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This paper considers application of£, adaptive output feedback controller to a missile longitudinal au-
topilot design. The proposed adaptive controller has satisfactory performance in the presence of parametric
uncertainties and time-varying disturbances. Simulations demonstrate the benefits of the control method and
compare the results to Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) with Loop

Transfer Recovery (LTR) design.

[. Introduction

This paper presents the application of @nadaptive output feedback controller to longitudinal autopilot design
for a missile in the presence of uncertainties in system dynamics. The uncertainties include parametric variations in
the transfer function and time-varying disturbances. The parametric variations of the system’s transfer function are
caused by changes in aerodynamic coefficients. The missile model, taken from Mracek and Ridgely [1], is an unstable
non-minimum phase system. The nominal optimal controller in Mracek and Ridgely [1] uses both system outputs
(pitch rate and normal acceleration) to compute the feedback control signal. In this paper we only use the acceleration.
The proposed adaptive output feedback controller, taken from Cao and Hovakimyan [2, 3], allows tracking of

reference systems that do not verify the SPR condition for their input-output transfer functions. Similar to the earlier
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results of Cao and Hovakimyan [4], tiie-norms of both input/output error signals between the closed-loop adaptive
system and the reference system can be rendered arbitrarily small by reducing the step-size of integration. The key
difference between [2,3] and [4] is the new piece-wise continuous adaptive law which enables tracking of the reference
systems without imposing the SPR requirement on their input-output transfer function. The adaptive control is defined
as the output of a low-pass filter, resulting in a continuous signal despite the discontinuity of the adaptive l&w. The
adaptive output feedback controller aims at achieving a guaranteed transient performance for the system’s output, and
regulating the frequency spectrum and the performance bound for the system’s input signal as well, by rendering them
arbitrarily close to the corresponding output/input signals of a bounded reference system.

We consider the longitudinal dynamics of a missile in the presence of uncertainties in aerodynamics and time-
varying disturbances. For comparison purposes, we first consider the nominal optimal controller from Mracek and
Ridgely [1], which is a “classic” three-loop topology autopilot designed by LQR methods. Then assuming only
measured acceleration is available, we design a LQG controller with Loop Transfer Recovery (LTR) to recover the
robustness of the LQR controller. This serves as the nominal output feedback controller in the absence of uncertain-
ties. We augment the baseline LQG controllerdyadaptive output feedback loop to compensate for the modeling
uncertainties.

The paper is organized as follows. Section Il presents the problem formulation. Section Il shows the nominal
controller design. Section IV gives an overview of the key results from Cao and Hovakimyan [2, 3], and Section V
discusses some design solutions to achieve the desired performance specifications. Section VI presents the simulations,

while Section VII concludes the paper.

Il. Problem Formulation

The missile’s longitudinal dynamics can be described using the short period approximation of the longitudinal

equations of motion [1]:

ip(t) = Apzp(t) + By [0p(t) +v(t,y(t))] 1)
Yp(t) = Cpap(t) + Dy [6p(t) + v(t, y(1))] (2
y(t) = Azm (t) ) (3)

whered,(t) is the elevator inputy(¢, y(¢)) is time-varying disturbance and dependsyét), z,(t) andy,(t) are the

state and the output vectors respectively, given by

zp(t) = g ow(t) = ; (4)
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while «(t) is angle of attackg(t) is pitch rate, A, (t) is normal acceleration ang, (¢) is measured pitch rate. In (1)

and (2) the system matrices are

1 [QSCay —_A 1 QSCZO‘@O
Ving m Xo mVm,
AP = ~ 9 BI) = QSdC ° )
QSdCrn 0 M§pg
Iyy Iyy
QSC.., QSdCp % 0 QSCxs, _ QSdComg, @
_ myg glyy _ mg glyy
Cp = , D, =
0 1 0

The numerical values of the simulation example in this paper are listed in Table 1, and are taken from Mracek and

Ridgely [1]. In this paper we consider uncertainties in the aerodynamic coefficientsC,,,,, C=,,, andCip,;, .

