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Abstract— In this paper, we present a novel adaptive control
architecture that ensures that the input and output of an
uncertain linear system track the input and output of a
desired linear system during the transient phase, in addition
to the asymptotic tracking. Design guidelines are presented to
ensure that the desired transient specifications can be achieved
for both system’s input and output signals. The tools from
this paper can be used to develop a theoretically justified
verification and validation framework for adaptive systems.
Simulation results illustrate the theoretical findings.

I. INTRODUCTION

Model Reference Adaptive Control (MRAC) architecture
was developed conventionally to control linear systems in
the presence of parametric uncertainties [1], [2]. However, it
offers no means for characterizing the system’s input/output
performance during the transient phase. Improvement of
the transient performance of adaptive controllers has been
addressed from various perspectives in numerous publica-
tions. One can find a detailed description of these results
in Part I of this paper [3]. Therein, a novel L1 adaptive
control design method is introduced, which guarantees that
the control signal is in low-frequency range by definition. In
this Part II, we give a slightly different design of the same
L1 adaptive controller. To enable comparison with high-
gain controllers, we replace the feedback module K̂(s),
introduced in [3], by a linear constant gain feedback of the
system states. For the sake of completeness, we give briefly
the stability proof here for this design, which requires
similar L1-gain minimization of a cascaded system as in
[3]. The ideal (non-adaptive) version of this L1 adaptive
controller is used along with the main system dynamics
to define an extended closed-loop reference system, which
gives an opportunity to estimate performance bounds in
terms of L∞ norms for both transient and steady state errors
of both system’s input and output signals as compared to
the same signals of this reference system. These bounds
immediately imply that the transient performance of the
control signal in MRAC cannot be characterized. Design
guidelines for selection of the low-pass filter ensure that
the extended closed-loop reference system approximates the
desired system response, despite the fact that it depends
upon the unknown parameter.

The paper is organized as follows. Section II gives the
problem formulation. In Section III, the new L1 adaptive
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controller is presented. Stability and tracking results of the
L1 adaptive controller are presented in Section IV. Design
guidelines for the L1 adaptive controller are presented in
Section V. Comparison of the performance of L1 adaptive
controller, MRAC and the high gain controller are discussed
in section VI. In section VII, simulation results are pre-
sented, while Section VIII concludes the paper. Proofs are
in Appendix.

II. PROBLEM FORMULATION

Consider the following single-input single-output system:

ẋ(t) = Amx(t) − bθ�x(t) + bu(t), x(0) = x0 (1)

y(t) = c�x(t) ,

where x ∈ R
n is the system state vector (measurable),

u ∈ R is the control signal, y ∈ R is the regulated output,
b, c ∈ R

n are known constant vectors, Am is a known n×n
Hurwitz matrix, θ ∈ R

n is a vector of unknown parameters,
which belongs to a given compact convex set Θ, i.e. θ ∈ Θ.
The control objective is to design an adaptive controller to
ensure that y(t) tracks a given bounded continuous refer-
ence signal r(t) both in transient and steady state, while all
other error signals remain bounded. Rigorously, the control
objective is to ensure y(s) ≈ D(s)r(s), where y(s), r(s)
are Laplace transformation of y(t), r(t) respectively, and
D(s) is a strictly proper stable LTI system that specifies
the desired transient and steady state performance.

III. L1 ADAPTIVE CONTROLLER

In this section, we develop a novel adaptive control
architecture that permits complete transient characterization
for both system input and output signals. The following
control structure

u(t) = u1(t) + u2(t) , u1(t) = −K�x(t) , (2)

where u2(t) is the adaptive controller to be determined later,
while K is a nominal design gain and can be set to zero,
leads to the following partially closed-loop dynamics:

ẋ(t) = Aox(t) − bθ�x(t) + bu2(t), x(0) = x0 (3)

y(t) = c�x(t) .

