of constraints it is clear that the vector field of [ θ, θ̇ ] created

by the reduced dynamics will display properties of symmetry around the

θ-axis. Assuming the reduced dynamics start with no initial velocity, they

will always follow such a closed loop however large it may be, and any

motion of the full constrained dynamical system will therefore in principle

37



−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

x (m)

y
(m

)

Reduced Dynamics: Step 148/148

2.8 2.85 2.9

−0.1

−0.05

0

Phase plot 1

θ

θ̇

0.25 0.3 0.35

−0.1

−0.05

0

Phase plot 2

θ

θ̇

Figure 10: Animation and phaseplots detailing behavior of reduced dynam-
ics when all constraints are held perfectly invariant.

always be a rocking motion, back and forward, following the exact same

route both ways.

This leads to the conclusion that to generate certain types of motion, where

the resulting dynamical system is desired to move in a perpetual circular

fashion rather than a rocking fashion, more than two constraints will al-

ways be needed.

To illustrate, consider the case of a double pendulum where the first link

serves as θ(t) and where the second link is constrained by some smooth

2π-periodic function ϕ(θ(t)). Assuming this system to start with zero initial

velocity and with both links pointing upwards, slightly offset from the verti-

cal axis, it is clear that the motion of the constrained double pendulum will

never attain perpetual circular rotation, but will rather rock back and forth

with the stable equilibrium at the center of the trajectory. The constraint

chosen could conceivably be n-periodic, but this would simply mean that
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the system would able to go a certain number of turns before stopping

and returning back along the same trajectory. However, by switching con-

straints during the motion, a perpetual circular motion can be achieved,

as by switching constraints an abrupt change of torque is applied on the

constrained joint, increasing the energy of the system. This shows that

there must be some sort of asymmetry of the constraints for an oscillating

θ to achieve perpetual circular motion.

Consequently, a gymnast swinging from a horizontal bar will have to apply

an abrupt change of torque during the swing to perpetuate the motion.
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5 Control by Transversal Linearization

Controlling systems like the SemiQuad presents a wide array of challenges.

First of all, by being able to walk the system is desired to exhibit some sort

of periodic behavior – the gait. The gait consists of intervals of continuous

dynamics and discrete jumps, making the SemiQuad system hybrid. Due to

lack of ankle-joint actuation, the system is underactuated as well, of degree

one.

The traditional and most common way of analyzing periodic systems fo-

cuses on the Poincaré first-return map. Such first-return maps are defined

on a hypersurface transversal to the state-space trajectory at a point along

the cycle. Through numerical search one can then determine characteristics

of the periodic motion by how the first-return map behaves, transversally

to the motion. This data might provide valuable numerical information

from which one can extract properties of stability, sensitivity and area-

of-attraction etc. However, as creating these maps usually relies on nu-

merically integrating the dynamics along the cycle for a large number of

initial conditions, the method will often be time-consuming, and ill-suited

for real-time computation [3].

Transversal linearization in the context of this thesis, takes advantage of

certain properties of virtually constrained systems. First and foremost, it

can be shown that a virtually constrained system on the form of (12) always

will be integrable [12, 3]. By introducing transversal error dynamics to

the virtually constrained system, analytical solutions of the Poincaré maps

become available in the vicinity of the periodic solution. Such Poincaré

maps are referred to as moving Poincaré sections.

5.1 The continuous-in-time dynamics

The essence of transversal linearization is to replace the state vector [q, q̇]

by a new set of generalized coordinates, [ψ(t), x⊥(t)], where x⊥(t) is a 2n−
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Figure 11: The Poincaré sections transversal to the motion trajectory, and
the trajectory converging towards the stable periodic motion.

1-dimensional vector transversal to the motion trajectory, and the scalar

ψ(t) defines unique position along the motion. This means that at each

point along the trajectory, a 2n − 1-dimensional, C1-smooth hypersurface,

or Poincaré section, S(t) is spanned by the transverse coordinates, and on

each such surface the transverse coordinates x⊥(t) describe the deviation

of the system from a desired trajectory [θ, ϕi(θ)]. The dynamics of how

these error coordinates behave in a vicinity of the desired trajectory is then

formulated as an auxiliary linear system which upon stabilization ensures

that the full dynamic system as a whole keep to its periodic motion.

The procedure described within this section is documented partially or in

full in [12, 3, 13, 14].

The transverse coordinates are defined as

y1 = q1 − ϕ1(θ), . . . , yn = qn − ϕn(θ) . (39)

It is obvious that both the above coordinates and their time derivatives

ẏ1 = q1 − ϕ′1(θ)θ̇, . . . , ẏn = qn − ϕ′n(θ)θ̇ , (40)
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will be equal to zero along the orbit. As the moving Poincaré section is

defined by 2n − 1 coordinates, it is also clear that these 2n coordinates

along with θ will be excessive, and that one of the deviations yn therefore

can be written as a function of the other y = (y1, . . . , yn−1)T and θ

yn = ϕn(θ) + h(q1, . . . , qn−1, θ) . (41)

To rewrite the original dynamics in terms of the new generalized coordi-

nates, the both generalized velocities and accelerations must be rewritten

as functions of these new coordinates

q̇ = L(θ, y)

[
ẏ

θ̇

]
, q̈ = L(θ, y)

[
ÿ

θ̈

]
+ L̇(θ, y)

[
ẏ

θ̇

]
(42)

where the n× n matrix L is

L(θ, y) =

[
1(n−1)×(n−1), 0(n−1)×1

∇h(·)

]
+
[
0n×(n−1), Φ′(θ)

]
(43)

where ∇h(·) =
[
∂h
∂y1
, . . . , ∂h

∂yn−1
, ∂h
∂θ

]
and Φ′(θ) =

[
d
dθ
ϕ1(θ), . . . , d

dθ
ϕn(θ)

]T .

