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Abstract— This paper presents an extension of the L1

adaptive output feedback controller to systems of unknown
dimension in the presence of unmodeled dynamics and time-
varying uncertainties. The adaptive output feedback controller
ensures uniformly bounded transient and asymptotic tracking
for system’s both signals, input and output, simultaneously.
The performance bounds can be systematically improved by
increasing the adaptation rate. Simulations of an unstable non-
minimum phase system verify the theoretical findings.

I. INTRODUCTION

This paper extends the results of [1]–[3] to an output

feedback framework for a single input signal output (SISO)

system of unknown dimension in the presence of unmodeled

dynamics and time-varying disturbances. The methodology

ensures uniformly bounded transient response for system’s

both signals, input and output, simultaneously, in addition to

asymptotic tracking. The L∞ norm bounds for the error sig-

nals between the closed-loop adaptive system and the closed-

loop reference LTI system can be systematically reduced by

increasing the adaptation gain.

The paper is organized as follows. Section II states some

preliminary definitions, and Section III gives the problem

formulation. In Section IV, the novel L1 adaptive control

architecture is presented. Stability and uniform transient

tracking bounds of the L1 adaptive controller are presented

in Section V. In section VI, simulation results are presented,

while Section VII concludes the paper.

II. PRELIMINARIES

In this Section, we recall basic definitions and facts from

linear systems theory.

Definition 1: For a signal ξ(t), t ≥ 0, ξ ∈
R

n, its truncated L∞ and L∞ norms are ‖ξt‖L∞
=

max
i=1,..,n

( sup
0≤τ≤t

|ξi(τ)|), ‖ξ‖L∞
= max

i=1,..,n
(sup
τ≥0

|ξi(τ)|), where

ξi is the ith component of ξ.

Definition 2: The L1 gain of a stable proper SISO system

is defined ||H(s)||L1
=

∫ ∞

0
|h(t)|dt, where h(t) is the

impulse response of H(s).
Definition 3: For a stable proper m input n output

system H(s) its L1 gain is defined as ‖H(s)‖L1
=

maxi=1,..,n(
∑m

j=1 ‖Hij(s)‖L1
) , where Hij(s) is the corre-

sponding entry of H(s).
Lemma 1: For a stable proper multi-input multi-output

(MIMO) system H(s) with input r(t) ∈ R
m and output
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x(t) ∈ R
n, we have ‖xt‖L∞

≤ ‖H(s)‖L1
‖rt‖L∞

, ∀ t ≥
0.

III. PROBLEM FORMULATION

Consider the following SISO system:

y(s) = A(s)(u(s) + d(s)) , y(0) = 0 (1)

where u(t) ∈ R is the input, y(t) ∈ R is the system output,

A(s) is a strictly proper unknown transfer function, d(s) is

the Laplace transform of the time-varying uncertainties and

disturbances d(t) = f(t, y(t)), while f is an unknown map,

subject to the following assumptions.

Assumption 1: There exist constants L > 0 and L0 > 0
such that the following inequalities hold uniformly in t:

|f(t, y1) − f(t, y2)| ≤ L|y1 − y2| , |f(t, y)| ≤ L|y| + L0.
Assumption 2: There exist constants L1 > 0, L2 > 0 and

L3 > 0 such that for all t ≥ 0:

|ḋ(t)| ≤ L1|ẏ(t)| + L2|y(t)| + L3 . (2)

We note that the numbers L,L0, L1, L2, L3 can be ar-

bitrarily large. Let r(t) be a given bounded continuous

reference input signal. The control objective is to design an

adaptive output feedback controller u(t) such that the system

output y(t) tracks the reference input following a desired

reference model, i.e. y(s) ≈ M(s)r(s). In this paper, we

consider a first order system, i.e.

