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Au lieu of Introduction

Many dynamic systems to be controlled have both parametric and dynamic uncertainties. For in-

stance, robot manipulators may carry large objects with unknown inertial parameters. Power systems

may be subjected to large variations in loading conditions. Fire-fighting aircraft may experience consid-

erable mass changes as they load and unload large quantities of water. Adaptive control is an approach

for controlling such systems. Today, techniques from adaptive control are being used to augment many

of the existing controllers that have already a proven performance for a certain range of parameters,

and adaptation is being used to improve the performance beyond those limits. The basic idea in adap-

tive control is to estimate the unknown parameters on-line based on measured system signals, and use

the estimated parameters in the control input computation. An adaptive control system can be thus

regarded as a control system with on-line parameter estimation. Since adaptive control systems are

inherently nonlinear, their design and analysis is strongly connected with Lyapunov stability theory.

Research in adaptive control started in the early 1950’s in connection with the design of autopilots

for high-performance aircraft, which operate at a wide range of speeds and altitudes and thus experience

large parameter variations. Adaptive control was proposed as a way of automatically adjusting the

controller parameters in the face of changing aircraft dynamics. X-15 was the first aircraft tested with

an adaptive autopilot in 1967.

X-15 was 50 feet long and had a wingspan of 22 feet. It weighed 33,000 pounds at launch and

15,000 pounds empty. Its flight control surfaces were hydraulically actuated and included all-moveable

elevators, upper and lower rudders, speed brakes on the aft end of the fixed portion of the vertical fins,

and landing flaps on the trailing edge of the wing. There were no ailerons; roll control was achieved by

differential deflection of the horizontal tail.

All three X-15’s were delivered with simple rate-feedback damping in all axes. The number three X-

15, however, was extensively damaged during a ground run before it ever flew; when it was rebuilt it was

fitted with a self-adaptive flight control system which included command augmentation, self-adaptive

damper gains, several autopilot modes, and blended aerodynamic and ballistic controls.

The next flight resulting in the heat damage occurred in October 1967. In November of that year

X-15 No.3 launched on what was planned to be a routine research flight to evaluate a boost guidance

system and to conduct several other follow-on-experiments. During the boost, the airplane experienced

an electrical problem that affected the flight control system and inertial displays. At peak altitude, the
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X-15 began a yaw to the right, and it re-entered the atmosphere yawed crosswise to the flight path. It

went into a spin and eventually broke up at 65,000 feet, killing the pilot Michael Adams. It was later

found that the online adaptive control system was to be blamed for this incident.

Since the crash of X-15 more attention has been paid to stability analysis and robustness of adaptive

controllers. While the main cause of that crash was parameter drift, as found out later, it was apparent

that adaptive control theory was not ready for another flight test for the next 30 years.

It is only in the last decade that the interest in practical applications of adaptive control theory

has revived due to the recent developments in nonlinear control theory. The theoretical advances along

with the breakthroughs in computational technologies, availing cheap computation, have facilitated

many applications of adaptive control, as in robotic manipulators, aircraft and rocket control, chemical

processes, power systems, ship steering, bioengineering, etc. JDAM (Joint Direct Attack Munitions)

flight tests and RESTORE program of highly unstable tailless aircraft X-36 are two examples from the

aerospace community of successful application of adaptive control theory.

To get some practical insights into the control area that we are going to explore during this semester

on a rigorous foundation, I would recommend you to get started from this simple example:

ẋ(t) = ax(t) + u(t), x(0) = x0 .

Imagine that a is unknown, but you know certain bounds for it amin ≤ a ≤ amax, and you are interested

in stabilization. Then a natural straightforward control choice would be

ulin(t) = −kx(t), k > amax ,

leading to

ẋ(t) = −(k − a)x(t) .

You can simulate this system to convince yourself that it yields stabilization. However, there are two

deficiencies to notice with this design:

• First, it is conservative. You need to know a conservative amax to make sure that you select a

control gain k > amax to achieve a negative pole in the system ẋ(t) = −(k− a)x(t). What if your

estimation of amax was not good enough for the entire flight envelope, and your choice of k fails

to satisfy k > amax all over sudden? Then obviously this control design will lead to instability.
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• Second, to be on the safe side notice that you can select sufficiently conservative amax to avoid the

pitfall above. But this will require maximum control effort for the entire flight regime (leading

to exhaustion of hardware), which might not be necessary if everything goes smooth (there are

no winds, disturbances, etc.)

Adaptive control provides an alternative design for a case like this, and my recommendation would

be for you to simulate an example as simple as this by selecting arbitrary numbers to convince yourself.

Adaptive control offers the following solution

uad(t) = k(t)x(t),

where

k̇(t) = −γx2(t) ,

where γ > 0 is called adaptation rate and can be selected by you to be any positive number. This leads

to the following closed-loop system instead:

ẋ(t) = amx(t) + (k(t) + a− am)
︸ ︷︷ ︸

k̃(t)

x(t) , am < 0 ,

where am is introduced (added and subtracted from the original system) to model the desired transient

behavior (overshoot, settling time, etc.). Then you do not need even to know the bounds for a, and you

can achieve stabilization independent of it. Thus, a time-varying k(t) with a correctly selected adaptation law

can achieve stabilization at a much lesser expense than a fixed-gain controller designed for conservative

bounds for the unknown parameters. Try to code a simple system and plot both control signals to

convince yourself in this. If you run into problems, I would be happy to share my codes with you.

The simple adaptive controller provided herein is an inverse Lyapunov design, i.e. it is derived from

Lyapunov like analysis. To get familiar with it, we will start from the very beginning, foundations of

systems of differential equations and analysis of the solutions of such systems.
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1 Mathematical Preliminaries

Reading [11], pp. 87-95, and Appendices A, B & C.

1.1 Dynamical Systems, Existence and Uniqueness of Solutions, State Trajectory.

Dynamical systems are usually described via a system of differential equations

ẋ(t) = f(t, x(t)) , x(t0) = x0 , (1)

where x ∈ R
n is called state vector, t ∈ [t0,∞) is the time-variable, and x0 is the initial condition. The

map f : R
n × R → R is defined by the underlying physics of the problem, which, in most of the cases,

is given via Newton’s second law.

Definition 1.1. A continuous vector function x : [t0, t1] → R
n, satisfying x(t0) = x0, is called a

solution of (1) over t ∈ [t0, t1] if ẋ(t) is defined ∀ t ∈ [t0, t1] and ẋ(t) = f(t, x(t)) ,∀ t ∈ [t0, t1].

Example 1.1. The system

ẋ(t) =
√

x(t) , x(0) = 0 , x ∈ R
+ , t ≥ 0 (2)

has at least two solutions x ≡ 0 and x(t) = 1
4t

2.

Question 1.1. How many solutions does the system in (1) have?

Lemma 1.1 (Theorem 3.1, p.88 [11]) If f(t, x) is piecewise continuous in t and locally Lipschitz

in x, i.e.

‖f(t, x1)−f(t, x2)‖ ≤ Lr‖x1−x2‖, ∀ x1, x2 ∈ Br = {x ∈ R
n | ‖x−x0‖ ≤ r}, ∀ t ∈ [t0, t1] , Lr > 0 (3)

then there exists δ > 0 such that the dynamical system in (1) has a unique solution for t ∈ [t0, t0 + δ]∗.

(Read the proof in Appendix 1 of [11].)

∗The Lipschitz constant Lr is indexed with r to indicate that it may change dependent on r. Assuming that beyond

this point there should be no confusion with this, the Lipschitz constant will be indexed only when necessary.
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The unique solution of system (1) defines the state trajectory. Since for every (t0, x0) there is a

unique solution, it makes sense to denote this unique solution by x(t, t0, x0). However, in most of the

cases we will drop the initial conditions and simply write x(t), unless there is a need to particularly

specify the underlying initial conditions.

Several points about the phrasing of Lemma 1.1 are important to observe.

• The constant Lr in (3) is called Lipschitz constant, and the function f(t, x) satisfying (3) is

Lipschitz in x over the compact set Br = {x ∈ R
n | ‖x− x0‖ ≤ r} uniformly in t over t ∈ [t0, t1].

In case if the condition in (3) holds for all x ∈ R
n with a universal constant L, then the function

f(t, x) is globally Lipschitz in x uniformly in t over t ∈ [t0, t1]. Notice that although the condition

in (3) holds uniformly for all t ∈ [t0, t1], the existence of a unique solution is guaranteed only for

t ∈ [t0, t0 + δ], where t0 + δ ≤ t1.

• It is also important to distinguish between open and closed sets, or otherwise saying between

domains and compact sets. For example, the function f(x) = tan(x) is Lipschitz for every compact

subset of (−π/2, π/2), but it is not Lipschitz for [−π/2, π/2]. In such cases, one can say that

f(x) = tan(x) is locally Lipschitz for x ∈ (−π/2, π/2), because for every point of x ∈ (−π/2, π/2)
there is a constant L that would verify (3) in some neighborhood of that point, but there is no

universal constant L that would serve the purpose for all the points of x ∈ (−π/2, π/2). However,

for arbitrary 0 < ǫ ≪ 1, one can say that f(x) = tan(x) is Lipschitz on x ∈ [−π/2 + ǫ, π/2 − ǫ],

as a universal Lipschitz constant can be determined for that closed set x ∈ [−π/2 + ǫ, π/2 − ǫ].

(Try to determine that universal Lipschitz constant and prove that it depends upon ǫ!)

• If f : R → R, then the Lipschitz condition can be written as:

|f(y) − f(x)|
|y − x| ≤ L .

This implies that L characterizes an upper bound for the slope of the function connecting the

points x and y. If a function f(x) has a bounded derivative |f ′(x)| ≤ k over x ∈ [a, b], then it is

Lipschitz on that interval with a Lipschitz constant k.

• Notice that as a notion Lipschitz continuity characterizes a smoothness property for the function
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over a domain. If a function is continuous on a compact set, then it is uniformly continuous†.

However, it may not be Lipschitz continuous. The function x1/3 is uniformly continuous for

x ∈ [−1, 1], but is not locally Lipschitz (has unbounded derivative at the origin x = 0).

• In Example 1.1, the right hand side
√
x is not differentiable at x = 0 (it has infinite slope!),

hence it is not Lipschitz, and therefore the system in (1) is not guaranteed to have a unique

solution with the given initial condition x(0) = 0. Notice that if one changes the initial condition

to x(0) = x0, where x0 ∈ R
+ is any positive number different from zero, then Lemma 1.1 states

that there exists a neighborhood of x0 and some δ > 0 such that the system in (1) has a unique

solution given by x(t) = 1
4(t+ 2

√
x0)

2 in that neighborhood of x0 over the interval t ∈ [0, δ].

The next lemma relates the bound on the Jacobian of a function to its Lipschitz constant.

Lemma 1.2. Let f(t, x) : [t0, t1] × D → R
n be continuous on the domain D ⊂ R

n. Suppose that

∂f
∂x(t, x) exists and is continuous on some compact subset Ω ⊂ D. Further assume that the Jacobian is

uniformly bounded
∥
∥
∥
∂f

∂x
(t, x)

∥
∥
∥ ≤ L

for all [t0, t1] × Ω. Then

‖f(t, x) − f(t, y)‖ ≤ L‖x− y‖

for all t ∈ [t0, t1], x, y ∈ Ω. (The proof can be found in [11], p.90.)

Lemma 1.3. If f(t, x) and ∂f
∂x(t, x) are continuous on [t0, t1] × R

n, then f is globally Lipschitz in

x if and only if ∂f
∂x(t, x) is uniformly bounded on [t0, t1] × R

n. (Try to prove it on your own!)

Remark 1.1. Notice that Lemma 1.3 states necessary and sufficient conditions for a class of sys-

tems that are continuous and have continuous derivative. In general, continuity of the derivative is

†A function f(x) : R → R is continuous at a point x0, if for any ǫ > 0 there exists δ(ǫ, x0) such that if |x−x0| ≤ δ(ǫ, x0),

then |f(x)− f(x0)| ≤ ǫ. If δ can be chosen independent of x0 for all x from a given domain D so that for any ǫ > 0 there

exists δ(ǫ) such that if |x−y| ≤ δ(ǫ) then |f(x)− f(y)| ≤ ǫ for all x, y ∈ D, then the function f(x) is uniformly continuous

on D. Notice that uniform continuity is defined for a domain and/or set and cannot be defined for a point.
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not required for the function to be Lipschitz. A Lipschitz function may have a discontinuous but

bounded derivative. For example, |x| is continuous, has discontinuous derivative at x = 0, but is glob-

ally Lipschitz with Lipschitz constant 1. The function x1/3 is continuous at x = 0, but is not Lipschitz

(has unbounded derivative). Roughly saying, the Lipschitz property of a function implies more than

continuity, but less than continuous differentiability.

The next lemma states that a continuously differentiable function is locally Lipschitz.

Lemma 1.4. If f(t, x) and ∂f
∂x (t, x) are continuous on [t0, t1] × D for some open domain D ⊂ R

n,

then f is locally Lipschitz in x on [t0, t1] ×D. (Try to prove it on your own!)

Example 1.2. The scalar system

ẋ(t) = −x2(t), x(0) = −1 (4)

has a locally Lipschitz right hand side for all x ∈ R. The unique solution of it

x(t) =
1

t− 1

however is defined only for t ∈ [0, 1). As t→ 1, x(t) → ∞. This phenomenon is known as finite escape

time, as x leaves any compact set in finite time.

So, this brings up the notion of the maximum interval of existence of the solution. Notice that in

Lemma 1.1 the Lipschitz condition was required for all x ∈ B and for all t ∈ [t0, t1], but the existence

of a unique solution was guaranteed only for t ∈ [t0, t0 + δ] for some δ > 0, t0 + δ ≤ t1.

Theorem 1.1. Suppose that f(t, x) is piecewise continuous in t and is globally Lipschitz in x, i.e.

∃ L > 0, such that

||f(t, x) − f(t, y)|| ≤ L||x− y||

for all x, y ∈ R
n, uniformly ∀ t ∈ [t0, t1]. Then the system in (1) has a unique solution over [t0, t1],

where t1 maybe arbitrarily large. (For the proof read Appendix C1 of [11].)



13

As stated in Lemma 1.3, a global Lipschitz condition for a function f(x) is equivalent to having a

globally bounded derivative. In the light of this, naturally the statement in Theorem 1.1 appears to

be conservative. However, this should not scare, since it only states a sufficient condition. Indeed, the

next example demonstrates that the function may not be globally Lipschitz, while a unique solution

may exist for all t ≥ 0.

Example 1.3. The system

ẋ(t) = −x3(t) , x(t0) = x0

does not have a globally Lipschitz right hand side, since f(x) = −x3 has a derivative f ′(x) = x2, which

is not bounded as x→ ∞. However, it has a unique solution well defined for all t ≥ 0

x(t) = sgn(x0)

√

x2
0

1 + 2x2
0(t− t0)

.

Remark 1.2. While it is reasonable to expect that most of the physical systems will have a locally

Lipschitz right hand side, it is indeed too restrictive to expect globally Lipschitz right hand side. This

assumption in most of the cases will not be verified.

Question 1.2. When can existence of a unique solution be guaranteed for all t ≥ 0 in the presence

of locally Lipschitz right hand side for the system in (1)?

Theorem 1.2. Let f(t, x) be piecewise continuous in t and locally Lipschitz in x for all t ≥ t0 and

all x in a domain D ⊂ R
n. Let Ω be a compact subset of D such that x0 ∈ Ω, and suppose it is known

that every solution of the system (1) lies entirely in Ω. Then, there is a unique solution that is defined

for all t ≥ t0. (Read the proof in [11].)

Remark 1.3. It seems that there is no free lunch. One needs to know something about the behavior

of the solution apriori, to be able to conclude its existence for all t ≥ 0. As we will demonstrate next,

this is not as scary as it may seem from the first glance.
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Example 1.4. Getting back to the same example

ẋ(t) = −x3(t) , x(t0) = x0

notice that f(x) is locally Lipschitz on R. Moreover, if at any time instant x(t) is positive, then its

derivative will be negative, and vice versa. Therefore starting from any initial condition x(0) = x0, the

solution cannot leave the compact set {x ∈ R | |x| ≤ |x0|}. Thus, without solving it explicitly, it is

possible to apply Theorem 1.2 to draw a conclusion on the existence of a unique solution for all t ≥ 0.

Remark 1.4. The example implies that one can verify the assumption in Theorem 1.2 without

solving the system of differential equations. This type of philosophy lies in the basis of Lyapunov

stability theorems that we will introduce in the subsequent sections and use intensively for analysis of

adaptive control systems.

Lemma 1.5. If f1 : R → R and f2 : R → R are locally Lipschitz, then f1 + f2, f1f2 and f1 ◦ f2 are

locally Lipschitz. (Try to prove on your own as you will need it for your homework!)

The solution of the next exercise should help you to solve the homework problems.

Exercise 1.1. Let f : R
n → R

n be defined as

f(x) =







1
||Kx||Kx, if g(x)||Kx|| ≥ µ > 0

g(x)
µ Kx, if g(x)||Kx|| < µ

where g : R
n → R is locally Lipschitz and nonnegative, and K is a constant matrix. Prove that f(x)

is Lipschitz on any compact subset of R
n.

Solution 1.1. The function f can be written as f(x) = g(x) Kx h(ψ(x)), where

h(ψ) =







1
ψ , if ψ ≥ µ > 0

1
µ , if ψ < µ
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where ψ(x) = g(x)||Kx||. The norm function ||Kx|| is Lipschitz since
∣
∣
∣||Kx||− ||Ky||

∣
∣
∣ ≤ ||Kx−Ky|| ≤

||K|| ||x − y||. From Lemma 1.5 it follows that ψ(x) is Lipschitz on any compact set. Furthermore,

g(x)Kx is also Lipschitz. Thus, it remains only to show that h(ψ) is Lipschitz in ψ over any compact

set. Notice that h(ψ) is a continuous, but non-smooth function. If ψ1 ≥ µ and ψ2 ≥ µ, then we have

|h(ψ2) − h(ψ1)| =
∣
∣
∣

1

ψ2
− 1

ψ1

∣
∣
∣ =

∣
∣
∣
ψ1 − ψ2

ψ1ψ2

∣
∣
∣ ≤ 1

µ2
|ψ2 − ψ1| .

If ψ2 ≥ µ and ψ1 < µ, then

|h(ψ2) − h(ψ1)| =
∣
∣
∣

1

ψ2
− 1

µ

∣
∣
∣ =

1

µ
− 1

ψ2
=
ψ2 − µ

µψ2
≤ ψ2 − ψ1

µψ2
≤ 1

µ2
|ψ2 − ψ1| .

Finally, if ψ1 ≥ µ and ψ2 < µ, then

|h(ψ2) − h(ψ1)| =
∣
∣
∣
1

µ
− 1

µ

∣
∣
∣ = 0 ≤ 1

µ2
|ψ2 − ψ1| .

Thus, h(ψ) is Lipschitz continuous with a Lipschitz constant 1
µ2 . Following Lemma 1.5, f is Lipschitz

on any compact subset of R
n.

Homework Problems 1.1. The following two exercises from [11] need to be solved completely.

• Exercise 3.2 from [11]. Solve any 4 problems out of given 6. Make sure that you include the 5th

problem on adaptive control in your selection, which is however in Section 1.2.6 and not 1.2.5, as

indicated in the book.

• Exercise 3.5 from [11] (Hint: use the well known property of norms c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α).
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1.2 Continuous Dependence on Initial Conditions, System Parameters and Comparison

Principle.

Reading [11], pp. 95-110, and Appendices A, B & C.

When dealing with dynamical systems, it is quite natural to expect that the model equations that

we derive have some kind of errors in parameters due to the approximations that we are making. Thus,

a natural question arises if in this process of dealing with approximate equations we are drifting too far

from the nominal motion of interest. Mathematically phrased, this question can be stated as follows.

Question 1.3. Under what type conditions the unique solution to the differential equation

ẋ(t) = f(t, x(t), λ) , x(t0) = x0 (5)

depends continuously on initial conditions t0, x0 and the parameters of the problem λ?

The equation in (5) can be otherwise presented as

x(t) = x0 +

∫ t

t0

f(τ, x(τ), λ)dτ (6)

To prove that x(t) continuously depends upon the initial time constant t0, we need to recall Gronwall-

Bellman lemma, which permits to derive an explicit bound for a function from an implicit inequality.

Lemma 1.6 (Gronwall-Bellman lemma) Let φ : [t0, t1] → R be continuous and ψ : [t0, t1] → R be

continuous and nonnegative. If a continuous function y : [t0, t1] → R satisfies

y(t) ≤ φ(t) +

∫ t

t0

ψ(s)y(s)ds

for all [t0, t1], then

y(t) ≤ φ(t) +

∫ t

t0

φ(s)ψ(s) exp

[∫ t

s
ψ(τ)dτ

]

ds

for all [t0, t1]. In particular, if φ(t) = φ = const, then

y(t) ≤ φ exp

[∫ t

s
ψ(τ)dτ

]

.

If in addition, ψ(t) = ψ = const > 0, then

y(t) ≤ φ exp [ψ(t− t0)] .

(The proof can be found in [11], p.652.)
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Before we give a complete answer to Question 1.3, let’s prove continuous dependence of the

unique solution upon t0 first. Assume that (5) satisfies the assumptions for existence and uniqueness

of a solution so that for every (t0, x0) there is a unique solution x(t, t0, x0). Towards that end consider

the following two solutions:

x(t, t0, x0) = x0 +

∫ t

t0

f(τ, x(τ, t0, x0), λ)dτ, x(t, t′0, x0) = x0 +

∫ t

t′
0

f(τ, x(τ, t′0, x0), λ)dτ , t′0 > t0 .

Then

x(t, t0, x0) − x(t, t′0, x0) =

∫ t′0

t0

f(τ, x(τ, t0, x0), λ)dτ +

∫ t

t′
0

[
f(τ, x(τ, t0, x0), λ) − f(τ, x(τ, t′0, x0), λ)

]
dτ

Since the system in (5) satisfies the assumptions for existence and uniqueness of a solution, then for

a given time interval [t0, t1], we have that ||f(t, x(t), λ)|| ≤ M (from piece-wise continuity in t) and

||f(t, x, λ) − f(t, y, λ)|| ≤ L||x− y|| (from Lipschitz continuity in x)‡. Therefore

||x(t, t0, x0) − x(t, t′0, x0)|| ≤M(t′0 − t0) +

∫ t

t′
0

L||x(τ, t0, x0) − x(τ, t′0, x0)||dτ .

By Gronwall-Bellman inequality

||x(t, t0, x0) − x(t, t′0, x0)|| ≤M(t′0 − t0) exp(L(t− t′0)) .

Hence, if on any compact interval t ∈ [t0, t1] of time for arbitrary ǫ > 0 one chooses δ(ǫ) =
ǫ

M exp(L(t− t′0))
,

then if |t′0 − t0| ≤ δ, one has ||x(t, t0, x0) − x(t, t′0, x0)|| ≤ ǫ.

Theorem 1.3. [Bounded Perturbations of the State Equation.] Let f(t, x) be piecewise continuous

in t and Lipschitz in x on [t0, t1] × D with Lipschitz constant L, where D ⊂ R
n is an open connected

set. Let y(t) and z(t) be solutions of

ẏ = f(t, y), y(t0) = y0

and

ż = f(t, z) + g(t, z), z(t0) = z0 ,

‡Since we are interested in establishing the continuous dependence on t0, then there is no loss of generality in fixing λ

for the time being.
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which are contained in D over the entire time interval [t0, t1]. Suppose that

‖g(t, x)‖ ≤ µ, ∀(t, x) ∈ [t0, t1] ×D

for some µ > 0. Then

‖y(t) − z(t)‖ ≤ ‖y0 − z0‖ exp[L(t− t0)] +
µ

L
(exp[L(t− t0)] − 1) , ∀t ∈ [t0, t1].

Proof: The solutions y(t) and z(t) are given by

y(t) = y0 +

∫ t

t0

f(s, y(s))ds

z(t) = z0 +

∫ t

t0

[f(s, z(s)) + g(s, z(s))]ds

Subtracting and upper bounding

||y(t) − z(t)|| ≤ ||y0 − z0|| +
∫ t
t0
||f(s, y(s)) − f(s, z(s))||ds +

∫ t
t0
||g(s, y(s))||ds

≤ γ + µ(t− t0) +
∫ t
t0
L||y(s) − z(s)||ds ,

where γ = ||y0 − z0||. Notice that we can apply Bellman-Gronwall lemma to derive an explicit bound

for ||y(t) − z(t)||:

||y(t) − z(t)|| ≤ γ + µ(t− t0) +

∫ t

t0

L [γ + µ(s− t0)] exp[L(t− s)]ds

Integrating the right hand side by parts completes the proof.

The details can be found in [11]. The essence of the theorem is that a bounded perturbation of the

state equation results in at worst an exponentially diverging difference in system trajectories. However,

at least over a finite time interval the two solutions y(t) and z(t) are within a finite “distance” of one

another.

Theorem 1.4. [Continuous Dependence on Initial Conditions and Parameters.] Let f(x, λ, t) be

continuous in its arguments and locally Lipschitz in x (uniformly in λ and t) over a domain [t0, t1]×D×Λ,

where D ⊆ R
n is an open connected set and Λ = {λ | ‖λ − λ0‖ ≤ c} for some c > 0. Let y(t, λ0) be a

solution of

ẋ = f(t, x, λ0), y(t0, λ0) = x0 ∈ D.
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Further assume that y(t, λ0) is defined for all [t0, t1] and belongs to D for all [t0, t1]. Then, for any

ǫ > 0 there exists δ > 0 such that if

‖z0 − y0‖ < δ and ‖λ− λ0‖ < δ,

there is a unique solution z(t, λ) of

ẋ = f(t, x, λ), z(t0, λ) = z0,

defined on [t0, t1] that satisfies

‖z(t, λ) − y(t, λ0)‖ < ǫ

for all t ∈ [t0, t1].

Proof: Since y(t, λ0) continuously depends upon t on the time interval [t0, t1], then it is bounded

for all t ∈ [t0, t1]. Define a tube around the solution y(t, λ0) by

U = {(t, x) ∈ [t0, t1] × R
n | ||x− y(t, λ0)|| ≤ ǫ}

),( 0λty

),( λtz

ε

0t 1t

t

),( 0λty

),( λtz

ε

0t 1t

t

U

Fig. 2 Continuous dependence on initial states and parameters

Assume that ǫ is selected enough small so that U ⊂ [t0, t1] ×D. Since U is a compact subset of D,

then f(t, x, λ) is Lipschitz in x on U with a Lipschitz constant L. Since f is continuous in λ, then for

any α there is β < c such that

||f(t, x, λ) − f(t, x, λ0)|| < α, ∀ (t, x) ∈ U , ∀ ||λ− λ0|| < β
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Let’s choose α ≤ ǫ and ||z0 − y0|| < α. Following the local existence and uniqueness result (Lemma

1.1), there exists a unique solution z(t, λ) for some [t0, t0 + ∆]. Since this solution starts in the tube,

then Theorem 1.2 states that as long as the solution remains inside the tube, it can be extended for all

t ∈ [t0, t1]. To prove this, assume that τ is the first time interval when z(t, λ) leaves the tube, and let’s

prove that τ > t1. On the time interval [t0, τ ], the conditions of Theorem 1.3 are satisfied with µ = α.

Hence,

||z(t, λ) − y(t, λ0)|| < α exp[L(t− t0)] +
α

L
(exp[L(t− t0)] − 1) < α

(

1 +
1

L

)

exp[L(t− t0)]

Choosing α ≤ ǫL exp[−L(t1 − t0)]/(1 + L) ensures that the solution is not leaving the tube during the

interval [t0, t1]. Therefore z(t, λ) is defined for all [t0, t1] and satisfies ||z(t, λ) − y(t, λ0)|| < ǫ. Taking

δ = min{α, β} completes the proof.

The theorem states that under the given assumptions for any “acceptable range” around the nominal

trajectory y(t, λ0) (i.e., a tube of arbitrarily small radius ǫ), there is an appropriately small range of

initial states and parameters which give rise to trajectories that lie entirely inside the tube.

Talking of qualitative behavior of the solutions of the differential equations, a natural question to

ask would be:

Question 1.4. Can one compute the bounds for the solution of ẋ(t) = f(t, x(t)), x(t0) = x0,

without actually solving the equation?

Recall that Gronwall-Bellman lemma was one tool for addressing this issue. Now we will state the

Comparison lemma as an alternative tool for it.

Lemma 1.7. [Comparison Lemma] Consider the scalar nonlinear system

ẋ = f(x, t), x(t0) = x0

where f is locally Lipschitz in x and continuous in t for all t ≥ 0. Let [t0, T ) be the maximal interval

of existence of the solution x(t) (where T could be infinity). Let v(t) be a C1 function which satisfies

the differential inequality

v̇ ≤ f(v, t), v(t0) ≤ x0.

Then v(t) ≤ x(t) for all t ∈ [t0, T ).
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In the statement of the lemma the requirement C1 on v(t) can be relaxed, but to follow up on it

you need familiarity with right and left derivatives from an advanced calculus course. For that general

statement of the lemma, as well as a proof, see [11].

Example 1.5. Consider the first-order nonlinear equation

ẋ = −x− tanhx, x(0) = x0.

It is easy to see that this system has an equilibrium at the origin. We would like to know something

about the other trajectories of the system, that is, those for which x0 6= 0. Consider a special function

V (x(t)) =
1

2
x2(t)

which essentially measures the “squared distance” to x from the origin. Taking the derivative gives

V̇ (t) = x(t)ẋ(t) = x(t) (−x(t) − tanhx(t)) . (7)

Notice that

V̇ (t) ≤ −x2(t) = −2V (x(t)). (8)

This is a first order differential inequality with the initial condition V (0) = V0 = 1
2x

2
0. We may use the

comparison lemma to bound the value of V (t) by solving the differential equation

U̇(t) = −2U(t), U(0) = V0.

Following the Comparison Lemma 1.7, we find that

V (t) ≤ U(t) = V0e
−2t. (9)

Now recall that V (t) = 1
2x

2(t). Then it is immediate from (9) that

|x(t)| ≤ |x0|e−t.

That is, trajectories converge to the origin at least as fast as e−t. We may therefore conclude that

the equilibrium at the origin is stable (a notion which remains to be precisely defined). In fact, there

is a general approach to stability analysis which is based on studying the behavior of a simple, scalar

function such as V . The major strengths of the approach, known as Lyapunov stability analysis, are

that it applies to systems of arbitrarily high order and it does not require explicit solution of the

differential equations (something which is generally difficult or impossible for nonlinear systems).
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The following exercises should help you with homework problems.

Exercise 1.2. Using Comparison Lemma, find an upper bound on the solution of the state equation

ẋ(t) = −x(t) +
sin t

1 + x2(t)
, x(0) = 2.

Solution 1.2. Let V (t) = 1
2x

2(t). Then

V̇ (t) = x(t)ẋ(t) = −x2(t) +
x(t) sin(t)

1 + x2(t)
≤ −2V (t) + 1 .

Notice that V (0) = 2. To apply the comparison principle, let’s look at this differential equation

u̇(t) = −2u(t) + 1 , u(0) = 2 .

Integrating by parts implies that
∫ u

0

du

1 − 2u
=

∫ t

0
dt + C ,

where C is the integration constant and needs to be determined from the initial condition. Thus

−1

2
ln(1 − 2u) = t+ C .

Since u(0) = 2, then

u(t) =
1 + 3e−2t

2

Comparison lemma leads to the following upper bound

V (t) ≤ u(t) =
1 + 3e−2t

2

Thus

x(t) =
√

2V (t) ≤
√

1 + 3e−2t .

Exercise 1.3. Let x1 : R → R
n and x2 : R → R

n be differentiable functions such that

||x1(a) − x2(a)|| ≤ γ, ||ẋi(t) − f(t, xi(t))|| ≤ µi, i = 1, 2

for a ≤ t ≤ b. If f is Lipschitz continuous with Lipschitz constant L, then show that

||x1(t) − x2(t)|| ≤ γeL(t−a) + (µ1 + µ2)

[

eL(t−a) − 1

L

]

, a ≤ t ≤ b .
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Solution 1.3. Let y(t) = x1(t) − x2(t) and µ = µ1 + µ2. Then

||ẏ(t)|| = ||ẋ1(t) − ẋ2(t) − f(t, x1(t)) + f(t, x1(t)) − f(t, x2(t)) + f(t, x2(t))||

Using the conditions of the problem, this can be upper bounded

||ẏ(t)|| ≤ µ1 + µ2 + L||x1(t) − x2(t)|| = µ+ L||y(t)|| ,

which further leads to the following

||y(t)|| =

∥
∥
∥
∥
y(a) +

∫ t

a
ẏ(s)ds

∥
∥
∥
∥
≤ γ +

∫ t

a
||ẏ(s)||ds ≤ γ + µ(t− a) +

∫ t

a
L||y(s)||ds

Gronwall-Bellman inequality yields

||y(t)|| ≤ γ + µ(t− a) +

∫ t

a
[γ + µ(s− a)]LeL(t−s)ds .

Integrating the right-hand side by parts, and recalling that y(t) = x1(t) − x2(t), µ = µ1 + µ2, yields:

||x1(t) − x2(t)|| ≤ γeL(t−a) + (µ1 + µ2)

[

eL(t−a) − 1

L

]

, a ≤ t ≤ b .

Homework Problems 1.2. The following exercises from [11] need to be solved completely.

• Exercise 3.17.

• Exercise 3.24.

• Exercise 3.30.
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2 Lyapunov Stability Theory for Autonomous Systems

Reading [11], pp. 111-133, Appendix C, and also [17], pp. 41-76.

2.1 System Equilibrium and the Notion of Stability for Time-Invariant Systems.

Consider the following general nonlinear system dynamics:

ẋ(t) = f(t, x(t), u(t)) , x(0) = x0 , (10)

y(t) = h(x(t)) (11)

where x ∈ R
n is the system state, u ∈ R

m is the control input, y ∈ R
p is the system output, and f

is locally Lipschitz continuous in x and u and piece-wise continuous in t. The control input is usually

selected in a way so that a specific control objective is met. Commonly, this is a tracking objective for

system states or output y(t). Before introducing control design methods, let’s focus on the unforced

dynamics and introduce the notion of equilibrium and stability.

Towards that end, first we consider autonomous system dynamics in the following form:

ẋ(t) = f(x(t)) , x(0) = x0 , x ∈ R
n, (12)

where f is locally Lipschitz in x. Recall that the system dynamics are called autonomous, if the right

hand side does not depend explicitly upon t. Notice though that it implicitly depends upon t via x(t).

Since f does not depend explicitly upon t, it is quite fair to write the system dynamics for autonomous

systems equivalently in the form:

ẋ = f(x) , x(0) = x0 , x ∈ R
n. (13)

Definition 2.1. The system state x = xe is called equilibrium for (13), if once x(t′) = xe, it

remains equal to xe for all future time t ≥ t′ on the maximum interval of existence of the solution.

Mathematically this means that the constant vector xe satisfies

f(xe) = 0 .

The equilibrium points of the system can be found by solving the nonlinear algebraic equations f(xe) =

0. The next question to ask would be if the equilibrium is stable or unstable. A good example of this
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is the pendulum that has stable equilibrium at the bottom position and an unstable one at the upright

position. So, how to define and distinguish in between various equilibria of the system is the next

question that we are going to explore now. Before then, however, let’s state the following remark.

Remark 2.1. A nonlinear system may have finite number of isolated equilibria (ẋ = (x−1)(x−2)),

infinite equilibria (ẋ = sinx), or no equilibria at all (ẋ = x2 + 5), while a linear system like ẋ = Ax

has either a single isolated equilibrium at the origin (in case of non-singular A) or an infinite number

of those (in case of singular A, and in this case every point of the null-space of A is an equilibrium).

Example 2.1. A linear system

ẍ+ ẋ = 0

has infinite (continuum) equilibria. Indeed, a simple change of variables x1 = x, x2 = ẋ leads to the

system

ẋ1 = x2

ẋ2 = −x2 ,

the equilibria of which should be determined from equating the right hand side (RHS) of both equations

to zero x2 = 0, which does not depend on x1, and hence for this second order system it implies that

every point on the x axis is an equilibrium.

Example 2.2. Consider the dynamics of pendulum with damping, Fig. 3:

MR2θ̈(t) + bRθ̇(t) +Mg sin(θ(t)) = 0 .

It has infinite (countable) equilibria. To see this, consider the change of variables x1 = θ, x2 = θ̇ to

arrive at the state space representation

ẋ1 = x2

ẋ2 = − b

MR
x2 −

g

R2
sin(x1) ,

the equilibria of which should be determined from equating the right hand side (RHS) of both equations

to zero leading to x2 = 0 and sin(x1) = 0, which implies that the points on the x axis with coordinates
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Fig. 3 Pendulum rotating in vertical plane

[0, 0], [π, 0], [2π, 0], · · · are the equilibria. These correspond to the top and bottom positions of the

mass, one of those being stable equilibrium, while the other unstable.

In this and several subsequent lectures we will develop tools for stability analysis of the equilibria of

the system. To streamline the subsequent material, without loss of generality, we will assume that the

origin x = 0 is an equilibrium point for the system (13). If it is not, one can always consider change of

variables to shift the arbitrary equilibrium to the origin. Indeed, assume that x∗ is an equilibrium for

(13), i.e. f(x∗) = 0, and consider change of variables y(t) = x(t) − x∗. Then ẏ(t) = ẋ(t), since x∗ is

an equilibrium for the original system, and hence its derivative is zero. Thus, ẏ = f(y + x∗), and the

equilibrium is determined from f(y + x∗) = 0, implying that y = 0 is an equilibrium, since f(x∗) = 0.

Remark 2.2. Notice that if the original system is autonomous to begin with, like the one in (13),

then from shifting the arbitrary equilibrium to the origin, the system still remains autonomous, i.e. no

explicit dependence upon the time variable t appears from the change of variables in the right hand

side of the modified dynamics. This is not true however if we are concerned about stability of a nominal

motion for the same autonomous system.

To see this, let x∗(t) be the nominal motion trajectory of (13) satisfying the initial condition

x∗(0) = x0. Let’s perturb the initial condition x(0) = x0 + δx0 and denote the solution corresponding

to this initial condition by x(t). Let e(t) = x(t) − x∗(t) be the error in between these two state
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trajectories. Since both x(t) and x∗(t) are solutions of the same equation (13), we can write

ẋ∗ = f(x∗), x∗(0) = x0

ẋ = f(x), x(0) = x0 + δx0

leading to the error dynamics

ė = ẋ− ẋ∗ = f(x∗(t) + e) − f(x∗(t)) = g(e, t), e(0) = δx0 , (14)

where the explicit dependence upon t appeared due to the presence of x∗(t), which corresponds to

the nominal motion. Notice that g(0, t) = 0, which means that e = 0 is an equilibrium point for

(14). Therefore instead of studying the deviation of x(t) from the nominal motion x∗(t), one can study

the stability of the equilibrium at the origin for the error dynamics in (14). However, one needs to

keep in mind that the error dynamics are non-autonomous despite the fact that the original system

was autonomous to begin with, Fig. 4. This is a typical nonlinear phenomenon, and I recommend to

convince yourself that for linear systems the error dynamics in (14) are still autonomous if the original

linear system is autonomous to begin with!!!

)(* tx
)(tx

)(te

1x

)(* tx
)(tx

)(te

1x

Fig. 4 The error changes with time

On the other hand, if one wants to keep everything in autonomous setting, then the dynamics in

(14) needs to be combined with the ẋ∗ dynamics as:

ė = f(x∗(t) + e) − f(x∗(t)) = g(e, x∗), e(0) = δx0 ,

ẋ∗ = f(x∗), x∗(0) = x0 .

The stability of the equilibrium of this system can be analyzed using tools for autonomous systems,

however, it has higher order, and one needs to make sure that ẋ∗ = f(x∗) has equilibrium at the origin

(one needs to shift the equilibrium of this system to the origin beforehand), so that the combined
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system has an equilibrium at the origin. This however will not eliminate the need for developing tools

for non-autonomous systems, since these are more common in practice than autonomous systems. And

for non-autonomous systems the nominal motion always satisfies a non-autonomous equation to begin

with.

Another important feature of usually viewing equations and understanding their behavior, is to be

precise about the functional dependencies. For example, f(x) = x3 is an increasing function of x for

all x ∈ R, while if we view the same function on the system trajectories given by x(t) = 1
t , then, as a

function of t, f(x(t)) will be a decreasing function of t, since it equals f(x(t)) = 1
t3

. Similarly, f(t, x)

may be increasing in both t and x, like f(t, x) = t+ x, but along the trajectory x(t) = −2t, it appears

to be decreasing function of t. Another example to consider would be f1(x1) = x2
1, x1(t) = t3 and

f2(x2) = x3
2, x2(t) = t2, both leading to the same function of time f1(x1(t)) = f2(x2(t)) = t6, but

the underlying functions of x and t are completely different. In control problems it is very important

to distinguish between functional dependencies carefully. In adaptive systems, this is even crucial,

because as we will find out later through the course, when using neural networks for approximation

of functions on compact sets, one ends up having some estimate of function approximation over time,

but never in the space of x. It is important not to be confused in between two and always watch out

for functional dependencies carefully.

We will henceforth introduce stability analysis methods for studying the stability of equilibria for

both autonomous and non-autonomous systems. For the sake of systematic development, we will start

with autonomous systems and consider the equilibrium at the origin.

Definition 2.2. The origin x = 0 of the system dynamics in (13) is a locally stable equilibrium point

if for every ǫ > 0 there exists δ(ǫ) > 0 such that

||x(0)|| < δ(ǫ) ⇒ ||x(t)|| < ǫ, ∀ t ≥ 0 .

Remark 2.3. Notice that f was required only to be locally Lipschitz in x, which implies that the

existence of solution is guaranteed only for some ∆t (see Lemma 1.1 and do not be confused to see here

∆t instead of δ, since δ here has served different purpose), but the definition of stability is given for all

t ≥ 0. As you will shortly find out, Lyapunov’s theorems for sufficient conditions on stability will be

consistent with Theorem 1.2, requiring the solution to lie inside a domain. For definition of stability
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on the maximum interval of existence of solution refer to [15].

Definition 2.3. The origin x = 0 of the system dynamics in (13) is an unstable equilibrium point

if it is not stable.

Let’s learn how to negate Definition 2.2 for stability to get an elaborate definition for instability.

Definition 2.4. The origin x = 0 of the system dynamics in (13) is an unstable equilibrium point

if there exists at least one value of ǫ > 0 such that for every δ > 0 there exists a finite T (δ) > 0 so that

||x(0)|| < δ ⇒ ||x(t)|| > ǫ, ∀ t ≥ T (δ) .

It is important to distinguish between instability and the intuitive notion of “blowing up”. In linear

systems, instability is equivalent to blowing up, because unstable poles always lead to exponential

growth of system states. However, for nonlinear systems, blowing up is only one way of instability. For

example, the Van der Pol oscillator

ẋ1 = x2

ẋ2 = −x1 + (1 − x2
1)x2

has unstable equilibrium at the origin, but the trajectories starting in the neighborhood of the origin

tend to a limit cycle and do not go to infinity. This implies that if we choose ǫ in Definition 2.4 small

enough for the circle of the radius ǫ to be inside this limit cycle, then system trajectories starting near

the origin will eventually get out of this circle. Thus, even though the state of the system does remain

around the origin in a certain sense (i.e. within the limit cycle), it cannot stay arbitrarily close to it,

Fig. 5. This is the fundamental distinction between stability and instability.

Definition 2.5. The origin x = 0 of the system dynamics in (13) is a locally asymptotic stable

(LAS) equilibrium point if it is stable and, in addition, there exists a δ > 0 such that

||x(0)|| < δ ⇒ lim
t→∞

x(t) = 0 .
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Fig. 5 Trajectories starting in the neighborhood of the origin tend to limit cycle

An example of a system which is stable, but not asymptotically, will be the pendulum without friction.

Figure 6 illustrates these definitions in phase space.

Stable Unstable

e e e e

Fig. 6 Stability, asymptotic stability, “blow-up type” instability, instability

The last figure on the right illustrates a case, when the trajectories converge to the origin, but the

system is not asymptotically stable. In fact, it is unstable.

Very often in realistic applications in case of asymptotic stability it is not sufficient to know that

trajectories converge to the origin; one needs to know in addition the rate at which they converge. This

brings up the notion of exponential stability.

Definition 2.6. The origin x = 0 of the system dynamics in (13) is a locally exponentially stable

(LES) equilibrium point if there exist two strictly positive numbers α and λ such that for some δ > 0

||x(0)|| ≤ δ ⇒ ∀ t > 0 ||x(t)|| ≤ α||x(0)||e−λt .

This implies that the state of the system converges to the origin faster than an exponential function.

The positive number λ > 0 is called rate of exponential convergence.

Example 2.3. The trajectories of the system ẋ(t) = −(1 + sin2 x)x exponentially converge to the
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origin with a rate λ = 1. Indeed, its solution x(t) = x(0) exp(−
∫ t
0 (1 + sin2(x(τ)))dτ), and therefore

|x(t)| ≤ |x(0)|e−t .

Note that exponential stability implies asymptotic stability, but the opposite is not true.

Example 2.4. The unique solution of the system ẋ(t) = −x2, x(0) = 1 is given by

x(t) =
1

1 + t

which is converging to the origin slower than any exponential function e−λt with λ > 0. So, the origin

is asymptotically stable, but not exponentially. (Try to plot in Matlab these two curves to convince

yourself in this!)

All the definitions up to this point were stated in local sense, i.e. in a neighborhood of the origin.

Every theorem proving local stability result needs to provide at least a conservative estimate of the

region of attraction so that to be valuable as a result at all!!! The theorems are usually stronger if they

provide verifiable conditions for global stability.

Definition 2.7. The origin x = 0 of the system dynamics in (13) is a globally asymptotically stable

(GAS) equilibrium point or globally exponentially stable (GES) equilibrium point if the definition of

asymptotic stability (Definition 2.5) or the definition of exponential stability (Definition 2.6) hold for

arbitrary δ ∈ [0,∞) (i.e. the initial condition can be chosen arbitrarily large).

Figure 7 illustrates these definitions over time axis.

Linear time-invariant systems are either asymptotically stable, or marginally stable, or unstable.

Linear asymptotic stability is always exponential and global. Linear instability always implies expo-

nential blow up. The significance of the above stated definition is apparent for nonlinear systems, like

demonstrated by the following example.

Example 2.5. Consider the following system

ẋ = −x+ x2, x(0) = x0 ,
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Fig. 7 Stability, asymptotic stability, exponential stability

that has an equilibrium at the origin. The linearization around origin results in the following linear

system

ẋ = −x, x(0) = x0 .

Obviously the origin of the linearized system is globally exponentially stable (GES), since x(t) = x0e
−t.

However, the nonlinear system has two equilibria x = 0 (LAS) and x = 1 (unstable). (Try to solve

explicitly the differential equation to convince yourself in this!).

Remark 2.4. It is important to observe that nonlinear systems, having isolated equilibria, will

interlace the equilibria, i.e. there can never be two consecutive stable equilibria or two consecutive

unstable equilibria, since these will contradict the definitions of stability and instability. Between two

unstable equilibria, there is always one stable one, and vice versa. To get the physical intuition behind

this, look at a regular sinusoid, for which the minimums are interlaced by maximums. A continuous

function can never have two local minima or maxima one after another. There is always the opposite
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extremum in between. The peaks of the sinusoid are unstable equilibria, while the minimums are the

stable ones. From the perspective of mechanical systems, there is energetic interpretation for equilibria

and the relationship of it to stability. Stable equilibria are the minima of the energy.

There are several methods to investigate stability of equilibria of dynamical systems. The first

and obvious one is to explicitly solve it and check the behavior of the solution by using tools from

calculus (compute the limits, etc.). The second approach is to linearize the system around the origin

and use the linearized system to investigate the stability of the nonlinear system. If the linearized

system is asymptotically stable, then the nonlinear system is locally asymptotically stable around that

equilibrium. Similarly if the linearized system is unstable around that origin, then so is the nonlinear

system. If the linearized system is marginally stable, i.e. has eigenvalues on the imaginary axis, then

nothing can be claimed about the nonlinear system in general. Be careful with linearizations since the

linearization of the nonlinear system around different equilibrium points will result in different linear

systems! A more powerful analysis tool that we will study in details will be Lyapunov’s direct method

that gives an opportunity to investigate stability of equilibria without explicitly solving the differential

equations.

2.2 Lyapunov stability theorems.

Before introducing the main theorems for checking stability of equilibria without explicitly solving

the differential equations, we need several definitions.

Definition 2.8. A continuous function V (x) : R
n → R is called positive definite in a domain

D ⊂ R
n if

V (x) > 0 ∀ x ∈ D − {0} and V (0) = 0 .

It will be negative definite in case of opposite inequality.

Definition 2.9. A continuous function V (x) : R
n → R is called positive semidefinite in a domain

D ⊂ R
n if

V (x) ≥ 0 ∀ x ∈ D .

It will be negative semidefinite in case of opposite inequality.
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We can now formulate sufficient conditions for local stability, local asymptotic stability (LAS) and

local exponential stability (LES).

Theorem 2.1. Let x = 0 be an equilibrium point for

ẋ = f(x), x(0) = x0 , x ∈ R
n ,

in which f is locally Lipschitz in x for x ∈ D ⊂ R
n, where D is a domain containing the origin. Suppose

that there exists a continuously differentiable function V (x) ∈ C1, V : D → R such that V (0) = 0 and

V (x) > 0 ∀ x ∈ D − {0} ,

while

V̇ (x(t)) ≤ 0 ∀ x ∈ D .

Then the equilibrium x = 0 is stable. Moreover, if

V̇ (x(t)) < 0 ∀ x ∈ D − {0} ,

then x = 0 is asymptotically stable. Finally, if there exist positive scalars k1, k2, k3 and p ≥ 1 such that

k1‖x‖p ≤ V (x) ≤ k2‖x‖p , x ∈ D (15)

V̇ (x(t)) ≤ −k3 V (x(t)) , x ∈ D , (16)

then the equilibrium x = 0 is exponentially stable.

Proof: Before starting the proof, let’s look into the intuition behind the required condition. Figure

8 plots cross sections of several level sets of the Lyapunov function. The condition V̇ (t) = ∂V
∂x ẋ < 0

implies that the gradient of the Lyapunov function and the velocity vector have a negative inner

product, which can happen only if the angle between the gradient of V (x) and ẋ is more than 90◦.

Notice that in case of negative semidefinite V̇ (t), this angle is allowed to be 90◦, which implies that

the trajectory can stay on a level set.

Now, let’s get to the formal proof. Given ǫ > 0, choose r ∈ (0, ǫ] small enough that

Br = {x ∈ R
n | ‖x‖ ≤ r} ⊂ D.
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Fig. 8 Illustration of V̇ (t) = ∂V

∂x
ẋ < 0.

Let α = min
‖x‖=r

V (x) and note that α > 0 because V (x) > 0, Fig. 9. Now let β ∈ (0, α) and define a set

containing the origin which is bounded by a level surface of V and contained entirely within Br:

Ωβ = {x ∈ Br | V (x) ≤ β}.

We note that any trajectory starting in Ωβ at time t = 0 remains in Ωβ for all time t ≥ 0 because

V̇ (x(t)) ≤ 0 ⇒ V (x(t)) ≤ V (x(0)) ≤ β

for all t ≥ 0. Furthermore, because Ωβ is a compact (closed and bounded by definition) set, any initial

state in Ωβ gives rise to a unique solution that exists for all time (See Theorem 1.2). Continuity of V

requires that there exists some δ > 0 such that

‖x− 0‖ < δ ⇒ ‖V (x) − V (0)‖ < β, that is ‖x‖ < δ ⇒ V (x) < β.

Using δ to define a ball Bδ of radius δ, we see that

x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br ⇒ ‖x(t)‖ < r ≤ ǫ

for all t ≥ 0. This proves that the existence of a positive definite function V with a negative semidefinite

rate implies stability of the equilibrium at the origin.

Now suppose that V̇ (x(t)) < 0. We must show that

lim
t→∞

x(t) = 0,
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Fig. 9 Illustration for the proof of Lyapunov’s stability theorem for autonomous systems

which is to say that for every r̃ > 0, there exists a time T > 0 such that ‖x(t)‖ < r̃ for all time t > T .

In fact, it is sufficient to show that

lim
t→∞

V (x(t)) = 0 ,

since V = 0 in D if and only if x = 0. Because V is bounded below and nonincreasing, we know that

V (x(t)) approaches a constant value in the limit t→ ∞. (See “Convergence of Sequences” in Appendix

A in [11].) Let

V (x(t)) → c ≥ 0 t→ ∞

Assume that c > 0, i.e. c 6= 0. Consider the ball Bd = {x : ||x|| ≤ d} such that it lies inside

Ωc = {x : V (x) ≤ c}. Then V (x(t)) → c implies that the system trajectory x(t) lies outside the

ball Bd for all t ≥ 0. Since V̇ (x(t)) is continuous, then it has a maximum over the compact set

{x : d ≤ ||x|| ≤ r}, which we denote by γ = max
d≤||x||≤r

V̇ (x(t)), where γ < 0, since V̇ (x(t)) < 0. By

integration of the Lyapunov function

V (x(t)) = V (x(0)) +

∫ t

0
V̇ (x(τ))dτ ≤ V (x(0)) + γt

Since γ < 0, then V (x(0)) + γt will decrease as t → ∞, thus rendering the left hand side negative,

which contradicts the fact that V (x) is positive for all x 6= 0. Therefore c = 0, and this completes the

LAS part of the proof.

Finally, to prove that the origin is LES, notice that the condition in (16) implies that

V (x(t)) ≤ V (x(0))e−k3t .
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Since (15) implies that V (x(0)) ≤ k2||x(0)||p, and k1||x(t)||p ≤ V (x(t)), then it follows that

k1||x(t)||p ≤ k2||x(0)||pe−k3t ,

which leads to the following

||x(t)|| ≤
(
β

α

)1/p

||x(0)||e(−k3/p)t ,

proving exponential stability.

Comments on Lyapunov’s Direct Method:

• One need not solve the differential equation in order to ascertain stability. One only needs to

analyze the behavior of a single, scalar function under the given dynamics.

• Lyapunov’s stability theorem is sufficient but not necessary. Just because one is unable to prove

Lyapunov stability, does not mean that the equilibrium is unstable. On the other hand, it is

sufficient to find one Lyapunov function satisfying the sufficient conditions of the theorem, and

one can claim that the system is stable.

• There is no technique for constructing Lyapunov functions which is applicable to all nonlinear sys-

tems with stable equilibria. For mechanical systems, there are several powerful techniques, based

on energy and momentum conservation laws. (Methods applicable to other classes of systems

include the “variable gradient method” [11] and methods based on linearizing the dynamics.)

Example 2.6. Consider the nonlinear dynamical system representing a rigid spacecraft given by

ẋ1(t) = I23x2(t)x3(t), ẋ2(t) = I31x3(t)x1(t), ẋ3(t) = I12x1(t)x2(t), x1(0) = x10, x2(0) = x20, x3(0) = x30,

where I23 = (I2− I3)/I1, I31 = (I3− I1)/I2, I12 = (I1− I2)/I3, and I1, I2, I3 are the principal moments

of inertia of the spacecraft such that I1 > I2 > I3 > 0. To examine the stability of this system

consider the Lyapunov function candidate V (x1, x2, x3) = 1
2 (α1x

2
1 + α2x

2
2 + α3x

2
3), where all αi > 0.

The derivative of it is given by

V̇ (x1, x2, x3) = x1x2x3(α1I23 + α2I31 + α3I12) .

Since I31 = (I3 − I1)/I2 < 0 due to I1 > I2 > I3 > 0, then one can easily select α1, α2, α3 to ensure

that α1I23 + α2I31 + α3I12 = 0, which will render V̇ (t) = 0 in the entire space. Hence the dynamical

system is Lyapunov stable.
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This example basically demonstrates how a Lyapunov function can be designed with some freedom

to begin with, like having free parameters similar to αi’s here, and upon some preliminary analysis one

can restrict these parameters to satisfy the sufficient conditions of the stability theorem.

Example 2.7. Consider the planar dynamical system

ẋ1 = x2 − ax3
1

ẋ2 = −x1 − bx2 ,

where a > 0 and b > 0. Note that this system has an equilibrium at the origin. To determine its

stability, we choose a candidate Lyapunov function

V (x1, x2) =
1

2
x2

1 +
1

2
x2

2 > 0, V (0) = 0.

The rate of change of V is

V̇ = x1ẋ1 + x2ẋ2 = x1

(
x2 − ax3

1

)
+ x2 (−x1 − bx2)

= −
(
ax4

1 + bx2
2

)
< 0.

We conclude from Lyapunov’s stability theorem that V (x) is a Lyapunov function and the equilibrium

at the origin is asymptotically stable.

Remark 2.5. Notice that we used the phrase “candidate Lyapunov function”. Unless you do not

prove that V (x) satisfies the sufficient conditions of Lyapunov stability theorems, you cannot call it

Lyapunov function.

