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Recent papers1–4 have introduced a new paradigm for design of adaptive controllers that enablesa priori
prediction of performance bounds and also analytical quantification of the time-delay margin of the closed-
loop nonlinear system. In this paper, we revisit the main architecture from Refs.1,2 and consider several filter
design methods for maximizing the time-delay margin, whileretaining the same performance bounds.

I. Introduction

Direct Model Reference Adaptive Control (MRAC) schemes have proven to be extremely useful in a number
of flight tests for recovering nominal performance in the presence of modeling and environmental uncertainties (see
Ref.5, 6 and references therein). A major challenge in analysis of these systems is determining their stability margins,
which is directly dependent upon the adaptive control learning rate. Today this analysis largely relies on the numerical
sensitivity provided by Monte-Carlo analysis. The MRAC adaptive gain algorithm typically has the following form

˙̂
kx(t) = −Γe⊤(t)Pbx(t), (1)

whereΓ is the adaptive learning rate,x is the state vector,e(t) = x(t) − xref (t) is the tracking error,xref (t) is
the state of the reference model,P is the solution of the algebraic Lyapunov equation, andb the control distribution
matrix. One would naturally like to use a large learning ratein order to drive the errore(t) = x(t) − xref (t) to zero
as quickly as possible, forcing the statex(t) to track the statexref (t) of the reference model.

In the recent application of MRAC to the JDAM munition, Ref.,6 the MRAC algorithms with large learning rates
were found to be sensitive to time-delay. This was discovered during hardware-in-the-loopbench simulations, in which
a larger than normal time delay is present due to the laboratory setup. It was later reproduced in 6DOF simulation
analysis focused on determining the time-delay margins. The MRAC learning rates were then “tuned” using the 6DOF
to reduce the sensitivity and provide adequate margin. It has also been observed in practice that large learning rates
can produce high-frequency oscillations in the control signal. In systems that use electric actuation this high frequency
oscillation significantly increases the current draw and isundesirable.

Thus, a major challenge in analysis of these systems is determining the stability margins, gain and time-delay,
which are known to depend upon the adaptive control learningrateΓ. Refs.1, 2 addressed this challenge and introduced
a new paradigm for design of adaptive controllers, the resulting architecture being namedL1 adaptive control. The
L1 adaptive control architectures adapt fast, leading to desired transient performance with analytically computable
performance bounds. Moreover, as demonstrated in Ref.,3, 4 unlike the standard MRAC algorithms, theL1 adaptive
control architectures have guaranteed time-delay margin in the presence of fast adaptation. TheL1 adaptive controller
and its variants have been used for control of wing rock,7 aerial refueling,8 and also flight tested on a miniature
unmanned air vehicle.9

In this paper, we develop a design technique for the underlying filter in theL1 adaptive control architecture that
maximizes the time-delay margin, while retaining the same performance bounds. We consider several filters, and using
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frequency domain tools along with nonlinear optimization methods, we compare the performance of the different filters
towards obtaining the largest time-delay margin.

The rest of the paper is organized as follows. In Section II, we introduce theL1 adaptive control architecture from
Refs.1–4 and its associated time-delay margin. In Section III, we introduce the problem formulation addressed in this
paper. In section IV, we give an overview of multi-objectiveoptimization used to optimize the filter coefficients. In
Section V, we present an optimization method for filter design. Then a filter design procedure based on multi-objective
optimization is given in Section VI, where filters with different forms and design methods are compared and evaluated.
Conclusions are summarized in Section VII.

II. L1 Adaptive Control Architecture, Its Performance Bounds andTime-delay Margin

Consider the following single-input single-output systemdynamics:

ẋ(t) = Amx(t) − bθ⊤x(t) + bu(t), x(0) = x0

y(t) = c⊤x(t) ,
(2)

wherex ∈ R
n is the system state vector (measurable),u ∈ R is the control signal,b, c ∈ R

n are known constant
vectors,Am is a givenn × n Hurwitz matrix,y ∈ R is the regulated output, and the unknown parameterθ belongs to
a given compact convex setθ ∈ Θ. Let

ẋm(t) = Amxm(t) + bkgr(t), xm(0) = x0 ,

ym(t) = c⊤xm(t)
(3)

be the desired reference system, wherexm ∈ R
n, Am is the same as in (2),kg is a design gain

kg = lim
s→0

1

c⊤H(s)
=

1

c⊤H(0)
, (4)

and
H(s) = (sI − Am)−1b . (5)

For the linearly parameterized system in (2), we consider the following state predictor

