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Design Issues in Adaptive Control 
RICHARD H. MIDDLETON, GRAHAM C. GOODWIN, FELLOW, IEEE, DAVID J. HILL, AND 

DAVID Q .  MAYNE, FELLOW, IEEE 

Abstract-The contributions of this paper are in two main areas. The 
first is an integrated approach to the design of practical adaptive control 
algorithms. In particular, we bring many existing ideas together and 
explore the effect of various design parameters available to a user. 
Secondly, we extend the theory by showing how the problem of 
stabilizability of the estimated model can be overcome by running parallel 
estimators. We also show how asymptotic tracking of deterministic set 
points can be achieved in the presence of unmodeled dynamics. 

1. INTRODUCTION 

GENERAL problem in control theory is to design control A laws which achieve good performance for any member of a 
specified class of systems. Various strategies have been proposed 
for achieving this result. For example, robust controllers [ 11-[3] 
are aimed at achieving good performance for the class of systems 
which are close (in a well-defined sense) to some fixed nominal 
system. Adaptive controllers are a special class of nonlinear 
control laws which are intended to stabilize all members of a 
wider class of systems, namely those systems which are close to 
any member of a given set of nominal systems, e.g., those 
nominal systems having some fixed McMillan degree [4]. 
Adaptive controllers generally have the additional property that 
the detailed structure of the control law can be decomposed into an 
on-line parameter estimation module together with an on-line 
control law synthesis procedure [4]-[6]. 

The first stability results for adaptive controllers were obtained 
in the late 1970’s. At this time several research groups (see, for 
example, [7]-[ 121) published results which established global 
convergence for a class of model reference adaptive control laws 
applied to linear minimum-phase plants of known order. Subse- 
quently, the results were extended to nonminimum-phase plants 
provided pole-zero cancellations were avoided in the estimated 
model. Several methods have been proposed for achieving this, 
e.g., persistent excitation [ 141, restricting the parameter space to a 
single convex region [ 131, [5 ] ,  and searching the parameter space 
for suitable points [15]. These analyses were based on the 
assumption that the system order was equal to the assumed model 
order. More recently, the sensitivity of these analyses to the 
modeling assumptions has been questioned [ 161 and examples 
have been presented showing that the algorithms can fail if they 
are applied blindly to systems having unmodeled dynamics. On 
the other hand, there is some practical evidence [17], [18] which 
suggests that certain adaptive control algorithms perform well. 

There has been considerable research recently aimed at gaining 
a better understanding of adaptive control algorithms under 
nonideal conditions [ 191-[51]. One attractive idea that has 
emerged in this research is that of using either normalization or 
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dead zones to handle disturbances and unmodeled dynamics [5], 
[MI, [54]-[58]. This work is a development of earlier ideas due to 
Egardt [52], Samson [53], and Praly [31]. It has also been 
incorporated in many practical realizations of adaptive control 
laws [18], [59]. 

The present paper builds on this line of research and brings 
together a range of techniques relevant to the design of adaptive 
control algorithms. Some of the techniques that are drawn upon 
include normalization or dead zones [5], [U ] ,  [54]-[58], regres- 
sion vector filtering [60], [71], pole-assignment [5], [13], [14], 
internal model principle adaptive control [5], [61], and least 
squares [5], [61]. A discussion of convergence issues is presented 
for the resulting algorithm and this is related to design consider- 
ations. In particular, we show how pole-zero cancellations in the 
estimated model can be avoided, e.g., by running parallel 
estimators; and we show how asymptotic tracking of a desired set 
pointy* is achievable for plants having unmodeled dynamics. Our 
analysis shall be presented in the continuous-time domain. The 
reasons for doing this are: first the analysis then applies, with 
minor modification, to the discrete case also and, second, this 
gives confidence in the performance when rapid sampling is used. 
In practice, one would invariably use a discrete-time implementa- 
tion, in which case we suggest use of the delta operator [61], [63] 
which gives enhanced numerical properties. 