Definition 2.10. Let x = 0 be an asymptotically stable equilibrium for the system in (13). Then

the set given by

D0 = {x0 ∈ D : if x(0) = x0, then lim
t→∞

x(t) = 0} (17)

is called domain of attraction of x = 0.
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Question 2.1. A question which naturally arises is: Under which conditions the above stated

stability theorem (Theorem 2.1) can give sufficient conditions for global stability, or otherwise saying

when can the entire space R
n be a domain of attraction?

A crucial point in the proof of Theorem 2.1 was that the level sets of Lyapunov function were bounded

for β ∈ [0, α) for some α ∈ [0, ǫ]. While setting D = R
n in Theorem 2.1 is necessary to extend the

result for global stability, it is not sufficient. The level set Ωβ of the Lyapunov function needed to be

contained inside Br! Can Ωβ be unbounded for some β?
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2 and its cross-sections.

Let’s look at the following positive definite function: V (x1, x2) =
x2
1

1+x2
1

+x2
2. This function is positive

definite and therefore can be used as Lyapunov function candidate. However, as can be seen from a

contour plot, the set Ωβ = {x : V (x) ≤ β} is unbounded for β large enough (in fact, for β > 1). Thus,

it is possible for a trajectory starting in Ωβ to remain in Ωβ for some value of β (which it must following

the proof of Theorem 2.1, if V > 0 and V̇ < 0) and yet still escape to infinity, thus leading to instability.

We therefore impose one more condition (in addition to the requirement D = R
n). We require that

V be radially unbounded: V (x) → ∞ as ‖x‖ → ∞. In the context of the proof of Theorem 2.1,

this will imply that α strictly grows with r and tends to ∞ as r → ∞. Any function V (x) satisfying

this condition will imply that Ωβ = {x : V (x) ≤ β} is a bounded set for every β = [0,∞), and hence

every trajectory starting in it will remain inside it for all t ≥ 0. So, this property together with the

requirement D = R
n) will lead to sufficient condition for global stability that we give without a proof.

Theorem 2.2. Let x = 0 be an equilibrium point for the system (13) , where f(x) is locally

Lipschitz for all x ∈ R
n, and suppose that there exists a continuously differentiable function V (x),
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defined on R
n. If

V (x) > 0 ∀ x 6= 0, V (0) = 0,

V̇ (x(t)) < 0 ∀ x 6= 0, and

V (x) → ∞ as ‖x‖ → ∞,

then x = 0 is globally asymptotically stable (GAS). If alternatively the conditions in (15) and (16)

hold globally for all x ∈ R
n, then the origin is globally exponentially stable (GES).

Referring back to our previous example, we see that D = R
2 and V = 1

2(x2
1 + x2

2) is radially

unbounded. We therefore conclude that x1 = x2 = 0 is a globally asymptotically stable equilibrium.

Any trajectory converges to the origin as t → ∞. Note that the strength of our conclusion depends

on our choice of Lyapunov function. If we had used the Lyapunov function V (x1, x2) =
x2
1

1+x2
1

+ x2
2, we

wouldn’t have concluded global stability.

Remark 2.6. [Exercise 4.9 from [11].] In the requirement of radial unboundedness it is crucial to

make sure that V (x) → ∞ as ||x|| → ∞ holds uniformly in all directions. For example, the function

V (x) =
(x1 + x2)

2

1 + (x1 + x2)2
+ (x1 − x2)

2

goes to ∞ along each principal axis

x1 = 0 ⇒ V (x) =
x2

2

1 + x2
2

+ x2
2 → ∞ as |x2| → ∞ ,

x2 = 0 ⇒ V (x) =
x2

1

1 + x2
1

+ x2
1 → ∞ as |x1| → ∞ ,

but it is not radially unbounded, since along the line x1 = x2 we have V (x) =
4x2

1

1+4x2
1

→ 1 as |x1| → ∞ .

So, it is not radially unbounded and therefore cannot be used for the proof of global asymptotic stability.

The following exercise analyzes an example without the use of Lyapunov functions.

Exercise 2.1. Consider the scalar system ẋ = axp + g(x), where p is a positive integer and g(x)

satisfies |g(x)| ≤ k|x|p+1 in some neighborhood of the origin x = 0. Show that the origin is asymp-

totically stable if p is odd and a < 0. Show that it is unstable if p is odd and a > 0 or p is even and

a 6= 0.
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Solution 2.1. Let f(x) = axp + g(x). Near the origin, since |g(x)| ≤ k|x|p+1, then the term axp is

dominant. Hence, sgn(f(x)) = sgn(axp). Consider the case when a < 0 and p is odd. With V (x) = 1
2x

2

as a Lyapunov function candidate, we have

V̇ (x(t)) = x(axp(t) + g(x(t))) ≤ axp+1(t) + k|xp+2(t)|

Near the origin, the term axp+1 is dominant. Since p is odd, p + 1 is even, and therefore xp+1(t) is

always positive. Hence, V̇ (x(t)) is negative definite in the neighborhood of the origin, and therefore

the origin is asymptotically stable.

Consider now the case when a > 0 and p is odd. In the neighborhood of the origin, since a > 0

is positive, p is odd and axp is dominant, then sgn(f(x)) = sgn(x). Hence, a trajectory starting near

x = 0 will be always moving away from x = 0. This shows that the origin is unstable. When p is even,

a similar behavior will take place on one side of the origin; namely when x > 0 and a > 0, or when

x < 0 and a < 0. Therefore the origin is unstable.

Homework Problems 2.1. The following problems from [11] need to be solved completely.

• Exercise 4.3 from [11].

• Exercise 4.4 from [11].
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2.3 Invariant Set Theorems.

Reading [11], pp. 111-133, Appendix C, and also [17], pp. 41-76.

Theorem 2.1 stated that if there is a positive definite function V (x) such that its derivative along

the system trajectories is negative semidefinite, then the equilibrium is stable. It also stated that if the

derivative is negative definite, then the origin is asymptotically stable. While very often the standard

choice of the Lyapunov function leads to negative semidefinite derivative, one can still prove asymptotic

stability of the origin from different considerations. These are so-called invariant set theorems. Let’s

start by a classical motivating example.

Example 2.8. Consider classical pendulum dynamics:

MR2θ̈(t) + kθ̇(t) +MgR sin(θ(t)) = 0 , (18)

where M is the mass, R is the length of the rod, k is the friction coefficient, θ is the angle of the

rod from the vertical equilibrium. From your dynamics courses you should remember that if k = 0,

then there is no friction, and the pendulum can continue swinging without ever stopping. But in the

presence of friction it eventually gets back to its equilibrium and stops there. Let’s see what can we

get from a standard choice of a Lyapunov function, using its total energy for that purpose. The state

space representation for the pendulum dynamics would be:

ẋ1(t) = x2(t) (19)

ẋ2(t) = −a sin(x1(t)) − bx2(t) , (20)

where x1 = θ, x2 = θ̇, a = g
R , and b = k

MR2 . We want to study the stability of the equilibrium at the

origin xe = (x1, x2)
⊤ = (0, 0)⊤. Consider the total energy of the system as a Lyapunov function:

V (x) = a(1 − cos(x1)) +
x2

2

2

It is obvious that V (x) is locally positive definite around the origin. Its time derivative along the system

trajectories is

V̇ (x(t)) = a sin(x1)ẋ1(t) + x2ẋ2(t) = −bx2
2(t) ≤ 0 .

Notice that V̇ (x(t)) is negative semidefinite. It is not negative definite, because V̇ (x(t)) = 0 for

all x2 = 0 irrespective of the values of x1. Therefore we can conclude that the origin is a stable
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equilibrium point, but not asymptotically stable. But we know that in the presence of friction the

origin is asymptotically stable! So, the conclusion is that the total energy was not a good choice for a

Lyapunov function. To circumvent the situation, there are two ways to go:

• change the Lyapunov function and consider a more general quadratic form:

V (x) = x⊤Px+ a(1 − cos(x1))

where P = P⊤ > 0 is a positive definite matrix, and play with its terms to get a negative definite

derivative in the entire space. (Read [11], page 119, Example 4.4 on this)

• Use invariant set theorems.

The physical intuition behind the invariant set theorems is the following. Looking at the derivative of

the Lyapunov function, we see that V̇ (x(t)) = 0 for the entire line x2 = 0. Now assume that x2 = 0 is

an equilibrium independent of the value of x1 and let’s arrive at contradiction. Indeed, assuming that

x2 = 0 is an equilibrium, we have

x2 ≡ 0 ⇒ ẋ2 ≡ 0 .

From system dynamics it immediately follows that

sin(x1) ≡ 0 ⇒ x1 ≡ 0 .

Hence, on the interval −π < x1 < π of the line x2 ≡ 0 the system can maintain the V̇ (x(t)) = 0

condition only at the origin x = 0. Therefore V (x(t)) must decrease towards 0, and consequently

x(t) → 0 as t → ∞, which is consistent with the fact that due to friction energy cannot remain

constant while the system is in motion.

This example showed that if the derivative of a candidate Lyapunov function is negative semidefi-

nite, but in addition the dynamics imply that no trajectory can stay identically at the points where

V̇ (x(t)) = 0, except for the origin, then the origin is asymptotically stable. This argument fol-

lows from La-Salle’s Invariance Principle, which holds only for autonomous systems. Before introduc-

ing the principle itself, let’s give the definitions for invariant and positive invariant sets. Towards that

end, consider the following autonomous system dynamics:
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ẋ = f(x), x0 = x(0) , (21)

where f : R
n → R is a locally Lipschitz function of its argument.

Definition 2.11. Given a trajectory x(t) of (21), a point P ∈ R
n is called a positive limit point

(or an accumulation point) of x(t), if there exists a sequence of times {tn}, with tn → ∞ as n → ∞,

such that x(t) → P as n → ∞. The set of all positive limit points is called the positive limit set of

system dynamics in (21).

Definition 2.12. A set M is called an invariant set with respect to the dynamics (21) if

x(0) ∈M ⇒ x(t) ∈M ∀ t ∈ R.

A set M is called positively invariant if

x(0) ∈M ⇒ x(t) ∈M ∀ t ≥ 0.

By definition, trajectories cannot leave an invariant set in forward or reverse time. Thus, trajectories

can neither enter nor leave an invariant set. Trajectories may enter a positively invariant set, however;

they just can not leave it (in forward time).

The notion of asymptotic stability is related to the notion of convergence of trajectories to an

invariant set. To define convergence to a set, we must define distance to the set. Let the distance

between the point P and the set M be

dist(P,M) = inf
x∈M

‖x(P ) − x‖ ,

where x(P ) denotes the vector of coordinates of the point P . Then a trajectory x(t) converges to the

set M as t→ ∞ if for every ǫ > 0, there is a time T > 0 such that

dist(P,M) < ǫ ∀ t > T.

Before stating La-Salle’s invariance principle, we need the following lemma.
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Lemma 2.1. If the solution of (21) is bounded and belongs to D for all t ≥ 0, then its positive

limit set L+ is a nonempty, compact, invariant set. Moreover, x(t) approaches L+ as t→ ∞.

(A proof can be found in [11], Appendix C3.)

Theorem 2.3. [La-Salle’s invariance principle] Let Ω ⊂ D ⊂ R
n be a compact (i.e., closed and

bounded)§set that is positively invariant with respect to the dynamics (21). Let V : R
n → R be a

continuously differentiable function on D such that V̇ (x(t)) ≤ 0 in Ω. Let E be the set of all points

in Ω where V̇ (x(t)) = 0 and let M be the largest invariant set contained in E. Then every solution

starting in Ω converges to M as t→ ∞. If D = R
n, V : R

n → R is radially unbounded and V̇ (x(t)) ≤ 0

for all x ∈ R
n, then every solution starting in R

n converges to M , i.e. the statement holds globally.

(See [11], page 128 for the proof and Fig.11 for illustration.)
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M
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Fig. 11 Illustration of sets for La-Salle’s Invariance Principle

Remark 2.7. Notice that La-Salle’s invariance principle does not require V (·) be positive definite.

Remark 2.8. Since La-Salle’s invariance principle strongly relies on phase plane analysis, by look-

ing at the sets in the state space that are defined by the condition V̇ (x(t)) = 0 and/or are invariant sets

of the system, it is important for the system to be autonomous so that V̇ (x(t)) = ∂V
∂x ẋ(t) = ∂V

∂x f(x(t))

§A set S ⊂ R
n is open if every point in S is contained in an open ball of points which are also in S . A set is closed if

its complement is open. A set is bounded if the entire set can be contained in a closed ball of finite radius.
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is only an explicit function of x and an implicit function of t.

Remark 2.9. The asymptotically stable equilibrium point is the positive limit set of every solution

starting within its region of attraction. A stable limit cycle is a positive limit set of every solution

starting from its region of attraction. Every solution approaches the limit cycle, as t → ∞. However,

it is important to notice that there is no specific limit point on the limit cycle. The limit cycle itself

is a trajectory to which all other trajectories converge. The equilibrium point and the limit cycle are

invariant sets, since every solution starting in these sets, remains in them for all t ∈ R. In case of

positive definite function V (x) with V̇ (x(t) ≤ 0 for all x ∈ Ωc, the set Ωc = {x ∈ R
n | V (x) ≤ c} is

a positively invariant set, since as we saw in the proof of Theorem 2.1, every trajectory starting in it,

remained in it for all t ≥ 0. However, it is important to point out that in application of La-Salle’s

invariance principle the construction of the set Ω is not related to the function V . Any equilibrium

point is an invariant set. The domain of attraction of an equilibrium point is also an invariant set. A

trivial invariant set is the whole state space. For an autonomous system any of the trajectories in state

space is an invariant set.

Remark 2.10. The sets in the La-Salle’s principle are included as

M ⊂ E ⊂ Ω ⊂ D ⊂ R
n .

Most often our interest will be to show that the solution x(t) → 0, as t → ∞. For that we will need to

show that the largest invariant set in E is the origin, i.e M = {0}. This is done by showing that no

solution can stay identically in E other than the trivial solution x = 0.

The next two corollaries, known as Barbashin-Krasovskii’s theorems, generalize La-Salle’s invariance

principle for positive definite functions V (x) and can be viewed like extension of Lyapunov’s theorems

2.1, 2.2.

Theorem 2.4. Let x = 0 be an equilibrium point for (21). Let V : D → R be a continuously

differentiable positive definite function on D, where D contains the origin, such that V̇ (x(t)) ≤ 0 for
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all x ∈ D. Let S = {x ∈ D | V̇ (x(t)) = 0} and suppose that no solution can stay identically in S, other

than the trivial solution x(t) ≡ 0. Then the origin is asymptotically stable.

Theorem 2.5. Let x = 0 be an equilibrium point for (21). Let V : R
n → R be a continuously

differentiable positive definite radially unbounded function, such that V̇ (x(t)) ≤ 0 for all x ∈ R
n. Let

S = {x ∈ R
n | V̇ (x(t)) = 0} and suppose that no solution can stay identically in S, other than the

trivial solution x(t) ≡ 0. Then the origin is globally asymptotically stable.

Remark 2.11. When V̇ (x(t)) is negative definite, i.e. S = {0}, then Theorems 2.4, 2.5 present

particular cases of Theorems 2.1, 2.2.

Remark 2.12. La-Salle’s theorems are applicable only to time-invariant systems.

Example 2.9. Consider the first order system that we had in Introduction

ẋ(t) = ax(t) + u(t) , x(0) = x0

and assume that we do not know a, but let’s assume that we know some conservative bound for it so

that b > a. We are interested in stabilization of this system. We construct the following feedback:

u(t) = −k̂(t)x(t) ,

where

˙̂
k(t) = γx2(t) , k̂(0) = 0, γ > 0 .

Thus, we obtain the following closed-loop autonomous system:

ẋ(t) = −(k̂(t) − a)x(t) , x(0) = x0

˙̂
k(t) = γx2(t) , k̂(0) = 0 .
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The line x = 0 obviously represents the closed-loop system equilibrium set, irrespective of the values of

k̂(t). We want to show that trajectories approach this equilibrium set, as t → ∞. Take the following

candidate Lyapunov function

V (x(t), k̂(t)) =
1

2
x2(t) +

1

2γ
(k̂(t) − b)2 ,

where b > a. The time derivative of V ((x(t), k̂(t))) along the closed-loop system trajectories will be:

V̇ (x(t), k̂(t)) = −x2(t)(b− a) ≤ 0 .

Thus, V̇ ((x(t), k̂(t))) is only negative semidefinite, hence only stability can be concluded at the offset.

Let’s apply La-Salle’s principle to conclude asymptotic stability, instead of just stability. Notice that

since V (x, k̂) is positive definite, radially unbounded, the set Ωc = {(x, k̂) ∈ R
2 | V (x, k̂) ≤ c} is

compact and positive invariant for any value of c > 0. The set E in La-Salle’s principle is given by

E = {(x, k̂) ∈ Ωc : x = 0}. Because every point on the line x = 0 is an equilibrium point, E is an

invariant set. Therefore in this example M = E in La-Salle’s principle. From La-Salle’s principle we

conclude that every trajectory starting in Ωc approaches E as t → ∞, that is x(t) → 0, as t → ∞.

Moreover, since V (x, k̂) is radially unbounded, then this conclusion is global, i.e. it holds for arbitrary

initial condition, otherwise saying c in the definition of Ωc can be arbitrarily large.

Remark 2.13. Notice that due to the construction of E and M in this example, we could not

conclude anything about k̂(t). We also could not apply Barbashin-Krasovskii’s theorems. This was

not the case in the pendulum example, where the right hand side of the system dynamics implied

that M was comprised of one (equilibrium) point only, M = {0}, because of which the equilibrium

(x1, x2) = (0, 0) was asymptotically stable. In this closed-loop adaptive system M was comprised of a

whole line (equilibrium set), and the conclusion we draw was only about x(t), and not k̂(t). We will get

to the issue of parameter convergence later in our course. Also, when getting to the tracking problems

as opposed to this case of adaptive regulation, we will notice that the closed-loop system will not be

autonomous, as this one was, and therefore La-Salle’s principle will not be applicable. We will need

Barbalat’s lemma for that. Recall from (14) that the tracking error dynamics are non-autonomous.
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Remark 2.14. Another important feature of this adaptive system was that we used a Lyapunov

function for a system in which a was unknown. As long as an upper bound for a is known, b can be

selected any number larger than that upperbound.

The following exercise should help you with the homework problem part c).

Exercise 2.2. Suppose that the set M in La-Salle’s principle consists of a finite number of isolated

points. Show that lim
t→∞

x(t) exists and is equal to one of these points.

Solution 2.2. According to La-Salle’s principle, x(t) approaches M as t→ ∞, which implies that

given an ǫ > 0 there exists a T > 0 such that inf
y∈M

||x(t) − y|| < ǫ, ∀ t > T . Choose the ǫ so small that

the neighborhood N(P, 2ǫ) of P ∈M contains no other points of M . We will prove that ||x(t)−y|| < ǫ,

for all t > T for some P ∈M . Let’s prove by contradiction. At t = t1 let P1 ∈M be a point for which

||x(t1)−P1|| < ǫ. Let t2 > t1 be the time instant at which ||x(t2)−P1|| = ǫ. Let P be any other point

of M . Then

||x(t2) − P || = ||x(t2) − P1 + P1 − P || ≥ ||P1 − P || − ||x(t2) − P1|| ≥ 2ǫ− ǫ = ǫ

This contradicts inf
y∈M

||x(t) − y|| < ǫ, ∀ t > T . Therefore we arrive at contradiction. Given the fact

that ǫ can be arbitrary small number, we proved that x(t) → P for some P .

Homework Problems 2.2. Exercise 4.21 from [11] needs to be solved completely.
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3 System Analysis based on Lyapunov’s Direct Method

Reading [11], pp. 135-144, and also [17], pp. 76-88.

With all the theorems and examples presented in the previous lectures we had the luxury of having

an explicit Lyapunov function at hand. The question that we are trying to raise today and answer is

how to find a Lyapunov function for a given system. While it would be naive to expect a complete

and universal answer to this question, it is nevertheless possible to develop some “recipe” for certain

classes of systems. Towards that end, we need to recall several definitions from linear algebra.

3.1 Preliminaries from linear algebra

Definition 3.1. A square matrix P is symmetric, if P = P⊤. It s skew-symmetric if P = −P⊤.

• Every square matrix can be presented as a sum of symmetric and skew-symmetric matrices:

P =
P + P⊤

2
+
P − P⊤

2
, (22)

where obviously the first term on the right is symmetric, while the second one is skew-symmetric.

• A quadratic function associated with a skew-symmetric matrix is always zero, since for a skew-

symmetric matrix P = −P⊤ the following is true:

x⊤Px = −x⊤P⊤x ,

which implies that x⊤Px = 0.

• The above two facts lead to the following conclusion: arbitrary quadratic form x⊤Px can be

equivalently presented via a symmetric matrix. Indeed,

x⊤Px = x⊤
P + P⊤

2
x+ x⊤

P − P⊤

2
x = x⊤

P + P⊤

2
x , (23)

since the second term is the skew-symmetric one and is zero.

Definition 3.2. A square matrix P is positive definite if for all x 6= 0 it implies x⊤Px > 0 (i.e.

x⊤Px is a positive definite function).
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Definition 3.3. A square matrix P is positive semidefinite if for all x it implies x⊤Px ≥ 0 (i.e.

x⊤Px is a positive semidefinite function).

Definition 3.4. A square time-varying matrix M(t) is uniformly positive definite if for all t ≥ 0

there exists α > 0 such that M(t) ≥ αI, i.e. M(t) − αI is positive semidefinite for all t ≥ 0.

Remark 3.1. If one substitutes the basis vectors in Definition 3.2, then it is straightforward to see

that a necessary condition for a matrix to be positive definite will be positive elements on its diagonal.

But this cannot serve as sufficient condition. If a real matrix P is symmetric, then Sylvester’s criterion

states a necessary and sufficient condition for positive definiteness, namely strict positivity of all its

principal minors, or strict positivity of all its eigenvalues. As a consequence, a positive definite matrix

is always invertible¶.

Recall from linear algebra that for any matrix A there exists a non-singular matrix B that transforms it

into its Jordan form, given by J = B−1AB, where the Jordan blocks of J are defined via the eigenvalues

of A (for details on this refer to [1], [2]). For a positive definite matrix P , the following decomposition

P = T⊤ΛT,

where T is a matrix of eigenvectors satisfying T⊤T = I, while Λ is a diagonal matrix of the eigenvalues

of P , permits to write the following very much needed inequalities for our later analysis

λmin(P )||x||2 ≤ x⊤Px ≤ λmax(P )||x||2 , (24)

where λmin(P ), λmax(P ) denote the minimum and maximum eigenvalues of P . You should be able to

prove (24) by noticing that

• x⊤Px = x⊤T⊤ΛTx = z⊤Λz, where z = Tx ,

• λmin(P )I ≤ Λ ≤ λmax(P )I ,

• z⊤z = ||x||2.
¶Since arbitrary matrix can be decomposed into a sum of symmetric and skew-symmetric structure, then Sylvester’s

criterion is fairly general.
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3.2 Lyapunov functions for Linear Time-Invariant (LTI) systems.

Consider the following linear time-invariant (LTI) system:

ẋ(t) = Ax(t) , x(0) = 0, x ∈ R
n. (25)

Obviously, this system has an equilibrium at the origin x = 0. If A is non-singular (det(A) 6= 0), then

this equilibrium is the unique equilibrium. If A is singular (det(A) = 0), then every point in the entire

non-trivial null-space of A is an equilibrium point, i.e. the system has an equilibrium subspace. Notice

that a LTI system cannot have multiple isolated equilibria, since if x1 and x2 are equilibria, then, by

the principle of superposition, every point on the line connecting x1 and x2 is an equilibrium point.

Theorem 3.1. The equilibrium point x = 0 of (25) is stable if and only if all eigenvalues of

A satisfy Re(λi) ≤ 0 and for every eigenvalue with Re(λi) = 0 and algebraic multiplicity qi ≥ 2,

rank(A− λiI) = n− qi. The equilibrium point x = 0 of (25) is globally asymptotically stable (GAS) if

and only if all eigenvalues of A satisfy Re(λi) < 0. The equilibrium point x = 0 of (25) is unstable if

at least one of the eigenvalues of A has Re(λi) > 0.

The proof is straightforward and follows from the fact that the solution of (25) for any non-zero initial

condition x0 6= 0 is given by x(t) = exp(tA)x0 (for details refer to [11]).

Remark 3.2. Notice that for GAS the theorem requires all the eigenvalues of A lie in open left-

half plane. In that case the matrix A is called Hurwitz. If any of the eigenvalues is on the imaginary

axis, then one cannot claim GAS, however, local stability can be guaranteed if the eigenvalue on the

imaginary axis is a simple eigenvalue (i.e. with multiplicity 1) or the multiplicity qi of that eigenvalue

reduces the rank of A− λiI exactly to n− qi. Also, if at least one of the eigenvalues lies in open right

half-plane, then the origin is unstable.

Asymptotic stability of the origin of (25) can be also investigated via Lyapunov’s direct method.

Theorem 3.2. The matrix A is Hurwitz if and only if for any given symmetric, positive definite

matrix Q, there exists a symmetric, positive definite matrix P = P⊤ > 0 satisfying

A⊤P + PA = −Q (26)
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Moreover, if A is Hurwitz, then P is the unique solution of the Lyapunov equation (26).

Proof: (“If”) Assume that given symmetric, positive definite matrix Q, there exists a symmetric,

positive definite matrix P = P⊤ > 0 satisfying (26). Let’s prove that A is Hurwitz. Notice from

Theorem 3.1 that it is sufficient to prove that the origin of (25) is GAS. Define the Lyapunov function

candidate

V (x(t)) = x⊤(t)Px(t) .

Obviously, V (x) > 0 for all x 6= 0, and V (0) = 0. Then

V̇ (x(t)) = x⊤(t)Pẋ(t) + ẋ⊤(t)Px(t) = x⊤(t)(PA+A⊤P )x(t) = −x⊤(t)Qx(t) < 0, x 6= 0. (27)

Thus, x = 0 is globally asymptotically stable equilibrium for the system in (25) (see Theorem 2.2). It

follows from Theorem 3.1 that A is Hurwitz.

(“Only if”) Now, assume that A is Hurwitz and let Q be any symmetric, positive definite matrix.

Let’s prove that there exists a positive definite symmetric matrix P = P⊤ > 0 solving (26). Define

P =

∫ ∞

0
exp(A⊤t) Q exp(At)dt . (28)

Recall that matrix exponential is defined via the series expansion:

exp(A) = I +A+
1

2
A2 + · · · .

Since A is Hurwitz, then the series is convergent, and the integral is well-defined. It is positive definite,

because

x⊤Px =

∫ ∞

0
x⊤exp(A⊤t) Q exp(At)xdt =

∫ ∞

0
(exp(At)x)⊤ Q (exp(At)x) dt

is an integral of a positive definite quadratic function, which is zero if and only if exp(At)x = 0 for all

t ≥ 0, and, for a nonsingular exp(At), this is satisfied only if x = 0.

Substituting (28) in equation (26) gives

A⊤P + PA =

∫ ∞

0
A⊤exp(A⊤t) Q exp(At)dt +

∫ ∞

0
exp(A⊤t) Q exp(At)Adt

=

∫ ∞

0

d

dt

(

exp(A⊤t) Q exp(At)
)

dt = exp(A⊤t) Q exp(At)|∞0 = −Q (exp(A∞t) = 0, since A is Hurwitz).
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To prove uniqueness of P assume that for a given Q > 0 there exists another P1 solving (26), i.e.

A⊤P1 +P1A = −Q, A⊤P +PA = −Q, and P1 6= P . Following the algebra of the last line of the above

equation P1 can be identically presented:

P1 = −
∫ ∞

0

d

dt

(

exp(A⊤t) P1 exp(At)
)

dt

Expanding the derivatives gives:

P1 = −
∫ ∞

0
exp(A⊤t) (A⊤P1 + P1A) exp(At)dt =

∫ ∞

0
exp(A⊤t) Q exp(At)dt = P ,

where the last equality follows from definition of P .

Remark 3.3. The above theorem shows that any positive definite matrix Q can be used to deter-

mine the stability of a LTI system, i.e. stability of A in (25). A simple choice of Q is I, which has also

a surprising property of the best convergence rate. Even if it may seem now at the offset that there is

no advantage to this result (since checking the eigenvalues of A can be viewed as an equivalent effort

to solving (26) for P and determining the positive definiteness of P , which also amounts to checking

for example the eigenvalues of P ), you’ll find out later that this theorem lies at the heart of the con-

struction of the Lyapunov functions for most of the nonlinear systems, and especially for definition of

the adaptive laws. The Lyapunov functions used for stability analysis of nonlinear adaptive systems

will have x⊤Px as the main state-dependent component, in addition to certain terms used for adaptive

parameters.

Finally, we note that Theorem 3.1 lies in the heart of Lyapunov’s indirect method, the key result

of which we give without a proof.

Theorem 3.3. [Lyapunov’s Indirect Method.] Let x = 0 be an equilibrium of the system

ẋ = f(x) , x(0) = x0 , (29)

where f is continuously differentiable in a neighborhood D ⊂ R
n containing the origin. Define

A =
∂f

∂x

∣
∣
∣
∣
∣
x=0

.

Then, for the original nonlinear system in (29), the origin is
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1. locally asymptotically stable if Re(λ) < 0 for every eigenvalue λ of A.

2. unstable if Re(λ) > 0 for at least one of the eigenvalues of A.

Key points to remember:

Remark 3.4. For the first time we require f be continuously differentiable, and not just Lipschitz.

On the contrary, Lyapunov’s direct method, presented in the past lecture, did not require linearization

and could deal with the dynamics directly as long as sufficient conditions for the existence of a unique

solution were satisfied (for which Lipschitz property was enough, which is a weaker requirement than

continuous differentiability). From that perspective Lyapunov’s direct method is a more powerful tool

for stability analysis. The trade-off is that there is no straightforward recipe to determine a Lyapunov

function for a given system. Talking of smoothness properties, Lyapunov’s direct method requires the

Lyapunov function to be continuously differentiable, i.e. V̇ (x(t)) = ∂V
∂x ẋ(t) = ∂V

∂x f(x(t)) be continuous,

which is always guaranteed as long as V (x) is selected to be a smooth function of x, and f is Lipschitz.

Remark 3.5. Note that the theorem says nothing about the case where Re(λ) ≤ 0 for every

eigenvalue λ of A, i.e., the case where one or more eigenvalues lie on the imaginary axis. In this case,

one cannot infer from the linearization whether the equilibrium of the nonlinear system is stable or

unstable.

3.3 Krasovskii’s Method

Let us now come back to the problem of finding Lyapunov functions for general nonlinear systems.

Krasovskii’s method ( [17], p.84) suggests a simple form of Lyapunov function candidate, namely,

V = f⊤(x)f(x), for autonomous nonlinear systems of the form ẋ = f(x). The basic idea of the method

is simply to verify that this particular choice indeed leads to a Lyapunov function.

Theorem 3.4. (Krasovskii) Consider the autonomous system defined by

ẋ = f(x), x(0) = x0

with the equilibrium point of interest being the origin and f(x) being continuously differentiable. Let
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A(x) denote the Jacobian of the system, i.e.,

A(x) =
∂f(x)

∂x
.

If the matrix F (x) = A(x)+A⊤(x) is negative definite in a neighborhood Ω, then the equilibrium point

at the origin is asymptotically stable. A Lyapunov function for this system is given by

V (x) = f⊤(x)f(x).

If Ω is the entire state space and, in addition, V (x) → ∞ as ‖x‖ → ∞, then the equilibrium point is

globally asymptotically stable.

Proof: First, let us prove that the negative definiteness of F (x) implies that f(x) 6= 0 for x 6= 0.

Since the square matrix F (x) is negative definite for non-zero x, one can show that the Jacobian matrix

A(x) is invertible, by contradiction. Indeed, assume that A(x) is singular. Then one can find a non-zero

vector u such that A(x)u = 0. Since

u⊤F (x)u = 2u⊤A(x)u

the singularity of A(x) implies that u⊤A(x)u = 0, which contradicts the assumed negative definiteness

of F (x).

The invertibility and continuity of A(x) guarantee that the inverse of f(x) can be uniquely defined

( [10], p.221). This implies that the system has only one equilibrium point in Ω (otherwise different

equilibrium points would correspond to the same value of f(x)), i.e., that f(x) 6= 0 for x 6= 0.

We can now show asymptotic stability of the origin. Given the above result, the scalar function

V (x) = f⊤(x)f(x) is positive definite. Using the fact that ḟ(x) = df(x)
dt = A(x)ẋ = A(x)f(x), the

derivative of V (x) can be written as

V̇ (x) = f⊤(x)ḟ(x) + ḟ⊤(x)f(x) = f⊤(x)A(x)f(x) + f⊤(x)A⊤(x)f(x) = f⊤(x)F (x)f(x).

The negative definiteness of F (x) implies negative definiteness of V̇ (x). Therefore, according to

Lyapunov’s direct method, the equilibrium state at the origin is asymptotically stable. The global

asymptotic stability of the origin follows from radial unboundedness.
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Remark 3.6. While the use of Krasovskii’s method is straightforward, its applicability is limited

in practice, because the Jacobians of many systems do not satisfy the negative definiteness requirement.

In addition, for systems of high order, it is difficult to check the negative definiteness of the matrix

F (x) for all x.

3.4 Performance Analysis

Lyapunov functions can be used not only for stability analysis, but also for analysis of the con-

vergence rate for asymptotically stable systems. Before presenting the main lemma on convergence

analysis, we give a small proposition on differential inequalities, similar to the Comparison lemma.

Proposition 3.1. If a real function W (t) satisfies the inequality

Ẇ (t) + αW (t) ≤ 0 , (30)

where α is a real number, then

W (t) ≤W (0) exp(−αt) .

Proof: Let us define a function Z(t) , Ẇ (t)+αW (t). It follows from (30) that Z(t) ≤ 0. Solving

with respect to W (t) implies

W (t) = W (0) exp(−αt) +

∫ t

0
exp(−α(t− τ))Z(t)dτ ≤W (0) exp(−αt) ,

since the second (integral) term is non-positive.

Remark 3.7. Proposition 3.1 implies that if W (t) is a non-negative function satisfying (30) and

α > 0, then W (t) converges to zero exponentially. Often in stability analysis, one can show that

V̇ (t) ≤ −γV (t), where α > 0, which can be manipulated to show convergence of the system states to

zero.

3.4.1 Convergence rate for linear systems.

Recall the choice of the Lyapunov function for linear systems, V (x) = x⊤Px, and let γ =
λmin(Q)

λmax(P )
,

where −Q = A⊤P + PA, and A is Hurwitz, while the symbols λmin(·), λmin(·) are used to denote
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minimum and maximum eigenvalues. Since P ≤ λmax(P )I, and λmin(Q)I ≤ Q, then

x⊤Qx ≥ λmin(Q)

λmax(P )
x⊤ (λmax(P )I) x ≥ λmin(Q)

λmax(P )
x⊤Px ≥ γV .

Since V̇ (x) = −x⊤Qx, then we have that

V̇ (t) ≤ −γV (t) ,

which, following Proposition 3.1, consequently leads to

V (t) ≤ V (0) exp(−γt) .

Recalling that V (x) = x⊤Px, and that x⊤Px ≥ λmin(P )||x||2 for all t ≥ 0, implies that x(t) converges

to zero with at least the rate of γ/2.

It is interesting to note that the convergence rate estimate is the largest for Q = I. Indeed, let P0

be the solution of the Lyapunov equation corresponding to Q = I, i.e. A⊤P0 + P0A = −I, and let P

be the solution of the Lyapunov equation for some other Q1, i.e. A⊤P + PA = −Q1. Without loss of

generality one can assume that λmin(Q1) = 1. If this is not the case, then Q1 can be always re-scaled

to be such, which will correspondingly re-scale P , leaving the value of γ unchanged. Subtracting these

two equations yields:

A⊤(P − P0) + (P − P0)A = −(Q1 − I)

Since λmin(Q1) = 1 = λmin(I), the matrix Q1 − I is positive semidefinite, and therefore (P − P0)

is positive semidefinite, implying that λmax(P ) ≥ λmax(P0). Since λmin(Q1) = 1 = λmin(I), the

convergence rate estimate γ =
λmin(I)

λmax(P0)
corresponding to Q = I is larger or equal to that γ =

λmin(Q1)

λmax(P )
corresponding to Q = Q1.

The physical meaning of this optimal value of γ is easily interpreted for a symmetric matrix A. In

that case, all eigenvalues of A are real, and there exists a change of coordinates such that A is diagonal

in these new coordinates. In these new coordinates, P = −1
2A

−1 verifies the Lyapunov equation for

Q = I, and therefore the corresponding γ/2 is simply the absolute value of the dominant pole of the

linear system. Moreover, γ is independent of the choice of the state coordinates.



59

3.4.2 Convergence rate for nonlinear systems.

For nonlinear systems there is no general recipe for estimating the convergence rate of state trajec-

tories to zero. This should be investigated on a special case-by-case basis. The problem is that even if

V is selected to be a quadratic function of system states, V̇ (t) is not guaranteed to be such. However,

for some special systems, it might be possible to manipulate V̇ (t) to obtain some insights about the

behavior of state trajectories.

Example 3.1. Consider the autonomous system, having equilibrium at the origin:

ẋ1 = x1(x
2
1 + x2

2 − 1) − 4x1x
2
2

ẋ2 = 4x2
1x2 + x2(x

2
1 + x2

2 − 1) .

The candidate Lyapunov function V (x1, x2) = x2
1 + x2

2 has a derivative V̇ (t) = 2V (t)(V (t) − 1), which

can be integrated:

V (t) =
α exp(−2t)

1 + α exp(−2t)
, α =

V (0)

1 − V (0)
.

Thus, if ||x(0)|| < 1, which is equivalent to V (0) ≤ 1, then α > 0, and V (t) < α exp(−2t), implying

that the trajectories starting inside the unit circle converge to the origin exponentially with a rate of

1.

However, if the trajectory starts outside the unit circle, i.e. α < 0, then this choice of Lyapunov

function implies exponential blow-up.

The following exercise demonstrates the connection between optimal control and Lyapunov stability

theory.

Exercise 3.1. Consider the closed-loop system under optimal stabilizing control:

ẋ = f(x) − kG(x)R−1(x)G⊤(x)

(
∂V

∂x

)⊤
,

where V (x) is a continuously differentiable positive definite function that satisfies the Hamilton-Jacobi

equation

∂V

∂x
f(x) + q(x) − 1

4

∂V

∂x
G(x)R−1(x)G⊤(x)

(
∂V

∂x

)⊤
= 0 ,



60

in which q(x) is a positive semidefinite function, R(x) is a non-singular matrix, and k is a positive

constant. Using V (x) as a Lyapunov function candidate, show that the origin is asymptotically stable

when

1. q(x) is positive definite and k ≥ 1
4 .

2. q(x) is positive semidefinite, k ≥ 1
4 , and the only solution of ẋ = f(x) that can stay identically

in the set {q(x) = 0} is the trivial solution x(t) ≡ 0.

When will the origin be globally asymptotically stable?

Solution 3.1. Using the system dynamics,

V̇ (x) =
∂V

∂x
ẋ =

∂V

∂x
f(x) − k

∂V

∂x
G(x)R−1(x)G⊤(x)

(
∂V

∂x

)⊤
.

Substituting for ∂V
∂x f(x) from the Hamilton-Jacobi equation, we get

V̇ (x) = −q(x) −
(

k − 1

4

)
∂V

∂x
G(x)R−1(x)G⊤(x)

(
∂V

∂x

)⊤
.

1. If q(x) is positive definite, and k ≥ 1
4 , we conclude that V̇ (x) is negative definite, and hence the

origin is asymptotically stable.

2. If q(x) is only positive semidefinite and k ≥ 1
4 , we can only conclude that V̇ (x) is negative

semidefinite. Since R(x) is a nonsingular matrix, then

V̇ (x) = 0 ⇒
{

q(x) = 0 and G⊤(x)

(
∂V

∂x

)⊤
= 0

}

⇒ ẋ = f(x) .

Since the only solution of ẋ = f(x) that can stay identically in the set {q(x) = 0} is the zero

solution, we see that

q(x(t)) ≡ 0 ⇒ x(t) ≡ 0 .

By La-Salle’s theorem we conclude that the origin is asymptotically stable.

The origin will be GAS, if all the assumptions hold globally and V (x) is radially unbounded.
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Homework Problems 3.1. The following two exercises from [11] need to be solved completely:

• Exercise 4.22

• Exercise 4.23.
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4 Lyapunov Stability Theory for Nonautonomous Systems

Reading [11], pp. 144-156, and [17], pp. 100-126.

4.1 Stability of nonautonomous systems, uniformity, and comparison functions.

We will start by a motivating example to demonstrate how things can fundamentally change from

the stability analysis perspective if the system is non-autonomous. Consider the following second-order

mass-spring damper of unit mass system with time-varying damping:

ẍ(t) + c(t)ẋ(t) + k0x(t) = 0, x(0) = x10 , ẋ(0) = x20 , (31)

where c(t) ≥ 0 is the time-varying damping coefficient and k0 is the spring constant. Intuitively, one

may suspect that as long as c(t) is strictly larger than some positive constant, then the system should

return to its equilibrium point (x, ẋ) = (0, 0) asymptotically. This is the case with the autonomous

second-order mass-spring damper system with constant damping:

ẍ(t) + c0ẋ(t) + k0x(t) = 0, x(0) = x10 , ẋ(0) = x20 , c0 ≥ 0 ,

which can be easily demonstrated to have GAS at the origin similar to the example in (18) using

invariant set arguments. However, if we select c(t) = 2 + et and k0 = 1, then the solution of (31) from

initial conditions x(0) = 2 , ẋ(0) = −1 can be written as x(t) = 1 + e−t, which tends to (x, ẋ) = (1, 0)

instead of the equilibrium!!! The message is that the time-varying damping grows so fast that the

system gets stuck at x = 1! We will get back to this example with a theorem at hand.

Another counter-intuitive example can be drawn from stability analysis of linear time-varying sys-

tems, by considering the system




ẋ1

ẋ2



 =




−1 e2t

0 −1








x1

x2



 , x1(0) = x10, x2(0) = x20 ,

that has an A(t) matrix with negative eigenvalues, equal to −1, for all t ≥ 0, yet solving the second

(decoupled) equation and substituting into the first one leads to

x2(t) = x2(0)e
−t, ẋ1(t) + x1(t) = x2(0)e

t ,

which basically demonstrates that x1(t) can escape to infinity, since it is driven by an unbounded input.
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Thus, one needs to be careful with stability analysis of non-autonomous systems. As we mentioned

in the beginning, for trajectory tracking problems the error dynamics are non-autonomous, even if the

nominal system is autonomous to begin with (see eq. (14) and the discussion around it). Therefore,

non-autonomous systems present a more general class of systems, and therefore we need to generalize

the concepts of equilibrium and definitions of stability for these systems as well. Towards that end, we

consider the following general non-autonomous system dynamics:

ẋ(t) = f(t, x(t)), x(t0) = x0 , x ∈ R
n , (32)

where f : [t0,∞)×D → R
n is piecewise continuous in t and locally Lipschitz in x on [t0,∞)×D, where

D is an open set containing the origin x = 0.

Definition 4.1. The equilibrium points x∗ of (32) are defined via the solution of the following

system of equation

f(t, x∗) ≡ 0, t ≥ t0,

implying that if once the system state is at x∗, it remains there for all t ≥ t0.

• The linear time-varying system ẋ(t) = A(t)x(t) has a unique equilibrium point at x = 0, unless

A(t) is singular for all t ≥ 0.

• The nonlinear system ẋ(t) = x2(t) + b(t) with b(t) 6= 0 has no equilibria at all.

• The nonlinear system ẋ(t) = (x(t) − 1)2b(t) with b(t) 6= 0 has a unique equilibrium at x = 1.

• The nonlinear system ẋ(t) = (x(t) − 1)(x(t) − 2)b(t) with b(t) 6= 0 has two equilibrium points at

x = 1 and x = 2.

The definitions of stability, AS, GAS, GES, etc. can be extended to time-varying systems with

consideration of the initial time-instant. An important concept that needs to be kept in attention in

analysis of time-varying systems is uniformity. Uniformity in time is important in order to ensure that

the region of attraction does not vanish (tend to zero) with time. The following example demonstrates

this intuition.
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Example 4.1. The first order system

ẋ(t) = − x

1 + t
, x(t0) = x0

has the general solution

x(t) =
1 + t0
1 + t

x0 ,

which asymptotically converges to zero as t→ ∞, but not uniformly, because larger t0 in the numerator

requires longer time for convergence from the same initial condition x0. To get the same time for

convergence one needs to decrease ||x0|| uniformly with the increase of t0, which implies shrinking of

the domain of attraction with time.

Without loss of generality, we will assume that the origin x = 0 is an equilibrium point for (32), i.e.

f(t, 0) = 0 for all t ≥ t0. Recall that arbitrary non-zero equilibrium can be translated to the origin via

a change of coordinates (see eq. (14) and the discussion around it). We will therefore give definitions

of stability for the equilibrium at the origin.

Definition 4.2. The equilibrium point x = 0 for the system (32) is

• stable if, for each ǫ > 0, there exists δ(ǫ, t0) > 0 such that

‖x(t0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ ǫ ∀ t ≥ t0 ≥ 0.

• uniformly stable if it is stable with δ independent of t0.

• unstable if it is not stable.

• asymptotically stable if it is stable and there exists c(t0) > 0 such that x(t) → 0 as t→ ∞ for all

‖x(t0)‖ < c(t0).

• uniformly asymptotically stable if it is uniformly stable, asymptotically stable with c independent

of t0, and convergence of x(t) to 0 is uniform in t0. That is, for every ǫ > 0, there exists T (ǫ) > 0

such that

‖x(t)‖ ≤ ǫ ∀ t ≥ t0 + T (ǫ) and ‖x(t0)‖ < c.
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• (uniformly) exponentially stable if there exist two positive numbers α and λ such that for suffi-

ciently small x0 = x(t0)

||x(t)|| ≤ α||x0|| exp(−λ(t− t0)), ∀t ≥ t0.

• globally uniformly asymptotically stable if it is uniformly asymptotically stable and ǫ and c can

be chosen arbitrarily large.

• globally (uniformly) exponentially stable if the definition of exponential stability holds for arbi-

trary x0.

We immediately notice that the definition of exponential stability does not have the “non-uniform

version”. Recall that for stability analysis of autonomous systems we used positive definite functions,

which we called Lyapunov functions. A natural extension of that concept to time-varying systems

would be consideration of time-varying positive definite functions, given by the following definition.

Definition 4.3. A scalar time-varying function V (t, x) is locally positive definite if V (t, 0) = 0 and

there exists a time-invariant positive definite function W1(x) such that

∀ t ≥ t0, V (t, x) ≥W1(x) .

The essence of the definition is that a time-varying function is locally positive definite if there exists

a locally positive definite time-invariant function such that for all t ≥ t0 the time-varying function

dominates the time-invariant one‖.

Definition 4.4. A scalar time-varying function V (t, x) is decrescent if V (t, 0) = 0 and there exists

a time-invariant positive definite function W2(x) such that V (t, x) ≤W2(x) for all t ≥ t0.

To generalize these concepts, we introduce the comparison functions.

Definition 4.5. A continuous function α : [0, a) → R
+ belongs to class K if it is strictly increasing

and α(0) = 0. It belongs to class K∞ if a = ∞ and α(r) → ∞ as r → ∞.

‖Similarly one can define global positive definiteness and semidefiniteness, etc.
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Definition 4.6. A continuous function β : [0, a) × R
+ → R

+ belongs to class KL if

• β(r, s) is class K with respect to r for each fixed s, and

• β(r, s) is decreasing in s for each fixed r and β(r, s) → 0 as s→ ∞.

Examples:

• Class K: α(r) = tan(r) for r ∈ [0, π2 ); α(r) = tanh(r) for r ∈ [0,∞);

• Class K∞: α(r) = kr for k > 0; α(r) = rc for c > 0; α(r) = sinh(r);

• Class KL: β(r, s) = kre−s for k > 0.

Properties: Suppose α1 and α2 are class K on [0, a), α3 and α4 are class K∞, and β is class KL.

• α−1
1 is class K on [0, α1(a)).

• α−1
3 is class K∞.

• α1 ◦ α2 is class K on [0, a).

• α3 ◦ α4 is class K∞.

• α1(β(α2(r), s)) is class KL.

Example 4.2. Given a locally Lipschitz, class K function α on [0, a), one can construct a class KL
function on [0, a) × [0,∞) by solving the ODE

ż = −α(z), z(t0) = z0

for z0 ∈ [0, a). For example, consider the class K∞ function α(r) = kr where k > 0. Solving

ż = −kz, z(t0) = z0

gives

z(t) = z0e
−k(t−t0).

The function σ(r, s) = re−ks is class KL.
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The next lemma demonstrates the connection between positive definite functions and comparison

functions.

Lemma 4.1. Let V (x) be continuous and positive definite in a ball Br ⊂ R
n. Then there exist

locally Lipschitz, class K functions α1 and α2 on [0, r) such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

for all x ∈ Br. Moreover, if V (x) is defined on all of R
n and is radially unbounded, then there exist

class K∞ functions α1 and α2 such that the above inequality holds for all x ∈ R
n.

An example that demonstrates these features can be drawn from the linear time-invariant system

analysis that we presented in the previous lecture, by considering the Lyapunov function V (x) = x⊤Px

that verifies

λmin(P )||x||2 ≤ x⊤Px ≤ λmax(P )||x||2 .

Obviously the left and right hand side of this inequality are class K∞ functions of ||x||. Another

important observation is that while Lyapunov functions are always defined on R
n or [0,∞)×R

n, where

n is the dimension of the state vector, so that V : [0,∞) × R
n → R, the comparison functions are

defined to map at most R
2 → R, i.e. are not related to the dimension of the state vector (they are not

a function of vector argument).

These observations suggest that the stability definitions and theorems can be re-worded in terms

of class K and KL functions. Let’s look into the time-invariant case first. In the proof of Theorem

2.1, we needed to choose β and δ such that Bδ ⊂ Ωβ ⊂ Br so that a solution starting from ||x(0)|| ≤ δ

verifies ||x(t)|| ≤ ǫ for all t ≥ 0 to comply with the definition of stability at the origin. Now we know

that a positive definite function V (x) satisfies

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) , (33)

where αi(·) are class K functions. So, let’s choose β ≤ α1(r), where r < ǫ, and choose δ ≤ α−1
2 (β).

Then from (33) we have

||x0|| ≤ δ ⇒ V (x0) ≤ α2(δ) ≤ β

and V (x) ≤ β implies

α1(||x||) ≤ V (x) ≤ V (x0) ≤ β ≤ α1(r) ⇒ α1(||x||) ≤ α1(r) ⇔ ||x|| ≤ r .
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In the same proof we wanted to show that when V̇ (x(t)) is negative definite, then the solution tends

to zero as t → ∞. Since V̇ (x(t)) is negative definite, then there exists a class K function α3

such that V̇ (x) ≤ −α3(||x||). Further, V (x) ≤ α2(||x||) implies that α−1
2 (V (x)) ≤ ||x||, and hence

α3(α
−1
2 (V (x))) ≤ α3(||x||), which leads to −α3(||x||) ≤ −α3(α

−1
2 (V (x))). Hence V̇ ≤ −α3(α

−1
2 (V )).

Comparison lemma then states that V (t) is bounded by the solution of a scalar differential equation

ẏ = −α3(α
−1
2 (y)), y(0) = V (x(0)) .

From the properties of class K functions we know that α3 ◦α−1
2 is a class K function, while Example 4.2

demonstrated that the solution of ẏ = −α3(α
−1
2 (y)) should be class KL function, i.e. y(t) = β(y(0), t),

and β is class KL. Consequently, V (x(t)) ≤ β(V (x(0)), t), which shows that V (x(t)) goes to zero as

t→ ∞. Moreover, taking this viewpoint of revising the results of Theorem 2.1, we can give the rates of

convergence and get further insights into the notion of exponential stability. Indeed, V (x(t)) ≤ V (x(0))

implies

α1(‖x(t)‖) ≤ V (x(t)) ≤ V (x(0)) ≤ α2(‖x(0)‖) ,

which leads to the following obvious upper bound

||x(t)|| ≤ α−1(α2(||x(0)||))

where α−1
1 ◦ α2 is a class K function. This is the stability. On the other hand V (x(t)) ≤ β(V (x(0)), t)

implies that α1(||x(t)||) ≤ V (x(t)) ≤ β(V (x(0)), t) ≤ β(α2(||x(0)||, t) , which leads to ||x(t)|| ≤
α−1

1 (β(α2(||x(0)||, t)), where α−1
1 (β(α2(r), t)) is a class KL function, implying asymptotic stability.

It is straightforward to see that if α1(||x||) = k1||x||p and α2(||x||) = k2||x||p with obviously k2 > k1,

then the derivations above imply exponential stability.



69

4.2 Lyapunov stability theorem for nonautonomous systems.

Before stating verifiable sufficient conditions for stability theorems for nonautonomous systems, we

give a lemma establishing necessary and sufficient conditions for stability of equilibria of nonautonomous

systems in terms of class K and KL functions.

Lemma 4.2. The equilibrium point x = 0 for the system (32) is

• uniformly stable if and only if there exist a class K function α(·) and a constant c > 0, independent

of t0, such that

‖x(t)‖ ≤ α(‖x(t0)‖), ∀ t ≥ t0 ≥ 0 and ‖x(t0)‖ < c. (34)

• uniformly asymptotically stable if and only if there exist a class KL function β(·, ·) and a constant

c > 0, independent of t0, such that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀ t ≥ t0 ≥ 0 and ‖x(t0)‖ < c. (35)

• globally uniformly asymptotically stable if it is uniformly asymptotically stable and (35) holds for

any x(t0).

Remark 4.1. If in the definition of uniform asymptotic stability β(·, ·) takes the form β(r, s) =

kre−λs, then one recovers the definition of exponential stability.

Theorem 4.1. [Lyapunov’s Stability Theorem for Nonautonomous Systems.] Consider the sys-

tem (32) with an equilibrium at the origin. Let V : [0,∞) × D → R be a continuously differentiable

function such that

W1(x) ≤ V (t, x) ≤W2(x) (36)

∂V

∂t
+
∂V

∂x
f(x, t) ≤ 0 (37)

for all t ≥ 0 and x ∈ D, where W1 and W2 are continuous and positive definite. Then x = 0 is

uniformly stable.
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If the assumption in (37) can be verified as

∂V

∂t
+
∂V

∂x
f(x, t) ≤ −W3(x) , (38)

whereW3 is a continuous and positive definite function in D, then x = 0 is uniformly asymptotically stable.

Moreover, letting Br = {x | ||x|| ≤ r} ⊂ D and c < min||x||=rW1(x), every trajectory starting in

{x ∈ Br | W2(x) ≤ c} satisfies

||x(t)|| ≤ β(||x(t0)||, t − t0), ∀ t ≥ t0 ≥ 0

for some class KL function β. If D = R
n, andW1(x) is radially unbounded, then x = 0 is globally uniformly

asymptotically stable.

Finally, if V : [0,∞) ×D → R can be selected to verify

k1‖x‖p ≤ V (t, x) ≤ k2‖x‖p , t ∈ [0,∞), x ∈ D (39)

V̇ (t, x) ≤ −k3‖x‖p , t ∈ [0,∞), x ∈ D (40)

for some positive constants k1, k2, k3, p, where the norm and the power are the same in (39), (40), then

the origin is locally (uniformly) exponentially stable. If V is continuously differentiable for all [0,∞) ×
R
n, and (39), (40) hold for all [0,∞) × R

n, then the origin is globally (uniformly) exponentially stable.

Proof: Uniform Stability: Choose r > 0 small enough that Br ⊂ D and choose c such that

0 < c < α = min
‖x‖=r

W1(x).

Then

Souter = {x ∈ Br |W1(x) ≤ c}

is in the interior of Br. Let

Ωt,c = {x ∈ Br | V (t, x) ≤ c}

and note that Ωt,c ⊆ Souter because V (t, x) ≤ c implies that W1(x) ≤ c. On the other hand,

Sinner = {x ∈ Br |W2(x) ≤ c} ⊆ Ωt,c

because W2(x) ≤ c implies that V (t, x) ≤ c. To recap,

Sinner ⊆ Ωt,c ⊆ Souter ⊂ Br ⊂ D
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Fig. 12 The sets in the proof of stability theorem for non-autonomous systems

for all t ≥ 0. See Figure 12, which is similar to Figure 9 with the only difference that Ωt,c is time-varying.

Now, since V̇ (t, x) ≤ 0 in D, any trajectory x(t) for which x(t0) = x0 ∈ Ωt0,c remains in Ωt,c for

all t ≥ t0. (See Theorem 3.3 in [11].) Thus, any trajectory starting in the (time-invariant) set Sinner

remains in Ωt,c ⊂ Souter for all t ≥ t0. The trajectory is therefore bounded and exists for all t ≥ t0.

We know that there exist locally Lipschitz class K functions α1 and α2 such that

α1(‖x‖) ≤W1(x) ≤ V (t, x) ≤W2(x) ≤ α2(‖x‖).

