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Abstract— The advantages of L1 adaptive control architec-
ture, such as improved transient and asymptotic tracking,
guaranteed time-delay margin achieved via smooth control
input, have been previously established. In this paper, the L1

adaptive controller is designed for a multi-input multi-output
open loop unstable unmanned military aircraft. The control
is designed to accommodate and to be robust to actuator
failures, as well as to pitch break uncertainty that is used to
model uncertain aerodynamics. Results of using the L1 adaptive
controller are compared with the conventional model reference
adaptive control scheme to show improved transient command
tracking and time-delay margin.

I. INTRODUCTION

Since the early 1990’s, the Air Force, Navy, and NASA
working with industry and academia have made significant
progress towards maturing adaptive control theory for appli-
cation to reconfigurable/damage adaptive flight control for
aircraft and weapon systems [1]–[13]. Reconfigurable flight
control refers to the ability of a flight control system to adapt
to unknown failures, damage, and uncertain aerodynamics.
Flight control systems that are reconfigurable and damage
adaptive constitute an important element in the design of mis-
sion effective unmanned combat systems. Moreover, these
architectures play an important role in increasing the relia-
bility of unmanned systems. Both indirect and direct adaptive
control methods have been investigated, and several different
approaches have been successfully flown on manned aircraft
[1]–[4], unmanned aircraft [5], [6], and also on advanced
weapon systems [10]–[12].

The Self Designing Controller [1] program successfully
flight tested an indirect adaptive scheme on the VISTA/F-16
aircraft which used least squares system identification, with
spatial and temporal constraints, to estimate the stability and
control derivatives required for the solution of a receding
horizon optimal control problem. NASA [2] has also tested
both an indirect and direct adaptive method on an F-15
aircraft. The indirect method used neural network based
system identification algorithms to estimate aircraft plant
matrices and sent these to an online Riccati equation solver.
Kim and Calise [4] presented an approach based on neural
networks for a feedback linearizing control architecture and
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demonstrated the approach via simulation studies with an
F/A-18 aircraft. This approach was later modified and used in
the Reconfigurable Control for Tailless Fighters (RESTORE)
program [4]–[6], using a dynamic inversion control law in an
explicit model following framework. The successful applica-
tion of this technology under the RESTORE program [6] led
to the flight testing of the approach on the Boeing/NASA
X-36 Agility Research Test Aircraft. NASA has also been
flight testing a similar approach on their F-15 aircraft. This
same approach also has been applied and flown on the
Joint Direct Attack Munition (JDAM) [10], [12]–[14], in
which the LQR based flight control system was replaced
with a dynamic inversion based scheme augmented with
a neural-network based model reference adaptive control.
A historical overview of research on reconfigurable flight
control is available in [15].

In [16], Lavretsky and Wise applied model reference
adaptive control (MRAC) to a model of the aerodynamically
unstable X-45A UCAV. Although successful, implementation
of the adaptive control proved to be sensitive to the size of
the learning rate, requiring numerical simulations to validate
robustness to time-delays. Other open problems regarding
the application of MRAC control to aircraft have been
documented in [17].

This paper presents application of L1 adaptive control
from [18], [19], [22] to the unmanned military aircraft
model from [16]. In [16], the adaptive control architecture
includes a baseline inner loop control which is augmented
by an online feedforward neural network. The baseline inner
loop control provides nominal system performance, while
the adaptive increment accommodates unknown/unexpected
control failures and model uncertainties. The approach in
this paper extends the results of [16] to a new class of
adaptive controllers, known as L1 adaptive controllers. The
benefit of L1 adaptive controller is its ability of fast and
robust adaptation that leads to desired transient performance
for system’s both signals, input and output, simultaneously.
Moreover, for open-loop systems linearly depending upon
unknown parameters, the (nonlinear) L1 adaptive controller
has analytically computable stability margins [21]. In the
case of open-loop nonlinear systems, as the one considered
in this paper, the margins are computed numerically based on
simulations. However, the insights are based on the results
of [21], which relate the time-delay margin to the underlying
filter of L1 adaptive controller.

The paper is organized as follows. Section II gives the
problem formulation. In Section III, the novel L1 adaptive
control architecture is presented. Stability and uniform tran-
sient tracking bounds of L1 adaptive controller are presented
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in Section III-A. In section IV, simulation results are pre-
sented, while Section V concludes the paper.