M(s) = m/(s + m) , m > 0. (3)

We note that the system in (1) can be simply rewritten as:

y(s) = M(s) (u(s) + σ(s)) , (4)

σ(s) = ((A(s) − M(s))u(s) + A(s)d(s))/M(s) . (5)

IV. L1 ADAPTIVE CONTROLLER

A. Closed-loop Reference System

Consider the following closed-loop reference system:

yref (s) = M(s)(uref (s) + σref (s)) (6)

σref (s) =
(A(s) − M(s))uref (s) + A(s)dref (s)

M(s)
(7)

uref (s) = C(s)(r(s) − σref (s)) , (8)

where dref (t) = f(t, yref (t)), and C(s) is a strictly proper

system with C(0) = 1. One simple choice would be

C(s) = ω/(s + ω) . (9)

We note that there is no algebraic loop involved in the

definition of σ(s), u(s) and σref (s), uref (s).
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L1-gain stability requirement: C(s) and M(s) need to

ensure that

H(s) = A(s)M(s)/(C(s)A(s) + (1 − C(s))M(s)) (10)

is stable and

‖G(s)‖L1
L < 1 , (11)

where G(s) = H(s)(1 − C(s)).
The condition in (11) restricts the class of systems A(s)

in (1) that can be stabilized by the controller architecture in

this paper. However, as discussed in section V-A, the class

of such systems is not empty. Letting

A(s) =
An(s)

Ad(s)
, C(s) =

Cn(s)

Cd(s)
, M(s) =

Mn(s)

Md(s)
, (12)

it follows from (10) that

H(s) =
Cd(s)Mn(s)An(s)

Md(s)Cn(s)An(s) + (Cd(s) − Cn(s))Mn(s)Ad(s)
(13)

We note that a strictly proper C(s) implies that the order of

Cd(s) − Cn(s) and Cd(s) is the same. Since the order of

Ad(s) is higher than that of An(s), we note that the transfer

function H(s) is strictly proper.

The next Lemma establishes the stability of the closed-

loop system in (6)-(8).

Lemma 2: If C(s) and M(s) verify the condition in (11),

the closed-loop reference system in (6)-(8) is stable.

Proof. It follows from (7)-(8) that uref (s) = C(s)r(s) −
C(s)((A(s) − M(s))uref (s) + A(s)dref (s))/M(s), and

hence

uref (s) =
C(s)M(s)r(s) − C(s)A(s)dref (s)

C(s)A(s) + (1 − C(s))M(s)
. (14)

It follows from (6)-(7) that

yref (s) = A(s)(uref (s) + dref (s)) . (15)

Substituting (14) into (15), it follows from (10) that

yref (s) = A(s)
(C(s)M(s)r(s) − C(s)A(s)dref (s)

C(s)A(s) + (1 − C(s))M(s)

+ dref (s)
)

= A(s)M(s)

(

C(s)r(s) + (1 − C(s))dref (s)

C(s)A(s) + (1 − C(s))M(s)

)

= H(s) (C(s)r(s) + (1 − C(s))dref (s)) . (16)

Since H(s) is strictly proper and stable, G(s) is also strictly

proper and stable and further

‖yref‖L∞
≤ ‖H(s)C(s)‖L1

‖r‖L∞

+‖G(s)‖L1
(L‖yref‖L∞

+ L0) . (17)

It follows from (11) and (17) that

‖yref‖L∞
≤ ρ , (18)

where

ρ =
‖H(s)C(s)‖L1

‖r‖L∞
+ ‖G(s)‖L1

L0

1 − ‖G(s)‖L1
L

, (19)

and hence ‖yref‖L∞
is finite, which implies that the closed-

loop reference system in (6)-(8) is stable. �

1) Notations: Choose arbitrary P > 0 and let Q = 2mP .

Define

H0(s) = A(s)/(C(s)A(s) + (1 − C(s))M(s)),(20)

H1(s) =
(A(s) − M(s))C(s)

C(s)A(s) + (1 − C(s))M(s)
. (21)

Using (12) in (20)-(21), we have H0(s) =
Cd(s)An(s)Md(s)/Hd(s), and

H1(s) = (Cn(s)An(s)Md(s)−Cn(s)Ad(s)Mn(s))/Hd(s),
(22)

where Hd(s) = Cn(s)An(s)Md(s) + Mn(s)Ad(s)(Cd(s)−
Cn(s)). Since the relative order between Cd(s)−Cn(s) and

Cn(s) is greater than zero, the order of Mn(s)Ad(s)(Cd(s)−
Cn(s)) is higher than Cn(s)Ad(s)Mn(s). Since the relative

order between Ad(s) and An(s) is greater than zero, while

the relative order between Mn(s) and Md(s) is −1, we

note that the order of Mn(s)Ad(s)(Cd(s)−Cn(s)) is higher

than that of Cn(s)An(s)Md(s). Therefore, H1(s) is strictly

proper. We note from (13) and (22) that H1(s) has the

same denominator as H(s) and it follows from the L1-

gain stability requirement that H1(s) is stable. Using similar

arguments, it can be verified that H0(s) is proper and stable.

