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Abstract— In [1], we present a novel L1 adaptive control
architecture that enables fast adaptation and leads to uniformly
bounded transient and asymptotic tracking for system’s both
signals, input and output, simultaneously. In this paper, we
derive the stability margins of it and verify those in simulations.

I. INTRODUCTION

In [1], we have introduced novel L1 adaptive control

architecture that has guaranteed transient performance in the

presence of unknown time-varying parameters and bounded

disturbances. In this paper, we derive the time-delay and

the gain margins of it in the presence of unknown constant

parameters and bounded time-varying disturbances.We notice

that characterization of the time-delay margin is extremely

difficult as compared to the gain-margin analysis for closed-

loop nonlinear systems. To the best of our knowledge there

are no such results in adaptive control theory. On the other

hand, this is not surprising since the time-delay margin

cannot be characterized if the transient is not guaranteed.

The paper is organized as follows. Section II gives the

problem formulation and L1 adaptive controller. Stability

margins are derived in Sections III, IV. Results are gener-

alized in Section V. In section VI, simulation results are

presented, while Section VII concludes the paper. The proof

of the main theorem is in Appendix.

II. PROBLEM FORMULATION

Consider the following single-input single-output system:

ẋ(t) = Amx(t) + b
(

ωu(t) + θ⊤x(t) + σ(t)
)

,

y(t) = c⊤x(t) , x(0) = x0 = 0 (1)

where x ∈ R
n is the system state vector (measurable), u ∈ R

is control signal, y ∈ R is the regulated output, b, c ∈ R
n

are known constant vectors, Am ∈ R
n×n is given Hurwitz

matrix, ω ∈ R is unknown constant with given sign, θ ∈ R
n

is unknown constant vector, and σ(t) ∈ R is a uniformly

bounded time-varying disturbance with a uniformly bounded

derivative. Without loss of generality, we assume

ω ∈ Ω0 = [ωl0 , ωu0
] , θ ∈ Θ , |σ(t)| ≤ ∆0 , ∀ t ≥ 0 , (2)

where ωu0
> ωl0 > 0 are known (conservative) upper and

lower bounds, Θ is a known (conservative) compact set and

∆0 ∈ R
+ is a known (conservative) L∞ bound of σ(t). We

further assume that σ(t) is continuously differentiable and

its derivative is uniformly bounded, i.e. |σ̇(t)| ≤ dσ < ∞
for any t ≥ 0, where finite dσ can be arbitrarily large.
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We repeat the L1 adaptive control architecture from [1].

State Predictor: The state predictor model is:

˙̂x(t) = Amx̂(t) + b(ω̂(t)u(t) + θ̂⊤(t)x(t) + σ̂(t)) ,

ŷ(t) = c⊤x̂(t) , x̂(0) = x0 , (3)

which has the same dynamic structure as the system in (1).

Only the unknown parameters and the disturbance ω, θ, σ(t)
are replaced by their adaptive estimates ω̂(t), θ̂(t), σ̂(t).

Adaptive Laws: Adaptive estimates are governed by the

following laws:

˙̂
θ(t) = ΓθProj(θ̂(t),−x(t)x̃⊤(t)Pb), θ̂(0) = θ̂0 , (4)

˙̂σ(t) = ΓσProj(σ̂(t),−x̃⊤(t)Pb), σ̂(0) = σ̂0 , (5)

˙̂ω(t) = ΓωProj(ω̂(t),−x̃⊤(t)Pbu(t)), ω̂(0) = ω̂0 , (6)

where x̃(t) = x̂(t) − x(t), Γθ = ΓcIn×n ∈ R
n×n, Γσ =

Γω = Γc > 0 are the adaptation rates, and P = P⊤ > 0
is the solution of the algebraic Lyapunov equation A⊤

mP +
PAm = −Q, Q > 0. In the implementation of the projection

operator we use the compact set Θ as given in (2), while we

replace ∆0, Ω0 by larger sets ∆ and Ω = [ωl, ωu] such that

∆0 < ∆, 0 < ωl < ωl0 < ωu0
< ωu , (7)

the purpose of which will be clarified in the analysis of the

time-delay and gain margins.

Control Law: The control signal is defined as:

χ(s) = D(s)ru(s) , u(s) = −kχ(s) , (8)

where ru(t) = ω̂(t)u(t) + r̄(t), k > 0 is a feedback gain,

r̄(t) = θ̂⊤(t)x(t)+ σ̂(t)−kgr(t), kg = − 1
c⊤A−1

m b
, and D(s)

is a LTI system that needs to be chosen to ensure

C(s) = ωkD(s)/(1 + ωkD(s)) (9)

is stable and strictly proper with C(0) = 1. We now give the

L1 performance requirement that ensures desired transient

performance, [1].