The choice of K needs to ensure that Ao = Am − bK�

is Hurwitz or, equivalently, that Ho(s) = (sI − Ao)
−1b

is stable. One obvious choice is K = 0. For the linearly
parameterized system in (3), we consider the following
companion model

˙̂x(t) = Aox̂(t) + b(u2(t) − θ̂�(t)x(t)) , x̂(0) = x0

ŷ(t) = c�x̂(t) (4)
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along with the adaptive law for θ̂(t):

˙̂
θ(t) = ΓProj(θ̂(t), x(t)x̃�(t)Pob), θ̂(0) = θ̂0 , (5)

where x̃(t) = x̂(t)−x(t) is the tracking error, Γ ∈ R
n×n =

ΓcIn×n,Γc > 0 is a positive definite matrix of adaptation
gains, and Po = P�

o > 0 is the solution of the algebraic
equation A�

o Po + PoAo = −Qo for arbitrary Qo > 0.
Letting

r̄(t) = θ̂�(t)x(t), (6)

the companion model in (4) can be viewed as a low-pass
system with u(t) being the control signal, r̄(t) being a time-
varying disturbance, which is not prevented from having
high-frequency oscillations. Consider the following control
design for (4):

u2(s) = C(s)
(
r̄(s) + kgr(s)

)
, (7)

where r̄(s), r(s) are the Laplace transformations of
r̄(t), r(t), respectively, C(s) is a stable and strictly proper
system with low-pass gain C(0) = 1, and kg =
1/(c�Ho(0)). Closed-loop companion model in (4) with
the control signal in (7) can be viewed as an LTI system
with two inputs r(t) and r̄(t):

x̂(s) = Ḡ(s)r̄(s) + G(s)r(s) (8)

Ḡ(s) = Ho(s)(C(s) − 1) (9)

G(s) = kgHo(s)C(s) , (10)

where x̂(s) is the Laplace transformation of x̂(t). We note
that r̄(t) is related to x̂(t), u(t) and r(t) via nonlinear
relationships. Let

θmax = max
θ∈Θ

n∑
i=1

|θi| , (11)

where θi is the ith element of θ, Θ is the compact set,
where the unknown parameter lies. We now give the L1

performance requirement for the design of K and the
strictly proper stable system C(s).

L1-gain requirement: Design K and C(s) to satisfy

λ � ‖Ḡ(s)‖L1θmax < 1, (12)

where θmax is defined in (11).

IV. ANALYSIS OF L1 ADAPTIVE CONTROLLER

A. Stability and Asymptotic Convergence

Consider the following Lyapunov function candidate:

V (x̃(t), θ̃(t)) = x̃�(t)Pox̃(t) + θ̃�(t)Γ−1θ̃(t) , (13)

where Po and Γ are introduced in (5). It follows from (3)
and (4) that

˙̃x(t) = Aox̃(t) − bθ̃�(t)x(t) , x̃(0) = 0 . (14)

Hence, it is straightforward to verify from (5) that

V̇ (t) ≤ −x̃�(t)Qox̃(t) ≤ 0 . (15)

Fig. 1. Block diagram of the reference LTI system

Notice that the result in (15) is independent of u2(t),
however one cannot deduce stability from it. One needs
to prove in addition that with the L1 adaptive controller
the state of the companion model will remain bounded.
Boundedness of the system state then will follow.

Similar to Theorem 3 in Part I [3], we have:
Theorem 1: Given the system in (1) and the L1 adaptive

controller defined via (2), (4), (5), (7) subject to (12), the
tracking error x̃(t) converges to zero asymptotically:

lim
t→∞

x̃(t) = 0. (16)

B. Reference System

Recall that in the conventional MRAC architecture the
proof on asymptotic stability was implying that the state of
the system was tracking the state of the reference model.
With the L1 adaptive controller one should question what
is the reference system that the closed loop system with the
L1 adaptive controller tracks. In this section we characterize
the reference system, which is being tracked by both the
system state and control input of the system (1) via the L1

adaptive controller in (2), (4), (5), (7) both in transient and
steady state. Towards that end, consider the following ideal
version of the adaptive controller in (2), (7):

ur(s) = C(s)(kgr(s) + θ�xr(s)) − K�xr(s) , (17)

where xr(s) denotes Laplace transformation of the state
xr(t) of the closed-loop system. The block diagram of the
system (1) with the controller (17) is shown in Fig. 1.