II. PROBLEM FORMULATION

Following [16], we present aircraft dynamics as

ẋ(t) = Ax(t) + B1Λ (δ(t) + K0(xp(t))) + B2u(t) , (1)

where x(t) ∈ R9, δ(t) ∈ R3 (virtual control input), u(t) ∈
R4 are the measured system states, control signals and
reference inputs, respectively, A ∈ R9×9, B1 ∈ R9×3,
B2 ∈ R9×4 are known matrices, Λ is unknown constant
positive diagonal matrix of appropriate dimension. The state
vector x = (α, β, p, q, r, qI , pI , rI , rw)> comprises five of
plant states (xp), which include angle of attack α, angle
of sideslip β, body roll rate p, body pitch rate q, body
yaw rate r and four baseline controller (xc) states, which
include pitch integrator qI , roll integrator pI , yaw integra-
tor rI , and yaw rate washout filter signal rw. The vector
u = (acmd

z , βcmd, pcmd, rcmd)> consists of four inner loop
commands i.e., vertical acceleration acmd

z , sideslip βcmd, roll
rate pcmd and yaw rate rcmd, and δ is a vector of virtual
controls (roll, pitch and yaw control).

Note that the vector-function K0(xp) represents matched
unknown nonlinear effects. In addition to unknown K0(xp),
Λ models actuator failures and loss of control effectiveness.
The inner-loop control objective is to design a full state-
feedback controller δ(t) for (1) such that all closed-loop
signals remain bounded and the system state tracks the state
of a desired reference model.

III. L1 ADAPTIVE CONTROLLER

Consider the following control law

δ(t) = δL(t) + δad(t), (2)

where δL(t) is the component of the baseline linear
controller, and δad(t) is the adaptive increment. Feed-
back/feedforward gains for the baseline (nominal) inner-
loop controller are designed in [16] assuming no modeling
uncertainties, (i.e., Λ = I3 and K0(xp) = 03×1) using the
robust servomechanism LQR method with output projection
( [23], [24] and [25]). The corresponding inner-loop control
system takes the form:

δL(t) = K>
x x(t) + K>

u u(t) , (3)

where Kx and Ku denote the (9× 3) and (4× 3) - nominal
feedback and feedforward gain matrices, correspondingly.
Nominal inner loop feedback when applied to the ideal model
(1) (i.e. without uncertainties), leads to

Am = A + B1K
>
x , Bm = B2 + B1K

>
u , (4)

which characterize the desired transient and steady state
response for a given reference input u(t):

ẋm(t) = Amxm(t) + Bmu(t) . (5)

We note that the choice of Kx and Ku has to render
Am Hurwitz and and provide unity DC gains from the
commanded signals to the corresponding system outputs.

Using the stabilizing gains for the inner-loop, the system
in (1) takes the form:

ẋ(t) = (A + B1ΛKT
x )x(t) + B1Λ(δad + K0(xp))

+(B2 + B1ΛKT
u )u(t) . (6)

From (4) and (6), we have

ẋ(t) = Amx(t) + Bmu(t) + B1Λ
(
δad(t) +

K1(x(t), u(t))
)

, (7)

where

K1(x(t), σ(t)) = K0(xp(t)) + θ>x(t) + σ(t) ,

θ> = −Λ−1(I − Λ)K>
x , (8)

σ(t) = −Λ−1(I − Λ)K>
u u(t) .

We note that, given a compact set D, the nonlinearity K0(xp)
can be approximated using a feedforward neural network
(NN):

K0(xp) = W>Φ(xp) + ε(xp) , (9)

where W ∈ RN0×3 is a matrix of unknown parameters that
belongs to a known (conservative) compact set W ∈ W ,
Φ(xp) is a vector of suitably chosen RBFs, ||ε(xp)|| ≤ ε∗ is
the uniformly bounded approximation error on D. We further
assume that

θ ∈ Θ , ‖σ(t)‖ ≤ ∆ , ‖σ̇(t)‖ ≤ d∆ , ∀ t ≥ 0 , (10)

where Θ is a known compact set, ∆, d∆ are known con-
servative bounds. Next, we introduce the elements of the L1

neural adaptive controller.
State Predictor Model:
˙̂x(t) = Amx̂(t) + Bmu(t) + B1

