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Abstract

The control solution is a crucial part of Managed Pressure Drilling. Existing solutions
are often based on Proportional plus Integral (PI) control and have several drawbacks,
mainly poor performance for some common drilling operations and a large need for
retuning. Better control solutions will reduce costs and improve safety.

This thesis presents a comparison of two adaptive control solutions versus a PI bench-
mark. Both complexity, tuning, performance and robustness will be compared. The
two adaptive solutions considered are the well-known Model-Reference Adaptive Con-
trol method, and the recently developed L1 adaptive control method.

The control solutions are tested on a wide range of common drilling operations, some
common controller issues, changing parameters and for two different control setpoints.
The adaptive control solutions are shown to give better performance and to have less
need for retuning, but not without costs. The main issues of the L1 adaptive controller
is low time-delay margins and high computational demands, but the performance is
much better than for the benchmark controller.

The most important recommendation for future work is evaluation of higher order
filter designs for the L1 adaptive controller, because of the potential to both reduce
computational needs and to optimize time-delay margins.
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Glossary

ACC : American Control Conference
AIAA : American Institute of Aeronautics and Astronautics
CPU : Central Processing Unit
IADC : International Association of Drilling Contractors
IRIS : International Research Institute of Stavanger
MIMO : Multiple-Input and Multiple-Output
MPD : Managed Pressure Drilling
MPT : Mud Pulse Telemetry
MRAC : Model-Reference Adaptive Control
MWT : Measurement While Drilling
ODE : Ordinary Differential Equation
PI-Controller : Proportional plus Integral Controller
RCD : Rotating Control Device
ROP : Rate Of Penetration
SISO : Single-Input and Single-Output
UBO : Underbalanced Operation
UKF : Unscented Kalman Filter
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Chapter 1

Introduction

1.1 Motivation and Goal

The control solution is a crucial part of MPD. Existing solutions are mostly based on
conventional PI control. One of the main drawbacks of PI solutions is that performance
degrades during critical and common operations such as a connection or movements
of the drill string. A second main drawback is the large need for manual tuning of
the controllers, which means that the performance degrades during drilling without
continuous re-tuning.

The PI-Controller depends heavily on integral action to compensate for friction loss in
the well. Only a small proportional term can be used, to prevent generating pressure
pulses by fast changes in the control input. The result is that conventional control will
react slowly to fast pressure changes and have poor disturbance attenuation in these
cases (Kaasa 2007).

Better control solutions will lead to reduced costs in drilling due to higher efficiency
and reduced drilling time. They make new reservoirs drillable and contribute to safety
by increasing safety margins through increased control and early detection and mitiga-
tion of potential hazards.

The measurement signals available for control in MPD are often not dependable. We
might lose measurements, or the value of the measurements might be altered while
passing through database systems which perform filter operations on the signals. We
therefore look for controllers which do not need many measurement signals.

We thus look for robust adaptive controllers which require few signals. I have chosen
to look into L1 adaptive control since it offers to be both a robust controller, needs little
tuning and uses few measurement signals. The control method is very new and there
are few reports of actual use, so I think it is of great interest to evaluate if the controller
is as good as the developers claim. It is also of personal interest to the author, on
the background of having been to an adaptive control workshop where this control
architecture was presented and much discussed. We come back to why it is interesting
to evaluate L1 adaptive control in the theory and background chapter and see some
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interesting highlights.

The goal of this project is to evaluate the usefulness of adaptive control in MPD, and
especially L1 adaptive control. To evaluate the L1 controller we will compare it with
a PI controller and a more known adaptive control technique: MRAC. MRAC, which
is evaluated in Pedersen (2008), is selected because it is in many ways similar to L1
control, except for some key areas. The PI controller is a natural choice as reference
controller. The widespread use in the industry is not without reason, and it is interest-
ing to see how much we can gain by using adaptive control. The main focus will be the
comparison of the L1 adaptive controller and the PI controller.

Both the need for tuning, complexity, robustness and performance of the controllers
will be evaluated.

It is also of great interest to evaluate different control structures for MPD. I will look
at both a topside scheme controlling the bottomhole pressure indirectly by controlling
the choke pressure, and a direct bottomhole scheme controlling the bit pressure.

1.2 Layout of the Report

The remainder of this thesis is structured into five parts and some additional appen-
dices.

1. Chapter 2: Theory and Background - I start with presenting some background
theory on some important topics for this thesis. This chapter includes:

• MPD - The background concepts for Managed Pressure Drilling. How does
it work and why do we need better controllers?

• Mathematical model - Presentation of the model used for the derivations of
controllers in later chapters.

• Control structure - Different control structures for MPD.

• Adaptive control - What can be gained by using adaptive controllers, and
what are the main challenges with adaptive control.

• MRAC - What is the background and main concept of Model-Reference
Adaptive Control?

• L1 adaptive control - What is L1 adaptive control and how does it work?

2. Chapter 3: Control Design - In the third chapter, control design and controller
construction is completed. The chapter is divided into four main sections:

• Proportional-Integral Controller - A standard PI controller is first introduced
to be used as the benchmark.

• MRAC - Derivation of the MRAC, including reference system, control equa-
tion and update laws.
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• L1 adaptive control - An L1 controller is derived for both topside and bot-
tomhole control, and several decisions are made about design parameters.

• Control structure - Simple designs for both topside and bottomhole control
are constructed. We select an observer for estimating parameters and bit
pressure.

3. Chapter 4: Analysis - The next part is controller analysis. We look into stability
and margins of the controllers. The sections are divided into:

• MRAC - Derivation of stability.

• L1 adaptive control - Stability and performance.

• Time-delay margins of the controllers.

4. Chapter 5: Simulation - In the fifth chapter I present scenarios and simulation
results. We compare L1 adaptive controller versus MRAC and the benchmark
controller. We will look into:

• Scenarios - Some common drilling scenarios are evaluated.

• Controller issues - The effects of noise, saturation, sampling and numerical
issues.

• Parameter changes - Some important system parameters are changed to eval-
uate robustness.

• Control structure - The control strategies are evaluated.

5. Chapter 6: Discussion - In the final part we discuss the findings from chapter
4 and 5 and look into what more can be done in future work. The discussion
includes:

• Tuning and complexity - Do we have to perform continuous retuning of con-
trollers when parameters are changing, and how complex does the controller
grow?

• Performance - How good is controller performance versus the PI bench-
mark?

• Robustness - How well do the controllers handle changing parameters and
disturbances?

• Control structure - What are the strengths of the different control strategies
and do they have a large impact on performance?

• L1 adaptive control highlights.

• Final conclusions and contributions of this thesis.

• Recommendations for future work.

6. Appendices - The appendices includes:

• Additional theorems and preliminaries.
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• Controller tuning.

• Simulation tables.
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Chapter 2

Theory and background

This chapter presents the necessary background to understand the problem, the chal-
lenges and the technology evaluated and used in this thesis. The chapter is in no way
a complete summary of any of the areas presented, but is meant to be a quick introduc-
tion to give basic understanding.

Since the background of this project is very similar to my previous project on MRAC
in MPD (Pedersen 2008), the introductory parts on MPD and MRAC are much the
same. However, all the sections have been revised and the focus on MRAC has been
downplayed. Completely new in this introduction is the part on L1 adaptive control.

2.1 Background on Managed Pressure Drilling

2.1.1 What is Managed Pressure Drilling

The definition of Managed Pressure Drilling, taken from the IADC UBO and MPD
Subcommittee is (Hannegan 2006):

“Managed Pressure Drilling (MPD) means an adaptive drilling process used to control
precisely the annular pressure profile throughout the wellbore. The objectives are to
ascertain the downhole pressure environment limits and to manage the annular hy-
draulic pressure profile accordingly.”

We will in the next sections take a closer look at what this really means, and what can
be gained by using MPD rather than conventional drilling methods.

The IADC UBO and MPC subcommittee has also created a UBO and MPD glossary1.
This could be a good starting point to get into the terminology of MPD and all the TLAs
(three letter abbreviations) of drilling.

1The document can be found at www.iadc.org/committees/ubo_mpd/completed_documents.html
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2.1.2 How does Managed Pressure Drilling work?

What takes MPD beyond conventional drilling is the ability to control the pressure in
the well without changing the mud density. This is accomplished by sealing the top
drive with a rotating control device (RCD), the use of a control valve and an extra
pump. As indicated in figure 2.1 the annulus is sealed to create a pressurized system.

While drilling there are some pressure constraints which must be satisfied, mainly the
pore pressure and the fracture pressure. Falling below the pore pressure will result in
influx from the reservoir. This is unwanted, because during drilling the right equip-
ment to handle large influx is not in place and a large amount of influx may even result
in a blowout (uncontrollable kick). Breaking the fracture pressure can result in lost cir-
culation: a large loss of mud to the reservoir and possible damage to the production
formation. If the drilling-fluid pressure is too low to maintain the structural integrity
of the drilled hole, we can get pipe sticking or even a wall collapse leading to a loss of
the entire well (Azar & Samuel 2007).

In figure 2.2 you see the upper and lower limits added to two reservoirs. Changes
during extraction can make these limits very tight, leaving only a narrow window for
drilling. Precise pressure control is therefore necessary to be able to drill such reser-
voirs. The lower line shows the static pressure, caused by the hydrostatic head pres-
sure of the mud in the hole (MW). The upper line shows the additional term added
by annulus friction pressure (AFP / ECD) caused by circulating mud. By sealing the
well to create a pressure system and by use of a control valve, we get an additional
adjustable pressure term (BP). This term can be used to change the well pressure. The
variation in effective bottomhole pressure (EBHP) is given as (Hannegan 2006):

EBHP = MW + ΔAFP + ΔBP (2.1)

It is now possible to adjust the pressure at the setpoint location without changing the
mud density. This setpoint location is usually at the location with the smallest pressure
margins.

2.1.3 Benefits of MPD

There are several motivating factors for using MPD (Kaasa 2007, Hannegan 2006-2007,
van Riet, Reitsma & Vandecraen 2003). For instance:

• Reduced formation damage (this is a significant problem in the case of unstable
formations and borehole stability problems).

• Improved Rate of Penetration (ROP).

• Reach “undrillable reserves” where pressure margins are too small for the well to
be drilled without pressure control.

• Faster drilling operation.

• Reduced non-productivity time.
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Figure 2.1: Managed Pressure Drilling illustrated (Kaasa 2008).
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Figure 2.2: Well pressure limits (AtBalance 2008).

• Improved safety.

• Reduction of mud losses.

• Reduction of formation fluid influx.

• Automatic kick circulation.

In short: better economy, better safety margins, the possibility to drill previously “un-
drillable” wells and shorter time to production.

2.1.4 The Well

The well can be divided into two parts: the drill string and the annulus. This is illus-
trated in figure 2.3.

The drill string part consists of the topside assembly, sections of pipe, the Measurement
While Drilling (MWD) unit and the bit. Drilling mud is pumped down the drill string
and exits through the bit. There is a one-way valve at the bit, preventing flow into the
drill string.

The MWD unit consists of a large section of measurement devices, which provides
downhole measurements at a good sampling rate. However, the common way of send-
ing data from the MWD unit to the topside installation is by Mud Pulse Telemetry
(MPT), which works by creating rapid fluctuations in the pressure of a closed loop
circulating system. The bit rate is very low, approximately 10-20 bps. This is not
enough for real-time transmission of all the measured parameters. If the circulation
is low, the pulsing is no longer possible, and we have no bottomhole measurements
(Stamnes 2007).
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Figure 2.3: Simplified well schematic, from Kaasa (2007).

The annulus part consists of the well outside the drill string. At the bottom we find the
open hole region (and possibly the reservoir), further up is the cased part of the well
and the control choke.

The drilling mud has several functions; it removes cuttings, contains subsurface forma-
tion fluid pressures, provides hole stabilization and serves many minor tasks, such as
cooling, lubrication and reducing the weight of the drill string (Azar & Samuel 2007).

2.1.5 Drilling Operations and Problems

There are several common drilling operations and severe problems which may occur
during drilling. Here is a short presentation of some of the scenarios which we will
look into in the simulation section.

Pipe connection

Pipe connection is the procedure of connecting a new stand, or adding a new length of
pipe, to the drill string. A stand is approximately 27 meters long, and with a drill speed
of 15 meters/hour this means one connection operation takes place every two hours.
For the new stand to be connected, the main mud pump must be ramped down to zero
flow, and excess fluid in the drill string is bled off through a valve and returned to the
mud tanks to reduce the main pump pressure to atmospheric pressure. The procedure
is completed in about ten minutes, and then the flow is ramped back up (Stamnes 2007).
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Mud loss

Mud or fluid loss is defined as the loss of a mud filtrate into a permeable formation that
is being drilled. Because of positive differential pressure between the well pressure and
the formation pressure, fluid tends to flow into the formation. There is always some
loss to form a filter cake against the wellbore walls and this is even positive, but high
continuous loss is damaging and can lead to damages on the producing formation and
lower rate of penetration (Azar & Samuel 2007).

Lost circulation

Lost circulation is the situation where one has a large loss of drilling mud into a forma-
tion, causing a decrease in the mud hydrostatic head. This may happen if we drill into
zones which are highly permeable, cavernous, inherently fractured or fractured due
to improper drilling, casing or tripping practices. The first three are unavoidable, but
the last condition can be prevented (Azar & Samuel 2007). The consequences of lost
circulation depend on the amount of mud lost and the location of the loss. If the loss is
large and we are in an interval containing overpressure, we might get a sudden influx
of formation fluid which could lead to a blowout or formation breakdown (Jahn, Cook
& Graham 2008).

Power loss

Power loss is defined here to mean a complete loss of power to the main mud-pump.
The choke power and backpressure pump are assumed to be operating at a separate
and independent power supply.

Kick

During drilling operations, an intrusion of formation fluids into the wellbore is termed
a kick, and the fluid is called kick fluid. If effective measures are not taken, there is
a potential for blowout, an uncontrolled kick. Blowouts can happen during drilling,
tripping, casing or workover operations. The occurrence of a blowout can endanger
life, the monetary investments and the environment. The prevention of blowouts is
therefore the most important task in any drilling venture (Azar & Samuel 2007).

In general, a kick will occur when the pressure of formation fluids becomes greater than
the pressure induced from the drilling fluid and the backpressure system. This may
happen if we drill into an unexpected high-pressure zone or by drops in the wellbore
fluid pressure (Azar & Samuel 2007).
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2.2 Mathematical Model of the Well

The mathematical model used to develop the controllers in this thesis is based on the
Kaasa model (Kaasa 2007). The Kaasa model is a reduced order model that aims at
capturing the dominant phenomena of the system. Fast dynamics are ignored, similar
effects are lumped together and slowly varying parameters are treated as constants.
The model gives us a set of ODEs for the pressure of the mud pump, the choke pressure
and for the flow in the bit.