It follows that

‖x(t)‖ ≤ α−1
1 (V (t, x))

≤ α−1
1 (V (t0, x0)) (since V̇ ≤ 0)

≤ α−1
1 (α2(‖x0‖)).

Because α−1
1 ◦ α2 is class K, it follows from Lemma 4.2 that the origin is uniformly stable.

Uniform Asymptotic Stability: In the case where W3 is positive definite in D, there exists a locally

Lipschitz class K function α3 such that

W3(x) ≥ α3(‖x‖).
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We therefore have

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) and V̇ ≤ −α3(‖x‖)

It follows that α−1
2 (V (t, x)) ≤ ‖x‖, and hence α3(α

−1
2 (V )) ≤ α3(‖x‖), which upon sign reversal leads

to

V̇ ≤ −α3(‖x‖) ≤ −α3(α
−1
2 (V )) =: −α(V )

where α = α3 ◦ α−1
2 is class K and can be assumed to be locally Lipschitz without loss of generality.

By the comparison lemma, one finds that for any V (t0, x0) ∈ [0, c]

V (t, x) ≤ σ(V (x(t0), t0), t− t0) ≤ σ(α2(‖x(t0)‖), t − t0)

where σ(r, s) is class KL. It follows that any solution starting in {x ∈ Br | W2(x) ≤ c} satisfies

‖x(t)‖ ≤ α−1
1 (V (t, x(t))) ≤ α−1

1 (σ(α2(‖x(t0)‖), t − t0)) =: β(‖x(t0)‖, t− t0) (41)

where β is class KL. This implies that x = 0 is uniformly asymptotically stable.

Global Uniform Asymptotic Stability: Global uniform asymptotic stability follows from the assump-

tion that W1(x) is radially unbounded. Indeed, in that case c can be chosen arbitrary large to include

any initial state in {W2(x) ≤ c}. Then (41) can be proven for any initial state, assuming that α1, α2, α3

are also defined on [0,∞) and hence are independent of c.

Exponential Stability: The set {W2(x) ≤ c} reduces to {k2||x||p ≤ c}. The conditions in (39), (40)

imply that

V̇ (t, x) ≤ −k3

k2
V (t, x).

Application of comparison lemma leads to the following upper bound

V (t, x) ≤ V (x(t0), t− t0)e
− k3

k2
(t−t0)

.

And since k1‖x‖p ≤ V (t, x), we find that

‖x(t)‖ ≤
(

1

k1
V (x(t0), t− t0)e

− k3
k2

(t−t0)
) 1

p

(42)

≤
(
k2

k1
‖x(t0)‖pe−

k3
k2

(t−t0)
) 1

p

(43)

= ‖x(t0)‖
(
k2

k1
e
− k3

k2
(t−t0)

) 1

p

, (44)
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proving exponential stability.

Global Exponential Stability: If the assumptions hold globally, then c can be chosen arbitrary large

to imply global exponential stability.

Example 4.3. Let’s prove that the origin of the scalar system

ẋ = −(1 + sin2(t))x3

is globally uniformly asymptotically stable. Consider the following candidate Lyapunov function

V (x) = 1
2x

2. Then

V̇ = −(1 + sin2(t))x4 ≤ −x4.

Thus, letting W1(x) = W2(x) = 1
2x

2 and letting W3(x) = x4, we see that all conditions of the preceding

theorem for global uniform asymptotic stability are satisfied.

Remark 4.2. The example basically demonstrates that there is nothing wrong with the selection

of a time-invariant Lyapunov function for a time-varying system to prove stability. All one has to

ensure that the conditions of Theorem 4.1 are satisfied.

Example 4.4. Now let’s get back to the example with time-varying damping:

ẍ(t) + c(t)ẋ(t) + k0x(t) = 0, x(0) = x10 , ẋ(0) = x20 , (45)

and consider the following positive definite candidate Lyapunov function

V (t, x) =
1

2
(ẋ(t) + αx(t))2 +

1

2
b(t)x2(t) ,

where α <
√
k0 is any positive constant, and b(t) = k0 − α2 + αc(t). Then

V̇ (t) = (α− c(t))ẋ2(t) +
1

2
α(ċ(t) − 2k0)x

2(t) .

Thus, if one requires existence of positive numbers α and β such that c(t) > α > 0 and ċ(t) ≤ β < 2k0,

then V̇ (t) will be negative semidefinite leading to stability of the origin. If, in addition, one requires c(t)
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to be upper bounded (guaranteeing decrescence of V ), the above requirements will lead to asymptotic

stability.

In fact, in [15] the assumption on the upper boundedness of c(t) has been relaxed. The system

ẍ+ (2 + 8t)ẋ+ 5x = 0 is shown to have an asymptotically stable equilibrium point at the origin.

Finally, let’s see what is required for the linear time-varying system to have an exponentially stable

origin.

Theorem 4.2. A linear time-varying system

ẋ(t) = A(t)x(t) , x(t0) = x0

has a globally exponentially stable equilibrium at the origin, if the eigenvalues of the symmetric matrix

A(t) +A⊤(t) remain strictly in the open left-half complex plane for all t ≥ 0:

∃ λ > 0, s.t. ∀ i, ∀ t ≥ 0, λi(A(t) +A⊤(t)) ≤ −λ .

Proof: Indeed, the following Lyapunov function

V (x(t)) = x⊤(t)x(t)

has negative definite derivative

V̇ (x(t)) = x⊤(t)ẋ(t) + ẋ⊤(t)x(t) = x⊤(t)(A(t) +A⊤(t))x(t) ≤ −λx⊤(t)x(t) = −λV (x(t)) ,

so that for all t ≥ 0 one has

0 ≤ x⊤(t)x(t) = V (x(t)) ≤ V (0)e−λt .

Hence, the state converges to zero exponentially with a rate of at least λ/2.

Remark 4.3. First notice that the proof also goes through when A(t) depends explicitly upon the

state as well, like A(t, x(t)). Also, it is a sufficient condition: some systems may fail to verify it, but you

may still be able to prove stability of the origin. (See, for example, Example 4.8 on page 115 in [17].
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4.3 Barbalat’s lemma.

You should recall that for autonomous systems we introduced La-Salle’s principle, which helped us

to claim asymptotic stability for the cases when the derivative of the Lyapunov function was negative

semidefinite only. For time-varying systems, La-Salle’s principle cannot be applied, and instead one

uses Barbalat’s lemma.

In more details, consider the preceding theorem on stability of nonautonomous systems and suppose

it is only known that V̇ (t, x) ≤ 0. Unlike in the time-invariant case, we can not apply La-Salle’s

invariance principle. To do so would require defining a compact, positively invariant set Ω and a set

E = {x ∈ Ω | V̇ = 0}. Because the system is time-varying, however, it is not clear how to define

the set Ω or the set E. (Recall from the proof of the previous stability theorem that the set Ωt,c is

time-varying.)

Barbalat’s lemma provides a tool, which is similar to La-Salle’s principle in a sense that it gives

conditions under which V̇ → 0 and V converges to a constant value, say zero. We might then conclude

that trajectories converge to the set where V = 0. This would tell us something about the behavior

of trajectories, although it would not tell us as much as La-Salle’s principle which says, further, that

trajectories converge to the largest invariant set contained in the set where V = 0.

To illustrate some of the difficulties, consider the following comments based on the discussion in [17].

Consider a differentiable function f(t).

1. If ḟ → 0 as t→ ∞, it does not follow that f converges to a limit. As an example,

f(t) = sin(log t) ⇒ ḟ(t) =
cos(log t)

t
→ 0 as t→ ∞.

2. If f converges to a limit as t→ ∞, it does not follow that ḟ → 0. As an example,

f(t) = e−t sin2(e2t) → 0 as t → ∞,

however

ḟ(t) = 2et sin(2e2t) − e−t sin2(e2t)

does not tend to zero.

3. If ḟ ≤ 0 and f is lower-bounded , then f has a limit as t→ ∞.
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Lemma 4.3. [Barbalat’s Lemma.] If the differentiable function f(t) converges to a finite limit as

t→ ∞ and if ḟ is uniformly continuous, then ḟ → 0 as t→ ∞.

An alternative formulation of Barbalat’s lemma is the following.

Lemma 4.4. [Barbalat’s Lemma.] If f(t) is uniformly continuous for all t ∈ [0,∞), and

lim
t→∞

∫ t

0
f(τ)dτ

exists and is finite, then

f(t) → 0 as t→ ∞ .

Recall that a function f(t) is continuous on [0,∞) if for every t1 ≥ 0 and every ǫ > 0 there exists

a δ(t1, ǫ) > 0 such that

|t− t1| < δ ⇒ |f(t) − f(t1)| < ǫ. (46)

The function is called uniformly continuous on [0,∞) if δ does not depend on t1. That is, a function

is uniformly continuous if, given ǫ > 0, the same δ(ǫ) satisfies (46) at any time t1 ≥ 0. A sufficient

condition for a function to be uniformly continuous is that its derivative be bounded.

Proof: Indeed, assume that f(t) 9 0 as t → ∞. Then there should exist a positive constant

k1 > 0 such that for every T > 0 we can find T1 ≥ T with |f(T1)| ≥ k1. Since f(t) is uniformly

continuous, there is a positive constant k2 such that |f(t + τ) − f(t)| < k1/2 for all t ≥ 0 and all

0 ≤ τ ≤ k2. Hence,

|f(t)| = |f(t) − f(T1) + f(T1)| ≥ |f(T1)| − |f(t) − f(T1)| > k1 −
1

2
k1 =

1

2
k1, ∀ t ∈ [T1, T1 + k2] .

Therefore
∣
∣
∣

∫ T1+k2

T1

f(t)dt
∣
∣
∣ =

∫ T1+k2

T1

|f(t)|dt > 1

2
k1k2 ,

where the equality holds, since f(t) retains the same sign for T1 ≤ t ≤ T1 + k2. Thus,
∫ t
0 f(τ)dτ cannot

converge to a finite limit as t → ∞, which is a contradiction.

Corollary 4.1. If a scalar function V (t, x) satisfies the conditions

• V (t, x) is lower bounded,
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• V̇ (t, x) is negative semidefinite, and

• V̇ (t, x) is uniformly continuous in time,

then V̇ (t, x) → 0 as t→ ∞.

The corollary says that trajectories converge to a set E within which V̇ = 0. This conclusion is

much weaker than La-Salle’s invariance principle; we can not conclude that trajectories converge to

the largest invariant set contained in E.

Example 4.5. Consider the closed-loop adaptive control system for the tracking problem:

ẋ(t) = −x(t) + θ(t)r(t)

θ̇(t) = −x(t)r(t) ,

where x(t) represents the state, θ(t) the adaptive parameter, and r(t) is a reference input. Consider

the quadratic function

V (x(t), θ(t)) =
1

2
x2(t) +

1

2
θ2(t).

Differentiating,

V̇ (t) = x(t)(−x(t) + θ(t)r(t)) + θ(t)(−x(t)r(t)) = −x2(t) ≤ 0

Because of the reference signal r(t), the system is time-varying and we may not use La-Salle’s invariance

principle. To verify uniform continuity of V̇ (t), we check that V̈ (t) = −2x(t)(−x(t) + θ(t)r(t)) is

bounded. First note that, because V (t) is positive definite and nonincreasing, x(t) and θ(t) are bounded:

∥
∥
∥
∥
∥
∥




x(t)

θ(t)





∥
∥
∥
∥
∥
∥

≤ V (0).

Assuming that the reference signal r(t) is also bounded, it follows that V̈ is bounded and therefore

that V̇ is uniformly continuous. It then follows from the previous corollary to Barbalat’s lemma that

x → 0 as t → ∞. Note that we can conclude nothing more about the behavior of θ(t), except that it

is bounded.
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4.4 Linear Time-Varying Systems and Linearization

Next we introduce a couple of theorems specifically for the stability analysis of linear time-varying

systems.

Lemma 4.5. Consider the linear time-varying system

ẋ(t) = A(t)x(t), x(t0) = x0 (47)

that has an equilibrium at x = 0. Let A(t) be continuous for all t ≥ 0. Suppose there exists a

continuously differentiable, symmetric, bounded, positive definite matrix P (t) such that

0 < c1I ≤ P (t) ≤ c2I, ∀ t ≥ 0 , c1 > 0, c2 > 0,

which satisfies the matrix differential equation

−Ṗ (t) = P (t)A(t) +A⊤(t)P (t) +Q(t) , (48)

where Q(t) is continuous, symmetric and positive definite:

Q(t) ≥ c3I > 0, ∀ t ≥ 0, c3 > 0.

Then x = 0 is an exponentially stable equilibrium point for the system.

Proof: Indeed, V (t, x) = x⊤P (t)x verifies

c1||x||2 ≤ V (t, x) ≤ c2||x||2 ,

and its derivative along the system trajectories ẋ(t) = A(t)x(t) verifies

V̇ (t, x) = ẋ⊤P (t)x+ x⊤Ṗ (t)x+ x⊤P (t)ẋ = −x⊤Q(t)x ≤ −c3||x||2 .

Thus, V (t, x) verifies (39), (40), which is required for exponential stability.

The stability of the linear time-varying system in (47) can be completely characterized by its state-

transition matrix. From linear systems theory it is known that the solution to (47) is given by

x(t) = Φ(t, t0)x(t0) ,

where Φ(t, t0) is the state transition matrix.
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Lemma 4.6. The equilibrium x = 0 of (47) is GUAS, if and only if the state transition matrix

satisfies the inequality

||Φ(t, t0)|| ≤ ke−λ(t−t0), ∀ t ≥ t0 ≥ 0

for some positive constants k and λ.

You can read the proof in [11]. Meantime, the key point to notice, is that for linear time-varying

systems uniform asymptotic stability of the origin is equivalent to exponential stability.

Since the knowledge of the state transition matrix requires solving the ODEs, this theorem is not as

useful as the eigenvalue condition for LTI systems (all eigenvalues of A need to lie in open left-half

plane).

Theorem 4.3. Let x = 0 be the exponentially stable equilibrium point of (47). Assume that A(t)

is continuous and bounded. Then for any Q(t), which is continuous, symmetric, bounded and uniformly

positive definite, there exists a continuously differentiable, bounded, positive definite, symmetric matrix

P (t) that satisfies (48). Then V (t, x) = x⊤(t)P (t)x(t) is a Lyapunov function for the system that

satisfies the conditions (39), (40).

Indeed, verification of (39), (40) follows from considering

P (t) =

∫ ∞

t
Φ⊤(τ, t)Q(τ)Φ(τ, t)dτ ,

where Φ(t, t0) is the state transition matrix and using the result of Lemma 4.5.

Finally, we formulate a sufficient condition for local exponential stability of the origin for the

nonlinear time-varying system:

ẋ = f(t, x), x(t0) = x0 . (49)

Theorem 4.4. Let x = 0 be an equilibrium for (49), where f : [0,∞) × Br → R
n is continuously

differentiable, Br = {x ∈ R
n | ||x|| < r}, and the Jacobian ∂f/∂x is bounded and Lipschitz on Br,

uniformly in t. Let

A(t) =
∂f

∂x

∣
∣
∣
x=0

.

Then, the origin is an exponentially stable equilibrium point for the nonlinear system, if it is an
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exponentially stable equilibrium point for the linear system

ẋ(t) = A(t)x(t).

Homework Problems 4.1. Exercises 4.38, 4.39 from [11] need to be solved completely.
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5 Boundedness and Ultimate Boundedness.

[Read [11, p.168]]

To motivate the further derivations, consider the linear scalar system subject to an exogenous input:

ẋ(t) = −x(t) + α sin t, x(t0) = a, a > α > 0 . (50)

The solution is given by:

x(t) = ae−(t−t0) + α

∫ t

t0

e(t−τ) sin τdτ . (51)

The solution can be bounded:

|x(t)| ≤ ae−(t−t0) + α

∫ t

t0

e(t−τ)dτ = ae−(t−t0) + α
[

1 − e−(t−t0)
]

≤ a, ∀ t ≥ t0 , (52)

which shows that the solution is uniformly bounded for all t ≥ t0, uniformly in t0, i.e. with a bound

independent of t0. While this bound is valid for all t ≥ t0, it does not take into consideration the

exponentially decaying term, therefore it is a conservative bound. On the other hand, for any number

b, satisfying α < b < a, the following is true:

|x(t)| ≤ b, ∀t ≥ t0 + ln

(
a− α

b− α

)

(53)

The bound b, which again is independent of t0, gives a better estimate of the solution after a transient

period has passed. In this case, the solution is said to be uniformly ultimately bounded, and b is called

the ultimate bound. Of course, if the solution is bounded, then it is ultimately bounded, and vice

versa.

Properties of system boundedness and ultimate boundedness can be established via Lyapunov

analysis similar to stability, asymptotic/exponential stability. To this end, consider the following

Lyapunov function candidate V = x2/2, and compute its derivative:

V̇ (t) = xẋ = −x2 + xα sin t ≤ −x2 + α|x| (54)

Then V̇ (t) < 0 for all x outside the compact set {|x| ≤ α}. For any c > α2/2, solutions starting in the

set {V (x) ≤ c} will remain therein for all future time, since V̇ (t) < 0 on the boundary V = c. Hence

the solutions are uniformly bounded. Moreover, for any number ε, satisfying α2/2 < ε < c, V̇ (t) will

be negative in the set {ε ≤ V ≤ c}, which shows that in this set V will decrease monotonically until



82

the solution enters the set {V ≤ ε}. From that time on, the solution cannot leave the set {V ≤ ε},
because V̇ (t) < 0 on the boundary V = ε. Therefore, the solution is uniformly ultimately bounded

with ultimate bound |x| ≤
√

2ε, where ε is arbitrary number satisfying ε > α2/2.

Definition 5.1. The solutions of the nonlinear system

ẋ = f(t, x), x(t0) = x0, (55)

where x ∈ D ⊂ R
n is the state of the system, D is an open set containing the origin, and f(t, x) :

R × D → R
n is locally Lipschitz continuous function of its arguments, are

• uniformly bounded if there exists a positive constant γ, independent of t0, such that for every

δ ∈ (0, γ), there is β = β(δ) > 0, independent of t0, such that ‖x0‖ ≤ δ implies ‖x(t)‖ ≤ β, t ≥ t0.

• globally uniformly bounded if for every δ ∈ (0,∞), there is β = β(δ) > 0, independent of t0, such

that ‖x0‖ ≤ δ implies ‖x(t)‖ ≤ β, t ≥ t0.

• uniformly ultimately bounded with ultimate bound b > 0 if there exists γ > 0 such that, for every

δ ∈ (0, γ), there exists T = T (δ, b) > 0 such that ‖x0‖ ≤ δ implies ‖x(t)‖ ≤ b, t ≥ T .

• globally uniformly ultimately bounded, if for every δ ∈ (0,∞), there exists T = T (δ, b) > 0 such

that ‖x0‖ < δ implies ‖x(t)‖ < b, t ≥ T .

The main difference of this definition from the definition of stability, is that ε is not required to be

arbitrarily small! In the definition of stability, we start by arbitrarily small ε and require existence of

δ(ε). A system that is ultimately bounded is not necessarily Lyapunov stable.

In case of autonomous systems the word “uniformly” can be dropped, since the solution depends

only upon t− t0.

To apply Lyapunov analysis for the study of boundedness and ultimate boundedness, consider a

continuously differentiable, positive definite Lyapunov function candidate V (x) and the set Λ, Fig. 13:

Λ = {ε ≤ V (x) ≤ c}, ε ≤ c . (56)

For simplicity of the analysis below, we consider here a more limited class of time-invariant Lyapunov

functions V (x), as opposed to a more general structure V (t, x) associated with the non-autonomous
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system in (55) in all our previous theorems. This is only done for the sake of simplifying the intro-

duction of new concepts. Extension to more general class of Lyapunov functions V (t, x) follows in

straightforward manner as previously done for stability proofs.

Suppose that along the trajectories of the system (55) we have

V̇ (x) ≤ −W (x), ∀ x ∈ Λ, ∀ t ≥ t0 , (57)

where W (x) is a continuous positive definite function. Inequality (57) implies that the sets Ωc =

{V (x) ≤ c} and Ωε = {V (x) ≤ ε} are positively invariant, since on the boundaries ∂Ωc and ∂Ωε the

derivative is negative, V̇ (t) < 0. While in Λ, the conditions of the theorem on uniform asymptotic

stability ( [11], Theorem 4.8, 4.9) are satisfied, therefore

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) (58)

for some class KL function β. The function V (x(t)) is decreasing in Λ until the trajectory enters Ωε in

finite time. To show that the trajectory enters Ωε in finite time and stays therein for all future time,

consider the minimum k = min
x∈Λ

W (x) > 0. The minimum exists because W (x) is continuous and Λ is

compact. Hence,

W (x) ≥ k, x ∈ Λ . (59)

Thus, it follows from (57) that

V̇ (x) ≤ −k, ∀ x ∈ Λ, ∀ t ≥ t0 . (60)

Therefore

V (x(t)) ≤ V (x(t0)) − k(t− t0) ≤ c− k(t− t0) , (61)

which shows that V (x(t)) reduces to ε within the finite time interval [t0, t0 + (c− ε)/k].

It is the case in many of the proofs that the inequality (57) is being presented rather through norm

inequalities than through definition of the set Λ, as we will see in the forthcoming argument:

V̇ (t, x) ≤ −W (x), ∀ x : µ ≤ ‖x‖ ≤ r, ∀ t ≥ t0 . (62)

Assume that r is sufficiently large in comparison to µ, so that one can choose c and ε such that the set

Λ is non-empty and contained in {µ ≤ ‖x‖ ≤ r}. Let α1 and α2 be class K class functions s.t.

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) . (63)
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Fig. 13 Geometric Representation of the Sets in the Space of Variables.

From the left inequality of (63), we have

V (x) ≤ c ⇒ α1(‖x‖) ≤ c ⇔ ‖x‖ ≤ α−1
1 (c) . (64)

Therefore taking c = α1(r) ensures that Ωc ⊂ Br = {x : ‖x‖ ≤ r}. On the other hand, from the right

inequality of (63), we have

‖x‖ ≤ µ ⇒ V (x) ≤ α2(µ) . (65)

Consequently, taking ε = α2(µ) ensures that Bµ ⊂ Ωε, Bµ = {x : ‖x‖ ≤ µ}. To ensure ε < c, one

needs to take µ < α−1
2 (α1(r)).

Thus, when the (57) is given via norm bounds on x, like in (62), instead of level sets of Lyapunov

function, one needs to define the maximum level set of the Lyapunov function that lies inside the outer

ball, and the minimum level set of the Lyapunov function lying outside the inner ball, and the set Λ is

the one in between. Then it is easy to show that all the trajectories starting in Ωc enter Ωε within a

finite time T . Notice that if the trajectory starts in Ωε, then T = 0.

Indeed, from (65) and (63) it follows that

V (x) ≤ ε ⇒ α1(‖x‖) ≤ ε ⇔ ‖x‖ ≤ α−1
1 (ε) (66)

Since ε = α2(µ), then

x ∈ Ωε ⇔ ‖x‖ ≤ α−1
1 (α2(µ)) (67)

Therefore the ultimate bound can be taken as b = α−1
1 (α2(µ)).
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The above considerations lead to the following statement of sufficient conditions for uniform ultimate

boundedness and ultimate boundedness that we formulate for general Lyapunov function V (t, x).

Theorem 5.1. [11] Consider the nonlinear system (55). Let D be a domain that contains the

origin and V : [0,∞) × D → R be a continuously differentiable function, α1(·) and α2(·) be class K
functions, and W : D → R be a positive-definite function such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), x ∈ D ⊂ R
n, (68)

V̇ (t, x) ≤ −W (x), x ∈ D ⊂ R
n, ‖x‖ > µ, (69)

where

µ < α−1
2 (α1(r)) , (70)

and r is the radius of the ball Br = {x : ‖x‖ ≤ r} ⊂ D. Then there exists a class KL function β such

that for every initial state x(t0), satisfying ‖x(t0)‖ ≤ α−1
2 (α1(r)) there is T ≥ 0 (dependent on x(t0)

and µ) such that the solution of (55) satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t0 ≤ t ≤ t0 + T (71)

‖x(t)) ≤ α−1
1 (α2(µ)), ∀t ≥ t0 + T (72)

Moreover, if D = R
n and α1 belongs to class K∞, then (71) and (72) hold for any initial state x(t0) no

matter how large is µ, i.e. the results are global.

The proof is similar to the proofs of stability, asymptotic stability and can be found in [11].

Theorem 5.1 requires existence of a positive definite Lyapunov function, having a negative definite

derivative outside a compact set, to ensure boundedness of the system trajectories. Notice that it

is important to have the compact set defined in the space of the entire argument of the Lyapunov

function! If the system dynamics is given by

ẋ1 = f1(x1, x2) (73)

ẋ2 = f2(x1, x2) , (74)

then the derivative of a possible Lyapunov function candidate V (x1, x2) should satisfy

V̇ (t) < 0 ∀ ‖x‖ > µ , (75)
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where x =
[

x1 x2

]

. If one obtains by the end of the proof

V̇ (t) < 0 ∀ ‖x1‖ > µ , (76)

which defines a stripe along the x2 axis in the space of (x1, x2), then practically x2 is allowed to escape

to infinity along that axis and can destabilize the system. This requires to be especially careful when

doing proofs on boundedness as opposed to stability. The proofs on stability in the previous sections

ended with V̇ (t) = −e⊤Qe < 0, which was negative semidefinite in the space of the variables (e, θ)

originally defining the Lyapunov function V (e, θ), therefore the solutions were Lyapunov stable, no

matter that the last expression in V̇ (t) was independent of the parameter errors. Loss of the negative

square of one of the variables in V̇ (t) expression was taking away the option of claiming asymptotic

stability, which we were able to recover with the help of La Salle’s principle or Barbalat’s lemma. But

at least we had the stability guaranteed!!!

The proofs on ultimate boundedness require to have the negative squares of all the variables by the

end in the V̇ (t) expression, to ensure the existence of a compact set. Loss of the negative square

of one of the variables in V̇ (t) expression can lead to a much worse situation (destabilization), like we

observed during parameter drift. Lack of one of the negative squares takes away the opportunity to

define the compact level sets and balls in the proof, and thus the validity of the claims leading to the

main statement.

An alternative is the Proj(·, ·) operator that guarantees the boundedness of the parameter errors

by definition of the adaptive law. Other modifications include e-modification and σ-modification of

adaptive laws that we will introduce in systematic manner, one after another.
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6 Converse Lyapunov Theorems

Until now, we have presented stability theorems, requiring existence of a Lyapunov function V (t, x)

that would verify certain (sufficient) conditions for the given system dynamics. In every case, we had

to search for a candidate Lyapunov function with certain properties. Now we would like to pose and

answer the inverse question: when does such a function exist and how to find it? The answer to this

is given by converse Lyapunov theorems. Converse Lyapunov theorems prove existence of a Lyapunov

function for stable systems and characterize some of its properties. Some of the converse theorems

give even a constructive answer, but these constructive answers depend upon the actual solution of the

system, and therefore in most of the cases these are not useful for practical analysis. First, we give the

converse theorem for exponentially stable systems.

Theorem 6.1. Let x = 0 be an equilibrium point for the nonlinear system

ẋ(t) = f(t, x(t)) , x(t0) = x0 , (77)

where f : [0,∞) × Br → R
n is continuously differentiable, Br = {x ∈ R

n | ||x|| < r}, and the Jacobian

matrix ∂f/∂x is bounded on Br, uniformly in t. Let k, λ and r0 be positive constants with r0 < r/k.

Let B0 = {x ∈ R
n | ||x|| < r0}. Assume that the trajectories of the system satisfy

||x(t)|| ≤ k||x(t0)||e−λ(t−t0), ∀ x(t0) ∈ B0, ∀ t ≥ t0 ≥ 0 . (78)

Then, there exists a function V : [0,∞) × B0 → R that satisfies

c1||x||2 ≤ V (t, x) ≤ c2||x||2 (79a)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −c3||x||2 (79b)

∥
∥
∥
∂V

∂x

∥
∥
∥ ≤ c4||x|| (79c)

for some positive constants c1, c2, c3, c4. Moreover, if r = ∞, and the origin is GES (globally exponen-

tially stable), then V (t, x) is defined and satisfies the aforementioned inequalities on R
n. Furthermore,

if the system is autonomous, V can be chosen independent of t.

Proof: Let φ(t; t0, x0) be the unique solution corresponding to (t0, x0) initial condition, and

let φ(τ ; t, x) denote unique solution starting at (t, x) so that φ(t; t, x) = x. For all x ∈ B0 we have
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φ(τ ; t, x) ∈ Br for all τ ≥ t. Let

V (t, x) =

∫ t+δ

t
φ⊤(τ ; t, x)φ(τ ; t, x)dτ ,

where δ > 0 is a design constant to be yet selected. From (78) it follows that the trajectories are

exponentially decaying, which can be used to upper bound φ(τ ; t, x) in V (t, x) as follows:

V (t, x) ≤
∫ t+δ

t
k2e−2λ(τ−t)dτ ||x||2 =

k2

2λ
(1 − e−2λδ)||x||2 .

On the other hand, since the Jacobian is bounded on Br, then

||f(t, x)|| ≤ L||x||,

where L is the uniform bound for the Jacobian on Br. This leads to the following lower bound

||φ(τ ; t, x)|| ≥ ||x||2e−2L(τ−t) ,

which can be used to arrive at

V (t, x) ≥ 1

2L
(1 − e−2Lδ)||x||2 .

It remains only to notice that one can choose

c1 =
1

2L
(1 − e−2Lδ) , c2 =

k2

2λ
(1 − e−2λδ) ,

to verify (79a).

The inequality in (79b) can be verified by explicitly computing dV
dt = ∂V

∂t + ∂V
∂x f(t, x), and choosing

δ = ln(2k2)
2λ and c3 = 1

2 for upper bounding.

The inequality in (79c) can be verified by explicitly computing ∂V
∂x and choosing c4 = 2k

(λ−L)(1 −
e−(λ−L)δ) for upper bounding.

If all assumptions hold globally, then clearly r0 can be chosen arbitrarily large. If the system is

autonomous, then φ(τ ; t, x) depends only on (τ − t), i.e.

φ(τ ; t, x) = ψ(τ − t;x) .

Then

V (t, x) =

∫ t+δ

t
ψ⊤(τ − t;x)φ(τ − t;x)dτ =

∫ δ

0
ψ⊤(s;x)φ(s;x)ds ,

which is obviously independent of t.
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You are highly advised to read the detailed proof from [11].

Remark 6.1. We proved the theorem by explicit construction of the Lyapunov function, as an

integral of the square of system’s trajectory. We notice that the exponentially stable solution led to

upper and lower bounds for V (t, x) and V̇ (t, x) in terms of powers of the system state.

Theorem 6.1 can be used to prove Lyapunov’s indirect method in an elegant way.

Theorem 6.2. Let x = 0 be an equilibrium point for the nonlinear system (77), where f : [0,∞)×
Br → R

n is continuously differentiable, Br = {x ∈ R
n | ||x|| < r}, and the Jacobian matrix ∂f/∂x is

bounded and Lipschitz on Br, uniformly in t. Let

A(t) =
∂f

∂x
(t, x)

∣
∣
∣
x=0

.

Then, x = 0 is an exponentially stable equilibrium point for the nonlinear system if and only if it is an

exponentially stable equilibrium point for the linear time-varying system:

ẋ(t) = A(t)x(t) .

Proof: IF: The IF part follows from Theorem 4.4.

ONLY IF: To prove the ONLY IF part, notice that the linearized system can be equivalently

represented as:

ẋ(t) = A(t)x(t) = f(t, x) − (f(t, x) −A(t, x))
︸ ︷︷ ︸

g(t,x)

,

where g(t, x) lumps the higher order terms, truncated during the linearization:

f(t, x) = A(t)x+ g(t, x) ,

and can be upper bounded

||g(t, x)|| ≤ L||x||2, ∀ t ≥ 0, ∀ x ∈ Br .

Read [11], pages 160-161, on linearization of functions of vector argument and the corresponding upper

bounding.
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Since the origin is an exponentially stable equilibrium of the nonlinear system, there exist positive

constants such that

||x(t)|| ≤ k||x(t0)||e−λ(t−t0), ∀ t ≥ 0, ∀ ||x(t0)|| ≤ c .

Choosing r0 < min{c, r/k}, we notice that all the conditions of Theorem 6.1 are satisfied. Then, there

exists a Lyapunov function V (t, x) that verifies the claims of Theorem 6.1. Let’s compute

V̇ (t, x(t)) =
∂V

∂t
+
∂V

∂x
A(t)x(t) =

∂V

∂t
+
∂V

∂x
f(t, x) − ∂V

∂x
g(t, x) .

Using conditions (79b) and (79c), and the upper bound from ||g(t, x)|| ≤ L||x||2, we can further derive

the following local upper bound:

V̇ (t, x(t)) ≤ −c3||x||2 + c4L||x||3 < −(c3 − c4Lρ)||x||2, ∀ ||x|| < ρ .

Choosing ρ < min{r0, c3/(c4L)} will ensure that V̇ (t, x) is negative definite in ||x|| < ρ. Thus, all

the conditions (39), (40) are satisfied locally, and therefore the origin is a locally exponentially stable

equilibrium for the linear time-varying system.

Corollary 6.1. Let x = 0 be an equilibrium point of the nonlinear system ẋ = f(x), where f(x)

is continuously differentiable in some neighborhood of x = 0. Let

A =
∂f

∂x

∣
∣
∣
x=0

.

Then, x = 0 is an exponentially stable equilibrium point for the nonlinear system if an only if A is

Hurwitz.

Example 6.1. Recall Example 1.4, where we had

ẋ(t) = −x3(t) .

Linearization of this system around the origin results in the linear system ẋ = 0, whose A matrix is

not Hurwitz. From Theorem 6.2 we conclude that the origin is not exponentially stable, although

it is asymptotically stable as it can be verified via the candidate Lyapunov function V = x4 using

Lyapunov’s direct method. Indeed V̇ = 4x3ẋ = −4x6 < 0, ∀ x 6= 0.
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The converse theorems on local uniform asymptotic stability for time-varying systems and global asymp-

totic stability for time-invariant systems have more involved proofs, and therefore we will present them

without the proofs, emphasizing the key features and differences from the one on exponential stability.

Theorem 6.3. Let x = 0 be an equilibrium point for the nonlinear system (77), where f : [0,∞)×
Br → R

n is continuously differentiable, Br = {x ∈ R
n | ||x|| < r}, and the Jacobian matrix ∂f/∂x is

bounded on Br, uniformly in t. Let β be a class KL function and r0 be a positive constant such that

β(r0, 0) < r. Let B0 = {x ∈ R
n | ||x|| < r0}. Assume that the origin is a uniformly asymptotically

stable equilibrium point, i.e. the trajectories of the system satisfy

||x(t)|| ≤ β(||x(t0)||, t − t0), ∀ x(t0) ∈ B0, ∀ t ≥ t0 ≥ 0 .

Then there is a continuously differentiable function V : [0,∞)×B0 → R that satisfies the inequalities

α1(||x||) ≤ V (t, x) ≤ α2(||x||) (80a)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α3(||x||) (80b)

∥
∥
∥
∂V

∂x

∥
∥
∥ ≤ α4(||x||) , (80c)

where α1, α2, α3, α4 are class K functions defined on [0, r0]. If the system is autonomous, V can be

chosen independent of t.

Remark 6.2. In fact, the assumption on continuous differentiability of f(t, x) can be relaxed to

locally Lipschitz condition, and the interested reader is referred to [25] on this (Theorem 14 in that

reference). A theorem on global uniform asymptotic stability is summarized in Theorem 23 in [25].

Theorem 6.4. Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(x),

where f : D → R
n is locally Lipschitz, and D is a domain that contains the origin. Let Ω ∈ D be the

region of attraction of x = 0. Then there is a continuously differentiable positive definite function V (x)
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and a continuous positive definite function W (x), both defined for all x ∈ Ω, such that

V (x) → ∞, as x→ ∂Ω (81a)

∂V

∂x
f(x) ≤ −W (x), ∀ x ∈ Ω, (81b)

and for any c > 0, {V (x) ≤ c} is a compact subset of Ω. When Ω = R
n, V (x) is radially unbounded.
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7 Model Reference Adaptive Control

A model-reference adaptive control (MRAC) system can be schematically represented by Fig. 14.

It is composed of four parts: a system containing unknown parameters, a reference model for specifying

Fig. 14 MRAC

the desired output of the control system, a feedback control law containing adjustable parameters, and

an adaptation mechanism for updating the adjustable parameters.

The system is assumed to have a known structure with unknown parameters.

The reference model is used to specify the ideal response of the adaptive control system to the

external command. It defines the ideal system behavior that the adaptation mechanism should seek in

adjusting the parameters. The choice of the reference model is a part of the adaptive control system

design. The choice has to satisfy two requirements: i) it should reflect the performance specification

in the control objective, like rise time, settling time, overshoot, etc. ii) it should be achievable for the

adaptive control system with its structural characteristics, like its order, relative degree of the regulated

outputs, etc.

The controller is usually parameterized by a number of adjustable parameters. The controller

should have perfect tracking capacity. That is, when the system parameters are exactly known, the

corresponding controller parameters should make the system output identical to that of the reference

model. When the system parameters are not known, the adaptation mechanism will adjust the con-

troller parameters so that perfect tracking is asymptotically achieved. If the control law is linear in
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terms of adjustable parameters, it is said to be linearly parameterized.

The adaptation mechanism is used to adjust the parameters in the control law. The objective of the

adaptation is to make the tracking error converge to zero. Main difference from the conventional control

lies in the structure of this mechanism. The main issue is to synthesize an adaptation mechanism which

will guarantee that the control system remains stable and the tracking error converges to zero as the

parameters are varied. Adaptation law is not necessarily uniquely defined.

7.1 Direct and Indirect MRAC

There are two ways of thinking about the adaptation law, known as direct MRAC and indirect

MRAC. Direct MRAC directly adjusts the controller parameters, while indirect MRAC estimates the

plant parameters and uses those for control design. To get better insight into each of these schemes,

let’s first look at conventional Model Reference Control (MRC) without adaptation, i.e. for known

linear systems that can be represented via transfer functions, Fig. 15.
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Fig. 15 Model Reference Control

Here G(s, θ∗p) represents the transfer function of the linear system, where θ∗p are the coefficients of

it, while C(s, θ∗c) is the linear controller that via the choice of θ∗c needs to achieve asymptotic tracking

of e(t) to zero, where e(t) represents the tracking error between the system output y(t) and the output

ym(t) of the desired reference model Wm(s, θm). The desired reference model Wm(s, θm) is selected in

a way that achieves tracking of the reference input r(t) with desired transient characteristics (rise time,

settling time, overshoot, etc.). So, in general, one tries to choose a law

θ∗c = F (θ∗p, θm) ,

so that to achieve
y(s)

r(s)
=
ym(s)

r(s)
.
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Of course, to achieve this, G(s, θ∗p) and Wm(s, θm) have to satisfy certain type of matching assumptions:

G(s, θ∗p) must be controllable and Wm(s, θm) must be “achievable” for G(s, θ∗p) via some control law.

When the plant parameters θ∗p are unknown, then there are two ways to go. The first and straight-

forward one is called indirect adaptive control, which estimates θ∗p at every time instant to have θp(t)

and uses it in the same non-adaptive control law (see Fig.16) to arrive at

θc(t) = F (θp(t), θm) .
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Fig. 16 Indirect Model Reference Adaptive Control

The second path is called direct adaptive control, which uses direct estimates of the controller

parameters. For that the system is first being parameterized in terms of controller parameters to

get

G(s, θ∗p) = G(s, F−1(θ∗c , θm)) = G(s, θm, θ
∗
c ) .

Then, an adaptive law is developed to estimate θc(t), Fig. 17.

While for linear systems with unknown parameters, in the context of MRC, direct and indirect

MRAC can be shown to be equivalent, for systems that cannot be written in parametric structure

indirect adaptive control is often the only approach that can be used.

7.2 Proportional Integral Control as the Simplest Possible Adaptive Scheme

Adaptive Control is a generalization of the well-known integral control from linear systems theory.

If you recall, integral control is being introduced to remove the steady-state error. Let’s now look into
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Fig. 17 Direct Model Reference Adaptive Control

this argument from the perspective of adaptive control. Consider the following scalar system

ẋ(t) = x(t) + θ + u(t), x(0) = x0 , (82)

where θ is an unknown constant. The control objective is to determine a control law u(x, t) such that

x(t) converges to zero as t→ ∞ for any given initial condition, or otherwise saying that achieves GAS

of the origin.

Let’s follow the philosophy of direct MRAC and obtain parametrization of the unknown system in

terms of the controller parameter and estimate it online. If we knew θ, we would design

u∗(t) = −2x(t) − θ ,

to achieve stabilization. Since we do not know θ, we design the controller to be

u(t) = −2x(t) − θ̂(t) , (83)

where θ̂(t) is the estimate of θ, which leads to the following closed-loop system

ẋ(t) = −x(t) − θ̃(t), x(0) = x0 , (84)

where θ̃(t) = θ̂(t) − θ. Let’s look at the following Lyapunov function candidate

V (x(t), θ̃(t)) =
1

2
x2(t) +

1

2γ
θ̃2(t) ,

where γ > 0 is any positive number defining the adaptation rate. Taking the time derivative leads to

V̇ (x(t), θ̃(t)) = x(t)ẋ(t) +
1

γ
θ̃(t) ˙̃θ(t) = x(t)(−x(t) − θ̃(t)) +

1

γ
θ̃(t) ˙̃θ(t) .
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We observe that if we select the following adaptation law

˙̂
θ(t) = ˙̃θ(t) = γx(t) , θ(0) = θ0 , (85)

then using (84) and (85)

V̇ (x(t), θ̃(t)) = −x2(t) ≤ 0 .

Since V̇ (x(t), θ̃(t)) = 0 for all x = 0, i.e. for an entire line in the (x, θ̃) space and not just at the

origin (x, θ̃) = (0, 0), then it is negative semidefinite. To prove GAS of the origin for the system

dynamics recall application of La-Salle’s invariance principle, Example 2.9, and notice that in this case

you can get θ̃(t) → 0 as t → ∞. We basically demonstrated how to select an adaptive law to achieve

stabilization at the origin. If we substitute (85) into (83), we see that the latter is nothing else than

the well-known PI control from linear systems theory:

u(t) = −2x(t) − γ

∫ t

0
x(τ)dτ , (86)

that you are used to implementing for removing the steady state error caused by unknown constant θ

in (82). Now you saw the Lyapunov perspective for it. It all collapsed to linear PI control, because the

unknown constant θ in (82) was not multiplying the system state!

7.3 Adaptive Stabilization

Now let’s look at the following scalar system

ẋ(t) = ax(t) + u(t), x(0) = x0 ,

where the unknown constant a is multiplying the system state. The control objective is to determine

a control law u(x, t) such that x(t) converges to zero as t → ∞ for any given initial condition, or

otherwise saying that achieves GAS of the origin.

Let’s follow the philosophy of direct MRAC and obtain parametrization of the unknown system in

terms of the controller parameter and estimate it online. So, let’s assume that the controller has the

conventional linear structure

u(t) = −k∗x(t) ,

that achieves the desired pole placement, i.e. a − k∗ = am, and am < 0. Since we do not know a, we

cannot compute k∗. But we can write the system dynamics equivalently

ẋ(t) = ax(t) − k∗x(t) + k∗x(t) + u(t) , x(0) = x0 .
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So, if we want a− k∗ = am, then this is equivalent to

ẋ(t) = amx(t) + k∗x(t) + u(t) , x(0) = x0 .

Now, we want to have a control law that estimates k∗ online. So, let’s consider

u(t) = −k(t)x(t)

and substitute it into the system dynamics:

ẋ(t) = amx(t) − k̃(t)x(t) , x(0) = x0 , (87)

where k̃(t) = k(t) − k∗. Now we have to come up with an adaptive law to determine k(t) in a way so

that to achieve x(t) → 0 as t→ ∞. Before then, notice that since k∗ = const, then

k̃(t) = k(t) − k∗ ⇒ ˙̃
k(t) = k̇(t)

Let’s look at the following Lyapunov function candidate

V (x(t), k̃(t)) =
1

2
x2(t) +

1

2γ
k̃2(t) ,

where γ > 0 is any positive number. Taking the time derivative leads to

V̇ (x(t), k̃(t)) = x(t)ẋ(t) +
1

γ
k̃(t) ˙̃k(t) = x(t)(amx(t) − k̃(t)x(t)) +

1

γ
k̃(t) ˙̃k(t) .

We observe that if we select the following adaptation law

k̇(t) =
˙̃
k(t) = γx2(t) , k(0) = k0 , (88)

then

V̇ (x(t), k̃(t)) = amx
2(t) ≤ 0 ,

since am < 0. In (88), γ is called adaptation rate. Since V̇ (x(t), k̃(t)) = 0 for all x = 0, i.e. for an entire

line in the (x, k̃) space and not just at the origin (x, k̃) = (0, 0), then it is negative semidefinite. To

prove GAS of the origin for the system dynamics recall application of La-Salle’s invariance principle,

Example 2.9. We basically demonstrated how to select an adaptive law to achieve stabilization at the

origin. Of course, this selection of the adaptive law is not the only one.
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In this simple case of adaptive regulation, the entire closed-loop system consists of two equations

(87), (88) that can be solved explicitly:

x(t) =
2ce−ct

c+ k0 − a+ (c− k0 + a)e−2ct
x0

k(t) = a+
c[(c + k0 − a)e2ct − (c− k0 + a)]

(c+ k0 − a)e2ct + (c− k0 + a)
,

where c2 = γx2
0 + (k0 − a)2. We can compute the limits

lim
t→∞

x(t) = 0, lim
t→∞

k(t) = a+ c = a+
√

γx2
0 + (k0 − a)2 .

We see that the limit of k(t) depends upon γ, x0, k0, which can equal k∗ only for a very special set

of these parameters. Any change in these parameters will affect the transient performance, since the

closed loop pole of (87) converges to −c = −
√

γx2
0 + (k0 − a)2 as t → ∞, which depends upon initial

conditions and adaptation gain.

We note that there are two free design parameters k0, γ > 0 in this simple case of adaptive regulation.

For any value of these parameters, the above derived Lyapunov proof is guaranteeing asymptotic

convergence of tracking error to zero and boundedness of the parameter error. Larger γ implies faster

adaptation, but can lead to oscillations in tracking performance. Also, increasing γ is limited by the

hardware, since it requires smaller integration step for the adaptive law, which becomes “stiff” in the

presence of large γ. Determining the “optimal” γ is a matter of success with tuning.

7.4 Direct MRAC of First Order Systems

Let the dynamics of first order system propagate according to the following differential equations:

ẋ(t) = ax(t) + bu(t) , x(0) = x0 , (89)

where x ∈ R is the state of the system, a and b are unknown constants, while sgn(b) is known, u ∈ R

is the control input. Consider the following reference model dynamics:

ẋm(t) = amxm(t) + bmr(t), am < 0, xm(0) = xm0 (90)

where xm ∈ R is the state of the reference model, r(t) is a uniformly continuous bounded input signal

of interest to track, while am, bm specify the desired performance metrics for tracking r(t).
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Objective. For a given uniformly bounded input {r ∈ R : |r(t)| ≤ rmax} define an adaptive

feedback signal u(t) such that the state x(t) of the system (89) tracks the state xm(t) of the reference

model asymptotically, while all the signals remain bounded.

The direct adaptive model reference feedback is defined as:

u(t) = kx(t)x(t) + kr(t)r(t) (91)

where kx(t), kr(t) are adaptive gains to be defined through stability proof.

Substituting (91) into (89), implies the following closed-loop system dynamics:

ẋ(t) = (a+ bkx(t))x(t) + bkr(t)r(t) (92)

Comparing (90) with system dynamics in (92), assumptions are formulated that guarantee existence

of the adaptive feedback signal in (91) for model matching.

Assumption 7.1. (Matching assumption)

∃ k∗x, bk∗x = am − a

∃ k∗r , bk∗r = bm (93)

Remark 7.1. The true knowledge of the ideal gains k∗x, k
∗
r is not required, only their existence is

assumed. Also notice that in scalar case these assumptions are obviously satisfied. These are called

matching assumptions, because in case of knowledge of these ideal gains, one could substitute them in

(92) instead of kx(t), kr(t) to obtain the reference system in (90) directly.

Let e(t) = x(t)− xm(t) be the tracking error signal. Then the tracking error dynamics can be written:

ė(t) = ame(t) + b∆kx(t)x(t) + b∆kr(t)r(t) , e(0) = e0 , (94)

where ∆kx(t) = kx(t) − k∗x, ∆kr(t) = kr(t) − k∗r are introduced for parameter errors. Consider the

following adaptation laws:

k̇x(t) = −γxx(t)e(t)sgn(b) , kx(0) = kx0

k̇r(t) = −γrr(t)e(t)sgn(b) , kr(0) = kr0, (95)



101

where γx > 0, γr > 0 are adaptation gains, kx0, kr0 can be the “best possible guess” of the ideal values

of unknown parameters∗∗, and the following Lyapunov function candidate:

V (e(t),∆kx(t),∆kr(t)) = e2(t) +
(
γ−1
x ∆k2

x(t) + γ−1
r ∆k2

r(t)
)
|b| (96)

Its derivative along the system trajectories (94), (95) will be:

V̇ (t) = 2e(t) (ame(t) + b∆kx(t)x(t) + b∆kr(t)r(t))

+2γ−1
x |b|∆kx(t)∆k̇x(t) + 2γ−1

r |b|∆kr(t)∆k̇r(t)

= −2|am|e2(t) (97)

+2|b|∆kx(t)
(

x(t)e(t)sgn(b) + γ−1
x ∆k̇x(t)

)

+2|b|∆kr(t)
(

r(t)e(t)sgn(b) + γ−1
r ∆k̇r(t)

)

= −2|am|e2(t) ≤ 0

Hence the equilibrium of (94), (95) is Lyapunov stable, i.e. the signals e(t), ∆kx(t), ∆kr(t) are

bounded. Since x(t) = e(t) + xm(t), and xm(t) is the state of a stable reference model, then x(t) is

bounded. This consequently implies that ė(t) in (94) is bounded. Compute the second derivative of

V (e(t),∆kx(t),∆kr(t)):

V̈ = −4|am|e(t)ė(t) (98)

From the above considerations, it follows that V̈ is bounded, and hence V̇ (t) is uniformly continuous.

Application of Barbalat’s lemma immediately yields V̇ (t) → 0 as t → ∞, which consequently proves

convergence of the tracking error to zero asymptotically. Notice however, that due to the structure

of the expression V̇ (t) = −2|am|e2(t), asymptotic convergence of parameter errors to zero is NOT

guaranteed. The parameter errors are guaranteed only to stay bounded.

Remark 7.2. It is important to notice that the adaptive laws are selected in a way to render

certain terms in the V̇ (t) expression zero, so that to ensure V̇ (t) ≤ 0. Therefore adaptive control is

very often called inverse Lyapunov design. It is the limitation of the Lyapunov stability theory that

one cannot easily remove the assumption on the knowledge of sgn(b). Had we assumed that b with its

sign is completely unknown in (89), it would have been impossible to complete the stability proof with

∗∗We will later discuss in more details how adaptive laws can be initialized based on optimality considerations.
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this Lyapunov function. Relaxation of this assumption can be achieved by invoking the concept of

Nussbaum-gain, [18]. Briefly, a function v(·) is called Nussbaum-type if it has the following properties:

lim
k→∞

sup
1

k

∫ k

0
v(s)ds = ∞ , lim

k→∞
inf

1

k

∫ k

0
v(s)ds = −∞ .

One simple choice of Nussbaum-type function verifying this property would be v(s) = s2 cos s, and an

adaptive controller can be selected as u(t) = v(k(t))x(t), k̇(t) = γx2(t). Throughout this course we

will assume that sgn(b) is known. It is up to your curiosity to explore what exists beyond the classroom

and your teaching notes.

7.4.1 Passive Identifier based Reparameterization of Direct MRAC

Let us obtain the same result via a slightly different order of the steps in the above algorithm. Let

the dynamics be again given by:

ẋ(t) = (am − bk∗x)
︸ ︷︷ ︸

a

x(t) + bu(t) , x(0) = x0 , am < 0 , (99)

where x ∈ R is the state of the system, am < 0 is the desired pole of the ideal reference system

dynamics, k∗x is unknown, and for simplicity b is known, u ∈ R is the control input. Instead of the

reference model dynamics in (90), let’s consider a passive identifier:

˙̂x(t) = amx̂(t) − bk̂x(t)x(t) + bu(t) , x̂(0) = x0 , (100)

where x̂ ∈ R is the state of the passive identifier, and am < 0 is selected to achieve desired properties

for the resulting error dynamics. The dynamics in (100) is quite often referred to as state predictor.

It replicates the system’s structure, with the unknown parameter k∗x replaced by its estimate k̂x(t).

By subtracting (100) from (99), we obtain the identification error dynamics or the prediction error

dynamics, independent of control choice:

˙̃x(t) = amx̃(t) − b∆kx(t)x(t), x̃(0) = 0 , x̃(t) , x̂(t) − x(t), ∆kx(t) , k̂x(t) − k∗x .

It is obvious that using the adaptive law

˙̂
kx(t) = γbx̃(t)x(t)
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with the following Lyapunov function candidate

V (x̃(t),∆kx(t)) = x̃2(t) +
1

γ
∆k2

x(t)

will give V̇ (t) = 2amx̃
2(t) ≤ 0, implying that all errors (x̃(t),∆kx(t)) are uniformly bounded. However,

due to the open-loop nature of (100), one cannot conclude asymptotic stability for x̃(t) (both states

x(t) and x̂(t) can drift to infinity with the same rate, keeping the error x̃(t) bounded). Remember

that application of Barbalat’s lemma was well justified due to the boundedness of the reference system,

which was used for derivation of the error dynamics. However, if we close the loop, using the same

adaptive feedback structure

u(t) = k̂x(t)x(t) + kgr(t) ,

where kg is a feedforward gain and can be selected to achieve asymptotic tracking of step reference

inputs (as compared to (90) one can say that bkg = bm), then the closed-loop passive identifier or the

state predictor will replicate the reference system of (90):

˙̂x(t) = amx̂(t) + bkgr(t) , x̂(0) = x(0) ,

allowing for application of Barbalat’s lemma for concluding asymptotic tracking of x̃(t) → 0.

ˆ ( )xk t

x

mx

( )r t 0→e( )u t
*( )m xx a x b u k x= + −&

m m m mx a x b r= +&

ˆ ( ) ( ) ( )xk t bx t e tγ=
&

ˆ( ) ( ) ( ) ( )x gu t k t x t k r t= +

a) Direct MRAC

x̂

ˆˆ ˆ ( ( ) )m xx a x b u k t x= + −&

*( )m xx a x b u k x= + −&
x 0x→%

ˆ ( )xk t

( )r t
ˆ( ) ( )( ) ( )x gu t k t t x k r t= +

( )u t
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&

%

b) Passive identifier based reparameterization

Fig. 18 Implementation architectures for MRAC and passive identifier based reparameterization

We see that from the same initial conditions the direct MRAC and the passive identifier-based

reparameterization of it lead to the same error dynamics, implying that all error signals remain bounded,

and the tracking error converges to zero asymptotically. The fundamental difference in between these

schemes is illustrated in Fig. 18, where, the control signal is provided as input to both systems, plant

and predictor, in case of passive-identifier based reparameterization, while in the case of direct MRAC,

the control signal serves as input only to the plant. This feature will be later exploited in the context

of L1 adaptive control, towards defining an architecture with quantifiable performance bounds.
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7.5 Indirect MRAC of First Order Systems.

In an indirect MRAC scheme we estimate the plant parameters and not the controller parameters.

Consider the dynamics of the same first order system as in (89):

ẋ(t) = ax(t) + bu(t) , x(0) = x0 , (101)

where x ∈ R is the state of the system, a and b are unknown constants, sgn(b) is known, u ∈ R is the

control input. Consider the same reference model dynamics as in (90):

ẋm(t) = amxm(t) + bmr(t), am < 0 , xm(0) = xm0 , (102)

where xm ∈ R is the state of the reference model, r(t) is a uniformly continuous bounded input signal

of interest to track, a and b are unknown, but a conservative lower bound for |b| is known in addition

to sgn(b). Without loss of generality, let’s assume that b > b̄ > 0, where b̄ is known.

Objective. For a given uniformly bounded input {r ∈ R : |r(t)| ≤ rmax} define an adaptive feedback

signal u(t) such that the state x(t) of the system (101) tracks the state xm(t) of the reference model

(102) asymptotically, while all the signals remain bounded.