(
δad(t) + θ̂>(t)x(t)

+Ŵ>(t)Φ(xp(t)) + σ̂(t)
)

, (11)

in which θ̂(t), Ŵ (t), σ̂(t) are the adaptive parameters.
Adaptive Laws:

˙̂
W (t) = Proj(Ŵ (t),−Φ(xp(t))x̃>(t)PB1ΓW ) ,

˙̂
θ(t) = Proj(θ̂(t),−x(t)x̃>(t)PB1Γθ) ,
˙̂σ(t) = Proj(σ̂(t),−Γσ(x̃>(t)PB1)>) , (12)

in which x̃(t) = x̂(t) − x(t) is the tracking error between
the system dynamics in (1) and the state predictor in (11),
ΓW = Γθ = Γσ = ΓcI3×3 are the matrices of adaptations
gains, and P = P> > 0 is the solution of the algebraic
Lyapunov equation A>mP + PAm = −Q, Q > 0, while
Proj(·, ·) denotes the projection operator [26].

Control Law: The adaptive control signal is defined as
the output of a stable filter:

δad(s) = C(s)r̄(s) , (13)

where r̄(s) is the Laplace transformation of r̄(t) =
−Ŵ>(t)Φ(xp(t))− θ̂>(t)x(t)− σ̂(t) , and

C(s) =




C1(s) 0 0
0 C2(s) 0
0 0 C3(s)


 (14)
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with C1(s), C2(s) and C3(s) being strictly proper stable
systems with unit low-pass gain: C1(0) = C2(0) = C3(0) =
1. A simple choice is to select

C1(s) = C2(s) = C3(s) =
ωa

s + ωa
, (15)

where ωa indicates the bandwidth of the filter. Let L be a
conservative bound for the Lipchitz constant of the uncer-
tainty K0(xp) in (9) on the compact set D, i.e. there exist
L and L0 such that

|K0(0)|∞ ≤ L0 ,

|K0(xp1)−K0(xp2)|∞ ≤ L‖xp1 − xp2‖∞ . (16)

L1-gain requirement: Design C(s) to satisfy

‖Ḡ(s)‖L1 <
1

(L + L1)
, (17)

where

L1 = max
θ∈Θ

‖θ>‖L1 ,

Ḡ(s) = (sI −Am)−1B1(C(s)− 1) . (18)

Let Wmax , max
W∈W

4‖W‖2 + max
θ∈Θ

4‖θ‖2, G(s) = (sI −
Am)−1Bm,Ho(s) = (sI − Am)−1B1. The compact set D
of the RBF distribution is defined as

D = {x | ‖x‖∞ < γr + γ1 + γ0}, (19)

where

γr=
‖G(s)‖L1

‖u‖L∞+‖Ḡ(s)‖L1 (L0+ε∗+∆)+‖Ho(s)‖L1
ε∗

1−‖Ḡ(s)‖L1
(L+L1) (20)

γ0=

r
λmax(P )
λmin(P )

“
2‖P B1‖
λmin(Q)

“
ε∗+ d∆

Γc

””2
+ Wmax

λmin(P )λmin(Λ)Γc
(21)

γ1=
5ε∗‖Ḡ(s)‖L1

+‖Ho(s)‖L1
ε∗+(1+‖C(s)−1‖L1

)γ0
1−‖Ḡ(s)‖L1

(L+L1) (22)

The L1 adaptive controller is defined via (11), (12), (13)
subject to (17), with the RBF distribution set given in (19).

A. Performance Analysis of the L1 Adaptive Controller

Consider the following closed-loop reference system:

ẋref (t) = Amxref (t) + Bmu(t) + B1Λ
(
δref (t)

+K0(xref (t)) + θ>x(t) + σ(t)
)

, (23)

where

δref (s) = −C(s)rref (s) , (24)

and rref (t) = K0(xp(t))+θ>x(t)+σ(t). For a diagonal and
positive definite Λ, we define δm(t) = Λ−1δad(t), Ŵm(t) =
Ŵ (t)Λ−1 , θ̂m(t) = θ̂(t)Λ−1, σ̂m(t) = Λ−1σ̂(t) , ΓWm =
Λ−1ΓW , Γθm = Λ−1Γθ ,Γσm = Λ−1Γσ.