II. THE SYSTEM MODEL 

We consider a plant described by the following model: 

A d  = B,u + C,v (2.1) 

where the degrees of the polynomial operators A,, B,, and C, 
satisfy a,, > a,, a,, 2 8,; and v is a bounded term which may 
include noise and deterministic disturbances. We rewrite (2.1) by 
introducing a nominal transfer function, Ho = B / A ,  as 

Ay =Bu + q + d  (2.2) 

where U ,  y denote the plant input and output, respectively, q 
denotes an unmodeled component, and d denotes a purely 
deterministic noise term. The polynomial operators A,  B are 
coprime and of degree aA, a,, respectively, where a, < aA and A 
is monic. 

Remark 2.1: Models of the form (2.2) have been used 
extensively in the literature, e.g., in [311, [44], [501, 1701, [731. 
The term q includes bounded noise and unmodeled components in 
the system response. For example, if the plant is modeled in 
transfer function form as 

y=[Ho(l +A)+R]u (2.3) 

where Ho = B / A ,  H = B/A,  and H = B/A, then 

q =  [ x + x ]  BB AB U. 
(2.4) 

V V V  

The deterministic component of the noise d is assumed to 
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satisfy a model of the form 

Sd=O (2.5) 

where S is a known monic polynomial of degree a, having 
nonrepeated zeros on the stability boundary. For example, if d is a 
sinewave of angular frequency wo, then S = D2 + w $  D = d /  
dt .  

Finally, to ensure that the final control system based on the 
internal model principle is well posed, we require the following. 

Assumption A.1: S has no zeros in common with the 
numerator Bo of the true plant transfer function Bo/Ao. V V V 

In.  PARAMETER ESTIMATION 

We now introduce a bandpass fiiter to eliminate the determinis- 
tic disturbance and also to mitigate the effect of unmodeled 
dynamics on the estimator. This is a combination of the ideas in, 
for instance [60], [61], and [71]. We define the following filtered 
variables: 

GS - GS y = -  y ;  U=- 
JQ JQ 

(3.1) 

where G, J, Q are monic Hurwitz polynomials a, = a, and a, = 
a,. 

Using (3.1) and (2.51, the model (2.2) can be rewritten as 

Ay= Bti + q (3.2) 

where 

GS 
q=- T). 

JQ 
(3.3) 

Equation (3.2) will, in general, be unsuitable for parameter 
estimation since the equation error term i j  involves differentia- 
tion of the unmodeled error which may include noise. We, 
therefore, introduce an additional filter, 1/E, where E is monic, 
Hurwitz, and aE = a,. We then define the following: 

(3.4) 

Substituting (3.4) into (3.2) gives 

y=(E-A)yf+Buj+ VJ.  (3.5) 

= ve* + VJ.  (3.6) 

This equation can be expressed in regression form as 

Note that in (3.6), we have ignored initial condition terms 
which decay exponentially fast to zero due to the stability of F = 
EJ. They can be treated without further difficulty as in [lo] and 
[61. 

In (3.6) (with n P a,, m 4 a,, s 2 a,, g P a,) the various 
terms are 

d T = [ y j ,  ' 0 . )  D"-'YJ, U/ D"uJ] (3.7) 

OT=[eo-ao, .a., en-'-an-' ,  bo, . . a ,  b,] (3.8) 

where 

E ( D )  4 D " + e , - , D " - ' + . * . + e 0  (3.9) 

A ( D )  4 D"+a,- lD"-'+ * * .  + a0 (3.10) 

B ( D )  P b ,Dm+b, - IDm- '+ . . .+bo  . (3.11) 

In some earlier papers, e.g., [29] f?* has been called the tuned 

parameters. Note that e* is not required to be unique and, in 
general, will not be. 