The equations are derived both in Kaasa (2007) and Stamnes (2007) and are only sum-
marized here for the reader’s benefit.

The mud pump equation is given by:

Vd
βd
ṗp = qpump − qbit, (2.2)

where Vd is the volume of the drill string, βd is the bulk modulus of the drill string, pp
the pressure of the mud pump, qpump the mud pump flow and qbit is the bit flow. The
choke pressure equation is:

Va
βa
ṗc = −V̇a + qbit + qres + qback − qc, (2.3)

where Va is the volume of the annulus, βa is the bulk modulus of the annulus, V̇a is the
change in volume in the annulus, pc the pressure of the choke, qres the reservoir influx,
qback the backpressure pump flow and qc is the choke flow. The bit flow equation is
given by:

[Ma +Md]q̇bit = pp − pc − Fd|qbit|qbit − Fa|qbit + qres|(qbit + qres) + (ρ̄d − ρ̄a)ghbit, (2.4)

whereMa is the mass coefficient of the annulus, Md is the mass coefficient of the drill
string, hbit the vertical depth of the bit, ρ̄d the average density in the drill string, ρ̄a the
average density in the annulus and g is gravity. We will also use thatM =Md +Ma.

The equation for the bit pressure is given by

pbit = pc +Maq̇bit + Fa|qbit + qres|(qbit + qres) + ρ̄aghbit. (2.5)

The equations are solved in Matlab using a fixed step ODE solver.

In Kaasa (2007) there are also equations prestented for friction and geometry. These
and additional equations were used to create the simulator used for simulations in the
later chapters. For more details see Pedersen (2008).

There are at least two ways to control the system: we can either control qc or zc, where
zc is the choke opening.
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If we are to control qc we need some inner control loop to set the correct choke opening.
We can simulate this as an added choke flow dynamic for the system.

qc = ωc
2

s2 + 2ζcωcs+ ω2
c

qc0 (2.6)

where qc0 is the desired flow rate, ζc a dampening coefficient and wc the resonance
frequency. This means we will get some delay on the input signals. We will look closer
at the effects of this delay.

The choke equation for choke flow is given by:

qc = Kchokezc

√
2
ρ0

(pc − p0) (2.7)

WhereKchoke is the choke gain constant and p0 is the atmospheric pressure.

2.3 Control Methods in MPD

There are several different control strategies available for pressure control in MPD, but
they are usually placed in one of two groups (Hannegan 2006).

• Reactive MPD: We perform drilling in the classic fashion, but add some kind of
MPD system on top to handle any surprises during drilling.

• Proactive MPD: The drilling plan is designed from the start with the goal of us-
ing all the advantages of MPD. Quite naturally this method offers the greatest
benefits.

There are many variations of MPD and some of the more common are (Hannegan 2006):

• Constant Bottomhole Pressure (CBHP)

• Pressurized Mud Cap Drilling (PMCD)

• Dual Gradient (DG)

• Return Flow Control / HSE

• Reverse Circulation (RC)

We might also select different setpoints to control, and either control this setpoint di-
rectly or indirectly. In this thesis we discuss two control settings:

• Indirect topside control: The pressure is indirectly controlled by adjusting the
topside annulus pressure (the choke pressure).

• Direct bottomhole control: The pressure is stabilized at the desired set point di-
rectly.
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The two control settings considered offer different benefits and drawbacks. Indirect
topside control offers high frequency and robust measurements. However, it also in-
troduces a need for conversion between wanted bottomhole pressure and choke pres-
sure. This leads to the requirement of some kind of reference trajectory generator. This
reference trajectory can be created using simulations, or by the use of some kind of
estimator to get the system parameters required to perform a conversion.

If we use bottomhole control we do not need to perform the pressure conversion, but
we have the additional problem of very scarce and noisy measurements. Control using
only bottomhole pressure readings every 30 seconds is clearly not sufficient. This leads
to the need for developing observers for the bottomhole pressure. Such an observer
can use the good top side measurements to create a fairly accurate pressure profile of
the well. One possible choice is the observer developed in Stamnes (2007).

2.4 Adaptive Control

Adaptive control has received much attention from the control society, but it has also
always been a controversial subject. Often you will hear statements like “adaptive con-
trol is complex”, or “do not use adaptive control unless it is absolutely necessary”.
Unfortunately there is some truth to these statements, but many theoretical develop-
ments in the last decades has brought adaptive control much closer to practice. There
are also many examples of successful industrial applications (Butler 1992).

So why use adaptive control? A fixed controller cannot provide acceptable system
behavior in all situations, particularly if the process to be controlled has unknown or
time-varying parameters (Butler 1992).

Adaptive control offers better performance when dealing with complex systems that
have unpredictable parameter deviations and uncertainties, and can maintain consis-
tent performance in the presence of uncertainty and variations in plant parameters.
Robust control is an alternative to adaptive control and has some advantages when
dealing with disturbances and quickly varying parameters, but adaptive control is su-
perior in dealing with uncertainty in constant or slow-varying parameters. The best
solution might thus be an adaptive augmentation of a robust baseline controller (Wise,
Lavretsky & Hovakimyan 2008).

An interesting observation is that integral effect is adaptive control in its simplest form
and that standard adaptive laws are essentially integrators with finite gain at all fre-
quencies except zero (Tsakalis & Ioannou 1993).

2.5 Issues in Adaptive Control

There are several causes of instability in adaptive systems. Perhaps the most important
according to Ioannou & Sun (1996) are:

• Parameter drift
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• High-gain instability

• Instability resulting from fast adaptation

• High-frequency instability

• Effects of parameter variations

When the system is unable to differentiate between noise and good parameter infor-
mation, the estimated parameters may drift slowly with time, and we can suddenly
get large fluctuations in parameters and output. This phenomenon is known as burst-
ing and may happen even in ideal simulations due to small numerical errors (Wise
et al. 2008, Ioannou & Sun 1996).

Many methods have been developed to solve parameter drift issues and admissibility
problems in adaptive control. Some of the primary methods are:

• Deadzone

• Excitation

• Parameter projection and / or leakage

• Model based supervision

The deadzone is implemented by switching off the estimator when the prediction er-
ror gets below a certain threshold. The parameters converge if the deadzone is large
enough, but if it is too large, performance will suffer. If the threshold is too small,
parameter drift is reintroduced (Dozal-Mejorada & Ydstie 2007).

Excitation methods present the estimator with informative data all the time. The pa-
rameter estimates will then remain close to the “true parameters”. The problem with
excitation is that we need strong excitation to overcome the noise, yet it must be subtle
enough that performance does not suffer (Dozal-Mejorada & Ydstie 2007).

Parameter projection constrains the parameters so that they do not wander out of the
admissible set. Projection solves the problem using hard constraints, while leakage
uses soft constraints. Neither method solves the drift problem completely and we
might get poor closed loop performance if the bounds / leakage parameters are not
well chosen (Dozal-Mejorada & Ydstie 2007).

Model based supervision solves the problem of parameter drift and ensures admissi-
bility by using a second adaptive controller to detect if an event really was informative
before letting it into the data record. The second adaptive model estimates the distur-
bance and uses a switch to turn on adaptation only if the prediction error of the control
design is larger than the estimate of the disturbance (Dozal-Mejorada & Ydstie 2007).

The adaptive control law can generate a high-gain feedback which excites unmodeled
dynamics and leads to instability and unbounded solutions. This kind of instability is
referred to as high-gain instability and can be avoided by keeping the controller gains
small (small loop gain) (Ioannou & Sun 1996).

Large adaptation gains increase the speed of adaptation, which in turn excites the un-
modeled dynamics and may thus lead to instability (Ioannou & Sun 1996). We will look
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into how L1 adaptive control handles this challenge.

We can get high-frequency instabilities if the reference signal has high frequencies
which excites unmodeled dynamics. This may cause low signal-to-noise ratio, and
therefore lead to wrong adjustments of parameters over time and eventually lead to in-
stability. It should be noted that this instability is caused by adaptation and by switch-
ing the adaptation off, the instability ceases (Ioannou & Sun 1996).

Time-varying parameters will lead to the appearance of parameter error disturbance
terms. This makes concluding boundedness of signals much harder, and besides for
special classes of plants, it is hard to conclude boundedness if these disturbance terms
are not decaying to zero exponentially fast (Ioannou & Sun 1996).

2.6 Model-Reference Adaptive Control

The MRAC technique was first introduced by Whitacker in 1958. One of the most
popular schemes is shown in figure 2.4 (Butler 1992). A reference model is chosen to
generate a desired trajectory ym, that the plant out yp should follow. The tracking er-
ror e1 � yp − ym represents the deviation between the plant output and the desired
performance. The system has an ordinary feedback loop composed of the process and
a controller, and another feedback loop that changes the controller parameters. The
parameters are changed on the basis of feedback from the tracking error. The mecha-
nism for adjusting the parameters is obtained either by gradient method or by applying
stability theory (Åström & Wittenmark 1995, Ioannou & Sun 1996).

Figure 2.4: Illustration of the MRAC scheme (Ioannou & Sun 1996).

MRAC schemes can be either direct or indirect, and with normalized or unnormalized
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adaptive laws. In direct MRAC the controller parameters are updated directly by an
adjustment mechanism, while in indirect MRAC plant parameters are first estimated
and then used to update the controller (Ioannou & Sun 1996).

There are many MRAC schemes which guarantee global asymptotic stability for linear
continuous time minimum phase systems without unmodeled dynamics and distur-
bances. However, the very famous Rohrs example and the X-15 accident demonstrated
that even small bounded disturbances and model mismatch might lead to instability.

When the input vectors to an MRAC system are rich enough, or persistently exciting of
high enough order (the input is informative enough to allow the unique identification
of system parameters), both simulations and analyses indicate that MRAC systems are
robust with respect to non-parametric uncertainties. However, when the input is not
rich enough, even small uncertainties may lead to severe problems (Wise et al. 2008).

2.7 L1 Adaptive Control

2.7.1 Introduction

In several papers, Chengyu Cao and Naira Hovakimyan have presented what they
claim to be a novel adaptive control architecture. They name this control architecture
L1 adaptive control (Cao & Hovakimyan 2006a, Cao & Hovakimyan 2006b).

So what is a L1 adaptive controller, and how does it work?

The starting point for the controller is a reparametrization of MRAC called Companion
Model Adaptive Control (CMAC), which allows for the incorporation of a low-pass
filter into the feedback loop. This structure along with a low-pass filter, will allow us
to ensure a low-frequency control signal even in the presence of large adaptive gains.

This structure enables the possibility to enforce a desired transient performance, both
for input and output signals, by increasing the adaptation gain . A problem is that we
can no longer use the nice, clean reference system of MRAC. Unknown parameters are
now part of the reference system, and we will need some other way of selecting the
control specifications.

In this section we will take a closer look at how this works, what we need to select and
what we gain from using an L1 adaptive controller. The section also includes a brief
overview of some of the existing literature and what could be potential pitfalls of L1
adaptive control.

2.7.2 Existing Literature

Cao and Hovakimyan has produced many articles on L1 adaptive control, most are
published in AIAA and ACC proceedings and journals, but quite a few are presented
in large international control journals.
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Evaluation on controller stability margins and proof of guaranteed transient perfor-
mance for systems with bounded disturbances can be found in Cao & Hovakimyan
(2008a), (2007b) and (2007e). The L1 adaptive controller is also developed for paramet-
ric strict feedback systems (Cao & Hovakimyan 2007a) and is shown to give good per-
formance even with non-zero trajectory initialization error (Cao & Hovakimyan 2008e).
The controller is also derived for the cases of unmodeled dynamics, unknown nonlin-
earities and unmatched disturbances (Cao & Hovakimyan 2008d, 2008b, 2008c).

The control architecture is extended to output feedback for time-varying unknown
parameters, bounded disturbances and unknown dimension in Cao & Hovakimyan
(2007c) and (2007d).

Articles showing possible uses include Patel, Cao, Hovakimyan, Wise & Lavretsky
(2007), Cao, Hovakimyan, Kaminer, Patel & Dobrokhodov (2007) and Cao & Hov-
akimyan (2009).

2.7.3 Preliminaries

Most Cao and Hovakimyan papers begin with a short introduction of basic definitions
and facts from linear systems theory that are needed for the derivation of the L1 adap-
tive controller, and I have chosen to do so as well.

L∞ norms

For a signal ξ(t), t ≥ 0, ξ ∈ R
n, its truncated L∞ norm and L∞ norm are defined as

‖ξt‖L∞ = max
i=1,..,n

(
sup

0≤τ≤t
|ξi(τ)|

)
, (2.8)

‖ξ‖L∞ = max
i=1,..,n

(
sup
τ≥0
|ξi(τ)|

)
, (2.9)

where ξi is the ith component of ξ.

L2 norm

The L2 norm for a transfer function is given by:

‖G(s)‖L2 =
( 1

2π

∫ ∞
−∞
|G(jω)|2 dω

)1/2
(2.10)

L1 gain

The L1 gain of a stable, proper SISO systemH(s) is defined to be

‖H(s)‖L1 =
∫ ∞

0
|h(t)| dt, (2.11)
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1 2

Figure 2.5: L1 gain: Interconnected system

where h(t) is the impulse response of H(s).

A continuous time LTI system (proper) with impulse response h(t) is stable if and only
if

∫ ∞
0
|h(t)| dt <∞ (2.12)

For a stable proper m input n output systemH(s) the L1 gain is defined as

‖H(s)‖L1 = max
i=1,..n

⎛
⎝ m∑
j=1
‖Hij(s)‖L1

⎞
⎠ , (2.13)

where Hij(s) is the ith row jth column element of element of H(s).

For a stable proper MIMO system H(s) if the input r(t) ∈ R
m is bounded, then the

output x(t) ∈ R
n is also bounded as ‖xt‖L∞ ≤ ‖H(s)‖L1‖r‖L∞ , ∀t ≥ 0.