L1-gain stability requirement: Design D(s) to ensure

that C(s) in (9) satisfies

‖G(s)‖L1
L < 1 , (10)

where G(s) = H(s)(1−C(s)), and H(s) = (sI−Am)−1b .
The complete L1 adaptive controller consists of (3), (4)-

(6), (8) subject to (10). We notice that the L1-gain stability

requirement depends only upon the choice of Θ and is

independent of the choice of ∆0, Ω0 or ∆, Ω.

Consider the following closed-loop reference system, the

stability of which follows from (10), [1]:

ẋref = Amxref + b(ωuref + θ⊤xref + σ),

uref (s) = (C(s)/ω)r̄ref (s) , yref (t) = c⊤xref (t), (11)
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with xref (0) = x0, where r̄ref (t) = −θ⊤xref (t) − σ(t) +
kgr(t). The main result of [1] implies that by increasing the

adaptation gain, x(t) and u(t) can track xref (t) and uref (t)
arbitrarily closely both in transient and asymptotically.

III. TIME-DELAY MARGIN ANALYSIS

A. L1 adaptive controller in the presence of time-delay

In this section, we develop the time-delay margin analysis

for the system in (1). We rewrite the open-loop system

x(s) = H̄(s)(ωu(s) + σ(s)) , x(0) = 0 , (12)

where H̄(s) = (sI − Am − bθ⊤)−1b. We further consider

the following three systems.

System 1. Let xd(t) be the delayed signal of the open-loop

state x(t) of (12) by a constant time interval τ , i.e

xd(t) =

{

x(t − τ) t ≥ τ ,
0 t < τ .

(13)

We close the loop of (12) with L1 adaptive controller (3),

(4)-(6), (8), using xd(t) from (13) instead of x(t) everywhere

in the definition of (3), (4)-(6), (8). We denote the resulting

control and the state trajectory of this closed-loop system

by u(t) and xd(t). We further notice that this closed-loop

adaptive system has a unique solution. It is the stability

of this closed-loop system that we are trying to determine

dependent upon τ . It is important to point out that while

applying the L1 adaptive controller to the system in (12)

using xd(t) from (13), stability and analysis results in [1]

are invalid.

System 2. Next, we consider the following closed-loop

system with the same zero initial conditions:

ẋq(t) = Amxq(t) + b
(

ωuq(t) + θ⊤xq(t) + σ(t) + η(t)
)

,
(14)

where xq(0) = x(0), uq(t) is defined via (3), (4)-(6) and

(8) with x(t) being replaced by xq(t), while η(t) is a

continuously differentiable bounded signal with uniformly

bounded derivative. As compared to (1) or (12), the system

in (14) has one more additional disturbance signal η(t). If

|σ(t) + η(t)| ≤ ∆ , (15)

where ∆ has been defined in (7), then application of L1

adaptive controller to the system in (14) is well defined, and

hence the results in [1] are valid. We denote by uq(t) the

time trajectory of the L1 adaptive controller, resulting from

its application to (14).

System 3. Finally, we consider the open-loop system in

(12)-(13) and apply uq(t) to it and look at its delayed output

xo(t), where the subindex o is added to indicate the open-

loop nature of this signal. It is important to notice that at

this point we view uq(t) as a time-varying input signal for

(12), and not as a feedback signal, so that (12) remains an

open-loop system in this context.

Illustration of these last two systems is given in Fig. 1(a).

Lemma 1: If the time-delayed output of the open-loop

System 3 has the same time history as the closed-loop output

of System 2, i.e.

xo(t) = xq(t), ∀ t ≥ 0 , (16)

(a) Systems 2 and 3.

(b) LTI system in (19)-(22).

(c) LTI system in (26).

Fig. 1.

then u(t) = uq(t), xd(t) = xq(t), ∀ t ≥ 0, where u(t) and

xd(t) denote the control and state trajectories of the closed-

loop System 1 in (12)-(13) with L1 adaptive controller.

Proof. Eq. (16) implies that the open-loop time-delayed

System 3 in (12)-(13) generates xq(t) in response to the input

uq(t). When applied to (14), uq(t) leads to xq(t). Hence,

uq(t) and xq(t) are also solutions of the closed-loop adaptive

System 1 in (12)-(13) with (3), (4)-(6), (8). �

This Lemma consequently implies that to ensure stability

of the System 1 in the presence of a given time-delay τ , it is

sufficient to prove existence of η(t) in System 2, satisfying

(15) and verifying (16). We notice, however, that the closed-

loop System 2 is a nonlinear system due to the nonlinear

adaptive laws, so that the proof on existence of such η(t)
for this system and explicit construction of the set ∆ is not

straightforward. Moreover, we note that the condition in (16)

relates the time-delay τ of System 1 (or System 3) to the

signal η(t) implicitly. In the next section we introduce an

equivalent LTI system that helps to prove existence of such

η(t) and leads to explicit construction of ∆. Definition of

this LTI system is the key step in the overall time-delay

margin analysis. It has an exogenous input that lumps the

time trajectories of the nonlinear elements of the closed-

loop System 2. For this LTI system, the time delay margin

can be computed via its open-loop transfer function, which
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consequently defines a conservative, but guaranteed, lower

bound for the time-delay margin of the adaptive system.