˙̂x(t) = Amx̂(t) + b(u(t) − θ̂⊤(t)x(t)) , x̂(0) = x0

ŷ(t) = c⊤x̂(t) ,
(6)

in which the adaptive law for̂θ(t) is given by

˙̂
θ(t) = ΓProj(θ̂(t), x(t)x̃⊤(t)Pb), θ̂(0) = θ̂0 , (7)

wherex̃(t) = x̂(t) − x(t) is the prediction error,Γ ∈ R
n×n = ΓcIn×n is the matrix of adaptation gains,P = P⊤ is

the solution of the algebraic equationA⊤
mP +PAm = −Q, Q > 0, while projection denotes the projection operator.10

Letting
r̄(t) = θ̂⊤(t)x(t), (8)

we consider the following filtered adaptive controller:

u(s) = C(s)
(

r̄(s) + kgr(s)
)

, (9)

whereu(s), r̄(s), r(s) are the Laplace transformations ofu(t), r̄(t), r(t), respectively,C(s) is a stable and strictly
proper system with low-pass gainC(0) = 1, andkg is the same as in (4). Letting

θmax = max
θ∈Ω

n
∑

i=1

|θi| ,

whereθi is theith element ofθ, the completeL1 adaptive controller consists of (6), (7), (9) subject to thefollowing
L1-gain stability criterion:

λ = ‖H(s)(1 − C(s))‖L1
θmax < 1 , (10)
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where‖H(s)(1 − C(s))‖L1
is theL1 gain of the stable transfer functionH(s)(1 − C(s)), which restricts the choice

of the filterC(s).1, 2

We define a linear time-invariant reference system using thenon-adaptive version of (9)

xref (s) = H(s)
(

kgC(s)r(s) + (C(s) − 1)θ⊤xref (s)
)

(11)

uref(s) = C(s)
(

kgr(s) + θ⊤xref (s)
)

(12)

along with the desired system

ydes(s) = c⊤G(s)r(s) = C(s)kgc⊤Ho(s)r(s) , (13)

udes(s) = kgC(s)
(

1 + C(s)θ⊤Ho(s) − K⊤Ho(s)
)

r(s). (14)

The main result from Refs.1, 2 claims that subject to (10) one has

lim
Γc→∞

(x(t) − xref (t)) = 0 , ∀ t ≥ 0 ,

lim
Γc→∞

(u(t) − uref(t)) = 0 , ∀ t ≥ 0 ,

along with the following performance bounds

‖yref − ydes‖L∞
≤

λ

1 − λ
‖c⊤‖L1

‖G(s)‖L1
‖r‖L∞

, (15)

‖yref − ydes‖L∞
≤

1

1 − λ
‖c⊤‖L1

‖h3‖L∞
, (16)

‖uref − udes‖L∞
≤

λ

1 − λ
‖C(s)θ⊤ − K⊤‖L1

‖G(s)‖L1
‖r‖L∞

, (17)

‖uref − udes‖L∞
≤

1

1 − λ
‖C(s)θ⊤ − K⊤‖L1

‖h3‖L∞
, (18)

whereh3(t) is the inverse Laplace transformation of

H3(s) = (C(s) − 1)C(s)r(s)kgHo(s)θ
⊤Ho(s). (19)

We notice that whenC(s) = 1, uref (t) reduces to the followingidealcontroller

uideal(t) = kgr(t) + θ⊤xref (t) , (20)

and (11) reduces to (3) by cancelling the uncertainties exactly. We note that the control lawuref(t) is not imple-
mentable since its definition involves the unknown parameters. However, theL1 adaptive controller ensures thatx(t)
andu(t) track the statexref (t) and the control signaluref(t) of this reference system both in transient and steady-
state, if the adaptation rate is selected sufficiently large. Reference2 further provides design guidelines for selection
of C(s) to ensure that the output of the reference system in (11) can satisfy desired control specifications. TheL1

adaptive control architecture is illustrated in Fig. 1, andits complete design and analysis framework is developed in
Refs.1, 2

Thus, for performance improvement one needs to minimizeλ, which can be conservatively upper bounded

λ = ‖(H(s)(1 − C(s))‖L1
θmax = ‖H(s)(C(s) − 1)‖L1

θmax ≤ ‖H(s)‖L1
‖C(s) − 1‖L1

θmax. (21)

Minimization ofλ can be achieved from two different perspectives: i) fixC(s) and minimize‖H(s)‖L1
, ii) fix H(s)

and minimize theL1-gain of one of the cascaded systems‖H(s)(C(s)−1)‖L1
, ‖(C(s)−1)r(s)‖L1

or ‖C(s)(C(s)−
1)‖L1

via the choice ofC(s). We further notice thatC(s) = 1 achieves the best performance.
The time-delay margin ofL1 adaptive controller is introduced in Ref.4 and is given by:

T (Ho(s)) = P(Ho(s))/ωc , H̄(s) = (sI − Am − bθ⊤)−1b , (22)

whereP(Ho(s)) is the phase margin of the open-loop system

Ho(s) = C(s)(1 + θ⊤H̄(s))/(1 − C(s)),

andωc is the cross-over frequency ofHo(s). It is obvious that while increasing the bandwidth ofC(s) for performance
improvement, the time-delay margin will be reduced.
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Figure 1. Closed-loop system withL1 adaptive controller