L1 small gain theorem

The interconnected system in figure 2.5 with w2(s) = Δ(s)(w1(s) −M(s)w2(s)) with
input w1(t) and output w2(t) is stable if

‖M(s)‖L1‖Δ(s)‖L1 < 1. (2.14)

Projection operator

Consider a convex, compact set with a smooth boundary given by:

Ωc � {θ ∈ R
n | f(θ) ≤ c}, 0 ≤ c ≤ 1,

where f : R
n → R is the following smooth convex function:

f(θ) = θ
�θ − θ2max
εθθ2max

, (2.15)
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where θmax is the norm bound imposed on the parameter vector θ, and εθ denotes the
convergence tolerance of our choice. Let the true value of the parameter θ, denoted by
θ∗, belong to Ω0, i.e. θ∗ ∈ Ω0.

The special structure of the function f should be interpreted as: if you solve f(θ) ≤ 1,
which defines the boundaries of the outer set, then you get that θ�θ ≤ (1 + εθ)θ2max.
εθ specifies the maximum tolerance the adaptive parameter is allowed to exceed com-
pared to its maximum conservative value.

The projection operator is defined as:

Proj(θ, y) �

⎧⎪⎪⎨
⎪⎪⎩
y if f(θ) < 0,
y if f(θ) ≥ 0 and ∇fT y ≤ 0,
y − ∇f

‖∇f‖〈
∇fT
‖∇f‖ , y〉f(θ) if f(θ) ≥ 0 and ∇fT y > 0

(2.16)

Time-delay margin

A measure of stability is the time-delay margin which is defined as the maximum delay
τ∗ for which the system is not losing its stability.

The relation to phase-margin is given by

τ∗ = PM
ωc

where PM is the phase-margin of the system and ωc the crossover frequency (Skogestad
& Postlethwaite 2007).

2.7.4 Problem Formulation

We are looking into a problem which can be thought of as a case of unknown high
frequency gain with unknown time-varying parameters and disturbances. We can for-
mulate this problem in the form of 2.17:

ẋ(t) = Amx(t) + b
(
ωu(t) + θ�(t)x(t) + σ(t)

)
, y(t) = c�x(t), x(0) = x0, (2.17)

where x ∈ R
n is the system state vector (measurable), u ∈ R is the control signal, y ∈ R

is the regulated output, b, c ∈ R
n are known constant vectors, Am is a known Hurwitz

n × n matrix, ω ∈ R is an unknown constant with known sign, θ(t) ∈ R
n is a vector of

time-varying unknown parameters, while σ(t) ∈ R is a time-varying disturbance.

We assume that

ω ∈ Ω0 = [ωl0, ωu0], θ(t) ∈ Θ, |σ(t)| ≤ Δ0, t ≥ 0, (2.18)
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where ωl0 > ωu0 > 0 are known conservative upper and lower bounds, Θ is a known
compact set and Δ0 ∈ R

+ is a known conservative bound of σ(t). It is further as-
sumed that θ(t) and σ(t) are continuously differentiable and that their derivatives are
uniformly bounded such that

‖θ̇(t)‖ ≤ dθ <∞, |σ̇(t)| ≤ dσ <∞, ∀t ≥ 0, (2.19)

where ‖·‖ is the 2-norm and the numbers dθ, dσ can be arbitrarily large.

2.7.5 Companion Model Adaptive Control

L1 adaptive control has many similarities with MRAC, but we replace the conven-
tional MRAC reference system with a state-predictor based reparametrization. This is
what Cao and Hovakimyan sometimes refer to as Companion Model Adaptive Control
(CMAC2).

Figure 2.6: Illustration of the CMAC scheme

This reparametrization allows for the introduction of a low-pass filter into the control
structure and is illustrated in figure 2.6. We can see that if we select the low-pass filter
as C(s) = 1 the controller will degenerate back to an MRAC type.

2.7.6 The L1 Adaptive Controller

The L1 adaptive controller consists of three parts and one requirement.
2This is perhaps not the best name, and should not be confused with the Cerebellar Model Articulation

Controller from neural networks theory
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State predictor

The first part is the state predictor. The predictor is given as:

˙̂x(t) = Amx̂(t) + b
(
ω̂(t)u(t) + θ̂�(t)x(t) + σ̂(t)

)
, ŷ(t) = c�x̂(t), x̂(0) = x0, (2.20)

Adaptive laws

The second part is a set of adaptation laws.

˙̂
θ(t) = ΓθProj

(
θ̂, −x(t)x̃�(t)Pb

)
, θ̂(0) = θ0, (2.21)

˙̂σ(t) = ΓσProj
(
σ̂, −x̃�(t)Pb

)
, σ̂(0) = σ0, (2.22)

˙̂ω(t) = ΓωProj
(
ω̂, −x̃�(t)Pbu(t)

)
, ω̂(0) = ω0, (2.23)

where x̃(t) = x̂(t) − x(t), Γθ = ΓcIn×n ∈ R
n×n, Γσ = Γω = Γc > 0 are the adaptation

rates, and P = P� > 0 is the solution of the algebraic Lyapunov equation A�mP +
PAm = −Q, Q > 0.

In the implementation of the projection operators the compact set Θ from 2.18 is used
while Δ0, Ω0 is replaced by larger sets Δ and Ω = [ωl, ωu] such that

Δ0 < Δ, 0 < ωl < ωl0 < ωu0 < ωu. (2.24)

Control laws

The last part is the control signal, which is generated through gain feedback of the
system:

χ(s) = D(s)ru(s), (2.25)
u(s) = −kχ(s), (2.26)

where k is a feedback gain, ru(s) is the Laplace transformation of ru(t) = ω̂(t)u(t)+r̄(t),
r̄(t) = θ̂�(t)x(t) + σ̂(t)− kgr(t), kg = −1/(c�A−1

m b), whileD(s) is any transfer function
which leads to strictly proper stable

C(s) = ωkD(s)
1 + ωkD(s) (2.27)

with low-pass gain C(0) = 1.

L1-gain stability requirement
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The requirement is a L1-gain stability requirement placing an upper bound on the L1-
norm. The bound is given by:

λ = ‖G(s)‖L1L < 1, G(s) = (sI−Am)−1b(1− C(s)), (2.28)

where

L = max
θ(t)∈Θ

n∑
i=1
|θi(t)|, (2.29)

where θi(t) is the ith element of θ(t).

2.7.7 Design Parameters - How to Achieve the Desired Specifications

In L1 adaptive control we cannot use the reference system to achieve the desired re-
sponse. The state predictor depends on unknown parameters and can be thought of
as a tool that generates an error signal for the adaptive laws. We have to introduce the
specifications on the system in some other way.

To specify the desired performance Cao and Hovakimyan introduce some systems to
help us, mainly a:

• Closed loop reference system.

• Design system.

• LTI system which will serve as an upper bound for the closed loop adaptive sys-
tem.

Based on these systems they show that we get quantifiable bounds for performance,
and that the control specifications reduce to the selection of some parameters (Cao &
Hovakimyan 2006b):

• k - L1 gain constant that needs to be high enough to ensure stability, but a higher
k will hurt the robustness of the system.

• C(s) (D(s)) - Low-pass filter which influences both performance and robustness.

• Γc - Adaptation gain which will influence performance and CPU usage.

In addition we might need to select aK to stabilizeHo(s), whereHo(s) = (sI−Ao)−1b,
where Ao = Am− bK�. ThisK may of course be selected as zero if the system is stable.

What do we sacrifice to get good tracking performance? The selections ofC(s) (orD(s))
define the trade-off between performance and robustness. A high bandwidth will lead
to a smaller λ, but increasing the bandwidth of C(s) will lead to reduced time-delay
margin and hurt the robustness of the closed loop system. Usually the bandwidth of
C(s) needs to be larger than the bandwidth of σ(t) and r(t) to be able to give good
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transient performance (Cao & Hovakimyan 2008e). It is possible to optimize the time-
delay margin by design of the underlying filter (Li, Patel, Cao, Hovakimyan & Wise
2007).

Fast adaptation will also lead to close tracking, but increasing the adaption gains will
lead to a reduction in the required step-size of integrations. This means that we need a
very fast CPU to complete the operations required in time. In the writings of Cao and
Hovakimyan little is said about the effects on sampling time. It is thus of great interest
to check what happens if we only have sparse measurements. It is recommended to
set the adaption gains as high as the CPU permits to get the best possible tracking
performance, but as we will see the selection of C(s) will also affect performance.

In the analysis chapter we will introduce a series of upper bounds on performance. The
bounds are used to predict and analyze performance, and we will again see the effects
of the choices we make on design parameters.

Selection of the low-pass filter

In Cao & Hovakimyan (2006b) and Hovakimyan (2008) we see that we need to deter-
mine C(s) such that

i) λ or ‖h3‖L∞ is sufficiently small, (2.30)
ii) yd(s) ≈ Dd(s)r(s), (2.31)

where h3(t) is the inverse Laplace transformation of

H3(s) = (C(s)− 1)C(s)r(s)kgHo(s)θ�Ho(s). (2.32)

and where Dd(s) is the desired LTI system. It is important to notice that the two objec-
tives 2.30 and 2.31 are not in conflict with each other, and also that minimization of λ is
consistent with the stability requirement of 2.28.

The two objectives can be met in two different ways. The first is to fix C(s) and min-
imize ‖Ho(s)‖L1 . The second is to fix Ho(s) and minimize the L1-gain of one of the
systems ‖Ho(s)(C(s) − 1)‖L1 , ‖(C(s) − 1)r(s)‖L1 or ‖C(s)(C(s) − 1)‖L1 via the choice
of C(s) (Cao & Hovakimyan 2006b).

Design method 1

We can set C(s) = Dd(s) and achieve minimization of ‖Ho(s)‖L1 with high feedback
by choosing a sufficiently large K. This leads to large poles of Ho(s) and the L1 adap-
tive controller degenerates into a high-gain robust controller. High K will also lead to
reduced phase margin (Cao & Hovakimyan 2006b).

Design method 2

As we do in MRAC, we may assume that it is possible to select Am such that we get
kgc
�(sI − Am)−1b ≈ Dd(s). We can then set K = 0, or one can alternatively choose K

such that kgc�Ho ≈ Dd(s) (Cao & Hovakimyan 2006b).
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We start off by trying to minimize ‖Ho(s)(C(s)−1)‖L1 . By selecting C(s) = ω
s+ω we get

the following lemma:

Lemma 1. For any single-input n-output strictly proper stable system H(s) the following is
true:

lim
w→∞‖(C(s)− 1)H(s)‖L1 = 0.

The second way to minimize ‖Ho(s)(C(s) − 1)‖L1 is to note that since C(s) is a low
pass filter, 1 − C(s) is a high-pass filter. Since both Ho(s) and C(s) are strictly proper,
cascading the two systems is equivalent to cascading a low-pass system with a high-
pass system. If we choose the cut-off frequency of the high-pass filter larger than the
bandwidth of Ho(s), it ensures that ‖Ho(s)(C(s)− 1)‖L1 is a “no-pass” system and we
can render its L1 gain small (Cao & Hovakimyan 2006b).

The minimization of ‖h3(s)‖L∞ can be done in two ways:

i) ‖h3(s)‖L∞ ≤ ‖(C(s)− 1)r(s)‖L1‖h4‖L∞ (2.33)
ii) ‖h3(s)‖L∞ ≤ ‖(C(s)− 1)C(s)‖L1‖h5‖L∞ (2.34)

where h4(t) is the inverse Laplace transformation of H4(s) = r(s)kgHo(s)θ�Ho(s) and
h5(t) the inverse Laplace transformation of H5(s) = r(s)kgHo(s)θ�Ho(s). ‖h4(s)‖L∞
and ‖h5(s)‖L∞ are finite so we can minimize ‖h3(s)‖L∞ by selecting ‖(C(s)− 1)r(s)‖L1

or ‖(C(s) − 1)C(s)‖L1 . The first can be minimized by selecting the cut-off frequency
of (C(s) − 1) higher than the bandwidth of r(t). For the second choice we note that
if C(s) was an ideal low-pass filter the norm would be zero. This is of course not
physically implementable, but we can still minimize the norm ‖(C(s) − 1)C(s)‖L1 via
the choice of the low-pass filter (Cao & Hovakimyan 2006b). The above approaches
ensure that we have C(s) ≈ 1 in the bandwidth of r(s) and Ho(s). Therefore it follows
that yd(s) = C(s)kgc�Ho(s)r(s) ≈ kgc�Ho(s)r(s), which implies yd(s) ≈ Dd(s)r(s)
(Cao & Hovakimyan 2006b).

Selection of higher order filters allows us to obtain the same performance with lower
adaptation gains and can give improved time-delay margins. In Li et al. (2007) several
filters are evaluated, and the low-pass Bessel filter and a general filter obtained by
constrained optimization is shown to give better time-delay margins.

In figure 2.7 we illustrate the time-delay margin versus bandwidth to get a clearer pic-
ture of what happens as we increase k, which will increase the bandwidth. By selection
of the appropriate higher order filter, it is possible to make this curve less steep. We
also see the same illustration for λ. The selection of the filter will alter both the rate of
decrease and the highest peak for the bound.

2.7.8 The Theory of Fast and Robust Adaptation

The theory about L1 adaptive control and the surrounding modifications are referred
to, by Cao & Hovakimyan, as the theory of fast and robust adaptation and the advan-
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tages are supposedly many. In this section we look at the theoretical advantages and
compare them especially to MRAC.

The main features of the theory of fast and robust adaptation are (Wise et al. 2008):

• Guaranteed fast adaptation.

• Guaranteed transient performance both for system input and output signal.

• Guaranteed time-delay margin.

• Uniformly scaled transient response dependent on changes in initial conditions,
values of the unknown parameters and reference input.

• Suitable for the development of theoretically justified verification and validation
tools for feedback systems.

The benefits of L1 versus MRAC are summarized in table 2.1 (Wise et al. 2008). We see
that there are several improvements for the L1 adaptive scheme.

Table 2.1: Benefits of L1 versus MRAC
MRAC L1 adaptive control

Ignores the explicit dependence on time
Needs choice of basis functions No selection of basis function

Needs significant tuning Systematic tuning
Local results Semiglobal results

Needs to tune transient Guaranteed transient
Adaptation only on loop gain Adaptation on loop gain and phase

2.7.9 Project Highlights

Reading quite a lot of L1 adaptive control papers, it is interesting to notice how some
matters have been given much less attention than others. Applications are often very
fast aircraft systems, where I suppose there are good measurements available.

Some of the more interesting topics to include in this study are:

• Are there any problems with slow sampling?

• What happens if the controller saturates?

• How fast do we need to set the adaptation gains to get good performance and
how fast do the bounds imply?

• How good is the L1 controller compared to the PI controller?

• Does the selection of higher order C(s) have any great impact ?