Table 1. Numerical Values of Model

Variable | Value Units Description

Vine 3350 ft/sec Total Missile Velocity

m 11.1 slug Total Missile Mass

Ivy 137.8 | slug — ft* | Pitch Moment of Inertia

z 1.2 ft Distance from CG to IMU Positive Forward

Ax, -60 ft/sec2 Axial Acceleration Positive Forward

C..o -5.5313| - Pitch Force Coefficient due to Angle of Attack

Cro 6.6013 | - Pitch Moment Coefficient due to Angle of Attack

Cespy -1.2713| - Pitch Force Coefficient due to fin Deflection

Crrspy -7.5368| - Pitch Moment Coefficient due to fin Deflection

Q 13332 | Ib/ft? Dynamic Pressure

S 0.5454 | ft2 Reference Area

d 0.8333 | ft Reference Length

g 32.174 | ft/sec? Gravity Constant

These uncertainties do not satisfy the restrictive “matching condition” required by conventional adaptive feedback
control schemes. Therefore we apply the adaptive output feedback method from Cao and Hovakimyan [2, 3].
We assume that the maximum possible variations of aerodynamic coefficients with respect to nominal values are

known conservatively:

[AC:, || <0.5-[|IC; [AC ol < 0.5 [[Crm

aolls woll

[AC:,,, | <0.5-[|C [AC, | 0.5 [|Crg,

520 | 2sp0 |1

while the exact values of these coefficients are unknown. In simulations, the actual values of aerodynamic coefficients

3o0f21

American Institute of Aeronautics and Astronautics



are selected to be

Ol =14-Copys Chp = 14-Cp L Ol =07-Csy o Cly =0.7-Clp )

Zag Zag? Mag Zépg

The control objective is to design adaptive output feedback controller to achieve satisfactory tracking performance

for the outputA,, (), in the presence of parametric uncertainties and time-varying disturbances, usint, Qiy.

[ll.  Nominal Controller Design

LA, LQR solution

We first develop the “classical” three-loop topology for the nominal controller design [1], assuming that the required
output signals in the three-loop topology are available. The system is augmented by consitigriagd,(¢) +

v(t,y(t)) as an additional state:

#1(t) = Awra(t) + Bu (u(t) +d(t,y(t)))
nt) = Cin(t), (6)
where
at) A, (1)
()= | q@t) |» w®)=0@), dt,y@t) =0ty), nl®)=| ¢.¢) |- ™)
z(t) Gm (1)

and the transformed state space matrices are

A, B 0 C D
Al = P ? 9 Bl = [ ] ’ Cl = g ? . (8)
[0 0 1 Ap(2,:)  Bp(2,:)
We also assume that the time-varying disturbad{¢ey(t)) satisfies the following assumption.

Assumption 1 There exists a constaiit > 0 such that the following inequality holds uniformlytin> 0 for all 3, ':

|d(t,y) —d(t,y")| < Ly — /|

A block diagram of the plant and controller structure is shown in Fig. 1.
When the aerodynamic uncertainties in (5) and the disturbdfce(¢)) are not present, the optimal Linear

Quadratic Regulator (LQR) solution in [1] is given by:

Azm (t) — KSST'Q
u(t) = ‘Sp(t) = Kopt qm () , 9)

Gm(t)
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O 1 [ (A,.B)) 24 C, —O—

Figure 1. Block diagram of system.
where K, is chosen to ensure zero steady-state error for step commands,rwisl¢he steady-state value of the
reference commane(t). Based on the nominal numerical values given in Table 1, the optimal controller gains are:
Kot = [~1.3028 11.7544 0.3277], K, = 1.0855.

In the current setupj,, (t) is not measurable, and the above computed optimal controller is actually the derivative

of é,(t). Since we have a linear system, we can integrate both sides of (9) to detéftinéassuming constant

gains) as:
Jo (As, (1) = Kogro) dr Jo (As, (1) = Kogro) dr
5p(t) = Kopt JE g (r)dr = Kopt I3 @ (T)dr : (10)
Jo Gm(T)dr @ (1)

If the available feedback signal is onl, , the above optimal controller cannot be implemented. The proposed
adaptive control method can have satisfactory tracking performance in the presence of parametric uncertainties and
disturbance, using onlyl,  as feedback signal. For comparison purposes, we design an observer that can recover
the original LQR control performance. At the same time we need to recover the inherent robustness of baseline LQR
controller as much as possible, because we are looking into the controller’s robustness to parametric uncertainties and

disturbance.

ll1.B. Output feedback solution: LQG/LTR

Based on the LQR solution of the above nominal optimal control, we can design a Linear Quadratic Gaussian (LQG)

with Loop Transfer Recovery (LTR) controller using only the outdyt

™"

Since the LQR controller is ready, we only
need to design the Kalman filter which can help recover the robustness of LQR controller. We note that due to the
non-minimum phase property of the system, the robustness recovery is limited.