III. Illustration for a Scalar Example

We now give an illustrative example to show the relation between the bandwidth of the filterC(s), theL1-gain
and the time-delay margin. Consider the following scalar system:

ẋ(t) = ax(t) + bθ + u(t). (23)

The state predictor is:
˙̂x(t) = amx̂(t) + (a − am)x(t) + bθ̂(t) + u(t), (24)

and let the low-pass filter be

C(s) =
w

s + w
, w > 0. (25)

Let a = 1, am = −2, b = 1 andθ = 0.5. We have

H(s) =
1

s + 2

H̄(s) =
1

s − am − bθ
=

1

s + 1.5
.

Fig. 2 shows theL1 gain of‖H(s)(1 − C(s))‖L1
and the time-delay margin ofHo(s) in (22) as the bandwidth

of C(s) changes. We observe that the choice of the filterC(s) is crucial both in the performance bounds and in the
time-delay margin, as predicted by theory. One needs smaller L1 gain to accommodate larger uncertainties, and larger
time-delay margin for robustness. Considering this trade-off of L1-gain and time-delay margin, in the next section we
introduce a multi-objective optimization method for design of C(s) that retains the sameL1-gain for the performance
bounds in (15), (16), (17), (18) and maximizes the time-delay margin in (22).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bandwidth(rad/s)

M
ag

ni
tu

de

(a) ‖H(s)(1 − C(s))‖L1

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Bandwidth(rad/s)

T
im

e−
D

el
ay

 M
ar

gi
n(

s)

(b) Time-delay Margin

Figure 2. L1 Gain and time-delay margin
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IV. Review of Multi-Objective Optimization

In this section, a brief review of multi-objective optimization is given. The general form of the constrained,
nonlinear, multiple-objective optimization problem can be stated as follows:

min
x

fi(x) i = 1, 2, ..., p (26)

subject to
x ∈ X = {x|x ∈ R

m, gj(x) ≤ 0, j = 1, 2, ..., m}. (27)

There arep objective functionsfi, i = 1, 2, ..., p that must be minimized simultaneously. The minimization takes
place overX ⊂ R

m, X reflects them functional constraints,gj(x), on the decision variablesx ∈ X .
The most widely-used method for multi-objective optimization is the weighted sum method. The method trans-

forms multiple objectives into an aggregated objective function by multiplying each objective function by a weighting
factor and summing up all weighted objective functions:

fw(x) =

p
∑

n=1

αifi(x), (28)

whereαi, (i = 1, ..., p), is the weighting factor for theith objective function. If
∑p

i=1 αi = 1 and0 ≤ α ≤ 1, the
weighted sum is said to be a convex combination of objective functions. This method will be explored in this paper
later.

V. Filter Structure Design Via ‖C(s)(1 − C(s))‖L1
Minimization

From (15), (16), (17) and (18) it is obvious that one can improve the performance bounds by minimizing theL1-
gain‖(C(s) − 1)C(s)‖L1

. For minimization of‖C(s)(C(s) − 1)‖L1
notice that ifC(s) is an ideal low-pass filter,

thenC(s)(C(s) − 1) = 0 and hence‖h3‖L∞
= 0. Since an ideal low-pass filter is not physically implementable, one

can minimize‖C(s)(C(s) − 1)‖L1
via appropriate choice ofC(s).

So we consider the‖C(s)(1 − C(s))‖L1
minimization for different classes of filters. First noticethat if C(s) is

an ideal low-pass filter, it can be checked easily thatC(s)(1 − C(s)) = 0. Although an ideal low-pass filter is not
physically implementable, one can still minimize‖C(s)(1 − C(s))‖L1

via the choice of the low-pass filterC(s). We
consider the following filters:

1.

C1(s) =
θn(0)

θn(s/ω0)
(29)

whereθn(s) =
∑n

k=0
(n+k)!

(n−k)!k! (
s
2 )k, andω0 is the cutoff frequency.

2.
C2(s) =

a

s + a
, 0 < a < ∞. (30)

3.

C3(s) =
3a2s + a3

s3 + 3as2 + 3a2s + a3
, 0 < a < ∞. (31)

4.
C4(s) =

a1

sn + ansn−1 + ... + a1
(32)

where the parametersa = (a1, a2, ..., an) are the solution of the following optimization problem:

min
a∈Rn

‖C4(s)(1 − C4(s))‖L1
(33)

subject to
bl ≤ ai ≤ bu and C4(s) stable (34)

with bl ∈ R andbu ∈ R being the given lower and upper bounds respectively.
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Remark 1 C1(s) is the well known low-pass Bessel filter.C2(s) andC3(s) have been considered in Ref.1 C4(s) is a

filter obtained by constrained optimization method. We notethat more general forms ofC4(s) such asbmsn−1+...+b1s+a1

sn+ansn−1+...+a1

can also be considered. We usefmincon function in MATLAB optimization tool box to conduct the optimization pro-
cedure.