The filtering operation outlined above is crucial to the success 
of adaptive controllers since it focuses the parameter estimator on 
the relevant frequency band thereby significantly reducing the 
deleterious effects of unmodeled dynamics and disturbances. In 
some cases this may be sufficient to obtain satisfactory perform- 
ance. For example, robust stability has been established under 
these conditions provided persistently exciting signals are added 
[34], [36], [40], [46], [47], [60], and [71]. However, in many 
cases, it is impractical to add these signals and thus a separate line 
of development has evolved to treat this case. A key feature of this 
development has been the incorporation of additional normaliza- 
tion or dead zones into the parameter estimator to reduce the 
estimator gain when the unmodeled response is large. This line of 
development can be traced to early work on bounded disturbances 
of Egardt [l l] ,  Samson [53], and later to Praly [74] who treated 
the case of unmodeled dynamics. This idea has also been 
investigated in [3 11, [MI, [501, [53], 1571, 1581, 1611, [MI, [701, 
[72], and [76]. 

A key feature of the above development has been the 
introduction of overbounding functions for the unmodeled re- 
sponse. This is possible provided the unmodeled response is stable 
in the sense made precise below. 

Assumption A.2: The filtered unmodeled error q ~ i s  the sum of 
a bounded term, plus a term related to 12 by a strictly proper 

The following result then establishes the fact that { (rlf(t)(}  is 
overbounded by a function {p ( t ) }  which depends on past values 

Lemma 3. I: For all members of the class of systems satisfying 
Assumption A.2 there exist constants uo E (0, l) ,  eo 2 0, E 2 0, 
and a constant vector U such that 

(3.12) 

exponentially stable transfer function. V V V  

of la(t)l and lu(t)l. 

1 ?)J(t) 1 5 E&) + eo for all t 

where 

p(t) = sup { I  v Tx(7) I e- O O ( ~ -  r ) ]  (3.13) 
OSTSI 

x is the following state vector: 

x 4 [Dn+s+&'-IZ' f ,  * . * , z ; , D " - ' u ~ ,  a.., ufIT (3.14) 

and 

z; 4 FQz; 1 
z 4 y - y * .  (3.15) 

Proof (Outline): We introduce an arbitrary Hurwitz polyno- 
v,ofdegreen - 1 .  Inview mial V = D"-' + U , , - ~ D " - ~  + 

of (2.4), vJ can then be expressed as 

BB AB 
VJ= [ 3+3] Vuf+(bounded terms). (3.16) 

Then, if we define 

U = [O, * . 0, 1 ,  U,-Z, * . , v,] 
it follows that VuJ = uTx. The remainder of the proof is 
straightforward as in [5, Appendix B]. VVV 

Remark 3. I: Other bounding functions can be used [3 11, [U], 
[50], [57] in place of p(t) ,  e . i . ,  based on weighted integrals of 
~ X t l .  etc. v v v  --,-,, ~ 

In our subsequent analysis we will replace knowledge of 
{ q f  ( t ) }  by any suitable overbounding function p(t) .  We therefore 
introduce the following assumption. 

Assumption A.3: Constants eo, E ,  U, uo are assumed known 
v v v  such that (3.12) is satisfied. 
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We next propose the following parameter estimator: 

= bP4e (3.17) 

DP= -bP+$TP+R;  P(0)=P(O)T>O (3.18) 

(3.19) 

R = R ~ Z O  (3.20) 

and where b represents a time-varying gain. The basic idea in both 
normalization and dead zones is to reduce b when the unrnodeled 
dynamics are large. 

In the case of normalization one may use 

QI b= 
1 + a 2 p 2 + 4 T P 4  

(3.21) 

where cyI, a2 > 0 are constants, chosen such that aldcy2 and aleO 
are small. Note that in this case the algorithm does not depend 
explicitly on knowledge of E or eo. 

In the case of a dead zone, we select 0 > 1, and define 

(3.22) 0 if I d t )  I I P ( ~ p ( t )  + €01 
f ( P [ ~ p ( t )  + E O ] ,  e ( t ) ) / e ( t )  otherwise s(t)  P 

where 
e - g  if e>g 

e + g  i f e < - g  

We then use 

(3.24) 

Remark 3.2: The term R( t )  in (3.18) has been introduced to 
ensure that the algorithm gain does not turn off. Any choice of 
R(t )  = R(t )T 2 0 that ensures P(t )  and P(t ) - ’  are bounded may 
be used: indeed it can be shown that many of the usual least- 
squares modifications, including covariance resetting, variable 
forgetting factors, gradient algorithms, and constant trace al- 
gorithms, are described by a suitable choice of R .  