For SemiQuad, the original set of virtual constraints dictated that this new

set of coordinates were to be formulated as
q1

q2

q3

q4

q5

 =


θ

y2 + ϕ2(θ)

y3 + ϕ3(θ)

y4 + ϕ4(θ)

y5 + ϕ5(θ)

 , (44)

with corresponding derivatives. All ϕi(θ) were linear constraints. It is

seen that the first generalized coordinate q1 takes the role of the yn =

ϕn(θ) + h(q1, . . . , qn−1, θ), albeit with the simplest structure possible. By

rewriting the coordinates in such a fashion a few fundamental elements

of the transverse linearized controller can take form, starting with the
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feedback transformation.

5.1.1 The feedback transform

The feedback transform provides a relation between the actuation, v, of

the transverse dynamics and the actuation for the original system, u. By

solving the Euler-Lagrange system (4) with respect to q̈

q̈ = M(q)−1 (−C(q, q̇)−G(q) +Bu) , (45)

and inserting the resulting equation into the expression of acceleration in

the new coordinates (42) defined above one obtains a transformation

L(θ, y)

[
ÿ

θ̈

]
= M(q)−1 (−C(q, q̇)−G(q) +Bu)− L̇(θ, y)

[
ẏ

θ̇

]
. (46)

Thus, by moving solving the resulting equation with respect to ÿ, the feed-

back transform takes the form

ÿ =EL−1(θ, y)M(q)−1B︸ ︷︷ ︸
N(θ,y)

u

+EL−1(θ, y)
[
−M(q)−1(C(q, q̇) +G(q))− L̇(θ, y)[ẏ, θ̇]T

]
︸ ︷︷ ︸

R(θ,θ̇,y,ẏ)

∣∣∣∣∣qi=yi+ϕi(θ), i=1...n−1
qn=ϕn(θ)+h(·)
q̇=L(θ,y)[ẏT , θ̇]

T

(47)

where the matrix E = [1(n−1)×(n−1), 0(n−1)×1] is added to both sides to

extract ÿ from [ÿ, θ̈]T . By defining ÿ = v, the transformation

v = R(θ, θ̇, y, ẏ) +N(θ, y)u (48)

is complete. As long as L(θ, y) is non-singular on the trajectory, the ma-

trix N(θ, y) is invertible, and the transformation valid both ways. This

transform was readily computed for the SemiQuad system; however, care

had to be taken to adapt the structure of the matrices to our choice of
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constraints. The alterations were mathematically trivial, though. For the

feedback transform going from v to u, the equation was formed as a func-

tion of q rather than y and θ thus looking like

u = N−1(q)(v −R(q, q̇))

5.1.2 The transverse dynamics

The transverse dynamics describe the dynamics of the system (4) deviation

from the desired trajectory defined by (12). By substituting the new error

coordinates into (4), in the same fashion as done when substituting in the

virtual holonomic constraints in section 1.2, an equation much like the

α-β-γ-equation is obtained.

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu

∣∣∣∣qi=yi+ϕi(θ), i=1...n−1
qn=ϕn(θ)+h(·)
q̇=L(θ,y)[ẏT , θ̇]

T

q̈=L(θ,y)[ÿT , θ̈]
T

+L̇(θ,y)[ẏT , θ̇]
T

(49)

The resulting unactuated equation can be written as

ᾱ(y, θ)(ÿ + ϕ
′
(θ)θ̈ + ϕ

′′
(θ)θ̇2) + β̄(y, ẏ, θ, θ̇)(ẏ + ϕ

′
(θ)θ̇) + γ̄(y, θ) = 0 (50)

and it is clear that this equation will be equal to zero on the orbit. For

y, ẏ, ÿ = 0 this equation becomes the α-β-γ-equation (12). However, as

(50) too equals zero on the orbit the reduced dynamics can be written as

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) =
[
α(θ)θ̈ + β(θ)θ̇2 + γ(θ)

− ᾱ(·)(ÿ + ϕ
′
(θ)θ̈ + ϕ

′′
(θ)θ̇2)+β̄(·)(ẏ + ϕ

′
(θ)θ̇) + γ̄(·)

]
=g(y, ẏ, ÿ, θ, θ̇, θ̈)

(51)

which is a valid representation as well. A useful property, taken from

Hadamard’s lemma for functions of multiple variables, states that

Lemma 2 [5, Lemma 4.28] Suppose that f(x, y) is smooth in a neighborhood
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of (0, 0). Then suppose that f(x, 0) = 0 for all x sufficiently close to 0. Then
f(x, y) = yf1(x, y) for a smooth function f1 defined in a neighborhood of
(0, 0).

Proof This statement is easy to explain. By the following identities∫ 1

0

∂

∂t
f(x, ty) dt = [f(x, ty)]t=1

t=0 = f(x, y)− f(x, 0) = f(x, y) (52)

it is seen that this equation is valid as long as f(x, 0) = 0 holds, and that
f(x, y) can thus, by Hadamard’s lemma, be written as

f(x, y) =

∫ 1

0

∂

∂t
f(x, ty) dt = y

∫ 1

0

∂

∂y
f(x, ty) dt = yf1(x, y) (53)

completing the proof.