In Mracek and Ridgely [1], the LQR design is based on the transformed system with state transformation

Cix1, as shown below

.i‘Q(t) = Agmg(ﬁ)+Bgu(t)
y2(t) = w2(t) (12)
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where
A, ()
Ig(t) = qm(t) s A2 = C’lAlC’l_l, BQ = ClBl.

Gm (t)
We design a Kalman filter based on this LQR solution. Plant noise and measurement noise are introduced to produce
.i?Q(t) = Agl‘g(t) + Bgu(t) + ng(t)

k(1)

A, () =11 0 Olaa(t) + (1) (12)

where the plant noise(¢) and the measurement noisg) are white noises with the spectral densitiesand S,
respectively, and they are uncorrelated and orthogonal. Furthermore, the plant noise and the initial states of the system
(12) are assumed to be uncorrelated and orthogonal; so are the measurement noise and the states. The Kalman filter

equation is
To(t) = Ag@o(t) + Bou(t) + G (yp(t) — [1 0 0]@y(t)) (13)

where( is the Kalman gain. The Loop Transfer Recovery design is done by increasing the spectral Slgrudity
the plant noisev(t). We choose different values 6f, to design the Kalman filter, and compare the results to the
LQOR results. The spectral density of the measurement noise is Sgt-a%).1. The Kalman filter gain is obtained by
MATLAB command ‘kalmari. Next we show the system response of LQG/LTR control.

First, the unit step responses of the LQR and LQG/LTR control are shown. In Fig. 2, the LQG controller is designed
with S, = 1 andS, = 0.1. It can be seen that the time responses of these two controllers are identical. However,
the robustness of these two controllers are different, due to the small value of spectral 8gnsityich means that
the loop transfer recovery is not enough. This can be seen in Fig. 3. In this figure, the parametric uncertainties in (5)
are present. The LQR controller has certain inherent robustness to parametric uncertainties, hence its performance is
acceptable. However, the LQG controller has degraded performance due to lack of robustness. We need to increase the
spectral densitys,, to recover as much as possible the robustness of the LQR controller. In Fig. 4, the spectral density
is increased ta00, and we can see that the performance is improved in the presence of parametric uncertainties. This
robustness recovery is limited by the system’s non-minimum phase property. Hence, incéeasamyot recover the
robustness completely, as shown in Fig. 5. With very large valug, othe system’s performance is no better than
that in the case of smalléf,.

We now introduce a disturband¢t) = 0.1sin(0.57t) into the system. In Fig. 6, the system output under the LQR
controller drifts from the desired steady state position, and the performance of LQG/LTR is also unacceptable. This is

expected because of the limitation of the loop transfer recovery applied to a non-minimum phase system.
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Figure 2. Comparison between LQR and LQG - no uncertainty, no disturbance
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Figure 3. Comparison between LQR and LQG - with uncertainty, no disturbance
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Figure 4. Comparison between LQR, LQG and LQG/LTR - with uncertainty, no disturbance
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Figure 5. Different values of S, for LQG/LTR designs - with uncertainties, no disturbance
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Figure 6. Comparison between LQR, LQG and LQG/LTR - with uncertainties and disturbance
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IV. £, Adaptive Output Feedback Control

In system (6), if we ley(t) = C1(1,:)z1(t) = c¢"z1(t) = A, (t), the longitudinal dynamics of the missile can

be presented in the following form:
y(s) = A(s) [u(s) +d(s)], y(0) =0, (14)

whereu(t) = 4,(t) € Ris the inputy(t) = A, (t) € R is the system outputd(s) = ¢ (s[ — A1)~ 1B is the
unknown transfer function of the systeti{s) is the Laplace transform of the time-varying disturbances in (6). Notice
thatd(t,y) depends on the system outputand the upper bound of the growth rateddf, y) with respect tqy is L,

as stated in Assumption 1.

Substituting the numerical values from Table 1 into the system in (6), we get the nominal systés) of

Ap,  —13.51s% + 16.46s + 44800

An(s) = —
o(s) Ao, 53 + 1.0645% — 290.3s

(15)

To achieve the control objective, we need to design an adaptive output feedback contrlgurch that in the
presence of uncertainties the system ougfjtit tracks the reference inpuft) with satisfactory performance. This can
be done by selecting a minimum-phase, strictly proper and stable transfer fuhftion and designing an adaptive
control law to achieve(s) ~ M (s)r(s). The selection of\/(s) needs to satisfy the sufficient conditions for stability
and performance, and we postpone the discussion on selectibf{ 9f to Section V. The system in (14) can be

rewritten as:
y(s) = M(s) (u(s) +o(s)) (16)
o(s) = ((A(s) = M(s))u(s) + A(s)d(s)) /M (s). (a7
Let (A,, € RYXN b, € RN, ¢,, € RV ) be the minimal realization af/(s). Hence,(A,,, b, ¢, ) is controllable
and observable, withl,,, being Hurwitz. Thus, the system in (16) can be rewritten as:
#(t) = Apz(t) + by (u(t) +o(t)) (18)
y(t) = ¢ x(t), x(0) =20 =0.
Next we introduce the closed-loogference systethat definesn achievable control objectivfer the £, adaptive

controller.