Fig. 1. Closed-loop system with L1 adaptive controller

Let ∆ = ‖H1(s)‖L1
‖r‖L∞

+ ‖H0(s)‖L1
(Lρ + L0) +

(

‖H1(s)/M(s)‖L1
+ L‖H0(s)‖L1

‖C(s)H(s)/M(s)‖L1

1−‖G(s)‖L1
L

)

γ̄,

where γ̄ > 0 is an arbitrary constant. Since H1(s) is stable

and strictly proper, we note that ‖H1(s)/M(s)‖L1
exists

and, hence, ∆ is a finite number. Let

β1 = 4∆‖H0(s)‖L1

(

L1β01 + L2

‖C(s)H(s)/M(s)‖L1

1 − ‖G(s)‖L1
L

)

β2 = 4∆‖sH1(s)‖L1
(‖r‖L∞

+ 2∆) +

4∆‖H0(s)‖L1

(

L1β02 + L3 + ρL2

)

, (23)
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where ρ is defined in (19), and

β01 = ‖sH(s)(1 − C(s))‖L1

L ‖C(s)H(s)/M(s)‖L1

1 − ‖G(s)‖L1
L

β02 = ‖sH(s)C(s)‖L1
(‖r‖L∞

+ 2∆)

+‖sH(s)(1 − C(s))‖L1
(Lρ + L0) . (24)

Since H(s) and H1(s) are strictly proper and stable, we note

that ‖sH1(s)‖L1
, ‖sH(s)C(s)‖L1

and ‖sH(s)(1−C(s))‖L1

are finite. We further define

β3 = P/Qβ1 = β1/(2m)

β4 = 4∆2 + Pβ2/Q = 4∆2 + β2/(2m) . (25)

2) L1 adaptive controller: The elements of L1 adaptive

controller are introduced below.

Output Predictor: We consider the following output

predictor:

˙̂y(t) = −mŷ(t) + m (u(t) + σ̂(t)) , ŷ(0) = 0 , (26)

where the adaptive estimate σ̂(t) is governed by the follow-

ing adaptation law.

Adaptive Law: The adaptation of σ̂(t) is defined as:

˙̂σ(t) = ΓcProj(σ̂(t),−ỹ(t)), σ̂(0) = 0, (27)

where ỹ(t) = ŷ(t) − y(t) is the error signal between the

output of the system in (4) and the predictor in (26), Γc ∈ R
+

is the adaptation rate subject to the following lower bound:

Γc > max
{

αβ2
3/((α − 1)2β4P ), αβ4/(P γ̄2)

}

(28)

with α > 1 being an arbitrary constant, while projection is

performed on the set

σ̂ ∈ ∆. (29)

Letting

γ0 =
√

αβ4/(ΓcP ) , (30)

it follows from (28) that γ̄ > γ0 , and hence

∆ ≥ ‖H1(s)‖L1
‖r‖L∞

+ ‖H0(s)‖L1
(Lρ + L0) +

(

‖H1(s)/M(s)‖L1
+ L‖H0(s)‖L1

‖C(s)H(s)/M(s)‖L1

1−‖G(s)‖L1
L

)

γ0,

and |σ̂(t)| ≤ ∆ for any t ≥ 0.
Control Law: The control signal is generated by:

u(s) = C(s)(r(s) − σ̂(s)) . (31)

The complete L1 adaptive controller consists of (26), (27)

and (31) subject to the L1-gain stability requirement in (11).

The closed-loop system is illustrated in Fig. 1.

V. ANALYSIS OF L1 ADAPTIVE CONTROLLER

In this section, we analyze stability and performance of L1

adaptive controller. Let H2(s) = −M(s)C(s)/(C(s)A(s)+
(1−C(s))M(s)). Using the definitions from (12), we have

H2(s) =
−Cn(s)Ad(s)Mn(s)

Cn(s)An(s)Md(s) + Mn(s)Ad(s)(Cd(s) − Cn(s))
.