• How much tuning does the controller need?

• I have assumed that ω is constant, but this is not always true. What happens
when we have slow or even fast variations in the system?
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Chapter 3

Control Design

The background for this chapter is the Kaasa model presented in the previous chapter.
The Kaasa model will serve as the basis for our design model both for topside and
bottomhole control. More details follow in the next sections.

We start by presenting the benchmark controller: a standard PI-controller. We then
move on to the more advanced structures: MRAC and L1 adaptive control.

3.1 Proportional plus Integral Controller

The reference controller employed is a standard PI controller. The controller is im-
plemented with a simple anti windup scheme, using feedback from the control input.
Bump less transfer is added by including a bias term, which is reset every time we
have a change of controllers. An optional dead band region can be selected, to stop the
control input if the error is sufficiently small.

Since we are mostly interested in comparing controllers which use as few measure-
ment signals as possible we are considering a PI controller without feed forward from
the pump disturbances. A feed forward controller would be expected to have better
performance. This is however true for all the controllers considered. We also have
some disturbances which cannot be measured.

The control equation is given by:

u = ubias +Kce(t) + Kc
Ti

∫
e(t) dt (3.1)

where Kc and Ti are gain variables, and e(t) = xref − x and ubias are set from the
previous control input when we have a change in controller type. The controller is the
same for both topside and bottomhole control, though x, xref and the gains will vary.

The gains are selected using Skogestad SIMC tuning rules (see appendix B.3). The
complete controller is summarized in table 3.1 and the gains are given in table 3.2.

27



Table 3.1: PI equations
Error equation:

e(t) = xref − x (3.2)
x = pc for choke control and x = pbit for bottomhole control (3.3)

Control Law:

u = ubias +Kc
(
e(t) + 1

Ti

∫
e(t) dt

)
(3.4)

Design parameters:

Controller gainsKc and Ti.

Table 3.2: PI Gain Table
Gain Topside control Bottomhole control
Kc −2.05 · 10−8 −2.63 · 10−8

Ti 3 8
x pc pbit
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3.2 Model-Reference Adaptive Control

The structure for the MRAC controller for topside control was derived in Pedersen
(2008), but is repeated here for reference.

3.2.1 System Model

If we use a topside scheme based on measurements from the choke, we can create a
controller based on the choke equation 2.3:

ṗc(t) = βa
Va

(−V̇a + qbit + qres + qback)−
βa
Va
qc, (3.5)

ṗc(t) = θ(δ(t)− u(t)). (3.6)

3.2.2 The Reference Model

The reference model specifies the desired process behavior. The perfect model-matching
condition states that a controller parameter setting must exist for which the closed-loop
behavior equals the reference model response. This places requirements on the relative
degree of the reference model. The plant and the reference model must have the same
(constant) relative degree (Tsakalis & Ioannou 1993). The reference model must be sta-
ble, controllable and minimum phase. It should be selected sensible in the sense that
the process actually is able to follow the process. For example if the dynamic of the
reference model is too fast, the control signal needs to be very large, which may lead to
saturation and disturbances by high order unmodeled dynamics (Butler 1992).

Based on equation 2.3 a first order reference model is chosen. This reference model is
chosen to be:

pm = bm
s−Am

r (3.7)

By simulation (see Appendix B.2.1), we find that a fitting time parameter to meet the
performance objectives is Am = −0.2 which also gives bm = 0.2

pm = 0.2
s+ 0.2r (3.8)

The model is realized in Matlab as a function which takes as input the reference, solves
an ODE for the calculated pressure and returns the value to the system.
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3.2.3 The Basic Controller

The control structure for the controller is selected as:

u = −k0r + k1pc + k2, (3.9)

where k0, k1 and k2 are the controller gains, r is the wanted choke pressure and pc is
the measured choke pressure. This gives both stabilization of the system and offset
correction for a constant or slow-varying input disturbance.

3.2.4 The Update Laws

The normalized update laws were constructed in Pedersen (2008) and are given as

k̇0 = −γ0e
r

r2 + 1 , (3.10)

k̇1 = γ1e
pc
p2c + 1 , (3.11)

k̇2 = γ2e, (3.12)

where γ0, γ1 and γ2 are non-negative design parameters which will control the rate of
adaptation of the control parameters.

3.2.5 Modifications for Improved Robustness

In addition to the control structures presented, there are some modifications on the ac-
tual implementation of the MRAC controller. I have added projection to the adaptation
parameters to avoid unbounded growth. Normalization of the adaptation laws is done
to make sure the rate of adaptation is not larger than intended, and that the adaptation
rate will not increase with increased value of the plant output or reference. I have also
added a deadzone to avoid parameter drift due to noise when there is low excitation
of the system. Additional modifications should also be considered, such as the use of
an orthogonal error signal to account for the presence of dead time (Butler 1992).

Simulations are performed using qc as control input, but sometimes we need to use a
choke controller. One simple choice is to invert the choke equation 2.7 to get equation
3.13:

zc = qc0

Kchoke
√

2
ρ0

(pc0 − p0)
(3.13)

A minimum fraction is set for ΔP = pc0 − p0 to avoid division by zero. However,
this controller is not very good with unknown non-linearities or unknownKchoke. The
MRAC equations are summed up in table 3.3.
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Table 3.3: MRAC equations
Reference model and error equation:

˙pm = Ampm + bmr (3.14)
e = pc − pm (3.15)

Control Laws:

qc0 = −k0r + k1pc + k2 (3.16)

zc0 = qc0

Kchoke
√

2
ρ0

(pc0 − p0)
(3.17)

Update Laws:

k̇0 = −γ0e
r

r2 + 1 (3.18)

k̇1 = γ1e
pc
p2c + 1 (3.19)

k̇2 = γ2e (3.20)

Design parameters:

Adaptation gains: γ0, γ1, γ2 ≥ 0, initial values: pm(0), k0(0),
k1(0) and k2(0) and reference model parameters Am and
bm.
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The design variables were, after considerations of parameters and tuning (see Ap-
pendix B.1), selected as given in table 3.4.

Table 3.4: MRAC - Design Parameters
k0(0) k1(0) k2(0)

8.1943 · 10−9 8.1943 · 10−9 qc(0)
γ0 γ1 γ2

1 · 10−14 1 · 10−14 5 · 10−9

bm Am pm(0)
0.2 −0.2 pc(0)

3.2.6 Bottomhole Control

The MRAC controller will not be derived for bottomhole control since the main focus
is PI versus L1 adaptive control.
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3.3 L1 Adaptive Controller

3.3.1 Topside Control

If we use a topside scheme based on measurements from the choke, we can, as we
did in MRAC, create a controller based on the choke equation 2.3. We rearrange the
equation, and add and subtract the design parameter Am to get:

ṗc(t) = βa
Va

(−V̇a + qbit + qres + qback)−
βa
Va
qc (3.21)

ẋ(t) = σ(t) + ω(t)u(t) (3.22)
ẋ(t) = σ(t) + ω(t)u(t) +Amx(t)−Amx(t) (3.23)
ẋ(t) = Amx(t) + θx(t) + ω(t)u(t) + σ(t) (3.24)

where x(t) = pc(t), u(t) = qc(t) and

θ(t) = −Am (3.25)

σ(t) = βa
Va

(−V̇a + qbit + qres + qback) (3.26)

ω(t) = −βa
Va

(3.27)

We see that we need to estimate σ and ω, while there is no unknown θ in these equa-
tions. However, to allow for some unmodeled dynamics, I still give the equations for
˙̂
θ(t).

We construct the state predictor from equation 2.20:

˙̂x(t) = Amx̂(t) +
(
ω̂(t)u(t) + θ̂�(t)x(t) + σ̂(t)

)
, ŷ(t) = c�x̂(t), x̂(0) = x0, (3.28)

where x̂ is an estimate of x. From equation 2.22-2.23, with Q = −0.4 and Am = −0.2
we get

˙̂
θ(t) = ΓθProj

(
θ̂, −x(t)x̃�(t)

)
, θ̂(0) = θ0, (3.29)

˙̂σ(t) = ΓσProj
(
σ̂, −x̃�(t)

)
, σ̂(0) = σ0, (3.30)

˙̂ω(t) = ΓωProj
(
ω̂, −x̃�(t)u(t)

)
, ω̂(0) = ω0, (3.31)

where x̃ = x̂− x, and Γθ, Γσ and Γω are adaptation gains.
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We use the simple D(s) = 1/s and get kg = 0.2, and generate the control signal as:

χ(s) = D(s)ru(s), (3.32)
u(s) = −kχ(s) (3.33)

where k is a gain constant and ru(s) the Laplace transformation of ru(t).

ru(t) =
(
ω̂(t)u(t) + θ̂�(t)x(t) + σ̂(t) +Amr(t)

)
(3.34)

Generating the feedback signal this way, introduced some windup issues during sim-
ulations. Therefore projection is added to the state χ(s) such that physical constraints
on the controller will not lead to windup if the control input saturates.

χ ∈ X, X = [umin−k = χl, χu = umax−k ] (3.35)

The author has not however evaluated the impact on the stability and performance
proofs for the L1 adaptive controller, and this is something that should be looked into
in future work.

The closed loop system is illustrated in figure 3.1.

By varying the different parameters in 3.26 and 3.27 we can get a conservative bound
by selecting all parameters at their worst value, and also get a good initial estimate of
the parameters. The values are given in table 3.5.

Table 3.5: L1 - Estimated bounds for choke control
Δ Value Ω Value
σ̂0 8.95 · 105 ω̂0 −2.44 · 107

σ̂u 1.32 · 107 ω̂u −1.0 · 105

σ̂l −4.5 · 106 ω̂l −2.0 · 108

We also need conservative estimates of the maximum rate of change of θ and σ. These
are set as dθ = 0.1 and dσ = 10000.

The complete controller is summarized in table 3.6
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Figure 3.1: Closed loop with L1 adaptive controller
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Table 3.6: L1 adaptive controller equations
State predictor model and error equation:

˙̂x(t) = Amx̂(t) +
(
ω̂(t)u(t) + θ̂�(t)x(t) + σ̂(t)

)
, ŷ(t) = c�x̂(t), x̂(0) = x0,

x̃ = x̂− x,
x = pc for choke control and x = pbit for bottomhole control

Control Law:

χ(s) = D(s)ru(s),
u(s) = −kχ(s),
ru(t) = ω̂(t)u(t) + θ̂�(t)x(t) + σ̂(t) +Amr(t)

Update Laws:

˙̂
θ(t) = ΓθProj

(
θ̂, −x(t)x̃�(t)

)
, θ̂(0) = θ0,

˙̂σ(t) = ΓσProj
(
σ̂, −x̃�(t)

)
, σ̂(0) = σ0,

˙̂ω(t) = ΓωProj
(
ω̂, −x̃�(t)u(t)

)
ω̂(0) = ω0,

Stability requirement:

λ = ‖G(s)‖L1L < 1, G(s) = (sI−Am)−1b(1− C(s)),

L = max
θ(t)∈Θ

n∑
i=1
|θi(t)|

Design parameters:

Adaptation gains: Γθ, Γσ, Γω ≥ 0 selected sufficiently high, initial values: x̂(0), θ̂(0),
σ̂(0) and ω̂(0), feedback gain: k selected to meet the L1 stability requirement, D(s)
to create the strictly proper filter C(s) = ωkD(s)/(1 + ωkD(s)) with low-pass gain
C(0) = 1 , design parameter Am and the selection of the sets Δ, Ω and Θ.
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3.3.2 Bottomhole Control

If we assume pbit is available for measurement either by wired drill pipe or from an
estimator, we can create a controller based on equations 2.2-2.4 and 2.5.

We replace q̇bit in 2.5 to get:

pbit = pc + Ma
M

(pp − pc − Fd|qbit|qbit − Fa|qbit + qres|(qbitqres) + (ρ̄d − ρ̄a)ghbit) +

Fa|qbit + qres|(qbit + qres) + ρ̄aghbit, (3.36)

and rearrange:

pbit =
(

1− Ma
M

)pc + Ma
M
pp −

MaFd
M
|qbit|qbit + (Fa −

MaFa
M

)|qbit + qres|(qbit + qres) +

Ma
M

(ρ̄d − (1− M
Ma

)ρ̄a)ghbit
)
. (3.37)

We then separate out 1
M and insert forM =Ma +Md:

pbit = 1
M

(Mdpc +Mapp −MaFd|qbit|qbit +MdFa|qbit + qres|(qbit + qres) +

(Maρ̄d +Mdρ̄a)ghbit). (3.38)

The pbit dynamics can then be taken as:

ṗbit = 1
M

(Mdṗc +Maṗp − 2MaFdq̇bitqbit + 2MdFaq̇bit(qbit + qres)) . (3.39)

Inserting for ṗc, ṗp and q̇bit gives us:

ṗbit = 1
M

(
Md
βa
Va

(−V̇a + qbit + qres + qback − qc) +Ma
βd
Vd

(qpump − qbit)

−2MaFd
( 1
M

(pp − pc − Fd|qbit|qbit − Fa|qbit + qres|(qbit + qres)

+(ρ̄d − ρ̄a)ghbit
)
(qbit) + 2MdFa

( 1
M

(pp − pc − Fd|qbit|qbit

−Fa|qbit + qres|(qbit + qres) + (ρ̄d − ρ̄a)ghbit
)
(qbit + qres)

)
(3.40)

which we might put in the form of 2.17, with Am = −0.2 and get:
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ẋ(t) = Amx(t) +
(
ω(t)u(t) + θ�(t)x(t) + σ(t)

)
(3.41)

where now x(t) = pbit(t) and:

θ(t) = −Am (3.42)

σ(t) = 1
M

(
Md
βa
Va

(−V̇a + qbit + qres + qback) +Ma
βd
Vd

(qpump − qbit)

−2MaFd
( 1
M

(pp − pc − Fd|qbit|qbit − Fa|qbit + qres|(qbit + qres)

+(ρ̄d − ρ̄a)ghbit
)
(qbit) + 2MdFa

( 1
M

(pp − pc − Fd|qbit|qbit

−Fa|qbit + qres|(qbit + qres) + (ρ̄d − ρ̄a)ghbit
)
(qbit + qres)

)
(3.43)

ω(t) = −Mdβa
MVa

(3.44)

Estimated bounds and initial conditions are given in table 3.7.

Table 3.7: L1 - Estimated bounds for bottomhole control
Δ Value Ω Value
σ̂0 5.76 · 105 ω̂0 −1.82 · 107

σ̂u 1.45 · 1010 ω̂u −1.50 · 109

σ̂l −8.80 · 109 ω̂l −2500

The estimates of the maximum rate of change of θ and σ are set as dθ = 0.1 and dσ =
20000.