By this logic it should be clear that (51) can be written as

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = gv(·)ÿ + gẏ(·)ẏ + gy(·)y (54)

where

gv(·) = gÿ(·)/ÿ, gẏ(·) = gẏ(·)/ẏ, gy(·) = gy(·)/y . (55)

As y, ẏ, ÿ all are equal to zero on the orbit, the limit of each of the functions

is found by the use of l’Hôpital’s rule. l’Hôpital’s rule states that fractions

where the limits of both nominator and denominator tends towards zero,

can be found by finding the limits of the derivative of the nominator and

denominator. Therefore, the coefficients gv(·), gẏ(·), gy(·) are in fact found

as ∂ḡÿ(·)
∂ÿ

,
∂ḡẏ(·)
∂ẏ

, ∂ḡy(·)
∂y

, respectively, which of course means that the rewrite

from (51) to (54) could be considered a linearization of sorts.

5.1.3 The transverse linearization

In some vicinity of the orbit, the mechanical system (4) can now be rewrit-

ten as (48) and (54). However, to make the transverse coordinates x⊥
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complete, yet another dimension must be added, as [y, ẏ] merely add up to

2(n− 1).

It turns out that the scalar general integral from theorem 1 can provide

this last dimension of our 2n − 1-dimensional Poincaré section. The time

derivative of the general integral (20) along the solution

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = W (56)

can be shown to be on the form [3]

İ(θ(t), θ̇(t), θ0, θ̇0) =
2θ̇(t)

α(θ(t))
{W − β(θ(t)) · I(θ(t), θ̇(t), θ0, θ̇0)} , (57)

where W then is the α-β-γ-equation (12). The use of this integral requires

that α(θ?(t)) 6= 0 during the motion. If this isn’t the case, then other

identities can be used, like, for instance, α(θ?(t)) ≡ 0 during the relevant

intervals of time. The error variables y and ẏ does of course represent how

much each of the joints deviate from being held invariant. The general

integral, on the other hand, is a measure of how far the system is from

following its desired path.

By substituting (54) into (57) one can compute the linearization of the dy-

namics in transverse coordinates x⊥. The complete transverse coordinates

now takes the form

x⊥ = [I(θ(t), θ̇(t), θ0, θ̇0), y1, . . . , yn−1, ẏ1, . . . , ẏn−1]T , (58)

and the linearized system is written

ẋ⊥ =

 a11(t) a12(t) a13(t)

0(n−1)×1 0(n−1)×(n−1) 1(n−1)×(n−1)

0(n−1)×1 0(n−1)×(n−1) 0(n−1)×(n−1)

x⊥ +

 b1(t)

0(n−1)×(n−1)

1(n−1)×(n−1)

 v (59)
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where the coefficients of the matrix are given by

b1(t) =θ̇?(t)
2gv(θ?(t), θ̇?(t), 0, 0)

α(θ?(t))
,

a11(t) =− θ̇?(t)
2β(θ?(t))

α(θ?(t))
,

a12(t) =θ̇?(t)
2gy(θ?(t), θ̇?(t), θ̈?(t), 0, 0)

α(θ?(t))
,

a13(t) =θ̇?(t)
2gẏ(θ?(t), θ̇?(t), θ̈?(t), 0, 0)

α(θ?(t))
.

(60)

5.2 The controller design

The basic, underlying idea of implementing this auxiliary system is that

any feedback control which manages to drive this linear system towards zero,
will also keep the keep the constraints invariant. A natural proposition for a

linear controller comes on the form

v(t) = −K(t)x⊥ (61)

where K(t) is a matrix chosen to stabilize the linear system

ẋ⊥ = A(t)x⊥(t) +B(t)v(t) . (62)

by forcing the system

ẋ⊥ = [A(t)−B(t)K(t)]x⊥(t) (63)

to have distinct eigenvalues with negative real parts at all points during the

periodic motion. AsA(t) andB(t) are T-periodic, it is natural to assume that

K(t) is T-periodic too, although one could perhaps consider a stationary

feedback gain matrix as well, as long as the closed-loop system is stable for

the entire period. A periodic K(t) was used for the orbital stabilization of

the controller developed for SemiQuad in this thesis.
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There are several ways of constructing a periodic K(t). In literature on

virtual holonomic constraints control based on transverse linearization,

a common method is to let K be found by solving the periodic Riccati
differential equation (PRDE) for the relevant period of time, from (0, Th).

Using this controller, both control input and error deviation can be given

arbitrary weight, and K(·) will be optimal with respect to this weighting.

The Riccati equation differential equation

−Ṗ (t) = P (t)A(t) + AT (t)P (t)− P (t)B(t)R−1
c (t)BT (t)P (t) +Q(t) (64)

is the solution of the optimization problem related to finding the control in-

put v(t) of the linear system (62) which minimizes the following quadratic

performance index

J = xT (tf )Wcx(tf ) +

∫ tf

t0

xTQcx+ vTRcv dt (65)

where Qc, Wc ∈ Rn×n and Rc ∈ Rm×m are smooth functions of time, and

where Rc > 0, Wc > 0 and Qc ≥ 0. The product xTQcx is a measure of to

what degree deviations from x = 0 should be allowed during the horizon

interval (t0, tf ), balanced by the product vTRcv which punishes excessive

use of actuation. The matrix Wc penalizes the controller for not reaching

the desired value within the terminal time, tf . The matrix Riccati equation

plays a significant role within the theory of linear control and optimization,

not only for creating feedback gain matrices, but also other tasks similar

in structure, like, for instance, for generating optimal (with respect to

noise filtering properties) state estimators [4]. For time-invariant linear

systems the optimal feedback control is given by the simpler stationary,

or algebraic Riccati equation (ARE) obtained by equating Ṗ = 0. This

equation corresponds to the infinite horizon quadratic cost function

J =

∫ ∞
0

xTQcx+ vTRcv dt , (66)

and the resulting controller design is often referred to as a linear quadratic
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regulator-design (LQR).