B. LTI System in the Presence of Time-delay in its Output

Consider the following closed-loop LTI system:

xl(s) = H̄(s)ζl(s), ǫl(s) = (C(s)/ω)r̃l(s),

ul(s) = (1/ω)C(s)(kgr(s) − θ⊤xl(s) − σ(s) − ηl(s)) − ǫl(s),

where ζl(s) = ωul(s)+σ(s), ηl(s) = ζl(s)−ωul(s)−σ(s),
xl(t), ul(t) and ǫl(t) are the states, ζl(t) is its output signal,

and r̃l(t) is an exogenous signal. We note that the system

trajectories are uniquely defined once r̃l(t) is given. Since

xl(s) = H̄(s)ζl(s), we have

xl(s)/r(s) = (H̄(s)C(s))/(1 + C(s)θ⊤H̄(s)) , (17)

xl(s)/σ(s) = (H̄(s)(1 − C(s)))/(1 + C(s)θ⊤H̄(s)) . (18)

We notice that for the reference system in (11), in case of

constant θ, the signals xref (s)/r(s) and xref (s)/σ(s) are

equivalent to those in (17) and (18). We also notice that

the LTI system in the absence of time-delay ensures stable

transfer functions from the inputs r(t), σ(t) and r̃l(t) to the

output ζl(t).
Assume the system output ζl(t) experiences time-delay τ ,

so that in the presence of the time-delay we have:

xl(s) = H̄(s)ζld(s) (19)

ul(s) = (C(s)/ω)(kgr(s) − θ⊤xl(s) − σ(s)

−ηl(s)) − ǫl(s) (20)

ǫl(s) = (C(s)/ω)r̃l(s) (21)

ζl(s) = ωul(s) + σ(s) , (22)

where ζld(t) is the time-delayed signal of ζl(t), i.e

ζld(t) =

{

0 t < τ ,
ζl(t − τ) t ≥ τ ,

(23)

consequently leading to redefined ηl(s):

ηl(s) = ζld(s) − ωul(s) − σ(s). (24)

Let

xl(0) = 0, ul(0) = 0 , ǫl(0) = 0 . (25)

We notice that the system in (19)-(22) is highly coupled. Its

diagram is plotted in Figure 1(b).

C. Time-Delay Margin of the LTI System

We notice that the phase margin of this LTI system can

be determined by its open-loop transfer function from ζld(t)
to ζl(t). It follows from (19), (20), and (24) that

ωul(s) =
C(s)

(

kgr(s) − ζld(s) − θ⊤H̄(s)ζld(s)
)

− ωǫl(s)

1 − C(s)
,

and hence the relationship in (22) implies that ζl(s) =
C(s)(kgr(s)−ζld

(s)−θ⊤H̄(s)ζld
(s))−ωǫl(s)

1−C(s) + σ(s). Therefore, it

can be equivalently written as:

ζl(s) = (1/(1 − C(s)))(rb(s) − rf (s)) ,

rf (s) = C(s)(1 + θ⊤H̄(s))ζld(s) , (26)

rb(s) = C(s)kgr(s) + (1 − C(s))σ(s) − ωǫl(s) .

Assume that r̃l(t) is such that ǫl(t) is bounded. Since σ(t)
and r(t) are bounded, C(s) is strictly proper and stable, then

rb(t) is also bounded. The block-diagram of the closed-loop

system in (26) is shown in Figure 1(c).

The open-loop transfer function of the system in (26) is:

Ho(s) = (C(s)/1 − C(s))(1 + θ⊤H̄(s)) , (27)

the phase margin P(Ho(s)) of which can be derived from

its Bode plot easily. Its time-delay margin is given by:

T (Ho(s)) = P(Ho(s))/ωc , (28)

where P(Ho(s)) is the phase margin of the open-loop system

Ho(s), and ωc is the cross-over frequency of Ho(s). The next

lemma states a sufficient condition for boundedness of all the

states in the system (19)-(22), including the internal states.

Lemma 2: Let

τ < T (Ho(s)) , (29)

and ǫb be any positive number such that ‖ǫl‖L∞
≤ ǫb. Then

the signals ζl(t), xl(t), ul(t), ηl(t) are bounded.