We get the same control structure as in the topside case, but now with different adap-
tation gain k, initial conditions and different bounds.
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3.4 Bottomhole Control - Determining an Observer

If we assume that we have wired drill pipe or some other means of ensuring good
bottomhole measurements, we might get by without an observer, and this is of course
the simplest solution. However, an observer might come in handy even though we
have fast measurements, for example during the connection operation or if we lose
measurement signals.

There are several possibilities for choice of an observer ranging from complex UKF to
simpler observers based on system models. The one employed here is the observer
derived in Stamnes (2007).

The equations1 for the observer are given in table 3.8. For further details, consult the
original thesis.

We have some problems with the observer, namely some strict assumptions and no
convergence of parameters. The assumption qres = 0 is not true, and the estimated
friction and density might not (and probably will not) converge to their true values.
The goal of this thesis is however not to evaluate observer designs and some error in
the estimated values is an additional challenge for the control system.

In the implementation of the observer we must ensure that

˙̂qbit = 1
M

(pp − pc)− θ̂1|q̂bit|q̂bit + θ̂2hbit (3.45)

is larger or equal to zero if qbit is zero. This a consequence of the assumption of qbit ≥ 0
(one-way valve).

3.5 Topside Control - Determining a Path Generator

Because we know the bottomhole pressure equation of the simulator, we can, by in-
verting this equation, generate the exact path for pc,ref to get the correct pbit,ref

pc,ref = pbit,ref −Maq̇bit − Fa|qbit + qres|(qbitqres)− ρ̄aghbit. (3.57)

However, this assumes knowledge of some very uncertain parameters. Other possi-
bilities include estimation of the parameters in the equation by the use of an estimator
or generating the path by simulations in a high-fidelity flow model based on gathered
seismic and drilling data.

The observer employed in the previous section can be used to estimate the unknown
parameters in 3.57 and this is what I have done. We get the same problems with the
assumptions and convergence as in the previous section.

1Some of the notation from the original thesis has been changed to avoid confusion between this thesis
and Stamnes’ thesis, and to avoid introducing too many new parameters.
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Table 3.8: Summary of the Stamnes observer
Observer equations:

p̂bit = pc +Ma
( 1
M

(pp − pc)− θ̂1|q̂bit|q̂bit + θ̂2hbit
)

+(Mθ̂1 − Fd)|q̂bit|q̂bit + (ρdg −Mθ̂2)hbit (3.46)
q̂bit = ξ̂1 − l1pp (3.47)

˙̂
ξ1 = l1

βd
Vd

(qp − q̂bit)− θ̂1|q̂bit|q̂bit + θ̂2hbit +
1
M

(pp − pc) (3.48)

ξ̂1(0) = q̂bit(0) + l1pp(0) (3.49)

Adaptive laws:

θ̂ = ζ̂ − η(q̂bit, hbit) (3.50)
˙̂
ζ = −l1

∂η

∂q̂bit

βd
Vd

(qp − q̂bit) + ∂η

∂q̂bit

˙̂
ξ + ∂η

∂hbit
ḣbit (3.51)

ζ̂(0) = θ̂(0) + η (q̂bit(0), hbit(0)) (3.52)

η(q̂bit, hbit) = Γ
[ |q̂bit|3Vd

3l1βd−hbitq̂bitVd
l1βd

]
(3.53)

∂η

∂q̂bit
= Γ

[ |q̂bit|q̂bitVd
l1βd−hbitVd
l1βd

]
,
∂η

∂hbit
= Γ
[

0
−q̂bitVd
l1βd

]
(3.54)

Design parameters:

Observer gain l1 > 0, Adaptation gain: Γ = Γ� > 0,
Initial conditions: q̂bit(0) and θ̂(0).

Estimated variables:

θ1 = Fd + Fa
M

> 0⇒ Fa =Mθ1 − Fd (3.55)

θ2 = (ρ̄d − ρ̄a)g
M

⇒ ρ̄a = ρ̄d −
M

g
θ2 (3.56)

Assumptions made:

It is assumed that pp, pc, qp, hbit and ḣbit are measured or known, βd,Ma,Md and Fd
are known, and that pp, pc, qbit, qp and hbit are bounded, and qres = 0 and qbit ≥ 0.
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Chapter 4

Analysis

In this chapter we look at stability, performance and time-delay margins for the dif-
ferent controllers. The main focus is on the upper bounds presented for L1 adaptive
control, and we again return to how our selections of design parameters influence the
L1 adaptive controller.

4.1 Model-Reference Adaptive Control

4.1.1 Stability

In Pedersen (2008) I showed that we have three parameters which need to be estimated.
They are included with the tracking error to form a Lyapunov function candidate. We
get:

V = A2
me

2 + 1
γ′0

(θk0 − bm)2 + 1
γ′1

(−θk1 −Am)2 + 1
γ′2

(θδ − θk2)2. (4.1)

By differentiating V with respect to k0, k1 and k2 we get that:

V̇ = 2A2
meė+ 2θ

γ′0
k̇0(θk0 − bm)− 2θ

γ′1
k̇1(−θk1 −Am)− 2θ

γ′2
θk̇2(θδ − θk2) (4.2)

V̇ = 2A3
me

2 + 2A2
me(θk0 − bm)r + 2A2

me(−θk1 −Am)pc + 2A2
me(θδ − θk2) + 2θ

γ′0
k̇0(

θk0 − bm)− 2θ
γ′1
k̇1(−θk1 −Am)− 2θ

γ′2
k̇2(θδ − θk2). (4.3)

We set the last terms to be zero to get the update laws for the parameters

41



2A2
me(θk0 − bm)r + 2θ

γ′0
k̇0(θk0 − bm) = 0 (4.4)

2A2
me(−θk1 −Am)pc −

2θ
γ′1
k̇1(−θk1 −Am) = 0 (4.5)

2A2
me(θδ − θk2)− 2θ

γ′2
k̇2(θδ − θk2) = 0 (4.6)

which gives:

k̇0 = −γ
′
0
θ
A2
mer (4.7)

k̇1 = γ
′
1
θ
A2
mepc (4.8)

k̇2 = γ
′
2
θ
A2
me (4.9)

which can be written as:

k̇0 = −γ0er (4.10)

k̇1 = γ1epc (4.11)

k̇2 = γ2e (4.12)

We can then set the terms including the the parameters to zero and get:

V̇ = 2A3
me

2 (4.13)

We have that Am > 0 which means the derivative of V with respect to time is thus
negative semidefinite, but not negative definite. This implies that V (t) ≤ V (0) and thus
that e, k0, k1 and k2 must be bounded. This implies that pc = e + pm also is bounded.
We see that:

V̈ = 4A3
meė = 4A3

me (Ame+ (θk0 − bm)r + (−θk1 −Am)pc + θ(δ − k2)) . (4.14)

Since r, e, pc and δ are bounded, it follows that V̈ is bounded. Hence V is uniformly
continuous. From theorem 2 it then follows that the error e will go to zero. It does not
however show that the parameter values will converge to their true values, only that
they are bounded. To have parameter convergence it is necessary to impose conditions
on the excitation of the system, but we do not need to have parameter convergence to
get a working controller.
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4.2 L1 Adaptive Controller

Rigorous derivations and proofs of the stability margins of the L1-adaptive controller
for systems of the form 2.17 can be found in Cao & Hovakimyan (2007e) and Cao &
Hovakimyan (2007b).

Consider the following closed-loop reference system with its control signal and system
response defined as (Cao & Hovakimyan 2007b):

ẋref (t) = Amxref (t) + b
(
ωuref (t) + θ�(t)xref (t) + σ(t)

)
, (4.15)

uref (s) = C(s)
ω
r̄ref (s), xref (0) = x0, (4.16)

yref (t) = c�xref (t), (4.17)

where r̄ref (s) is the Laplace transformation of the signal

r̄ref (t) = −θ�(t)xref (t)− σ(t) + kgr(t). (4.18)

We have that the reference system is stable if (Cao & Hovakimyan 2007b):

Lemma 2. If D(s) verifies the condition in 2.28, the closed-loop reference system of 4.15-4.17
is stable.

4.2.1 Stability

This gives us a stability requirement on the selection of the L1 gain feedback constant
k. We need to select the constant high enough that we fulfill 2.28.

The calculation of the L1 gain requirement, where we have that the highest value of
the L1 gain comes from the lowest value of ω, was performed based on the values from
table 3.5 and 3.7. We calculate the L1 gain, and find that for topside control we need to
select k such that

k > −1 · 10−6 or kω > 0.1 and kω �= −Am.

I therefore select k = −5 · 10−6, remembering that a higher k will lead to reduced
robustness. This gives us table 4.1 for the lowest, initial and highest value for ω. We see
here that if we have large uncertainty in ω we will be forced to select a higher k, and
thus risk a less robust controller than if the uncertainty is small.

For bottomhole control the stability analysis shows that we need

k > −4 · 10−5 or that kω > 0.1 and that kω �= −Am,

The value for k is selected as 1.2 · 10−4, which gives the L1 gains in table 4.2.
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Table 4.1: Topside: L1 Gain
Topside Control λ

ωl 0.4343
ω0 3.25 · 10−3

ωu 4.00 · 10−4

Table 4.2: Bottomhole: L1 Gain
Topside Control λ

ωl 0.593
ω0 1.83 · 10−4

ωu 2.22 · 10−6

4.2.2 Performance

To prove uniform tracking and steady state tracking between the closed-loop adap-
tive systems with the L1 adaptive controller and the reference system, a bound on the
prediction error is presented in Cao & Hovakimyan (2007b):

Lemma 3. For the system in 2.17 and the L1-adaptive controller in 2.20, 2.21-2.23 and 2.25,
the prediction error is bounded by:

‖x̃‖L∞ ≤ γ0 =
√

θm
λmin(P )Γc

(4.19)

where

θm � max
θ∈Θ

n∑
i=1

4θ2i + 4Δ2 + 4(ωu − ωl)2 + 4λmax(P )
λmin(Q) (max

θ∈Θ
‖θ‖dθ + dσΔ). (4.20)

We see from equation 4.20 that if we have large parametric uncertainties or large dis-
turbances we will get a very large value for θm. From equation 4.19 we find that we can
reduce the bound on the estimation error by increasing the adaptation gains. This term
is included as

√
Γc. It is thus possible to render the prediction error arbitrarily small by

increasing the adaptation gains. However, it is more efficient, if possible, to reduce the
uncertainties or disturbances.

In Cao & Hovakimyan (2008e) bounds are presented on the performance and devia-
tions from the wanted xref and uref :

Theorem 1. For the closed-loop system in 2.17 and the L1 adaptive controller defined via 2.20,
2.21-2.23 and 2.25 subject to 2.28, we have:

‖x− xref‖L∞ ≤ γ1, (4.21)
‖u− uref‖L∞ ≤ γ2, (4.22)
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where

γ1 = ‖C(s)‖L1

1− ‖H(s)(1− C(s))‖L1L

√
θm

λmin(P )Γc
,

γ2 =
∥∥∥∥C(s)
ω

∥∥∥∥L1

Lγ1 +
∥∥∥∥∥C(s)
ω

1
c�0 H(s)

c�0

∥∥∥∥∥L1

√
θm

λmin(P )Γc
.

and c0 is selected such that

c�0 H(s) = Nn(s)
Nd(s)

,

where the degree of Nd −Nn = 1 and both Nn(s) and Nd(s) are stable polynomials.

Corollary 1. For the closed-loop system in 2.17 and the L1 adaptive controller defined via 2.20,
2.21-2.23 and 2.25 subject to 2.28, we have for all t ≥ 0 that:

lim
Γc→∞

(x(t)− xref (t)) = 0, (4.23)

lim
Γc→∞

(u(t)− uref (t)) = 0. (4.24)

The tracking errors are thus uniformly bounded by a constant, which is inversely pro-
portional to the adaptation rate Γc. We can during the transient phase achieve arbitrar-
ily close tracking performance by increasing Γc (Cao & Hovakimyan 2008e).

We calculate the actual bounds for the topside controller for different values of Γc to
see how it affects the tracking performance and how big the gains will need to be if we
have large uncertainties or large disturbances.

Table 4.3: L1 - Topside: Estimated performance bounds
bound / Γc 5 · 105 5 · 1010 5 · 1015

γ0 5.67 [bar] 0.1793 [bar] 5.67 · 10−5 [bar]
γ1 5.69 [bar] 0.1799 [bar] 5.69 · 10−5 [bar]
γ2 345 1.09 0.0035

We see from table 4.3 that the adaptive gain will need to be very large to be able to
guarantee good performance in the presence of large disturbances. This is all quite
theoretical and is based on many conservative estimates, and the chance of actually
reaching the bound is very low. I do not think the value of the actual bounds is very
large, but it shows how both increased adaptive gain, reduced uncertainty and reduced
disturbances influence performance bounds.

Another interesting observation is that in the case of C(s) = 1, the magnitude of∥∥∥∥C(s)
ω

1
c�0 H(s)c

�
0

∥∥∥∥L1

cannot be finite. Thus it is not possible in MRAC to reduce γ2 by

increasing the adaptation gain.

The same calculations were performed for the bottomhole structure and are summa-
rized in table 4.4.
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Table 4.4: L1 - Bottomhole: Estimated performance bounds
bound / Γc 5 · 105 5 · 1010 5 · 1015

γ0 600 [bar] 1.9 [bar] 6.03 · 10−3 [bar]
γ1 600 [bar] 1.91 [bar] 6.04 · 10−3 [bar]
γ2 1.58 · 107 50048 158

4.3 Stability margins

The time-delay and gain margins for the three different controllers are computed using
numerical simulations. We introduce a time-delay at the plant input and a time-delay
at the output. The delays are increased until the system loses stability. The method is
illustrated in figure 4.1.

The time-delay margin is found for both the L1 adaptive and PI controller for the top-
side and the bottomhole control scheme. For MRAC we only find it for the topside
case. All time-delays are found for the regular values of the plant. If we get changes in
plant parameters, the time-delay margins will change for the controllers. We will how-
ever see in the next sessions that the L1 adaptive controller offers a guaranteed lower
bound, given that we are within the estimated bounds.

1
- s

2
- s

r

Figure 4.1: Finding time-delay and gain margins

For the PI controller we find the time-delay margins as given in table 4.5. We also find
the time-delay margins for the more aggressive tuning parameters calculated in the
tuning chapter.