Figure 3 displays theL1 gains of the above mentioned filters with respect to the bandwidth of each filter. Since
we are concerned about the low frequency interval, the bandwidth is restricted to be less than300rad/s. Note that we
chooseC4(s) as3rd order for convenience. It can be observed thatC1(s) andC4(s) have the smallestL1 gain for
‖C(s)(1 − C(s))‖L1

. We also note that‖C2(s)(1 − C2(s))‖L1
is relatively small when the bandwidth is also small,

but it increases dramatically as the bandwidth gets larger.We also observe the performance similarity ofC1(s) (Bessel
Filter) andC4(s). Figure 3 shows thatC1(s) andC4(s) yield smallerL1-gains than the other two.
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Figures 4(a) and 4(b) show the time-delay margins and theL1 gains for filtersC1(s), C2(s) andC3(s) with respect
to their bandwidths. Bessel filterC1(s) gives a larger time-delay margin compared toC2(s) andC3(s).
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Figure 4. Time delay margins andL1 gains

VI. Filter Design Via Multi-Objective Optimization

In this section, the filter design procedure based on multi-objective optimization is given and is compared to the
other three filters. By formulating a design objective, we can naturally present our design method as optimization of a
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single function representing the trade-off of two objectives (time-delay margin andL1-gain):

min
a

f(a) = αT + (1 − α)(−g), 0 ≤ α ≤ 1 (35)

subject to stability of

C(s) =
a1

sn + ansn−1 + ... + a1
, (36)

wherea = (a1, a2, ..., an)⊤, T is the time-delay margin of the open-loop transfer functionHo(s), g = ‖H(s)(1 −
C(s))‖L1

, α is the weighting factor for the convex combination ofT andg. Once an initial valuea0 and a factorα
are given, the optimal filterC(s) could be obtained by solving the above nonlinear constrained optimization problem.

We now take the3rd order filter as an example to show the feasibility of this multi-objective optimization method.
Let H(s) = 1

s+2 , α = 0.9995 anda0 = (1 3 3)⊤. The following nonlinear, constrained optimization problem is
solved by using thefmincon command of MATLAB optimization toolbox:

min
(a1,a2,a3)

α(−g) + (1 − α)T (37)

subject to
−100000000 ≤ ai ≤ 100000000, i = 1, ..., 3

real part of each root ofs3 + a2s
3 + a1s

2 + a3 = 0 ≤ −0.2.
(38)

The results are given in the first row of the following table The second row of the table has theL1 gain and the
time-delay margin for a different third order filter 3ω2s+ω3

s3+3ωs2+3ω2s+ω3 , ω = 0.795 of the same bandwidth.

C(s) T (sec.) ‖H(s)(1 − C(s))‖L1
Bandwidth ofC(s) (rad/s)

3.789e005
s3+3.521e004s2+3.151e005s+3.789e005 1.4477 0.5126 1.3803

19.97
s3+8.139s2+22.08s+19.97 1.0087 0.8911 1.3804

The above result shows that a smallerL1 gain and larger time-delay margin can be obtained via appropriate
optimization routines.

VI.A. The Impact of Weighting Factor α

Next we investigate the impact of the weighting factorα. Different values ofα are chosen and tabled as follows:

α C(s) ‖C(s)(1 − C(s))‖L1
g T (sec.) Bandwidth ofC(s) (rad/s)

0.005 0.5624
s3+2.968s2+3.689s+0.5624 0.8473 0.8997 7.3650 0.1747

0.05 0.513
s3+4.006s2+2.725s+0.513 0.9893 0.9103 5.3887 0.2555

0.5 0.06681
s3+4.003s2+3.393s+0.06681 0.4751 0.9103 62.5668 0.0201

0.95 0.8166
s3+3.468s2+3.082s+0.8166 1.0308 0.8803 3.7025 0.3764

0.995 389600
s3+1693s2+255600s+389600 0.7418 0.4262 2.3497 1.5362

From the table above, we could not determine an explicit relationship betweenα andT or theL1 gain. A signif-
icantly largeT can be obtained ifα is properly chosen (α = 0.5 in this case). TheL1 gain does not change much
whenα is adjusted.

VII. Conclusions

This paper addresses two different filter design methods fortheL1 adaptive control architecture. Standard filter
(Bessel filter) and optimization design methods have been considered to demonstrate the benefits ofL1 adaptive
controller from its design perspective. Its analytical performance bounds and time-delay margin can be used to the
benefit of control engineers to achieve a desirable trade-off between performance and robustness.
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