Proof: Since ǫl(t) is bounded and τ < T (Ho(s)), the bound-

edness of ζl(t) follows from the definition of T (Ho(s)). The

boundedness of ζld(t) follows from its definition in (23).

Since ζl(t) and σ(t) are bounded, it follows from (22) that

ul(t) is bounded, and (24) implies that ηl(t) is bounded.

Notice that since ul(t) and ǫl(t) are bounded, it follows from

(20) that θ⊤xl(t) is bounded. Finally, we notice that xl(s)
in (19) can be written as xl(s) = H(s)(θ⊤xl(s) + ζld(s)),
which leads to boundedness of xl(t). �

For any τ < T (Ho(s)) and any ǫb > 0, Lemma 2

guarantees that the map ∆n : R
+ × [0, T (Ho(s))) → R

+

∆n(ǫb, τ) = max
‖ǫl‖L∞

≤ǫb

‖σ + ηl‖L∞
(30)

is well defined. We note that strictly speaking ηl(t) depends

not only on ǫl(t) and τ , but also upon other arguments, like

σ(t) and other variables of the system that are used in the

definition of ηl(t). These are dropped due to their non-crucial

role in the subsequent analysis.

Lemma 3: Let τ comply with (29), and ǫb be any positive

number. If r̃l(t) is such that the resulting ǫl(t) is bounded

‖ǫl‖L∞
≤ ǫb , (31)

and

2ω‖ul‖L∞
+ 2L‖xl‖L∞

+ 2∆ ≥ ‖r̃l‖L∞
, (32)

where

∆ = ∆n(ǫb, τ) + δ1 , (33)

with δ1 > 0 being arbitrary constant, then ηl(t) has a

uniformly bounded derivative.

Proof: Using Lemma 2, we immediately conclude that xl(t),
ul(t), ∆n(ǫb, τ) are bounded. Hence, it follows from (32)

that r̃l(t) is also bounded. Since C(s) is strictly proper and

stable, bounded r̃l(t) ensures that ǫl(t) is differentiable with

bounded derivative. Using similar methods, we prove that

both ul(t) and ζld(t) have bounded derivatives. Since σ̇(t)
is bounded, it follows from (24) that η̇l(t) is bounded. �
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For any τ < T (Ho(s)) and any ǫb > 0, Lemma 3 guaran-

tees that the following map ∆d : R
+× [0, T (Ho(s))) → R

+

∆d(ǫb, τ) = max
r̃l(t)

‖σ̇ + η̇l‖L∞
(34)

is well defined, where r̃l(t) complies with (31) and (32).

Further, let

θm(ǫb, τ) , max
θ∈Θ

n
∑

i=1

4θ2
i + 4∆2 + 4 (ωu − ωl)

2

+4λmax(P )∆d(ǫb, τ)∆/λmin(Q) , (35)

ǫc(ǫb, τ) =
∥

∥

∥
C(s)(c⊤o H(s))−1c⊤o

∥

∥

∥

L1
√

θm(ǫb, τ)/(λmax(P )ǫ2b) . (36)

We notice that for any finite ǫb ∈ R
+ and any τ verifying

(29), we have finite ∆n(ǫb, τ) and ∆d(ǫb, τ), and hence finite

ǫc(ǫb, τ), if r̃l(t) complies with (31) and (32).

D. Time-delay Margin of the Closed-loop Adaptive System

In this section we formulate the main result for the time-

delay margin of L1 adaptive controller.

Theorem 1: Consider the closed-loop adaptive system,

comprised of System 1 in (12)-(13) with (3), (4)-(6), (8)

and the LTI system in (19)-(22) in the presence of the same

time delay τ . For any ǫb ∈ R
+ choose the set ∆ as in (33)

and let

Γc ≥
√

ǫc(ǫb, τ) + δ2 , (37)

where δ2 is arbitrary positive constant. Then for every τ
satisfying τ < T (Ho(s)), there exists an exogenous signal

r̃l(t) ensuring that ‖ǫl‖L∞
< ǫb , and xl(t) = xd(t) , ul(t) =

u(t) , ∀ t ≥ 0 .
The proof is in Appendix.

Theorem 1 establishes the equivalence of state and control

trajectories of the closed-loop adaptive system and the LTI

system in (19)-(22) in the presence of the same time-delay.

Therefore the time-delay margin of the system in (19)-(22)

can be used as a conservative lower bound for the time-delay

margin of the closed-loop adaptive system.

Corollary 1: Given the system in (1) with constant θ and

the L1 adaptive controller defined via (3), (4)-(6) and (8)

subject to (10), where Γc and ∆ are selected appropriately

large, the closed-loop adaptive system is stable in the pres-

ence of time delay τ in its output if τ < T (Ho(s)) , where

T (Ho(s)) is defined in (28).

The proof follows from Lemma 2 and Theorem 1 directly.