Below are some of the properties and results related to the solution of the

periodic Riccati differential equation briefly restated. For details see [8, 2].

The Riccati differential equation can be rewritten as two linear differential

equations structured as a Hamiltonian. For our system that means that (64)

can be written like

d

dt

[
X

Y

]
=

[
A −BR−1

c BT

−Q −AT

]
︸ ︷︷ ︸

H

[
X

Y

]
(67)

where P = XY −1. Formulating the Riccati differential equation in this way

allows us to define the transition matrix, or fundamental matrix as

∂

∂t
ΦH(t, t0) = HΦH(t, t0), Φ(t0, t0) = I2n (68)

which is the Hamiltonian(67) integrated with initial conditions set to iden-

tity matrix I2n. That is, the transition matrix is the Hamiltonian subjected

to the unit input, and the results tell us something about the eigenvalues of

the system. For a time invariant linear system the transition matrix is

Φ(t, t0) = eA(t−t0)X(t0), X(t0) = I (69)

where I is the identity. With a time variant system the solution will be

different but conceptually comparable. In particular, the eigenvalues of the

transition matrix after one period Φ(to + T, t0) are interesting, or alterna-

tively, the eigenvalues at the next switching surface. The transition matrix

at this point is called the monodromy matrix

ΨH(t0) = ΦH(t0 + T, t0) , (70)

and the eigenvalues at this point are termed characteristic multipliers or

Floquet multipliers. These characteristic multipliers provide a measure of

how the solutions of the system (67) will behave over periods. In fact,
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for certain cases, the relation x(t0 + T ) = µjx(t0) will hold, where µi is a

characteristic multiplier, indicating that to ensure stability of the periodic

system the characteristic multipliers should stay within the unit circle [2,

chapter 5].

The controller constructed herein is based on matlab code associated with

[13], generously donated to further the SemiQuad controller design. Specif-

ically, the controller design is based on numerically solving a periodic Ric-

cati differential equation (PRDE) for the relevant period of time, producing

a series of feedback matrices which are then applied in sequence as time

goes by, at each instant allowing optimal control. The original code was

edited to run faster, reducing the calculation time from ~80 seconds to

~3 seconds. The algorithm is documented in [8, Algorithm 1], where it

is labeled “The One-shot Generator Method” and the general procedure is

briefly outlined below.

1. Compute the monodromy matrix Ψ(t0) = Φ(t0 + T, t0) by finding the

transition matrix for one period.

2. Compute the ordered real Schur form of the monodromy matrix Ψ(t0)

which then decomposes Ψ(t0) into[
U11 U12

U21 U22

]T
Ψ(t0)

[
U11 U12

U21 U22

]
=

[
S11 S12

0 S22

]
, (71)

where S11 ∈ Rn×n is upper quasi-triangular with n eigenvalues within

the unit circle, and where S22 ∈ Rn×n is upper quasi-triangular with n

eigenvalues outside the unit circle. The columns of U11 and U21 then

constitute the stable subspace of Φ(t0).

3. Integrate the Hamiltonian once more over one period, but this time

with initial condition [X0 Y0]T = [U11 U21]T

4. Group the solutions found into blocks of [X(t)Y (t)] and compute

the proper solution of the Riccati differential equation by P (t) =

X(t)Y −1(t).
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5.3 Controller implementation

The algorithm was implemented, and the period for each of the periodic

phases of the motion was divided into N segments, each segment with

an associated feedback gain matrix Pi which then would ensure that the

auxiliary linear system was driven to zero, and that the motion of the

SemiQuad dynamics would become orbitally stable.

The closed-loop system was implemented in Matlab, and structurally con-

sisted of a series of steps where first the error coordinates

x(t)⊥ = [I(θ?(t), θ̇?(t), θ(0), θ̇(0)), y1(t), . . . , yn−1(t), ẏ1(t), . . . , ẏn−1(t)]T

(72)

were calculated. A Matlab routine for definite integration5 of the general

integral (20) from θ?(0) to θ(t). As previously stated, I(·) is a metric of

much the dynamics deviate from the desired motion, transversally to the

periodic orbit. The vectors y and ẏ were calculated according to (39), and

serve as a measure of how far the joint variables are from satisfying their

individual constraints.

From the previously generated feedback matrices a linear interpolation of

two matrices Pi, Pi+1 was made with respect to the integration timer t and

the discrete segments of the period. Using the interpolated feedback gain

matrix P̃ and the error coordinates, the optimal input v(t) of the transverse

dynamics (62) was calculated using

v(·) = −R−1
c BT P̃ x⊥ (73)

This input was then transformed to the input u(t) of the original SemiQuad

dynamics (4) using (48), and finally, the SemiQuad dynamics were solved

with respect to q̈ and integrated using the general purpose Matlab integra-

5The Matlab routine quad() was used to integrate the general integral I(·) (20) over
the interval from θ(0) to θ(t). quad() numerically evaluates integrals using an adaptive
Simpson quadrature.
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tion schemes ode45 and ode1136. In algorithmic form the structure of the

controller looks like

Procedure Closed-loop system

Input: Constraints PQ, initial configuration q0.
θd(i) = IntegrateVirtualSystem(q0, PQ), i = 1 . . . N
R(i) =SolveRiccati(q0, PQ), i = 1 . . . N

while exit event not reached do
q, t←− from ODE45
θ̃d, R̃ = Interpolate(θd, R, t)
y, ẏ = CalculateErrorCoordinates(q)
I = CalculateGeneralIntegral(θ̃d, q)

v = −R−1
c BT P̃ [ I, y, ẏ ]T

u = N−1(q)(v −R(q, q̇))
q̈ = M−1(−Cq̇ −G+Bu)
to ODE45←− q̇, q̈

end

6ode113 is better suited for stiff systems, and proved to be significantly faster than
ode45 for integrating the closed-loop system. Suggested in [8].
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6 Closed-loop Properties