Remark 1: Notice that when C(s) = 1 and K = 0, one
recovers the reference model of MRAC, and the ideal con-
troller in (17) reduces to the conventional ideal controller
u(t) = θ�x(t)+kgr(t) of MRAC. If C(s) �= 1 and K �= 0,
then the control law in (17) changes the bandwidth of it.
Under the control action (17), xr(s) can be expressed as:

xr(s) = (I − Ḡ(s)θ�)−1G(s)r(s) . (18)

Lemma 1: If the condition in (12) holds, then

(i) (I − Ḡ(s)θ�)−1 is stable; (19)

(ii) (I − Ḡ(s)θ�)−1G(s) is stable.
The proof follows from Theorem 1 in [3] easily.
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C. System Response and the L1 Adaptive Control Signal

Letting r1(t) = θ̃�(t)x(t), it follows from (6) that

r̄(t) = θ�(x̂(t) − x̃(t)) + r1(t), t ≥ 0.

Hence, the companion model in (8) can be rewritten as

x̂(s) = (I − Ḡ(s)θ�)−1
(
− Ḡ(s)θ�x̃(s) +

Ḡ(s)r1(s) + G(s)r(s)
)

, (20)

where r1(s) is the Laplace transformation of r1(t). It
follows from (14) that

x̃(s) = −Ho(s)r1(s). (21)

Substituting (9), (21) into (20) leads to x̂(s) = (I −
Ḡ(s)θ�)−1G(s)r(s) + (I − Ḡ(s)θ�)−1(−Ḡ(s)θ�x̃(s) −
(C(s) − 1)x̃(s)). Using xr(s) from (18) and recalling the
definition of x̃(s) = x̂(s) − x(s), one arrives at

x(s) = xr(s) −
(
I + (I − Ḡ(s)θ�)−1(

Ḡ(s)θ� + (C(s) − 1)I
))

x̃(s). (22)

It follows from (2), (7) and (17) that

u(s) = ur(s)+C(s)r1(s)+(C(s)θ�−K�)(x(s)−xr(s)) .
(23)

D. Asymptotic Performance and Steady State Error

Theorem 2: Given the system in (1) and the L1 adaptive
controller defined via (2), (4), (5), (7) subject to (12), we
have:

lim
t→∞

‖x(t) − xr(t)‖ = 0 , (24)

lim
t→∞

|u(t) − ur(t)| = 0 . (25)
Lemma 2: Given the system in (1) and the L1 adaptive

controller defined via (2), (4), (5), (7) subject to (12), if
r(t) is constant, we have: lim

t→∞
y(t) = r.

The closed-loop system response with the L1 controller
to a time varying input r(t) is given in the next Section.

E. Transient Performance

We note that (Am−bK�, b) is the state space realization
of Ho(s). Since (Am, b) is controllable, it can be proved
easily that (Am − bK�, b) is also controllable. It follows
from Lemma 4 in [3] that there exists co ∈ R

n such that

c�o Ho(s) = Nn(s)/Nd(s) , (26)

where the order of Nd(s) is one more than the order of
Nn(s), and both Nn(s) and Nd(s) are stable polynomials.