Hence, the L1 adaptive controller in (11), (12), (13) can
be rewritten as:

˙̂x(t) = Amx̂(t) + Bmu(t) + B1Λ
(
δm(t) + θ̂>m(t)x(t)

+Ŵ>
m(t)Φ(xp(t)) + σ̂m(t)

)
, (25)

˙̂
Wm(t) = Proj(Ŵm(t),−Φ(xp(t))x̃>(t)PB1ΓWm) ,

˙̂
θm(t) = Proj(θ̂m(t),−x(t)x̃>(t)PB1Γθm) ,
˙̂σm(t) = Proj(σ̂m(t),−Γσ(x̃>(t)PB1)>) , (26)
δm(s) = C(s)r̄m(s) , (27)

where r̄m(s) is the Laplace transformation of r̄m(t) =
−Ŵ>

m(t)Φ(xp(t))− θ̂>m(t)x(t)− σ̂m(t).
Theorem 1: [19], [22] Given the reference system in (23)

and the system in (1) with L1 adaptive controller, defined via
(11), (12), (13) subject to (17), we have:

||xref || ≤ γr, (28)
‖x− xref‖L∞ ≤ γ1 , (29)
‖δm − δref‖L∞ ≤ γ2 , (30)

where

γ2 =

∥∥∥∥∥∥∥
C(s)




c>o1
Ho1(s)) 0 0

0 c>o2
Ho3(s)) 0

0 0 c>o3
Ho3(s))



−1

(31)




c>o1

c>o2

c>o3




∥∥∥∥∥∥
L1

γ0 + ‖C(s)‖L1(L + L1)γ1 + 3‖C(s)‖L1ε
∗,

in which coi ∈ R9 is a vector that renders c>oi
Hoi(s)

minimum phase with relative degree 1, Hoi(s) being the ith

column of Ho(s).

It follows from and (20), (21), (22) and (31) that

lim
ε∗→0,Γc→∞

γ0 = 0, lim
ε∗→0,Γc→∞

γ1 = 0, lim
ε∗→0,Γc→∞

γ2 = 0 .

Hence, if the the approximation error of the RBF network
is small enough, we can arbitrarily minimize the bounds
between the signals of the closed-loop L1 adaptive system
and the closed-loop reference system. Thus the problem is
reduced to design of C(s) to ensure that the closed-loop
reference system in (23) approximates the response in (5).
We note that the control law δref (t) in the closed-loop
reference system, which is used in the analysis of L∞ norm
bounds, is not implementable since its definition involves the
unknown parameters. Theorem 1 ensures that the L1 adaptive
controller approximates δref (t) both in transient and steady
state. So, it is important to understand how these bounds
can be used for ensuring uniform transient response with
desired specifications. We notice that the following ideal
control signal δideal(t) = −rref (t) is the one that cancels
the uncertainties exactly leading to (5). In the closed-loop
reference system (23), δideal(t) is further low-pass filtered
by C(s) to have guaranteed low-frequency range. In [19],
specific design guidelines are provided for selection of C(s)
to ensure that the reference system in (23) tracks the response
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of the desired system in (5). One way to achieve this is via
the selection of a strictly proper system C(s) that minimizes
the L1-gain of one of the cascaded system C(s)(1−C(s)).
We also notice that for any finite L the condition in (17) can
always be satisfied by increasing the bandwidth of C(s).

Remark 1: Notice that if we set C(s) = 1, then the L1

neural controller degenerates into a MRAC type. In that case∥∥∥Ci(s) 1
c>oi

Hoi
(s)

∥∥∥
L1

cannot be finite for any i = 1, 2, 3, since

Hoi
(s) is strictly proper. Therefore, from (31) it follows that

γ2 → ∞, and hence for the control signal in conventional
MRAC type neural network adaptive controller one can not
reduce the bound in (30) by increasing the adaptive gain.