(32)

Since the relative order between Cd(s) − Cn(s) and Cn(s)
is greater than zero, it can be checked easily that H2(s) is

strictly proper. We note from (13) and (32) that H2(s) has

the same denominator as H(s), and it follows from the L1-

gain stability requirement that H2(s) is stable. Since H2(s)
is strictly proper and stable, H2(s)/M(s) is stable and proper

and, hence, its L1 gain is finite. It can be verified easily that

C(s)H(s)/M(s) is strictly proper and stable too and, hence,

‖C(s)H(s)/M(s)‖L1
exists and is finite.

Theorem 1: Given the system in (1) and the L1 adaptive

controller in (26), (27), (31) subject to (11), we have:

‖ỹ‖L∞
< γ0 (33)

‖y − yref‖L∞
≤ γ1 (34)

‖u − uref‖L∞
≤ γ2, (35)

where ỹ(t) = ŷ(t) − y(t), γ0 is defined in (30), and

γ1 = ‖C(s)H(s)/M(s)‖L1
γ0/(1 − ‖G(s)‖L1

L)(36)

γ2 = L‖H3(s)‖L1
γ1 + ‖H2(s)/M(s)‖L1

γ0 , (37)

where H3(s) = H(s)C(s)/M(s).

Proof. Let σ̃(t) = σ̂(t) − σ(t), where σ(t) is defined in

(5). It follows from (31) that

u(s) = C(s)r(s) − C(s)(σ(s) + σ̃(s)) , (38)

and the system in (4) consequently takes the form:

y(s) = M(s)
(

C(s)r(s) + (1 − C(s))σ(s) − C(s)σ̃(s)
)

.

(39)

Substituting (38) into (5), it follows from the definition of

H(s), H0(s) and H1(s) in (10), (20), (21) that

σ(s) = H1(s)(r(s) − σ̃(s)) + H0(s)d(s) . (40)

Substituting (40) into (39), we have

y(s) = M(s)(C(s) + H1(s)(1 − C(s)))(r(s) − σ̃(s))

+H0(s)M(s)(1 − C(s))d(s)) . (41)

It can be verified from (10), (20) and (21) that M(s)(C(s)+
H1(s)(1 − C(s))) = H(s)C(s), H(s) = H0(s)M(s), and

hence (41) can be rewritten as

y(s) = H(s)(C(s)r(s)−C(s)σ̃(s))+H(s)(1−C(s))d(s)) .
(42)

Let e(t) = y(t)−yref (t). Then, using (16) and (42), one gets

e(s) = H(s) ((1 − C(s))de(s) − C(s)σ̃(s)), where de(s)
is introduced to denote the Laplace transform of de(t) =
f(t, y(t)) − f(t, yref (t)). Lemma 1 and Assumption 1 give

the following upper bound:

‖et‖L∞
≤ L‖H(s)(1−C(s))‖L1

‖et‖L∞
+‖r1t

‖L∞
, (43)

where r1(t) is the signal with its Laplace transformation

r1(s) = C(s)H(s)σ̃(s). (44)

It follows from (4) and (26) that

ỹ(s) = M(s)σ̃(s) . (45)

It follows from (44) and (45) that r1(s) =
C(s)H(s)

M(s) M(s)σ̃(s) = C(s)H(s)
M(s) ỹ(s), and hence

‖r1t
‖L∞

≤ ‖C(s)H(s)/M(s)‖L1
‖ỹt‖L∞

. (46)
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From (43) and (46), we have ‖et‖L∞
≤ L‖H(s)(1 −

C(s))‖L1
‖et‖L∞

+‖C(s)H(s)/M(s)‖L1
‖ỹt‖L∞

, and hence

‖et‖L∞
≤

‖C(s)H(s)/M(s)‖L1

1 − ‖G(s)‖L1
L

‖ỹt‖L∞
. (47)

First we prove the bound in (33) by a contradiction

argument. Since ỹ(0) = 0 and ỹ(t) is continuous, then

assuming the opposite implies that there exists t′ such that

‖ỹ(t)‖ < γ0, ∀ 0 ≤ t < t′ , (48)

‖ỹ(t′)‖ = γ0 , (49)

which leads to

‖ỹt′‖L∞
= γ0 . (50)