Theorem 3: Given the system in (1) and the L1 adaptive
controller defined via (2), (4), (5), (7) subject to (12), we
have:

‖x − xr‖L∞
≤ γ1/

√
Γc (27)

‖y − yr‖L∞
≤ γ1‖c

�‖L1/
√

Γc (28)

‖u − ur‖L∞
≤ γ2/

√
Γc, (29)

where ‖c�‖L1 is L1 gain of c�, H2(s) is defined in (47),

γ1 = ‖H2(s)‖L1

√
θ̄max/(λmax(Po)) , (30)

γ2 =
∥∥∥C(s)

1

c�o Ho(s)
c�o

∥∥∥
L1

√
θ̄max

λmax(Po)
+

‖C(s)θ� − K�‖L1γ1. (31)
Corollary 1: Given the system in (1) and the L1 adaptive

controller defined via (2), (4), (5), (7) subject to (12), we
have:

lim
Γc→∞

(x(t) − xr(t)) = 0 , ∀t ≥ 0, (32)

lim
Γc→∞

(y(t) − yr(t)) = 0 , ∀t ≥ 0, (33)

lim
Γc→∞

(u(t) − ur(t)) = 0 , ∀t ≥ 0 . (34)

Corollary 1 states that x(t), y(t) and u(t) follow xr(t),
yr(t) and ur(t) not only asymptotically but also during
the transient, provided that the adaptive gain is selected
sufficiently large. Thus, the control objective is reduced
to designing K and C(s) to ensure that the reference LTI
system has the desired response D(s).

Remark 2: Notice that if we set C(s) = 1, then the
L1 adaptive controller is equivalent to MRAC. In that case∥∥∥C(s) 1

c�o Ho(s)
c�o

∥∥∥
L1

cannot be finite, since Ho(s) is strictly

proper. Therefore, from (31) it follows that γ2 → ∞, and
hence for the control signal in MRAC one can not reduce
the bound in (29) by increasing the adaptive gain.

V. DESIGN OF THE L1 ADAPTIVE CONTROLLER

We proved that the error between the state and the control
signal of the closed-loop system with L1 adaptive controller
in (1), (2), (4), (5), (7) and the state and the control signal
of the closed-loop reference system in (17), (18) can be
rendered arbitrarily small by choosing large adaptive gain.
Therefore, the control objective is reduced to determining
K and C(s) to ensure that the reference system in (17),
(18) (Fig. 1) has the desired response D(s) from r(t) to
yr(t). Notice that the reference system in Fig. 1 depends
upon the unknown parameter θ.

Consider the following signals:

yd(s) = c�G(s)r(s) = C(s)kgc
�Ho(s)r(s) (35)

ud(s) = kgC(s)(1 + C(s)θ�Ho(s) − K�Ho(s))r(s) . (36)

We note that ud(t) depends on the unknown parameter θ,
while yd(t) does not.

Lemma 3: For the LTI system in Fig. 1, subject to (12),
the following upper bounds hold:

‖yr − yd‖L∞
≤

λ

1 − λ
‖c�‖L1‖G(s)‖L1‖r‖L∞

(37)

‖yr − yd‖L∞
≤ (‖c�‖L1‖h3‖L∞

)/(1 − λ) (38)

‖ur − ud‖L∞
≤ (λ‖C(s)θ� − K�‖L1

‖G(s)‖L1‖r‖L∞
)/(1 − λ) (39)

‖ur − ud‖L∞
≤ (‖C(s)θ� − K�‖L1

‖h3‖L∞
)/(1 − λ) , (40)

3405

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on January 22, 2009 at 11:35 from IEEE Xplore.  Restrictions apply.



where h3(t) is the inverse Laplace transformation of

H3(s) = (C(s) − 1)C(s)r(s)kgHo(s)θ
�Ho(s). (41)

Thus, we need to determine K and C(s) such that

(i) λ or ‖h3‖L∞
are sufficiently small, (42)