It is also possible to add additional refinements to the algorithm. 
For example, it is possible to constrain the parameter estimates to 
lie in prespecified convex regions, and/or to add parameter 
searches to satisfy additional constraints. It is particularly 
important to constrain the estimates in the case of normalization 
since, unlike the dead zone algorithm, this algorithm does not 
guarantee boundedness automatically. 

There are basically two ways of constraining the estimates; to 
include a hard constraint implemented using projection [5 ] ,  [6], or 
to use a soft constraint implemented via a a-modification [44],  
[W.  V V V  

The convergence properties of the least-squares parameter 
estimator (possibly modified as above) are summarized in the 
following. 

Lemma 3.2 (Dead Zones): Consider the parameter estimator 
(3.17), (3.18), (3.24) applied to any system of the form (2.2), 
subject to Assumption A.2. Then the following properties hold 
irrespective of the control law: 

(3.25) 

where v (Po)  denotes the condition number of the matrix Po. 

Proof (Outline): Consider the “Lyapunov” function V = 

VI b($- e2)  (3.28) 

~ b ( ( ~ p + e ~ ) ~ - e ~ )  (3.29) 

where we have used (3.12). Using the expression for b in the case 
of dead zones (3.24), we then have 

8TP-18 with 8 = 8 - e*. Then 

(3.30) 

since s = 0 when e2 I P2(ep + [see (3.22)]. 
Now in view of (3.22), (3.23); se2 = f e  2 f 2  and thus 

(3.31) 

The remainder of the proof follows as in [5] ,  [6] .  V V V 
Remark 3.3: This lemma is an extension to the continuous-time 

least-squares case of results in [43], [50], and [ S I .  V V V 
Lemma 3.3 (Normalization): Consider the parameter estima- 

tor (3.17), (3.18), (3.21) applied to any system of the form (2.1), 
subject to Assumption A.3. Then the following properties hold 
irrespective of the control law: 

i) 1; P 2 ( 7 )  &I kot + kl (3.32) 

where 

e P P  (3.33) 
(1 +a2p2+4TP4)”2 

and 

(3.34) 

(3.35) 

I .  
(3.36) 

Proof (Outline): Equation (3.29) also holds in this case. 

ii) 1, a T ( 7 ) 8 ( ~ )  d71~:(X,,,P)[kot+k11. 

Then using (3.21) we have 

Result i) follows upon integration of both sides of (3.37). Part 
ii) follows immediately since 

I a: ( A,, P )  P 2 .  (3.38) 

V V V  

. .  4 e 2 4  TP24 
i jT i j= 

(1 + Q2P2 + 4 TP4)  

Remark 3.4: This lemma is a simple extension to the results in 
[43] and [U]. V V V  

IV. CONTROL SYSTEM DESIGN 

When the nominal model is known, there exist many possible 
choices for the control system design procedure including 
frequency domain methods, model reference control (for mini- 
mum-phase plants), pole assignment, linear quadratic optimal 
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control, etc. Our analysis will be based on pole assignment since 
this includes several other design procedures as special cases. We 
will also use the internal model principle [68], [5], [77], so that 
the classical three term control law will be a special case of our 
design procedure. 

The input U is generated using 

LGSU = P(y*  - y )  = - Pz; Z = Y - ~ *  (4.1) 

or equivalently 

Luf= - Pz; ; 1 z ' = -  
f FQ' (4.2) 

where L ,  P are polynomial in D determined from the following 
pole-assignment equation: 

ALGS+BP=A* (4.3) 
where A* is a monic Hurwitz polynomial of degree a,* = 28, + 
aG + a,. The degree of L and P are, respectively, a, = aA and ap  
= a, + aG + a, - 1. When substituted into (4.2) this yields a 
strictly proper control law which can be implemented as 

a = ( E  - L ) U f -  PZ; (4.4) 

JQ - 
GS 

u=- U. (4.5) 

V. ADAPTIVE CONTROL ALGORITHM 

The essential idea in obtaining the adaptive control law is to 
combine the least-squares algorithm of Section 111 with the 
certainty equivalenceJoT of the-feedback control law (4.2). i.e., 
given O(t) we form A ,  B, and A* and solve 

ALGS + Bp = A* (5.1) 

for L^ and p .  Then implement the control law as 

L U f  = -a; (5.2) 

zi=(E-L^)uf-pz; (5.3) 

which may be rewritten as 

JQ - U=- U. 
GS (5.4) 

In (5.1) we have allowed the desired closed-loop polynomiaJ to 
depend upon the parameter estimates. (Hence, the notation A*.) 
We require the following condition. 