The indirect adaptive feedback is defined as:

u(t) =
1

b̂(t)
(−â(t)x(t) + amx(t) + bmr(t)) (103)

where â(t), b̂(t) are adaptive gains that need to be defined via stability proof subject to the constraint

that b̂(t) 6= 0 for all t ≥ 0. Rewrite the system dynamics in (101) in the following way:

ẋ(t) = ax(t) + bu(t) + â(t)x(t) + b̂(t)u(t) − â(t)x(t) − b̂(t)u(t)

= â(t)x(t) + b̂(t)u(t) − ∆a(t)x(t) − ∆b(t)u(t) (104)

where ∆a(t) = â(t) − a, ∆b(t) = b̂(t) − b are parametric errors. Substituting (103) into (104), implies

the following closed-loop system dynamics:

ẋ(t) = amx(t) + bmr(t) − ∆a(t)x(t) − ∆b(t)u(t) (105)

Let e(t) = x(t)− xm(t) be the tracking error signal. Then the tracking error dynamics can be written:

ė(t) = ame(t) − ∆a(t)x(t) − ∆b(t)u(t) (106)
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Consider the following adaptation laws††:

˙̂a(t) = γax(t)e(t) , â(0) = â0

˙̂
b(t) =







γbu(t)e(t), if b̂(t) ≥ b̄

γbu(t)e(t) + b̄−b̂(t)
b̂(t)−b̄+ǫ , if b̂(t) < b̄

, b̂(0) = b̂0 > b̄ (107)

where γa > 0, γb > 0 are adaptation gains, ǫ > 0 is a sufficiently small number so that b̄− ǫ > 0‡‡, and

the initialization of b̂(0) = b̂0 > b̄ is done with correct sign respecting the known conservative lower

bound. This adaptive law has the following features:

• It starts from a positive value due to the initial condition b̂(0) = b̂0 > b̄;

• If γbu(t)e(t) ≥ 0, then b̂(t) will not decrease;

• If γbu(t)e(t) < 0, then b̂(t) will decrease;

- As b̂(t) takes values less than b̄, but still remains larger than b̄−ǫ, the positive term b̄−b̂(t)
b̂(t)−b̄+ǫ

corrects for the derivative of b̂(t) to slowly turn it back;

- As b̂(t) → b̄− ǫ, then b̄−b̂(t)
b̂(t)−b̄+ǫ → ∞, forcing b̂(t) to grow.

Therefore b̂(t) never reaches zero. In fact, for all t ≥ 0, one has b̂(t) > b̄ − ǫ > 0, and the control

signal in (103) is well-defined. It also guarantees that
˙̂
b(t) is Lipschitz. Since it is Lipschitz, then i) a

unique solution exists for b̂(t), and ii)
˙̂
b(t) is also continuous, which ensures that the derivative of the

Lyapunov function candidate, specified below, is continuous. Therefore Theorem 2.1 can be applied.

So, consider the following Lyapunov function candidate:

V (e(t),∆a(t),∆b(t)) = e2(t) + γ−1
a ∆a2(t) + γ−1

b ∆b2(t) (108)

††This is the scalar case of the projection operator that we will define in more details later in the course.
‡‡It is called tolerance of the projection and is specified by the designer.
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Its derivative along the system trajectories (106), (107) will be:

V̇ (t) = 2e(t) (ame(t) − ∆a(t)x(t) − ∆b(t)u(t)) + 2γ−1
a ∆a(t)∆ȧ(t) + 2γ−1

b ∆b(t)∆ḃ(t)

= −2|am|e2(t) + 2∆a(t)
(
−x(t)e(t) + γ−1

a ∆ȧ(t)
)

+ 2∆b(t)
(

−u(t)e(t) + γ−1
b ∆ḃ(t)

)

=







−2|am|e2(t), if b̂(t) ≥ b̄

−2|am|e2(t) + 2∆b(t)
︸ ︷︷ ︸

<0

b̄− b̂(t)

b̂(t) − b̄+ ǫ
︸ ︷︷ ︸

>0

, if b̂(t) < b̄

≤ 0

Hence the equilibrium of (106), (107) is Lyapunov stable. Following similar arguments like in direct

MRAC case, one can apply Barbalat’s lemma to prove asymptotic convergence of e(t) to zero and

boundedness of parameter errors.

Example. Consider a first order system

ẋ(t) = 5x(t) + 3u(t) , x(0) = x0 . (109)

Let the reference model be

ẋm(t) = −4xm(t) + 4r(t) , xm(0) = xm0 . (110)

The plots 19(a)-19(d) show the tracking performance and parameter convergence with direct MRAC for

two different reference inputs: r(t) = 4 and r = 4 sin(3t). The plots clearly demonstrate the asymptotic

convergence of the tracking error to zero for both commands, while the parameter convergence takes

place only in the case of sinusoidal input and is not guaranteed for the step command. On an intuitive

level the explanation is that simple commands like step can be tracked with less effort, without requiring

the controller to find the ideal parameters, while a bit challenging command like the sinusoid can be

tracked only if the controller parameters converge to the ideal ones.
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Fig. 19 Comparison of tracking performance for various reference inputs.



108

8 Parameter Convergence: Persistency of Excitation or Uniform Complete

Observability

In order to gain insights about the convergence of the estimated parameters to their true values,

let’s examine the equation:

ė(t) = ame(t) + b(∆kx(t)x(t) + ∆kr(t)r(t)) (111)

We have shown that e(t) → 0 as t→ ∞. We have shown that ∆kx(t),∆kr(t) are bounded. Moreover,

from (95) it follows that k̇x(t), k̇r(t) are bounded, implying that kx(t), kr(t) are uniformly continuous,

and therefore ∆kx(t),∆kr(t) are also uniformly continuous. From (92) it follows that ẋ(t) is bounded,

and therefore x(t) is uniformly continuous. Assuming that r(t) is also uniformly continuous, we have

that the right hand side of (111) is uniformly continuous, i.e. ė(t) is uniformly continuous. We have

shown that e(t) → 0 as t→ ∞. So, application of Barbalat’s lemma implies that ė(t) → 0 as t→ ∞.

Consequently, we have

∆kx(t)x(t) + ∆kr(t)r(t) → 0, t→ ∞ . (112)

In vector form, this can be written:

v⊤(t)∆θ(t) → 0, t → ∞ , (113)

where v(t) = [ x(t) r(t) ]⊤, ∆θ(t) = [ ∆kx(t) ∆kr(t) ]⊤. The issue of parameter convergence is

reduced to the question of what conditions the vector v(t) = [x(t) r(t)]⊤ should satisfy in order for the

equation (113) to imply that ∆θ(t) → 0.

To gain further insights into the problem, notice that if r(t) = r0 = const, then, due to the stability

of the reference model, for large values of t we have

x ∼= xm ∼= bmr0 . (114)

Thus, for large values of t we have

v⊤ = [ x r0 ] ∼= r0[ bm 1 ] . (115)

The limiting relationship in (113) takes the form:

bm∆kx + ∆kr ∼= 0 . (116)
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This clearly implies that the parameter errors instead of converging to zero, converge to a straight line

in the parameter space. In case if bm = 1, then the steady state errors of two parameter errors should

be of equal magnitude but opposite sign.

However, when r(t) is such that the corresponding signal vector v(t) satisfies the persistency of excitation

(PE) condition, one can prove that the adaptive laws (95) will guarantee parameter convergence, i.e.

lim
t→∞

∆θ(t) = 0. (117)

Definition 8.1. The signal v(t) is said to be persistently exciting if there exist α > 0 and T > 0

such that for all t ≥ 0

∫ t+T

t
v(τ)v⊤(τ)dτ > αI (118)

where I is the identity matrix.

Indeed, since the tracking error converges to zero, then it follows from (95) that

lim
t→∞

(∆θ(t+ τ ′) − ∆θ(t)) = 0 (119)

for any τ ′ ∈ [0, T ]. Hence, we have

lim
t→∞

∫ t+T

t
∆θ⊤(τ)v(τ)v⊤(τ)∆θ(τ)dτ − lim

t→∞

∫ t+T

t
∆θ⊤(t)v(τ)v⊤(τ)∆θ(t)dτ ,

= lim
t→∞

∫ t+T

t

(

∆θ⊤(τ)v(τ)v⊤(τ)∆θ(τ) − ∆θ⊤(t)v(τ)v⊤(τ)∆θ(t)
)

dτ

= lim
t→∞

∫ t+T

t

(

∆θ⊤(τ)v(τ)v⊤(τ)∆θ(τ) − ∆θ⊤(τ)v(τ)v⊤(τ)∆θ(t)

+∆θ⊤(τ)v(τ)v⊤(τ)∆θ(t) − ∆θ⊤(t)v(τ)v⊤(τ)∆θ(t)
)

dτ

= lim
t→∞

∫ t+T

t

(

∆θ⊤(τ)v(τ)v⊤(τ) (∆θ(τ) − ∆θ(t)) +
(

∆θ⊤(τ) − ∆θ⊤(t)
)

v(τ)v⊤(τ)∆θ(t)
)

dτ

=

∫ t+T

t
lim
t→∞

(

∆θ⊤(τ)v(τ)v⊤(τ) (∆θ(τ) − ∆θ(t)) +
(

∆θ⊤(τ) − ∆θ⊤(t)
)

v(τ)v⊤(τ)∆θ(t)
)

dτ

It follows from (119) that lim
t→∞

(∆θ(τ) − ∆θ(t)) = 0, where τ ∈ [t, t+ T ], and therefore

lim
t→∞

∫ t+T

t
∆θ⊤(τ)v(τ)v⊤(τ)∆θ(τ)dτ − lim

t→∞

∫ t+T

t
∆θ⊤(t)v(τ)v⊤(τ)∆θ(t)dτ = 0 .
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If (117) is not true, there exists ǫ > 0 such that for any t′, there exists t > t′ which satisfies

‖∆θ(t)‖2 ≥ ǫ ,

and hence,
∫ t+T

t
∆θ⊤(τ)v(τ)v⊤(τ)∆θ(τ)dτ ≥ αǫ . (120)

Multiply both sides of (111) by ∆θ⊤(t)v(t), we have

ė(t)∆θ⊤(t)v(t) = −ame(t)∆θ⊤(t)v(t) + ∆θ⊤(t)v(t)v⊤(t)∆θ(t). (121)

Integrating (121) from t to t+ T , we have

e(t+ T )∆θ⊤(t+ T )v(t+ T ) − e(t)∆θ⊤(t)v(t) +

∫ t+T

t
e(t)

d

dt

[

(∆θ⊤(τ)v(τ))
]

dτ

=

∫ t+T

t
−ame(τ)∆θ⊤(τ)v(τ)dτ +

∫ t+T

t
∆θ⊤(τ)v(τ)v⊤(τ)∆θ(τ)dτ .

As t → ∞, we have that e(t) → 0 and therefore, taking into consideration the finite interval for

integration, we have the following upper bounds:

lim
t→∞

(

e(t+ T )∆θ⊤(t+ T )v(t+ T ) − e(t)∆θ⊤(t)v(t)
)

= 0

∣
∣
∣ lim
t→∞

(∫ t+T

t
e(t)

d

dt

[

∆θ⊤(τ)v(τ)
]

dτ

) ∣
∣
∣ ≤ lim

t→∞

(

max
τ∈[t,t+T ]

||e(τ)||
∣
∣
∣∆θ⊤(τ)v(τ)

∣
∣
∣

t+T

t

∣
∣
∣ T

)

= 0

∣
∣
∣ lim
t→∞

∫ t+T

t
−ame(τ)∆θ⊤(τ)v(τ)dτ

∣
∣
∣ ≤ |am| lim

t→∞
max

τ∈[t,t+T ]

(

||e(τ)||
∣
∣
∣∆θ⊤(τ)v(τ)

∣
∣
∣

)

T = 0

This consequently implies that

lim
t→∞

∫ t+T

t
∆θ⊤(τ)v(τ)v⊤(τ)∆θ(τ)dτ = 0 ,

which contradicts (120).

Intuitively, persistency of excitation implies that the vectors v(t) corresponding to different times t

cannot always be linearly dependent. This relates to the notion of uniform complete observability for

linear time-varying systems, [19].

Definition 8.2. The linear time-varying system

ẋ(t) = A(t)x(t), x(t0) = x0

y(t) = C(t)x(t)
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is uniformly completely observable, if its observability Grammian is uniformly positive definite, i.e. it

verifies the following inequality for some α > 0 and T > 0:

W (t, t+ δ) =

∫ t+T

t
Φ⊤(τ, t)C⊤(τ)C(τ)Φ(τ, t)dτ ≥ αI, ∀ t ≥ 0 ,

where Φ(τ, t) is the state transition matrix, defining the unique solution for the given initial condition:

x(t) = Φ(t, t0)x0 .

To see the relationship of the PE condition to the notion of uniform complete observability, notice

that the closed-loop error dynamics of the adaptive system (94), (95) can be rewritten as a linear

time-varying system:







ė(t)

∆k̇x(t)

∆k̇r(t)







=







am bx(t) br(t)

−γxx(t)sgn(b) 0 0

−γrr(t)sgn(b) 0 0













e(t)

∆kx(t)

∆kr(t)







for which we have already proven boundedness of the A(t), by proving boundedness of all its elements.

One can prove that if v(t) = [x(t) r(t)]⊤ is persistently exciting, then this linear time-varying system is

uniformly completely observable. Using Lyapunov arguments, it can be further proven that this leads

to exponential convergence of tracking errors and parameter errors to zero.

The remaining question is the relation between r(t) and the persistent excitation of v(t). It can

be shown that in case of first order systems with two unknown parameters, persistency of excitation

is guaranteed as long as r(t) contains at least one sinusoidal input. In case of linear systems, usually

m sinusoidal inputs ensure convergence of 2m parameters [3]. For nonlinearly parameterized systems,

there is no definite answer to this question in general case, and it depends upon the structure of the

system, [4].

Homework Problems 8.1.

• Try to reproduce the plots of my example without asking for the code from me.

• Try to apply indirect MRAC to the same example and compare the performance.

• For both designs, direct and indirect MRAC:
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- Change the adaptation gains and write your insights about the observations that you can

make by changing the adaptation gains. What do you see? If you think that including a plot

can help to better illustrate, then you can do so. Otherwise I do not want to see plots; I want to

read the results of your observations.

- You need to get a feel of when you can get an “oscillations-free” transient.

- Analyze the trade-offs as you change the adaptation gains.

- If you find anything interesting that you can generalize, let me know.

The following proofs can be done towards extra credit:

• Prove that the PE condition in (118) indeed ensures uniform complete observability of the closed-

loop error dynamics.

• Prove that m distinct sinusoidal inputs ensure convergence of 2m parameters.
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9 Adaptive Control in the Presence of Input Constraints

All the adaptive control schemes presented until today did not account for actuator position limits.

The resulting adaptive controller could have had arbitrary magnitude, since its derivation was based

on the philosophy of inverse Lyapunov design. By which we mean that until now we have explored

structures, for which a candidate Lyapunov function could have been determined for derivation of

adaptive laws to ensure stability, and with the help of Barbalat’s lemma we could establish asymptotic

convergence of tracking error to zero. Let’s see what happens if our adaptive controller violates the

actuator position limits.

Let the dynamics of first order system propagate according to the following differential equations:

ẋ(t) = ax(t) + bu(t) (122)

where x ∈ R is the state of the system, a and b are unknown constants, while sgn(b) is known, u ∈ R

is the control input, subject to the following constraint:

u(t) = umax sat

(
uc(t)

umax

)

=







uc(t), |uc(t)| ≤ umax

umax sgn (uc(t)) , |uc(t)| ≥ umax

(123)

Here uc(t) is the commanded control input, while umax > 0 defines the amplitude saturation level.

Rewrite the system dynamics in (122) in the following form:

ẋ(t) = ax(t) + buc(t) + b∆u(t) (124)

where ∆u(t) = u(t) − uc(t) is a measure of the control deficiency.

For a given uniformly bounded input {r ∈ R : |r(t)| ≤ rmax}, define the reference model dynamics

and an adaptive feedback signal uc(t), such that the state x(t) of the corresponding closed-loop sys-

tem tracks the state xm(t) of the reference model dynamics asymptotically, and all the signals remain

bounded.

The direct adaptive model reference feedback, following the convention, is defined as:

uc(t) = kx(t)x(t) + kr(t)r(t) , (125)

where kx(t), kr(t) are adaptive gains. Substituting (125) into (124), implies the following closed-loop

system dynamics:

ẋ(t) = (a+ bkx(t))x(t) + bkr(t)r(t) + b∆u(t) (126)
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We see that as compared to (92), we get an extra term in (126) due to the control deficiency ∆u(t).

Without this term, we knew that using the matching assumptions from (93) and the corresponding

adaptive laws from (95), we could achieve asymptotic tracking of the state of the reference system in

(90), keeping all the parameter errors bounded. Now, if we try to derive the same error dynamics in

(94), the term bu(t) will pop-up in it. Since ∆u(t) = u(t) − uc(t) depends upon the control signal,

which in its turn depends upon the system states, we have no guarantee of its boundedness. So, we

have to somehow remove its effects from the error dynamics in (94).

One way to do this, is to modify the reference dynamics in a way so that in the error dynamics we

get one more adaptive law to go with b∆u(t), which can be processed through a Lyapunov proof [22,23].

So, instead of (90), let’s consider

ẋm(t) = amxm(t) + bm(r(t) + ku(t)∆u(t)), am < 0 , (127)

where ku(t) is another adaptive gain to be determined through stability proof. Comparing (127) with

system dynamics in (126), we immediately see that its ideal value k∗u is defined as:

bmk
∗
u = b . (128)

Comparing this with the ideal value of k∗r in (93) implies that

k∗rk
∗
u = 1 . (129)

If b is known, then k∗u can be determined from (128). Consequently, there is no need for adaptation of

ku, and it can be immediately set to its ideal value k∗u = b/bm.

The rest follows as always. Let e(t) = x(t) − xm(t) be the tracking error signal. Then the tracking

error dynamics can be written:

ė(t) = ame(t) + b∆kx(t)x(t) + b∆kr(t)r(t) − bm∆ku(t)∆u(t) , (130)

where ∆kx(t) = kx(t) − k∗x, ∆kr(t) = kr(t) − k∗r , ∆ku(t) = ku(t) − k∗u are introduced for parameter

errors. Consider the following adaptation laws:

k̇x(t) = −γxx(t)e(t)sgn(b)

k̇r(t) = −γrr(t)e(t)sgn(b) (131)

k̇u(t) = γu∆u(t)e(t)bm ,
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where γx > 0, γr > 0, γu > 0 are adaptation gains, and the following Lyapunov function candidate:

V (e(t),∆kx(t),∆kr(t),∆ku(t)) = e2(t) +
(
γ−1
x ∆k2

x(t) + γ−1
r ∆k2

r (t)
)
|b| + γ−1

u ∆k2
u(t) . (132)

Its derivative along the system trajectories (130), (131) will be:

V̇ = 2e(t) (ame(t) + b∆kx(t)x(t) + b∆kr(t)r(t) − bm∆ku(t)∆u(t))

+2γ−1
x |b|∆kx(t)∆k̇x(t) + 2γ−1

r |b|∆kr(t)∆k̇r(t) + γ−1
u ∆ku(t)∆k̇u(t)

= −2|am|e2(t) (133)

+2|b|∆kx(t)
(

x(t)e(t)sgn(b) + γ−1
x ∆k̇x(t)

)

+2|b|∆kr(t)
(

r(t)e(t)sgn(b) + γ−1
r ∆k̇r(t)

)

+2∆ku(t)
(

−∆u(t)e(t)bm + γ−1
u ∆k̇u(t)

)

= −2|am|e2(t) ≤ 0 .

Hence the equilibrium of (130), (131) is Lyapunov stable, i.e. the signals e(t), ∆kx(t), ∆kr(t), ∆ku(t)

are bounded. Consequently, there exist ∆kmax
x , ∆kmax

r , such that |∆kx| < ∆kmax
x , |∆kr| < ∆kmax

r =

α∆kmax
x , ∀t > t0, where α =

√

γr/γx.

However, notice that we cannot conclude stability of the closed-loop system from

this. Due to the adaptive modification of the reference model in (127), we do not have

the granted bonus of the stable reference model, as it was in the absence of saturation.

This implies that while all the errors e(t), ∆kx(t), ∆kr(t), ∆ku(t) remain bounded, both

the system state and the reference model state can be drifting to infinity with the same

rate!!! So, our Lyapunov analysis does not give us anything regarding the system stability,

despite the fact that the errors remain bounded! It is the right time to acknowledge the

value of Barbalat’s lemma that you were always able to apply due to the stability of the

reference model, which was helping you to conclude boundedness of the system state

upon your V̇ (t) ≤ 0 proof, and consequently asymptotic convergence of the tracking error

to zero. Now, the question is, did we indeed lose all of this????

Luckily, not! It is now time to apply some intuition. Control saturation implies that we have limited

control authority, so we cannot do everything, but we should be able to do something within our limits.

So, most probably, all we can prove is a local result, and right now we need to define the local domain
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of attraction of the system state, so that starting from those initial conditions, with our control action,

the system state remains bounded. Once we have boundedness of the system state, and the V̇ (t) ≤ 0,

we can conclude that the reference model state remains bounded, which ultimately can help us to apply

Barbalat’s lemma to prove local asymptotic stability. Remember that when dealing with three

signals, subject to a relationship e(t) = x(t)−xm(t), at least two of them need to be proven

to be bounded, so that boundedness of the third one can be concluded! In the absence of

saturation, xm(t) is bounded by definition, and V̇ (t) ≤ 0 gives boundedness of e(t), so that

boundedness of x(t) follows. Once we have adaptive modification of the reference model

via a feedback from the main system, boundedness of xm(t) is not granted and needs to

be proved. But instead we construct local domain of attraction of the system state, x(t),

so that starting form those initial conditions, the system state remains bounded with

our feedback. Then boundedness of the state xm(t) of the reference model follows from

boundedness of e(t), which was concluded based on V̇ (t) ≤ 0.

Since now we are interested in proving boundedness of the system state, we consider the following

Lyapunov function candidate for the system dynamics:

W (x) =
1

2
x2(t) . (134)

Staring your controller from zero initial conditions, your ∆u(0) = 0, and as long as your |uc(t)| ≤ umax,

then everything is the same as previously done. If ∆u(t) 6= 0, then |uc(t)| > umax, and u(t) =

umaxsgn(uc(t)) as it follows from (123). Then the system dynamics in (122) becomes:

ẋ(t) = ax(t) + bumaxsgn(uc(t)) . (135)

Consequently

Ẇ (x(t)) = ax2(t) + bx(t)umaxsgn(uc(t))

= ax2(t) + umax|bx(t)|sgn(uc(t))sgn(bx(t)) . (136)

For asymptotically stable systems, i.e. when a < 0, it immediately follows that Ẇ < 0 if |x| >
umax|b|/|a|. Therefore, the system state remains bounded, and Barbalat’s lemma can be applied to

ensure global asymptotic stability of the error dynamics in (130).

For unstable systems, i.e. when a > 0, consider two cases as in [23]:
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1. sgn(uc(t)) = −sgn(bx(t)).

2. sgn(uc(t)) = sgn(bx(t)).

In the first case, it follows from (136) that Ẇ = ax2(t) − umax |bx(t)|. Therefore Ẇ (x(t)) < 0, if

|x| < umax|b|
|a| . (137)

In the second case, when sgn(uc(t)) = sgn(bx(t)), it follows from (136) that Ẇ = ax2(t)+umax |bx(t)| ≥
0. Now, let’s find a region, where this actually holds, i.e. we need to identify the region in the state

space where sgn(uc(t)) = sgn(bx(t)) indeed leads to Ẇ ≥ 0. Let’s use the fact that |uc(t)| ≥ umax and

rewrite

0 ≤ Ẇ = ax2(t) + umax|bx(t)| ≤ ax2(t) + |uc(t)||bx(t)| = ax2(t) + uc(t)bx(t)sgn(uc(t))sgn(bx(t))

= ax2(t) + uc(t) bx(t) = ax2(t) + (kx(t)x(t) + kr(t)r(t))bx(t)

= (a+ bkx(t))x
2(t) + bx(t)kr(t)r(t) .

Noting that a = −|am| − bk∗x, we further get:

0 ≤ (−|am| + b∆kx(t))x
2(t) + bx(t)(k∗r + ∆kr(t))r(t)

≤ (−|am| + |b|∆kmax
x )x2(t) + |b||x(t)|(|k∗r | + ∆kmax

r )rmax .

This implies

|am||x|
((

1 − |b|∆kmax
x

|am|

)

|x| − |b|(∆kmax
r + |k∗r |)
|am|

rmax

)

≤ 0 . (138)

Notice that since V (e,∆kx,∆kr,∆ku) is radially unbounded, and its derivative is negative V̇ (t) ≤ 0,

then the maximal values of all errors, including ∆kmax
x ,∆kmax

r , lie on the level set of Lyapunov function

V = V0 = V (0). Therefore, if we enforce

√

V (0) ≤
√

|b|
γx

|am| − |k∗r ||a| rmax

umax

α|a| rmax

umax
+ |b| (139)

then we have

∆kmax
x ≤

|am| − |k∗r | rmax

umax
|a|

|b| + α rmax

umax
|a| . (140)
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This in turn ensures that |am| − |b|∆kmax
x ≥ 0. Therefore, it follows from (138) that if

|x| ≤
(

∆kmax
r rmax + |k∗r |rmax

|am| − |b|∆kmax
x

)

|b| , (141)

then Ẇ (x(t)) ≥ 0. On the other hand, (140) implies that

∆kmax
r rmax + |k∗r |rmax

|am| − |b|∆kmax
x

<
umax

|a| . (142)

Consequently, our analysis of the closed-loop system dynamics reveals that when ∆u(t) 6= 0:

Ẇ (x(t)) < 0, ∀x ∈ A ∆
=

{(
∆kmax

r rmax + |k∗r |rmax

|am| − |b|∆kmax
x

)

|b| ≤ |x| ≤ umax|b|
|a|

}

. (143)

In other words, subject to (139), as long as the system initial conditions lie in the annulus region A,

then the system state remains bounded, and Barbalat’s lemma can be applied to ensure asymptotic

convergence of the tracking error to zero and boundedness of all the signals.

We basically proved the following theorem.

Theorem 9.1. Let a and b in (122), umax in (123) and rmax be such that

|am|
|bm|

>
|a|
|b|

rmax

umax
(144)

If the system initial condition and Lyapunov function in (132) satisfy:

|x(0)| < |b|
|a|umax (145)

√

V (0) <

√

|b|
γx

|am| − |k∗r ||a| rmax

umax

α|a| rmax

umax
+ |b| (146)

then the adaptive system in (130), (131) has bounded solutions ∀r, |r(t)| ≤ rmax, and the tracking

error e(t) goes to zero asymptotically.

Remark 9.1. The condition in (144) ensures that the numerator in (146) is positive.
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Remark 9.2. Theorem 9.1 implies that if the initial conditions of the state and parameter errors

lie within certain bounds (145), (146), then the adaptive system will have bounded solutions, and the

tracking error will go to zero asymptotically. The local nature of the result for unstable systems is due

to the limitations on the control input. For stable systems the results are global. For neutrally stable

systems, i.e. a = 0, the upper bound of the annulus region goes to infinity, therefore the convergence

of the tracking error to zero is also global.

Remark 9.3. In the context of flight control applications, such modification guarantees that if the

guidance system is issuing commands r(t) that the control system cannot implement due to the control

surface saturation limits, then one needs to scale the guidance command proportional to the control

deficiency, like r(t) + ku(t)∆u(t).

Homework Problems 9.1. Take one of your scalar systems, enforce saturation, do adaptive mod-

ification of the reference model dynamics and implement the adaptive controller.
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10 Direct MRAC for Nonlinear Systems with Matched Structured Nonlinearities

Development of adaptive control techniques for general class of nonlinear systems is one of the

challenging problems in nonlinear control and is not solved up today. One class of systems, for which

adaptive control techniques are derived and proofs for global stability exist, are the nonlinear systems

with matched nonlinearities that can be linearly parameterized in unknown parameters, i.e. the non-

linearities in the system can be presented as bλW⊤Φ(x), where Φ(x) is a vector of known continuous

bounded functions, while W is a vector of unknown parameters, b is a known constant vector, λ is an

unknown constant of known sign. Another class is the class of systems suitable for backstepping type

of designs that we will cover later in the course [16]. In either case the system is assumed to be ideally

parameterized in unknown parameters.

10.1 Direct MRAC for Nonlinear Systems with Matched Structured Nonlinearities.

Let the system dynamics propagate according to the following differential equation:

ẋ(t) = Ax(t) + bλ(u(t) +W⊤Φ(x(t))) , x(0) = x0 , (147)

where x ∈ R
n is the state of the system, A is an unknown matrix, b is a known constant vector, λ 6= 0

is an unknown constant of known sign, u ∈ R is the control input, Φ(x) : R
n → R

m is a (m × 1)-

dimensional vector of known continuous functions, while W represents a (m× 1)-dimensional vector of

unknown constant parameters.

Let the reference model of interest for tracking be given:

ẋm(t) = Amxm(t) + bmr(t) , xm(0) = xm0 , (148)

where xm ∈ R
n is the state of the reference model, Am is a Hurwitz (n × n)-dimensional matrix,

bm ∈ R
n is a constant vector, r(t) ∈ R is a uniformly bounded continuous input.

Direct adaptive model reference feedback is defined as:

u(t) = k⊤x (t)x(t) + kr(t)r(t) − Ŵ⊤(t)Φ(x(t)) (149)

where kx(t) ∈ R
n, kr(t) ∈ R are the adaptive gains defined through the stability proof, Ŵ (t) ∈ R

m is

the estimate of W . Substituting (149) into (147), yields the following closed-loop system dynamics:

ẋ(t) = (A+ bλk⊤x (t))x(t) + bλkr(t)r(t) − bλ∆W⊤(t)Φ(x) (150)
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where ∆W (t) = Ŵ (t) −W is the parameter estimation error.

Comparing (148) with the system dynamics in (150), assumptions are formulated that guarantee

existence of the adaptive feedback signal.

Assumption 10.1. (Reference model matching conditions)

∃ k∗x, bλ(k∗x)
⊤ = Am −A

∃ k∗r , bλk∗r = bm (151)

Remark 10.1. The knowledge of the gains k∗x, k
∗
r is not required, only their existence is assumed.

Let e(t) = x(t)− xm(t) be the tracking error signal. Then the tracking error dynamics can be written:

ė(t) = Ame(t) + bλ
(

∆k⊤x (t)x(t) + ∆kr(t)r(t) − ∆W⊤(t)Φ(x(t))
)

, e(0) = e0 , (152)

where ∆kx(t) = kx(t) − k∗x, ∆kr(t) = kr(t) − k∗r denote parameter errors. Consider the following

adaptation laws:

k̇x(t) = −Γxx(t)e
⊤(t)Pbsgn(λ), kx(0) = kx0 ,

k̇r(t) = −γrr(t)e⊤(t)Pbsgn(λ), kr(0) = kr0 ,

˙̂
W (t) = ΓWΦ(x(t))e⊤(t)Pbsgn(λ), Ŵ (0) = Ŵ0 , (153)

where Γx = Γ⊤
x > 0, ΓW = Γ⊤

W > 0, γr > 0 are the adaptation gains. Define the following Lyapunov

function candidate:

V (e(t),∆kx(t),∆kr(t),∆W ) (154)

= e⊤(t)Pe(t) + |λ|
(

∆k⊤x (t)Γ−1
x ∆kx(t) + γ−1

r (∆kr(t))
2 + ∆W⊤(t)Γ−1

W ∆W (t)
)

where P = P⊤ > 0 solves the algebraic Lyapunov equation

A⊤
mP + PAm = −Q (155)

for arbitrary Q > 0. The time derivative of the Lyapunov function in (154) along the system trajectories
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(152), (153) is:

V̇ (t) = −e⊤(t)Qe(t) + 2e⊤(t)Pbλ
(

∆k⊤x (t)x(t) + ∆kr(t)r(t) − ∆W⊤(t)Φ(x(t))
)

+2|λ|∆k⊤x (t)Γ−1
x ∆k̇x(t) + 2|λ|∆kr(t)γ−1

r ∆k̇r(t) + 2|λ|∆W⊤(t)Γ−1
W ∆Ẇ (t)

= −e⊤(t)Qe(t) (156)

+2|λ|∆k⊤x (t)
(

e⊤(t)Pbx(t)sgn(λ) + Γ−1
x k̇x(t)

)

+2|λ|∆kr(t)
(

e⊤(t)Pbr(t)sgn(λ) + γ−1
r k̇r(t)

)

+2|λ|∆W⊤(t)
(

−e⊤(t)PbΦ(x(t))sgn(λ) + Γ−1
W

˙̂
W (t)

)

= −e⊤(t)Qe(t) ≤ 0 (157)

Hence, the derivative of the Lyapunov function candidate is negative semidefinite, therefore all signals

are bounded. Application of Barbalat’s lemma implies asymptotic convergence of tracking error to

zero, but the same cannot be claimed for parameter errors unless PE conditions are enforced.

Remark 10.2. Notice that the matching assumptions in (151) permit to write the system dynamics

in (147) equivalently in the form:

ẋ(t) = (Am − bλ(k∗x)
⊤)x(t) + bλ(u(t) +W⊤Φ(x(t)))

= Amx(t) + bλ(u(t) − (k∗x)
⊤x(t) +W⊤Φ(x(t))) . (158)

From this structure it is obvious why the conditions in (151) are called matching conditions, because

the uncertainties are all in the span of b.
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10.2 Choice of Optimal Reference Model and Augmentation of Nominal Design.

Reading [11], pp. 579-589.

Augmenting any existing control scheme with an additional controller for performance improvement

is called Lyapunov redesign. In designing adaptive controllers for industry it is quite common to have a

requirement that the nominal design cannot be touched. What serves as nominal design in the majority

of applications is an LQR controller with good stability margins, which is being designed using linearized

models. Thus, addition of adaptive controllers into the loop has to take the form of augmentation. It

has to have conservative guidelines for it in a sense that when you add the adaptive controller, at first

the adaptation gain has to be set equal to 0 to make sure that the nominal performance is not violated.

Then by slowly increasing the adaptation gain you need to see improvement in the performance in

the presence of uncertainties. To understand how such implementation is being done, we need first to

define a reference model of interest to track.

The reference model is one of the “free design parameters” in the adaptive controller along with

the adaptation gains Γx, γr,ΓW and choice of the matrix Q. They are all connected in the adaptation

laws (153). While Γx, γr,ΓW are free for tuning, P is related to your choice of Am via the Lyapunov

equation (155), which in turn has the Q as a free design parameter. You may recall that in linear

systems analysis, we proved that Q = I is the best choice giving the fastest convergence rate. Here

unfortunately such a result cannot be proven, and very often you may need to choose Q with different

eigenvalues.

A common choice for a reference system accepted by engineers in industry is the optimal control

for the nominal linear system. In that case, some linearized model of the nonlinear system is used to

design an LQR controller, which defines a closed-loop linear reference system with desired transient

characteristics, like overshoot, settling time, rise time, etc. So, assume that your nonlinear system in

(147) is given to you in the form:

ẋ(t) = A0x(t) + bλ(u(t) + (k∗x)
⊤x(t) +W⊤Φ(x(t))) , x(0) = x0 , (159)

where A0 is known, b is known, k∗x represents the matched uncertainties in the state matrix, λ represents

the uncertainties in the control effectiveness and can be used to model actuator failures, sgn(λ) is

known, W is a vector of unknown constants, Φ(x) is a vector of known nonlinear functions. Notice

that (k∗x)
⊤x(t) can be grouped with W⊤Φ(x(t)), by assuming that x is one of the components of the

known vector of nonlinearities given by Φ(x), while k∗x can be appended with W . Therefore there is no
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loss of generality in assuming that the A matrix is known to begin with, since its matched uncertainties

can always be lumped with the uncertainties in the span of b. In the absence of actuator failures (i.e.

λ = 1) and uncertainties (i.e. k∗x = 0,W = 0), your nominal system is given by a linear system

ẋ(t) = A0x(t) + bu(t) , x(0) = x0 . (160)

For this model you can design an LQR controller to meet your control design specifications, like

overshoot, settling time, rise time, etc. Let this LQR based linear tracking controller be given by

ulin(t) = −k⊤LQRx(t) + kgr(t) , (161)

where the feedforward gain kg is usually selected to achieve asymptotic tracking for a step input

dependent upon the particular regulated output of interest, while kLQR is computed using the positive

(semi-)definite symmetric solution of corresponding Riccati equation. This leads to the following closed-

loop nominal linear system that has the desired specifications:

ẋm(t) = Amx(t) + bmr(t) , xm(0) = xm0 , (162)

where Am = A0 − bk⊤LQR, bm = bkg. We immediately notice that this way derived reference model

satisfies the matching assumptions in (151). Indeed,

Am −A = A0 − bk⊤LQR − (A0 + bλ(k∗x)
⊤) = −bk⊤LQR − bλ(k∗x)

⊤ = bλ(−k⊤LQR/λ− (k∗x)
⊤) ,

where −(k⊤LQR/λ+ (k∗x)
⊤) plays the role of the k∗x in (151). Similarly, bm = bkg can be written as:

bm = bkg = bλk∗r ,

so that for any value of λ there exists a constant k∗r such that λk∗r = kg.

Now, following (149) let’s design an adaptive controller as:

u(t) = (k⊤x (t) − k⊤LQR)x(t) + (kr(t) + kg)r(t) − Ŵ⊤(t)Φ(x(t)) . (163)

Notice that it is equivalent to augmenting a baseline LQR controller, since it can be equivalently written

as:

u(t) = ulin(t) + k⊤x (t)x(t) + kr(t)r(t) − Ŵ⊤(t)Φ(x(t)) . (164)
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The structure in (163) is no different from the one in (149) in a sense, that the adaptive laws that

are defined for kx(t) and kr(t) in (153) will be the same for kx(t) − kLQR and kr(t) + kg, since kLQR

and kg are constants anyway. However, to make sure that we are indeed augmenting an LQR baseline

controller for its performance improvement in the presence of uncertainties, we need to initialize the

adaptive laws for kx(t) and kr(t) in (153) at 0. In that case, in the absence of uncertainties in the

system when you do not need any adaptation, the adaptation gains Γx, γr,ΓW should be set to zero to

reduce the controller in (163) to the LQR one in (161) to recover the nominal closed-loop performance

of (162).

Control system design steps can be summarized as follows:

• Select your desired reference model based on your nominal values of uncertain parameters. You

can do this, for example, by using the LQR theory or simple pole placement arguments. It would

be helpful to study the linear servomechanism theory for obtaining good baseline design.

• Verify that it indeed achieves the desired control objective with desired specifications. You need

to get good tracking with good stability margins, since you’re still within linear system’s theory.

• Insert the matched uncertainties into your nominal system and convince yourself that the per-

formance of LQR is violated in the presence of uncertainties.

• Augment your LQR controller with an adaptive controller and verify its performance in the pres-

ence of uncertainties. Start from zero values of adaptation gains and increase those incrementally.

Convince yourself that you cannot increase the adaptation gains too much, because the system

runs into oscillations. Tune the adaptive gains for the best performance.

Homework Problems 10.1. Please do this in groups so that you can help each other. I don’t

mind grading one homework and giving the same grade to all the names listed on that homework.

1. Substitute the controller from (163) into (159), write the error dynamics using (162), specify

the matching assumptions explicitly, do a Lyapunov proof to show that the tracking error goes to zero

asymptotically. Be careful with the initial conditions of the adaptation laws. Convince yourself that

when λ = 1 and k∗x = 0, setting the adaptation gains to zero, you recover the nominal performance.

Tuning of the adaptive gains starts from zero and goes up incrementally.
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2. Use any second order system of your choice (pendulum, spring-mass, Van der Pol, short-period,

etc.) to illustrate your findings by simulation.

3. While doing simulations, follow the steps suggested above.
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10.3 Augmentation of a Nominal PI Controller.

As you may know, for tracking step inputs it is always better to use PI (proportional integral)

controller so that not to have a steady-state error. This is also a common approach in industry: the

integral state is always built into the system. Now let’s see how can we augment a nominal PI controller.

Consider the following system dynamics:

ẋ(t) = Ax(t) + bλ(u(t) +W⊤Φ(x(t))) , x(0) = x0 (165)

y(t) = c⊤x(t) ,

where W is unknown, A, b, c,Φ(x) are known, λ is an unknown constant of known sign, y ∈ R is the

regulated output of interest, x ∈ R
n is the n-dimensional state vector, u ∈ R is the control input.

Notice that we directly lumped the matched uncertainties of the state matrix into W⊤Φ(x(t)). The

control objective is to design a full state feedback adaptive controller so that y(t) tracks a given smooth

trajectory yc(t) asymptotically, while all other signals remain bounded.

So, let’s introduce the integral error as an additional state into the system dynamics and write:

ỹ(t) = y(t) − yc(t) = c⊤x(t) − yc(t) ,

so that

yI(t) =

∫ t

0
ỹ(τ)dτ .

Augmented with this additional state, the system dynamics in (165) can be written as:



ẏI(t)

ẋ(t)



 =




0 c⊤

0 A








yI(t)

x(t)



+ λ




0

b



 (u(t) +W⊤Φ(x(t))) +




−1

0



 yc(t) (166)

In the absence of uncertainties, this reduces to the following system, called idealized linear system for

(166):



ẏI(t)

ẋ(t)



 =




0 c⊤

0 A








yI(t)

x(t)



+




0

b



u(t) +




−1

0



 yc(t)

For this system you can use any of the linear control design methods (like LQR, pole placement, etc.)

to achieve stabilization and asymptotic tracking of yc(t). Let that linear controller be given by:

ulin(t) = −k⊤



yI(t)

x(t)



 .
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The resulting closed-loop system is your desired reference system for adaptive tracking:




ẏIm(t)

ẋm(t)



 =








0 c⊤

0 A



−




0

b



 k⊤





︸ ︷︷ ︸

Aref




yIm(t)

xm(t)



+




−1

0



 yc(t) , (167)

where Aref is Hurwitz. The total control for (166) is formed as

u(t) = ulin(t) + uad(t) , (168)

where ulin(t) = −k⊤



yI(t)

x(t)



 will already operate over the states of the uncertain system and not

the idealized linear system. This is a key point to remember! The idealized linear system is used

only for computation of the controller gain k.

Comparing (167) with (166), where in the latter system the total control (168) is substituted, error

dynamics can be formed:




ėI(t)

ė(t)



 =




ẏI(t) − ẏIm(t)

ẋ(t) − ẋm(t)





= Aref




eI(t)

e(t)



+ (1 − λ)




0

b



 k⊤




yI(t)

x(t)



+ λ




0

b



 (uad(t) +W⊤Φ(x(t)))

= Aref




eI(t)

e(t)



+ λ




0

b







uad(t) +
1 − λ

λ
k⊤




yI(t)

x(t)



+W⊤Φ(x(t))





We notice that due to the integral action the reference trajectory yc(t) disappeared from error dy-

namics so that we do not need adaptation on feedforward gain!!! The adaptive controller thus

can be designed in a much simpler way:

uad(t) = −k̂⊤x (t)




yI(t)

x(t)



− Ŵ⊤(t)Φ(x(t)) ,

leading to the following form of closed-loop dynamics:




ėI(t)

ė(t)



 = Aref




eI(t)

e(t)



− λ




0

b







∆k⊤x (t)




yI(t)

x(t)



+ ∆W⊤(t)Φ(x(t))



 ,
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where

∆kx(t) = k̂x(t) −
1 − λ

λ
k, ∆W (t) = Ŵ (t) −W

are the parametric errors.

Homework Problems 10.2. Write the adaptive laws and finish the stability proof. Take your

second order example from the previous homework and do PI+LQR+adaptive design. Using your own

simulations, compare the performance of the two different control designs. Try different inputs, like

step and sinusoid, or combinations of steps and sinusoids. Convince yourself that the integral helps to

get better performance.



130

11 Robustness of MRAC: Parameter Drift

As with every control scheme, an important question to ask will be robustness of adaptive controllers

to disturbances and measurement noise. Let’s get back to our scalar direct MRAC scheme to investigate

this issue. So, the system dynamics is given by:

ẋ(t) = ax(t) + bu(t) , x(0) = x0 , (169)

where x ∈ R is the state of the system, a and b are unknown constants, while sgn(b) is known, u ∈ R

is the control input. Consider the following reference model dynamics:

ẋm(t) = amxm(t) + bmr(t), am < 0, xm(0) = xm0 , (170)

where xm ∈ R is the state of the reference model, r(t) is a uniformly continuous bounded input signal

of interest to track, while am, bm specify the desired performance metrics for tracking r(t).

The direct adaptive model reference feedback in the presence of imperfect measurement will take

the form:

u(t) = kx(t)xd(t) + kr(t)r(t) , (171)

where xd(t) = x(t)+d(t), and d(t) models the disturbance in measurement, which is bounded |d(t)| ≤ d0,

and its derivative is also bounded |ḋ(t)| ≤ d∗. To verify its impact on the entire design, let’s repeat the

same steps of the Lyapunov proof again.

Substitute (171) into (169) to get the following closed-loop system dynamics:

ẋ(t) = (a+ bkx(t))x(t) + bkr(t)r(t) + bkx(t)d(t) (172)

Let e(t) = xd(t) − xm(t) be the tracking error signal. Then the tracking error dynamics can be

written:

ė(t) = ame(t) + b∆kx(t)x(t) + b∆kr(t)r(t) + (bkx(t) − am)d(t) + ḋ(t) , e(0) = e0 , (173)

where ∆kx(t) = kx(t)− k∗x, ∆kr(t) = kr(t)− k∗r are introduced for parameter errors. If we consider the

same old adaptation laws from (95):

k̇x(t) = −γx(x(t) + d(t))e(t)sgn(b) , kx(0) = kx0

k̇r(t) = −γrr(t)e(t)sgn(b) , kr(0) = kr0, (174)
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where we have taken into consideration that the measurement of x(t) is not perfect, and the

same Lyapunov function candidate from (96):

V (e(t),∆kx(t),∆kr(t)) = e2(t) +
(
γ−1
x ∆k2

x(t) + γ−1
r ∆k2

r(t)
)
|b| , (175)

then the derivative along the system trajectories (173), (174) will be:

V̇ (t) = 2e(t)
(

ame(t) + b∆kx(t)x(t) + b∆kr(t)r(t) + (bkx(t) − am)d(t) + ḋ(t)
)

+2γ−1
x |b|∆kx(t)∆k̇x(t) + 2γ−1

r |b|∆kr(t)∆k̇r(t)

= −2|am|e2(t) + 2e(t)
(

(bkx(t) − am)d(t) + ḋ(t)
)

+2|b|∆kx(t)
(

x(t)e(t)sgn(b) + γ−1
x ∆k̇x(t)

)

+2|b|∆kr(t)
(

r(t)e(t)sgn(b) + γ−1
r ∆k̇r(t)

)

= −2|am|e2(t) + 2e(t)
(

(bkx(t) − am)d(t) + ḋ(t)
)

+2|b|∆kx(t) (x(t)e(t)sgn(b) − (x(t) + d(t))e(t)sgn(b))

+2|b|∆kr(t) (r(t)e(t)sgn(b) − r(t)e(t)sgn(b))

= −2|am|e2(t) + 2e(t) (bkx(t) − am − b∆kx(t)) d(t) + 2e(t)ḋ(t)

= −2|am|e2(t) − 2ae(t)d(t) + 2e(t)ḋ(t) ≤ −2|am||e(t)|2 + 2|a||e(t)||d(t)| + 2|e(t)||ḋ(t)|

≤ −2|am||e(t)|2 + 2|a||e(t)|d0 + 2|e(t)|d∗

We can conclude that V̇ (t) ≤ 0, if

|e(t)| > 1

|am|
(|a|d0 + d∗) .

So, for large tracking errors, it seems that everything is fine, and e(t) will be decreasing. But when

|e(t)| < 1

|am|
(|a|d0 + d∗) ,

then the sign of the derivative of the Lyapunov function is positive, V̇ (t) > 0. What does this imply?

First of all you need to notice that for the first time you got a different effect as opposed to all your

previous exercises. In a number of your previous exercises you were able to show that V̇ (t) ≤ 0 in a

neighborhood of the origin. This was helping you to conclude local stability for a specific domain of

attraction.
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Now you got exactly the opposite: V̇ (t) > 0 in a neighborhood of the origin, but is negative far

away in one particular direction. So, what’s going on? As you can see from Figure 20, the parameter

errors can diverge easily while the tracking error remains small. This effect is called parameter drift.

Since the ideal values of all parameters are constant, the growth in parameter errors implies that

the parameter estimates (which directly enter into the control definition) grow unboundedly. This

will consequently require larger and larger (growing to infinity) control effort (which is impossible to

provide by the hardware), eventually leading the system into instability. This was exactly the reason

of that historical crash of X-15 leading to the death of the pilot, Michael Adams.

This argument is assumed to emphasize one more time the significance of the level sets of the

Lyapunov function in all kinds of Lyapunov analysis. If we had V̇ (t) ≤ 0 outside a compact set and

not a strip, then once the parametric errors had crossed those bounds during their divergence, they

would have faced the V̇ (t) ≤ 0 environment, which would have forced them to come back.

You already know two ways of preventing this. One is the PE condition. If we had persistently

exciting reference input, then our parameters would have converged, and the parametric error would

have gone to zero. Another way is the projection-type adaptation law that we introduced in indirect

MRAC to ensure that our parameters stay within prespecified regions by us, so that when they hit these

bounds, the adaptive law forces them to go back. These tricks are called robustification of adaptive

laws. Other modifications include σ-modification and e-modification that directly give negative definite

derivative for the candidate Lyapunov function outside a compact set, like V̇ (t) ≤ −2|am||e(t)|2 −
γ||θ̃(t)||2 + c. We will get to these modifications of the adaptive laws later in the course.

Homework Problems 11.1.

• Take the first order scalar system of the MRAC and insert disturbance into it and convince

yourself that it can lead to parameter divergence, which will require larger control effort and lead

the system into instability.

• Do projection type modification of the adaptive law and convince yourself that it prevents insta-

bility. Notice that in this case your projection type modification of the adaptive law will need

bounds from both sides, and not only from below as I had provided in indirect adaptive scheme.

You need to bound the parameters from both sides, do the stability proof and implement in

simulations to convince yourself in this.
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Fig. 20 Parameter divergence: nothing prevents the parameter error θ̃ to grow
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12 Projection Based Adaptation

Definition 12.1. Ω ⊂ R
n is a convex set if ∀ x, y ∈ Ω ⊂ R

n the following holds:

λ x+ (1 − λ) y ∈ Ω, ∀ 0 ≤ λ ≤ 1 . (176)

Convex set Non-convex setConvex set Non-convex set

Fig. 21 Illustration of convex and non-convex sets

Definition 12.2. f : R
n → R is a convex function if ∀ x, y ∈ R

n the following holds:

f (λ x+ (1 − λ) y) ≤ λf(x) + (1 − λ)f(y), ∀ 0 ≤ λ ≤ 1 . (177)

A sketch of a convex function is presented on Fig.22.

Lemma 12.1. Let f(x) : R
n → R be a convex function. Then for any constant δ > 0 the set

Ωδ = {θ ∈ R
n|f(θ) ≤ δ} is convex. The set Ωδ is called the sublevel set.

The proof is elementary. Given θ1, θ2 ∈ Ωδ, i.e. f(θi) ≤ δ, it follows that for arbitrary 0 ≤ λ ≤ 1

f



λ θ1 + (1 − λ) θ2
︸ ︷︷ ︸

θ



 ≤ λ f(θ1)
︸ ︷︷ ︸

≤δ

+(1 − λ) f(θ2)
︸ ︷︷ ︸

≤δ

≤ λδ + (1 − λ)δ = δ . (178)

Since f(λ θ1 + (1 − λ) θ2) ≤ δ, then λ θ1 + (1 − λ) θ2 ∈ Ωδ. Since θ1, θ2 ∈ Ωδ, then Ωδ is convex.

Lemma 12.2. Let f(x) : R
n → R be a continuously differentiable convex function. Choose a

constant δ and consider the convex set Ωδ = {θ ∈ R
n|f(θ) ≤ δ} ⊂ R

n. Let θ, θ∗ ∈ Ωδ and f(θ∗) < δ
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Fig. 22 Illustration of a convex function

and f(θ) = δ (i.e. θ∗ is not on the boundary of Ωδ, while θ is on the boundary of Ωδ). Then the

following inequality takes place:

(θ∗ − θ)⊤∇f(θ) ≤ 0 , (179)

where ∇f(θ) =
(

∂f(θ)
∂θ1

· · · ∂f(θ)
∂θn

)⊤
∈ R

n is the gradient vector of f(θ) evaluated at θ.

Relation (179) is illustrated on Fig.23. It shows that the gradient vector evaluated at the boundary of

a convex set always points away from the set.

Proof. Since f(x) is convex function, then

f (λ θ∗ + (1 − λ) θ) ≤ λf(θ∗) + (1 − λ)f(θ), ∀ 0 ≤ λ ≤ 1 , (180)

which can equivalently be rewritten:

f (θ + λ (θ∗ − θ) ) ≤ f(θ) + λ (f(θ∗) − f(θ)) . (181)

Then for any nonzero 0 < λ ≤ 1 we have

f(θ + λ(θ∗ − θ)) − f(θ)

λ
≤ f(θ∗) − f(θ) < δ − δ = 0 . (182)

Notice that the expression in the numerator on the left side f(θ + λ(θ∗ − θ)), being a scalar function

of vector argument θ, can be simultaneously viewed as a scalar function of scalar argument F (λ). In
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Fig. 23 Gradient and convex set

that case, the following is true:

F (λ) = F (0) + F ′(0)λ +O(λ2) . (183)

Notice that F (0) = f(θ). Further, F ′(λ) = [∇f(θ + λ(θ∗ − θ))]⊤ (θ∗ − θ), where ∇f denotes the

differentiation of f with respect to its whole vector argument, thus giving the gradient, while (θ∗ − θ)

comes out of differentiation of the argument with respect to λ. Hence, F ′(0) = (θ∗ − θ)⊤∇f(θ).

Therefore

f(θ + λ(θ∗ − θ)) = f(θ) + (θ∗ − θ)⊤∇f(θ)λ+O(λ2) . (184)

Substituting into (182), taking the limit as λ→ 0 implies (θ∗− θ)⊤∇f(θ) ≤ 0 and completes the proof.

Remark 12.1. It is possible that for some convex function f(x) and some δ, there may not exist

θ ∈ Ωδ such that f(θ) = δ, or θ∗ ∈ Ωδ such that f(θ∗) < δ. (e.g. f(x) ≡ 1 ∀x ∈ R
n: when δ > 1,

f(θ) < δ, ∀ θ ∈ R
n; when δ = 1, f(θ) = δ ∀ θ ∈ R

n.) In this case we have a more general version of

Lemma 12.2, which can be stated like this: Let f(x) : R
n → R be a continuously differentiable convex

function. Then for any θ, θ∗ ∈ R
n, the following inequality holds:

(θ∗ − θ)⊤∇f(θ) ≤ f(θ∗) − f(θ).

Moreover, if f(x) is radially unbounded, i.e., f(x) → ∞ as ||x|| → ∞, then the sublevel set Ωδ is

bounded. The proof of the last fact can be done by contradiction: indeed, if Ωδ is not bounded, then
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∃ θ ∈ Ωδ with ||θ|| arbitrarily large, for which f(θ) is arbitrarily large (due to radial unboundedness),

which contradicts the fact f(θ) ≤ δ.

Definition 12.3. [12] Consider a convex compact set with a smooth boundary given by:

Ωc
∆
= {θ ∈ R

n | f(θ) ≤ c}, 0 ≤ c ≤ 1,

where f : R
n → R is the following smooth convex function:

f(θ) =
θ⊤θ − θ2

max

ǫθθ2
max

, (185)

where θmax is the norm bound imposed on the parameter vector θ, and ǫθ denotes the convergence

tolerance of our choice. Let the true value of the parameter θ, denoted by θ∗, belong to Ω0, i.e.

θ∗ ∈ Ω0. The projection operator is defined as:

Proj(θ, y)
∆
=







y if f(θ) < 0,

y if f(θ) ≥ 0 and ∇f⊤y ≤ 0,

y − ∇f
‖∇f‖
︸ ︷︷ ︸

unit vector

〈 ∇f⊤
‖∇f‖ , y

〉

︸ ︷︷ ︸

projection

f(θ)
︸︷︷︸

scaling

if f(θ) ≥ 0 and ∇f⊤y > 0
(186)
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Fig. 24 Illustration of the projection operator

Property 12.1. [12] The projection operator Proj(θ, y) as defined in (186) does not alter y if θ

belongs to the set Ω0 = {θ ∈ R
n | f(θ) ≤ 0}. In the set {0 ≤ f(θ) ≤ 1}, if ∇f⊤y > 0, the Proj(θ, y)
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operator subtracts a vector normal to the boundary of Ωc = {θ ∈ R
n | f(θ) = c} so that we get a

smooth transformation from the original vector field y to an inward or tangent vector field for c = 1.

Thus, if θ is the adaptive parameter, and θ̇(t) = Proj(θ(t), y(t)), then θ never leaves Ω1.

Property 12.2. Given the vectors y = [ y1 · · · yn ]⊤ ∈ R
n and θ = [ θ1 · · · θn ]⊤ ∈ R

n, we

have:

(θ − θ∗)⊤(Proj(θ, y) − y) =
n∑

i=1

(θi − θ∗i )
⊤(Proj(θi, yi) − yi) ≤ 0, (187)

where θ∗ is the true value of the parameter θ.