Table 4.5: PI: Time-delay margins
Parameter Topside ql Topside qh Bottomhole ql Bottomhole qh
τ 2.40 2.47 2.68 2.34

Aggressive 0.63 0.63 0.66 0.61

MRAC time-delay margins are calculated for the topside case. They are listed in table
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4.6 along with time-delay margins using slower adaptive gains, where γ0 = γ1 = 1 ·
10−15 and γ2 = 5 · 10−10.

Table 4.6: MRAC: Time-delay margins
Parameter Topside ql Topside qh
τ 1.61 1.63

Low gain 6.0 6.5

Finally, for the L1 adaptive controller we get the time-delays given in table 4.7. We see
that we get very small margins for the standard values of k. A lower k = 5 ·10−8 is also
evaluated and we see a large increase in time-delay margins, but we have no guarantee
for stability. If ω falls too low, we might break the L1 gain stability criteria. We see
that it might prove difficult to select one k to cover the entire range of ω if this gain
parameter has a large range of variation. We know that a higher order filter might give
better time-delay margins.

Another possibility is to reduce the uncertainty of the parameters by using known in-
formation and signals. One could add feedforward compensation to compensate for
known pump disturbances. Since this is possible, the lower value for k will be used in
simulations because of the extremely low robustness margins for the calculated k for
guaranteed stability.

Table 4.7: L1: Time-delay margins
Parameter Topside ql Topside qh Bottomhole ql Bottomhole qh
τ 0.01 0.01 4.5 · 10−4 4.5 · 10−4

Low k 1.13 1.13 1.45 1.45

4.4 L1 Time Delay and Gain Margin Analysis

For the L1 adaptive control scheme it is possible to derive a conservative, but guar-
anteed bound for the time-delay margin analytically. This is done by introducing an
equivalent LTI system, which can be related to the closed loop adaptive system. This
is done for the case of an unknown, but constant θ in Cao & Hovakimyan (2007b) and
Hovakimyan (2008). All listed values are given in seconds.

The time-delay margin is given as:

T (Ho(s)) = PM(Ho(s))/ωc (4.25)

where PM(Ho(s)) is the phase-margin of

Ho(s) = C(s)
1− C(s)(1 + θ�H̄(s)), (4.26)
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where H̄(s) = (sI −Am − bθ�)−1b.

To establish the equivalence between the LTI system and the closed loop adaptive sys-
tems we get some additional requirements on the set of Δ and the lowest gain Γc
(Hovakimyan 2008).

The calculated lower bounds for the time-delay margins are listed in table 4.8, and are
in accordance with the expected values based on the numerical simulations.

Table 4.8: L1: Analytic time-delay margins
Setting τ [sec] PM [degrees] ωc [Hz]

Top 0.0099 89.99 1000
Top Low k 0.9742 88.85 10

BH 5.4831 · 10−5 90.00 18000
BH Low k 0.1314 89.85 75

Introducing a gain module ωg = ωg into the control loop implies the need to increase
the set ω0, and we get the larger set Ω which was introduced in the theory chapter. The
gain margin is determined by

Gm = [ωl/ωl0, ωu/ωu0] (4.27)

and if g ∈ Gm, then the closed loop system satisfies the L1 gain theorem and the system
is stable. This implies that the arbitrary gain margin might be obtained through appro-
priate selection of Ω (Cao & Hovakimyan 2007e). Note however that increasing the set
will lead to stricter demands on selection of k, which again might hurt the time-delay
margin.
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Chapter 5

Simulation

In this chapter a simulation study of the different controllers and control structures
is performed. We start off by looking at some common drilling scenarios, and then
evaluate some common control issues. We move on to how changing system parame-
ters affects robustness and performance, and finally we compare topside to bottomhole
control.

Simulations are performed using the topside control scheme, unless stated otherwise.
It is also of importance to notice that the control system measurements are saved only
so often, so some of the high-frequency oscillations in the L1 state predictor are hidden.
We also select a much lower L1 adaptive gain (Γc = 5 · 105) than the estimates from the
last chapters indicate we should select as the standard simulation value, but we will see
that as long as the adaptive gain is high enough we will still have good performance.
However we can select a much higher time-step. The positive effects of these two
choices are less required memory, less required storage and faster run-time.

5.1 Simulation Tools

Simulations are performed by the use of the simulation structure developed in Peder-
sen (2008). Some testing, tuning and evaluation has also been performed on Simulink
models based on the Kaasa equations. The simulation structure has been extensively
reworked to facilitate the introduction of the L1 adaptive controller.

The models used are in no way optimized for best run-time performance; they are
constructed to be robust and easy to modify. Any results on simulation length are thus
not comparable to a field implemented control system, but are only meant to illustrate
the impact of different settings.
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5.2 Simulation of Scenarios

In the introduction and background chapter we introduced several common drilling
operations and issues. In this section we will take a closer look at some selected scenar-
ios and how they are implemented in the simulator. In appendix C.1 I give a complete
list of all the simulations performed. All the simulation data are available on the com-
pact disk (Approximately 300 MB), but only a small subsection of the most interesting
observations are included in this thesis. Our nominal case, used to evaluate perfor-
mance, is the connection scenario. The connection scenario is selected because it is a
very common drilling operation, and because it can be used to illustrate the effects
of both pump disturbances and changing reference trajectory at different operating
points.

A typical drilling window is 5 [bar], this means the pressure is allowed to vary±2.5 [bar]
around the set point (Godhavn 2009). This means that we will allow for a maximum
overshoot when changing setpoint and no poorer disturbance rejection than±2.5 [bar].

5.2.1 A Connection

The connection scenario (from chapter 2.1.5) is implemented in the simulator as a sim-
ple ramp down, wait and further ramp up of the main mud pump.

The ramp down is initialized after two minutes; we go from 2000 [l/min] to 0 [l/min] in
two minutes. When the mud pump input flow falls below 200 [l/min] the backpressure
pump automatically kicks in and goes from 200 [l/min] to 400 [l/min].

The connection is assumed to take an additional 11 minutes, before we get a symmetric
ramp up. During the connection we induce a change in the pressure setpoint. For
the topside scenario we go from 10 [bar] to 5 [bar], and back up. The same step is
performed after the mud pump is back at full output. The corresponding values for
bottomhole control is 260 [bar] to 250 [bar].

It should be mentioned that this is a simplification of the real procedure. Many more
effects could be added; for example would it also be interesting to consider the tripping
and heave forces experienced while removing and adding drill string from the well, but
this is not done here.

We see from figure 5.1 and 5.2 that all controllers are well within the drilling window.
The deviations between controllers are influenced by differences in tuning. More about
the tuning performed and the consequences of tuning choices follows in the discussion
chapter and is available in appendix B.

We see that the L1 adaptive controller gives somewhat better performance than the
two other controllers. Most interesting is perhaps the observation that the PI controller
needs quite hard tuning to be able to give good disturbance rejection. One could think
the tuning parameters for the PI controller could perhaps have been selected to give
some more deviations during the pump change and give less overshoot, but the next
scenario will show that this is not possible.
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Figure 5.1: Connection scenario: Tracking performance
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Figure 5.2: Connection scenario: Control input
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Figure 5.3: Power loss scenario: Tracking performance

5.2.2 Power-loss

Power-loss is simulated as an abrupt step change, from full input to zero, in the mud
pump input. We get a fall in pump flow as fast as the pump dynamic permit. The
power-loss is initiated after two minutes, and lasts for five minutes. This scenario gives
one of the fastest input disturbances and we see from figure 5.3 that the integral effect
needs to be high to provide good disturbance rejection for the PI controller. The same
is true for the adaptive gains for MRAC. In fact, the PI controller is just inside the
maximum peak deviation while the MRAC does not give entire satisfactory rejection
in this scenario, with the peak error just above 3 [bar]. The L1 controller, with its high
adaptive gains, showed good performance for this scenario.

5.2.3 Reservoir Fluid Loss and Influx

The difference from the the other input disturbances is that the loss and influx from
the reservoir are not measured. If we are to design a good compensator, we thus need
some kind of estimator for the additional fluid leaving or entering the system. It might
also bring the system to new operating points not considered in the design.
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Figure 5.4: Loss scenario - High flow: Tracking performance

The mud-loss scenario simulates the loss of mud to the reservoir. The modeling of loss
is very simple and it is implemented only as a sudden loss, going from qres = 0 [l/min]
to −1200 [l/min] in one minute. The influx is stable for 4 minutes before we get a
symmetric ramp up. The scenario is tested both for full mud pump flow and for zero
mud pump flow. In the former we perform a reference step, while the last one naturally
leads to saturation. We will come back to saturation in a few sections.

We see from figure 5.4 that in the first loss scenario all the controllers are within the
specified limits. The performance is similar to the connection scenario with the L1 con-
troller providing the best performance. For the second scenario (fig: 5.5) the best action
the controller can perform is to quickly close the choke. The L1 adaptive controller
does this fastest followed by the MRAC controller. However, the overall differences
are small.

The small kick scenario simulates an influx of fluid from the reservoir. The modeling
of the influx is the inverse of the loss scenario and it is implemented as a sudden influx,
going from qres = 0 [l/min] to 1200 [l/min] in one minute. The influx is stable for 4
minutes before we get a symmetric ramp down.

Figure 5.6 indicates that the performance for the controllers during the kick scenario is
approximately the same as for both the connection and the first loss scenario.
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Figure 5.6: Kick scenario: Tracking performance
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Figure 5.7: Fast ΔP term: Tracking performance

5.2.4 Fast Changing Pressure Term

In this scenario we simulate a rapidly changing pressure term. We have a variation
of vertical depth hbit of twenty meters over a period of one minute. Left unchecked,
this would result in pressure deviations at the bit of approximately ±0.89 [bar]. This
scenario is performed using the bottomhole structure, and only the PI and L1 adaptive
controllers are evaluated.

We see from figure 5.7 that the PI controller is not able to suppress much of the distur-
bances, and we still have changes of ±0.313 [bar]. The L1 controller does much better
and reduces the perturbations to ±0.074 [bar]. The observed oscillations are thus 35.17
percent and 8.31 percent of the original disturbance.

5.2.5 Inner Flow Dynamics and Gas in the Choke

Until now we have ignored the inner flow dynamics and assumed that we can set qc di-
rectly. We will now include the extra dynamics equation from chapter 2.2. We will also
see what happens if we get gas in the choke leading to slower control dynamics with
more oscillations, and increased time-delay. The scenario is implemented by changing
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Figure 5.8: Slow inner flow dynamics: Tracking performance

the flow dynamics parameters as given in table 5.1. We try three different inner flow
dynamics (normal, slow and slower) and see how they affect tracking performance for
the connection scenario.

Table 5.1: Inner dynamics
Scenario wc ζc
Normal 4 0.7
Slow 1 0.7
Slower 0.5 0.7

For the slow scenario the amount of delay in the control signal is already quite evident
and we see from figure 5.8 that we have degradation in control performance for all the
controllers. Though the L1 adaptive controller still has numerically low deviations for
the controlled variable, we have fast oscillations. We know that the amount of time-
delay we can permit is not very high, and we are close to the limit. The PI controller
no longer gives sufficient performance, with peak values outside the drilling window,
and we need to retune the controller. The MRAC gives the best performance for this
scenario, but we know the disturbance rejection is a bit low.
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5.3 Controller Issues

5.3.1 Measurement Noise

We introduce measurement noise on all signals available for the control systems, and
see if we get any issues with control input usage or adaptation. The noise is calculated
as normally distributed noise with a mean of zero percent and standard deviation of
one percent. This is multiplied with the measurements, giving a percentual deviation
from the real signal.

A Connection with Noise

We return to our test case, the connection scenario. We see from figure 5.9 that sim-
ulations performed showed no real degradation of control performance, and all the
controllers are well within the drilling window. We do not see much drift in parameter
estimates; however this case has quite good excitation of signals, even though we get
even more high frequencies in the estimated parameters for the L1 adaptive controller,
and thus also in the state predictor. Simulations also showed more erratic use of control
input and we should add a filter on the measured signals.

Drift Issues

Since the connection scenario has such good excitation, we introduce a simple case
where we simply want to follow a constant reference with no change of pump inputs.
The parameter estimation is thus dominated by the noise induced changes. This sce-
nario is of course only interesting for the adaptive controllers.

The L1 adaptive controller parameter estimates drift to the projection limits, but the
controller still shows good performance. The MRAC parameters also shows some drift,
but this drift is very slow because of the low adaptive gains. The drift might however
become a problem over very long time, but can be stopped by for example a dead zone
addition.

5.3.2 Control Input Saturation

In this section we take a closer look at what happens if the control input saturates. The
scenario is implemented using the inner flow dynamics. We get a very high step, from
10 [bar] to 100 [bar], after two minutes. The high step leads to saturation of the control
input, the flow goes to zero and it is not possible to get negative choke flow (we do not
include the backpressure pump as a control input). After three minutes the setpoint is
set to 40 [bar].

Simulations show that all controllers have saturation issues if not properly implemented.
However, available countermeasures were easy to implement. For the PI controller a
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Figure 5.9: Noise: L1 adaptive controller. Measurement noise added to all signals
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simple anti-windup mechanism was introduced to stop the integral error from increas-
ing / decreasing if the control input has saturated. For the MRAC controller it was
necessary to stop the adaptation at the saturation limit, while for the L1 adaptive con-
troller we added projection on the state χ. The projection has not been theoretically
justified.

5.3.3 Sampling and Numerical Effects

In this section we look at how the sample time and the numerical time-steps affect the
controllers. For L1 adaptive control we know that a fast low-pass filter needs a small
time-step. How does this affect stability and what happens if we select a too large
time-step, and what happens if we do not have fast measurements?

Time-step

We start by setting the same L1 gain constant and adaptive gains for the L1 adaptive
controller, and then we try three different time-step sizes h for the adaptive controller.
We see from figure 5.10 that if we set the time-steps too high we may cause instability.
Only for the lowest time-step do we have a good transient performance at all times.

Note here that the adaptive gains selected are set low, but the results will be similar for
any gain.

The effect of slow sampling

The controllers run at different numerical step-lengths due to the stability issues with
the L1 controller. While the MRAC and PI controller are updated every 0.1 [sec], the
loop time for the L1 adaptive controller is set to 0.001 [sec]. Does this mean that we
need very fast measurements for the L1 adaptive controller? We will see that is not so.
The control system is tried for four different update speeds for the measurements from
the simulator plant: 0.1, 0.5, 1.0, and 2.0 [sec]. Finally the system is simulated with
both dynamics and a sampling rate of 1.0 [sec]

From figure 5.11 and 5.12 we see that for the 1.0 [sec] sampling rate, all the controllers
provide good performance, while for the two second sampling all controllers are still
stable, but the PI controller is at its performance limit. The controllers show some better
stability margins than predicted, but note that this is for output delays.