Assumption A.4: The partial derivative ad*/a$ is bounded 
and A* is uniformly strictly Hurwitz. Q V V  

A key technical point is that we must ensure that all limit points 
of the algorithm correspond to a stabilizable model. Several 
techniques have been proposed in the literature for achieving this. 
One method is the use of parameter space search techniques as 
suggested in, for example, [15], [72], and [76]. Another method 
involves constraining the parameter estimates to a single convex 
region in which the tuned parameters lie and such that all models 
in the region are stabilizable [5], [6], [13], [50]. 

Here we extend the latter strategy to include any finite union of 
convex sets which satisfies Assumption A.4. 

Assumption A S :  There exists a finite set ( D , ,  . , D p )  of 
convex sets (not necessarily disjoint) such that 

P 
i) O* E u D i  

ii) for all O E U := I Q, the corresponding model is uniformly 
stabilizable. V Q V  

i= I 

The basic idea of our proposed adaptive control algorithm is to 
run a separate parameter estimator in each of the p convex 
regions. A suitable performance index then allows one of these 
regions to be selected. The corresponding parameter estimates are 
then used to implement a certainty equivalence form of the control 
law. 

An alternative to running parallel estimators is to start with any 
particular convex region and to monitor the parameter estimation 
performance criteria. If these criteria exceed a preset threshold, 
one recommences estimation in another of the regions. 

The parameter estimator performance index needs to be 
selected so as to ensure that swapping between different regions 
does not occur infinitely often and to guarantee that the key 
properties of the parameter estimator are retained. Note that this 
need not imply that O* belongs to the region ultimately chosen by 
the algorithm. 

In the case of the dead zone algorithm, one suitable form for the 
parameter estimator index is 

where ei(7), Pi(7) refer to the estimator operating in the ith region 
Di. The selection procedure is then as follows. 

Let j ( t )  denote the region selected at time t ( j ( 0 )  being 
arbitrary). If Mic,)(t) < Mi@) + y for i # j ( t ) ,  then j ( t )  is 
unaltered. Otherwise, j ( t )  = Arg mini, I . .  . p  [Mi(t)l. 

V. ANALYSIS OF THE ALGORITHM 

The key equations that we shall use are: the parameter estimator 
(3.17), (3.18), (3.22)-(3.24), the prediction error (3.19), the 
design identity (5.1), and the feedback control law (5.3), (5.4). 

As suggested in [30], [50], [53], and [76], the control law 
equation (5.3), (5.4), and the prediction error equation (3.19), 
may be combined into the following closed-loop equation: 

where 

A ( t )  A 

Dx(t)=A(t)x( t )+&(e+r)  

- 
- C n + g + s - l  -?o 60- 

-Pn+g+s-l -90 -1,- I -&  

1 0 0 0  0 
0 
0 0 1  0 0 0 

0 0 1 0  0 

0 0 0 0 1 0 -  
0 

r g ~ ( g y * ) .  

The analysis of the closed-loop system described above will 
depend on two key facts relating first to the parameter estimator 
and second to the homogeneous part of (6.1). We therefore begin 
by establishing these preliminary facts. 

Properties of the multiple convex region parameter estimator 
are described in the following lemma for the dead zone algorithm. 