Fig. 2. Effect of adaptive gain on time-delay margins of MRAC (slashed)
and L1 adaptive controller (solid)

Remark 1: If we omit the uncertainties due to θ and ω in

(1) and retain only constant σ(t) = const, both MRAC and

L1 adaptive controller degenerate into LTI systems. We can

verify the time-delay margins using frequency domain tools.

Letting ẋ(t) = −x(t) + u(t) + σ, Fig. 2 shows the time-

delay margin of both architectures with respect to Γc. As

Γc → ∞, the time-delay margin of MRAC decreases, while

L1 adaptive controller has a time-delay margin equal to π/2.

We verify from (28) that in this case T (Ho(s)) = π/2 .

IV. GAIN MARGIN ANALYSIS

We now analyze the gain margin of the system in (1) with

L1 adaptive controller. By inserting a gain module g into the

control loop, the system in (1) can be formulated as:

ẋ(t) = Amx(t) + b
(

ωgu(t) + θ⊤(t)x(t) + σ(t)
)

, (38)

where ωg = gω. We note that this transformation implies

that the set Ω in the application of the Projection operator

for adaptive laws needs to increase accordingly. However,

increased Ω will not violate the condition in (10). Thus, it

follows from (7) that the gain margin of the L1 adaptive

controller is determined by:

Gm = [ωl/ωl0 , ωu/ωu0
]. (39)

If g ∈ Gm , then the closed-loop system in (38) satisfies the

L1 stability criterion in (10), implying that the entire closed-

loop system is stable. We note that the lower-bound of Gm is

greater than zero. Eq. (39) implies that arbitrary gain margin

can be obtained through appropriate choice of Ω.

V. MAIN RESULTS

Theorem 2: Given the system in (1) with constant un-

known parameters θ and the L1 adaptive controller defined

via (3), (4)-(6) and (8) subject to (10), we have:

lim
Γc→∞

T ≥ T (Ho(s)) , G ⊇ Gm , (40)

lim
Γc→∞

(x(t) − xref (t)) = 0 , lim
Γc→∞

(u(t) − uref (t)) = 0 ,

for any t ≥ 0, where T and G are the time-delay and the

gain margins of the L1 adaptive controller, while T (Ho(s)),
Gm are defined in (28) and (39).

VI. SIMULATIONS

We consider the same system from [1], in which a single-

link robot arm is rotating on a vertical plane. Assuming

constant θ(t), it can be cast into the form in (1) with

Am =

[

0 1
−1 −1.4

]

, b =

[

0
1

]

, c =

[

1
0

]

. Let

θ = [2 2]⊤, ω = 1, σ(t) = sin(πt) , so that the compact

sets can be conservatively chosen as Ω0 = [0.2, 5], Θ =
[−10, 10], ∆0 = [−10, 10] , respectively. Next, we analyze

the stability margins of the L1 adaptive controller for this

system numerically.

For θ = [2 2]⊤, ω = 1 we can derive Ho(s) in (27). Its

Bode plot indicates phase margin 88.1◦(1.54rad) at cross

frequency 9.55Hz(60rad/s). Hence, the time-delay margin

can be derived from (28) as: T (Ho(s)) = 1.54rad
60rad/s = 0.0256.
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We set ∆ = [−1000 1000]⊤, Γc = 500000 , and run

the L1 adaptive controller with time-delay τ = 0.02. The

simulations in Figs. 3(a)-3(b) verify Corollary 1. As stated in

Theorem 2, the time-delay margin of the LTI system in (27)

provides only a conservative lower bound for the time-delay

margin of the closed-loop adaptive system. So, we simulate

the L1 adaptive controller in the presence of larger time-

delay, like τ = 0.1 sec., and observe that the system is not

losing its stability. Since θ and ω are unknown, we derive

the T (Ho(s)) for all possible θ ∈ Θ and ω ∈ Ω and use the

most conservative value. It gives T (Ho(s)) = 0.005s. The

gain margin can be arbitrarily large as stated in (40).

VII. CONCLUSION

In this paper, we derive the stability margins of L1

adaptive controller presented in [1]. To the best of our

knowledge, this is the first attempt to quantify the time-delay

margin for a closed-loop adaptive system. With this particular

architecture, we prove that increasing the adaptive gain

improves the time-delay margin. This presents a significant

improvement over conventional adaptive control schemes, in

which increasing the adaptive gain leads to reduced tolerance

to time-delay in input/output channels.
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Fig. 3. Performance of L1 adaptive controller with time-delay 0.02s
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APPENDIX