The closed-loop dynamics were run for the constraints corresponding to

the gait found in section 4.2.3. Surprisingly, with very little consideration

put into the choice of weighting matrices Rc and Qc, it was interesting to

observe that the feedback control still enabled SemiQuad to stay true to the

trajectory defined by its virtual holonomic constraints.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

x (m)

y 
(m

)

Closed loop: Step 198/198

 

 

2.82 2.84 2.86 2.88 2.9 2.92

−0.1

−0.05

0

Phase plot 1

θ

θ̇

0.24 0.26 0.28 0.3 0.32 0.34

−0.1

−0.05

0

Phase plot 2

θ

θ̇

First
step

Second
step

Figure 12: Animation and phaseplots detailing qualitative properties of the
closed-loop dynamics. Note that the chronological sequence is from left to
right, and that the spacing between the two SemiQuad animations is there
just to separate the steps.

If comparing figure 12 with the corresponding animation of the reduced

dynamics shown in figure 10, it is clear that from a qualitative point of

view the controller seems to work well. These cases differ by the fact that

while the reduced dynamics follows an ideal trajectory by assuming the

constraints to be held invariant, the closed-loop dynamics obviously has to
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apply actuation force to keep the constraints invariant and the motion on

the ideal trajectory.

Looking at closed-loop periodic system (63) there are a few key points of in-

terest: convergence rate; area of attraction; and resistance to disturbances.

It is clear from figure 13 that for even for slight disturbances the dynamics

might need several periods to fully converge to the periodic trajectory. Rc

had to be weighted quite heavily in favor of the general integral I(·) to

achieve fast convergence, however, too much weighting of this integral

led to a deterioration of performance. The magnitude of I(·) is directly

related to the speed and acceleration of θ(t), leading to the conclusion that

constraints should have been chosen with this in mind. The θ of the first

set of constraints has a nominal range from 2.895 to 2.91 radians, which is

quite a short interval. More robust constraints would have been chosen

to generate a larger range of θ, or, perhaps, with a different choice of

θ altogether. This applies in particular for the case where the controller

should be implemented physically.
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Figure 13: Plots showing the evolution of the dynamics starting with a
slightly offset initial configuration for the first set of constraints.

However, in the simulation environment of Matlab, the controller seems

to have created a fairly large area-of-attraction. With the exception of

disturbances to the first link, q1 = θ, SemiQuad has an impressive capability

to catch up with the periodic motion. As an example, in plot 15 the
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controller is shown to be able to converge from an initial offset of one

radian on q2, reaching an orbit very close to the desired one within 3 − 4

periods.
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Figure 14: Plots showing the evolution of the dynamics starting with a
substantial offset of initial configuration for the first set of constraints. Note
how the periodic motion contracts towards the desired orbit.

So how then, exactly, does this controller differ from a conventional PD-

controller? Well, it is clear that keeping the constraints invariant could

easily be achieved by the use of a PD-controller, and a periodic motion

could quite easily be maintained. What the PD-controller lacks is a notion

of a desired periodic motion. The controller design based upon transverse

linearization will have such a notion, and if the system should deviate from

the desired orbit due to disturbances, the controller will try to catch up

with the desired orbit, even though that action might render the constraints

invariant for a while.

Finally, it should be pointed out that this controller, in this case, doesn’t by

itself attain orbital stability of the gait. Rather, the controller ensures that

the periodic motions of which the gait is constructed attain orbital stability.

To achieve orbital stability of the gait, as one periodic motion, the switching

surfaces – the discrete points between the intervals of continuous dynamics

– would have to be included into the design. This is the hybrid part of the

design.
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Figure 15: Plots showing the evolution of the error coordinates over time
when the system is subjected to a large initial deviation from the ideal
trajectory. From left to right the plot show: convergence of all error
dynamics; close-up of error dynamics; and the deviation of the general
integral.
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7 Discussion

This thesis applies new methods of motion generation to a five degree

of freedom system, SemiQuad. SemiQuad is modeled using the Euler-

Lagrange Formalism, and is conceptually regarded as a five link kinematic

chain where one end is connected to the ground by a unactuated revolving

joint. The motion of the original model of SemiQuad was reparameter-

ized in terms of virtual holonomic constraints using a generic method of

constraint generation. However, due to properties of the original motion,

the reparameterizing failed, and a gait was designed from new constraints

instead. After creating the gait a controller based upon transverse lineariza-

tion was implemented, and closed-loop behavior observed.

7.1 Reparamatrizing motion

This paper proposes a generic way of reparameterizing smooth motions of

dynamical systems in terms of virtual holonomic constraints. The method

ran into problems due to non-smoothness of the original motion, and was

not used for the final motion generated for Semiquad. In hindsight, the

problems which arose during the reparameterizing of motion might actu-

ally have been resolved. As noted in section 3.1, the non-smoothness of the

original acceleration made the motion approximation very difficult, while

the vectors of the original velocities and positions were quite smooth. There

is a good chance that if the acceleration had been left out of the approx-

imation of the constraints, a new smooth acceleration profile could have

been designed, leaving the motion in terms of position and velocity more

or less intact, but with new, smooth acceleration and a smooth nominal

torque during the interval. This motion might then have been even better

than the original one. Later tests indicated that the approximation sans

acceleration was very good, although the reduced dynamics corresponding

to these constraints were never tested.
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Another interesting point about the method discussed above. While the

large and cumbersome θ = F (q) found served as a monotonically increas-

ing measure of progress when mapping constraints to the motion, if should

be noted that once the constraints are found, the analytical expression

of θ = F (q) is not needed anymore. Upon finding the constraints, the

variable θ will be implicitly given by the corresponding reduced dynamics.