Lemma 6.1: 
i) There exists a to > 0 such that 

j ( t )  = j ( t o )  for all r 2 to. 
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ii) With the time origin moved to to, then 

f E Lz and @ E L2. 

proofi In view of Assumption A S  it is clear that there exists 
a j such that e* E D; From Lemma 3.2 it follows that Mj is 
bounded. The result then follows since the algorithm ensures Mj(f) 

Properties of the homogeneous part of (6.1) are given in the 

Lemma 6.2: Consider the following homogeneous linear time- 

I Mj + y. v v v  
following. 

varying system: 

DZ(t) =A ( t ) Z ( t ) .  

Provided 

i) A ( t )  is bounded. 

ii) 1;' IIA(r)I12 drskOt+kl; \It,  Twhere ko is 

sufficiently small. 

iii) The eigenvalues of A are strictly inside the 
stability boundary for all t. 

Then (6.6) is exponentially stable. 
Proof (Outline): (See also [431, [MI, 1571, [651, [ X I ,  and 

Choose I' = rT 1 0 and let Q(t) denote the positive definite 

A =(t)n(t) + o(t)A ( t )  = - r (6.7) 

then using i)-iii) we can show that Q(t) is uniformly positive 
definite, bounded, and 3 k2 s.t. 

[76] for closely related results.) 

symmetric solution to 

Il~(t)II2~kzIlft(t)112. (6.8) 

Now consider the system 
1 

D( w(t))  = ( A  ( t )  - j 0- '( t)O(t))  w(t)  (6.9) 

and define 

V ( t )  = w=(t )Q(f )  w(t )  (6.10) 

we then have 

P(t) = - W T ( t ) r W ( t )  (6.1 1) 

which establishes exponential stability of (6.9). 
Rewriting (6.6) gives 

1 1 
2 2 

DZ(t )=(A( t ) - -  Q- ' ( t )O( t ) )Z( t )+-  Q-'(t)8(t)Z(t) .  (6.12) 

The solution to (6.12) can be written 

1 
Z(t)=&t, T)Z(T)+  1' $(t ,  7) 5 n - ' ( r ) h ( ~ ) Z ( ~ )  dr (6.13) 

where &t, 7) is the state transition matrix of the system in (6.9). 
In view of the exponential stability of 6 established in (6. lo), 

(6.1 l), and using Schwarz's inequality, we have 

IIZ(t) 112IC@-2"(r- T) IIX(T) 11; 

(6.14) 

for some co, c1, U > 0, and thus 

Using Gronwall's lemma we then have 

sc0lln(~)ll3 exp (clk;kl) exp (koclkict- r)). (6.16) 

From (6.16), it is clear that provided ko < a/clk; ,  (6.6) is 
exponentially stable. v v v  

Remark 6.1: Lemma 6.2 is useful in the analysis of adaptive 
controllers employing either relative dead zones or normalization. 
In the case of relative dead zones, property ii) of Lemma 3.2 
implies that ko in Lemma 6.2 is zero. In the case of normalization, 
property ii) of Lemma 3.3 implies that ko is nonzero in 

We will now illustrate the stability analysis of the adaptive 

Theorem 6. I (Dead Zones): 
1) Subject to Assumptions A. 1-A.5 and provided E [in (3.12)] 

is sufficiently small, then the adaptive control law, applied to the 
plant (2.2), is globally stable in the sense that y and U (and, hence, 
all states) are bounded for all finite initial states and any bounded 
Y*. 

2) If, in addition, y* is purely deterministic, satisfying Sy* = 
0, and €0 = 0, it then follows that 

general. v v v  
algorithm for the case of dead zones. 

lim Jy( t )  -y*(t) I = 0. (6.17) 

Proof: The proof is based on (t.1). The various terms in this 
equation are dealt with as follows: A (t) is exponentially stable; r 
is bounded and thus a BIBS argument can be used; e can be 
decomposed into a sum of terms in f and e - f; the term in f is 
dealt with by Gronwall's lemma sincef E Lz; and the term in e 
- f is handled by a small gain type argument since le - f I < 0 
[EP + €01. 

The algorithm ensures there are no finite escapes. We then 
redefine the time origin as to = 0 where to is as in Lemma 5.1. 

l)-Noting that the eigenvalues of A (t) are the 2n + g + s zeros 
of A* and in view of Assumption A.4 ii), it follows that the 
conditions of Lemma 6.2 are satisfied. 