(ii) yd(s) ≈ D(s)r(s) , (43)

where D(s) is the desired LTI system. It consequently
implies that the output y(t) of the system in (1) and
its L1 adaptive control signal u(t) will follow yd(t) and
ud(t) both in transient and steady state with quantifiable
bounds given in (25), (29) and (38)-(40). Thus, for the
given desired specifications, one needs to ensure that (42)
and (43) are satisfied, which in turn imply that the L1

adaptive controller controls a partially known system with
satisfactory performance. We note that the minimization of
λ in (42) is consistent with the stability requirement in
(12), while the other requirements in (42) and (43) can be
achieved via two different design methods: i) fix C(s) and
minimize ‖Ho(s)‖L1 , ii) fix Ho(s) and minimize the L1-
gain of one of the cascaded systems ‖Ho(s)(C(s)−1)‖L1 ,
‖(C(s)− 1)r(s)‖L1 or ‖C(s)(C(s)− 1)‖L1 via the choice
of C(s). The important point to emphasize is that the
requirements in (42) and (43) are not in conflict with each
other.

Design Method 1. Set C(s) = D(s). Then minimization
of ‖Ho(s)‖L1 can be achieved via high-gain feedback
by choosing K sufficiently large. However, minimized
‖Ho(s)‖L1 via large K leads to large poles of Ho(s), which
is typical for high-gain design methods. Since C(s) is a
strictly proper system containing the dominant poles of the
closed-loop system in kgc

�Ho(s)C(s) and kgc
�Ho(0) =

1, we have kgc
�Ho(s)C(s) ≈ C(s) = D(s). Hence, the

system response yr(s) ≈ D(s)r(s). We note that with large
feedback K, L1 adaptive controller degenerates into a high-
gain robust one. The shortcoming of this design is that the
high gain feedback K leads to a reduced phase margin and
affects robustness.

Design Method 2. As in MRAC, assume that we can
select Am to ensure that kgc

�(sI−Am)−1b ≈ D(s) . Then
we can set K = 0. Or one can alternatively choose K to
ensure kgc

�Ho(s) ≈ D(s). Let C(s) = ω/(s + ω).
Lemma 4: For any single input n-output strictly proper

stable system H(s) the following is true: limω→∞ ‖(C(s)−
1)H(s)‖L1 = 0.

The proof is straightforward, and is therefore omitted.
Lemma 4 states that if one chooses kgc

�Ho(s)r(s) ≈ D(s),
then by increasing the bandwidth of the low-pass system
C(s), it is possible to render ‖Ḡ(s)‖L1 arbitrarily small.
With large ω, the pole −ω due to C(s) is omitted, and
Ho(s) is the dominant reference system leading to yr(s) ≈

kgc
�Ho(s)r(s) ≈ D(s)r(s). We note that kgc

�Ho(s) is
exactly the reference model of the MRAC design. Therefore
this approach is equivalent to mimicking MRAC, and,
hence, high-gain feedback can be completely avoided.

However, increasing the bandwidth of C(s) is not the
only choice for minimizing ‖Ḡ(s)‖L1 . Since C(s) is a
low-pass filter, its complementary 1 − C(s) is a high-pass
filter with its cutoff frequency approximating the bandwidth
of C(s). Since both Ho(s) and C(s) are strictly proper
systems, Ḡ(s) = Ho(s)(C(s)−1) is equivalent to cascading
a low-pass system Ho(s) with a high-pass system C(s)−1.
If one chooses the cut-off frequency of C(s) − 1 larger
than the bandwidth of Ho(s), it ensures that Ḡ(s) is a
“no-pass” system, and hence its L1 gain can be rendered
suitably small. This can be done via higher order filter
design methods.

Next, consider the minimization of ‖h3‖L∞
. We note that

‖h3‖L∞
can be upperbounded in two ways:

(i) ‖h3‖L∞
≤ ‖(C(s) − 1)r(s)‖L1‖h4‖L∞

,

where h4(t) is the inverse Laplace transformation of
H4(s) = C(s)kgHo(s)θ

�Ho(s), and

(ii) ‖h3‖L∞
≤ ‖(C(s) − 1)C(s)‖L1‖h5‖L∞

,

where h5(t) is the inverse Laplace transformation of
H5(s) = r(s)kgHo(s)θ

�Ho(s).
We note that since r(t) is a bounded signal and

C(s),Ho(s) are stable proper systems, ‖h4‖L∞
and

‖h5‖L∞
are finite. Therefore, ‖h3‖L∞

can be minimized
by minimizing ‖(C(s)−1)r(s)‖L1 or ‖(C(s)−1)C(s)‖L1 .