Indeed,

(θ∗ − θ)⊤(y − Proj(θ, y)) =







0 if f(θ) < 0,

0 if f(θ) ≥ 0 and ∇fTy ≤ 0,

(θ∗ − θ)⊤∇f
︸ ︷︷ ︸

≤0

∇fT y
︸ ︷︷ ︸

≥0

f(θ)
︸︷︷︸
≥0

‖∇f‖2 if f(θ) ≥ 0 and ∇fTy > 0

Changing the signs on the left side, one gets (187).

Remark 12.2. The special structure of the function f in (185) needs to be interpreted in the

following way: if you solve f(θ) ≤ 1, which defines the boundaries of your outer set, then you get that

θ⊤θ ≤ (1 + ǫθ)θ
2
max. It is obvious that ǫθ specifies the maximum tolerance that you would allow your

adaptive parameter to exceed as compared to its maximum conservative value selected by you.

Recommendation. Implement the projection operator in Matlab for 2D and 3D cases. In one

case you will have two circles corresponding to c = 0 and c = 1, and in the other you’ll have two

spheres. Do the 2D and 3D plots to convince yourself in the change of the direction of the vector due

to projection. When you hit the outer set, you must see a tangent vector. The easiest would be to

implement the adaptive laws, by setting the true value of the unknown parameter outside the outer

convex set and having excitation in the reference input. Then your adaptive parameter will tend to

find the true value and will be eager to cross the convex sets to converge to it, but projection will not
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let it reach its limit, by changing the direction of adaptation on the outer set to its tangent. If you ever

face a situation like this, it means that your choice of sets did not have the true value of the unknown

parameter in it, i.e. your conservative knowledge of the value of the true unknown parameter was

not “well conservative”. When doing projection, it is always important to choose the sets sufficiently

large so that a situation like this would not appear in real implementation. It will ensure parameter

boundedness, but can disturb good behavior of the tracking error convergence.
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13 Adaptive Control in the Presence of Uniformly Bounded Residual

Nonlinearity

Let the system dynamics propagate according to the following differential equation:

ẋ(t) = Ax(t) + bλ(u(t) +W⊤(t)Φ(x(t)) + d(t, x(t))) , x(0) = x0 , (188)

where x ∈ R
n is the state of the system, A is an unknown matrix, b is a known constant vector, λ is

an unknown constant of known sign, d(t, x) : R × R
n → R is a continuous globally and uniformly

bounded function of state, d(t, x) ∈ C[R × R
n,R], |d(t, x)| ≤ d∗. We will call it residual nonlinearity.

For a given uniformly bounded continuous input r(t), consider the following reference model:

ẋm(t) = Amxm(t) + bmr(t) , x(0) = xm0 , (189)

where xm ∈ R
n is the state of the reference model, Am is Hurwitz and is chosen to meet the performance

specifications. The control objective is to design an adaptive controller to achieve tracking x(t) → xm(t)

as t→ ∞.

We consider the following direct model reference adaptive feedback:

u(t) = k⊤x (t)x(t) + kr(t)r(t) − Ŵ⊤(t)Φ(x) , (190)

where kx(t) ∈ R
n, kr(t) ∈ R, Ŵ (t) are the adaptive gains to be defined through the stability proof.

Substituting (190) into (188), yields the following closed-loop system dynamics:

ẋ(t) = (A+ bλk⊤x (t))x(t) + bλkr(t)r(t)) − bλ(∆W⊤(t)Φ(x(t)) − d(t, x(t))) , (191)

where ∆W (t) = Ŵ (t) − W is the parameter estimation error. Comparing (189) with the system

dynamics in (191), assumptions are formulated that guarantee existence of the adaptive feedback.

Assumption 13.1. (Reference model matching conditions)

∃ k∗x, bλ(k∗x)
⊤ = Am −A

∃ k∗r , bλk∗r = bm . (192)

Remark 13.1. The knowledge of the gains k∗x, k
∗
r is not required, only their existence is assumed.
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Let e(t) = x(t)− xm(t) be the tracking error signal. Then the tracking error dynamics can be written:

ė(t) = Ame(t) + bλ
(

∆k⊤x (t)x(t) + ∆kr(t)r(t) − ∆W⊤(t)Φ(x(t)) + d(t, x(t))
)

, (193)

where ∆kx(t) = kx(t) − k∗x, ∆kr(t) = kr(t) − k∗r denote parameter errors. Consider the following

adaptation laws:

k̇x(t) = ΓxProj
(

kx(t),−x(t)e⊤(t)Pbsgn(λ)
)

k̇r(t) = γrProj
(

kr(t),−r(t)e⊤(t)Pbsgn(λ)
)

˙̂
W (t) = ΓWProj

(

Ŵ (t),Φ(x(t))e⊤(t)Pbsgn(λ)
)

, (194)

where Γx = Γ⊤
x > 0, ΓW = Γ⊤

W > 0, γr > 0 are the adaptation gains, and Proj(·, ·) defines the

projection operator [12]. The latter ensures boundedness of all parameters, by definition. Define the

following Lyapunov function candidate:

V (e(t),∆kx(t),∆kr(t),∆W ) (195)

= e⊤(t)Pe(t) + |λ|
(

∆k⊤x (t)Γ−1
x ∆kx(t) + γ−1

r (∆kr(t))
2 + ∆W⊤(t)Γ−1

W ∆W (t)
)

,

where P = P⊤ > 0 solves the algebraic Lyapunov equation

A⊤
mP + PAm = −Q (196)

for arbitrary Q > 0. The time derivative of the Lyapunov function in (154) along the system trajectories

(152), (153) is computed and evaluated using Property 12.2:

V̇ (t) = −e⊤(t)Qe(t) + 2e⊤(t)Pbλ
(

∆k⊤x (t)x(t) + ∆kr(t)r(t) − ∆W⊤(t)Φ(x(t)) + d(t, x(t))
)

+2|λ|∆k⊤x (t)Γ−1
x ∆k̇x(t) + 2|λ|∆kr(t)γ−1

r ∆k̇r(t) + 2|λ|∆W⊤(t)Γ−1
W ∆Ẇ (t)

= −e⊤(t)Qe(t) + 2e⊤(t)Pbλ+ d(t, x(t)) (197)

+2|λ| ∆k⊤x (t)
︸ ︷︷ ︸

(kx(t)−k∗x)




e

⊤(t)Pbx(t)sgn(λ)
︸ ︷︷ ︸

−y

+ Γ−1
x k̇x(t)
︸ ︷︷ ︸

Proj(kx,y)






+2|λ|∆kr(t)
(

e⊤(t)Pbr(t)sgn(λ) + γ−1
r k̇r(t)

)

+2|λ|∆W⊤(t)
(

−e⊤(t)PbΦ(x(t))sgn(λ) + Γ−1
W

˙̂
W (t)

)

= −e⊤(t)Qe(t) + 2e⊤(t)Pbλ+ d(t, x(t)) ≤ −λmin(Q)‖e‖2 + 2‖e‖‖Pb‖ |λ| d∗

≤ −‖e‖ [λmin(Q)‖e‖ − 2‖Pb‖|λ|d∗] .
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Hence

V̇ (t) ≤ 0 if ‖e‖ ≥ 2|λ|‖Pb‖ d∗
λmin(Q)

, emax . (198)

Thus, with account of bounds ensured by Projection operator, we have V̇ (t) ≤ 0, if

‖e‖ ≥ emax ∩ ‖θ‖ ≥ θmax ,

where θ represents all the parametric errors, Fig. 25. Consider the smallest Lyapunov set Ωǫ around

e

ϑ

maxe

maxϑ

rB

cΩ

εΩ

e

ϑ

maxe

maxϑ

rB

cΩ

εΩ

Fig. 25 Uniform Ultimate boundedness

this compact set and refer to Fig. 13 for the proof on ultimate boundedness. The only difference

between Figures 13 and 25 is the rectangle in Fig. 25 instead of the ball Bµ in Fig. 13. However, notice

that in the consequent analysis it is the level set of the Lyapunov function Ωε that plays the key role.

Thus, the globally uniformly bounded residual nonlinearity d(t, x) led to global ultimate boundedness

instead of asymptotic stability.

Remark 13.2. Notice that if ||θ(0)|| > ||θmax||, then this corresponds to initializing the adaptation

laws outside the outer convex set Ω1 used in the definition of the Projection operator. In this case,

since outside Ω1 one has f(θ) > 1, the projection operator will result in a “larger vector” in the result

of the scaling, and thus upon subtraction in the same definition the direction of adaptation will change

towards Ω1.
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Homework Problems 13.1. Alternative adaptive laws that ensure boundedness of the parameter

errors are so called sigma-modification and e-modification [14]. The sigma-modification based adaptive

laws are defined with an additional damping term as:

k̇x(t) = −Γx

(

x(t)e⊤(t)Pbsgn(λ) + σxkx(t)
)

k̇r(t) = −γr
(

r(t)e⊤(t)Pbsgn(λ) + σrkr(t)
)

˙̂
W (t) = ΓW

(

Φ(x(t))e⊤(t)Pbsgn(λ) + σW Ŵ (t)
)

. (199)

The e-modification based adaptive laws are defined as:

k̇x(t) = −Γx

(

x(t)e⊤(t)Pbsgn(λ) + σx‖e⊤(t)Pb‖kx(t)
)

k̇r(t) = −γr
(

r(t)e⊤(t)Pbsgn(λ) + σr‖e⊤(t)Pb‖kr(t)
)

˙̂
W (t) = ΓW

(

Φ(x(t))e⊤(t)Pbsgn(λ) + σW ‖e⊤(t)Pb‖Ŵ (t)
)

. (200)

Please prove local boundedness using these adaptive laws and simulate your same system from the

previous homework with all three adaptive laws (projection, e-modification, σ-modification).

When substituting these adaptive laws into the derivative of Lyapunov function, you’ll need to do

completion of squares in V̇ (t) expression to get V̇ (t) ≤ 0 outside a compact set directly. You need to

group terms and to do algebraic modifications, like 2ab ≤ a2 + b2, and different variations of this with

different scaling. Your final expression for V̇ (t) will look like V̇ (t) ≤ −(e− a)2 − (θ − b)2 + c, defining

an ellipse in the error space, which does not need to be necessarily a level set of the original Lyapunov

function.
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14 Disturbance Rejection

Consider nonlinear system of the following type

ẋ(t) = Ax(t) + bλ(u(t) +W⊤Φ(x(t)) + d(t)) , x(0) = x0 , (201)

where the new term for you is the time-varying disturbance d(t). The disturbances in the system that

won’t violate stability are usually classified into three types:

1. constant all the time like d(t) = d0 = const, for which you already know how to use integral

control;

2. vanishing in time so that d(t) → 0 as t→ ∞;

3. uniformly bounded like |d(t)| ≤ d0 for all t ≥ 0.

Any unbounded disturbance will obviously lead to instability, since there is no opportunity to

reproduce infinite control effort over time to overcome it. Let’s first convince ourselves that vanish-

ing disturbances do not violate stability. Then we will introduce extra disturbance rejection type of

controller to reject uniformly bounded disturbances.

First we need to recall some definitions from real analysis that can be found as well in [11], pp.195-

196. For simplicity, here we tailor those to a scalar function.

Definition 14.1. The function d(t) is said to belong to the space L∞, if it is uniformly bounded

sup
t≥0

|d(t)| ≤ d0 <∞ , d0 > 0

Definition 14.2. The function d(t) is said to belong to the space Lp, p ≥ 1, if the integral is

bounded (∫ ∞

0
|d(t)|pdt

)1/p

<∞ .

For example, the function sin t ∈ L∞ on the interval [0,∞), but sin t ∈̄ L2 on the same interval,

since
∫∞
0 sin2 t dt does not exist, while the function

1

t+ 1
is both in L∞ and L2 on the interval [0,∞)

and can be denoted like
1

t+ 1
∈ L2 ∩ L∞.
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14.1 Vanishing disturbances

To convince ourselves that vanishing disturbances do not violate stability, we need to recall a

corollary of Barbalat’s lemma from [3](p.19). Let’s rewrite Barbalat’s lemma (Lemma 4.4) so that the

corollary will be straightforward.

Lemma 14.1. If for a uniformly continuous function f(t) the following limit

lim
t→∞

∫ t

0
f(τ)dτ

exists and is finite, then f(t) → 0 as t → ∞.

Corollary 14.1. If g ∈ Lp for some p ≥ 1, and g, ġ ∈ L∞, then g(t) → 0 as t→ ∞.

The proof is straightforward and follows from the lemma, if one considers f(t) = |g(t)|p. Bounded-

ness of g(t) and ġ(t) imply that f(t) is uniformly continuous, while g ∈ Lp implies that the integral

lim
t→∞

∫ t

0
f(τ)dτ exists and is finite.

So, we first consider the system in (201), when d ∈ L2 ∩ L∞ and ḋ ∈ L∞. Hence

d(t) → 0, t→ ∞ . (202)

Let the reference model of interest for tracking be given:

ẋm(t) = Amxm(t) + bmr(t) , xm(0) = xm0 , (203)

where xm ∈ R
n is the state of the reference model, Am is a Hurwitz (n × n)-dimensional matrix,

bm ∈ R
n is a constant vector, r(t) ∈ R is a uniformly bounded continuous input. Direct adaptive

model reference feedback as earlier can be defined:

u(t) = k⊤x (t)x(t) + kr(t)r(t) − Ŵ⊤(t)Φ(x(t)) (204)

where kx(t) ∈ R
n, kr(t) ∈ R are the adaptive gains defined through the stability proof, Ŵ (t) ∈ R

m is

the estimate of W . Substituting (204) into (201), yields the following closed-loop system dynamics:

ẋ(t) = (A+ bλk⊤x (t))x(t) + bλkr(t)r(t) − bλ∆W⊤(t)Φ(x(t)) + bλd(t) , (205)
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where ∆W (t) = Ŵ (t)−W is the parameter estimation error. Subject to the same matching assumptions

in Assumption 10.1, the following error dynamics can be written for the signal e(t) = x(t) − xm(t):

ė(t) = Ame(t) + bλ
(

∆k⊤x (t)x(t) + ∆kr(t)r(t) − ∆W⊤(t)Φ(x(t)) + d(t)
)

, e(0) = e0 , (206)

where ∆kx(t) = kx(t) − k∗x, ∆kr(t) = kr(t) − k∗r denote parameter errors as before. From Parameter

Drift section we know that d(t) can cause parameter drift, therefore we write the adaptation laws using

Projection operator to ensure their boundedness by definition:

k̇x(t) = ΓxProj
(

kx(t),−x(t)e⊤(t)Pbsgn(λ)
)

k̇r(t) = γrProj
(

kr(t),−r(t)e⊤(t)Pbsgn(λ)
)

˙̂
W (t) = ΓWProj

(

Ŵ (t),Φ(x(t))e⊤(t)Pbsgn(λ)
)

, (207)

where Γx = Γ⊤
x > 0, ΓW = Γ⊤

W > 0, γr > 0 are the adaptation gains. Define the following Lyapunov

function candidate:

V (e(t),∆kx(t),∆kr(t),∆W ) (208)

= e⊤(t)Pe(t) + |λ|
(

∆k⊤x (t)Γ−1
x ∆kx(t) + γ−1

r (∆kr(t))
2 + ∆W⊤(t)Γ−1

W ∆W (t)
)

,

where P = P⊤ > 0 solves the algebraic Lyapunov equation

A⊤
mP + PAm = −Q (209)

for arbitrary Q > 0. The time derivative of the Lyapunov function in (208) along the system trajectories

(206), (207) is computed and evaluated using Property 12.2:

V̇ (t) = −e⊤(t)Qe(t) + 2e⊤(t)Pbλ
(

∆k⊤x (t)x(t) + ∆kr(t)r(t) − ∆W⊤(t)Φ(x(t)) + d(t)
)

+2|λ|∆k⊤x (t)Γ−1
x ∆k̇x(t) + 2|λ|∆kr(t)γ−1

r ∆k̇r(t) + 2|λ|∆W⊤(t)Γ−1
W ∆Ẇ (t)

= −e⊤(t)Qe(t) + 2e⊤(t)Pbλd(t) (210)

+2|λ| ∆k⊤x (t)
︸ ︷︷ ︸

(kx(t)−k∗x)




e

⊤(t)Pbx(t)sgn(λ)
︸ ︷︷ ︸

−y

+ Γ−1
x k̇x(t)
︸ ︷︷ ︸

Proj(kx,y)






+2|λ|∆kr(t)
(

e⊤(t)Pbr(t)sgn(λ) + γ−1
r k̇r(t)

)

+2|λ|∆W⊤(t)
(

−e⊤(t)PbΦ(x(t))sgn(λ) + Γ−1
W

˙̂
W (t)

)

= −e⊤(t)Qe(t) + 2e⊤(t)Pbλd(t) ≤ −λmin(Q)‖e‖2 + 2‖e‖‖Pb‖ |λ| |d(t)|

≤ −‖e‖ [λmin(Q)‖e(t)‖ − 2‖Pb‖|λ|d0]
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Hence

V̇ (t) ≤ 0 if ‖e‖ ≥ 2|λ|‖Pb‖ d0

λmin(Q)
. (211)

Boundedness of adaptive parameters is ensured by the Proj(·, ·) operator. Therefore V̇ (t) ≤ 0 outside

a compact set in the entire error space of tracking error and parameter errors. Therefore, the tracking

error and parameter errors are globally ultimately bounded.

Now let us ensure that in this case we can achieve more than the ultimate boundedness of the

tracking error. We have seen above that the derivative of the Lyapunov function satisfies the inequality

V̇ (t) ≤ −λmin(Q)‖e(t)‖2 + 2‖Pbλ‖‖e(t)‖|d(t)| (212)

Completing the squares (2ab ≤ a2 + b2) in (212) yields

V̇ (t) = −λmin(Q)‖e(t)‖2 + 2
‖e(t)‖√
c1

√
c1‖Pbλ‖|d(t)| ≤ −(λmin(Q) − c1)‖e(t)‖2 + c2|d(t)|2 , (213)

where c1 is any positive number and c2 = ‖Pbλ‖2

c1
. The choice of the parameter c1 and matrix Q are

such that λmin(Q)− c1 > 0. Rearranging the inequality in (213) and integrating on the interval [0,∞)

results in

(λmin(Q) − c1)

∫ ∞

0
‖e(t)‖2dt ≤ V (0) − V (t) + c2

∫ ∞

0
|d(t)|2dt , (214)

Since V (t) is positive definite we can ignore the negative term on the right and write

(λmin(Q) − c1)

∫ ∞

0
‖e(t)‖2dt ≤ V (0) + c2

∫ ∞

0
|d(t)|2dt , (215)

Since d(t) ∈ L2 it follows that
∫∞
0 |d(t)|2dt <∞, therefore

∫ ∞

0
‖e(t)‖2dt <∞ , (216)

implying e(t) ∈ L2. Since all the signals in the system (206), (207) are bounded, it follows that ė(t) is

also bounded, that is e(t), ė(t) ∈ L∞. Application of Corollary 14.1 implies that e(t) → 0, t → ∞ ,

and thus, one more time, Barbalat’s lemma implies asymptotic stability.

Remark 14.1. Notice that despite the vanishing nature of disturbances we wouldn’t have been able

to conclude asymptotic convergence of tracking error to zero without the use of Projection operator.
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If we had just used the simple structure of adaptive laws from (153), we would have had no guarantee

of boundedness of parameter errors, which would have in its turn prevented the conclusion on uniform

continuity of e(t), which is crucial in application of Barbalat’s lemma. The uniform continuity of e(t)

always follows from boundedness of parameter errors in (206), which we guaranteed by projection.

Similarly, we could have used other adaptation laws, like e-modification, σ-modification to ensure

boundedness of parameter errors.

Remark 14.2. Notice that in the context of our proof all that we needed from d(t) was d ∈ L2∩L∞

property, while ḋ ∈ L∞ was not utilized, i.e. uniform continuity of d(t) was not required to prove

stability, since all we needed for application of Barbalat’s lemma’s was uniform continuity of e(t),

which we were able to conclude from d ∈ L∞, because ė(t) dynamics involved only d(t), and never ḋ(t).

Thus, we have defined a disturbance rejection scheme for all disturbances from the class of d ∈ L2∩L∞.

The ḋ ∈ L∞ feature helped us to conclude that d(t) → 0 as t → ∞, i.e. that the disturbances vanish.

Without imposing ḋ ∈ L∞, it is not clear what physical interpretation should be given to disturbances

of the class d ∈ L2 ∩L∞. This requires a little bit more than just boundedness, namely the integral of

the square over infinite time horizon be also bounded.

Homework Problems 14.1. Take your same system from your the earlier homework, and insert

vanishing disturbances into it. Simulate the same adaptive controller to convince yourself that it

performs as expected. Check different adaptation laws, like e-modification, σ-modification, etc.

14.2 Non-vanishing disturbances and adaptive bounding

Now assume that the disturbance in the system (201) is bounded, i.e. d ∈ L∞. An example of this

will be d(t) = sin t. For disturbances like this, the conventional theory of adaptive control has no ready

recipes to offer and borrows tools from robust control, using bang-bang type signals. First notice that

in the absence of any modifications to the control signal in (204) one can still prove global ultimate

boundedness of error signals, by using the bound d0, which will show up itself during upper bounding of

the derivative of the Lyapunov function candidate (recall the proof on ultimate boundedness with the

use of RBFs, where ε∗ appeared in the ultimate bound!). This will be the most conservative approach.
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A less conservative approach would be to adapt to the unknown bound d0, which enables to obtain an

adjustable ultimate bound that can be reduced to arbitrarily small magnitude via proper selection of

design parameters. This technique is known as adaptive bounding.

Just to give you an idea, recently we have developed a novel adaptive control architecture that copes

with bounded disturbances via a truly adaptive scheme without involving any robustifying signals, and

you’re welcome to request copies of [5, 6] for deeper understanding of the power of adaptive control.

Within the framework of conventional theory, the adaptive controller from (204) is augmented via the

adaptive bounding term as follows:

u(t) = k⊤x (t)x(t) + kr(t)r(t) − Ŵ⊤(t)Φ(x(t)) − ψ(t) tanh

(
e⊤(t)Pb

δ
sgn(λ)

)

, (217)

where ψ(t) is another adaptive gain, δ is a design parameter, the role of which will be shortly clarified.

Substituting this back into the system dynamics in (201), and comparing to (203), the error dynamics

take the form:

ė(t) = Ame(t) + bλ

(

∆k⊤x (t)x(t) + ∆kr(t)r(t) − ∆W⊤(t)Φ(x) + d(t) − ψ(t) tanh

(
e⊤(t)Pb

δ
sgn(λ)

))

.(218)

We already know how to derive adaptive laws for kx(t), kr(t),W (t) to clean the first portion of the

error dynamics. We can use the same projection type adaptive laws as in (207). Now, we need to

derive an adaptive law for ψ(t) so that d(t)−ψ(t) tanh
(
e⊤(t)Pbsgn(λ)

δ

)

will be nicely upper bounded in

the Lyapunov function derivative.

To this end consider the following Lyapunov function candidate:

V (e(t),∆kx(t),∆kr(t),∆W ) (219)

= e⊤(t)Pe(t) + |λ|
(

∆k⊤x (t)Γ−1
x ∆kx(t) + γ−1

r (∆kr(t))
2 + ∆W⊤(t)Γ−1

W ∆W (t) + γ−1
ψ (∆ψ(t))2

)

,

where ∆ψ(t) = ψ(t) − d0 and P = P⊤ > 0 solves the algebraic Lyapunov equation

A⊤
mP + PAm = −Q (220)

for arbitrary Q > 0. The time derivative of the Lyapunov function in (219) along the system trajectories
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(218), (207) is computed as follows:

V̇ (t) = −e⊤(t)Qe(t)

+2e⊤(t)Pbλ

(

∆k⊤x (t)x(t) + ∆kr(t)r(t) − ∆W⊤(t)Φ(x(t)) + d(t) − ψ(t) tanh

(
e⊤(t)Pb

δ
sgn(λ)

))

+2|λ|
(

∆k⊤x (t)Γ−1
x ∆k̇x(t) + ∆kr(t)γ

−1
r ∆k̇r(t) + ∆W⊤(t)Γ−1

W ∆Ẇ (t) + γ−1
ψ ∆ψ(t) ˙∆ψ(t)

)

= −e⊤(t)Qe(t) + 2e⊤(t)Pbλ

(

d(t) − ψ(t) tanh

(
e⊤(t)Pb

δ
sgn(λ)

))

+ 2|λ|γ−1
ψ ∆ψ(t) ˙∆ψ(t)

+2|λ| ∆k⊤x (t)
︸ ︷︷ ︸

(kx(t)−k∗x)




e

⊤(t)Pbx(t)sgn(λ)
︸ ︷︷ ︸

−y

+ Γ−1
x k̇x(t)
︸ ︷︷ ︸

Proj(kx,y)






+2|λ|∆kr(t)
(

e⊤(t)Pbr(t)sgn(λ) + γ−1
r k̇r(t)

)

+2|λ|∆W⊤(t)
(

−e⊤(t)PbΦ(x(t))sgn(λ) + Γ−1
W

˙̂
W (t)

)

Substituting the adaptive laws from (207) and using Property 12.2 we obtain:

V̇ (t) ≤ −e⊤(t)Qe(t) + 2e⊤(t)Pbλ

(

d(t) − ψ(t) tanh

(
e⊤(t)Pb

δ
sgn(λ)

))

+ 2|λ|γ−1
ψ ∆ψ(t) ˙∆ψ(t)

≤ −e⊤(t)Qe(t) + 2|λ|
(

|e⊤(t)Pb|d0 − sgn(λ)e⊤(t)Pb ψ(t) tanh

(
e⊤(t)Pb

δ
sgn(λ)

)

+ γ−1
ψ ∆ψ(t) ˙∆ψ(t)

)

= −e⊤(t)Qe(t) + 2|λ|
[

d0|e⊤(t)Pb| − d0sgn(λ)e⊤(t)Pb tanh

(
e⊤(t)Pb

δ
sgn(λ)

)

+ d0sgn(λ)e⊤(t)Pb tanh

(
e⊤(t)Pb

δ
sgn(λ)

)

− sgn(λ)ψ(t)e⊤(t)Pb tanh

(
e⊤(t)Pb

δ
sgn(λ)

)

+ γ−1
ψ ∆ψ(t) ˙∆ψ(t)

]

= −e⊤(t)Qe(t) + 2|λ|
[

d0

(

|sgn(λ)e⊤(t)Pb| − sgn(λ)e⊤(t)Pb tanh

(
e⊤(t)Pb

δ
sgn(λ)

))

− ∆ψ(t)sgn(λ)e⊤(t)Pb tanh

(
e⊤(t)Pb

δ
sgn(λ)

)

+ γ−1
ψ ∆ψ(t) ˙∆ψ(t)

]

One can easily verify that for any δ > 0 the following inequality holds

0 ≤ |η| − η tanh
(η

δ

)

≤ κδ (221)

where κ = 0.2785 is the solution of the equation κ = e−κ−1 (Just expand the tanh(x) into its equivalent

exponential representation to convince yourself!). Then, defining the adaptive law for the estimate ψ(t)

via projection operator to eliminate the last terms in the upper bound of the derivative of the candidate
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Lyapunov function

ψ̇(t) = γψProj

(

ψ(t), e⊤(t)Pb tanh

(
e⊤(t)Pb

δ
sgn(λ)

)

sgn(λ)

)

(222)

and using the inequality in (221) for the second term in the derivative of the candidate Lyapunov

function, the following upper bound can be derived:

V̇ (t) ≤ −e⊤(t)Qe(t) + 2|λ|κδd0 ≤ −λmin(Q)‖e‖2 + 2|λ|κδd0 (223)

Hence

V̇ (t) ≤ 0 if ‖e‖ ≥
√

2|λ|κδ d0

λmin(Q)
. (224)

Boundedness of adaptive parameters is ensured by the Proj(·, ·) operator. Therefore V̇ (t) ≤ 0 outside

a compact set in the entire error space of tracking error and parameter errors. Therefore, the tracking

error and parameter errors are globally ultimately bounded.

Remark 14.3. We notice that without the use of adaptive bounding we would have obtained

V̇ (t) ≤ 0 if ‖e‖ ≥
√

2|λ|d0

λmin(Q)
, (225)

which would have been comparable to d0. The presence of δ in (224) gives an opportunity to regulate

this lower bound to smaller values. Although, one should keep in mind that the ultimate bound for

the tracking performance is defined via the value of the Lyapunov function on the minimum level set,

embracing the rectangle formed by this bound and the bound of parameter errors in the result of the

projection operator. The shape of the ellipses of the Lyapunov function depend on the choice of the

adaptation gain and the choice of the matrix Q used in algebraic Lyapunov equation A⊤
mP+PAm = −Q.

Remark 14.4. As δ → 0, the adaptive bounding term approximates a sgn(·) function:

lim
δ→0

tanh

(
e⊤(t)Pb

δ
sgn(λ)

)

= sgn
(

e⊤(t)Pbsgn(λ)
)

= sgn
(

e⊤(t)Pb
)

sgn(λ) , (226)

and hence

lim
δ→0

[

|sgn(λ)e⊤(t)Pb| − e⊤(t)Pb tanh

(
e⊤(t)Pb

δ
sgn(λ)

)

sgn(λ)

]

= |e⊤(t)Pb| − e⊤(t)Pb sgn
(

e⊤(t)Pb
)

= 0 . (227)
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Therefore the derivative of the Lyapunov function candidate can be upper bounded as

V̇ (t) ≤ −e⊤(t)Qe(t) ≤ 0 . (228)

Recall that our sufficient conditions on stability and asymptotic stability always assumed existence of

a continuously differentiable Lyapunov function (see e.g. Theorems 2.1, 4.1)). With (226), the right

hand side of our error dynamics becomes discontinuous, and hence the candidate Lyapunov function is

non-smooth. In this case the solutions of corresponding differential equations need to be understood in

Filippov’s sense, and stability needs to be investigated using generalized gradients. I recommend you

to look into the work of Shevitz and Paden [20] to have an idea as stability analysis needs to be done for

discontinuous systems. For adaptive systems, existence and uniqueness of solutions for systems with

discontinuous right hand sides is proven in [21]. So, in the limit, with (226), one can apply Barbalat’s

lemma and prove asymptotic convergence of tracking error to zero instead of just boundedness. Notice,

that in this case the adaptive law in (222) reduces to

ψ̇(t) = γψProj
(

ψ(t), |e⊤(t)Pb|
)

. (229)

Finally, with (226), the adaptive bounding term is just multiplication of the solution ψ(t) of (229) by

bang-bang type signal, well-known from optimal control.

Homework Problems 14.2. Take your same system from your earlier homework, and insert

non-vanishing bounded disturbances into it. Simulate adaptive bounding type controller to convince

yourself that it performs as expected. It would be helpful if you check different adaptation laws, like

e-modification, σ-modification, etc.
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15 Input-to-State Stability

Consider the system

ẋ(t) = f(t, x(t), u(t)) , (230)

where f is piece-wise continuous in t and locally Lipschitz in x and u, and let x ∈ R
n, u ∈ R

m. The

input u(t) can be any piece-wise continuous bounded function of t for all t ≥ 0. Suppose the unforced

system

ẋ = f(t, x, 0) (231)

has a globally uniformly asymptotically stable equilibrium point at the origin x = 0. The question is

what can be say about the behavior of the system in (230) in the presence of a bounded input u(t).

To get the feeling of how hard is the answer to this question for nonlinear systems, let’s look at

linear time-invariant systems first. Let A be a Hurwitz matrix and consider the system

ẋ = Ax+Bu .

The solution to this system is given by:

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ ,

which can be upper bounded as follows:

||x(t)|| ≤ ke−λ(t−t0)||x(t0)|| +
∫ t

t0

ke−λ(t−τ)||B||||u(τ)||dτ ≤ ke−λ(t−t0)||x(t0)|| +
k||B||
λ

sup
t0≤τ≤t

||u(τ)|| .

This shows that if the zero input response decays exponentially fast (which is due to A being Hurwitz),

then the zero state response is bounded for every bounded input, and the bound is proportional to the

bound on the input.

The question that we are trying to answer is the following: How much of this behavior should

we expect for the nonlinear system in (230) if its unforced system (231) has a GUAS

equilibrium at the origin?

The answer is unfortunately negative as the following counter example demonstrates: the system

ẋ = −3x+ (1 + 2x2)u

has a GAS equilibrium at the origin when u = 0, but with u = 1 from the initial condition x(0) = 2 it

has a solution x(t) = (3 − et)/(2 − 2et) demonstrating finite escape time.
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Thus, we constructed a nonlinear system, such that in the absence of control input its origin is

GES, but in the presence of a bounded input like u = 1 there is an initial condition x(0) = 2 such

that the unique trajectory of the system starting from that point escapes to infinity in finite time. The

first question that would be natural to ask would be: and what about “smaller” initial conditions?

Intuitively, from the experience with linear systems theory one would assume that under certain set

of assumptions the negative definite derivative of the Lyapunov function for the system (231) should

remain negative definite outside a compact set around the origin if the system in (230) is driven by a

bounded input u(t). This leads to the definition of input-to-state stability, known as ISS, introduced

by Eduardo Sontag, one of the greatest mathematicians of our century, in [27]. I highly recommend

you to download the paper [27] and read it. Please visit the website

http://www.math.rutgers.edu/∼sontag/

and download the presentation

http://www.math.rutgers.edu/∼sontag/bode-with-narrative.pdf

which was delivered by E. Sontag for his Bode lecture award (one of the most prestigious awards

of IEEE CSS). You will learn lot from this lecture!

The notion of ISS merges Lyapunov stability theory, developed for dynamical systems ẋ = f(x),

with input-output stability theory, developed by G. Zames and others starting mid 1960s, for in-

put/output operators y(·) = F (u(·)). The main result of G. Zames can be found in [28].

Definition 15.1. The system in (230) is said to be input-to-state stable if there exist a class KL
function β and a class K function γ such that for any initial state x(t0) and any bounded input u(t)

the solution x(t) exists for all t ≥ t0 and satisfies

||x(t)|| ≤ β(||x(t0)||, t − t0) + γ
(

sup
t0≤τ≤t

||u(τ)||
)

. (232)

Instead of getting scared right now, let’s look into each of these terms separately and understand what

does this definition imply. If u ≡ 0, then the relationship in (232) reduces to

||x(t)|| ≤ β(||x(t0)||, t− t0), (233)

which basically states that the equilibrium of the unforced system in (231) is globally uniformly asymp-

totically stable (Recall Definition 4.2 to see this). It further guarantees that for any bounded input u(t)
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the state of the system will always be bounded by a class K function of sup
t≥t0

||u(t)||. From the properties

of class KL functions it follows that as t → ∞ one has β → 0, so that the bound on the system state

depends only on the bound of the control input. The presence of ||x(t0)|| in β(||x(t0)||, t − t0) allows

for the transient overshoot, Fig.26.

ISS

)( 0tx≈
u≈

ISS

)( 0tx≈
u≈

Fig. 26 State trajectory of a ISS system

Let’s look back into our linear system to convince ourselves that this definition is simply a nonlinear

generalization of what we derived in the linear case:

||x(t)|| ≤ ke−λ(t−t0)||x(t0)||
︸ ︷︷ ︸

β(||x(t0)||,t−t0)

+
k||B||
λ

sup
t0≤τ≤t

||u(τ)||
︸ ︷︷ ︸

γ
(

sup
t0≤τ≤t

||u(τ)||
)

.

A sufficient condition for verification of the ISS property of the system is given via the following

theorem:

Theorem 15.1. Let V : [0,∞) × R
n → R

+ be a continuously differentiable, positive definite

function such that

α1(||x||) ≤ V (t, x) ≤ α2(||x||) (234)

V̇ (t) =
∂V

∂t
+
∂V

∂x
f(t, x, u) ≤ −W (x), ∀ ||x|| ≥ ρ(||u||) > 0 (235)

for all (t, x, u) ∈ [0,∞) × R
n × R

m, where α1, α2 are class K∞ functions, ρ is a class K function, W (x)

is a continuous positive definite function on R
n. Then the system (230) is ISS with γ = α−1

1 ◦ α2 ◦ ρ.
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Proof: Application of Theorem 5.1 implies that x(t) exists and satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0) + γ
(

sup
τ≥t0

||u(τ)||
)

, ∀ t ≥ t0

without any restriction on x(t0). Since x(t) depends only on u(τ) for t0 ≤ τ ≤ t, the supremum on the

right-hand side can be taken over [t0, t], which immediately yields (232).

The converse Lyapunov theorem on exponential stability leads to a more conservative result.

Lemma 15.1. If f(t, x, u) is continuously differentiable and globally Lipschitz in (x, u), uniformly

in t, and the unforced system in (231) has GES at the origin x = 0, then the system in (230) is ISS.

Proof: From converse Lyapunov Theorem 6.1 it follows that there exists a Lyapunov function

V (t, x) for the unforced system in (231) that satisfies (39), (40) globally. Due to the uniform global

Lipschitz property of f , we have

||f(t, x, u) − f(t, x, 0)|| ≤ L||u||, ∀ t ≥ t0, ∀ (x, u) .

Computing the derivative of V (t, x), we can upperbound:

V̇ (t, x(t)) =
∂V

∂t
+
∂V

∂x
f(t, x, 0) +

∂V

∂x
(f(t, x, u) − f(t, x, 0)) ≤ −c3||x||2 + c4||x||L||u|| .

Further, we can do algebraic manipulations to obtain

V̇ (t, x(t)) ≤ −c3(1 − θ)||x||2 − c3θ||x||2 + c4||x||L||u|| ,

where 0 < θ < 1. Then,

V̇ (t, x(t)) ≤ −c3(1 − θ)||x||2, ∀ ||x|| ≥ c4L||u||
c3θ

,

for all (t, x, u). Hence, the conditions of Theorem 15.1 are satisfied with α1(r) = c1r
2, α2(r) = c2r

2,

and ρ(r) =
c4L

c3θ
r, and therefore the system is ISS with γ(r) =

√
c2
c1

c4L

c3θ
r.

Lemma 15.1 requires two strict conditions to ensure global ISS property for the system: globally

Lipschitz f(t, x, u) and GES of the origin of the unforced system. Next, we demonstrate the significance

of these two conditions, by constructing two simple examples of non-ISS systems, when one of these

two conditions does not hold.
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Example 15.1.

1. First let’s look back into our original system

ẋ = −3x+ (1 + x2)u .

It is definitely not globally Lipschitz. We already know that it has finite escape time, so it cannot

be ISS.

2. The system

ẋ = − x

1 + x2
+ u , f(x, u)

on the opposite has globally Lipschitz f both in x and u, since both partials are globally bounded.

The origin of the unforced system

ẋ = − x

1 + x2
= f(x, 0)

is GAS, and this can be proved via the Lyapunov function V (x) = x2/2, the derivative of which

V̇ = −x2/(1 + x2) is negative definite for all x ∈ R
n (i.e. globally). Further, it is locally

exponentially stable (LES), since the linearization of it is ẋ = −x. However, it is not GES. And,

indeed, if u(t) ≡ 1, then f(x, u) ≥ 1/2. Hence, x(t) ≥ x(t0) + t/2 for all t ≥ 0, which shows that

the solution is unbounded, and therefore cannot be ISS.

However, in the absence of GES or globally Lipschitz f , one may still be able to assert ISS by using

Theorem 15.1. Next, we construct several examples to demonstrate this.

Example 15.2.

1. The system ẋ = −x3 + u has a GAS at the origin, when u = 0. (Recall that ẋ = −x3 is not

GES!!!) Taking V = x2/2, we have

V̇ = −x4 + xu = −(1 − θ)x4 − θx4 + xu ≤ −(1 − theta)x4, |x| ≥
( |u|
θ

)1/3
, 0 < θ < 1.

Therefore the system is ISS with γ(r) = (r/θ)1/2.
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2. The system ẋ = f(x, u) = −x− 2x3 + (1 + x2)u2 has a GES at the origin if u = 0, but f is not

globally Lipschitz. Taking V = x2/2, we obtain

V̇ = −x2 − 2x4 + x(1 + x2)u2 ≤ −x4, ∀ |x| > u2 ,

and therefore the system is ISS with γ(r) = r2.

An interesting application of the concept of ISS arises in stability analysis of cascaded systems:

ẋ1 = f1(t, x1, x2), x1(t0) = x10 (236a)

ẋ2 = f2(t, x2), x2(t0) = x20 , (236b)

where f1 : [0,∞) × R
n1 × R

n2 → R
n1 and f2 : [0,∞) × R

n2 → R
n2 are piecewise continuous in t and

locally Lipschitz in x = [x1 x2]
⊤. Assume that the disconnected systems (i.e. when the first one is

unforced)

ẋ1 = f1(t, x1, 0) (237a)

ẋ2 = f2(t, x2) (237b)

have GUAS equilibria at their respective origins. The next lemma shows that if (236a) with x2 viewed

as input is ISS, then the combined cascaded system in (236) will have GUAS at the origin.

Lemma 15.2. If the system (236a) with x2 viewed as input is ISS, and the origin of (236b) is

GUAS, then the origin of the combined cascaded system in (236) is GUAS.

Proof: Since the system (236a) with x2 viewed as input is ISS, and the origin of (236b) is GUAS,

then

||x1(t)|| ≤ β1(||x1(s)||, t − s) + γ1

(

sup
s≤τ≤t

||x2(τ)||
)

and

||x2(t)|| ≤ β2(||x2(s)||, t − s) ,

where t0 ≤ s let, β1, β2 are class KL class functions, and γ1 is a class K function. Letting s = (t+ t0)/2,

we get

||x1(t)|| ≤ β1

(∥
∥
∥x1

(
t+ t0

2

)∥
∥
∥,
t− t0

2

)

+ γ1

(

sup
t+t0

2
≤τ≤t

||x2(τ)||
)

, (238)
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while letting s = t0 and t = (t+ t0)/2, we obtain

∥
∥
∥x1

(
t+ t0

2

)∥
∥
∥ ≤ β1

(

‖x1(t0)‖,
t− t0

2

)

+ γ1

(

sup
t0≤τ≤ t+t0

2

||x2(τ)||
)

.

Similarly, we can obtain

sup
t0≤τ≤ t+t0

2

||x2(τ)|| ≤ β2(||x2(t0)||, 0)

and

sup
t+t0

2
≤τ≤t

||x2(τ)|| ≤ β2

(

||x2(t0)||,
t− t0

2

)

.

Using the last three inequalities in (238), and taking into consideration that ||x(t)|| ≤ ||x1(t)||+||x2(t)||,
we get

||x(t)|| ≤ β(||x(t0)||, t− t0) ,

where

β(r, s) = β1(β1(r, s/2) + γ1(β2(r, 0)), s/2) + γ1(β2(r, s/2)) + β2(r, s)

is class KL function for all r ≥ 0. Hence, the origin of (236) is GUAS.
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16 Adaptive Backstepping

[Read [11], pp.589-603, and [16], pp.1-121.]

The entire set of tools, presented until today, assumed matched uncertainties. We had matched

parametric uncertainties, matched uncertain nonlinearities, matched disturbances, etc. Of course, in

reality, many of the systems do not satisfy this assumption. Backstepping is a technique that allows to

control special class of systems with unmatched uncertainties. Backstepping is a recursive procedure

that interlaces the choice of a Lyapunov function with the design of feedback control. It breaks a design

problem for the full system into a sequence of design problems for lower order subsystems. Adaptive

backstepping is a method for controlling systems with unmatched parametric uncertainties. A simple

system that does not verify the matching assumption would be

ẋ1 = x2 + θϕ(x1),

ẋ2 = u,
(239)

where θ is an unknown parameter, while ϕ(x1) is a known nonlinear function. It is obvious that this

system cannot be put into the well-known for you form

ẋ(t) = Ax(t) + b(u(t) +W⊤Φ(x(t))) .

The nonlinearity cannot be factored by the system’s b matrix! A typical example from aerospace

applications is the problem of controlling the angle of attack:

α̇ = −Lα(α)α + q (240)

q̇ = M0(α, q) + u , (241)

where α is the angle of attack, q is the pitch rate, Lα models the unknown lift coefficient, while M0(α, q)

is the unknown pitching moment. Thus, the uncertainties in Lα(α) are not matched by the control

input.

Systems like this can be adaptively controlled by backstepping. But before jumping directly to

adaptive backstepping, we need to review non-adaptive backstepping to understand what is the phi-

losophy behind backstepping, and how recursive Lyapunov analysis is being developed.
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16.1 Review of Backstepping

We start with the simplest structure known as integrator backstepping. Consider the system

ẋ = f(x) + g(x)ξ, (242a)

ξ̇ = u, (242b)

where [x ξ]⊤ ∈ R
2 is the system state, u ∈ R is the control input, f : D → R and g : D → R are known

and smooth functions in the domain D ⊂ R that contains the origin x = 0, and f(0) = 0. We want to

design a state feedback control law to achieve asymptotic stability at the origin (x = 0, ξ = 0).

For the time being, let’s forget about the second equation (242b) and look at the first equation in

(242a) and treat ξ as control input for it. Suppose the component (242a) can be stabilized by a smooth

state feedback control law ξ = ξc(x) with ξc(0) = 0, i.e. the origin of

ẋ = f(x) + g(x)ξc(x) (243)

is asymptotically stable. For the case when g(x) 6= 0, the simplest feedback would be given by a

dynamic inversion scheme

ξc(x) =
1

g(x)
(−k1x− f(x)), k1 > 0

leading to

ẋ = −k1x .

Notice that if at some points in the state space g(x) = 0, then the system loses controllability at those

points. Indeed, if g(x) = 0, then the first and second equations are completely decoupled, and the

first one cannot be controlled by the input from the second equation. Thus, the control input in the

second equation needs to be designed to ensure that ξ tracks ξc. One might naively think that the

feedback u = ξ̇c − k2(ξ − ξc), where k2 > 0, will do the job, since it achieves asymptotically stable

error dynamics ∆ξ̇ = −k2∆ξ, where ∆ξ = ξ− ξc. And having ẋ = −k1x, both equations are stabilized

in a nice decoupled way, and therefore ξ tracks ξc, while x → 0 as t → ∞. But this is wrong!!! And

unacceptable!!! Why???

Can you make a guess what did go wrong here?

We treated ξ as a true control input for the first equation and substituted for it our solution

ξc(x) = 1
g(x)(−k1x− f(x)) directly. We forgot that ξ was a state, while the only true input is u.
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This is the difference between the true control that you know and the concept of virtual or

pseudo-control that comes up in backstepping design.

By treating ξ as virtual input for the first equation, one needs to account for the error between ξ

and ξc, which is simply a stabilizing function for the first equation. Towards that end, we rewrite the

system (242a) equivalently as:

ẋ = (f(x) + g(x)ξc(x)) + g(x)(ξ − ξc(x)),

ξ̇ = u.

Now, there is nothing wrong to substitute for ξc in the first part of the equation, since the error ξ−ξc(x)
explicitly shows up in the second half of the equation. So, letting

∆ξ = ξ − ξc , (244)

the system can be rewritten like

ẋ = [f(x) + g(x)ξc(x)] + g(x)∆ξ, (245)

∆ξ̇ = v,

in which the states are x and ∆ξ, while v = u− ξ̇c, where ξ̇c should be computed as

ξ̇c =
∂ξc
∂x

ẋ =
∂ξc
∂x

[f(x) + g(x)ξ]. (246)

The system in (245) has the same structure as the system in (242) that we started from, except that

now the first component has an asymptotically stable origin when the input ∆ξ is zero. Indeed, ∆ξ = 0

corresponds to ξ = ξc (look at (244), and recall that ξc(x) was achieving asymptotic stability of the

origin of ẋ = f(x)+ g(x)ξc(x)). This feature will be exploited in the design of v to stabilize the overall

system, while the actual control input will be computed as

u = v + ξ̇c .

So, let’s use our choice of ξc

ξc(x) =
1

g(x)
(−k1x− f(x)), k1 > 0

in (245) and see what we get

ẋ = −k1x+ g(x)∆ξ, (247)

∆ξ̇ = v.
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So, what did we get??? We got an extra error g(x)∆ξ as compared to ẋ = −k1x that we would have

had if instead of ξ we had actual control input in the first equation and had done the straightforward

substitution using ξc. This is the price of backstepping. Now, our design of v in the second equation

needs to make sure that the combined two-dimensional system has asymptotically stable error dynamics.

So, design of v will be:

v = −k2∆ξ − g(x)x ,

to give a combined error dynamics with its state matrix being a sum of a skew-symmetric matrix

(A1(x)) and a Hurwitz matrix (A2):




ẋ

∆ξ̇



 =




−k1 g(x)

−g(x) −k2





︸ ︷︷ ︸

A1+A2




x

∆ξ



 , A1(x) =




0 g(x)

−g(x) 0



 , A2 =




−k1 0

0 −k2





Due to the skew-symmetric structure of the A1(x) matrix and Hurwitz property of A2, stability of

such system can be immediately concluded from Krasovskii’s method given in theorem 3.4, Our system

ẋ = f(x) = A(x)x has equilibrium at the origin, where A(x) = A1(x) + A2 is the Jacobian of f(x).

Since A1(x) is skew-symmetric, and A2 is Hurwitz, it immediately verifies the sufficient condition on

A(x)+A⊤(x) = 2A2 being negative definite. Then by Krasovskii’s method, the equilibrium at the origin

is asymptotically stable, and a Lyapunov function is given by V (x) = f⊤(x)f(x) = x⊤A⊤(x)A(x)x.

Thus, x→ 0 as t→ ∞, and ∆ξ → 0 as t→ ∞, which implies that ξ → ξc. So, our actual control input

is

u = −k2(ξ − ξc) − g(x)x+
∂ξc
∂x

[f(x) + g(x)ξ] , k2 > 0 ,

where ξc(x) = 1
g(x)(−k1x − f(x)) and k1 > 0. Now, it is important to pay attention to the fact that

design of v in

v = −k2∆ξ − g(x)x

was motivated by the fact to generate a skew-symmetric matrix in the combined error dynamics to

ensure stability of its origin. So, a choice like v = −k2∆ξ would have stabilized only a decoupled

∆ξ̇ = ξ̇ − ξ̇c, which does not exist on its own, since ξc involves coupling of the states from the first

equation. Thus, understanding of stability theory, being aware of Krasosvskii’s method, helped to

complete the derivation of actual control input u. It was important to get the skew-symmetric matrix

with negative off-diagonal elements. You have here the price and the beauty of backstepping!!!
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Once we showed the link to Lyapunov theory and stability tools, it is time to formulate backstepping

as a general design philosophy. Given the fact that ξc(x) is supposed to stabilize the system ẋ =

f(x) + g(x)ξ, it is fair to assume that we know a smooth, positive definite Lyapunov function V (x)

that satisfies
∂V

∂x
[f(x) + g(x)ξc(x)] ≤ −W (x), ∀x ∈ D, (248)

where W (x) is positive definite. Existence of such a Lyapunov function for (243) can be deduced from

converse Lyapunov theorems (see [11], p.162).

Consider the following positive definite candidate Lyapunov function for the system in (245):

V(x,∆ξ) = V (x) +
1

2
(∆ξ)2.

This is a Lyapunov function candidate for (245) because V(0, 0) = 0 (notice that V (0) = 0, since V (x)

was a Lyapunov function for proving asymptotic stability of the origin of ẋ = f(x) + g(x)ξc(x)) and

V > 0 otherwise. We can compute

V̇ =
∂V

∂x
[f(x) + g(x)ξc(x)] +

∂V

∂x
g(x)∆ξ + ∆ξv

≤ −W (x) +
∂V

∂x
g(x)∆ξ + ∆ξv.

Choosing

v = −∂V
∂x

g(x) − k∆ξ, k > 0 (249)

yields

V̇ ≤ −W (x) − k(∆ξ)2,

which shows that the origin (x = 0,∆ξ = 0) is asymptotically stable. Since ∆ξ = 0 corresponds to

ξ = ξc(x) and ξc(0) = 0, we conclude that the origin x = 0, ξ = 0 is asymptotically stable. Substituting

for v,∆ξ, ξ̇c, we obtain the state feedback control law (from equations (244), (246), and (249))

u = ξ̇c + v =
∂ξc
∂x

[f(x) + g(x)ξ]
︸ ︷︷ ︸

ξ̇c

−∂V
∂x

g(x) − k [ξ − ξc(x)]
︸ ︷︷ ︸

∆ξ

. (250)

If all the assumptions hold globally and V (x) is radially unbounded, we can conclude that the origin

is globally asymptotically stable (GAS). The conclusion can be summarized in the next lemma.
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Lemma 16.1. Consider the system in (242). Let ξc(x) be a stabilizing state feedback control law

for (242a) with ξc(0) = 0, and V (x) be a Lyapunov function that satisfies (248) with some positive

definite function W (x). Then, the state feedback control law (250) stabilizes the origin of (242), with

V (x) + 1
2(ξ − ξc(x))

2 as a Lyapunov function. Moreover, if all the assumptions hold globally and V (x)

is radially unbounded, the origin will be globally asymptotically stable.

Let us move from systems (242) to the more general system

ẋ1 = f1(x1) + g1(x1)x2, (251a)

ẋ2 = f2(x1, x2) + g2(x1, x2)u, (251b)

where f2 and g2 are smooth functions of their arguments, f1(0) = 0. If g2(x1, x2) 6= 0 over the domain

of interest, then the simple dynamic inversion type feedback

u =
1

g2(x1, x2)
[v − f2(x1, x2)] (252)

will linearize (251b) to the following structure ẋ2 = v. Therefore, if a stabilizing state feedback control

law x2c(x1) and a Lyapunov function V (x1) exist such that the conditions of Lemma 16.1 are satisfied

for (251a), then Lemma 16.1 and (252) yield

u =
1

g2(x1, x2)

{
∂x2c

∂x1
[f1(x1) + g1(x1)x2] −

∂V

∂x1
g1(x1) − k(x2 − x2c) − f2(x1, x2)

}

, k > 0 (253)

as a stabilizing state feedback law and

V(x1, x2) = V (x1) +
1

2
(x2 − x2c)

2

as a Lyapunov function, respectively, for the overall system (251).

By recursively applying backstepping, we can stabilize strict-feedback systems of the form

ż1 = f1(z1) + g1(z1)z2

ż2 = f2(z1, z2) + g2(z1, z2)z3
... (254)

żk−1 = fk−1(z1, z2, . . . , zk−1) + gk−1(z1, z2, . . . , zk−1)zk

żk = fk(z1, z2, . . . , zk−1, zk) + gk(z1, z2, . . . , zk−1, zk)u
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under the assumption that gi(z1, . . . , zi) 6= 0 for 1 ≤ i ≤ k. It is important to notice that backstepping

philosophy can be applied only to specific structures. In this case the first equation depends linearly

upon the second state with a coefficient bounded away from zero, the second equation linearly depends

upon the third state with a coefficient bounded away from zero, etc. Another important feature of this

structure is that the nonlinearities have cascaded structure, i.e. over each level only one more variable is

allowed to enter into the nonlinearity. In the first equation, the nonlinearities can depend only upon the

first state, while the second state enters linearly. In the second equation the nonlinearities can depend

upon the first and second state, while the third state enters linearly, etc. This cascaded structure

is crucial for deriving the skew-symmetric matrix for the final error dynamics. If you look carefully,

you’ll see that so that to treat x2 as pseudo-control in the first equation, the rest of the entries in that

equation should only depend on x1, otherwise it won’t be a well-defined input/output relationship.

In general, for nonlinear systems of the most general form there is no universal control method or

theory. Every nonlinear control method has a special structure of the nonlinear system to go with it.

If you got to this point and it is still not clear what is backstepping doing, you better read it again

before going to the adaptive section. I would recommend to implement it for better feeling of it.

16.2 Adaptive Regulation

In the above section, we reviewed the philosophy of backstepping, in which the key idea was to

interlace the choice of a Lyapunov function with the design of the feedback control law. Again, before

going to the adaptive backstepping, let us consider the following first-order and second-order systems

and see how that philosophy can be implemented:

ẋ = u+ θϕ(x), (255)

where θ is an unknown constant parameter, ϕ(x) is locally Lipschitz known nonlinear function, and

ẋ1 = ϕ1(x1) + x2,

ẋ2 = θϕ2(x) + u,
(256)

where θ is an unknown constant parameter, ϕ1(x1), ϕ2(x) are locally Lipschitz known nonlinear func-

tions, x = [x1, x2]
⊤, ϕ1(0) = 0. Notice that both systems verify the matched uncertainty assumption,

since the unknown parameter θ is in the span of the input u(t). However, in the first equation of the

second system there is known nonlinearity ϕ1(x1) which is not in the span of control. The presence
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of ϕ1(x1) outside the span of control u(t), even though known, makes a difference from the previous

structures that we have explored by adaptive control methods.

The control objective is to stabilize x(t) to the origin in both systems.

• First, consider the system in (255). It is straightforward to design a control input u(t) as

u(t) = −k1x(t) − θ̂(t)ϕ(x(t)). (257)

The derivative of V (x, θ̃) = 1
2x

2 + 1
2γ θ̃

2 with θ̃(t) = θ − θ̂(t) and γ > 0 gives

V̇ (t) = x(t)ẋ(t) +
1

γ
θ̃(t) ˙̃θ(t) = x(t)(u(t) + θϕ(x(t))) +

1

γ
θ̃(t) ˙̃θ(t)

= x(t)(−k1x(t) − θ̂(t)ϕ(x(t)) + θϕ(x(t))) +
1

γ
θ̃(t)

˙̃
θ(t)

= −k1x
2(t) + θ̃(t)

(
1

γ
˙̃
θ(t) + x(t)ϕ(x(t))

)

.