We also see that we do not have to implement the control input to the plant as often as
the control system time-step, something that would quickly destroy the control choke.
We simulate with inner flow dynamics, a new measurement and a change in the control
input every 0.5 [sec]. We see from figure 5.13 that we still have acceptable performance
for all controllers.
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Figure 5.10: L1 adaptive controller. Simulation with the same L1 gain constant and
adaptive gains for three different step-sizes.
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Figure 5.11: Sampling 1 [sec]: Tracking performance

Choke Pressure Comparison

time [min]

pr
es

su
re

[b
a
r]

PI
MRAC
L1
Pc,ref

0 5 10 15 20 25 30
2

4

6

8

10

12

14

Figure 5.12: Sampling 2 [sec]: Tracking performance
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Figure 5.13: Tracking performance for connection with sampling and new control input
every 0.5 [sec] and included inner dynamics
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However, the control system itself will need to operate at quite high speeds. This means
that the computational needs ofL1 adaptive control, especially for large adaptive gains,
might be larger than a standard control solution will provide.

Simulation run-time

We have seen that the performance of the L1 adaptive controller depends on the adap-
tive gains. High adaptive gains require small time-steps. Small time-steps require fast
CPU. So how low do we need to set the time-step for perfect tracking? Based on fixed-
step simulation in Simulink, using ODE4 and a inner sample time of 0.1 [sec] for the
system, we find the numbers in table 5.2. Note that the exact time-step was not tried
found, but the numbers indicate the area in which they lie.

Table 5.2: L1: Gain versus time-step
Γc Time-step h

1 · 102 1 · 10−1

1 · 103 1 · 10−2

1 · 104 1 · 10−2

1 · 105 1 · 10−3

1 · 106 1 · 10−3

1 · 107 1 · 10−4

1 · 108 1 · 10−4

1 · 109 1 · 10−5

1 · 1010 1 · 10−5

We see that these numbers get very low after 1 · 106. This means we will need a very
fast control system.

The actual run-time for the simulator for a connection scenario with slow dynamics
was by comparison: h = 1 · 10−2 lasted 25.4 minutes; h = 1 · 10−3 lasted for 260.5
minutes; and h = 1 · 10−4 lasted 2292,2 minutes.

5.4 Changing Well Parameters

In this section we will look at robustness and performance when changing some im-
portant system parameters. The perhaps most interesting parameters to change are the
mud weight, bulk modulus of the annulus βa and the friction in the annulus Fa.

5.4.1 Changing Mud Weight

This scenario simulates changing the mud density during drilling. This is a slow pro-
cess where all the mud is changed with a heavier / lighter oil. This is simulated by
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Figure 5.14: Changing bulk modulus βa: Control performance in tracking

slowly changing the mud density ρd in the drill string by a linear ramp. This is as-
sumed to take 30 minutes. The total change is Δρ = −100. We get the same ramp in
the annulus for ρa, but with a time delay of 20 minutes. To check if we get any large
changes in performance we are constantly running a change in reference pressure. The
scenario was performed using bottomhole control and only the PI and L1 adaptive
controller were tested.

Simulation results showed that none of the controllers faced any real degradation in
performance.

5.4.2 Changing Bulk Modulus

Change in bulk modulus is most interesting in the annulus where small amounts of
gas in the drilling mud might lead to a lower bulk modulus βa. This is simulated by
lowering the bulk modulus every twelve minutes and running the same step reference
changes over one hour.

We see from the simulations results from figure 5.14 and 5.15 that the best results are
from the adaptive controllers, and especially the L1 adaptive controller. However wee

64



Control input qc0

time [min]

flo
w

[l/
m
in

]

PI
MRAC
L1

0 10 20 30 40 50 60
500

1000

1500

2000

2500

3000

3500

4000

Figure 5.15: Changing bulk modulus βa: Control performance in tracking
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see that even for the adaptive controller we get a decrease in performance. We note
however that the controller initially assumes a constant high-frequency gain and that
with decreasing gain we get an increase in λwhich implies worse performance.

5.4.3 Changing Friction Parameters

Changing friction parameters might occur if we drill into new types of rock, have
changes to well topology or because we change equipment. This is simulated as a
change in the friction parameters for the annulus.

We change the friction in steps as we did for the bulk modulus scenario; the changes are
sudden and result in a total increase of Fa of approximately 50 percent. The scenario
is performed for the bottomhole settings and thus only for the PI and L1 adaptive
controller.

Comparison of the two controllers show small differences for this scenario, with good
control performance for both controllers.

5.5 Control Structure

Finally we take a look at the control structures and evaluate topside versus bottomhole
control. What are the strengths of the two different systems? The comparison is done
for both the PI controller and the L1 adaptive controller. As mentioned before we will
consider both the use of ideal values and the use of an observer.

5.5.1 Topside Control

Generating a control trajectory

In the ideal case, inversion of the bit pressure equation from 3.5, will produce the cor-
rect control path. However, this requires knowledge of all parameters. Another way to
generate this path would be by the use of high-fidelity simulations. We may also use
the Stamnes observer to estimate the unknowns in the bit pressure equation, and com-
bine with measurements and known parameters to generate the path. The first and
the last method are used to generate a control path comparable to direct bottomhole
control.

5.5.2 Bottomhole Control

Getting good measurements

Direct control of the bottomhole pressure requires fast measurements, or at least good
estimates of the bottomhole pressures. We consider two cases; in the first, good mea-
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Figure 5.16: Ideal conversion: Direct bottomhole measurements are considered versus
the ideal conversion scheme

surements are available through wired drill pipe, and in the second we use the Stamnes
observer to estimate the bottomhole pressure.

5.5.3 Comparison of Control Structures

We start by comparing the two ideal cases. As we expect, we see from figure 5.16 that
the differences are small, and most likely due to tuning differences.

For the observer case we note from figure 5.17 that the bottomhole values produce
the best results. Conversion based on the estimated parameters give somewhat bad
performance when we have disturbances. The large spike in the L1 adaptive controller
is actually there because of saturation of the control input, without taking any measures
to handle this saturation.

A consideration we have to make, is that it will be hard to include non-predicted events
into pre-generated simulations, while adaptive observer based simulation might be
able to handle these events.
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Choke Pressure Comparison

time [min]

pr
es

su
re

[b
a
r]

PI BH
PI Top
L1 BH
L1 Top
Pbit,ref

0 5 10 15 20 25 30
245

250

255

260

265

Figure 5.17: Bottomhole control based on estimated bit pressure is compared to a refer-
ence trajectory generated by an observer
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Chapter 6

Discussion

In this chapter we look back at the results from chapter four and five. We look into con-
troller complexity and implementation, robustness and performance, tuning require-
ments and common controller issues. How did the different control structures behave
and what are their strengths and weaknesses? Finally I give some additional recom-
mendations for future work on the area.

6.1 Controller Complexity

We know that the controller complexity might be a large obstacle for introduction into
real industrial applications. Complex systems are harder to understand and maintain.
How much additional complexity does the adaptive controllers introduce and how
large is the impact on computational speed?

6.1.1 The PI Controller

The PI-controller is well-known, relatively easy to implement and has proved its value
in millions of control systems. The controller complexity is low and there are many
options for tuning. There is however need for some ad-hock solutions to handle some
common problems with PI-controllers. The most important of these is perhaps the anti-
windup implementation. It is vital to stop the integral error from increasing when the
controller has already saturated and can provide no more or no less input. The overall
complexity is still low and there is much knowledge on how to tune and implement
the controller.

6.1.2 The MRAC Controller

The MRAC is widely used in some control environments and has many examples of use
in the industry, but one cannot expect that drilling engineers have the same familiarity
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to MRAC as they have to PI control. The controller adds additional complexity and
new problems.

We introduce several new components, including the reference system and the adap-
tive laws. Most of the challenges are connected to the adaptive laws. One needs to
consider new parameters, more gains and more initial conditions. There are few good
analytic tools available to evaluate performance and much has to be done on an exper-
imental basis.

6.1.3 The L1 Adaptive Controller

The L1-adaptive controller has recently been introduced and has seen few applications
in the industry, in fact is has not even seen many evaluations. Here one can certainly
not expect drilling engineers to know the controller, when most control experts do not
even know of its existence. The controller is however in some environments getting a
lot of attention, especially in the aeronautics community.

The control structure itself is not much more complex than MRAC, but we introduce a
more difficult setup and performance selection. The complexity is thus quite high.

Selection of higher order filters is also an issue, and we may need to solve an optimiza-
tion problem to get good time-delay margins.

In defense of the L1-adaptive controller, the additional complexity during creation
might lead to less tuning and changes during actual operation.

6.1.4 Sampling and Numerical Issues

Sampling and numerical issues are quite important for the L1-adaptive controller. The
wrong choice of numerical solver or time-steps can lead to instability or reduced per-
formance. Though this is true for any controller, it is the author’s opinion, that making
the wrong choices is easier with this control method.

The run-time differences of the controllers were quite large. The fastest simulations
were naturally for the PI controller, with a typical runtime of 5.88 minutes to simu-
late 30 minutes. The MRAC was not much worse with 9.36 minutes, while the the
L1 adaptive controller used approximately 260 minutes, or 44 times the PI run-time.
These numbers are influenced by computer load, subsystems loaded more often for L1
adaptive controller and many more parameters. However, typically the ODE solvers
for the L1 adaptive controller represented 75 percent of the total simulation time. The
L1 adaptive controller has very high observed computational needs.

6.2 Tuning Aspects

One of the reasons for evaluating adaptive control in MPD was to hopefully reduce the
need for tuning. Does a larger operating area without any tuning justify introducing
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several new tuning parameters and initial conditions? In this section we discuss the
tuning needs of the three different controllers.

6.2.1 The PI Controller

There are many ways to tune PI-controllers, ranging from simple analytical tuning
rules to self adjusting mechanisms. If the PI-controller always has to have good perfor-
mance, we need to retune for changing dynamics and for large changes in parameters.
This leads to a need for manual or automatic retuning for drilling operations. One
solution is to create a wide array of tuning settings and use some kind of feedback
mechanism to select the appropriate gain. Another possibility is to use a self-adjusting
mechanism, but this leads to additional complexity, and it might not be possible or it
might be very costly to make the changes of control input needed to identify all the
parameters needed.

Tuning of the PI-controller in this thesis was done using the simple SIMC tuning meth-
ods from Skogestad (2003). The tuning is simple, with few tuning parameters.

The system did not need large changes to system parameters or dynamics to deteriorate
control performance below the acceptable limits. The need for continuous re-tuning are
thus high.

6.2.2 The MRAC

The tuning of the MRAC controller introduces a set of new tuning parameters. We need
to select initial conditions for estimated variables, adaptation gains and the reference
system.

Though we see better performance over varying parameters and disturbances, it was
found that there is still a quite large need for tuning. It is hard to set good adaptation
gains to offer both robustness and fast disturbance rejection, and we need to change
these gains if we have large changes in parameters.

It is also of great importance to have good estimates of the parameters, as non-zero
initialization errors might lead to poor performance during transients.

The reference system must also be selected to meet control specifications and to meet
any matching conditions.

The tuning come with a greater startup cost and requires good estimates. However
during operation the controller requires less tuning.

6.2.3 The L1 Adaptive Controller

The L1 adaptive controller has many tuning parameters and we have to make many
choices of parameters and sets. We have however seen that only a few of the choices
we make are critical to performance. There is a somewhat large difference between
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the theoretically calculated values and the observed needed values, but then again the
calculations have many strict requirements and conservative estimates.

The adaptive gains need to be selected sufficiently high. An easy rule is to set them as
high as hardware permits. This may of course lead to a requirement of new hardware
if the adaptive gain need to be selected very high.

The L1 adaptive controller also showed good performance for all disturbances, oper-
ating points and even with changing parameters. The needs for retuning are thus low,
but we know that we might not have stability for very low ω, so some tuning with
changing system gain might be needed.

6.3 Controller Performance and Robustness

From the previous chapter we can make some conclusions on controller performance.

While the PI controller performs well enough when correctly tuned, it needs very high
integral effect to be able to counter fast disturbances like the power failure scenario.
The high integral effect means we need quite aggressive tuning and it does not allow
much change in parameters or dynamics before the observed performance is no longer
sufficient. The time-delay margin for stability of the controller is good, but we have
seen that stability does not equal good performance.

The MRAC controller in this thesis was perhaps tuned to allow for too much offset by
disturbances. The performance during steps was tuned to have little overshoot and
met the control demands in a very good fashion. The controller allows more changes
to parameters and dynamics while still meeting the performance objectives. The time-
delay margins are less than for the PI controller, but still quite good.

The L1 adaptive controller provides the best disturbance rejection, overall good track-
ing and has the largest operating area. The controller also has the lowest time-delay
margins, which means that the time-delay of the overall control loop cannot be very
high. Combined with the high computational needs this requires a high-end control
system.

None of the controllers showed much performance degradation under the influence of
noise, but drift limiting modifications were already in the design for both MRAC and
the L1 adaptive controller. All controllers have potential windup if the control input
saturates, and this must be handled.

6.4 Evaluation of Control Structures

The different control structures have somewhat different benefits and problems. We
have seen that we have good measurements for the topside case, while the bottomhole
case needs an observer to function.
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Adjusting the bottomhole pressure via the choke pressure will give poor results if the
estimated control trajectory is not accurate. We might need to combine observer data
with simulations to change the control trajectory while drilling to be able to account for
changes in the system.

For the bottomhole control method we will get poor performance if the estimates for
the bottomhole pressure are not accurate.

The evaluation of the performance of the two control strategies is thus complicated,
since the performance is more or less decided by the performance of the trajectory
generator or the observer. The lesson learned might be that a good observer is a re-
quirement no matter the control structure for MPD operations.

6.5 L1 Highlights

In the theory and background chapter I introduced some L1 adaptive control potential
issues, which needed further investigation. Based on observations from the design,
analysis and simulation chapter, we have seen that most of the issues were negligible.

We have seen that fast sampling of the control system is not a requirement, besides the
need to keep the added contribution to time-delay below the stability limits. This may
introduce the need for faster control systems and database operations might need to be
kept outside the control loop.

Saturation needs to be handled, and an easy countermeasure is provided, but has not
been theoretically justified.