First, consider minimizing ‖(C(s)−1)r(s)‖L1 . Since r(t)
is usually in low-frequency range, one can choose the cut-
off frequency of C(s)−1 to be larger than the bandwidth of
the reference signal r(t) to minimize ‖(C(s) − 1)r(s)‖L1 .

Second, consider minimizing ‖C(s)(C(s) − 1)‖L1 . If
C(s) is an ideal low-pass filter, it can be checked easily
that C(s)(C(s)−1) = 0 and hence ‖h3‖L∞

= 0. Although
an ideal low-pass filter is not physically implementable, one
can still minimize ‖C(s)(C(s) − 1)‖L1 via the choice of
the low-pass filter C(s).

The above presented approaches ensure that C(s) ≈ 1 in
the bandwidth of r(s) and Ho(s). Therefore it follows from
(35) that yd(s) = C(s)kgc

�Ho(s)r(s) ≈ kgc
�Ho(s)r(s),

which conseuquently implies that yd(s) ≈ D(s)r(s).
Remark 3: From Corollary 1 and Lemma 3 it follows

that the L1 adaptive controller can generate a system
response to track (35) and (36) both in transient and steady
state, if we set the adaptive gain large and minimize λ
or ‖h3‖L∞

. Notice that ud(t) in (36) depends upon the
unknown parameter θ, while yd(t) in (35) does not. This
implies that for different values of θ, the L1 adaptive
controller will generate different control signals (dependent
on θ) to ensure uniform system response (independent of
θ). This is natural, since different unknown parameters
imply different systems, and to have similar response for
different systems the control signals have to be different.
Here is the obvious advantage of the L1 adaptive controller
in a sense that it controls a partially known system as an
LTI feedback controller would have done if the unknown
parameters were known. Finally, we note that if the term
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kgC(s)C(s)θ�Ho(s) is dominated by kgC(s)K�Ho(s),
then the controller in (36) turns into a robust one, and L1

adaptive controller degenerates into robust design.

VI. DISCUSSION

We use a scalar system to compare the performance of
L1 and high-gain controllers. Towards that end, consider
ẋ(t) = θx(t) + u(t) , where x ∈ R is the measurable
system state, u ∈ R is the control signal and θ ∈ R is un-
known, which belongs to a given compact set [θmin, θmax].
Let u(t) = −kx(t), leading to the following closed-loop
system: ẋ(t) = (θ − k)x(t) + kr(t). We need to choose
k > θmax to guarantee stability. We note that both the
steady state error and transient performance depend on
the unknown parameter value θ. By further introducing a
proportional-integral controller, we can achieve zero steady
error. When we choose k � max{θmax, θmin}, we have
x(s) = k

s−(θ−k)r(s) ≈ k
s+k

r(s), which leads to high-
gain system. To apply the L1 adaptive controller, consider
the following desired reference system: D(s) = 2

s+2 . Let
u1 = −2x, kg = 2, leading to Ho(s) = 1

s+2 . Choose
C(s) = ωn

s+ωn
with large ωn, and set adaptive gain Γc large.

Then it follows from Theorem 3 that

x(s) ≈ xr(s) ≈ 2/(s + 2) , (44)

u(s) ≈ ur(s) = (−2 + θ)xr(s) + 2r(s). (45)

The relationship in (44) implies that the control objective is
met, while the relationship in (45) states that the L1 adaptive
controller approximates ur(t), that cancels the unknown θ.