An initial condition θ0 will of course be needed to run the reduced dynam-

ics, but as a rule, the function F (q) can be disregarded after the constraints

have been generated.

7.2 Generating motion

Perhaps just as important than tools for reparameterizing motion, are meth-

ods for generating new motion. Generating motion via both optimization

and tuning was surprisingly easy once the structure of the constraints had

been decided. This thesis uses polynomial constraints for convenience, and

then in particular linear constraints, but there are other options, and any

constraint is valid as long as it can provide a smooth trajectory for the

relevant motion. By expressing constraints in a parametric fashion and

by formulating criteria of optimality a wide range of steps can be gener-

ated. The gait which was generated for SemiQuad was created by tuning

and displayed interesting properties of balance and periodicity. Had these

constraints been made now, with the experience accumulated throughout

the controller synthesis in mind, the gait would probably have looked a

bit differently. The synthesis of the controller shed new light on why the

constraints should be chosen to be robust and why θ preferably should span

over a greater range of values. A more vigorous gait might also better show

off the qualitative properties of the controller.

Emphasis should be put on the fact that the two methods of generating

constraints shown in this thesis are quite different. In the section on repara-

metrizing, constraints are found from the motion, while in the section on

generating constraints from scratch, motion is found from the constraints.
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7.3 Control by transverse linearization

The transverse linearization is a novel solution to the challenging task of

achieving orbital stability of a dynamical system. Being able to analyti-

cally create a linear auxiliary system describing how the dynamics behave

transversally to the desired path of a periodic motion is a very useful thing

indeed. Conceptually equivalent to the problem of linearizing a nonlinear

system in the vicinity of an equilibrium to achieve stability, however, with

time-varying, nonlinear coefficients requiring feedback designed to cope

with periodic systems. Getting an intuitive feel for the mechanics of this

controller is easy. However, solving the periodic Riccati differential equa-

tion presents a challenge, and mathematical software suites like Matlab

lack routines to handle such systems in a straight-forward way.

It should be noted that there are alternatives to solving the periodic Riccati

differential equation to stabilize the linear auxiliary system. Any feedback

matrix K that stabilizes the transverse dynamics will work, and good con-

vergence could be achieved using, for instance, pole placement.
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8 Conclusion

Generating motion for walking systems is a complex task, not just because

of the challenges posed by systems of this type, but because of a lack of

general mathematical tools and principles capable of fully describing them.

This thesis shows how the theory of virtual holonomic constraints can be

applied to a certain class of systems to bridge this gap, and further shows

how motion synthesis can be performed using simple geometrical relations

between the generalized coordinates of these systems.

The fact that this arbitrarily complex motion can be imposed on the dynam-

ical system through control of a comparably simple transverse linearized

auxiliary system is surprising, and that this linear system can be developed

in an analytical fashion is even more so. The union of these two concepts

constitutes an important step towards achieving fluid, efficient and natural

legged locomotion.

The need for robots to take on dangerous, hard and complex tasks is ob-

vious, and for many such tasks, robotic replacements have already been

found, resulting in safer and more efficient working environments. How-

ever, some tasks depend on the inherent human mobility and flexibility,

and as these are skills yet to be properly mastered in the robotic world,

human fire-fighters still have to physically enter flaming buildings, and

police officers still have to enter hostile situations. Through research on

biologically inspired modes of locomotion these tasks might one day be left

for robots.

8.1 Future work

This thesis touches upon several concepts and ideas which could benefit

from further research. Amongst these are

• First of all, incorporating the switching surfaces as a part of the mo-

tion would complete the theory presented within this thesis. By join-
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ing the separate intervals of continuous dynamics by linearized switch-

ing surfaces orbital stability of the entire hybrid dynamical gait could

be achieved. I sincerely believe that such a result would be of inter-

est to the research community. Implementing this controller on the

walking robot, SemiQuad, would also be of great academic interest.

• Generating and controlling other types of gait for SemiQuad. Gen-

erating slope or stair-climbing gaits might be possible, and would

certainly be useful for many of the tasks one might consider using

legged robots for. Faster motion suited for running and jumping

would also be possible, however, this type of motion would present

challenges not dealt with in this thesis.

• Applying the generic method of reparametrizing to a different system

with smoother motion could bring the method some vindication. Ide-

ally, a suite of tools could be implemented that did the the conversion

automatically, from generating θ to controlling the system dynamics.

• In-depth theory of solving Riccati differential equations is of course

outside the scope of this thesis. Still, doing further research into the-

ory surrounding these equations would be of great personal interest

for me.