Remark 2: Recall that in conventional MRAC scheme
the ultimate bound is given by γ0 defined in (21). Notice
that γ0 depends upon ε∗, Wmax and Γc. While ε∗ and
Wmax are interconnected via the choice of RBFs, Γc is a
design parameter of the adaptive process that can be used to
reduce the ultimate bound. However, increasing Γc in the
conventional MRAC scheme leads the control signal into
high-frequency oscillations. With the L1 adaptive control
architecture the ultimate bound of the tracking error is given
by γ1 in (29). From the definition of it in (22) it follows
that γ1 > γ0. Nevertheless, the ability of the L1 control
architecture to tolerate large adaptive gain implies that γ0

can be reduced leading to overall a smaller value for γ1.
This is enabled via the low-pass system C(s) in the feedback
path that filters out the high-frequencies in r̄(t) excited
by large Γc. The L1 adaptive control architecture gives a
scheme for fast adaptation without generating high-frequency
oscillations in the control signal.

IV. SIMULATION RESULTS

This section compares the tracking performance in the
presence of pitch break and actuator failure with two adaptive
control schemes: Model reference adaptive control (MRAC),
which corresponds to C(s) = 1, and L1 adaptive controller.
For MRAC, we reproduce the results of [16]. For the L1

adaptive controller we set ωa = 20, which verifies the
L1 gain stability condition, and we set Γc = 50000. The
performance of L1 controller is compared to the performance
of the baseline inner-loop controller and to the performance
of MRAC. The results are shown in Figures 1 and 2. For
comparison purposes, simulation data are obtained from
the following three closed-inner-loop systems: a) adaptation
OFF, failures OFF (blue), b) adaptation OFF, failures ON
(red), c) MRAC adaptation ON, failures ON (black), and d)
L1 adaptation ON, failures ON (Magenta).

Figures 1-2 demonstrate the benefits of adaptation, when
the right outboard (ROB) elevon fails at 1 second of the
maneuver and the pitch break phenomenon is active through-
out the entire maneuver. Figure 1 indicates that in spite
of the unknown control failure and pitch break uncertainty,
both MRAC and L1 adaptive systems are able to quickly
reconfigure and track the commanded vertical acceleration,
sideslip angle, roll rate, and yaw rate signals, simultane-
ously. In fact, Figure 1 shows that with adaptation the

desired/nominal system tracking has recovered. In addition,
Figure 2 compares the three virtual control feedback signals,
and we have verified that no control saturation has occurred
during the adaptation process. In Figure 3, the subplot of
Figure 1 is re-plotted to show the perfect tracking achieved
by L1 as compared to MRAC for vertical acceleration.
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Fig. 3. Guaranteed L1 performance

Figure 4 demonstrates the benefits of adaptation when
the inner-loop system receives repetitive vertical acceleration
commands in the presence of both the ROB elevon failure
and the unknown pitch break phenomenon. In [16], it has
been argued that MRAC quickly dampens the oscillations
caused by uncertainties and significantly reduces the corre-
sponding control activity if repetitive commands are given
to the system. However from the zoomed Figure 4 it can be
seen that the repetitive command is not necessary for the L1
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architecture, since it has guaranteed transient performance as
predicted by the theory. In Figure 4, MRAC response is also
plotted. For MRAC, we can see that there is small reduction
in overshoot in vertical acceleration in the second pulse (20
sec time instance) as compared to the first pulse command
signal (1 sec time instance).
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Fig. 4. L1 does not need repetitive commands to learn

The time-delay margin for the adaptive systems is calcu-
lated from numerical simulations by introducing the time-
delay at the plant input. The time-delay margins for MRAC
are summarized in Table 2. The worst case time-delay margin
is 0.12 sec (the adaptive gain used in [16] for MRAC scheme
is 100).

ṗ q̇ ṙ
0.16 0.16 0 Two Loops
0 0.13 0.13 Two Loops
0.17 0 0.17 Two Loops
0.12 0.12 0.12 Three loops

Table 2. Time-delay margin for MRAC

The time-delay margins for L1 adaptive scheme are sum-
marized in Table 3 for the choice of C(s) = 1

0.05s+1 and
Γc = 50000. The worst case time-delay margin is 0.0425 sec,
which is smaller than the worst margin of MRAC scheme,
as expected due to the addition of the filter. Now we discuss
how to improve this time-delay margin via the design of
C(s) using the analysis from [21].