Choosing the adaptive law as

˙̂
θ(t) = γx(t)ϕ(x(t)) , θ̂(0) = θ̂0 (258)

yields
˙̃θ(t) = −γx(t)ϕ(x(t)) .

Consequently V̇ (t) = −k1x
2(t) ≤ 0 is negative semidefinite, and x(t), θ̃(t) are bounded. The

closed-loop system is

ẋ = −k1x+ θ̃ϕ(x),

˙̃θ = −γxϕ(x).
(259)

Since V̇ (t) ≤ 0, and V (0, 0) = 0, the equilibrium (x = 0, θ̃ = 0) of (259) is globally stable. Since

the closed-loop system in (259) is autonomous, application of LaSalle’s principle implies that if

ϕ(0) 6= 0, then x→ 0 and θ̃ → 0 as t→ ∞. If ϕ(0) = 0, then x→ 0, but θ̃ → 0 is not guaranteed.

Remark 16.1. In fact, x → 0 as t → ∞ can be concluded without application of La-Salle’s

principle. A more general result, known as La-Salle–Yoshizawa lemma, helps to prove x(t) → 0

directly from the fact that V̇ (t) = −k1x
2(t) ≤ 0. It can be used also in analysis of non-autonomous
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systems, instead of applying Barbalat’s lemma. La-Salle’s principle and Barbalat’s lemma were

convenient tools to explain you the difference between autonomous systems and non-autonomous

systems. Also, in this particular system with our choice of the Lyapunov function candidate,

θ̃ → 0, in the case of ϕ(0) 6= 0, can be concluded only from application of La-Salle’s principle.

La-Salle–Yoshizawa lemma won’t help in that. However, since now as you managed to grow

through the course, we state La-Salle–Yoshizawa lemma for giving you the broader perspective.

Lemma 16.2. [La-Salle–Yoshizawa lemma] Let x = 0 be an equilibrium point of the system

ẋ(t) = f(t, x(t)), x(0) = 0 ,

where x ∈ R
n is the system state, and f is piece-wise continuous in t, locally Lipschitz in x

uniformly in t. Let V : R
n → R

+ be a continuously differentiable, positive definite and radially

unbounded function such that

V̇ (t) =
∂V

∂x
f(t, x) ≤ −W (x(t)) ≤ 0, ∀ t ≥ 0, ∀ x ∈ R

n ,

where W (x) is a continuous function. Then all solutions of the system ẋ(t) = f(t, x(t)) are

globally uniformly bounded and satisfy

lim
t→∞

W (x(t)) = 0 .

In addition, if W (x) is positive definite, then the equilibrium x = 0 of the system ẋ(t) = f(t, x(t))

is globally uniformly asymptotically stable (GUAS).

• Now consider the system in (256). Before getting into the details, let us examine this system.

Notice that the system in (256) has a structure similar to (251), but with an unknown parameter

θ. However, the unknown parameter is matched, i.e. it is in the span of control. So, if we are

interested in stabilizing x1(t) via the input u(t), we need to couple our knowledge on adaptive

control of systems with matched uncertainties with our recently reviewed backstepping philoso-

phy. Backstepping will be illustrated first using this example. Upon that, we will extend it to

unmatched uncertainties, like stated in the beginning of this section.



169

Another feature that I would like to point out for you is that in (251) we had to assume that

f(0) = 0 (you need to look back to see how crucial was this for the control design), while in

(255) we did not have to assume that ϕ(0) = 0. This is because in the latter system, ϕ(x) is

multiplying the unknown parameter, for which we are writing an adaptive law. In fact, it is even

beneficial not to have ϕ(0) = 0, since then we lose parameter convergence. Thus, in (256) we

assume that ϕ1(0) = 0, which resembles f(0) = 0 in (251), while we impose no assumption on

ϕ2(0). By the end of the proof, further clarification will be given on this.

Now, getting to actual control design, notice that we have no control of the first equation in (256),

so we need to control it from the second equation. Viewing x2 as a virtual input, a stabilizing

feedback function for x1 can be designed as

x2c(x1) = −k1x1 − ϕ1(x1). (260)

Thus, repeating our well-known steps

ẋ1 = x2c + ϕ1(x1) + x2 − x2c
︸ ︷︷ ︸

∆x2

= −k1x1 + ∆x2,

∆ẋ2 = ẋ2 − ẋ2c = ẋ2 −
∂x2c

∂x1
ẋ1 = u+ θϕ2(x) +

(

k1 +
∂ϕ1(x1)

∂x1

)

(∆x2 − k1x1).

(261)

If θ were known, the derivative of the following candidate Lyapunov function

V (x1,∆x2) =
1

2
x2

1 +
1

2
(∆x2)

2

given by

V̇ (x1,∆x2) = x1(∆x2 − k1x1) + ∆x2

(

u+ θϕ2(x) +

(

k1 +
∂ϕ1(x1)

∂x1

)

(∆x2 − k1x1)

)

would be rendered negative definite

V̇ = −k1x
2
1 − k2(∆x2)

2 < 0

by the control law

u = −k2∆x2 − x1 −
(

k1 +
∂ϕ1(x1)

∂x1

)

(∆x2 − k1x1) − θϕ2(x(t)) . (262)
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Substitution in (261) gives a (skew-symmetric+Hurwitz) state-space matrix:

ẋ1 = −k1x1 + ∆x2,

∆ẋ2 = −x1 − k2∆x2 .
(263)

If θ is unknown, it is natural to replace it by its estimate in the above control law:

u = −k2∆x2 − x1 −
(

k1 +
∂ϕ1(x1)

∂x1

)

(∆x2 − k1x1) − θ̂(t)ϕ2(x(t)) . (264)

Now, we have to derive an adaptive law for θ̂(t). It is straightforward to see that the closed-loop

system with adaptive feedback retains the skew-symmetric structure of the state matrix and takes

the form:




ẋ1(t)

∆ẋ2(t)



 =




−k1 1

−1 −k2








x1(t)

∆x2(t)



+




0

ϕ2(x(t))



 θ̃(t), (265a)

where θ̃(t) = θ − θ̂(t). The rest is straightforward: we augment the original candidate Lyapunov

function by an additional quadratic term of parametric error:

V(x1,∆x2, θ̃) = V (x1,∆x2) +
1

2γ
θ̃2 =

1

2
x2

1 +
1

2
(∆x2)

2 +
1

2γ
θ̃2 .

Its derivative is:

V̇(x1,∆x2, θ̃) = −k1x
2
1(t) − k2(∆x2(t))

2 + θ̃(t)

(
1

γ
˙̃
θ(t) + ∆x2(t)ϕ2(x(t))

)

.

So, choosing
˙̂
θ(t) = γ∆x2(t)ϕ2(x(t)), (266)

yields
˙̃
θ(t) = −γ∆x2(t)ϕ2(x(t)), (267)

and consequently V̇ (t) = −k1x
2
1(t)−k2(∆x2(t))

2 ≤ 0. Thus the closed-loop adaptive system has a

globally stable equilibrium at the origin (x1 = 0,∆x2 = 0), and application of La-Salle–Yoshizawa

lemma implies that x1,∆x2 → 0 as t → ∞, i.e. x1(t) → 0, x2(t) → x2c(0) = 0 as t → ∞. Now,

you see why ϕ1(0) = 0 was important, otherwise we wouldn’t have had x2c(0) = 0, and hence

convergence of x2 to the origin would have been in question. Application of La-Salle’s principle

implies that if ϕ2(0) 6= 0, then θ̃ → 0 as t→ ∞, i.e. we get in addition parameter convergence.
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16.3 Adaptive Backstepping

In the previous section, we used the backstepping philosophy to control systems with matched

uncertainty. Backstepping was only performed for the unmatched known nonlinearity, while for

the adaptation purposes we used our old known philosophy, since the uncertain parameter was matched.

Now, we will develop the adaptive backstepping, by which we mean that we will back-step adaptively

to compensate for the unmatched unknown parameters.

Now we consider systems of the following type:

ẋ1 = x2 + θϕ(x1), (268a)

ẋ2 = u , (268b)

where θ is the unknown parameter, u is the control input. Notice that this system is similar to

(251). However, now the uncertainty is unmatched, since the unknown parameter is not in the span

of the input u. The system (268) falls into the class of systems with extended matching with level of

uncertainty being one. This system

ẋ1 = x2 + θϕ(x1), (269a)

ẋ2 = x3 (269b)

ẋ3 = u (269c)

has level of uncertainty two, because the uncertain parameter is separated from the control input by

two integrators.

We will just develop the adaptive backstepping for (268), hoping that it should be straightforward

to generalize. Viewing x2 as a virtual input, we can design the following stabilizing function

x2c(x1, θ̂) = −k1x1 − θ̂(t)ϕ(x1). (270)

Notice that due to the presence of the unknown parameter θ in the first equation, the stabilizing

function for the first equation now depends upon the adaptive parameter θ̂(t).

Thus, the derivative of x1 gets an extra term as compared to (261):

ẋ1 = x2c + θϕ1(x1) + x2 − x2c
︸ ︷︷ ︸

∆x2

= −k1x1 + ∆x2 + θ̃(t)ϕ(x1), θ̃(t) = θ − θ̂1(t), (271)
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while computation of ∆ẋ2 needs to account for its dependence upon θ̂:

∆ẋ2 = ẋ2 − ẋ2c = ẋ2 −
∂x2c

∂x1
ẋ1 −

∂x2c

∂θ̂

˙̂
θ = u+

(

k1 + θ̂(t)
∂ϕ1(x1)

∂x1

)

︸ ︷︷ ︸

− ∂x2c
∂x1

(x2 + θϕ(x1)) + ϕ(x1)
˙̂
θ. (272)

Consider the following candidate Lyapunov function

V (x1,∆x2, θ̃) =
1

2
x2

1 +
1

2
(∆x2)

2 +
1

2γ
(θ̃)2.

Its derivative will be

V̇ (x1,∆x2, θ̃) = −k1x
2
1 + x1∆x2 + θ̃

(

ϕ(x1)x1 +
1

γ
˙̃θ

)

+ ∆x2

(

u− ∂x2c

∂x1
(x2 + θ̂ϕ(x1) + θ̃ϕ(x1)) + ϕ(x1)

˙̂
θ

)

= −k1x
2
1 + θ̃

(

ϕ(x1)x1 −
1

γ
˙̂
θ − ∂x2c

∂x1
∆x2 ϕ(x1)

)

+ ∆x2

(

x1 + u− θ̂
∂x2c

∂x1
ϕ(x1) −

∂x2c

∂x1
x2 + ϕ1(x1)

˙̂
θ

)

.

Choosing
˙̂
θ = γ

(

ϕ(x1)x1 −
∂x2c

∂x1
ϕ(x1)∆x2

)

and

u = −x1 − k2∆x2 + θ̂
∂x2c

∂x1
ϕ(x1) +

∂x2c

∂x1
x2 − ϕ1(x1)

˙̂
θ,

the derivative of the candidate Lyapunov function can be rendered negative semidefinite

V̇ (x1,∆x2, θ̃) = −k1x
2
1 − k2(∆x2)

2 ≤ 0.

From La-Salle–Yoshizawa’s lemma we have that x1,∆x2 → 0 as t → ∞, which implies that x2 → x2c .

Looking at the closed-system error dynamics

d

dt




x1

∆x2



 =




−k1 1

−1 −k2








x1

∆x2



+




ϕ(x1)

(

k1 + (θ − θ̃)∂ϕ1(x1)
∂x1

)

ϕ(x1)



 θ̃, (273a)

˙̃
θ = −γ

[

ϕ(x1)
(

k1 + (θ − θ̃)∂ϕ1(x1)
∂x1

)

ϕ(x1)
]




x1

∆x2



 , (273b)
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we see that it is autonomous (due to the stabilization problem as opposed to tracking). So, La-Salle’s

invariance principle can be applied to conclude that θ̃ → 0 as t → ∞. Indeed, V̇ (x1,∆x2, θ̃) =

−k1x
2
1 − k2(∆x2)

2 = 0, implies that x1 = ∆x2 = 0, which can identically take place only if θ̃ = 0,

provided that ϕ(0) 6= 0. If ϕ(0) = 0, of course, no parameter convergence can be claimed. If ϕ(0) 6= 0,

then x2 → θϕ(0) as t→ ∞.

Thus, backstepping led to a new type of control signal that involves the derivative of the adaptive

parameter in addition to the adaptive parameter, which enters both linearly and with its square. Let’s

rewrite the adaptive controller in its full glory:

u = −x1 − k2(x2 − k1x1 − θ̂ϕ(x1)) −
(

k1 + θ̂
∂ϕ1(x1)

∂x1

)

(x2 + θ̂ϕ(x1)) − ϕ1(x1)
˙̂
θ . (274)

We notice correspondingly that both the adaptive law and the error dynamics have new structure. The

parametric error in the state error equation is multiplied by the same vector that is used for definition

of the adaptive laws. The closed-loop architecture is given in Figure 27.
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Fig. 27 Closed-loop adaptive system with backstepping

It is important to compare and see how much changed in the design when moving from the system

of the type (256) to a system of the type (268). It should be obvious that if we had retained ϕ2(x)

in the second equation of (268) without any unknown coefficient, then we would have needed to imply

subtract it from our ultimate control definition in (274). It was dropped for simplicity of derivations. If

we had retained ϕ2(x) in the second equation in (268) with another unknown coefficient, then it should

have been straightforward to derive another update law for it, since it would be matched uncertainty

and should reduce to the previous case.

Homework Problems 16.1.
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• Consider implementing backstepping for a 2-D system. It would be good to do it incrementally,

i.e. start from a system of the type (256) and move to a system of the type (268).

• Challenge problem: Write the backstepping scheme for the following system:

ẋ1 = θ1ϕ1(x1) + x2,

ẋ2 = θ2ϕ2(x) + u,
(275)

in which both θ1 and θ2 are unknown parameters. There is no technical challenge in this, but

you need patience to go through.
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17 Adaptive Output Feedback Control

The adaptive control methods presented in the previous sections were relying on the knowledge

of full state feedback. To extend tools to output feedback, we need i) to be able to write a control

signal definition using only available measured outputs and reference inputs, ii) to write the adaptive

laws using only measured outputs and reference inputs. So that to formulate adaptive control using

only output feedback, we need to recall the concept of strictly positive real transfer functions. First

we consider linear systems and later present generalization to class of nonlinear systems, for which

adaptive output feedback can be determined with asymptotic convergence properties.

17.1 Positive Real Systems

Reading [17], pp. 126-131.

Definition 17.1. A transfer function H(s) is called positive real, if Re[H(s)] ≥ 0 for all Re[s] ≥ 0.

It is strictly positive real (SPR), if H(s− ǫ) is positive real for some ǫ > 0.

Example 17.1. The transfer function

H(s) =
1

s+ λ
,

where λ > 0, is obviously strictly positive real since for any complex number s = σ + jω with σ > 0

we have

H(σ + jω) =
1

σ + jω + λ
=

σ + λ− jω

(σ + λ)2 + ω2
,

which has positive real part if one selects ǫ = λ/2.

Theorem 17.1. A transfer function H(s) is SPR, if and only if

• H(s) is strictly stable transfer function;

• The real part of H(s) is strictly positive along jω axis, i.e.

∀ ω ≥ 0 Re[H(jω)] > 0 .
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Remark 17.1. The above theorem gives several necessary conditions for checking the SPR prop-

erty of a transfer function:

• H(s) is strictly stable;

• The Nyquist plot of H(jω) lies entirely in the right half complex plane. Or equivalently saying,

the phase shift of the system in response to sinusoidal input is always less than 90◦ degrees.

• H(s) has relative degree 0 or 1, i.e. the difference of its poles and zeros is never more than 1 at

most;

• H(s) is strictly minimum phase, i.e. all its zeros lie in the open left-half plane.

The first and second necessary conditions are immediate from the theorem, while the third and fourth

one are a consequence of the second condition.

Example 17.2.

• H1(s) = s−1
s2+as+b

cannot be SPR, because it is non-minimum phase.

• H2(s) = s+1
s2−s+1

cannot be SPR because it is unstable;

• H3(s) = 1
s2+as+b cannot be SPR because it has relative degree 2;

• H4(s) = s+1
s2+s+1 is strictly stable, minimum phase and has relative degree 1. It is SPR, because

H4(jω) = jω+1
−ω2+jω+1 = (jω+1)(−ω2−jω+1)

(1−ω2)2+ω2 has positive real part equal to Re[H4(jω)] = 1
(1−ω2)2+ω2 .

• H(s) = 1
s is PR (positive real), but not SPR.

The main difference between PR and SPR functions is that PR functions can tolerate poles on the

imaginary axis, while SPR ones cannot.

Lemma 17.1. [Kalman-Yakubovich lemma.] Consider a controllable linear time-invariant system

ẋ(t) = Ax(t) + bu(t)

y(t) = c⊤x(t) .
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The transfer function H(s) = c⊤[sI −A]−1b is SPR if and only if there exist positive definite matrices

P and Q such that

A⊤P + PA = −Q , Pb = c .

For different extensions of this lemma see [17], pp.132-133.

17.2 Adaptive Laws for SPR Systems

Adaptive output feedback control with a global asymptotic stability proof can be done only if the

transfer function of the error dynamics is SPR. If it is not SPR, then additional filters need to be

introduced to render it SPR [7]. The key result, enabling adaptive output feedback control, is given

by the following lemma. This lemma gives you a structure to be used for adaptive output feedback

control design. So, whatever control or adaptive law we define later, we have to make sure that it fits

into this structure.

Lemma 17.2. Consider the following system

ė(t) = Ae(t) + bλθ̃⊤(t)v(t) (276)

ỹ(t) = c⊤e(t) ,

where ỹ ∈ R is the only scalar measurable output signal (e ∈ R
n is not fully measurable), H(s) =

c⊤(sI −A)−1b is a strictly positive real transfer function, λ is an unknown constant with known sign,

θ̃(t) is a m×1 vector function of time (usually modeling the parametric errors), and v(t) is measurable

m× 1 vector. If the vector θ̃(t) varies according to

˙̃
θ(t) = −sgn(λ)γỹ(t)v(t) (277)

with γ > 0 being a positive constant for adaptation rate, then ỹ(t) and θ̃(t) are globally bounded.

Furthermore, if v(t) is bounded, then

ỹ(t) → 0 as t→ ∞ . (278)
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Proof: Since H(s) is SPR, it follows from KYP lemma that there exist symmetric positive definite

matrices Q and P such that

A⊤P + PA = −Q (279)

Pb = c . (280)

Let V (e, θ̃) be a positive definite function of the form:

V (e, θ̃) = e⊤Pe+
|λ|
γ
θ̃⊤θ̃ . (281)

Its time derivative along the trajectories of the system, due to the SPR condition, will be:

V̇ (e(t), θ̃(t)) = e⊤(t)(PA+A⊤P )e(t) + 2 e⊤ Pb
︸︷︷︸

c
︸ ︷︷ ︸

ỹ

(λθ̃⊤(t)v(t)) − 2θ̃⊤(t)(λỹ(t)v(t)) = −e⊤(t)Qe(t) ≤ 0 .

Therefore the equilibrium at the origin (e = 0, θ̃ = 0) is globally stable.

Further, if the signal v(t) is bounded, ė(t) is also bounded (see (276)). From

V̈ (t) = −2e⊤(t)Qė(t) (282)

it follows that V̈ (t) is also bounded. This implies uniform continuity of V̇ (t). Since V (e(t), θ̃(t)) is

bounded, and V̇ (t) is uniformly continuous, application of Barbalat’s lemma indicates that V̇ (t) → 0

as t → ∞, implying that e(t) → 0 as t → ∞. Consequently this leads to asymptotic convergence of

ỹ(t) to zero.

Remark 17.2. The key difference of the adaptive law in (277) from the conventional ones is

that it does not have the P matrix in it, which was coming from the solution of the algebraic Lyapunov

equation A⊤
mP + PAm = −Q for the reference matrix Am. Thus, all that is required for this new

adaptive law is the output error, and not the e⊤Pb. This fact is the fundamental point in the

development of the adaptive output feedback scheme, since we are going to augment the main system

dynamics with additional poles and zeros to achieve the SPR property for it. We will prove that this is

feasible, and this augmented system matrix with this “unknown” coefficients will constitute a reference

system with SPR property. Thus, the error dynamics will have the SPR property, while the augmented

reference matrix, used for error dynamics, will be unknown.
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Remark 17.3. In the above presented adaptive output feedback scheme the key point was to

write the adaptive law via only measurable signals, i.e. system output. It was possible due to the SPR

condition that helped to replace the conventional e⊤(t)Pb in the adaptive law by its equivalent y(t),

because in the presence of SPR Pb = c (Kalman-Yakubovich lemma), and hence e⊤(t)Pb = e⊤(t)c =

y(t). Without the SPR condition such a replacement would have been impossible.

Also, in our conventional error dynamics the signal v(t) is not measurable. It usually depends upon

the state vector x. So, even if we employ additional filters to render it SPR, we may need to do state

estimation to have an implementable control law.

17.3 The Simplest System with Adaptive Output Feedback

Let’s first see what would be the simplest system that would fit in the above described scheme.

Firts of all let’s acknowledge the fact that once we are talking about output feedback, the simplest

system cannot be scalar!!! So, the minimum dimension is n = 2, for which we would like to demonstrate

an adaptive output feedback control solution. So, let’s see what do we need: we need an SPR triple

(A, b, c) in the error dynamics in (276) and a measurable signal v(t). An SPR triple implies having an

SPR reference system:

ẋm(t) = Amxm(t) + bmr(t) (283)

ym(t) = c⊤xm(t) ,

such that (Am, bm, c) is SPR, and xm ∈ R
n, ym ∈ R. So, let’s construct our system to see what can we

afford in terms of uncertainties in our system to benefit from Lemma 17.2. Recalling that we always

needed some kind of matching with Am, let’s consider

ẋ(t) = Amx(t) + bλ(u(t) − k∗yy(t)) (284)

y(t) = c⊤x(t) ,

where k∗y is the only unknown (scalar) parameter in addition to unknown λ, and x ∈ R
n, b ∈ R

n, u ∈ R,

y ∈ R. The sign of λ needs to be known. Define the adaptive output feedback controller as:

u(t) = ky(t)y(t) + kr(t)r(t) .
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Upon substitution in (284), we get

ẋ(t) = Amx(t) + bλ(ky(t)y(t) + kr(t)r(t) − k∗yy(t)) (285)

y(t) = c⊤x(t) .

Let ∆ky(t) = ky(t) − k∗y. Then we have the following closed-loop system

ẋ(t) = Amx(t) + bλ(∆ky(t)y(t) + kr(t)r(t)) (286)

y(t) = c⊤x(t) .

If we compare this to the reference system in (283), we need one more matching condition:

∃ k∗r : bλk∗r = bm .

Subtracting (286) from (283), and denoting e(t) = x(t)−xm(t), ỹ(t) = y(t)−ym(t), ∆kr(t) = kr(t)−k∗r ,
we obtain:

ė(t) = Ame(t) + bλ∆ky(t)y(t) + bλ∆kr(t)r(t) (287)

ỹ(t) = c⊤e(t) ,

which we can “pack” similar to (276), if we denote θ̃(t) = [∆ky(t) ∆kr(t)]
⊤, v(t) = [y(t) r(t)]⊤:

ė(t) = Ame(t) + bλθ̃⊤(t)v(t) (288)

ỹ(t) = c⊤e(t) .

Thus, if we compare the system in (284) to our conventional one in (159), for which we developed

state feedback adaptive control design methods, we see that Lemma 17.2 allowed us to have only SPR

reference system and only output dependent uncertainties. The matching assumption consequently

implied that the uncertain system must also have SPR transfer function from its input to its output.

For the system in (288), obviously the adaptive law can be written as in Lemma 17.2.

Remark 17.4. It is straightforward to notice that the above design could have been easily extended

to systems with output dependent nonlinearities:

ẋ(t) = Amx(t) + bλ(u(t) − (k∗y)
⊤Φ(y(t)))

y(t) = c⊤x(t) ,
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where k∗y is a vector of unknown constants, while Φ(y) is a vector of known nonlinear functions, by

modifying the adaptive controller to be u(t) = k⊤y (t)Φ(y(t)) + kr(t)r(t).

17.4 Adaptive Output Feedback Control for Systems with Relative Degree One

Now let’s consider a general linear system, in which the uncertainties can depend also upon the state

of the system. However, we require the transfer function from the input to output be minimum-phase

and have relative degree 1, i.e. all its zeros be in the open left-half plane and the difference between

its poles and zeros be 1:

ẋ(t) = Ax(t) + bu(t), x(0) = x0

y(t) = c⊤x(t) .

Let’s denote:

G(s) = c⊤(sI −A)−1b = kp
Zp(s)

Rp(s)
,

where kp is called high-frequency gain (the sign of which we always assumed to be known), while

Zp(s) and Rp(s) are polynomials, representing the stable zeros and (whatever) poles of the system

respectively, and the order of Zp(s) is just one less than the order of Rp(s), so that the system has

relative degree 1. Let the desired reference model be given by

ẋm(t) = Amxm(t) + bmr(t), xm(0) = xm0

ym(t) = c⊤mxm(t) .

Denote
ym(s)

r(s)
= Wm(s) = km

Zm(s)

Rm(s)
,

where km is the high -frequency gain of the reference system, while Zm(s) and Rm(s) are polynomials,

associated with the zeros and poles of the reference system. When the reference system is SPR, one can

derive globally convergent stable adaptive controllers. However, let’s first recall the Model Reference

Control structure (MRC) and see how this can be achieved via output feedback in case if all parameters

are known. Then we will introduce adaptive laws to adapt for parametric uncertainties. For a general

MRC with known parameters, SPR and relative degree 1 are not required neither for the system, nor

for the reference system.
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17.4.1 Model Reference Control for known parameters

We notice that if the system had also stable poles, in addition to stable zeros, then a straightforward

controller to achieve perfect tracking would be

u(s) =
km
kp

Zm(s)

Rm(s)

Rp(s)

Zp(s)
r(s) , (289)

which will cancel both zeros and poles of the system and replace those by the ones from the reference

model. However, the poles of the system do not have to be stable, and feedback can be used to

shift those. Since feedback cannot be used to change the zeros, it is important to assume that the

system is minimum phase. This will allow the controller poles to cancel the system zeros.

So, first let’s formulate the general assumptions for MRC.

Assumptions for the system to be controlled:

• Zp(s) is monic Hurwitz polynomial of degree mp;

• An upper bound n of the degree np of Rp(s) is known;

• The relative degree n∗ = np −mp of G(s) is known;

• sgn(kp) is known.

Assumptions for the reference system:

• Zm(s), Rm(s) are monic Hurwitz polynomials of degree qm, pm, respectively, pm ≤ n;

• The relative degree n∗m = pm − qm of Wm(s) is the same as n∗, i.e. n∗m = n∗.

Remark 17.5. Notice that we allow the system be uncontrollable and unobservable, as long as

it is detectable and stabilizable. Since all the zeros are assumed to be in open-left half plane, any

pole-zero cancellation can take place only in open left-half plane.

So, in case of known parameters, instead of (289), let’s consider the following ideal controller

u∗(s) = (θ∗1)
⊤α(s)

Λ(s)
u∗(s) + (θ∗2)

⊤α(s)

Λ(s)
y(s) + θ∗0y(s) + k∗r(s) , (290)
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where α(s) , αn−2(s) = [sn−2, sn−3, ..., s, 1]⊤ if n ≥ 2, and α(s) = 0, if n = 1 (this corresponds to the

simplest adaptive system considered in the previous subsection), k∗, θ∗0 ∈ R, and Λ(s) is an arbitrary

monic Hurwitz polynomial of degree n− 1 that contains Zm(s) as a factor, i.e.

Λ(s) = Λ0(s)Zm(s) ,

which implies that Λ0(s) is monic, Hurwitz and of degree n0 = n− 1− q−m. The control objective is

to choose the parameter vector

θ∗ = [(θ∗1)
⊤ (θ∗2)

⊤ θ∗0 k
∗]⊤ ∈ R

2n

in a way so that
y(s)

r(s)
= Wm(s) .

Obviously

k∗ =
km
kp

.

Existence of such θ∗1, θ
∗
2, θ

∗
0, k

∗ is ensured via the following lemma ( [26], p.336):

Lemma 17.3. Let the degrees of Rp(s), Zp(s),Λ(s), λ0(s) and Rm(s) be specified as above. Then,

there always exists θ∗ such that u∗(s) achieves y(s)
r(s) = Wm(s). In addition, if Rp(s), Zp(s) are coprime

and n = np, then the solution θ∗ is unique.

Let’s now consider the state space representation of the ideal controller to analyze the effect of the

initial conditions. All we stated above is equivalence of transfer functions which will lead to identical

response in case of identical initial conditions. However, if our system and reference system have

different initial conditions, then having the same transfer functions, we still need to characterize the

initial transient. Towards that end consider the following state-space realization of that ideal controller

u∗(t) = (θ∗)⊤ω(t)

where θ∗ = [(θ∗1)
⊤ (θ∗2)

⊤ θ∗0 k
∗]⊤, ω(t) = [ω⊤

1 (t) ω⊤
2 (t) y(t) r(t)]⊤, and

ω̇1(t) = Fω1(t) + gu∗(t) (291)

ω̇2(t) = Fω2(t) + gy(t) ,
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where ω1, ω2 ∈ R
n−1 and

F =














−λn−2 −λn−3 −λn−4 · · · −λ0

1 0 0 · · · 0

0 1 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 0














, g =











1

0
...

0











and λi are coefficients of

Λ(s) = sn−1 + λn−2s
n−2 + · · · + λ1s+ λ0 = det(sI − F )

where (F, g) is the state space realization of α(s)
Λ(s) , i.e.

(sI − F )−1g =
α(s)

Λ(s)
.

The closed-loop system with this dynamic controller has the following state-space realization:

Ẋ(t) = AcX(t) + bck
∗r(t), X(0) = X0

y(t) = c⊤c X(t) ,

where

X =







x

ω1

ω2






∈ R

np+2n−2, Ac =







A+ bθ∗0c
⊤ b(θ∗1)

⊤ b(θ∗2)
⊤

gθ∗0c
⊤ F + g(θ∗1)

⊤ g(θ∗2)
⊤

gc⊤ 0 F






, bc =







b

g

0






, cc =







c

0

0







Since the transfer function from r(t) to y(t) is Wm(s), then

c⊤c (sI −Ac)
−1bck

∗ = Wm(s) .

A non-minimal state-space realization of the reference model is given by

Ẋm(t) = AcXm(t) + bck
∗r(t), Xm(0) = Xm0

ym(t) = c⊤c Xm(t) ,

where Xm ∈ R
np+2n−2. Letting e(t) = X(t) −Xm(t), and ỹ(t) = y(t) − ym(t), we have

ė(t) = Ace(t), e(0) = e0

ỹ(t) = c⊤c e(t) ,
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which we can integrate to find the dependence of the tracking error on initial condition

ỹ(t) = c⊤c exp(Act) e0 .

This proves that we have exponential convergence of the tracking error to zero.

17.4.2 Direct MRAC via output feedback for unknown parameters

Now we limit the reference system to be SPR, and the system to be minimum phase and have

relative degree n∗ = np − mp = 1. The system does not have to be SPR. We can achieve this

property for the system by shifting the poles. We notice that now θ∗ cannot be calculated exactly,

but Lemma 17.3 guarantees its existence. This was always the case in MRAC schemes. Existence of

ideal parameters is required, while their knowledge is not needed to derive adaptive laws. So, our ideal

controller u∗(t) = (θ∗)⊤ω(t) is not implementable. Let’s consider now the adaptive version of it

u(t) = θ⊤(t)ω(t)

where ω1(t) and ω2(t) are defined via the same filters:

ω̇1(t) = Fω1(t) + gu(t)

ω̇2(t) = Fω2(t) + gy(t) .

The augmented open-loop state-space representation will take the form:

Ẋ(t) = A0X(t) + bcu(t), X(0) = X0

y(t) = c⊤c X(t) ,

u(t) = θ⊤(t)ω(t)

where

X =







x

ω1

ω2






∈ R

np+2n−2, A0 =







A 0 0

0 F 0

gc⊤ 0 F






, bc =







b

g

0






, cc =







c

0

0






.

As we did for state-feedback case, we can add and subtract the desired input to rewrite the above

system as

Ẋ(t) = A0X(t) + bc(θ
∗)⊤ω(t) + bc(u(t) − (θ∗)⊤ω(t)), X(0) = X0 ,
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which can be ultimately written into the form:

Ẋ(t) = AcX(t) + bck
∗r(t) + bc(u(t) − (θ∗)⊤ω(t)), X(0) = X0 ,

y(t) = c⊤c X(t) ,

where Ac has been defined earlier. Letting e(t) = X(t) − Xm(t), and ỹ(t) = y(t) − ym(t), we obtain

the tracking error dynamics:

ė(t) = Ace(t) + bc(u(t) − (θ∗)⊤ω(t)), X(0) = X0 ,

ỹ(t) = c⊤c e(t) .

Since

c⊤c (sI −Ac)
−1bck

∗ = Wm(s) ,

which was assumed to be SPR, we have

ỹ(s) = Wm(s)
1

k∗
L{(u(t) − (θ∗)⊤ω(t))} ,

where L{·} is used to denote the Laplace transform of the symbol. Having defined

u(t) = θ⊤(t)ω(t) ,

the error dynamics in frequency domain takes the form:

ỹ(s) = Wm(s)
1

k∗
L{θ̃⊤(t)ω(t))} .

We can now use Lemma 17.2 to write the adaptive laws. The state-space representation of the error

dynamics will be:

ė(t) = Ace(t) +
b̄c
k∗
θ̃⊤(t)ω(t), b̄c , bck

∗, X(0) = X0 ,

ỹ(t) = c⊤c e(t) .

Following Lemma 17.2, the adaptive law is

˙̃
θ(t) = θ̇(t) = −γỹ(t)ω(t)sgn(k∗) ,

which leads to negative semi-definite derivative of the candidate Lyapunov function

V (e, θ̃) =
1

2
e⊤Pce+

1

2γ|k∗| θ̃
2 ,
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where Pc solves

A⊤
c Pc + PcAc = −Q, Pcbc = cc ,

since the reference system was SPR. We notice that (Ac, bc, cc) was not the minimal realization of

the reference system, since it has pole-zero cancellations. However, since c⊤c (sI −Ac)
−1bck

∗ = Wm(s),

where Wm(s) represents the original SPR reference system, Kalman-Yakubovich lemma holds also for

(Ac, bc, cc), despite the fact that computation of c⊤c (sI −Ac)
−1bc involves pole-zero cancellations.

Remark 17.6. In this simplest adaptive output feedback scheme we observed the following: to

achieve matching we needed to augment the system state by a dynamic controller, which in case of

known parameters, can be computed following Lemma 17.3. In case of known parameters, this ideal

dynamic controller closes the system loop to define an augmented ideal reference system, which is a non-

minimal realization of the original SPR reference system. In case if system parameters are unknown, the

ideal dynamic controller is turned into an adaptive one, by replacing the constant parameters by their

adaptive estimates. This leads to an error dynamics, in which uncertainties are matched, and depend

only upon the states of the controller, the system output and reference input. Since the controller

dynamics are introduced by us, the states of this dynamic controller can be used to write adaptive

laws. The SPR property of the reference system leads to SPR error dynamics, for which adaptive laws

are written using Lemma 17.2. The augmented reference system is unknown.

Remark 17.7. Adaptive output feedback control for non-minimum phase systems with higher

relative degree requires more complex control laws that due to time-restrictions we could not cover

within one semester. You’re advised to read on this in [26].
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18 The Theory of Fast and Robust Adaptation

18.1 Mathematical Preliminaries on L stability

18.1.1 Norms for vectors and functions: Lp spaces

Let’s first recall the definition of norms for vectors. A positive number is called a norm for a

vector u ∈ R
n and is denoted by ||u||, if it has the following four properties:

1. ||u|| ≥ 0;

2. ||u|| = 0 if and only if u ≡ 0;

3. ||au|| = |a| ||u||, for all a ∈ R;

4. ||u+ v|| ≤ ||u|| + ||v||.

It is straightforward to verify that the following definitions satisfy the four properties mentioned

above.

1. ∞-norm for a vector u = [u1, · · · , um] ∈ R
m is defined as

||u||∞ = max
i

|ui|.

2. 2-norm for a vector u = [u1, · · · , um] ∈ R
m is defined as

||u||2 =
√
u⊤u.

3. 1-norm for a vector u = [u1, · · · , um] ∈ R
m is defined as

||u||1 =
i=m∑

i=1

|ui|.

4. p-norm for a vector u = [u1, · · · , um] ∈ R
m is defined as

||u||p =
( i=m∑

i=1

|ui|p
)1/p

.
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Thus, the norm is not defined uniquely: it can be defined in numerous different ways.

All the norms are equivalent, in a sense that if ||u||p and ||u||q are two different norms, then there

exist two constants c1 > 0 and c2 > 0 such that

c1||u||p ≤ ||u||q ≤ c2||u||p .

Next, using the definition of the norms of vectors, we consider the space of piecewise continuous

bounded functions u(t) : [0,+∞) → R
m, and define norms for functions.

1. L∞-norm and L∞ space: For the space of piecewise continuous bounded functions mapping

[0,∞) into R
m, which we denote by Lm∞ space, we introduce the L∞-norm of u(t) as the least

upper bound of its vector norm:

||u||L∞ = sup
t≥0

||u(t)|| <∞.

The vector norm on the right hand side can be any of the vector norms introduced above. For

our analysis, when referring to L∞-norm, we will use ∞-norm for the vector on the right, which

gives

||u||L∞ = max
i=1,...,m

(sup
t≥0

|ui(t)|), (292)

where ui(t) is the ith component of u(t).

2. L2-norm and L2 space: For the space of piecewise continuous square integrable functions

mapping [0,∞) into R
m, which we denote by Lm2 space, we introduce the L2-norm of u(t) as:

||u||L2
=

√
∫ ∞

0
u⊤(t)u(t)dt <∞,

where on the right hand side we have used the 2-norm of the vector. In general, like mentioned

above, there is nothing wrong to use any of the vector norms on the right hand side, however, for

the L2-norm it is quite common to use the 2-norm of the vector.

3. Lp-norm and Lp space: In general, the space Lmp for 1 ≤ p < ∞ is defined as the set of

piecewise continuous functions mapping [0,∞) into R
m, for which the Lp-norm is finite:

||u||Lp =
(∫ ∞

0
||u(t)||pdt

)1/p
<∞.
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where ||u(t)|| can be any norm of u(t). It is also important to note that if we had functions

mapping (−∞,∞) into R
m, then the integration has to be taken over (−∞,∞). When p and m

are clear from the context, we may drop one or both of them and refer to the space simply as Lp,
Lm, or L.

Example 18.1. Consider the piecewise continuous function

u(t) =







1/
√
t, 0 < t ≤ 1

0, t > 1 .

It has finite L1-norm:

||u||L1
=

∫ 1

0

1√
t
dt = 2 .

Its L∞-norm does not exist, since ||u||L∞ = sup
t≥0

|u(t)| = ∞, and its L2-norm is unbounded because the

integral of 1/t is divergent. Thus, u ∈ L1, but u /∈ L2 ∪ L∞.

Example 18.2. Next, consider the continuous function

u(t) =
1

1 + t

It has finite L∞-norm and finite L2-norm:

||u||L∞ = sup
t≥0

∣
∣
∣

1

1 + t

∣
∣
∣ = 1 , ||u||L2

=
( ∫ ∞

0

1

(1 + t)2
dt
)1/2

= 1.

Its L1-norm does not exist, since

||u||L1
=

∫ ∞

0

1

1 + t
dt = lim

t→∞
ln(1 + t) → ∞.

Thus u ∈ L2 ∩ L∞, but u /∈ L1.

Notice that the requirement for the Lp-norm be finite restricts the class of functions that can belong

to the Lp space. We see that for function norms the principle of equivalence doesn’t hold (some of the

norms can be finite, while some can be unbounded, i.e., not defined). So as not to be restricted by

this, we consider the extended space Lme , defined as the space of functions

Lme = {u | uτ (t) ∈ Lm, ∀ τ ∈ [0,∞)} ,
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Fig. 28 Comparison between L∞ and L∞e norms

where uτ (t) is the truncation of function u(t) defined by

uτ (t) =







u(t), 0 ≤ t ≤ τ

0, t > τ
.

The truncated L-norm of u(t) is defined by the corresponding L norm of uτ (t), i.e., ||uτ ||L.

Thus, every function that does not have finite escape time belongs to the extended space Le . The

extended space Le is a larger space that contains the unextended space Lp as its subset. These notions

can be defined and generalized for any Lp norm. Therefore the index p has be dropped.

Getting back to examples 18.1 and 18.2, we can say that 1√
t
∈ L1e, but 1√

t
/∈ L2e ∪ L∞e;

1
1+t ∈

L2 ∩ L∞, and also 1
1+t ∈ L1e.

Fig. 28 plots a signal x(t) and its L∞ and L∞e norms.

Property 18.1. If ||u||L1
<∞ and ||u||L∞ <∞, then ||u||2L2

≤ ||u||L∞ ||u||L1
<∞.

The proof is straightforward.

||u||2L2
=

∫ ∞

0
u⊤(t)u(t)dt ≤

∫ ∞

0
||u(t)|| ||u(t)||dt ≤

∫ ∞

0

(

sup
t≥0

||u(t)||
)

||u(t)||dt

= ||u||L∞

∫ ∞

0
||u(t)||dt = ||u||L∞ ||u||L1

<∞ .

Property 18.2. ( Hölder’s Inequality ) If f ∈ Lpe and g ∈ Lqe, where p ∈ (1,∞) and 1
p + 1

q = 1,
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then
∫ τ

0
|f(t)g(t)|dt ≤

(∫ τ

0
|f(t)|pdt

)1/p (∫ τ

0
|g(t)|qdt

)1/q

(293)

for every τ ∈ [0,∞).

When p = q = 2, the inequality becomes the Schwartz inequality, i.e.,
∫ τ

0
|f(t)g(t)|dt ≤

(∫ τ

0
|f(t)|2dt

)1/2(∫ τ

0
|g(t)|2dt

)1/2

(294)

We see that Schwartz inequality can be expressed as ‖f(t)g(t)‖L1
≤ ‖f(t)‖L2

‖g(t)‖L2
. The proof of

Hölder’s inequality can be found in any standard book on real analysis such as [8].

Proof: ( [9]) Let A and B be the two factors on the right of (293), i.e., A =
(∫ τ

0 |f(t)|pdt
)1/p

and

B =
(∫ τ

0 |g(t)|qdt
)1/q

. The cases that A or B is 0 or ∞ are trivial. So we just need to consider the case

0 < A <∞ and 0 < B <∞. Let

F (t) =
|f(t)|
A

, G(t) =
|g(t)|
B

.

This gives
∫ τ

0
F p(t)dt =

∫ τ

0
Gq(t)dt = 1.

Now we need to take advantage of the convexity of e.g. exponential function as an intermediate step.

Notice that for every t ∈ (0, τ) we have 0 < F (t) < ∞ and 0 < G(t) < ∞, and therefore there exist

real numbers r and s such that F (t) = er/p, G(t) = es/q (of course, r and s are different for every t).

Since 1/p + 1/q = 1, the convexity of the exponential function implies that

er/p+s/q ≤ er

p
+

es

q
.

It follows that for every t ∈ (0, τ)

F (t)G(t) ≤ F p(t)

p
+
Gq(t)

q
.

Integration of the above equality yields
∫ τ

0
F (t)G(t)dt =

1

AB

∫ τ

0
|f(t)||g(t)|dt ≤ 1

p
+

1

q
= 1.

Thus we have
∫ τ

0
|f(t)g(t)|dt ≤

∫ τ

0
|f(t)||g(t)|dt ≤

(∫ τ

0
|f(t)|pdt

)1/p(∫ τ

0
|g(t)|qdt

)1/q
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18.1.2 Norms for matrices

For a matrix A the norm can be defined in two different ways.

• The matrix Am×n can be viewed as an m × n dimensional vector, for which a p-norm can be

defined similar to vectors as

||A||p =
( m∑

i=1

n∑

j=1

|aij |p
)1/p

This is usually called vector-norm. For p = 2, this is called Frobenius norm and for a matrix A

of real entries it is given by

||A||22 =

m∑

i=1

n∑

j=1

|aij|2 = tr(A⊤A)

To show the second equality, let A = [A1 A2 . . . An] where Ai ∈ R
m, i = 1, 2, . . . , n, are column

vectors. Then

A⊤A =








A⊤
1
...

A⊤
n








[

A1 . . . An

]

=








A⊤
1 A1 . . . A⊤

1 An
...

. . .
...

A⊤
nA1 . . . A⊤

nAn







.

By definition we have

tr(A⊤A) =
n∑

j=1

A⊤
j Aj =

n∑

j=1

m∑

i=1

|aij |2

• The matrix Am×n can be viewed as an operator that maps R
n, the space of n-dimensional

vectors, into R
m, the space of m-dimensional vectors. The operator norm or the induced p-norm

of a matrix is defined as

||A||p = sup
x 6=0

||Ax||p
||x||p

= sup
||x||p=1

||Ax||p .

The proof of the last equality is straightforward. Indeed, if x 6= 0, then

||Ax||p
||x||p

=

||Ax||p
||x||p
||x||p
||x||p

=
||A x

||x||p ||p
1

.

Taking the sup of both sides proves the last equality above. The three most popular induced

norms are

||A||1 = max
1≤j≤n

m∑

i=1

|aij | (column sum) , ||A||2 =
√

λmaxA⊤A , ||A||∞ = max
1≤i≤m

n∑

j=1

|aij | (row sum) ,



194

Induced norms are important as they define properties of a map or a system from input space to

output space. We can view y = Ax as a relationship between input vector x and output vector

y. Similarly, we view y(s) = G(s)x(s) as an input-output relationship defined by the transfer

function G(s).

18.1.3 Norm of transfer function or induced norm of a system

Consider a linear system

Y (s) = G(s)U(s) , (295)

where G(s) has impulse response g(t) so that the linear system can be equivalently presented via a

convolution integral:

y(t) =

∫ t

0
g(τ)u(t − τ)dτ . (296)

To show that (295) and (296) are equivalent, we introduce unit step function 1(t − τ) where it is

zero for t < τ . Then we have

L

[∫ t

0
g(τ)u(t − τ)dτ

]

= L

[∫ ∞

0
g(τ)u(t − τ)1(t − τ)dτ

]

=

∫ ∞

0
e−st

[∫ ∞

0
g(τ)u(t − τ)1(t− τ)dτ

]

dt

=

∫ ∞

0
g(τ)dτ

∫ ∞

0
u(t− τ)1(t− τ)e−stdt ,

where L is used for Laplace transform. Changing the order of integration is valid here since g(t) and

u(t) are both Laplace transformable, giving convergent integrals. If we substitute λ = t − τ into this

last equation, the result is

L

[∫ t

0
g(τ)u(t − τ)dτ

]

=

∫ ∞

0
g(τ)e−sτdτ

∫ ∞

0
u(λ)e−sλdλ

= G(s)U(s)

Definition 18.1. We say that the linear system in (295) or (296) is Lp stable if u ∈ Lp implies

that y ∈ Lp and there exists some constant c ≥ 0 such that ||y||Lp ≤ c||u||Lp for any u ∈ Lp. When

p = ∞, then L∞ stability is referred to as BIBO (bounded-input bounded-output) stability.
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Theorem 18.1. (Parseval’s Theorem [30]). For a causal signal y ∈ L2,

(
1

2π

∫ ∞

−∞
|G(jω)|2dω

) 1

2

=

(∫ ∞

0
|g(t)|2dt

) 1

2

. (297)

where G(jω) is the Fourier transform of g(t) (g(t) is the impulse response of G(s)).

We now define three Lp-norms of transfer functions and explain their meanings in “induced norm”

sense.

1. L1-norm of a transfer function (or L∞/L∞-induced norm of the system) is given by:

||G(s)||L1
, ||g||L1

=

∫ ∞

0
|g(t)|dt ,

where g(t) is the impulse response of G(s).

2. L∞-norm of a transfer function (or L2/L2-induced norm of the system) is given by:

||G(s)||L∞ = sup
ω

|G(jω)|

3. L2-norm of the transfer function (or L2/L∞-induced norm of the system) is given by:

||G(s)||L2
=
( 1

2π

∫ ∞

−∞
|G(jω)|2dω

)1/2

Note that Parseval’s Theorem (297) immediately implies that ‖G(s)‖L2
= ‖g‖L2

.

We now reveal the meaning of the L1-norm in “induced norm” sense. Suppose that the inputs u

are signals of L∞-norm ≤ 1. We will find the least upper bound on the L∞ norm of the output y,

that is, supt≥0{‖y(t)‖L∞ : ‖u(t)‖L∞ ≤ 1}. We call this least upper bound the L∞/L∞ induced system

norm, which will be exactly the L1-norm of the transfer function.
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First, we show that ‖G(s)‖L1
is an upper bound on the L∞/L∞ system norm:

|y(t)| =

∣
∣
∣
∣

∫ ∞

0
g(τ)u(t − τ)dτ

∣
∣
∣
∣

≤
∫ ∞

0
|g(τ)u(t − τ)|dτ

≤
∫ ∞

0
|g(τ)||u(t − τ)|dτ

≤
∫ ∞

0
|g(τ)|‖u(t)‖L∞dτ

= ‖u(t)‖L∞

∫ ∞

0
|g(τ)|dτ

= ‖G(s)‖L1
‖u(t)‖L∞

≤ ‖G(s)‖L1
, when ‖u(t)‖L∞ ≤ 1. (298)

Then we show that ‖G(s)‖L1
is the least upper bound. Fix t and set u(t− τ) = sgn(g(τ)), ∀ τ . Then

‖u(t)‖L∞ = 1. We have

y(t) =

∫ ∞

0
g(τ)u(t − τ)dτ

=

∫ ∞

0
|g(τ)|dτ = ‖G(s)‖L1

(299)

Thus sup{‖y(t)‖L∞ : ‖u(t)‖L∞ ≤ 1} ≥ ‖G(s)‖L1
. Notice that from (298) it can be seen that

sup{‖y(t)‖L∞ : ‖u(t)‖L∞ ≤ 1} ≤ ‖G(s)‖L1
. So ‖G(s)‖L1

is the least upper bound on the L∞ norm of

the output.

For different input/output spaces, there are other ways of defining induced norms similar to the

L1-norm we just defined. Suppose inputs u are signals of L2-norm ≤ 1. We will find the least upper

bound on the L2-norm of the output y, that is, supt≥0{‖y(t)‖L2
: ‖u(t)‖L2

≤ 1}. We call this least

upper bound the L2/L2 induced system norm.

Indeed, let’s compute the L2/L2-induced norm. First we show that ‖G(s)‖L∞ is an upper bound
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on the L2 norm of the output. Using Parseval’s theorem we can upper bound

‖y(t)‖2
L2

= ‖Y (s)‖2
L2

= ‖G(s)U(s)‖2
L2

=
1

2π

∫ ∞

−∞
|G(jω)|2|U(jω)|2dω

≤ ‖G(s)‖2
L∞

1

2π

∫ ∞

−∞
|U(jω)|2dω

= ‖G(s)‖2
L∞

‖U(s)‖2
L2

= ‖G(s)‖2
L∞

‖u(t)‖2
L2

≤ ‖G(s)‖2
L∞

, when ‖u(t)‖L2
≤ 1 (300)

Then we show it is the least upper bound. Choose a frequency ω0 where |G(jω)| is maximum, that is,

|G(jω0)| = ‖G(s)‖L∞ . Next choose the input u such that

|U(jω)| =







c, if |ω − ω0| < ǫ and |ω + ω0| < ǫ

0, otherwise

where ǫ is a small enough positive number and c is chosen so that u has unit L2 norm. Taking c =
√

π
2ǫ

it can be seen that

‖u‖2
L2

=
1

2π

∫ ∞

−∞
|U(jω)|2dω

=
1

2π

∫ ∞

−∞

π

2ǫ
dω

=
1

2π

(
π

2ǫ

∫ −ω0+ǫ

−ω0−ǫ
dω +

π

2ǫ

∫ ω0+ǫ

ω0−ǫ
dω

)

=
1

2π

(

2 · π
2ǫ

· (2ǫ)dω
)

= 1

Then

‖Y (s)‖2
L2

=
1

2π

(∫ −ω0+ǫ

−ω0−ǫ
|G(jω)

√

π/2ǫ|2dω +

∫ ω0+ǫ

ω0−ǫ
|G(jω)

√

π/2ǫ|2dω
)

≈ 1

2π

[
|G(−jω0)|2π + |G(jω0)|2π

]

= |G(jω0)|2

= ‖G(s)‖2
L∞

.
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Then ‖G(s)‖L∞ is the least upper bound on the L2-norm of the output.

Following the same steps, we show that the L2-norm of the transfer function is the induced norm

of the map from L2 to L∞. This is an application of the Schwarz inequality (294):

|y(t)| =

∣
∣
∣
∣

∫ ∞

0
g(t− τ)u(τ)dτ

∣
∣
∣
∣

≤
∫ ∞

0
|g(t− τ)u(τ)| dτ

≤
(∫ ∞

0
|g(t− τ)|2dτ

)1/2 (∫ ∞

0
|u(τ)|2dτ

)1/2

= ‖G(s)‖L2
‖u(t)‖L2

≤ ‖G(s)‖L2
, when ‖u(t)‖L2

≤ 1 (301)

To show that ‖G(s)‖L2
is the least upper bound, apply the input u(t) = g(−t)/‖G(s)‖L2

, then

‖u(t)‖2
L2

=

∫ ∞

0

|g(−t)|2
‖G(s)‖2

L2

dt =
‖G(s)‖2

L2

‖G(s)‖2
L2

= 1

|y(0)| =

∣
∣
∣
∣

∫ ∞

0

g(−τ)g(−τ)
‖G(s)‖L2

dτ

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

‖G(s)‖2
L2

‖G(s)‖L2

∣
∣
∣
∣
∣
= ‖G(s)‖L2

Thus, ‖y(t)‖L∞ ≥ ‖G(s)‖L2
. Also from (301), ‖y(t)‖L∞ ≤ ‖G(s)‖L2

. We can see that ‖G(s)‖L2
is the

L2/L∞ induced system norm.

Next we show the bound on the L2-norm of the output when the input signal is in L∞ space.

Consider a sinusoidal input u = sin(ωt) of unit amplitude and frequency ω such that jω is not a zero

of G(s). Then ‖u(t)‖L∞ = 1. With this input the output is Y (jω) = |G(jω)| sin[ωt+ ∠G(jω)]. Then

‖y(t)‖2
L2

=
1

2π

∫ ∞

−∞
|G(jω)|2| sin[ωt+ ∠G(jω)]|2dω = ∞.

Hence, generally speaking, if the input is any signal in L∞ space, we cannot find a finite bound on the

L2-norm of the output.

18.2 Connection between Lyapunov stability and L-stability

Next, it is of interest to us build a connection between L-stability and Lyapunov stability theory.



199

Definition 18.2. A mapping H : Lme → Lqe is L stable, if there exist a class K function α, defined

on [0,∞), and a nonnegative constant β such that

‖(Hu)τ‖L ≤ α(‖uτ ‖L) + β (302)

for all u ∈ Lme and τ ∈ [0,∞). It is finite-gain L stable if there exist nonnegative constants γ and β

such that

‖(Hu)τ‖L ≤ γ‖uτ‖L + β (303)

for all u ∈ Lme and τ ∈ [0,∞). Here ‖ · ‖L is any kind of the L-norm we have defined.

The constant β in (302) or (303) is called bias. When inequality (303) is satisfied, we are usually

interested in the smallest possible γ for which there is β such that (303) is satisfied. As we have shown

in section 18.1.3, for linear systems the smallest γ for L∞ stability is the L1-norm of the transfer

function H(s) (or the L∞/L∞ induced norm of the system), and β = 0 in that case.

Remark 18.1. In [11], the smallest γ for Lp stability is called Lp-gain with the same p (p can be

∞). For example, when a linear system satisfies ‖(Hu)τ ‖L∞ ≤ γ‖uτ‖L∞ + β, the smallest γ is called

L∞-gain, which is identical to the above mentioned induced L∞/L∞ norm of the system or L1-norm

of the transfer function.