• Finally, running a comparative study, generating motion and control-

ling SemiQuad by other available methods could shed some light on

the pros and cons of each method.
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Appendix

A Maple Code

A.1 SemiQuad dynamics

> restart;

> with(LinearAlgebra);

> with(CodeGeneration);

> with(VectorCalculus);

> with(ListTools, Reverse);

> alias(gamma=gamma);

> sqrdiff:=(p)→(diff(p[1], t))�2 + (diff(p[2], t))�2;
> R:=(theta)→Matrix(2, 2, [cos(theta), - sin(theta),

sin(theta), cos(theta)]);
> ELJacobian:=(F::list, V::list)→Matrix([seq([seq(diff(f, v),

v=V)], f=F)]);

> Polygen:=(L::list, X)→sort(add(L[i]*X�(i - 1),

i=1..nops(L)));
> SIZE:=5;

> pa[1]:=q[1];

> pa[2]:=pa[1] - q[2];

> pa[3]:=pa[2] - q[3];

> pa[4]:=pa[3] - q[4];

> pa[5]:=pa[4] - q[5];

> p[1]:=<(l[1] - s[1])*cos(pa[1]), (l[1] - s[1])*sin(pa[1])>;
> p[2]:=<l[1]*cos(pa[1]) + (l[2] - s[2])*cos(pa[2]),

(l[1]*sin(pa[1]) + (l[2] - s[2])*sin(pa[2])>;
> p[3]:=<l[1]*cos(pa[1]) + l[2]*cos(pa[2]) + s[3]*cos(pa[3]),

l[1]*sin(pa[1]) + l[2]*sin(pa[2]) + s[3]*sin(pa[3])>;
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> p[4]:=<l[1]*cos(pa[1]) + l[2]*cos(pa[2]) + l[3]*cos(pa[3])

+ s[4]*cos(pa[4]), l[1]*sin(pa[1]) + l[2]*sin(pa[2]) +

l[3]*sin(pa[3]) + s[4]*sin(pa[4])>;
> p[5]:=<l[1]*cos(pa[1]) + l[2]*cos(pa[2]) + l[3]*cos(pa[3])

+ l[4]*cos(pa[4]) + s[5]*cos(pa[5]), l[1]*sin(pa[1]) +

l[2]*sin(pa[2]) + l[3]*sin(pa[3]) + l[4]*sin(pa[4]) +

s[5]*sin(pa[5])>;
> for j to SIZE do va[j]:=evalm(ELJacobian([pa[j]], [seq(q[i],

i=1..5)])&*Matrix(5, 1, [seq(dq[i], i=1..5)])))end do;
> for j to SIZE do vc[j]:=convert(map(simplify, map(combine,

evalm((ELJacobian([p[j]], [seq(q[i], i=1..5)])&*[seq(dq[i],

i=1..5)])), trig), size), Vector);end do;
> for i to SIZE do K[i]:=1/2*(m[i]*map(simplify,

map(combine, evalm(vc[i]&*Transpose(vc[i])), trig), size)) +

Iy[i]*evalm(va[i]*va[i])[1, 1]);end do;
> for i to 4 do Km[i]:=1/2*Ia[i]*dq[i + 1]*dq[i + 1]*N;enddo;

> for i to SIZE do P[i]:=p[i][2]*m[i]*g;enddo;

> Ks:=sum(K[a], a=1..5) + sum(Km[a], a=1..4);

> Ps:=sum(P[a], a=1..5);

> De:=ELJacobian([Ks], [seq(dq[i], i=1..SIZE)]);
> De:=map(combine, map(simplify, Transpose(ELJacobian(convert(De,

list), [seq(dq[i], i=1..SIZE)])), size), trig);
> Ge:=map(combine, map(simplify, expand(ELJacobian([Ps],

[seq(q[i], i=1..SIZE)]))), size, trig);
> Ce:=Matrix(SIZE);
> for k to SIZE do

for j to SIZE do

for i to SIZE do

Ce[k, j]:=Ce[k, j] + 1/2*(diff(De[k, j], q[i]) + diff(De[k, i],

q[j]) + diff(De[i, j], q[k])*dq[i]);

end do

end do

end do
> Ce:=map(simplify, map(combine, Ce, trig), size);

> De:=map(simplify, map(combine, De, trig), size);
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> Ge:=Transpose(map(simplify, map(combine, Ge, trig), size));

Matlab export

> Matlab(De, resultname="D");

D = [. . .]

> Matlab(Ce, resultname="C");

C = [. . .]

> Matlab(Ge, resultname="G");

G = [. . .]
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A.2 Virtual Holonomic Constraints

> SQq[1]:=[1, 0];

> var:=theta(t);

> SQq[2]:=[PQ(1, 1), PQ(1, 2)];

> SQq[3]:=[PQ(2, 1), PQ(2, 2)];

> SQq[4]:=[PQ(3, 1), PQ(3, 2)];

> SQq[5]:=[PQ(4, 1), PQ(4, 2)];

> phi[1]:=Polygen(Reverse(SQq[1]), var);

> phi[2]:=Polygen(Reverse(SQq[2]), var);

> phi[3]:=Polygen(Reverse(SQq[3]), var);

> phi[4]:=Polygen(Reverse(SQq[4]), var);

> phi[5]:=Polygen(Reverse(SQq[5]), var);
> DYNSYSTEM:=evalm(De&*Transpose(<seq(ddq[i], i=1..5)>) +

Ce&*Transpose(<seq(dq[i], i=1..5)>) + Ge);
> DYN2:=DYNSYSTEM;
> for i to SIZE do

DYN2:=subs({ddq[i]=diff(phi[i], t, t), dq[i]=diff(phi[i], t),

q[i]=phi[i]}, evalm(DYN2));

end do;
> DYN2:=collect(evalm(DYN2), [diff(theta(t), t, t),

(diff(theta(t), t))�2]);
> DYN3:=DYN2;
> DYN3:=subs({diff(theta(t), t, t)=ddth, theta(t)=th,

diff(theta(t), t)=dth}, evalm(DYN3));

> DYNMATLAB:=collect(evalm(DYN3), [ddth, dth�2]);

Matlab export

> alpha:=coeff(DYNMATLAB[1, 1], ddth);

> Matlab(alpha, resultname="alpha");

alpha = [. . .]
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> beta:=coeff(DYNMATLAB[1, 1], dth�2);

> Matlab(beta, resultname="beta");

beta = [. . .]