From (6.7) 

= 4 4 ,  O)x(O) + $4, 7)81(e(r) + r(r))  d7 (6.18) 

where 4(tl T )  is the state transition matrix corresponding to A (t). 
In view of Lemma 6.2 and since rand xo are bounded, we have 

for some ko, kl, U > 0. 
From (3.23), and using Schwarz's inequality, it follows that 

(6.20) 

(6.21) 
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where we have used (3.13). Since the right-hand side of (6.21) is 
monotonic nondecreasing in t ,  it follows that 

Then provided E < u//klPJlulI, we can show that 

Since f E Lz (Lemma 3.2) and 1(4(~)11 5 Ilx(~)Il, it follows 
using Gronwall's lemma that x(t) is bounded. x bounded implies 
4, p ,  e bounded, and thus D x  is bounded in view of (6.1). Thus, 22 
and y are bounded. 

To show U is bounded we use Assumption A . l ,  i.e., S and B, 
are coprime polynomials. If we take A :  Hurwitz and of the same 
degree as A,, then G S / J Q  and BJA;  are coprime in the ring of 
rational, stable, proper transfer functions [66]. That is, there exist 
stable, proper, transfer functions x, A such that 

or 

(6.25) 

(6.26) 

(6.27) 

and thus U is bounded, since U, y ,  and v are bounded. 
2) Equation (6.1) holds in this case also, however, since Sy* = 

0, we have r = 0 in view of (6.5); and since 4 is bounded (as 
established in I), f E L2 implies f E Lz. We then have 

C I  

(6.29) 

The result in part 1) relied on E < u/kIP(lu(l; and so we select h 
such that 0 < ekIP((uI( < h < U. We now rearrange the third 
term on the right-hand side of (6.29) as: 

c, 

(where X, = min { ( U  - A), U O } ) .  

(6.31) 

Using (6.31) in (6.29) we have 

Since the right-hand side of (6.32) is monotonic nondecreasing 
in t ,  and kl~Pllu(l < A, we then have 

(6.33) 

and thus 

lim x(t )  = 0. 
I - m  

(6.35) 

Thus, from (3.13), it follows that p(t)  + 0. Since f E Lz and 
Dfis bounded, we have f ( t )  + 0. So e(t)  --+ 0 and from (6.1) we 
have 

(6.36) 

From (6.36) and (6.35) it follows that z(t)  = y( t )  - y*(t) + 

0. v v v  

1-m lim (Dx( t ) )  = 0. 

VII. DISCUSSION OF DESIGN PARAMETERS 

The adaptive control law depends on the following user 
choices: 

A* 
the orders of A and B 
the internal model polynomial S 
the estimator filter 
the sampling rate 
the details of the least-squares algorithm 
the choice of the overbounding functions 
the method of dealing with model stabilizability. 

Clearly, the choice of A* is influenced by the_de_sired closed- 
loop bandwidth. We have made A* a function of A ,  B since this is 
essential in practice. For example, the st_able well damped part o,f 
B should be cancelled, i.e., included in A * .  The unstable part of B 
places an upper bound on the achievable bandwidth; a sensible 
choice being to reflect the unstable zeros through the imaginary 
axis. The part of A which is not stable and well damped places a 
lower limit on the bandwidth. When these various requirements 
conflict, one is faced with a very difficult control problem and one 
ought to investigate alternative architectures including additional 
measurements if possible. 

The choice of orders of A ,  B is a compromise between reducing 
the potential unmodeled dynamics, on the one hand, and increased 
complexity including additional burden on the parameter estima- 
tor and possible model stabilizability difficulties on the other 
hand. In many practical cases, a third-order model is adequate. 

The internal model polynomial S will almost always include 
integral action. This is essential to eliminate load disturbances, 
input offsets, etc. One should only attempt to cancel sinewave 
type disturbances if they are well within the achievable closed- 
loop bandwidth. If an internal model polynomial is used, then it is 
desirable to place stable zeros in A* near the zeros of S ,  this being 
the classical equivalent of having an integral bandwidth well 
below the system bandwidth. In fact, for the case of ordinary 

. 
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integral action, this separation in bandwidths implies that one can 
do the control system design without considering the integrator 
and then to retrofit the integrator with a suitably small gain. The 
stability analysis can be readily extended to cover this proce- 
dure-see [77] for further details. 