Let xh(t) be the state variable of the LTI system Hx(s), while
xi(t) and xs(t) be the input and the output signals of it. We note
that for any time instant t1 and any fixed time-interval [t1, t2],
where t2 > t1, given xh(t1) and a continuous input signal xi(t)
over [t1, t2), xs(t) is uniquely defined for t ∈ [t1, t2]. Let S
be the map xs(t)|t∈[t1, t2] = S(Hx(s), xh(t1), xi(t)|t∈[t1, t2)).
We note that xs(t) is continuous, if xi(t) has no δ function.
Also, xs(t) is defined in the space of continuous functions
over the closed interval [t1, t2], i.e C[t1, t2], although xi(t)
is defined in the L∞ space over the open set [t1, t2). Let
xo1

|t∈[t1, t2] = S(Hx(s), xh1
, xi1(t)|t∈[t1, t2)), xo2

|t∈[t1, t2] =
S(Hx(s), xh2

, xi2(t)|t∈[t1, t2)). Definition of S implies that if
xh1

= xh2
and xi1(t) = xi2(t) over [t1 , t2), then xo1

(t) = xo2
(t)

for any t ∈ [t1 , t2].
Proof of Theorem 1: In the closed-loop adaptive system in (14)

for any t∗ ≥ 0, we notice that if ‖(σ + η)t∗‖L∞
≤ ∆ , and

σ(t), η(t) have finite derivatives over [0, t∗], then application of
L1 adaptive controller is well-defined. Let

dt∗ = ‖(σ̇ + η̇)t∗‖L∞
. (41)

It follows from (3) and (14) that x̃q(s) = H(s)r̃(s), where x̃q(t) =
x̂(t) − xq(t) and

r̃(t) = ω̃(t)uq(t) + θ̃⊤(t)xq(t) + σ̃(t) . (42)

This along with Eq. (25) in [1] implies that uq(t)t∈[0,t∗] =
S(C(s)/ω, uq(0), (kgr(t)−θ⊤xq(t)−σ(t)−η(t)− r̃(t))t∈[0,t∗)),
x̃q(t)t∈[0,t∗] = S(H(s), x̃q(0), r̃(t)t∈[0,t∗)), where σ̃(t) = σ̂(t)−
(σ(t) + η(t)). Note that

uq(t)t∈[0,t∗] = S(C(s)/ω, uq(0), (kgr(t) − θ⊤xq(t) − σ(t)

−η(t))t∈[0,t∗)) − ǫ(t)t∈[0,t∗] , (43)

where

ǫ(t)t∈[0,t∗] = S(C(s)/ω, 0, r̃(t)t∈[0,t∗)) . (44)

We further define

θt∗ , max
θ∈Θ

n
∑

i=1

4θ2
i + max

σ∈∆
4σ2 + 4 (ωu − ωl)

2

+4λmax(P )dt∗∆/λmin(Q) . (45)

It can be verified that Lemma 7 in [1] holds for truncated

norms as well so that ‖x̃qt∗
‖L∞

≤
√

θt∗

λmin(P )Γc
. Since ǫ(s) =

C(s)

ωc⊤o H(s)
c⊤o H(s)r̃(s) = C(s)

ωc⊤o H(s)
c⊤o x̃q(s) , then

‖ǫt∗‖L∞
≤

∥

∥

∥
C(s)(ωc⊤o H(s))−1c⊤o

∥

∥

∥

L1

√

θt∗/(λmin(P )Γc) .

(46)
In the three steps below, we prove the existence of a continuously

differentiable η(t) with uniformly bounded derivative in the closed-
loop adaptive system (14), (3), (4)-(6), (8) and the existence of rl(t)
in the time-delayed LTI system such that for any t ≥ 0

|σ(t) + η(t)| < ∆ , xo(t) = xq(t) , (47)

‖ǫlt‖L∞
< ǫb , xl(t) = xq(t) , ul(t) = uq(t) , ǫl(t) = ǫ(t) . (48)

With (47), Lemma 1 implies that xd(t) = xq(t), u(t) = uq(t) for
any t ≥ 0, while (48) proves Theorem 1.

Step 1: Let

ζ(t) = ωuq(t) + σ(t) . (49)

We further define

ζd =

{

0 , t ∈ [0, τ)
ζ(t − τ) , t ≥ τ

. (50)

Since (12) and (13) imply that xo(t) = 0 for any t ∈ [0, τ ], it fol-
lows from (50) and the definition of the map S that xo(t)|t∈[0,τ ] =
S(H̄(s), xo(0), ζd(t)t∈[0,τ)). For i ≥ 1, it follows from the
definition of the time-delayed open-loop System 3 that

xo(t)|t∈[iτ,(i+1)τ ] = S(H̄(s), xo(iτ), ζd(t)t∈[iτ,(i+1)τ)) . (51)

We note that (51) holds for any i. Also, it follows from (44) that
ǫ(0) = 0 . Taking into consideration the initial conditions and
definitions in (12), (13), (23), (25), we have that for i = 0,

uq(iτ) = ul(iτ) , ǫ(iτ) = ǫl(iτ) , xo(iτ) = xq(iτ) = xl(iτ) ,

ζd(t) = ζld(t) , t < (i + 1)τ , |ǫ(t)| < ǫb , t ≤ iτ .