Theorem 18.2. Consider the time-invariant nonlinear system

ẋ = f(x) +G(x)u, x(0) = x0

y = h(x) (304)

where f(x) is locally Lipschitz, and G(x), h(x) are continuous over R
n. The matrix G(x) is n×m and

h : R
n → R

q. The function f and h vanish at the origin; that is, f(0) = 0 and h(0) = 0. Let γ be a

positive number and suppose there exists a continuously differentiable, positive semidefinite function

V (x) that satisfies the inequality

H(V, f,G, h, γ) ,
∂V

∂x
f(x) +

1

2γ2

∂V

∂x
G(x)G⊤(x)

(
∂V

∂x

)⊤
+

1

2
h⊤(x)h(x) ≤ 0 (305)

for all x ∈ R
n. Then, for each x0 ∈ R

n, the system (304) is finite-gain L2 stable and its L2-gain is less

than or equal to γ. ⋄
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Proof: For any γ 6= 0, we have the algebraic relationship

∂V

∂x
f(x) +

∂V

∂x
G(x)u = −1

2
γ2

∥
∥
∥
∥
∥
u− 1

γ2
G⊤(x)

(
∂V

∂x

)⊤
∥
∥
∥
∥
∥

2

2

+
∂V

∂x
f(x)

+
1

2γ2

∂V

∂x
G(x)G⊤(x)

(
∂V

∂x

)⊤
+

1

2
γ2‖u‖2

2 (306)

Substituting (305) yields

∂V

∂x
f(x) +

∂V

∂x
G(x)u ≤ −1

2
γ2

∥
∥
∥
∥
∥
u− 1

γ2
G⊤(x)

(
∂V

∂x

)⊤
∥
∥
∥
∥
∥

2

2

+
1

2
γ2‖u‖2

2 −
1

2
‖y‖2

2 (307)

Hence,
∂V

∂x
f(x) +

∂V

∂x
G(x)u ≤ 1

2
γ2‖u‖2

2 −
1

2
‖y‖2

2

Notice that left hand side of above inequality is the derivative of V along the trajectories of the system

(304). Integrating yields

V (x(τ)) − V (x0) ≤
1

2
γ2

∫ τ

0
‖u(t)‖2

2dt −
1

2

∫ τ

0
‖y(t)‖2

2dt

where x(t) is the solution of (304) for a given u ∈ L2e. Using V (x) ≥ 0 we obtain

∫ τ

0
‖y(t)‖2

2dt ≤ γ2

∫ τ

0
‖u(t)‖2

2dt+ 2V (x0)

Taking the square roots and using the inequality
√
a2 + b2 ≤ a + b for nonnegative numbers a and b,

we obtain

‖yτ‖L2
≤ γ‖uτ‖L2

+
√

2V (x0)

which completes the proof. �

Inequality (305) is known as the Hamilton-Jacobi inequality. Let’s look at an example now ( [11],

page 212).

Example 18.3. Consider the SISO system

ẋ1 = x2

ẋ2 = −ax3
1 − kx2 + u

y = x2 (308)
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where a and k are positive constants. We can choose V (x) = α(ax4
1/4+x2

2/2) with α > 0 as a candidate

for the solution of the Hamilton-Jacobi inequality. It can be shown that

H(V, f,G, h, γ) =

(

−αk +
α2

2γ2
+

1

2

)

x2
2

To satisfy (305) we need to choose α > 0 and γ > 0 such that −αk + α2

2γ2 + 1
2 ≤ 0. We rewrite this

equality as

γ2 ≥ α2

2αk − 1

Since we are interested in the smallest possible γ, we choose α to minimize the right-hand side of the

preceding inequality. The minimum value 1/k2 is achieved at α = 1/k. Thus, choosing γ = 1/k we

conclude that the system is finite-gain L2 stable and the L2-gain is less than or equal to 1/k.

From this example we can see how to obtain L2-stability results by looking for a Lyapunov function,

which can satisfy the inequality (305).

18.3 Small-gain Theorem

Let us consider in particular the L∞ stability of interconnected feedback system. For that we

need to recall the definitions of L∞ norm of signals from (292). For a piecewise continuous signal

ξ(t), t ≥ 0, ξ(t) ∈ R
n, its truncated L∞ norm and L∞ norm are

‖ξt‖L∞ = max
i=1,..,n

( sup
0≤τ≤t

|ξi(τ)|) (309)

‖ξ‖L∞ = max
i=1,..,n

(sup
τ≥0

|ξi(τ)|), (310)

where ξi is the ith component of ξ. We notice that here the || · ||∞ norm is used for the vectors on the

right, as was mentioned in (292).

Proposition 18.1. A continuous time LTI (proper) system H(s) with impulse response h(t) is

BIBO stable if and only if its L1-norm is bounded, i.e. ||H(s)||L1
= ||h||L1

=
∫∞
0 |h(τ)|dτ < ∞, or

otherwise saying h ∈ L1.

In fact, recalling Definition 18.1 (a system is BIBO stable if u ∈ L∞ implies that y ∈ L∞), and the

definition of L1-norm of a transfer function in terms of the L∞/L∞ induced norm of the system, the

proof is straightforward.
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Proof: Sufficiency. Assume that
∫∞
0 |h(τ)|dτ ≤ k <∞,

y(t) =

∫ t

0
h(τ)u(t − τ)dτ.

Let the input be bounded, i.e. let |u(t− τ)| ≤M <∞, then y(t) is bounded:

|y(t)| ≤M

∫ t

0
|h(τ)|dτ ≤Mk <∞.

Necessity. To show necessity, we will prove that if the L1-norm of h(t) is not bounded, i.e. if

lim
t→∞

∫ t

0
|h(τ)|dτ = ∞, then there exists at least one bounded input that will force the input y(t) to

diverge. Fix t and set

u(t) =







+1, if h(τ) ≥ 0

−1, if h(τ) < 0.

Then h(τ)u(t − τ) = |h(τ)|, which implies that

y(t) =

∫ t

0
|h(τ)|dτ.

Thus, while u(t − τ) is bounded, lim
t→∞

y(t) = lim
t→∞

∫ t

0
|h(τ)|dτ = ∞ by assumption. This implies that

y(t) is not bounded for all bounded inputs, and therefore the system is not BIBO stable.

Remark 18.2. Next, let’s assume that h ∈ L1e, i.e. it is bounded for every t < ∞, but is not

bounded uniformly:

||hτ ||L1
=

∫ ∞

0
|hτ (σ)dσ =

∫ τ

0
|h(σ)dσ <∞ .

For any τ ≥ t, if u ∈ L∞e, a straightforward upper bounding gives the following result:

|y(t)| ≤
∫ t

0
|h(t− σ)||u(σ)|dσ ≤ sup

0≤σ≤τ
|u(σ)|

∫ t

0
|h(t− σ)dσ = sup

0≤σ≤τ
|u(σ)|

∫ t

0
|h(s)|ds <∞ .

Consequently

||yτ ||L∞ ≤ ||hτ ||L1
||uτ ||L∞ , ∀ τ ∈ [0,∞) .

We notice that if the system H(s) is stable, i.e. its L1-norm is uniformly bounded, then we get

||yτ ||L∞ ≤ ||H(s)||L1
||uτ ||L∞ ,

which can be viewed as an extension of Proposition 18.1 for a broader class of signals u ∈ L∞e.
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Definition 18.3. For a stable proper m input n output system H(s) its L1-norm is defined as

‖H(s)‖L1
= max

i=1,..,n

( m∑

j=1

‖Hij(s)‖L1

)

, (311)

where Hij(s) is the ith row jth column element of H(s).

An extension to multi-input multi-output systems is given next.

Lemma 18.1. For a stable proper multi-input multi-output (MIMO) system H(s) with input

r(t) ∈ R
m and output x(t) ∈ R

n, we have

‖xt‖L∞ ≤ ‖H(s)‖L1
‖rt‖L∞ , ∀ t ≥ 0.

Proof. Let xi(t) be the ith element of x(t), rj(t) be the jth element of r(t), Hij(s) be the ith row jth

element of H(s), and hij(t) be the impulse response of Hij(s). Then for any t′ ∈ [0, t], we have

xi(t
′) =

∫ t′

0





m∑

j=1

hij(t
′ − τ)rj(τ)



 dτ. (312)

From (312) it follows that

|xi(t′)| ≤
∫ t′

0





m∑

j=1

|hij(t′ − τ)||rj(τ)|



 dτ ≤
∫ t′

0





m∑

j=1

|hij(t′ − τ)|



 dτ

(

max
j=1,..,m

sup
0≤τ≤t′

|rj(τ)|
)

≤
m∑

j=1

(
∫ t′

0
|hij(τ)|dτ

)(

max
j=1,..,m

sup
0≤τ≤t′

|rj(τ)|
)

,

and hence ‖xit‖L∞ ≤
(
∑m

j=1 ‖Hij(s)‖L1

)

‖rt‖L∞ . It follows from (311) that

‖xt‖L∞ = max
i=1,..,n

‖xit‖L∞ ≤ max
i=1,..,n





m∑

j=1

‖Hij(s)‖L1



 ‖rt‖L∞ = ‖H(s)‖L1
‖rt‖L∞

for any t ≥ 0. The proof is complete. �

Similar to Proposition 18.1, we have the following result for MIMO systems.
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Proposition 18.2. For a stable proper MIMO system H(s), if the input r(t) ∈ R
m is bounded,

then the output x(t) ∈ R
n is also bounded, and ‖x‖L∞ ≤ ‖H(s)‖L1

‖r‖L∞ .

Lemma 18.2. For a cascaded system H(s) = G2(s)G1(s), where G1(s) is a stable proper system

with m inputs and l outputs and G2(s) is a stable proper system with l inputs and n outputs, we have

‖H(s)‖L1
≤ ‖G2(s)‖L1

‖G1(s)‖L1
.

Proof. Let y(t) ∈ R
n be the output of H(s) = G1(s)G2(s) in response to input r(t) ∈ R

m, i.e.

y(s) = H(s)r(s) = G2(s)G1(s)r(s). Thus, on one hand from Proposition 18.2 it follows that

||y||L∞ ≤ ||H(s)||L1
||r||L∞ . (313)

On the other hand, letting r(s) = G2(s)r(s), and y(s) = G1(s)r(s), from application of Proposition

18.2 twice, it follows that for any bounded r(t) we have ||r||L∞ ≤ ||G2(s)||L1
||r||L∞ , and

||y||L∞ ≤ ‖G1(s)‖L1
||r||L∞ ≤ ‖G1(s)‖L1

‖G2(s)‖L1
‖r‖L∞ . (314)

We need to prove that the upper bound in (313) is less than the upper bound in (314). Let Hi(s), i =

1, .., n be the ith row of the system H(s). It follows from (311) that there exists i such that

‖H(s)‖L1
= ‖Hi(s)‖L1

. (315)

Then

yi(s) = Hi(s)r(s) ,

and ||y||L∞ = ||yi||L∞ . Let hij(t) be the jth element of the impulse response of the system Hi(s). For

any T , let

rj(t) = sgnhij(T − t), t ∈ [0, T ] , ∀j = 1, ..,m. (316)

It follows from (310) that ‖r‖L∞ = 1 , and hence from (314) we have

|yi(t)| ≤ ‖yi‖L∞ = ‖y‖L∞ ≤ ‖G1(s)‖L1
‖G2(s)‖L1

, ∀ t ≥ 0. (317)

For r(t) satisfying (316), we have

yi(T ) =

∫ T

t=0

m∑

j=1

hij(T − t)rj(t)dt =

∫ T

t=0

m∑

j=1

|hij(T − t)|dt =

m∑

j=1

(∫ T

σ=0
|hij(σ)|dσ

)

.
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Since (317) holds for all t ≥ 0, we obtain the following bound, true for any T :

yi(T ) =
m∑

j=1

(∫ T

σ=0
|hij(σ)|dσ

)

≤ ‖G1(s)‖L1
‖G2(s)‖L1

.

Since the right-hand side of this bound is uniform, as T → ∞, it follows from (315) that

‖H(s)‖L1
= ‖Hi(s)‖L1

= lim
T→∞

m∑

j=1

(∫ T

t=0
|hij(t)|dt

)

≤ ‖G2(s)‖L1
‖G1(s)‖L1

,

and this completes the proof. �

Consider the interconnected LTI system in Fig. 29, where w1 ∈ R
n1 , w2 ∈ R

n2 , M(s) is a stable

proper system with n2 inputs and n1 outputs, and ∆(s) is a stable proper system with n1 inputs and

n2 outputs.

Fig. 29 Interconnected systems

Theorem 18.3. [Theorem 5.6 ( [11], page 218)] (L1 Small Gain Theorem) The interconnected

system in Fig. 29, which can also be expressed as

w2(s) = ∆(s) (w1(s) −M(s)w2(s))
︸ ︷︷ ︸

ξ(s)

, (318)

is stable if

‖M(s)‖L1
‖∆(s)‖L1

< 1. (319)
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Proof. Indeed, let ξ(s) = w1(s) −M(s)w2(s) and ξ(t) = L
−1{ξ(s)}. Then it follows from Lemma

18.1 that

‖w2t‖L∞ ≤ ‖∆(s)‖L1
‖ξt‖L∞

≤ ‖∆(s)‖L1
(‖w1t‖L∞ + ‖M(s)‖L1

‖w2t‖L∞) , ∀ t ≥ 0, (320)

which along with (319) leads to

(1 − ‖M(s)‖L1
‖∆(s)‖L1

) ‖w2t‖L∞ < ‖∆(s)‖L1
‖w1t‖L∞ , ∀ t ≥ 0. (321)

Therefore,

‖w2t‖L∞ <
‖∆(s)‖L1

1 − ‖M(s)‖L1
‖∆(s)‖L1

‖w1t‖L∞ , ∀ t ≥ 0 , (322)

and it follows from the condition in (319) that w2(t) is bounded for all t ≥ 0, if w1(t) is bounded. �

Remark 18.3. Notice that (318) can be solved for w2(s), leading to

w2(s) = (I + ∆(s)M(s))−1 ∆(s)w1(s),

which implies that (I + ∆(s)M(s))−1 is stable.

Consider a linear time-invariant system:

ẋ(t) = Ax(t) + bu(t) , x(t0) = x0 , (323)

where x ∈ R
n, u ∈ R, b ∈ R

n, A ∈ R
n×n is Hurwitz, and assume that the transfer function (sI−A)−1b

is strictly proper and stable. Notice that it can be expressed as:

(sI −A)−1b =
n(s)

d(s)
, (324)

where d(s) = det(sI−A) is a nth order stable polynomial, and n(s) is a n×1 vector with its ith element

being a polynomial function:

ni(s) =

n∑

j=1

nijs
j−1 (325)

Lemma 18.3. If (A ∈ R
n×n, b ∈ R

n) is controllable, the matrix N with its ith row jth column

entry nij is full rank.
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Proof. Controllability of (A, b) for the LTI system in (323) implies that given an initial condition

x(t0) = 0 and arbitrary xt1 ∈ R
n and arbitrary t1, there exists u(τ), τ ∈ [t0, t1], such that x(t1) = xt1 .

If N is not full rank, then there exists a non-zero vector µ ∈ R
n, such that µ⊤n(s) = 0 . Since x(s) =

(sI−A)−1bu(s)+(sI−A)−1x(t0) = n(s)
d(s)u(s)+(sI−A)−1x(t0), for x(t0) = 0 one has µ⊤x(τ) = 0, ∀τ > t0 .

This contradicts x(t1) = xt1 , in which xt1 ∈ R
n is assumed to be an arbitrary point. Therefore, N

must be full rank, and the proof is complete. �

Lemma 18.4. If (A, b) is controllable and (sI − A)−1b is strictly proper and stable, there exists

c ∈ R
n such that the transfer function c⊤(sI−A)−1b is minimum phase with relative degree one, i.e. all

its zeros are located in the left half plane, and its denominator is one order larger than its numerator.

Proof. It follows from (324) that for arbitrary vector c ∈ R
n

c⊤(sI −A)−1b =
c⊤N [sn−1 · · · 1]⊤

d(s)
, (326)

where N ∈ R
n×n is the matrix with its ith row jth column entry nij introduced in (325). Since

(A, b) is controllable, it follows from Lemma 18.3 that N is full rank. Consider an arbitrary vector

c̄ ∈ R
n such that c̄⊤[sn−1 · · · 1]⊤ is a stable n − 1 order polynomial, and let c = (N−1)⊤c̄. Then

c⊤(sI −A)−1b = c̄⊤[sn−1 ··· 1]⊤

d(s) has relative degree 1 with all its zeros in the left half plane. �

18.4 Proportional Integral Controller and Its Modification

Until now we have studied adaptive control architectures, for which we only proved asymptotic

stability in “absolute sense”, i.e. convergence of tracking error to zero as t→ ∞, without analyzing the

robustness of these schemes or the so-called “relative stability”. From linear system’s theory we know

that robustness is related to stability margins, which we can compute using Bode plots or Nyquist

diagrams. Since for nonlinear systems these tools are not readily available, in most of the cases the

robustness analysis is being resolved in some type of Monte-Carlo runs. From your homework problems

you should have noticed that for determining the best adaptive gain there is no universal recipe and

for every system it can be different. Intuitively one may suspect that the faster you adapt, the better

you should be able to do, but if we examine our direct MRAC architecture for that, we can see that

“the better” is not that true. Let’s see what’s going on. Let’s go back to our first adaptive scheme of
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the proportional integral controller. The system was given by

ẋ(t) = x(t) + θ + u(t), x(0) = 0 , (327)

where θ was the unknown constant, and the controller was given by

u(t) = −2x(t) − θ̂(t) ,

with θ̂(t) being the estimate of θ, governed by

˙̂
θ(t) =

˙̃
θ(t) = γx(t) , θ(0) = θ0 , γ > 0 .

The resulting closed-loop system was given by

ẋ(t) = −x(t) − θ̃(t), x(0) = 0 ,

where θ̃(t) = θ̂(t) − θ. Since for the candidate Lyapunov function

V (x(t), θ̃(t)) =
1

2
x2(t) +

1

2γ
θ̃2(t)

we proved that V̇ (t) ≤ 0, we can immediately write the following upper bound:

max
t∈[0,∞)

||x(t)|| ≤
√

2V (t) ≤
√

2V (0) =

√

x2(0) +
1

γ
θ̃2(0) =

√
1

γ
θ̃2(0) ,

where we have assumed that x(0) = 0 (in the context of tracking problems this is equivalent to

initializing the system state and the reference system state at the same position, which is feasible in

case of full state feedback control laws). Thus, since our original objective was to drive x(t) to zero, i.e.

stabilization, then it is obvious that if we increase γ, then max
t∈[0,∞)

||x(t)|| will be reduced for all t ≥ 0

uniformly, thus ensuring that x(t) remains close to zero during the transient as well.

Since in this case the closed-loop system is linear, we can write the corresponding open-loop transfer

function for the phase margin analysis. If we consider the system as a negative feedback closed loop

system where θ is a disturbance signal, Fig. 30, the plant transfer function is P (s) = 1
s−1 , and the

compensator transfer function is C(s) = 2s+γ
s . We break the loop at the point where the input signal

is going to enter the plant, and the open loop transfer function from u to u is just P (s)C(s). Notice

that when we consider the input-to-input open loop transfer function, we just take θ as zero. Then

Ho(s) = P (s)C(s) =
2s+ γ

s(s− 1)
(328)
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θ uu

Break loop here

Fig. 30 The open loop system for phase margin analysis

and we can convince ourselves that increasing γ corresponds to increasing the cross-over frequency,

which reduces the phase margin. So, if increasing the speed of adaptation, defined by γ, improves the

tracking for all t ≥ 0, including the transient phase, then it is obviously hurting the robustness, or

the relative stability. For this simple linear system, it is straightforward to understand this with the

help of classical control tools as how to trade off between tracking and robustness, but for nonlinear

closed-loop system as it is the case for adaptive stabilization

ẋ(t) = amx(t) − k̃(t)x(t)
︸ ︷︷ ︸

nonlinearity

, k̇(t) = ˙̃k(t) = γ x2(t)
︸ ︷︷ ︸

nonlinearity

it is not obvious how to proceed. For nonlinear systems, a related notion will be the time-delay margin,

which is defined as the maximum delay τ∗ at the plant input, for which the system is not losing its

stability. The related open-loop transfer function for the time-delay margin analysis of our above

mentioned PI scheme will be

Ho(s) =
2s+ γ

s(s− 1)
e−sτ , (329)

and the time-delay margin will be defined from the solution of the characteristic equation:

2jω + γ

jω(jω − 1)
e−jωτ

∗
= −1

resulting in

τ∗(γ) =
∠Ho(jω)

ω
,

where ω is the cross-over frequency, while ∠Ho(jω) stands for the phase margin of Ho(s). It is obvious

that the time-delay margin and phase margin, both are reduced, as one increases γ.



210

Thus, one thing is obvious that the basic structure has some deficiency that hurts robustness in the

presence of fast adaptation. We know that tracking and robustness cannot be achieved simultaneously,

so there is nothing surprising with this, but on the other hand one would like to explore the benefits of

fast adaptation, if possible, by modifying the architecture so that the trade-off between tracking and

robustness will be resolved differently, as opposed to being affected by γ.

Let’s look at a different structure for the same problem of stabilization in the presence of constant

unknown parameter, i.e. let’s consider a modification of the PI controller in a way so that its robustness

won’t suffer from fast adaptation. Let’s write a predictor (or passive identifier) for the system dynamics

to derive an error signal for the adaptive law. Given the system

ẋ(t) = x(t) + θ + u(t), x(0) = 0 , (330)

where θ was the unknown constant, we will consider the following general structure for the controller

u(t) = −2x(t) + uad(t) ,

where the adaptive signal uad(t) is yet to be determined. This leads to the following partially closed-loop

dynamics:

ẋ(t) = −x(t) + θ + uad(t), x(0) = 0 . (331)

We consider the passive identifier (or state predictor):

˙̂x(t) = −x̂(t) + θ̂(t) + uad(t), x(0) = 0 , (332)

which mimics the structure of the partially closed-loop system, except only for the unknown parameter

being replaced by its estimate, and leads to the following error dynamics for x̃(t) = x̂(t) − x(t):

˙̃x(t) = −x̃(t) + θ̃(t), x̃(0) = 0 , θ̃(t) = θ̂(t) − θ . (333)

We notice that if we choose

˙̂
θ(t) =

˙̃
θ(t) = −γx̃(t) , θ(0) = θ0 , γ > 0 ,

then for the candidate Lyapunov function

V (x̃(t), θ̃(t)) =
1

2
x̃2(t) +

1

2γ
θ̃2(t)
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we can again prove that V̇ (t) ≤ 0, and immediately write the same upper bound:

max
t∈[0,∞)

||x̃(t)|| ≤
√

2V (t) ≤
√

2V (0) =

√

x̃2(0) +
1

γ
θ̃2(0) =

√
1

γ
θ̃2(0) .

However, all of this is done without defining the adaptive control signal signal so far. It has been

canceled out while forming the error dynamics (333)!!! So far we have only proved stability, i.e.

boundedness of error signals, but we are not sure if our system state or the state of the predictor

will remain bounded. Thus, we cannot apply Barbalat’s lemma to conclude asymptotic stability (both

states of the system and the predictor can drift to infinity with the same rate keeping the error between

them bounded). We still need to define the adaptive signal and prove that either the state predictor or

the system state remains bounded with it. Stability of the other will follow from boundedness of the

tracking error signal. We had similar arguments back in Section 7.4.1.

Let’s choose the adaptive signal to be the solution of the following ODE

u̇ad(t) = −uad(t) − θ̂(t) , uad(0) = 0 ,

which can otherwise be written, using frequency domain tools, as an output of a strictly proper stable

low-pass filter:

uad(s) = −C(s)θ̂(s) ,

where

C(s) =
1

1 + s
.

Since C(s) is a strictly proper stable low-pass filter, and θ̂(t) is bounded, it follows that uad(t) will be

bounded, which implies that both x̂(t) and x(t) will be bounded, and therefore x̃(t) → 0 as t→ ∞.

Thus, the entire closed-loop system is defined by

ẋ(t) = −x(t) + θ + uad(t), x(0) = 0 .

˙̂x(t) = −x̂(t) + θ̂(t) + uad(t), x(0) = 0 ,

˙̂
θ(t) = −γx̃(t) , γ > 0 ,

uad(s) = −C(s)θ̂(s) , C(s) = 1
1+s , uad(0) = 0 .

The open-loop transfer functions for the phase margin analysis and the time-delay margin analysis
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are:

Hopm(s) =
2(s2 + s+ γ) + γ(s− 1)C(s)

[s2 + s+ (1 − C(s))γ](s − 1)
, (334)

Ho(s) =
2(s2 + s+ γ) + γ(s− 1)C(s)

[s2 + s+ (1 − C(s))γ](s − 1)
e−sτ . (335)

-r + h - C(s) q
uad -+ h -

u2
h -
u1 1

s−1e
−τs -x+ h q -

xd

?+h

q�−2

6+

?

xn

+
h?+h - 1

s+1
-x̂ −

�γ
s

q

6+

6−

θ̂

?+
d

�
+n

Fig. 31 Time-delay analysis for L1 controller

Details: Following are some major steps for arriving at the above equation. The diagram of the

complete closed-loop system with time-delay is shown in Figure 31, in which we break the loop at the

plant input and analyze the transfer function from u1(s) to u2(s) with r = n = d = 0. First we have:

x(s) =
1

s− 1

(
u1(s)e

−sτ + θ
)

(336)

x̂(s) =
1

s+ 1

(

2x(s) + u2(s) + θ̂(s)
)

(337)

θ̂(s) = −γ
s
(x̂(s) − x(s)) (338)

u2(s) = −2x(s) + C(s)(−θ̂(s)) (339)

Then express θ̂(s) in terms of u1(s), u2(s) and θ:

θ̂(s) =
γ

s2 + s+ γ

(
e−sτu1(s) − u2(s) + θ

)
(340)

Plug (340) and (336) into (339) and let θ = 0, then we have

u2(s) =
γC(s)

s2 + s+ γ

(
e−sτu1(s) − u2(s)

)
+

−2

s− 1
u1(s)e

−sτ
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Fig. 32 Bode plot for the PI and the filtered PI control schemes (the filtered PI operates on the

prediction error and not on the state)

Thus

u2(s) =
−2(s2 + s+ γ) − γ(s − a)C(s)

[s2 + s+ (1 − C(s))γ](s− a)
e−sτ

︸ ︷︷ ︸

−Ho(s)

u1(s) (341)

Then we have (335). When there is no time-delay, i.e. τ = 0, we get (334).

Notice that when there is no low-pass filter in the controller (339), i.e. C(s) = 1, this control scheme

becomes a PI control scheme, and (334) and (335) are reduced to (328) and (329), respectively.

Although (335) looks more complex than (329) for PI controller, the Bode plots show that this

filtered version of PI has better robustness than the conventional PI in that the phase margin and time

delay margin are not affected by high gain. In Figure 32 we can see that the cross-over frequency for

the modified PI controller does not change with high gain. Figure 33 shows that while the time-delay

margin for PI is killed by high gain, the modified PI has guaranteed time-delay margin.

To show this quantitatively, write (334) as:

Ho(ω) =
2jω(jω + 1)2 + 2(jω + 1)γ + (jω − 1)γ

(jω2 − jω)(jω + 1)2 + jω2γ − jωγ

→ 2(jω + 1)γ + (jω − 1)γ

(jω)2γ − jωγ
as γ → ∞

=
1 + 3jω

−ω2 − jω

=

√
1 + 9ω2

√
ω4 + ω2

exp

(

j(arctan(3ω) − arctan
1

ω
− π)

)
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Fig. 33 Effect of high gain on the phase margin and time-delay margin for the PI and the filtered

PI control schemes (the filtered PI operates on the prediction error and not on the state)

So, when γ → ∞, the cross-over frequency is given by

ωc ≈
√

8 = 2.83,

and the phase margin is given by

Pm ≈ arctan(3ωc) − arctan
1

ω
= 1.11.

Thus, the time-delay margin is given by:

lim
γ→∞

τ∗ =
Pm

ωc
≈ 0.4

The question now to ask would be: if we could get better tracking and robustness by increasing

γ with this filtering type modification, then what do we lose and where do we lose? We know that

we cannot have both of them simultaneously. We will lose robustness if we increase the bandwidth of

C(s). But let’s observe all of this via appropriate nonlinear analysis.
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18.5 L1 Adaptive Control Architecture for Systems with Known High-Frequency Gain

18.5.1 Paradigm Shift: Achievable Control Objective

Let’s recall the development of the conventional MRAC architecture. Consider the following single-

input single-output system dynamics:

ẋ(t) = Ax(t) + bu(t), x(0) = x0 (342)

y(t) = c⊤x(t) ,

where x ∈ R
n is the system state vector (measured), u ∈ R is the control signal, b, c ∈ R

n are known

constant vectors, A is an unknown n× n matrix, y ∈ R is the regulated output.

Consider the matching assumption:

Assumption 18.1. There exist a Hurwitz matrix Am ∈ R
n×n and a vector of ideal parameters

θ ∈ R
n such that (Am, b) is controllable and Am − A = b θ⊤. We further assume the unknown

parameter θ belongs to a given compact convex set Θ, i.e.

θ ∈ Θ. (343)

Subject to this assumption, the system dynamics in (342) can be rewritten as:

ẋ(t) = Amx(t) + b(u(t) − θ⊤x(t)), x(0) = x0 (344)

y(t) = c⊤x(t).

The MRAC paradigm proceeds by considering the so-called ideal controller, defined via the ideal

value of θ

unom(t) = θ⊤x(t) + kgr(t) , (345)

leading to the desired reference system behavior:

ẋm(t) = Amxm(t) + bkgr(t), xm(0) = x0

ym(t) = c⊤xm(t), (346)

In (345), kg = lim
s→0

1

c⊤(sI −Am)−1b
=

1

−c⊤A−1
m b

. It ensures zero steady state error for constant inputs.

Indeed, if r(t) is a constant, the relationship
ym(s)

r(s)
= kgc

⊤(sI −Am)−1bm along with the final value

theorem yields lim
t→∞

ym(t) = r.
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It later proceeds by considering the adaptive version of (345):

u(t) = θ̂⊤(t)x(t) + kgr(t), (347)

˙̂
θ(t) = ΓProj(−x(t)x̃⊤(t)Pb, θ̂(t)), θ̂(0) = θ̂0 (348)

where θ̂(t) ∈ R
n are the adaptive parameters, x̃(t) = x(t) − xm(t) is the tracking error, Γ ∈ R

n×n is a

positive definite matrix of adaptation gains, and P = P⊤ > 0 is the solution of the algebraic equation

A⊤
mP + PAm = −Q for arbitrary Q > 0. This leads to the tracking error dynamics:

˙̃x(t) = Amx̃(t) + bθ̃⊤(t)x(t), x̃(0) = 0, θ̃(t) = θ̂(t) − θ. (349)

Using standard Lyapunov arguments and Barbalat’s lemma, one can prove that lim
t→∞

x̃(t) = 0.

As we see, Barbalat’s lemma in conjunction with a Lyapunov proof straightforwardly leads to

asymptotic stability, but the issue of the transient analysis remains open. It is time to question

how the transient can be addressed with the above structure of adaptive control, and where do the

complications lie. Let’s consider the so-called reference system of MRAC in (346), which is defined in

conjunction with the ideal nominal controller (344). This reference system is “algebraically” achievable,

by substitution of the ideal nominal controller (344) into the system (342). This however does not imply

that the controller in (344) is “implementable” for all possible values of θ, which naturally questions the

feasibility of the reference system (346). Moreover, if one considers time-varying θ(t) with extremely

high frequencies, it is obvious that during the implementation of the nominal controller in case of even

completely known θ(t), one can only “pass as much to the system” as the control channel bandwidth

permits. Thus, the reference system (346) may appear to be an overly ambitious goal even in the

layout of the nominal design paradigm and on the level of control objective. If we further assume

that we do NOT know θ(t), and we are trying to estimate, then the initial value of the adaptive

controller uad(0) = θ̂⊤(0)x(0) + kgr(t) depends upon the initial guess of θ̂(0) = θ̂0, which may be

very far from the nominal value of θ. This in turn implies that at t = 0 the closed loop system,

defined via (342), (347), (348), is very far from the reference system (346). Of course, with the help

of Barbalat’s lemma in case of constant θ one proves asymptotic convergence of x̃(t) → 0 as t → ∞,

however asymptotic convergence in its nature has no guarantee for the rate of convergence, as we know

already. It is only exponential convergence that can give some guarantee for the transient, but we do

NOT have exponential convergence without the PE condition. A paper by Zang & Bitmead shows that
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arbitrary bad transients can happen in closed-loop adaptive systems before asymptotic convergence

takes place, [32].

The paradigm shift here is to give up on the nice clean reference system in (346) and to reduce

the control objective, by rendering it feasible so that from t = 0 one has an implementable nominal

controller and achievable reference system. Given our control channel specification, or the bandwidth,

one can consider the following nominal controller

uref (s) = C(s)
(

kgr(s) + θ⊤xref (s)
)

, (350)

where C(s) is a strictly proper stable low-pass filter with DC gain 1, C(0) = 1, and its realization

assumes zero initialization. This controller is implementable independent of θ and leads to an achievable,

albeit not clean, reference system:

xref (s) = Ho(s)
(

kgC(s)r(s) + (C(s) − 1)θ⊤xref (s)
)

+ (sI −Am)−1x0, xref (0) = x0 (351)

yref (s) = c⊤xref (s) ,

where Ho(s) = (sI − Am)−1b. Since due to the presence of C(s) the uncertainties do not cancel out

completely, we need to state a sufficient condition, under which this reference system will be stable.

Towards that end, notice that (351) can be explicitly solved for

xref (s) = (I − Ḡ(s)θ⊤)−1G(s)r(s) + xin(s), xin(s) = (I − Ḡ(s)θ⊤)−1(sI −Am)−1x0 , (352)

where Ḡ(s) = Ho(s)(C(s) − 1), and G(s) = Ho(s)kgC(s). Let the choice of C(s) verify

‖Ḡ(s)‖L1
θmax < 1, (353)

where

θmax = max
θ∈Ω

n∑

i=1

|θi| . (354)

Lemma 18.5. If the condition in (353) holds, i.e. ‖Ḡ(s)‖L1
θmax < 1, then (I − Ḡ(s)θ⊤)−1 and

consequently (I − Ḡ(s)θ⊤)−1G(s) are stable.

Proof. It follows from (311) that

‖Ḡ(s)θ⊤‖L1
= max

i=1,..,n



‖Ḡi(s)‖L1





n∑

j=1

|θj |







 ,
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Fig. 34 Closed-loop reference LTI system

where Ḡi(s) is the ith element of Ḡ(s), and θj is the jth element of θ. From (354) we have
∑n

j=1 |θj | ≤
θmax , and hence

‖Ḡ(s)θ⊤‖L1
≤ max

i=1,..,n

(

‖Ḡi(s)‖L1

)

θmax = ‖Ḡ(s)‖L1
θmax, ∀ θ ∈ Ω. (355)

The relationship in (353) implies that ‖Ḡ(s)θ⊤‖L1
< 1. Letting ∆(s) = −1 and M(s) = Ḡ(s)θ⊤, we

have

(I − Ḡ(s)θ⊤)−1 = (I + ∆(s)M(s))−1.

The Small Gain Theorem 18.3 and Remark 18.3 ensure that (I − Ḡ(s)θ⊤)−1 is stable. Since G(s) is

stable, Lemma 18.2 implies that (I − Ḡ(s)θ⊤)−1G(s) is stable. �

Thus, we obtained a sufficient condition on the choice of C(s) via (353) such that the reference system

(351) of the appropriately reduced control objective remains stable. In the absence of C(s), it simply

reduces to the nominal reference system of MRAC, given by (346). The closed-loop system (342) with

the controller (350) is given in Fig. 34.

Remark 18.4. Notice that since this reference system depends upon the unknown parameters θ,

it cannot serve the purpose of introducing the specs (overshoot, rise time, settling time, etc.), although

it is an LTI system. It merely defines an achievable control objective. So, we still need to determine an

LTI system for the specs. Thus, you may well question why do we call it a reference system then? It

is because as we will prove shortly, we can compute performance bounds with respect to this system

and show that we can reduce these bounds by increasing the adaptation gain Γc.
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18.5.2 Adaptive Structure

Next, let’s explore the corresponding adaptive structure for achieving our achievable reference sys-

tem from t = 0. From the structure of (351), it is obvious that we need some type of filtering also

for the corresponding adaptive controller, so that in the absence of the filter everything collapses back

to MRAC. Recall that in Section 7.4.1 we had an equivalent reparameterization of MRAC via passive

identifier. If we look into the structure of direct MRAC, then low-pass filtering of the control signal

will destroy the structure of the error dynamics and the corresponding adaptive laws, as at the output

of the system in the result of filtering one will get a state vector of higher dimension, which will not

be subtractable form the state of the reference system, Fig. 18 (left). On the other hand, in the

passive identifier based reparameterization the structure of the error dynamics is independent of the

control signal, and therefore allows for low-pass filtering without destroying the Lyapunov proof or the

adaptive laws Fig. 18 (right). Of course, the low-pass filtering requires additional boundedness proof

for the predictor before Barbalat’s lemma can be applied for asymptotic stability, but the fact that it

preserves the Lyapunov proof for the boundedness of the error dynamics and the parametric errors,

is critical to the overall analysis. Thus, for the system dynamics is (344), we consider the following

passive identifier:

˙̂x(t) = Amx̂(t) + b(u(t) − θ̂⊤(t)x(t)) , x̂(0) = x0

ŷ(t) = c⊤x̂(t) , (356)

where θ̂(t) are parameter estimates governed by the same adaptive law in (348) with x̃(t) being x̃(t) =

x̂(t) − x(t) (detailed shortly). The only difference of the passive identifier (or state predictor) in (356)

from the main system dynamics in (344) is that the unknown parameters are replaced by their adaptive

estimates.

Letting θ̃(t) = θ̂(t) − θ, the dynamics of the tracking error are the same as in (349):

˙̃x(t) = Amx̃(t) − bθ̃⊤(t)x(t), x̃(0) = x0. (357)

Using the same projection type adaptive laws with x̃(t) = x̂(t) − x(t), we have

˙̂
θ(t) = ΓProj(x(t)x̃⊤(t)Pb, θ̂(t)), (358)

and using standard Lyapunov arguments one can conclude that x̃(t) and θ̃(t) are bounded.
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(We notice that due to the sign difference for the parametric error in the error dynamics in (349)

and (357), we have different signs in the projection operator in the adaptive laws.)

The corresponding adaptive control signal will be defined as an output of the low-pass filter

u(s) = C(s)(r̄(s) + kgr(s)) , kg = 1/(c⊤Ho(0)) , Ho(s) = (sI −Am)−1b , (359)

where r̄(s) stands for Laplace transformation of r̄(t) = θ̂⊤(t)x(t), and the adaptive law for θ̂(t) is

written via the prediction error as in (358).
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Fig. 35 Closed-loop system with L1 adaptive controller

Remark 18.5. To simplify for yourself the paradigm shift towards the design of L1 adaptive con-

troller, I am requesting at this point that you take a different look at the blocks involved in the control

design. Let’s stop thinking of the reference model (or the closed-loop predictor at this stage) as a system

that provides the desired specs, and look at it as a system that simply generates an error signal for the

adaptive laws. If we look at it like a tool for giving us just an opportunity to generate an error signal

for the adaptive law, then the reference system in MRAC looks like a pretty clean system free of any

frequency abnormalities, while our system, which is driven by the nonlinear adaptive controller,



221

faces all the unknown and possible high frequencies in the result of uncertainties. The philosophical

question is: can we switch the roles? Can we make sure that in the entire closed-loop architecture the

unknown and possible high frequencies go into a system, which is being used for the computation of

the error signal in the adaptive law, while our system gets only nice clean low frequency signals with

predictable frequencies? The phrase predictable frequency implies that if we define the control

signal as an output of a low-pass filter, then we can appropriately band its frequencies, by selecting

the bandwidth of the filter in a desirable way. And of course, once we are filtering the control signal,

we had to use the state predictor based reparameterization, which helps to retain the structure of the

adaptive law independent of the control signal definition. This is a key point, since its origin goes

back to the gradient search for minimizing the quadratic form associated with the candidate Lyapunov

function. So, a low-pass filtered control signal in (344) will retain a nice structure for the system with

more-or-less predictable performance for its control signal, while passing the left-over high frequencies

to the state predictor in (356), which is just a system in the computer for computing the error signal for

the adaptive law. Of course, if we are filtering the control signal, we will need to ensure boundedness

of the closed-loop predictor in (356), which will give us a condition on the bandwidth of the filter.

Boundedness of the system state will follow from the boundedness of the tracking error signal, which

is guaranteed from the Lyapunov proof and is independent of the control signal definition in the state

predictor based architecture.

18.5.3 Stability of L1 adaptive control architecture: separation between adaptation and robustness

To prove the stability of the L1 adaptive control architecture, we will use the small-gain theorem.

Rewrite the system dynamics

ẋ(t) = Amx(t) + b(u(t) − θ⊤x(t)), x(0) = x0

y(t) = c⊤x(t),

and the state predictor

˙̂x(t) = Amx̂(t) + b(u(t) − θ̂⊤(t)x(t)) , x̂(0) = x0,

ŷ(t) = c⊤x̂(t) ,
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along with the control signal

u(s) = C(s)(r̄(s) + kgr(s)) ,

where kg = 1/(c⊤Ho(0)), Ho(s) = (sI −Am)−1b, r̄(t) = θ̂⊤(t)x(t), x̃(t) = x̂(t)− x, and θ̃(t) = θ̂(t)− θ.

Consider the following Lyapunov function candidate:

V (x̃(t), θ̃(t)) = x̃⊤(t)Px̃(t) + θ̃⊤(t)Γ−1θ̃(t) , (360)

where P = P⊤ > 0 solves A⊤
mP + PAm = −Q for some Q > 0, and Γ is the adaptive gain. Using the

error dynamics

˙̃x(t) = Amx̃(t) − bθ̃⊤(t)x(t) , x̃(0) = 0 , (361)

it is straightforward to verify that the projection based adaptive laws will lead to that

V̇ (t) ≤ −x̃⊤(t)Qx̃(t) ≤ 0 . (362)

Notice that the result in (362) is independent of u(t), whether it is filtered or not, since until now it

has been treated as a time-varying signal in the system dynamics and the state predictor and has been

cancelled out while forming the error dynamics. Therefore from (362) one cannot conclude stability.

Both states (of system and predictor) can drift to infinity with the same rate, keeping the error bounded.

Thus, we need to prove in addition that with the L1 adaptive controller the state of the predictor will

remain bounded. Upon that we will be able to apply Barbalat’s lemma to conclude boundedness of

the system state.

The next theorem formulates a sufficient condition for boundedness of the predictor state and helps

to conclude that the tracking error x̃(t) → 0 as t → ∞. From the structure of predictor model it is

straightforward to see that

x̂(s) = Ḡ(s)r̄(s) +G(s)r(s) + (sI −Am)−1x0 ,

where Ḡ(s) = Ho(s)(C(s) − 1) and G(s) = kgHo(s)C(s).

Theorem 18.4. Given the system in (342) and the L1 adaptive controller defined via (359), (356),

(358) with x̃(t) = x̂(t)−x(t), subject to (353), the tracking error x̃(t) converges to zero asymptotically:

lim
t→∞

x̃(t) = 0. (363)
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Proof. Let λmin(P ) be the minimum eigenvalue of P . From (360) and (362) it follows that λmin(P )‖x̃(t)‖2 ≤
x̃⊤(t)Px̃(t) ≤ V (t) ≤ V (0), implying that

‖x̃(t)‖2 ≤ V (0)/λmin(P ), t ≥ 0. (364)

From (309), ‖x̃‖L∞ = max
i=1,..,n,t≥0

|x̃i(t)|. The relationship in (364) ensures max
i=1,..,n,t≥0

|x̃i(t)| ≤
√

V (0)/λmin(P ),

and therefore for all t ≥ 0 one has ‖x̃t‖L∞ ≤
√

V (0)/λmin(P ) . Using the triangular relationship for

norms implies that

| ‖x̂t‖L∞ − ‖xt‖L∞ | ≤
√

V (0)/λmin(P ). (365)

The projection algorithm in (358) ensures that θ̂(t) ∈ Ω,∀t ≥ 0. Recalling that r̄(t) = θ̂(t)x(t) we have

‖r̄t‖L∞ ≤ θmax‖xt‖L∞ . Substituting for ‖xt‖L∞ from (365) leads to the following

‖r̄t‖L∞ ≤ θmax

(

‖x̂t‖L∞ +
√

V (0)/λmin(P )
)

. (366)

It follows from Lemma 18.1 that

‖x̂t‖L∞ ≤ ‖Ḡ(s)‖L1
‖r̄t‖L∞ + ‖G(s)‖L1

‖rt‖L∞ + ‖(sI −Am)−1‖L1
||x0||L1

,

which along with (366) gives the following upper bound

‖x̂t‖L∞ ≤ ‖Ḡ(s)‖L1
θmax

(

‖x̂t‖L∞ +
√

V (0)/λmin(P )
)

+ ‖G(s)‖L1
‖rt‖L∞ + ‖(sI −Am)−1‖L1

||x0||L1

Let

λ = ‖Ḡ(s)‖L1
θmax. (367)

From (353) it follows that λ < 1, which allows for grouping the terms: (1−λ)‖x̂t‖L∞ ≤ λ
√

V (0)/λmin(P )+

‖G(s)‖L1
‖rt‖L∞ + ‖(sI −Am)−1‖L1

||x0||L1
, and hence

‖x̂t‖L∞ ≤ (λ
√

V (0)/λmin(P ) + ‖G(s)‖L1
‖rt‖L∞ + ‖(sI −Am)−1‖L1

||x0||L1
)/(1 − λ). (368)

Since V (0), λmin(P ), ‖G(s)‖L1
, ‖rt‖L∞ , λ, ‖(sI − Am)−1‖L1

, ||x0||L1
are all finite and λ < 1, the rela-

tionship in (368) implies that ‖x̂t‖L∞ is finite for all t ≥ 0, and hence x̂(t) is uniformly bounded. The

relationship in (365) implies that ‖xt‖L∞ is also finite for all t ≥ 0, and therefore x(t) is also uniformly

bounded. The adaptive law in (358) ensures that the estimates θ̂(t) are also bounded. From (361) it

follows that ˙̃x(t) is bounded, and it follows from Barbalat’s lemma that lim
t→∞

x̃(t) = 0. �
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Remark 18.6. The above stability proof clearly decoupled adaptation from robustness: adaptive

laws were derived from Lyapunov-like analysis using gradient-minimization philosophy, while the sta-

bility conclusion was drawn from the small-gain theorem. This treatment of the problem introduced

clear separation between adaptation and robustness, which we will shortly observe in the structure of

the guaranteed, decoupled and uniform performance bounds.

18.6 Transient and Steady-State Performance

18.6.1 Asymptotic Performance

Now it is the time to compute the performance bounds to justify why do we call this a reference

system. Letting

r1(t) = θ̃⊤(t)x(t), (369)

and recalling that r̄(t) = θ̂⊤(t)x(t) and x̃(t) = x̂(t) − x(t), we can rewrite it as

r̄(t) = θ⊤(x̂(t) − x̃(t)) + r1(t) .

Hence, the closed-loop state predictor can be rewritten as

x̂(s) = Ḡ(s)
(

θ⊤x̂(s) − θ⊤x̃(s) + r1(s)
)

+G(s)r(s) + (sI −Am)−1x0,

where r1(s) is the Laplace transformation of r1(t) defined in (369), and further put into the form:

x̂(s) = (I − Ḡ(s)θ⊤)−1
(

− Ḡ(s)θ⊤x̃(s) + Ḡ(s)r1(s) +G(s)r(s)
)

+ xin(s). (370)

It follows from (361) and (369) that ˙̃x(t) = Amx̃(t) − br1(t) , and hence

x̃(s) = −Ho(s)r1(s). (371)

Recalling the definition of Ḡ(s), the state of the predictor can be presented as

x̂(s) = (I − Ḡ(s)θ⊤)−1G(s)r(s) + (I − Ḡ(s)θ⊤)−1
(

−Ḡ(s)θ⊤x̃(s) − (C(s) − 1)x̃(s)
)

+ xin(s).

Using xref(s) from (352) and recalling the definition of x̃(s) = x̂(s) − x(s), one arrives at

x(s) = xref(s) −
(

I + (I − Ḡ(s)θ⊤)−1
(
Ḡ(s)θ⊤ + (C(s) − 1)I

))

x̃(s). (372)

The expressions in (359) and (350) lead to the following expression of the control signal

u(s) = uref (s) + C(s)r1(s) +C(s)θ⊤(x(s) − xref (s)) . (373)
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Theorem 18.5. Given the system in (342) and the L1 adaptive controller defined via (359), (356),

(358), subject to (353), we have:

lim
t→∞

‖x(t) − xref(t)‖ = 0 , (374)

lim
t→∞

|u(t) − uref (t)| = 0 . (375)

Proof. Let

r2(t) = xref (t) − x(t) . (376)

It follows from (372) that

r2(s) =
(

I + (I − Ḡ(s)θ⊤)−1
(

Ḡ(s)θ⊤ + (C(s) − 1)I
))

x̃(s). (377)

The signal r2(t) can be viewed as the response of the LTI system

H2(s) = I + (I − Ḡ(s)θ⊤)−1
(

Ḡ(s)θ⊤ + (C(s) − 1)I
)

(378)

to the bounded error signal x̃(t). It follows from Lemma 18.5 that (I − Ḡ(s)θ⊤)−1, Ḡ(s), C(s) are

stable and, therefore, H2(s) is stable. Hence, from (363) we have lim
t→∞

r2(t) = 0. Let

r3(s) = C(s)r1(s) + C(s)θ⊤(x(s) − xref (s)).

It follows from (373) that r3(t) = u(t)− uref (t). Since θ̃(t) is bounded, it follows from (361) and (363)

that lim
t→∞

r1(t) = 0. Since C(s) is a stable proper system, it follows from (374) that lim
t→∞

r3(t) = 0. �

Lemma 18.6. Given the system in (342) and the L1 adaptive controller defined via (356), (358),

(359) subject to (353), if r(t) is constant, then lim
t→∞

y(t) = r.

Proof. Since

yref(t) = c⊤xref (t),

it follows from (374) that

lim
t→∞

(y(t) − yref(t)) = 0.

From (352) it follows that

yref(s) = c⊤(I−Ḡ(s)θ⊤)−1G(s)r(s)+c⊤xin(s) = c⊤(I−Ḡ(s)θ⊤)−1G(s)r(s)+c⊤(I−Ḡ(s)θ⊤)−1(sI−Am)−1x0.

(379)
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Since the second term is the response to the initial condition for a Hurwitz matrix Am, which is

exponentially decaying, application of the end value theorem along with the definition of kg ensures

lim
t→∞

yref (t) = lim
s→0

c⊤(I − Ḡ(s)θ⊤)−1G(s)r = c⊤Ho(0)C(0)kgr = r.

18.6.2 Transient Performance

First we notice that in the proof of Theorem 18.4 we obtained the following upper bound:

||x̃(t)|| ≤
√

θ̄max

λmin(P )Γc
, θ̄max , max

θ∈Ω

n∑

i=1

4θ2
i , ∀ t ≥ 0, (380)

where λmin(P ) is the minimum eigenvalue of P . Indeed, this follows from the upper bound in (364), if

we notice that with x̃(0) = 0, we have

V (0) = θ̃⊤(0)Γ−1θ̃(0),

and further use the fact that the projection algorithm ensures that θ̂(t) ∈ Ω, ∀t ≥ 0, and therefore

max
t≥0

θ̃⊤(t)Γ−1θ̃(t) ≤ θ̄max

Γc
, ∀t ≥ 0, (381)

where θ̄max is defined in (380). Since λmin(P )‖x̃‖2 ≤ x̃⊤(t)Px̃(t), then ||x̃(t)|| ≤
√

θ̄max

λmin(P )Γc
.

Further, it follows from Lemma 18.4 that there exists co ∈ R
n and stable polynomials Nd(s) and

Nn(s) such that

c⊤o Ho(s) = Nn(s)/Nd(s) , (382)

where the order of Nd(s) is one more than the order of Nn(s). The next theorem gives the transient

and steady state performance bounds with respect to the LTI reference system.

Theorem 18.6. Given the system in (342) and the L1 adaptive controller defined via (359), (356),

(358), subject to (353), we have:

‖x− xref‖L∞ ≤ γ1/
√

Γc , (383)

‖y − yref‖L∞ ≤ ‖c⊤‖L1
γ1/
√

Γc , (384)

‖u− uref‖L∞ ≤ γ2/
√

Γc , (385)
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where ‖c⊤‖L1
is the L1-norm of c⊤ and

γ1 = ‖H2(s)‖L1

√

θ̄max

λmax(P )
, (386)

γ2 =
∥
∥
∥C(s)

1

c⊤o Ho(s)
c⊤o

∥
∥
∥
L1

√

θ̄max

λmax(P )
+ ‖C(s)θ⊤‖L1

γ1 . (387)

Proof. It follows from (377), (378) and Lemma 18.2 that ‖r2‖L∞ ≤ ‖H2(s)‖L1
‖x̃‖L∞ , while (380)

implies that

‖x̃‖L∞ ≤
√

θ̄max/(λmax(P )Γc) . (388)

Therefore,

‖r2‖L∞ ≤ ‖H2(s)‖L1

√

θ̄max

λmax(P )Γc
, (389)

which leads to (383). The upper bound in (384) follows from (383) and Lemma 18.2 directly. From

(371) we have

r3(s) = C(s)
1

c⊤o Ho(s)
c⊤o Ho(s)r1(s) + C(s)θ⊤(x(s) − xref (s))

= −C(s)
1

c⊤o Ho(s)
c⊤o x̃(s) + C(s)θ⊤(x(s) − xref (s)) ,

where co is introduced in (382). It follows from (382) that C(s) 1
c⊤o Ho(s)

= C(s)Nd(s)
Nn(s) , whereNd(s), Nn(s)

are stable polynomials and the order ofNn(s) is one less than the order ofNd(s). Since C(s) is stable and

strictly proper, the complete system C(s) 1
c⊤o Ho(s)

is proper and stable, which implies that its L1-norm

exists and is finite. Hence, we have ‖r3‖L∞ ≤
∥
∥
∥C(s) 1

c⊤o Ho(s)
c⊤o

∥
∥
∥
L1

‖x̃‖L∞ + ‖C(s)θ⊤‖L1
‖x − xref‖L∞ .

Using (388), the upper bound in (385) is straightforward to derive. �

Theorem 18.6 states that x(t), y(t) and u(t) follow xref (t), yref(t) and uref (t) not only asymp-

totically but also during the transient, provided that the adaptive gain is selected sufficiently large.

Thus, the control objective is reduced to designing C(s) to ensure that the reference LTI system has

the desired response in terms of control specifications.

Remark 18.7. Notice that if we set C(s) = 1, then the L1 adaptive controller degenerates into a

MRAC type. In that case
∥
∥
∥C(s) 1

c⊤o Ho(s)
c⊤o

∥
∥
∥
L1

cannot be finite, since Ho(s) is strictly proper. Therefore,

from (387) it follows that γ2 → ∞, and hence for the control signal in MRAC one can not reduce the

bound in (385) by increasing the adaptive gain.
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18.7 Design Guidelines for Achieving Desired Specifications

18.7.1 Design System

We proved that the error between the state and the control signal of the closed-loop system with

L1 adaptive controller in (342), (356), (358), (359) (Fig. 35) and the state and the control signal of

the closed-loop reference system in (350), (352) (Fig. 34) can be rendered arbitrarily small by choosing

large adaptive gain. Therefore, the control objective is reduced to determining C(s) to ensure that

the reference system in (350), (352) (Fig. 34) has the desired response from r(t) to yref (t). Since this

reference system depends upon the unknown parameter θ, it cannot serve the purpose of introducing

the specs. Let’s look at another system, called design system:

xdes = Ho(s)C(s)
(

kgr(s) + θ⊤xdes(s)
)

+Ho(s)C(s)(−θ⊤xdes(s)) + xin(s),

the output of which is free from unknown parameters, Fig. 36(b). Notice that in the design system
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Fig. 36 Comparison of reference system and design system

a low pass filter C(s) is added into the inner feedback loop to render its output independent of the

unknown parameter. Therefore it can serve the purpose of introducing the specs. This leads to the

following signals:

ydes(s) = c⊤G(s)r(s) + c⊤xin(s) = C(s)kgc
⊤Ho(s)r(s) + c⊤xin(s) , (390)

udes(s) = kgC(s)
(

1 + C(s)θ⊤Ho(s)
)

r(s). (391)

We note that udes(t) depends on the unknown parameter θ, while ydes(t) does not. This is intu-

itively correct: if one wants a UNIFORM output response, the control signals MUST depend upon the

parameters of the system.
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Lemma 18.7. Subject to (353), the following upper bounds hold:

‖yref − ydes‖L∞ ≤ λ

1 − λ
‖c⊤‖L1

‖G(s)‖L1
‖r‖L∞ , (392)

‖yref − ydes‖L∞ ≤ 1

1 − λ
‖c⊤‖L1

‖h3‖L∞ , (393)

‖uref − udes‖L∞ ≤ λ

1 − λ
‖C(s)θ⊤‖L1

‖G(s)‖L1
‖r‖L∞ , (394)

‖uref − udes‖L∞ ≤ 1

1 − λ
‖C(s)θ⊤‖L1

‖h3‖L∞ , (395)

where λ is defined in (367), and h3(t) is the inverse Laplace transformation of

H3(s) = (C(s) − 1)C(s)r(s)kgHo(s)θ
⊤Ho(s). (396)

Proof. It follows from (351) and (352) that yref(s) = c⊤(I − Ḡ(s)θ⊤)−1G(s)r(s). Following Lemma

18.5, the condition in (353) ensures the stability of the reference LTI system. Since (I − Ḡ(s)θ⊤)−1 is

stable, then one can expand it into convergent series:

yref(s) = c⊤
(

I +

∞∑

i=1

(Ḡ(s)θ⊤)i

)

G(s)r(s) + c⊤xin(s) = ydes(s) + c⊤
( ∞∑

i=1

(Ḡ(s)θ⊤)i

)

G(s)r(s) + c⊤xin(s)(397)

Let

r4(s) = c⊤
( ∞∑

i=1

(Ḡ(s)θ⊤)i

)

G(s)r(s).