The prime function of the estimator filter is to focus the 
parameter estimator on an appropriate bandwidth. There are two 
aspects, namely high-pass filtering to eliminate d.c. offsets, load 
disturbances, etc., and low-pass filtering to eliminate irrelevant 
high frequency components including noise and system response. 
The net effect is a bandpass filter. The rule of thumb governing 
the design of the filter is that the upper frequency should be about 
twice the desired system bandwidth and the lower frequency 
should be about one tenth the desired bandwidth. 

The choice of sampling rate is uncontroversial, it should be, if 
at all possible, ten times the maximum system bandwidth. 

The key requirement on the least-squares parameter estimator 
is that an upper and lower limit be placed on the algorithm gain. 
The exact choice of gain represents a compromise between rapid 
tracking of time-varying parameters and smoothing of the noise. 
Further discussion is given in [78]-[81]. 

In the choice between normalization and dead zones, one 
consideration is that dead zones require knowledge of the size 
(i.e., constants E ,  eo)  of the errors. On the other hand it has the 
advantages over normalization of directly bounding the estimates, 
of ensuring that the parameters do not drift leading to potential 
bursting phenomena, and of giving zero tracking errors in the 
presence of unmodeled dynamics. It would seem that, in practice, 
some combination of dead zones and normalization would give 
best performance. 

The choice of constants (U, uo, eo, E )  in the overbounding 
function p is problem dependent. In view of (3.16), V plays the 
role of an additional filter prior to the signal entering p.  This filter 
should also be linked to the closed-loop bandwidth, and will 
normally have small d.c. gain. The choice of a. depends on the 
damping of the unmodeled dynamics. 

Finally, there are a number of ways of dealing with the problem 
of stabilizability of the estimated models. We have introduced 
multiple convex regions as one way of dealing with the problem. 
In some cases, the choice of these regions is straightforward, e.g., 
when the model is of low order. In other cases, some sort of prior 
knowledge will be crucial in overcoming the problem. 

VIII. EXPERIMENTAL RESULTS 
The theory, as outlined above, has been implemented in a 

practical adaptive controller [59]. This adaptive controller has 
been found to give excellent performance under a wide range of 
experimental conditions. For example, on electromechanical 
servo systems, we have been able to make 2000 percent step 
changes in gain, time constant, and d.c. offset and yet retain 
excellent closed-loop performance. 

Fig. 1 shows a typical set of results obtained on a Feedback Ltd. 
ESlB Servo kit. The desired output y*, was a square wave of 
amplitude +30° and period 1 second; the sampling rate was 50 
Hz, the desired closed-loop polynomial was A* = (0.076 + l)3; 
the parameter estimator was a constant trace version of least- 
squares incorporating a relative dead zone; G / F  was chosen as an 
all pole second-order low-pass filter of bandwidth 15 Hz; S / Q  
was chosen as 616 + 1 to eliminate d.c. offsets in U ;  and an 
integrator was retrofitted to the system. These choices are in 
accordance with the guidelines given in Section VII. For the 
results in Fig. 1, the gain of the servo was switched between 5 and 
100 percent as indicated by the arrows. The lower trace shows the 
estimate of this gain. The upper trace shows the output response of 
the servo system. 

IX. CONCLUSIONS 
This paper has discussed design issues in adaptive control. The 

theoretical results have been supported by experimental evidence 

Fig. 1. Adaptive control of servo system. Upper trace: system response. 
Lower trace: estimate of system gain (6,). t 20: I gain increase. 1 20: 1 gain 
decrease. 

of the claimed robustness properties. We believe that the success 
of the algorithm is a result of the judicious amalgamation of 
various techniques including regression vector filtering, pole 
assignment, choice of desired closed-loop polynomial as a 
function of estimated model. estimator dead zone, least-squares, 

internal model principle’. 
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