Since y(t) = yref (t) + e(t), it follows from (18) and (50)

that

‖yt′‖L∞
≤ ‖yref

t′
‖L∞

+ ‖et′‖L∞
≤ ρ +

‖C(s)H(s)/M(s)‖L1
γ0/(1 − ‖G(s)‖L1

L) . (51)

It follows from (40) and (45) that σ(s) = H1(s)r(s) −
H1(s)ỹ(s)/M(s) + H0(s)d(s), and hence (50) implies that

‖σt′‖L∞
≤ ‖H1(s)‖L1

‖r‖L∞
+ ‖H1(s)/M(s)‖L1

γ0 +
‖H0(s)‖L1

(L‖yt′‖L∞
+ L0), which along with (51) leads

to

‖σt′‖L∞
≤ ∆ . (52)

Consider the following candidate Lyapunov function:

V (ỹ(t), σ̃(t)) = P ỹ2(t) + Γ−1
c σ̃2(t) , (53)

and the adaptive law in (27) ensures that for all 0 ≤ t ≤ t′:

V̇ (t) ≤ −Qỹ2(t) − 2Γ−1
c σ̃(t)σ̇(t). (54)

It follows from (40) that

σd(s) = sH1(s)(r(s) − σ̃(s)) + H0(s)dd(s) , (55)

where σd(s) and dd(s) are the Laplace transformations of

σ̇(t) and ḋ(t), respectively. From (29) and (52), we have

‖σ̃t′‖L∞
≤ 2∆ . (56)

It follows from (51) that

‖dt′‖L∞
≤ Lρ +

L ‖C(s)H(s)/M(s)‖L1

1 − ‖G(s)‖L1
L

γ0 + L0 . (57)

From the definitions of β01 and β02 in (24), (42) and (57),

we have

‖ẏt′‖L∞
≤ β01γ0 + β02 . (58)

It follows from Assumption 2 and (58) that

‖ḋt′‖L∞
≤ L2‖yt′‖L∞

+ L1(β01γ0 + β02) + L3 . (59)

From (51), (55), (59) and the definitions of β1 and β2 in

(23), it follows that

‖σ̇t′‖L∞
≤ (β1γ0 + β2)/(4∆) . (60)

Therefore from (54), (56) and (60) we have

V̇ (t) ≤ −Qỹ2(t) + Γ−1
c

(

β1γ0 + β2

)

, ∀ 0 ≤ t ≤ t′ . (61)

The projection algorithm ensures that |σ̂(t)| ≤ ∆ for all

t ≥ 0, and therefore

max
t′≥t≥0

Γ−1
c σ̃2(t) ≤ 4∆2/Γc . (62)

Let θmax , β3γ0+β4, where β3 and β4 are defined in (25). If

at any t ∈ [0, t′], V (t) > θmax/Γc, then it follows from (53)

and (62) that P ỹ2(t) > P (β1γ0 + β2) /(ΓcQ), and hence

Qỹ2 = (Q/P )P ỹ2 > (β1γ0 + β2)/Γc . (63)

From (61) and (63) it follows that if for some t ∈ [0, t′]
V (t) > θmax/Γc, then

V̇ (t) < 0 . (64)

Since ỹ(0) = 0, we can verify that

V (0) ≤
(

β3γ0 + β4

)

/Γc . (65)

It follows from (64) that

V (t) ≤ θmax/Γc , 0 ≤ t ≤ t′. (66)

Since P |ỹ(t)|2 ≤ V (t), then it follows from (66) that

|ỹ(t)|2 ≤ (β3γ0 + β4)/(ΓcP ) , 0 ≤ t ≤ t′ . (67)

It follows from (50) and (67) that γ2
0 ≤ (β3γ0 +β4)/(ΓcP ),

which along with (30) leads to αβ4 ≤ β3γ0+β4, and further

implies

(α − 1)2β4 ≤ αβ2
3/(ΓcP ) . (68)

Eq. (68) limits the adaptive gain

Γc ≤ αβ2
3/((α − 1)2β4P ) , (69)

which contradicts (28). Hence, (69) is not true which further

implies that (49) does not hold. Therefore, (33) is true. It

follows from the L1-gain requirement in (11), (33) and (47)

that ‖et‖L∞
≤

‖C(s)H(s)/M(s)‖
L1

1−‖G(s)‖L1
L γ0, which holds uniformly

for all t ≥ 0 and therefore leads to (34).