The estimated values for adaptive gains based on the bounds provided showed not to
be of great practical value. They however show us how we can increase performance.

The overall performance of the controller is good and it has showed great disturbance
rejection. The L1 adaptive controller has shown both better performance and better
ability to keep this performance during changes in the system than the PI controller.

The tuning requirements are somewhat complex, with many tuning parameters, but
there are guidelines for selecting the most important tuning parameters. Once correctly
initialized the controller needed little retuning even with changes in system parame-
ters, but we might need to retune with a large drop in ω.

Changing ω did not lead to any stability issues, but to somewhat reduced performance.

Time did not permit the evaluation of higher order C(s).

6.6 Conclusions

We have seen that the MRAC andL1 adaptive control provide better performance at the
cost of a more complex control system, more complex setup and higher requirements
on the available equipment. The employment of adaptive control is thus an issue of
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added initial costs for hopefully lower long-time operating costs. L1 adaptive control
provides the best results as long as we can keep the time-delay of the control loop
below the stability margins, and if we can meet the computational requirements.

The comparison between the controllers is summed up in table 6.1.

Table 6.1: Comparison of the evaluated controllers
Evaluation PI MRAC L1 adaptive control
Complexity Low Medium High

Tuning parameters Few Some Many
Tuning difficulty Low Medium Medium

Tuning need High Medium Low
Operating area Small Medium Large

Overall performance Poor Medium Good
Disturbance rejection Medium Medium Good
Time-delay margins Good Medium Poor

Computational needs Low Low High

The control performance of the different control structures is decided by the perfor-
mance of the trajectory generator or the observer. A good observer is a requirement no
matter which control solution we select.

6.7 Contributions

One of the main contributions of this thesis is, to the author’s knowledge, the first
independent review of L1 adaptive control. L1 adaptive control is a very new control
method and I believe the thesis offers a valuable evaluation of the control solution.

The other main contribution is the evaluation of two adaptive control methods versus
the benchmark PI controller for MPD . As stated in the introduction chapter, the exist-
ing control solutions do not always satisfy the needs of all drilling operations. I have
showed that adaptive control can help on some of the issues faced by conventional
control, but not without costs.

6.8 Future work

There are several topics which need further development and analysis. The perfor-
mance of the L1 adaptive controller needs to be further evaluated against other robust
and adaptive control schemes.

I have also made some assumptions and modifications which need theoretical justifi-
cation. Most notably the addition of projection on the state χ and allowing ω to be a
time-varying gain. I suspect that it will be difficult to obtain hard results in the last
case.
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Finally one should try to use known parameters and signals to reduce the estimated
bounds. Reducing the bounds will make a good choice of k easier and will give better
performance.

The largest problems of the L1 adaptive control was the small time-delay margins and
the high CPU cost. We know that higher-order filter design might provide the solution
to both problems. It should be of high priority to look into good design choices for
C(s).
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Appendix A

Preliminaries

This chapter holds theorems and some basic definitions used in the derivations of this
thesis.

A.1 Theorems

Theorem 2. Let D = {x ∈ Rn | ‖x‖ < r} and suppose that f(x, t) is locally Lipschitz on
D × [0,∞). Let V be a continuously differentiable function such that

α1(‖x‖) ≤ V (x, t) ≤ α2(‖x‖)

and
dV

dt
= δV
δt

+ δV
δx
f(x, t) ≤ −W (x) ≤ 0

∀t ≤ 0, ∀x ∈ D, where α1 and α2 are class K functions defined on [0, r) andW (x) is contin-
uous on D. Further, it is assumed that dV/dt is uniformly continuous in t.

Then all solutions to dxdt = f(x, t) with ‖x(t0)‖ < α2−1(α1(r)) are bounded and satisfy

W (x(t))→ 0 as t→∞

Moreover, if all assumptions hold globally and α1 belongs to classK∞, the statement is true for
all x(t0) ∈ Rn.
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Appendix B

Tuning

This chapter holds closer information and plots from the tuning of the different con-
trollers.

B.1 L1 Tuning

B.1.1 Different gain settings for the update laws for the L1 adaptive con-
troller

Different values for the adaptation gains (see table B.1) are here used to illustrate how
the gain affects tracking performance. The need to tune the adaptive gains in L1 adap-
tive control is limited, as one selects the gains as high as hardware permits. The gain
must be selected sufficiently high, while increasing the gain much above this limit will
have diminishing effect.

We see from figure B.1 that if the adaptive gains are set too low, we cannot provide ac-
ceptable performance, while gains set higher than necessary give only small improve-
ments in performance. The control input is showed in figure B.2 and has no apparent
issues. The estimated parameters are shown in figure B.3 and B.4; we see that the low
gain has problems giving good estimates. In figure B.5 the high gain state estimate is
plotted against the low gain estimate and the actual states. It can be observed that the
estimate for the low gain is very poor.

Table B.1: L1 - Adaptation gain table
Gain setting Γσ Γω

Low 0.01 0.01
Medium 1 1

High 100 100
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Comparison of tracking performance
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Figure B.1: Tuning of L1: Adaptive gains - Tracking performance.

Comparison of control input
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Figure B.2: Tuning of L1: Adaptive gains - Control input usage.
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Comparison of estimated σ̂
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Figure B.3: Tuning of L1: Adaptive gains - parameter σ.
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Figure B.4: Tuning of L1: Adaptive gains - parameter ω.
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Comparison of state error
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Figure B.5: Tuning of L1: Adaptive gains - State estimate.

B.1.2 Selection of Initial Values

How important is the selection of initial conditions for the estimated parameters in L1
adaptive control? We know for MRAC that non-zero trajectory initialization can lead
to large transient tracking errors, but in Cao & Hovakimyan (2008e) it is shown that
for the L1 adaptive controller this will only lead to exponential decaying errors in the
transient phase. We simulate this by employing the estimated values k∗ = [σ̂0, ω̂0], and
0.2 · k∗ and 5 · k∗.

Simulations showed that we get a short period where the parameters adjust, however,
we see no change in performance at all. The need for very good estimates is thus low.
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Figure B.6: Tuning of MRAC: Reference systems - Tracking performance.

B.2 MRAC Tuning

B.2.1 Different Reference Model Settings for the MRAC

We compare different reference models to show how they specify control performance
of the MRAC. A first order reference model of the form of equation 3.7 is selected, and
the different settings forAm is used in simulation of the connection scenario. However,
the medium value is also acceptable.

Table B.2: MRAC - Reference Model settings
Gain setting Am bm

Low -0.2 0.2
Medium -0.5 0.5

High -1 1

We see from figure B.6 and B.7 that the low value for the reference systems gives the
smoothest tracking performance and has the best gain usage.

83



Comparison of control input
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Figure B.7: Tuning of MRAC: Reference systems - Control Input.
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Figure B.8: Tuning of MRAC: Adaptive gains - Tracking performance.

B.2.2 Selection of Adaptive Gains

We want to select the adaptive gains as high as possible to get good performance in the
presence of changes and disturbances. However, we know that selecting high gains
will hurt the time-delay margin. Selection of the adaptive gains is thus a compromise
between tracking performance and robustness and it can be hard to find good gains.

Table B.3: MRAC - Adaptive gains settings
Gain setting γ0 γ1 γ2

Low 1 · 10−11 1 · 10−11 5 · 10−11

Medium 1 · 10−10 1 · 10−10 5 · 10−9

High 1 · 10−5 1 · 10−5 1 · 10−7

In figure B.8 we see the difference between three different adaptive gains and the influ-
ence on tracking performance. We select the medium values, but set them somewhat
lower (γ0 = γ1 = 1 · 10−14) to improve robustness.
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Figure B.9: Tuning of MRAC: Initial values - Tracking performance.

B.2.3 Selection of Initial Values

We have good estimates for the initial conditions of k0, k1 and k2, but what happens if
the estimates are bad? We try evaluating different initial conditions for the MRAC. We
call the good guess for k∗. The bad guesses are set as 0.2 · k∗ and 5 · k∗.

From figure B.9 and B.10 we see that the bad guesses for initial values give very poor
performance during the initial phase. Especially the low initial guess gives an unac-
ceptable transient phase for the controlled variable, but also the high initial estimate
gives high spikes in the control input.

86



flo
w

[l/
m
in

]

Control input qc0 0.2 · k∗

flo
w

[l/
m
in

]

Control input qc0 k∗

flo
w

[l/
m
in

]

time [mins]

Control input qc0 5 · k∗

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0

5000

10000

15000

0

1000

2000

3000

0

2000

4000

Figure B.10: Tuning of MRAC: Initial values - Control Input.
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B.3 PI Tuning

B.3.1 Different Tuning Settings for the PI-Controller

The PI-Controller was tuned using SIMC (Skogestad/Simple IMC) tuning rules for
integrating processes. The basis for this method is to approximate the process with a
first-order plus time delay model (Skogestad 2003, Skogestad & Postlethwaite 2007),

G(s) = k

τs+ 1e
−θs (B.1)

or for integrating processes

k

τs+ 1 ≈
k

τs
= k

′

s
(B.2)

For a PI controller Skogestad suggest the following settings

Kc = 1
k

τ

τc + θ = 1
k′

1
τc + θ , (B.3)

τI = min (τ, 4(τc + θ)) . (B.4)

where τc is a tuning parameter where −θ < τc <∞ and k′ = k/τ . The selection of τc is
a trade-off between

1. Fast speed of response and good disturbance rejection, and

2. Stability, robustness and small input usage

The first is favored by a small value of τc and the second by a large value for τc
(Skogestad 2003).

From a bump test of the well, using a Simulink model, we get the parameters for the
topside control scheme for the first-order plus time delay model. We list them in table
B.4 and the corresponding gains, in B.5.

Table B.4: Skogestad Tuning - Topside: First order plus time delay model
Operating point τ θ Δy Δu k
qc,h = 2200 [l/min] 3 0 2.39 [bar] 200 [l/min] −7.16 · 107

qc,l = 400 [l/min] 6 0 4.88 [bar] 200 [l/min] −1.46 · 108

Is there really no deadtime in the system? The bump test was carried out on the much
simpler Simulink models, and from simulations of the complete simulation model we
see that there is deadtime in the system. The slower inner dynamics, the longer dead-
time. The deadtime is however small, but one could consider increasing Ti.
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Table B.5: Skogestad Tuning - Topside: Gain Table
τc 0.5 2 10
Kc,h −8.38 · 10−8 −2.09 · 10−8 −4.19 · 10−9

Ti,h 2 3 3
Kc,l −8.20 · 10−8 −2.05 · 10−8 −4.10 · 10−9

Ti,l 2 6 6
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Figure B.11: Tuning of PI controller: Tracking performance. The Low setting equals
Kc = 10, Medium isKc = 2 and High isKc = 0.5
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Comparison of control input
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Figure B.12: Tuning of PI controller: Control input usage. The Low setting equals
Kc = 10, Medium isKc = 2 and High isKc = 0.5
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We try simulating with these values in the connection scenario, where we have both
reference changes and disturbances to evaluate performance.

We see from figure B.11 and B.12 that for the lowest setting for Kc we get very good
following and disturbance rejection, but we also have very large peaks in the control
input. The highest value forKc results in very poor tracking and disturbance rejection.
The medium value gives acceptable tracking and rejection, and at the same time it has
a much more sensible control input usage and is therefore selected. We also know that
it offers more robustness. The same procedure was done for the bottomhole control
structure. The model parameters and control gains are summarized in table B.6 and
B.7.

Table B.6: Skogestad Tuning - Bottomhole: First order plus time delay model
Operating point τ θ Δy Δu k
qc,h = 2200 [l/min] 30 0 19.01 [bar] 200 [l/min] −5.70 · 108

qc,l = 400 [l/min] 30 0 18.26 [bar] 200 [l/min] −5.48 · 108

Table B.7: Skogestad Tuning - Bottomhole: Gain Table
τc 0.5 2 10
Kc,h −1.05 · 10−7 −2.63 · 10−8 −5.26 · 10−9

Ti,h 2 8 30
Kc,l −1.10 · 10−7 −2.74 · 10−8 −5.48 · 10−9

Ti,l 2 8 30
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Appendix C

Simulations

C.1 Simulation Overview

A wide array of simulations was tested for the system and only the most important
plots are included in this thesis. However, the simulation data and additional figures
are available on the compact disk. A simulation overview of the data available is given
in table C.1 and C.2.
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Table C.1: Topside simulations
Scenario PI MRAC L1 low k Slow MRAC L1
Connection � � � � �
Noisy Connection � � � - -
Power Loss � � � - -
Mud loss high flow � � � - -
Mud loss low flow � � � - -
Kick � � � - -
Fast ΔP term - - - - -
Friction - - - - -
Inner dynamics � � � - -
Inner dynamics slow � � � � -
Inner dynamics slower � � � � -
Changing βa � � � � -
Sampling 0.1 [sec] - - � - -
Sampling 0.5 [sec] � � � - -
Sampling 1.0 [sec] � � � - -
Sampling 2.0 [sec] � � � - -
Sampling 1.0 [sec] and added
inner dynamics

� � � - -

Sampling 0.5 [sec], hold for
0.5 [sec] and added dynamics

� � � - -

Drift - � � - -
Drift with modifications - � - - -
Saturation � � � - -
Saturation with mod. � � � - -
Reference trajectory � � � - -
Observer / trajectory � � � - -
Tuning adaptive gains - � � - -
Tuning initial values - � � - -
Tuning gains � - - - -
Tuning reference model - � � - -
High gain changing βa - - � - -

94



Table C.2: Bottomhole simulations
Scenario PI L1 low k L1
Connection � � -
Noisy Connection - - -
Power Loss - - -
Mud loss - - -
Kick - - -
Fast ΔP term - - -
Friction - - -
Inner dynamics � � -
Inner dynamics slow � � -
Inner dynamics slower - - -
Changing βa � � -
Changing ρ � � -
Sampling 0.1 [sec] - - -
Sampling 0.5 [sec] - - -
Sampling 1.0 [sec] - - -
Sampling 2.0 [sec] - - -
Sampling 1.0 [sec] and added
inner dynamics

- - -

Sampling 0.5 [sec], hold for
0.5 [sec] and added dynamics

- - -

Drift - - -
Drift with modifications - - -
Saturation - - -
Saturation with mod. - - -
Reference trajectory - - -
Observer / trajectory � � -
Tuning adaptive gains - - -
Tuning initial values - - -
Tuning gains � - -
Tuning reference model - - -
High gain changing βa - - -
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