Step 2: Assume that for any i the following conditions hold:

uq(t) = ul(t) , t ≤ iτ , (52)

ǫ(t) = ǫl(t) , t = iτ , (53)

xo(t) = xq(t) = xl(t) , t ≤ iτ , (54)

ζd(t) = ζld(t) , ∀ t ∈ [iτ, (i + 1)τ) , (55)

|ǫ(t)| < ǫb , ∀ t ≤ iτ . (56)
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For i ≥ 1, further assume that there exist bounded r̃l(t) and
continuously differentiable η(t) with bounded derivative over t ∈
[0, iτ) such that ∀ t < iτ

η(t) = ηl(t) , |σ(t) + η(t)| < ∆ . (57)

We prove below that there exist bounded r̃l(t) and continuously
differentiable η(t) with bounded derivative over t ∈ [0, (i + 1)τ)
such that (52)-(57) hold for i + 1, too. We note that (19) implies

xl(t)|t∈[iτ,(i+1)τ ] = S(H̄(s), xl(iτ), ζld(t)t∈[iτ,(i+1)τ)). (58)

Using (54)-(55), it follows from (51) and (58) that

xo(t) = xl(t), ∀ t ∈ [iτ, (i + 1)τ ] . (59)

We assumed in (57) that if i ≥ 1, then there exists continuous η(t)
over [0, iτ) with uniformly bounded derivative. We now define η(t)
over [iτ, (i + 1)τ) as:

η(t) = ζd(t) − ωuq(t) − σ(t) , t ∈ [iτ, (i + 1)τ) . (60)

Since (14) implies that xq(t)|t∈[iτ,(i+1)τ ] =
S(H̄(s), xq(iτ)(ωuq(t)+σ(t)+η(t))t∈[iτ,(i+1)τ)), it follows from

(60) that xq(t)|t∈[iτ,(i+1)τ ] = S(H̄(s), xq(iτ), ζd(t)t∈[iτ,(i+1)τ)).
Along with (51) and (54) this ensures that

xq(t) = xo(t), ∀ t ∈ [iτ, (i + 1)τ ] . (61)

However, the definition in (60) does not guarantee

|σ(t) + η(t)| < ∆ , t ∈ [iτ, (i + 1)τ) , (62)

which is required for application of the L1 adaptive controller.

We prove (62) by contradiction. Since η(t) is continuous over
[iτ, (i+1)τ), if (62) is not true, there must exist t′ ∈ [iτ, (i+1)τ)
such that |σ(t) + η(t)| < ∆ for any t < t′ and

|σ(t′) + η(t′)| = ∆ . (63)

It follows from (51) and (60) that xo(t)t∈[iτ,t′] =
S(H̄(s), xo(iτ), (ωuq(t) + σ(t) + η(t))t∈[iτ,t′)). It follows
from (43) and (44) that

uq(t)|t∈[iτ, t′] = S(C(s)/ω, uq(iτ) + ǫ(iτ), (kgr(t)

−θ⊤xq(t) − σ(t) − η(t))t∈[iτ, t′)) − ǫ(t)|t∈[iτ, t′] (64)

where

ǫ(t)|t∈[iτ, t′] = S(C(s)/ω, ǫ(iτ), r̃(t)t∈[iτ, t′)) . (65)

We notice that if i ≥ 1, then r̃l(t) is well defined on [0, iτ). Let

r̃l(t) = r̃(t) , t ∈ [iτ, t′) . (66)

We have ǫl|t∈[iτ, t′] = S(C(s)/ω, ǫl(iτ), r̃(t)t∈[iτ, t′)), which
along with (53) and (65) implies

ǫl(t) = ǫ(t), ∀ t ∈ [iτ, t′] . (67)

Hence, (52), (59), (61), (64) yield

uq(t)|t∈[iτ, t′] = S(C(s)/ω, ul(iτ) + ǫ(iτ), (kgr(t)

−θ⊤xl(t) − σ(t) − η(t))t∈[iτ, t′)) − ǫ(t)|t∈[iτ, t′] . (68)

It follows from (67) and (68) that

uq(t)|t∈[iτ, t′] = S(C(s)/ω, ul(iτ) + ǫl(iτ), (kgr(t)

−θ⊤xl(t) − σ(t) − η(t))t∈[iτ, t′)) − ǫl(t)|t∈[iτ, t′] . (69)