It follows from (5) and (38) that

u(s) =
M(s)(C(s)r(s) − C(s)σ̃(s)) − C(s)A(s)d(s)

C(s)A(s) + (1 − C(s))M(s)
.

To prove the bound in (35), we notice that from (14) one

can derive

u(s) − uref (s) = −H3(s)r2(s) + H2(s)σ̃(s) , (70)

= −H3(s)r2(s) + (H2(s)/M(s))M(s)σ̃(s) ,

where r2(t) = f(t, y(t))−f(t, yref (t)) . It follows from (45)

and (70) that ‖u−uref‖L∞
≤ L‖H3(s)‖L1

‖y− yref‖L∞
+

‖H2(s)/M(s)‖L1
‖ỹ‖L∞

, which leads to (35). �

The main result can be summarized as follows.

Theorem 2: Given the system in (1) and the L1 adaptive

controller in (26), (27), (31) subject to (11), we have:

lim
Γc→∞

(y(t) − yref (t)) = 0 , ∀ t ≥ 0, (71)

lim
Γc→∞

(u(t) − uref (t)) = 0 , ∀ t ≥ 0 . (72)

The proof follows from Theorem 1 directly. Thus, the

tracking error between y(t) and yref (t), as well between
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u(t) and uref (t), is uniformly bounded by a constant inverse

proportional to Γc. This implies that during the transient one

can achieve arbitrarily close tracking performance for both

signals simultaneously by increasing Γc.

We note that the control law uref (t) in the closed-loop

reference system, which is used in the analysis of L∞ norm

bounds, is not implementable since its definition involves the

unknown parameters. Theorem 1 ensures that the L1 adaptive

controller approximates uref (t) both in transient and steady

state. So, it is important to understand how these bounds

can be used for ensuring uniform transient response with

desired specifications. We notice that the following ideal

control signal: uideal(t) = r(t) − σref (t), is the one that

leads to desired system response:

yideal(s) = M(s)r(s) (73)

by cancelling the uncertainties exactly. Thus, the reference

system in (6)-(8) has a different response as compared to

(73). In [4], specific design guidelines are suggested for

selection of C(s) that can lead to desired system response.

A. Discussion

In this section, we discuss the classes of systems that

can satisfy (11) via the choice of M(s) and C(s). For

simplicity, we consider first order C(s) and M(s) as pointed

in (3) and (9). It follows from (3) and (9) that H(s) =
m(s+ω)An(s)

ω(s+m)An(s)+msAd(s) . Stability of H(s) is equivalent to

stabilization of A(s) by a PI controller, say, of the following

structure (ω/m)((s + m)/s), where m and ω are the same

as in (3) and (9). The open loop transfer function of the

cascaded A(s) with the PI controller will be HPI(s) =
(ω/m)((s+m)/s)A(s), leading to the following closed-loop

system:

ω(s + m)An(s)/(ω(s + m)An(s) + msAd(s)) . (74)

Hence, the stability of H(s) is equivalent to that of (74),

and the problem can be reduced to identifying the class of

A(s) that can be stabilized by a PI controller. It also permits

the use of root locus methods for checking the stability of

H(s) via the open loop transfer function HPI(s). We note

that the PI controller adds an open loop pole at the origin

and an open loop zero at −m, while ω/m plays the role of

the open-loop gain.

1) Minimum phase system with relative degree 1 or 2:

Consider a minimum phase system H(s) with relative degree

1. Notice that the zeros of HPI are located in the open

left-half plane. As the open loop gain ω/m increases, it

follows from the classical control theory that the closed-loop

poles approach the open-loop zeros and tend to ∞. Since the

system has relative degree 1, only one closed-loop pole can

approach ∞ along the negative real axis, which implies that

all the closed-loop poles are located in the open left-half

plane. Hence, the transfer function in (74) is stable, such

is H(s). We notice that the above discussions hold for any

M(s) with relative degree 1.