> gamma:=subs(ddth=0, dth=0, DYNMATLAB[1, 1]);

> Matlab(gamma, resultname="gamma");

gamma = [. . .]

> with(linalg, inverse)
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A.3 Feedback transformation

> M1:=Matrix(De); - 1;C1:=Matrix(Ce); - 1;G1:=Matrix(Ge);
> SubToError1:=q[1]=phi[1], dq[1]=diff(phi[1], t),

ddq[1]=diff(phi[1], t, t);
> M2:=subs(SubToError1, evalm(M1));
> C2:=subs(SubToError1, evalm(C1*Matrix(5, 1, [seq(dq[i],

i=1..5)]));
> G2:=subs(SubToError1, evalm(G1));
> for i from 2 to SIZE do

M2:=subs(dq[i]=(dy[i], diff(phi[i], t)), q[i]=(y[i], phi[i]),

ddq[i]=(ddy[i], diff(phi[i], t, t)), evalm(M2));

C2:=subs(dq[i]=(dy[i], diff(phi[i], t)), q[i]=(y[i], phi[i]),

ddq[i]=(ddy[i], diff(phi[i], t, t)), evalm(C2));

G2:=subs(dq[i]=(dy[i], diff(phi[i], t)), q[i]=(y[i], phi[i]),

ddq[i]=(ddy[i], diff(phi[i], t, t)), evalm(G2))

end do;
> M2:=Matrix(M2); - 1;C2:=Matrix(C2); - 1;G2:=Matrix(G2);
> phidot:=Matrix(5, 1, [seq(simplify((diff(phi[i], t),

1/(diff(theta(t), t)))), i=1..5)]);
> L:=Matrix(5, 5);
> for i to 5 do

L[i, 1]:=phidot[i, 1]

end do;
> for i to 4 do

L[i+1, i+1]:=1

end do;
> invL:=Matrix(inverse(L));

> E:=Matrix(4, 5, shape=identity);
> B:=Matrix(5, 4, [[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0],

[0, 0, 1, 0], [0, 0, 0, 1]]);
> Ldot:=Matrix(subs(, evalm(Matrix(map(diff, L, t))&*Matrix(5,

1, [seq(diff(y[i](t), t), i=1..4), diff(theta(t), t)]));

69



Matlab export

> MATSUB:={diff(theta(t), t, t)=ddth, theta(t)=th,

diff(theta(t), t)=dth};
> MatlabM2:=subs(MATSUB, M2);

> Matlab(MatlabM2, resultname="D");

D = [. . .]

> MatlabC2:=subs(MATSUB, C2);

> Matlab(MatlabC2, resultname="C");

C = [. . .]

> MatlabG2:=subs(MATSUB, G2);

> Matlab(MatlabG2, resultname="G");

G = [. . .]

> MatlabinvL:=invL;
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A.4 Transversal linearization

> DYNSYSTEMerror := DYNSYSTEM[1, 1];

> DYNSYSTEMabg := DYNSYSTEM[1, 1];
> SubToTheta := {q[1] = phi[1], dq[1] = diff(phi[1], t), ddq[1]

= diff(phi[1], t, t)};
> DYNSYSTEMabg := subs(SubToTheta, evalm(DYNSYSTEMabg));

> DYNSYSTEMerror := subs(SubToTheta, evalm(DYNSYSTEMerror));
> for i from 2 to SIZE do

DYNSYSTEMerror := subs({q[i] = y[i] + phi[i], dq[i] = dy[i]

+ diff(phi[i], t), ddq[i] = ddy[i] + diff(phi[i], t, t)},

evalm(DYNSYSTEMerror));

DYNSYSTEMabg := subs({q[i] = phi[i], dq[i] = diff(phi[i], t),

ddq[i] = diff(phi[i], t, t)}, evalm(DYNSYSTEMabg))

end do;
> TRANVERSDYN := DYNSYSTEMabg - VectorCalculus;

> TRANVERSDYN := simplify(TRANVERSDYN, size);
> for i from 2 to 5 do

Gy[i-1] := subs(y[i] = 0, diff(TRANVERSDYN, y[i]))

end do;
> Gy := Vector(4, Gy);
> for i from 2 to 5 do

Gdy[i-1] := subs(dy[i] = 0, diff(TRANVERSDYN, dy[i]))

end do;
> Gdy := Vector(4, Gdy);
> for i from 2 to 5 do

Gv[i-1] := subs(ddy[i] = 0, diff(TRANVERSDYN, ddy[i]))

end do;
> Gv := Vector(4, Gv);

Matlab export

> MATSUB := {diff(theta(t), t, t) = ddth, theta(t) = th,

diff(theta(t), t) = dth, seq(y[i] = 0, i = 2 .. 5), seq(dy[i]

= 0, i = 2 .. 5), seq(ddy[i] = 0, i = 2 .. 5)};
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> Gy := subs(MATSUB, Gy);

> Matlab(Gy, resultname="Gy");

Gy = [. . .]

> Gdy := subs(MATSUB, Gdy);

> Matlab(Gdy, resultname="Gdy");

Gdy = [. . .]

> Gv := subs(MATSUB, Gv);

> Matlab(Gv, resultname="Gv");

Gv = [. . .]
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