ṗ q̇ ṙ
0.0432 0.0432 0 Two Loops
0 0.0455 0.0455 Two Loops
0.05325 0 0.05325 Two Loops
0.0425 0.0425 0.0425 Three loops

Table 3. Time-delay margin for L1 for C(s) = 1
0.05s+1

The time-delay margin for the L1 adaptive scheme for
systems linearly dependent upon unknown parameters (i.e.,
in the absence of nonlinearities and RBFs), can be computed
analytically as Γc → ∞ [21]. In [21], C(s)/(1 − C(s))
appears as a multiplier in the open-loop transfer function
used for calculation of the time-delay margin for the L1

adaptive scheme. It is obvious that one could choose C(s)

judiciously to maximize the phase margin of the open-loop
transfer function and minimize the cross-over frequency to
obtain larger time-delay margin. Towards that end, consider
the following low-pass filter C1(s) = 1

0.05s+1
(−6s+1)2

(8s+1)2 , for
which the L1 gain requirement holds.

The Bode plots of C(s) and C1(s) are given in Figure 5.
Note that a nonminimum phase filter is used to enhance the
phase characteristic in the region of frequency-band in order
to improve the phase margin.
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The subplot of vertical acceleration of Figure 1 is repeated
with C1(s) in Figure 6. We see that there is some degradation
in the tracking, however it is still better than for MRAC.
For this choice of C1(s), the worst case time-delay margin
obtained from simulation is 0.10 sec. In Table 2, we have the
worst case time-delay margin for C(s) equal to 0.0425sec,
which implies that C1(s) doubles the time-delay margin.
Thus, improving the time-delay margin hurts the transient
performance, which is consistent with the theoretical results
of [19]. The worst case time-delay margin for MRAC is 0.12,
which is comparable to the worst-case margin of C1(s) in
the presence of large adaptive gain Γc = 50000. We note
that all the time-delay margins are calculated for the ROB
actuator failure case and in the presence of the pitch break
uncertainty.
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Fig. 6. Inner-Loop Adaptation with ROB Elevon Failure and Pitch Break
Phenomenon: Command Tracking

However, we note that a smaller value of Γc is preferable
from an implementation point of view. Figure 11 shows the
system response for different values of Γc for both low-pass
filters. It can be seen that there is almost no degradation
in the time response performance. However, for the low-
pass filter C(s) = 1

0.05s+1 , if we decrease Γc from 50000
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to 5000, the worst case time-delay margin decreases from
0.0425 to 0.003 (i.e. almost 14 times, much poorer than
MRAC). However, for C1(s) it decreases from 0.10 to 0.07
(i.e only 1.4 times). Thus, with smaller choice of Γc, C1(s)
is much suitable in terms of robustness as compared to C(s).
Table 4 summarizes the margins for C1(s) with Γc = 5000.

ṗ q̇ ṙ
0.09 0.09 0 Two Loops
0 0.09 0.09 Two Loops
0.12 0 0.12 Two Loops
0.07 0.07 0.07 Three loops

Table 4. Time-delay margin of L1 for C1(s) ( Γc = 5000)

0 10 20 30 40 50 60 70 80 90 100
10

8

6

4

2

0

2

Time (sec)

A
z
 

ft
/s

e
c
/s

e
c

Case 2: ROB E levon fail @ 1 sec, P itch Break O N

C(s), G = 5000

C(s), G = 50000

C
1
(s), G = 5000

C
1
(s), G = 50000

Fig. 7. Inner-Loop Adaptation with ROB Elevon Failure and Pitch Break
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Finally, we simulate the system with two actuator failures
to test robustness of the two adaptive control schemes
towards a different class of uncertainty. Figure 8 plots the
vertical acceleration command tracking in the presence of
pitch break uncertainty and ROB and LMB elevon failures.
We see that despite of the reasonably good time-delay
margins in Table 2, MRAC loses stability, while the L1

adaptive control architecture retains both its tracking property
and as well the worst time-delay margin of 0.07, as predicted
by the L1 theory.
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V. CONCLUSION

This paper presents application of a novel L1 adaptive
control architecture to an unstable tailless military aircraft.

The robustness properties of the new architecture are com-
pared with the conventional MRAC architecture, which show
that the L1 adaptive controller can be designed to improve
the transient command tracking and increase the robustness
to time-delay.
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