For a minimum phase system with relative degree 2, with

the increase of the open-loop gain ω/m, there are two closed-

loop poles approaching ∞ along the direction of −π/2 and

π/2 in the complex plane. Let the abscissa of the intersection

of the asymptotes and the real axis be δ. We note that the two

infinite poles approach δ ± j∞. If δ is negative, the closed-

loop system can be stabilized by increasing the open-loop

gain. If the choice of M(s) with relative degree 1 ensures

negative δ, the closed-loop system can be stabilized by

increasing the open-loop gain. We notice that any M(s) with

a denominator of order 2 and a nominator of order 1 places

two open-loop zeros and one open-loop pole. By placing

them appropriately, we can ensure negative δ. Therefore,

by choosing appropriate M(s), we can ensure stability of

minimum phase systems with relative degree 1 or 2. We note

here that the knowledge of the order of Ad(s) and the relative

degree of A(s) are not required. As ω is large, which implies

large open-loop gain, C(s) approximates 1 and therefore

y(s) ≈ M(s)r(s), which was the control objective.

Remark 1: We notice that in the light of the above dis-

cussion, a PI controller, stabilizing A(s), might also stabilize

the system in the presence of the nonlinear disturbance

f(t, y(t)). However, the transient performance cannot be

quantified in the presence of unknown A(s). The L1 adaptive

controller will generate different low-pass control signals

u(t) for different unknown systems to ensure uniform tran-

sient performance for y(t).
2) Other Systems: We note that non-minimum phase

systems can also be stabilized by a PI controller. However,

the choice of m and ω is not straightforward. In the sim-

ulation example below, we demonstrate the application of

L1 adaptive controller for an unknown non-minimum phase

system in the presence of unknown nonlinear disturbances.

VI. SIMULATION

As an illustrative example, consider the system in (1) with

A(s) = (s2 − 0.5s + 0.5)/(s3 − s2 − 2s + 8) . We note

that A(s) has both poles and zeros in the right half plane

and hence it is an unstable non-minimum phase system.

We consider L1 adaptive controller defined via (26), (27)

and (31), where m = 3 , ω = 10 , Γc = 500 . We

set ∆ = 100. First, we consider the step response by

assuming d(t) = 0. The simulation results of L1 adaptive

controller are shown in Figures 2(a)-2(b). Next, we consider

d(t) = f(t, y(t)) = sin(0.1t)y(t) + 2 sin(0.1t), and apply

the same controller without retuning. The control signal

and the system response are plotted in Figures 3(a)-3(b).

Further, we consider a time-varying reference input r(t) =
0.5 sin(0.3t) and notice that that without any retuning of the

controller the system response and the control signal behave

as expected, Figs. 4(a)-4(b). Figs. 5(a)-5(b) plot the system

response and the control signal for a different uncertainty

d(t) = f(t, y(t)) = sin(0.1t)y(t) + 2 sin(0.4t) without any

retuning of the controller.

We notice that in the case of minimum-phase systems, the-

oretically we can increase the bandwidth of C(s) arbitrarily

and cancel time-varying disturbances of arbitrary frequency.

WeB15.1

1195

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on January 22, 2009 at 11:29 from IEEE Xplore.  Restrictions apply.



0 10 20 30 40
−1

−0.5

0

0.5

1

1.5

2

Time t

(a) y(t) (solid) and r(t) (dashed)

0 10 20 30 40
−5

0

5

10

15

20

25

30

time t

(b) Time-history of u(t)

Fig. 2. Performance for r(t) = 1 and d(t) = 0.
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Fig. 3. Performance for r(t) = 1 and d(t) = sin(0.1t)y(t)+2 sin(0.1t).
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Fig. 4. Performance for r(t) = 0.5 sin(0.3t) and d(t) = sin(0.1t)y(t)+
2 sin(0.1t).

However, the bandwidth of C(s) cannot be set arbitrarily

large due to the bandwidth limitations in the control channels
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Fig. 5. Performance for r(t) = 0.5 sin(0.3t) and d(t) = sin(0.1t)y(t)+
2 sin(0.4t).

of the system. Also, a larger bandwidth of C(s) can reduce

the time-delay margin of the closed-loop system and imply

that a higher adaptive gain is needed [4], [5].

VII. CONCLUSION

A novel L1 adaptive output feedback control architecture

is presented in this paper for systems of unknown dimension.

It has guaranteed transient response for system’s both sig-

nals, input and output, simultaneously, in addition to stable

tracking. The methodology is verified for an unstable non-

minimum phase system.
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