VII. SIMULATIONS

Consider the following system parameters: Am =[
0 1
−1 −1.4

]
, b = [0 1]�, c = [1 0]�, where the

unknown parameter θ = [4 − 4.5]� belongs to a known
compact set: θi ∈ [−10, 10], i = 1, 2. We set K = 0
to avoid the linear feedback completely and present two
different simulation scenarios for different choices of C(s).
Simulation results are in Figs. 2-3.
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Fig. 2. Performance of L1 adaptive controller with C(s) = 160

s+160
, Γ =

40000 for r = 25, 100, 400 with uniform bound ‖yref − ydes‖L∞
≤
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It can be seen that the L1 adaptive controller leads
to scaled control signal and scaled system response for
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, while λ = 0.3984.
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Fig. 4. C(s) = 160

s+160
, Γ = 40000 for r = 100 cos(0.2t)
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, Γ = 400 for r = 100 cos(0.2t)

scaled reference inputs. We notice that in the second case
higher order C(s) leads to an improved bound with smaller
bandwidth and smaller adaptive gain. While a rigorous
relationship between the choice of adaptive gain and the
bandwidth of the low-pass filter has not been derived at this
stage, an insight into this can be gained from the following
analysis. It follows from (3), (2) and (7) that

x(s) = kgHo(s)C(s)r(s)−Ho(s)θ
�x(s)+Ho(s)C(s)r̄(s) ,

while the companion model in (4) can be rewritten as

x̂(s) = kgHo(s)C(s)r(s) + Ho(s)(C(s) − 1)r̄(s) .

We note that r̄(t) is divided into two parts. Its low-
frequency component C(s)r̄(s) is what the system in (3)
gets, while the complementary high-frequency component
(C(s) − 1)r̄(s) goes into the companion model. We recall
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that higher frequencies appear in r̄(t) in the presence of
large adaptive gain. Therefore a first order C(s) with large
bandwidth achieves the desired performance with large
adaptive gain. A higher order filter with smaller bandwidth
and reduced tailing effects obtains similar performance with
a smaller adaptive gain. Figs 4(a)-4(b), 5(a)-5(b) show
the system response and control signal for reference input
r(t) = 100 cos(0.2t), without any retuning of the controller.

VIII. CONCLUSION

A novel L1 adaptive controller is developed that has guar-
anteed transient response in addition to stable tracking. The
new low-pass control architecture tolerates high adaptation
gains without generating high-frequency oscillations in the
control signal and guarantees desired transient performance
for both system’s input and output signals. In [4], [5],
the methodology is extended to systems with unknown
time-varying parameters and bounded disturbances in the
presence of unknown high-frequency gain, and stability
margins are derived. These arguments enable development
of theoretically justified tools for verification and validation
of adaptive controllers.
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APPENDIX

Proof of Theorem 2: Let

r2(s) = (I + (I − Ḡ(s)θ�)−1

(Ḡ(s)θ� + (C(s) − 1)I))x̃(s). (46)

It follows from (22) that r2(t) = xr(t) − x(t) . The signal r2(t)
can be viewed as the response of the LTI system

H2(s) = I + (I − Ḡ(s)θ�)−1(Ḡ(s)θ� + (C(s) − 1)I) (47)

to the bounded error signal x̃(t). It follows from (19) that (I −
Ḡ(s)θ�)−1, Ḡ(s), C(s) are stable and, therefore, H2(s) is stable.
Hence, from (16) we have lim

t→∞

r2(t) = 0, which confirms (24).
Let

r3(s) = C(s)r1(s) + (C(s)θ� − K
�)(x(s) − xr(s)). (48)

It follows from (23) that r3(t) = u(t) − ur(t). Since θ̃(t) is
bounded, it follows from (14) and (16) that

lim
t→∞

r1(t) = 0. (49)