Then r4(t) = yref(t) − ydes(t). The relationship in (355) implies that ‖Ḡ(s)θ⊤‖L1
≤ λ, and it follows

from Lemma 18.2 that

‖r4‖L∞ ≤
( ∞∑

i=1

λi

)

‖c⊤‖L1
‖G‖L1

‖r‖L∞ =
λ

1 − λ
‖c⊤‖L1

‖G‖L1
‖r‖L∞ . (398)

From (397) we have

yref (s) = ydes(s) + c⊤
( ∞∑

i=1

(Ḡ(s)θ⊤)i−1
)

Ḡ(s)θ⊤G(s)r(s),

which along with (396) and recalling the definition of Ḡ(s) leads to

yref (s) = ydes(s) + c⊤
( ∞∑

i=1

(Ḡ(s)θ⊤)i−1

)

H3(s).
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Lemma 18.2 immediately implies that

‖r4‖L∞ ≤
( ∞∑

i=1

λi−1
)

‖c⊤‖L1
‖h3‖L∞ .

Comparing udes(s) in (391) to uref (s) in (350) it follows that udes(s) can be written as

udes(s) = kgC(s)r(s) + C(s)θ⊤xdes(s) ,

where xdes(s) = C(s)kgHo(s)r(s). Therefore

uref (s) − udes(s) = (C(s)θ⊤)(xref (s) − xdes(s)).

Hence, it follows from Lemma 18.1 that

‖uref − udes‖L∞ ≤ ‖C(s)θ⊤‖L1
‖xref − xdes‖L∞ .

Using the same steps as for ‖yref − ydes‖L∞ , we have

‖xref − xdes‖L∞ ≤ λ

1 − λ
‖G(s)‖L1

‖r‖L∞ ,

‖xref − xdes‖L∞ ≤ 1

1 − λ
‖h3‖L∞ ,

which leads to (394) and (395). �

Thus, the problem is reduced to finding a strictly proper stable C(s) to ensure that λ < 1 or ‖h3‖L∞

are sufficiently small, and ydes(s) ≈ Dd(s)r(s), where Dd(s) has the desired specifications (rise time,

settling time, overshoot, etc.). Then, Theorem 18.6 and Lemma 18.7 will imply that the output y(t)

of the system in (342) and the L1 adaptive control signal u(t) will follow ydes(t) and udes(t) both in

transient and steady state with quantifiable bounds, given in (384), (385) and (392)-(395).

Notice that λ < 1 is required for stability. From (390)-(395), it follows that for achieving ydes(s) ≈

Dd(s)r(s) it is desirable to ensure that λ or ‖h3‖L∞ are sufficiently small and, in addition, C(s)c⊤Ho(s) ≈

Dd(s). We notice that these requirements are not in conflict with each other. So, using Lemma 18.2,

one can consider the following conservative upper bound

λ = ‖Ḡ(s)‖L1
θmax = ‖Ho(s)(C(s) − 1)‖L1

θmax ≤ ‖Ho(s)‖L1
‖C(s) − 1‖L1

θmax. (399)

Thus, minimization of λ can be achieved from two different perspectives: i) fix C(s) and minimize

‖Ho(s)‖L1
, ii) fix Ho(s) and minimize the L1-norm of one of the cascaded systems ‖Ho(s)(C(s)−1)‖L1

,

‖(C(s) − 1)r(s)‖L1
or ‖C(s)(C(s) − 1)‖L1

via the choice of C(s).
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As in MRAC, assume

kgc
⊤Ho(s) ≈ Dd(s). (400)

Lemma 18.8. Let

C(s) =
ω

s+ ω
.

For any single input n-output strictly proper stable system Ho(s) the following is true:

lim
ω→∞

‖(C(s) − 1)Ho(s)‖L1
= 0.

Proof. It follows that

(C(s) − 1)Ho(s) =
−s
s+ ω

Ho(s) =
−1

s+ ω
sHo(s).

Since Ho(s) is strictly proper and stable, sHo(s) is stable and has relative degree ≥ 0, and hence

‖sHo(s)‖L1
is finite. Since

∥
∥
∥

−1

s+ ω

∥
∥
∥
L1

=
1

ω
,

it follows from (18.2) that

‖(C(s) − 1)Ho(s)‖L1
≤ 1

ω
‖sHo(s)‖L1

,

and the proof is complete. �

Lemma 18.8 states that if one chooses kgc
⊤Ho(s) ≈ Dd(s), then by increasing the bandwidth of the

low-pass system C(s), it is possible to render ‖Ḡ(s)‖L1
arbitrarily small. With large ω, the pole −ω due

to C(s) is omitted, and Ho(s) is the dominant reference system leading to yref(s) ≈ kgc
⊤Ho(s)r(s) ≈

Dd(s)r(s). We note that kgc
⊤Ho(s) is exactly the reference model of the MRAC design. Therefore this

approach is equivalent to mimicking MRAC.

However, increasing the bandwidth of C(s) is not the only choice for minimizing ‖Ḡ(s)‖L1
. Since

C(s) is a low-pass filter, its complementary 1 − C(s) is a high-pass filter with its cutoff frequency

approximating the bandwidth of C(s). Since both Ho(s) and C(s) are strictly proper systems, Ḡ(s) =

Ho(s)(C(s)−1) is equivalent to cascading a low-pass system Ho(s) with a high-pass system C(s)−1. If

one chooses the cut-off frequency of C(s)− 1 larger than the bandwidth of Ho(s), it ensures that Ḡ(s)

is a “no-pass” system, and hence its L1-norm can be rendered arbitrarily small. This can be achieved

via higher order filter design methods. The illustration is given in Fig. 37.
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Fig. 37 Cascaded systems

To minimize ‖h3‖L∞ , we note that ‖h3‖L∞ can be upperbounded in two ways: ‖h3‖L∞ ≤ ‖(C(s)−
1)r(s)‖L1

‖h4‖L∞ , where h4(t) is the inverse Laplace transformation of H4(s) = C(s)kgHo(s)θ
⊤Ho(s),

and ‖h3‖L∞ ≤ ‖(C(s)−1)C(s)‖L1
‖h5‖L∞ , where h5(t) is the inverse Laplace transformation of H5(s) =

r(s)kgHo(s)θ
⊤Ho(s). We note that since r(t) is a bounded signal and C(s),Ho(s) are stable proper

systems, ‖h4‖L∞ and ‖h5‖L∞ are finite. Therefore, ‖h3‖L∞ can be minimized by minimizing ‖(C(s)−
1)r(s)‖L1

or ‖(C(s)− 1)C(s)‖L1
. Following the same arguments as above and assuming that r(t) is in

low-frequency range, one can choose the cut-off frequency of C(s)−1 to be larger than the bandwidth of

the reference signal r(t) to minimize ‖(C(s)−1)r(s)‖L1
. For minimization of ‖C(s)(C(s)−1)‖L1

notice

that if C(s) is an ideal low-pass filter, then C(s)(C(s) − 1) = 0 and hence ‖h3‖L∞ = 0. Since an ideal

low-pass filter is not physically implementable, one can minimize ‖C(s)(C(s) − 1)‖L1
via appropriate

choice of C(s).

The above presented approaches ensure that C(s) ≈ 1 in the bandwidth of r(s) andHo(s). Therefore

it follows from (390) that ydes(s) = C(s)kgc
⊤Ho(s)r(s) ≈ kgc

⊤Ho(s)r(s), which along with (400) yields

ydes(s) ≈ Dd(s)r(s).

Remark 18.8. From Theorem 18.6 and Lemma 18.7 it follows that the L1 adaptive controller can

generate a system response to track (390) and (391) both in transient and steady state if we set the

adaptive gain large and minimize λ or ‖h3‖L∞ . Notice that udes(t) in (391) depends upon the unknown

parameter θ, while ydes(t) in (390) does not. This implies that for different values of θ, the L1 adaptive

controller will generate different control signals (dependent on θ) to ensure uniform system response

(independent of θ). This is natural, since different unknown parameters imply different systems, and to

have similar response for different systems the control signals have to be different. Here is the obvious

advantage of the L1 adaptive controller in a sense that it controls a partially known system as an LTI

feedback controller would have done if the unknown parameters were known.
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Remark 18.9. It follows from Theorem 18.6 that in the presence of large adaptive gain the L1

adaptive controller and the closed-loop system state with it approximate uref(t), yref (t). Therefore, we

conclude from (352) that y(t) approximates the response of the LTI system c⊤(I − Ḡ(s)θ⊤)−1G(s) to

the input r(t), hence its transient performance specifications, such as overshoot and settling time, can

be derived for every value of θ. If we further minimize λ or ‖h3‖L∞ , it follows from Lemma 18.7 that

y(t) approximates the response of the LTI system C(s)c⊤Ho(s). In this case, the L1 adaptive controller

leads to uniform transient performance of y(t) independent of the value of the unknown parameter θ.

For the resulting L1 adaptive control signal one can characterize the transient specifications such as its

amplitude and rate change for every θ ∈ Ω, using udes(t).

18.7.2 Decoupled (guaranteed) performance bounds

If we put the results of Theorem 18.6 and Lemma 18.7 together, we will observe the following

uniform, guaranteed and decoupled performance bounds with respect to the signals ydes(t) and

udes(t):

‖y − ydes‖L∞ ≤ λ

1 − λ
‖c⊤‖L1

‖G(s)‖L1
‖r‖L∞ + γ1/

√

Γc, (401)

‖u− udes‖L∞ ≤ λ

1 − λ
‖C(s)θ⊤‖L1

‖G(s)‖L1
‖r‖L∞ + γ2/

√

Γc . (402)

The first bound in this structure on the right is in charge of robustness, while the second bound is in

charge of adaptation. The first one can be minimized via the choice of λ, while the second one can

be minimized by increasing the adaptation rate. Thus, recalling the discussion in Section 18.4, where

we observed the adverse effects of large adaptive gain on robustness, we see that with this type of

filtering we decoupled adaptation from robustness. Adaptation and robustness can be tuned separately

and independently without affecting each other.

18.7.3 Comparison with high-gain controller

We use a scalar system to compare the performance of the L1 adaptive controller and a linear high-

gain controller. Towards that end, let ẋ(t) = −θx(t)+u(t) , where x ∈ R is the measurable system state,

u ∈ R is the control signal and θ ∈ R is unknown, which belongs to a given compact set [θmin, θmax]. Let

u(t) = −kx(t)+kr(t), leading to the following closed-loop system ẋ(t) = (−θ−k)x(t)+kr(t). We need

to choose k > −θmin to guarantee stability. We note that both the steady state error and the transient
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performance depend on the unknown parameter value θ. By further introducing a proportional-integral

controller, one can achieve zero steady state error. If one chooses k ≫ max{|θmax|, |θmin|}, it leads to

high-gain system x(s) =
k

s− (−θ − k)
r(s) ≈ k

s+ k
r(s) .

To apply the L1 adaptive controller, let the desired system response be x(s) ≈ 2
s+2r(s), implying

Ho(s) = 1
s+2 . This leads to the following control design u(t) = −2x(t) + uad(t), where uad(s) =

C(s)(r̄(s) + kgr(s)) = C(s)(L{θ̂⊤(t)x(t)}), kg = 2. Choosing C(s) = ωn

s+ωn
with large ωn, and setting

the adaptive gain Γc large, it follows from Theorem 18.6 that

x(s) ≈ xref (s) = C(s)kgHo(s)r(s) ≈
ωn

s+ ωn

2

s+ 2
r(s) ≈ 2

s+ 2
r(s) (403)

u(s) ≈ uref (s) = (−2 + θ)xref(s) + 2r(s). (404)

The relationship in (403) implies that the control objective is met, while the relationship in (404) states

that the L1 adaptive controller approximates uref (t), which cancels the unknown θ.

18.8 Simulation Example

Consider the system in (344) with the following parameters:

Am =




0 1

−1 −1.4



 , b = [0 1]⊤, c = [1 0]⊤ , θ = [4 − 4.5]⊤ .

We further assume that the unknown parameter θ belongs to a known compact set Θ = {θ ∈ R
2 | θ1 ∈

[−10, 10], θ2 ∈ [−10, 10]}. Letting Γc = 10000, we implement the L1 adaptive controller following (356),

(358) and (359). It follows from (354) that θmax = 20, while ‖Ḡ(s)‖L1
can be calculated numerically.

In Fig. 38(a), we plot

λ = ‖Ḡ(s)‖L1
θmax (405)

with respect to ω and compare it to 1. We notice that for ω > 30, we have λ < 1. Choosing

C(s) =
160

s+ 160
gives λ = ‖Ḡ(s)‖L1

θmax = 0.1725 < 1, which leads to improved performance bounds

in (392)-(395). The simulation results of the L1 adaptive controller are shown in Figs. 39(a)-39(b)

for reference inputs r = 25, 100, 400, respectively. We note that it leads to scaled control inputs and

scaled system outputs for scaled reference inputs. Figs. 40(a)-40(b) show the system response and

the control signal for reference input r(t) = 100 cos(0.2t), without any retuning of the controller. Figs.

41(a)-41(b) show the system response and the control signal for reference input r(t) = 100 cos(0.2t)

and time varying θ(t) = [2 + 2 cos(0.5t) 2 + 0.3 cos(0.5t) + 0.2 cos(t/π)]⊤, without any retuning of the
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Fig. 38 λ (solid) with respect to ω and constant 1 (dashed)

controller. We note that the L1 adaptive controller leads to almost identical tracking performance for

both constant or time-varying unknown parameters. The control signals are different since they are

adapting to different uncertainties to ensure uniform transient response.
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Fig. 39 Performance of L1 adaptive controller with C(s) = 160
s+160 for r = 25, 100, 400

Next, we consider a higher order filter with low adaptive gain Γc = 400 , C(s) = 3ω2s+ω3

(s+ω)3
. In Fig.

38(b), we plot

λ = ‖Ḡ(s)‖L1
θmax (406)

with respect to ω and compare it to 1. We notice that when ω > 25, we have λ < 1 and the L1-norm

upper bound in (353) is satisfied. Letting ω = 50 leads to λ = 0.3984. The simulation results of the L1
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Fig. 40 Performance of L1 adaptive controller with C(s) = 160
s+160 for r = 100 cos(0.2t)
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Fig. 41 Performance of L1 adaptive controller with C(s) = 160
s+160 for r = 100 cos(0.2t) with time-

varying θ(t) = [2 + 2 cos(0.5t) 2 + 0.3 cos(0.5t) + 0.2 cos(t/π)]⊤

adaptive controller are shown in Figs. 42(a)-42(b) for reference inputs r = 25, 100, 400, respectively.

We note that it again leads to scaled control inputs and scaled system outputs for scaled reference

inputs.

We further show that with time-varying unknown parameters the L1 adaptive controller following

(356), (358) and (359) can still achieve good performance. More rigorous treatment to this case is

elaborated in next section. Basically, we prove that, in this case, by increasing the adaptation rate

one can ensure uniform transient response for systems both signals, input and output, simultaneously.
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Figs. 43(a)-43(b) show the system response and control signal for reference input r(t) = 100 cos(0.2t)

and time-varying θ(t) = [2 + 2 cos(0.5t) 2 + 0.3 cos(0.5t) + 0.2 cos(t/π)]⊤, without any retuning of the

controller. In addition, we notice that this performance is achieved by a much smaller adaptive gain

as compared to the design with the first order C(s).
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Fig. 42 Performance of L1 adaptive controller with C(s) = 7500s+503

(s+50)3 for r = 25, 100, 400
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Fig. 43 Performance of L1 adaptive controller with C(s) = 7500s+503

(s+50)3 for r = 100 cos(0.2t) with

time-varying θ(t) = [2 + 2 cos(0.5t) 2 + 0.3 cos(0.5t) + 0.2 cos(t/π)]⊤

Remark 18.10. The simulations pointed out that with higher order filter C(s) one could use

relatively small adaptive gain. While a rigorous relationship between the choice of the adaptive gain
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and the order of the filter cannot be derived, an insight into this can be gained from the following

analysis. It follows from (344) and (359) that x(s) = G(s)r(s) +Ho(s)θ
⊤x(s) +Ho(s)C(s)r̄(s) , while

the state predictor in (356) can be rewritten as x̂(s) = G(s)r(s) +Ho(s) (C(s) − 1) r̄(s). We note that

r̄(t) is divided into two parts. Its low-frequency component C(s)r̄(s) is what the system gets, while

the complementary high-frequency component (C(s) − 1) r̄(s) goes into the state predictor. If the

bandwidth of C(s) is large, then it can suppress only the high frequencies in r̄(t), which appear only

in the presence of large adaptive gain. A properly designed higher order C(s) can be more effective to

serve the purpose of filtering with reduced tailing effects, and, hence can generate similar λ with smaller

bandwidth. This further implies that similar performance can be achieved with smaller adaptive gain.

18.9 Extension to Systems with Unknown High-frequency Gain

Once we enabled fast adaptation, we can think of considering systems in the presence of rapidly

varying uncertainties. In this section, we consider uncertain systems in the presence of unknown high-

frequency gain, time-varying unknown parameters and time-varying bounded disturbances.

18.9.1 Problem Formulation

Consider the following system dynamics:

ẋ(t) = Amx(t) + b
(

ωu(t) + θ⊤(t)x(t) + σ(t)
)

, y(t) = c⊤x(t), x(0) = x0 , (407)

where x ∈ R
n is the system state vector (measurable), u ∈ R is the control signal, y ∈ R is the

regulated output, b, c ∈ R
n are known constant vectors, Am is a known Hurwitz n × n matrix, ω ∈ R

is an unknown constant with known sign, θ(t) ∈ R
n is a vector of time-varying unknown parameters,

while σ(t) ∈ R is a time-varying disturbance. Without loss of generality, we assume that

ω ∈ Ω0 = [ωl0 , ωu0
] , θ(t) ∈ Θ, |σ(t)| ≤ ∆0 , t ≥ 0 , (408)

where ωu0
> ωl0 > 0 are known (conservative) upper and lower bounds, Θ is a known compact set

and ∆0 ∈ R
+ is a known (conservative) bound of σ(t). We further assume that θ(t) and σ(t) are

continuously differentiable and their derivatives are uniformly bounded:

‖θ̇(t)‖ ≤ dθ <∞, |σ̇(t)| ≤ dσ <∞, ∀ t ≥ 0 , (409)

where ‖ · ‖ denotes the 2-norm, while the numbers dθ, dσ can be arbitrarily large.
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The control objective is to design a full-state feedback adaptive controller to ensure that y(t) tracks

a given bounded reference signal r(t) both in transient and steady state, while all other error signals

remain bounded.

18.9.2 L1 Adaptive Controller

Let’s look at a novel adaptive control architecture for the system in (407) that permits complete

transient characterization for both u(t) and x(t). The elements of the L1 adaptive controller are

introduced next:

State Predictor: We consider the following state predictor:

˙̂x(t) = Amx̂(t) + b
(

ω̂(t)u(t) + θ̂⊤(t)x(t) + σ̂(t)
)

, ŷ(t) = c⊤x̂(t) , x̂(0) = x0 , (410)

which has the same structure as the system in (407). The only difference is that the unknown parameters

ω, θ(t), σ(t) are replaced by their adaptive estimates ω̂(t), θ̂(t), σ̂(t). Adaptive parameters are governed

by the following adaptation laws.

Adaptive Laws: Adaptive estimates are given by:

˙̂
θ(t) = ΓθProj(−x(t)x̃⊤(t)Pb, θ̂(t)), θ̂(0) = θ̂0 (411)

˙̂σ(t) = ΓσProj(−x̃⊤(t)Pb, σ̂(t)), σ̂(0) = σ̂0 (412)

˙̂ω(t) = ΓωProj(−x̃⊤(t)Pbu(t), ω̂(t)), ω̂(0) = ω̂0 , (413)

where x̃(t) = x̂(t) − x(t), Γθ = ΓcIn×n ∈ R
n×n, Γσ = Γω = Γc > 0 are the adaptation rates, and

P = P⊤ > 0 is the solution of the algebraic Lyapunov equation A⊤
mP + PAm = −Q, Q > 0. In the

implementation of the projection operator we use the compact set Θ as given in (408), while we replace

∆0, Ω0 by larger sets ∆ and Ω = [ωl, ωu] such that

∆0 < ∆, 0 < ωl < ωl0 < ωu0
< ωu , (414)

the purpose of which will be clarified in the analysis of the time-delay and gain margins.

Next we introduce a different controller structure:

Control Law: The control signal is generated through gain feedback of the following system:

χ(s) = D(s)ru(s) , u(s) = −kχ(s) , (415)
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Fig. 44 Closed-loop system with L1 adaptive controller

where k > 0 is a feedback gain, ru(s) is the Laplace transformation of ru(t) = ω̂(t)u(t) + r̄(t), r̄(t) =

θ̂⊤(t)x(t) + σ̂(t)− kgr(t), kg = −1/(c⊤A−1
m b), while D(s) is any transfer function that leads to strictly

proper stable

C(s) = ωkD(s)/(1 + ωkD(s)) (416)

with low-pass gain C(0) = 1. One simple choice is D(s) = 1/s , which yields a first order strictly proper

C(s) in the following form: C(s) = ωk/(s+ ωk). Further, let

L = max
θ(t)∈Θ

n∑

i=1

|θi(t)| , (417)

where θi(t) is the ith element of θ(t), Θ is the compact set defined in (408).

The L1 adaptive controller consists of (410), (411)-(413), (415) subject to the following L1-norm

upper bound:

‖G(s)‖L1
L < 1 , G(s) = (sI −Am)−1b(1 − C(s)) . (418)

The closed loop system is illustrated in Fig. 44.

In case of constant θ(t) and σ(t), the stability requirement of the L1 adaptive controller can be

simplified. For the specific choice of D(s) = 1/s, the stability requirement of L1 adaptive controller is
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reduced to

Ag =




Am + bθ⊤ bω

−kθ⊤ −kω



 (419)

being Hurwitz for all θ ∈ Θ, ω ∈ Ω.

18.9.3 Closed-loop Reference System

We now consider the following closed-loop (not LTI system in general) reference system with its

control signal and system response being defined as follows:

ẋref (t) = Amxref (t) + b
(

ωuref (t) + θ⊤(t)xref (t) + σ(t)
)

, xref (0) = x0 (420)

uref (s) = C(s)
r̄ref (s)

ω
, yref (t) = c⊤xref (t) , (421)

where r̄ref (s) is the Laplace transformation of the signal r̄ref (t) = −θ⊤(t)xref (t) − σ(t) + kgr(t) .

Lemma 18.9. If D(s) verifies the condition in (418), the reference system in (420)-(421) is stable.

Proof. LetH(s) = (sI−Am)−1b . It follows from (420)-(421) that xref (s) = G(s)r1(s)+H(s)C(s)kgr(s) ,

where r1(s) is the Laplace transformation of r1(t) = θ⊤(t)xref (t)+σ(t) subject to the following bound:

‖r1‖L∞ ≤ L‖xref‖L∞ + ‖σ‖L∞ . Since D(s) verifies the condition in (418), then Theorem 18.3 ensures

that the closed-loop system in (420)-(421) is stable, if we consider ∆(s) = G(s) and M(s) = θ⊤(s). �

Lemma 18.10. If θ(t) is constant, and D(s) = 1/s, then the closed-loop reference system in (420)-

(421) is stable iff the matrix Ag in (419) is Hurwitz.

Proof. In case of constant θ(t), the state space form of the closed-loop system in (420)-(421) is given

by:

ẋref (t) = Amxref (t) + b
(

ωuref (t) + θ⊤xref(t) + σ(t)
)

,

u̇ref (t) = −ωkuref(t) + k
(

−θ⊤xref(t) − σ(t) + kgr(t)
)

.

Letting ζ(t) = [xref (t) uref (t)]
⊤ , it can be rewritten as ζ̇(t) = Agζ(t) + [bσ(t) kkgr(t) − kσ(t)]⊤,

which is stable iff Ag is Hurwitz. �



242

18.9.4 Transient and Steady State Performance

To prove uniform transient and steady state tracking between the closed-loop adaptive system with

L1 adaptive controller (407), (410), (411)-(413), (415) and the reference system in (420)-(421), we first

need to quantify the prediction error performance that is used in the adaptive law.

Lemma 18.11. For the system in (407) and the L1 adaptive controller in (410), (411)-(413) and

(415), the prediction error between the system state and the predictor is bounded

‖x̃‖L∞ ≤
√

θm
λmin(P )Γc

,

where

θm , max
θ∈Θ

n∑

i=1

4θ2
i + 4∆2 + 4 (ωu − ωl)

2 + 2
λmax(P )

λmin(Q)

(

max
θ∈Θ

‖θ‖dθ + dσ∆

)

.

Proof: Consider the candidate Lyapunov function:

V (x̃(t), θ̃(t), ω̃(t), σ̃(t)) = x̃⊤(t)Px̃(t) + Γ−1
c θ̃⊤(t)θ̃(t) + Γ−1

c ω̃2(t) + Γ−1
c σ̃2(t) ,

where θ̃(t) , θ̂(t) − θ(t), σ̃(t) , σ̂(t) − σ(t), ω̃(t) , ω̂(t) − ω . It follows from (407) and (410) that

˙̃x(t) = Amx̃(t) + b(ω̃(t)u(t) + θ̃⊤(t)x(t) + σ̃(t)), x̃(0) = 0. (422)

Using the projection based adaptation laws from (411)-(413), one has the following upper bound:

V̇ (t) ≤ −x̃⊤(t)Qx̃(t) + Γ−1
c θ̃⊤(t)θ̇(t) + Γ−1

c σ̃(t)σ̇(t) . (423)

The projection algorithm ensures that θ̂(t) ∈ Θ, ω̂(t) ∈ Ω, σ̂(t) ∈ ∆ for all t ≥ 0, and therefore

max
t≥0

(

Γ−1
c θ̃⊤(t)θ̃(t) + Γ−1

c ω̃2(t) + Γ−1
c σ̃2(t)

)

≤
(

max
θ∈Θ

n∑

i=1

4θ2
i + 4∆2 + 4 (ωu − ωl)

2
)

/Γc (424)

for any t ≥ 0. If V (t) > θm/Γc at some t, then it follows from (424) that

x̃⊤(t)Px̃(t) > 2
λmax(P )

Γcλmin(Q)

(

max
θ∈Θ

‖θ‖dθ + dσ∆

)

,

and hence x̃⊤(t)Qx̃(t) > λmin(Q)x̃⊤(t)Px̃(t)/λmax(P ) > 2(max
θ∈Θ

‖θ‖dθ + dσ∆)/Γc . The upper bounds in

(409) along with the projection based adaptive laws lead to the following upper bound:

θ̃⊤(t)θ̇(t) + σ̃(t)σ̇(t) ≤ 2max
θ∈Θ

‖θ‖dθ + dσ∆ .
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Hence, if V (t) > θm/Γc, then from (423) we have

V̇ (t) < 0 . (425)

Since we have set x̂(0) = x(0), we can verify that

V (0) ≤
(

max
θ∈Θ

n∑

i=1

4θ2
i + 4∆2 + 4 (ωu − ωl)

2
)

/Γc < θm/Γc.

It follows from (425) that V (t) ≤ θm
Γc

for any t ≥ 0. Since λmin(P )‖x̃(t)‖2 ≤ x̃⊤(t)Px̃(t) ≤ V (t), then

||x̃(t)||2 ≤ θm
λmin(P )Γc

, which concludes the proof. �

Notice that here we only claim boundedness of the tracking error between the system state and the

predictor state. This is due to the rate of change of time-varying signals θ(t) and σ(t) appearing in

V̇ (x̃, θ̃, ω̃, σ̃). For constant θ and σ asymptotic convergence can be claimed as it is shown in the next

section. We further notice that this bound is proportional to the rate of variation of uncertainties and

is inverse proportional to the adaptation gain.

Recalling that H(s) = (sI −Am)−1b , it follows from Lemma 18.4 that there exists co ∈ R
n s.t.

c⊤o H(s) = Nn(s)/Nd(s) , (426)

where deg(Nd(s)) − deg(Nn(s)) = 1, and both Nn(s) and Nd(s) are stable polynomials. The next two

theorems are in charge for both transient and steady-state performance of the L1 adaptive controller.

Theorem 18.7. Given the system in (407) and the L1 adaptive controller defined via (410), (411)-

(413) and (415) subject to (418), we have:

‖x− xref‖L∞ ≤ γ1 , ‖u− uref‖L∞ ≤ γ2 , (427)

where

γ1 =
‖C(s)‖L1

1 − ‖H(s)(1 − C(s))‖L1
L

√

θm
λmax(P )Γc

, γ2 =

∥
∥
∥
∥

C(s)

ω

∥
∥
∥
∥
L1

Lγ1+
∥
∥
∥
C(s)

ω

1

c⊤o H(s)
c⊤o

∥
∥
∥
L1

√

θm
λmax(P )Γc

.

Proof: Let r̃(t) = ω̃(t)u(t) + θ̃⊤(t)x(t) + σ̃(t) , r2(t) = θ⊤(t)x(t) + σ(t) . It follows from (415) that

χ(s) = D(s)(ωu(s) + r2(s) − kgr(s) + r̃(s)) , where r̃(s) and r2(s) are the Laplace transformations of

signals r̃(t) and r2(t). Consequently

χ(s) =
D(s)

1 + kωD(s)
(r2(s) − kgr(s) + r̃(s)) , u(s) = − kD(s)

1 + kωD(s)
(r2(s) − kgr(s) + r̃(s)) .
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Using the definition of C(s) from (416), we can write

ωu(s) = −C(s)(r2(s) − kgr(s) + r̃(s)) , (428)

and the system in (407) consequently takes the form:

x(s) = H(s) ((1 − C(s))r2(s) + C(s)kgr(s) − C(s)r̃(s)) . (429)

It follows from (420)-(421) that xref (s) = H(s) ((1 − C(s))r1(s) + C(s)kgr(s)) , where r1(s) is the

Laplace transformation of the signal r1(t). Let e(t) = x(t) − xref (t). Then, using (429), one gets

e(s) = H(s) ((1 − C(s))r3(s) − C(s)r̃(s)) , e(0) = 0 , (430)

where r3(s) is the Laplace transformation of the signal

r3(t) = θ⊤(t)e(t) . (431)

Lemma 18.11 gives the following upper bound:

‖et‖L∞ ≤ ‖H(s)(1 − C(s))‖L1
‖r3t‖L∞ + ‖r4t‖L∞ , (432)

where r4(t) is the signal with its Laplace transformation being r4(s) = C(s)H(s)r̃(s). From the rela-

tionship in (422) we have x̃(s) = H(s)r̃(s) , which leads to r4(s) = C(s)x̃(s) , and hence ‖r4t‖L∞ ≤
‖C(s)‖L1

‖x̃t‖L∞ . Using the definition of L in (417), one can verify easily that ‖(θ⊤e)t‖L∞ ≤ L‖et‖L∞ ,

and from (431) we have that ‖r3t‖L∞ ≤ L‖et‖L∞ . From (432) we have

‖et‖L∞ ≤ ‖H(s)(1 − C(s))‖L1
L‖et‖L∞ + ‖C(s)‖L1

‖x̃t‖L∞ .

The upper bound from Lemma 18.11 and the L1-norm upper bound from (418) lead to the following

upper bound

‖et‖L∞ ≤ ‖C(s)‖L1

1 − ‖H(s)(1 − C(s))‖L1
L

√

θm
λmax(P )Γc

,

which holds uniformly for all t ≥ 0 and therefore leads to the first bound in (427).

To prove the second bound in (427), we notice that from (421) and (428) one can derive

u(s) − uref (s) = −C(s)

ω
θ⊤(t)(x(s) − xref (s)) − r5(s) ,
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where

r5(s) =
C(s)

ω
r̃(s).

Therefore, it follows from Lemma 18.11 that

‖u− uref‖L∞ ≤ (L/ω)‖C(s)‖L1
‖x− xref‖L∞ + ‖r5‖L∞ . (433)

We have

r5(s) =
C(s)

ω

1

c⊤o H(s)
c⊤o H(s)r̃(s) =

C(s)

ω

1

c⊤o H(s)
c⊤o x̃(s) ,

where co is introduced in (426). Using the polynomials from (426), we can write that

C(s)

ω

1

c⊤o H(s)
=
C(s)

ω

Nd(s)

Nn(s)
.

Since C(s) is stable and strictly proper, the complete system C(s) 1
c⊤o H(s)

is proper and stable, which

implies that its L1-norm exists and is finite. Hence, we have

‖r5‖L∞ ≤
∥
∥
∥
C(s)

ω

1

c⊤o H(s)
c⊤o

∥
∥
∥
L1

‖x̃‖L∞ .

Lemma 18.11 consequently leads to the upper bound:

‖r5‖L∞ ≤
∥
∥
∥
C(s)

ω

1

c⊤o H(s)
c⊤o

∥
∥
∥
L1

√

θm
λmax(P )Γc

,

which, when substituted into (433), leads to the second bound in (427). �

Theorem 18.8. For the closed-loop system in (407) with L1 adaptive controller defined via (410),

(411)-(413) and (415), subject to (419), if θ(t) is (unknown) constant and D(s) =
1

s
, we have:

‖x− xref‖L∞ ≤ γ3 , ‖u− uref‖L∞ ≤ γ4 , (434)

where

γ3 =
∥
∥
∥Hg(s)C(s)

1

c⊤o H(s)
c⊤o

∥
∥
∥
L1

√

θm
λmax(P )Γc

, Hg(s) = (sI −Ag)




b

0



 ,

γ4 =

∥
∥
∥
∥

C(s)

ω
θ⊤
∥
∥
∥
∥
L1

γ3 +
∥
∥
∥
C(s)

ω

1

c⊤o H(s)
c⊤o

∥
∥
∥
L1

√

θm
λmax(P )Γc

.
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Proof: Let

ζ(s) = −C(s)

ω
θ⊤e(s).

With this notation, (430) can be written as

e(s) = H(s)(θ⊤e(s) + ωζ(s) − C(s)r̃(s))

and further put into state space form as:




ė(t)

ζ̇(t)



 = Ag




e(t)

ζ(t)



+




b

0



 r6(t) , (435)

where r6(t) is the signal with its Laplace transformation r6(s) = −C(s)r̃(s) . Let

xζ(t) = [e⊤(t) ζ(t)]⊤.

Since Ag is Hurwitz, then Hg(s) is stable and strictly proper. It follows from (435) that xζ(s) =

−Hg(s)C(s)r̃(s) . Therefore, we have

xζ(s) = −Hg(s)C(s)
1

c⊤o H(s)
c⊤o H(s)r̃(s) = −Hg(s)C(s)

1

c⊤o H(s)
c⊤o x̃(s),

where co is introduced in (426). It follows from (426) that

Hg(s)C(s)
1

c⊤o H(s)
= Hg(s)C(s)

Nd(s)

Nn(s)
. (436)

Since both Hg(s) and C(s) are stable and strictly proper, the complete system Hg(s)C(s) 1
c⊤o H(s)

is

proper and stable, which implies that its L1-norm exists and is finite. Hence, we have

‖xζ‖L∞ ≤
∥
∥
∥Hg(s)C(s)

1

c⊤o H(s)
c⊤o

∥
∥
∥
L1

‖x̃‖L∞ . (437)

The proof of (434) is similar to the proof of (427). �

Corollary 18.1. Given the system in (407) and the L1 adaptive controller defined via (410), (411)-

(413) and (415) subject to (418), we have:

lim
Γc→∞

(x(t) − xref (t)) = 0 , lim
Γc→∞

(u(t) − uref (t)) = 0 , ∀ t ≥ 0 .
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Thus, the tracking error between x(t) and xref (t), as well between u(t) and uref (t), is uniformly

bounded by a constant inverse proportional to Γc. This implies that during the transient phase one

can achieve arbitrarily close tracking performance for both signals simultaneously by increasing the

adaptation rate Γc.

Remark 18.11. We notice that the above analysis assumes zero trajectory initialization error, i.e.

x̂0 = x0, which is in the spirit of the methods for transient performance improvement in [16]. In [5], we

have proved that non-zero trajectory initialization error leads only to an exponentially decaying term

in both system state and control signal, without affecting the performance throughout.

18.9.5 Asymptotic Convergence

Since the bounds in (427) are uniform for all t ≥ 0, they are in charge for both transient and steady

state performance. In case of constant θ and σ one can prove in addition the following asymptotic

result.

Lemma 18.12. Given the system in (407) with constant θ, σ and L1 adaptive controller defined

via (410), (411)-(413) and (415) subject to (418), we have: lim
t→∞

x̃(t) = 0 .

Proof: It follows from Lemmas 18.9 and 18.11, and Theorem 18.7 that both x(t) and x̂(t) in L1 adap-

tive controller are bounded for bounded reference inputs. The adaptive laws in (411)-(413) ensure that

the estimates θ̂(t), ω̂(t), σ̂(t) are also bounded. Hence, it can be checked easily from error dynamics

that ˙̃x(t) is bounded, and it follows from Barbalat’s lemma that lim
t→∞

x̃(t) = 0. �

18.9.6 Design Guidelines

We note that the control law uref (t) in the closed-loop reference system, which is used in the

analysis of L∞ norm bounds, is not implementable since its definition involves the unknown parameters.

Theorem 18.7 ensures that the L1 adaptive controller approximates uref (t) both in transient and steady

state. So, it is important to understand how these bounds can be used for ensuring uniform transient
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response with desired specifications. We notice that the following ideal control signal

uideal(t) =
kgr(t) − θ⊤(t)xref (t) − σ(t)

ω
(438)

is the one that leads to desired system response:

ẋref (t) = Amxref (t) + bkgr(t), yref(t) = c⊤xref (t) (439)

by cancelling the uncertainties exactly. In the closed-loop reference system (420)-(421), uideal(t) is

further low-pass filtered by C(s) to have guaranteed low-frequency range. Thus, the reference system

in (420)-(421) has a different response as compared to (439) achieved with (438). Similar to the case

of constant unknown parameters, one can think of design guidelines for selection of C(s) that ensure

that the response of xref (t) and uref (t) can be made as close as possible to (439).

18.10 Analysis of Stability Margins

18.10.1 Time-delay Margin Analysis

In section 18.4 you have already seen time-delay analysis for one specific case of MRAC (PI con-

troller) and L1 adaptive control. However, in a general sense, it is extremely difficult to analyze the

time-delay margin of a conventional closed loop adaptive control system due to its nonlinear character-

istics. Notice here that we talk about characterization of the time-delay margin of an adaptive control

system, not adaptive control of time-delayed systems, which has been studied intensively.

For the L1 adaptive control scheme, we can derive the time-delay margin of it. We give a rigorous

proof for a conservative lower bound for the time-delay that the closed-loop adaptive system with

L1 adaptive controller can tolerate. We know that for linear systems the time-delay margin can be

obtained from their phase margin. So, given the L1 adaptive controller, can we find an equivalent LTI

system whose time-delay margin can be related to that of the closed loop adaptive system? The answer

is YES.

We develop the time-delay margin analysis for the case of constant unknown parameters, i.e. when

θ = const. We rewrite the open-loop system in (407) as

x(s) = H̄(s)(ωu(s) + σ(s)) , (440)

where H̄(s) = (sI −Am − bθ⊤)−1b. Without loss of generality, we set:

x(0) = 0. (441)
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We further consider the following three systems.

System 1. Let xd(t) be the delayed signal of the open-loop state x(t) of (440) by a constant time

interval τ , i.e

xd(t) =







x(t− τ) t ≥ τ ,

0 t < τ .
(442)

We close the loop of (440) with L1 adaptive controller (410), (411)-(413), (415), using xd(t) from

(442) instead of x(t) everywhere in the definition of (410), (411)-(413), (415). We denote the resulting

control and the state trajectory of this closed-loop system by u(t) and xd(t). We further notice that

this closed-loop adaptive system has a UNIQUE solution. It is the stability of this closed-loop system

that we are trying to determine dependent upon τ . It is important to point out that while applying

the L1 adaptive controller (410), (411)-(413), (415) to the system in (440) using xd(t) from (442), one

cannot derive the dynamics of the error signal between the system state and the predictor state, the

boundedness of which is stated in Lemma 18.11. Neither Theorems 18.7, 18.8 are valid.

System 2. Next, we consider the following closed-loop system with the same zero initial conditions:

ẋq(t) = Amxq(t) + b
(

ωuq(t) + θ⊤xq(t) + σ(t) + η(t)
)

, (443)

where xq(0) = x(0), uq(t) is defined via (410), (411)-(413) and (415) with x(t) being replaced by

xq(t), while η(t) is a continuously differentiable bounded signal with uniformly bounded derivative. As

compared to (407) or (440), the system in (443) has one more additional disturbance signal η(t). If

|σ(t) + η(t)| ≤ ∆ , (444)

where ∆ has been introduced in (414) (but not explicitly defined yet! Further construction of ∆ is

needed.), then application of L1 adaptive controller to the system in (443) is well defined, and hence the

results of Theorem 18.7 are valid. We denote by uq(t) the time trajectory of the L1 adaptive controller,

resulting from its application to (443).

System 3. Finally, we consider the open-loop system in (440)-(442) and apply uq(t) to it and look

at its delayed output xo(t), where the subindex o is added to indicate the open-loop nature of this

signal. It is important to notice that at this point we view uq(t) as a time-varying input signal for

(440), and not as a feedback signal, so that (440) remains an open-loop system in this context.

Illustration of these last two systems is given in Fig. 45(a).
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a) Systems 2 and 3 b) LTI system.

Fig. 45

Lemma 18.13. If the time-delayed output of the open-loop System 3 has the same time history

as the closed-loop output of System 2, i.e.

xo(t) = xq(t), ∀ t ≥ 0 , (445)

then u(t) = uq(t), xd(t) = xq(t), ∀ t ≥ 0, where u(t) and xd(t) denote the control and state trajectories

of the closed-loop System 1 in (440)-(442) with L1 adaptive controller.

Proof. Eq. (445) implies that the open-loop time-delayed System 3 in (440)-(442) generates xq(t) in

response to the input uq(t). When applied to (443), uq(t) leads to xq(t). Hence, uq(t) and xq(t) are

also solutions of the closed-loop adaptive System 1 in (440)-(442) with (410), (411)-(413), (415). �

This Lemma consequently implies that to ensure stability of the System 1 in the presence of a

given time-delay τ , it is sufficient to prove existence of η(t) in System 2, satisfying (444) and verifying

(445). Satisfying (444) can guarantee that the L1 adaptive controller is well defined for the System

2. Verifying (445) proves the equivalence between the time histories of the signals of System 1 and

System 2. With that we are one step closer to our final goal of analyzing the time-delay margin of the

closed-loop adaptive system with L1 adaptive controller.

We notice, however, that the closed-loop System 2 is a nonlinear system due to the nonlinear

adaptive laws, so that the proof on existence of such η(t) for this system and explicit construction of

the set ∆ is not straightforward. Moreover, we note that the condition in (445) relates the time-delay

τ of System 1 (or System 3) to the signal η(t) implicitly. We then introduce another equivalent LTI
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system that helps to prove existence of such η(t) and leads to explicit construction of ∆. Since the

equivalent system is a LTI, we can calculate its time-delay margin. Then we can study the relationship

between this LTI system and System 1 in the presence of the same time-delay τ , where τ is within the

time-delay margin of the LTI system. The time-delay margin of the equivalent LTI system serves as a

conservative, but guaranteed, lower bound on time-delay margin of System 1. Definition of this LTI

system is the key step in the overall time-delay margin analysis. It has an exogenous input that lumps

the time trajectories of the nonlinear elements of the closed-loop System 2. We show only the main

results in the notes, and the readers are encouraged to find more details in [31].

Consider the following closed-loop LTI system:

xl(s) = H̄(s)ζl(s), ǫl(s) = (C(s)/ω)r̃l(s)

ul(s) = (1/ω)C(s)(kgr(s) − θ⊤xl(s) − σ(s) − ηl(s)) − ǫl(s)

where ζl(s) = ωul(s)+σ(s), ηl(s) = ζl(s)−ωul(s)−σ(s), r(s) and σ(s) are the Laplace transformations

of the bounded signals r(t) and σ(t), respectively, xl(t), ul(t) and ǫl(t) are the states, ζl(t) is its output

signal, and r̃l(s) is the Laplace transformation of an exogenous signal r̃l(t). We note that the system

trajectories are uniquely defined once r̃l(t) is given.

Assume the system output ζl(t) experiences time-delay τ , so that in the presence of the time-delay

we have:

xl(s) = H̄(s)ζld(s) (446)

ul(s) = (C(s)/ω)
(

kgr(s) − θ⊤xl(s) − σ(s) − ηl(s)
)

− ǫl(s) (447)

ǫl(s) = (C(s)/ω)r̃l(s) (448)

ζl(s) = ωul(s) + σ(s) , (449)

where ζld(t) is the time-delayed signal of ζl(t), i.e

ζld(t) =







0 t < τ ,

ζl(t− τ) t ≥ τ ,
(450)

consequently leading to redefined ηl(s):

ηl(s) = ζld(s) − ωul(s) − σ(s). (451)
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Let

xl(0) = 0, ul(0) = 0 , ǫl(0) = 0 . (452)

We notice that the system in (446)-(449) is highly coupled. Its diagram is plotted in Figure 45(b).

The phase margin of this LTI system can be determined by its open-loop transfer function from

ζld(t) to ζl(t). It can be equivalently written as:

ζl(s) =
1

1 − C(s)
(rb(s) − rf (s)) , rf (s) = C(s)(1 + θ⊤H̄(s))ζld(s) , (453)

rb(s) = C(s)kgr(s) + (1 − C(s))σ(s) − ωǫl(s) .

Assume that r̃l(t) is such that ǫl(t) is bounded. Since σ(t) and r(t) are bounded, C(s) is strictly proper

and stable, then rb(t) is also bounded. The open-loop transfer function of the system in (453) is:

Ho(s) =
C(s)

1 − C(s)
(1 + θ⊤H̄(s)) , (454)

the phase margin P(Ho(s)) of which can be derived from its Bode plot easily. Its time-delay margin is

given by:

T (Ho(s)) = P(Ho(s))/ωc , (455)

where P(Ho(s)) is the phase margin of the open-loop system Ho(s), and ωc is the cross-over frequency

of Ho(s). The next lemma states a sufficient condition for boundedness of all the states in the system

(446)-(449), including the internal states.

Lemma 18.14. Let

τ < T (Ho(s)) , (456)

and ǫb be any positive number such that ‖ǫl‖L∞ ≤ ǫb. Then the signals ζl(t), xl(t), ul(t), ηl(t) are

bounded.

We then construct the set ∆. For any τ < T (Ho(s)) and any ǫb > 0, Lemma 18.14 guarantees that

the map ∆n : R
+ × [0,T (Ho(s))) → R

+

∆n(ǫb, τ) = max
‖ǫl‖L∞≤ǫb

‖σ + ηl‖L∞ (457)

is well defined.
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Lemma 18.15. Let τ comply with (456), and ǫb be any positive number. If r̃l(t) is such that the

resulting ǫl(t) is bounded

‖ǫl‖L∞ ≤ ǫb , (458)

and

2ω‖ul‖L∞ + 2L‖xl‖L∞ + 2∆ ≥ ‖r̃l‖L∞ , (459)

where

∆ = ∆n(ǫb, τ) + δ1 , (460)

with δ1 > 0 being arbitrary constant, then ηl(t) has a uniformly bounded derivative.

For any τ < T (Ho(s)) and any ǫb > 0, Lemma 18.15 guarantees that the following map ∆d :

R
+ × [0,T (Ho(s))) → R

+

∆d(ǫb, τ) = max
r̃l(t)

‖σ̇ + η̇l‖L∞ (461)

is well defined, where r̃l(t) complies with (458) and (459). Further, let

θm(ǫb, τ) , max
θ∈Θ

n∑

i=1

4θ2
i + 4∆2 + 4 (ωu − ωl)

2 + 2λmax(P )∆d(ǫb, τ)∆/λmin(Q) , (462)

ǫc(ǫb, τ) =
∥
∥
∥C(s)(c⊤o H(s))−1c⊤o

∥
∥
∥
L1

√

θm(ǫb, τ)/(λmax(P )ǫ2b) . (463)

We notice that for any finite ǫb ∈ R
+ and any τ verifying (456), we have finite ∆n(ǫb, τ) and ∆d(ǫb, τ),

and hence finite ǫc(ǫb, τ), if r̃l(t) complies with (458) and (459).

The main result is given by the following theorem.

Theorem 18.9. Consider the closed-loop adaptive system, comprised of System 1 in (440)-(442)

with (410), (411)-(413), (415) and the LTI system in (446)-(449) in the presence of the same time delay

τ . For any ǫb ∈ R
+ choose the set ∆ as in (460) and let

Γc ≥
√

ǫc(ǫb, τ) + δ2 , (464)

where δ2 is arbitrary positive constant. Then for every τ satisfying τ < T (Ho(s)), there exists an

exogenous signal r̃l(t) ensuring that ‖ǫl‖L∞ < ǫb , and xl(t) = xd(t) , ul(t) = u(t) , ∀ t ≥ 0 .
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Theorem 18.9 establishes the equivalence of state and control trajectories of the closed-loop adaptive

system and the LTI system in (446)-(449) in the presence of the same time-delay. Therefore the time-

delay margin of the system in (446)-(449) can be used as a conservative lower bound for the time-delay

margin of the closed-loop adaptive system.

18.10.2 Gain Margin Analysis

We now analyze the gain margin of the system in (407) with L1 adaptive controller. By inserting

a gain module g into the control loop, the system in (407) can be formulated as:

ẋ(t) = Amx(t) + b
(

ωgu(t) + θ⊤(t)x(t) + σ(t)
)

, (465)

where ωg = gω. We note that this transformation implies that the set Ω in the application of the

Projection operator for adaptive laws needs to increase accordingly. However, increased Ω will not

violate the condition in (418). Thus, it follows from (414) that the gain margin of the L1 adaptive

controller is determined by:

Gm = [ωl/ωl0, ωu/ωu0
]. (466)

If g ∈ Gm , then the closed-loop system in (465) satisfies the L1 stability criterion in (418), implying

that the entire closed-loop system is stable. We note that the lower-bound of Gm is greater than zero.

Eq. (466) implies that arbitrary gain margin can be obtained through appropriate choice of Ω.

18.11 Final Words on Design Issues

The most important feature of L1 adaptive controller is its ability of fast adaptation. We have seen

that fast adaptation with L1 adaptive controller ensures guaranteed transient response with respect to

xref (t) and uref (t), and bounded away from zero time-delay margin for the closed-loop system with it.

The remaining question is: under which conditions the signals xref (t) and uref (t) perform as desired,

from the perspective of control design?

Take an extreme case as an example. If C(s) = 1, which means that the low pass filter has infinitely

large bandwidth, then xref (t) and uref (t) are reduced to the ideal reference signals of MRAC defining

the desired performance. However, as we notice from (454), increasing the bandwidth of C(s) hurts

the time-delay margin of the closed-loop adaptive system in the presence of fast adaptation. We have

observed this with MRAC that increasing the adaptive gain leads to reduced time-delay margin. Thus,
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the choice of the C(s) (or original D(s)) defines the trade-off between the desired (ideal) tracking

performance and the robustness - the golden rule of the feedback. More details on selection of C(s) as

how to achieve the desired tracking performance and the corresponding performance bounds one can

find in [31].

18.12 Simulation Example

Consider the dynamics of a single-link robot arm rotating on a vertical plane:

Iq̈(t) +
Mgl cos q(t)

2
+ F (t)q̇(t) + F1(t)q(t) + σ̄(t) = u(t) , (467)

where q(t) and q̇(t) are measured angular position and velocity, respectively, u(t) is the input torque,

I is the unknown moment of inertia, M is the unknown mass, l is the unknown length, F (t) is an

unknown time-varying friction coefficient, F1(t) is position dependent external torque, and σ̄(t) is

unknown bounded disturbance. The control objective is to design u(t) to achieve tracking of bounded

reference input r(t) by q(t). Let x = [q q̇]⊤ . The system in (467) can be presented in the state-space

form as:

ẋ(t) = Ax(t) + b
(u(t)

I
+
Mgl cos(x1(t))

2I
+
σ̄(t)

I
+
F1(t)

I
x1(t) +

F (t)

I
x2(t)

)

, x(0) = x0 ,

y(t) = c⊤x(t) , (468)

where x0 is the initial condition, A =




0 1

0 0



 , b =




0

1



 , c =




1

0



 . The system can be further

put into the form: ẋ(t) = Amx(t) + b(ωu(t) + θ⊤(t)x(t) + σ(t)) , y(t) = c⊤x(t), where ω = 1/I is the

unknown control effectiveness, θ(t) = [1 + F1(t)
I 1.4 + F (t)

I ]⊤ , σ(t) =
Mgl cos(x1(t))

2I
+
σ̄(t)

I
, and Am =




0 1

−1 −1.4



. Let the unknown control effectiveness, time-varying parameters and disturbance be

given by: ω = 1 , θ(t) = [2+cos(πt) 2+0.3 sin(πt)+0.2 cos(2t)]⊤ , σ(t) = sin(πt) , so that the compact

sets can be conservatively chosen as Ω = [0.5, 2], Θ = [−10, 10], ∆ = [−10, 10] . For implementation of

the L1 adaptive controller (410), (411)-(413) and (415), we need to verify the L1 stability requirement

in (418). Letting D(s) = 1/s , we have G(s) = ωk
s+ωkH(s), H(s) = [ 1

s2+1.4s+1
s

s2+1.4s+1
]⊤ . We can check

that L = 20 in (417). In Fig. 46(a), we plot ‖G(s)‖L1
L as a function of ωk and compare it to 1. We

notice that for ωk > 30, we have ‖G(s)‖L1
L < 1. Since ω > 0.5, we set k = 60. We set the adaptive

gain Γc = 10000.
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Fig. 47 Performance of L1 adaptive controller for σ(t) = sin(πt)

The simulation results of the L1 adaptive controller, without any retuning, are shown in Figures

47(a)-47(b) for reference input r = cos(πt). Next, we consider different disturbance signal: σ(t) =

cos(x1(t))+2 sin(10t)+cos(15t) . The simulation results are shown in 48(a)-48(b). Finally, we consider

much higher frequencies in the disturbance: σ(t) = cos(x1(t))+2 sin(100t)+cos(150t) . The simulation

results are shown in 49(a)-49(b). We note that the L1 adaptive controller guarantees smooth and

uniform transient performance in the presence of different unknown time-varying disturbances. The

controller frequencies are exactly matched with the frequencies of the disturbance that it is supposed

to cancel out. We also notice that x1(t) and x̂1(t) are almost the same in Figs. 47(a), 48(a) and 49(a).
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Fig. 48 Performance of L1 adaptive controller for σ(t) = cos(x1(t)) + 2 sin(10t) + cos(15t)
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Fig. 49 Performance of L1 adaptive controller for σ(t) = cos(x1(t)) + 2 sin(100t) + cos(150t)

Next we verify the time-delay margin. Assuming constant θ(t), it can be cast into the form in

(407). Let θ = [2 2]⊤, ω = 1, σ(t) = sin(πt) , so that the compact sets can be conservatively chosen

as Ω0 = [0.5, 2], Θ = [−10, 10], ∆0 = [−10, 10] , respectively. Next, we analyze the stability margins

of the L1 adaptive controller for this system numerically.

For θ = [2 2]⊤, ω = 1 we can derive Ho(s) in (454) and look at its Bode plot in Fig. 46(b). It has

phase margin 88.1◦(1.54rad) at the cross frequency 9.55Hz(60rad/s). Hence, the time-delay margin can

be derived from (455) as: T (Ho(s)) = 1.54rad
60rad/s = 0.0256. We set ∆ = [−1000 1000]⊤, Γc = 500000 ,
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Fig. 50 Performance of L1 adaptive controller with time-delay 0.02s

and run the L1 adaptive controller with time-delay τ = 0.02. The simulations in Figs. 50(a)-50(b)

verify our theoretical finding. As we stated, the time-delay margin of the LTI system in (454) provides

only a conservative lower bound for the time-delay margin of the closed-loop adaptive system. So, we

simulate the L1 adaptive controller in the presence of larger time-delay, like τ = 0.1 sec., and observe

that the system is not losing its stability. Since θ and ω are unknown to the controller, we derive the

T (Ho(s)) for all possible θ ∈ Θ = [−10, 10] and ω ∈ Ω0 = [0.5, 2] and use the most conservative value.

It gives T (Ho(s)) = 0.005s. The gain margin can be arbitrarily large.
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