The relationships in (24) and (55) imply that

ηl(t) = ζd(t) − ωul(t) − σ(t) , t ∈ [iτ, t′] , (70)

which along with (20) yields

ul(t)|t∈[iτ, t′] = S(C(s)/ω, ul(iτ) + ǫl(iτ), (kgr(t)

−θ⊤xl(t) − σ(t) − ηl(t))t∈[iτ, t′)) − ǫl(t)|t∈[iτ, t′] . (71)

From (60), (69), (70) and (71), we have

uq(t) = ul(t), ∀t ∈ [iτ, t′] (72)

η(t) = ηl(t), ∀t ∈ [iτ, t′) . (73)

It follows from (57) and (73) that

η(t) = ηl(t), ∀ t ∈ [0, t′) . (74)

We now prove by contradiction that

|ǫ(t)| < ǫb , ∀ t ∈ [iτ, t′] . (75)

If (75) is not true, then since ǫ(t) is continuous, there exists t̄ ∈
[iτ, t′] such that |ǫ(t)| < ǫb, ∀t ∈ [iτ, t̄), and

|ǫ(t̄)| = ǫb . (76)

It follows from (56) that

|ǫ(t)| ≤ ǫb , ∀ [0, t̄] . (77)

The relationships in (52), (54), (59), (61) and (72) imply that
uq(t) = ul(t) , xq(t) = xl(t) for any t ∈ [0, t̄]. Therefore, (42)

and (66) imply that r̃l(t) = ω̃(t)ul(t) + θ̃⊤(t)xl(t) + σ̃(t), and

‖r̃lt̄
‖L∞

≤ 2ω‖ult̄
‖L∞

+ L‖xlt̄
‖L∞

+ 2∆ . (78)

Using (77) and (78), Lemmas 2 and 3 imply that ηl(t) is bounded
and differentiable with bounded derivative. Further, it follows from
(30) and (34) that |σ(t) + ηl(t)| ≤ ∆n(ǫb, τ), |σ̇(t) + η̇l(t)| ≤
∆d(ǫb, τ) for any t ∈ [0, t̄]. Since (74) holds ∀ t ∈ [0, t′), η(t) is
also bounded and differentiable with bounded derivative and further

|σ(t) + η(t)| ≤ ∆n(ǫb, τ), |σ̇(t) + η̇(t)| ≤ ∆d(ǫb, τ), (79)

for any t ∈ [0, t̄]. It follows from (46) that ‖ǫt̄‖L∞
≤

∥

∥

∥
C(s)(ωc⊤o H(s))−1c⊤o

∥

∥

∥

L1

√

θt̄/(λmin(P )Γc). The relationships

in (35), (45) and (79) imply that θt̄ ≤ θm(ǫb, τ), and using the

upper bound from (46) we have ‖ǫt̄‖L∞
≤

∥

∥

∥
C(s) 1

ωc⊤o H(s)
c⊤o

∥

∥

∥

L1
√

θm(ǫb,τ)
λmin(P )Γc

. From (36) and (37) we have ‖ǫt̄‖L∞
< ǫb, which

contradicts (76). Therefore, (75) holds.
If (75) is true, it follows from (56) that |ǫ(t)| < ǫb , ∀ t ∈ [0, t′] .

Hence, it follows from (30) and (74) that |σ(t)+η(t)| ≤ ∆n < ∆ ,
which contradicts (63). Hence, we have

|σ(t) + η(t)| < ∆, ∀ t ∈ [iτ, (i + 1)τ ]. (80)

Therefore, from (59), (61), (67), (72), (73), (75), (80) it follows
that there exist r̃l(t) and continuously differentiable η(t) in [0, (i+
1)τ), which ensure

xo(t) = xq(t) = xl(t), ∀ t ∈ [iτ, (i + 1)τ ], (81)

ǫ(t) = ǫl(t), ∀ t ∈ [iτ, (i + 1)τ ], (82)

uq(t) = ul(t), ∀ t ∈ [iτ, (i + 1)τ ], (83)

η(t) = ηl(t), ∀ t ∈ [iτ, (i + 1)τ), (84)

|ǫ(t)| < ǫb, ∀ t ∈ [0, (i + 1)τ ], (85)

|σ(t) + η(t)| < ∆, ∀ t ∈ [0, (i + 1)τ ]. (86)

It follows from (22), (49) and (83) that ζ(t) = ζl(t), ∀ t ∈
[iτ, (i + 1)τ) . Therefore (23) and (50) imply that

ζd(t) = ζld(t), ∀ t ∈ [(i + 1)τ, (i + 2)τ) . (87)

We note that the relationships in (81)-(87) prove the Step 2.
Step 3: Step 1 implies that the relationships (52)-(56) hold for

i = 0. By iterating the results from Step 2, we prove (47)-(48),
which conclude proof of the Theorem. �
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