Since C(s) is a stable proper system, it follows from (24), (48)
and (49) that lim

t→∞

r3(t) = 0 , which confirms (25). �
Proof of Lemma 2: Since yr(t) = c�xr(t), it follows from (24)

that lim
t→∞

(y(t) − yr(t)) = 0. It follows from (18) that yr(s) =

c�(I − Ḡ(s)θ�)−1G(s)r(s), and hence for a constant r, the

end value theorem ensures limt→∞ yr(t) = lims→0 c�(I −
Ḡ(s)θ�)−1G(s)r = c�Ho(0)C(0)kgr. The definition of kg and
the fact that C(0) = 1 lead to lim

t→∞

y(t) = r. �
Proof of Theorem 3: It follows from (46) and Corollary 1 in

[3] that ‖r2‖L∞
≤ ‖H2(s)‖L1‖x̃‖L∞

. It follows from (13), (14),
(15) that

‖x̃‖L∞
≤

√
(θ̄max)/(λmax(Po)Γc) . (50)

Therefore, ‖r2‖L∞
≤ ‖H2(s)‖L1

√
θ̄max

λmax(Po)Γc
, which along

with (30) leads to (27). The upper bound in (28) follows from
(27) and Lemma 2 in [3] directly. From (21), we have r3(s) =
C(s) 1

c�o Ho(s)
c�o Ho(s)r1(s) + (C(s)θ� −K�)(x(s)− xr(s)) =

−C(s) 1

c�o Ho(s)
c�o x̃(s) + (C(s)θ� − K�)(x(s) − xr(s)), where

co is introduced in (26). It follows from (26) that C(s) 1

c�o Ho(s)
=

C(s) Nd(s)

Nn(s)
, where Nd(s), Nn(s) are stable polynomials and the

order of Nn(s) is one less than the order of Nd(s). Since C(s) is

stable and strictly proper, the complete system C(s)
1

c�o Ho(s)
is

proper and stable, which implies that its L1 gain exists and is finite.

Thus, ‖r3‖L∞
≤

∥∥∥∥C(s) 1

c�o Ho(s)
c�o

∥∥∥∥
L1

‖x̃‖L∞
+ ‖C(s)θ� −

K�‖L1‖x − xr‖L∞
, which with (27), (50) leads to (29). �

Proof of Lemma 3: It follows from (18) that yr(s) = c�(I −
Ḡ(s)θ�)−1G(s)r(s). Following Lemma 1, the condition in (12)
ensures stability of the reference system. Since (I − Ḡ(s)θ�)−1

is stable, then one can expand it into convergent series:

yr(s) = c
�(I +

∞∑
i=1

(Ḡ(s)θ�)i)G(s)r(s) = yd(s)

+c
�(

∞∑
i=1

(Ḡ(s)θ�)i)G(s)r(s). (51)

Let r4(s) = c�(
∑

∞

i=1
(Ḡ(s)θ�)i)G(s)r(s). Then r4(t) =

yr(t) − yd(t). It follows from Lemma 2 in [3] that

‖r4‖L∞
≤ (

∞∑
i=1

λ
i)‖c�‖L1‖G(s)‖L1‖r‖L∞

=
λ

1 − λ
‖c�‖L1‖G(s)‖L1‖r‖L∞

. (52)

Using (9), (10) and (41), from (51) one can derive

yr(s) = yd(s) + c
�(

∞∑
i=1

(Ḡ(s)θ�)i−1)H3(s),

upon which Corollary 1 in [3] leads to (38). Comparing ud(s)
in (36) to ur(s) in (17) it follows that ud(s) can be written as
ud(s) = kgC(s)r(s) + (C(s)θ� − K�)xd(s) , where xd(s) =
C(s)kgHo(s)r(s). Therefore ur(s) − ud(s) = (C(s)θ� −
K�)(xr(s) − xd(s)). Hence, it follows from Lemma 1 in [3]

‖ur − ud‖L∞
= ‖C(s)θ� − K

�‖L1‖xr − xd‖L∞
.

Using the same steps as for ‖yr − yd‖L∞
, we have

‖xr − xd‖L∞
≤ λ‖G(s)‖L1‖r‖L∞

/(1 − λ),

‖xr − xd‖L∞
≤ ‖h3‖L∞

/(1 − λ) ,

and hence (39) and (40) are proved. �
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