Closed-loop reference systemThe reference system is given by

yref(s) = M(s)(uref(s) + Uref(s)) (19)
Ores(s) = ((A(s) = M(5)trer(s) + A(s)dres(5)) /M (5)

uref(s) = C(s)(r(s) = ores(s))
whereC(s) is a low pass filter with DC gaif'(0) = 1.
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According to [2, Lemma 1] the selection 6f(s) and M (s) must ensure that
H(s) = A(s)M(s)/ (C()A(s) + (1 = C(5))M(s)) (20)
is stable and that th&,-gain of the cascaded system is upper bounded as follows:
[1H(s)(1 = C(s)lle, L <1 (21)

Then the reference system in (19) is stable.
The elements of thé€, adaptive controller are introduced next.
State predictor (passive identifier):Let (4,, € R™*", b,,, € R", ¢,,, € R™) be the minimal realization a¥/ (s).

Hence, @,,, b, c,) is controllable and observable with,, being Hurwitz. Then the system in (14) can be rewritten

as
z(t) = Apa(t)+ by (u(t) +o(t)) (22)
y(t) = clat)
The state predictor is given by:
2(t) = Am@(t) + bpu(t) + 6(t) (23)
9(t) = cni(t)

whereg (t) € R™ is the vector of adaptive parameters. Notice that in the state predictor equatigns not in the
span ofb,,,, while in the equation (22 (t) is in the span 0b,,,. Further, letj(t) = §(t) — y(t).

Adaptation law: Let P be the solution of the following algebraic Lyapunov equation:
Al P+ PA, =-Q
where@ > 0. From the properties aP it follows that there always exists a nonsingwaP such that
T
P=+VP VP.

Given the vector,” (v/P)~', let D be the(n — 1) x n-dimensional nullspace ef|, (v P)~!, i.e.

D(en,(vVP) )T =0 (24)
and let
o7
A= m c R*n (25)
DVP

The update law foé(t) is defined via the sampling tini€ > 0%

6(iT) = = Y (T)u(iT), i=1,2,---, (26)

aT defines the sampling rate of the available CPU.
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where
T
O(T) = / AARATHT=T) A\ qr (27)
0

and

u(iT) = MmN T GAT), = 1,2, (28)
Herel; denotes the basis vector in the sp&ewith its first element equal tb and other elements being zero.

Control law: The control law is defined via the output of the low-pass filter:

C(s)
M(s)

u(s) = C(s)r(s) — el (sT— Ay to(s). (29)

The completeC; adaptive controller consists of the state predictor in (23), the adaptation law in (26), and the
control law in (29), subject to th€,-gain upper bound in (21). The performance bounds oftheadaptive output

feedback controller are given by the following theorem.

Theorem 1
Jim (|7]c.) = 0
%iino(‘|y_yref||ﬁw) =0
tm (o —wreplle) = 0

The result in this theorem follows immediately from [2, Theorem 1] and [2, Lemma 3].

V. Design Issues ofZ; Adaptive Output Feedback Control

V.A. Stability

The first step of designing afy, adaptive output feedback controller is to guarantee stability of the closed-loop system.
From Theorem 1 it can be seen that the output of the closed-loop system tracks that of the closed-loop reference system
arbitrarily closely for allt > 0. Hence the goal of the first step in the design is to fi@) and M (s) to satisfy the
sufficient conditions given in (20) and (21). These two conditions can guarantee the stability of closed-loop reference
system.

We first discuss the classes of systems that can satisfy (20) via the chdifepandC/(s). We demonstrate that
stability of H(s) is equivalent to stabilization ol (s) by

C(s)

M1 C(s)) (30)

Consider the closed-loop system, comprised of the systém and negative feedback of (30). The closed-loop

transfer function is:
A(s)

C(s ’
1+A(S)m

(31)
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Letting

A= OO G MO = Sy @)
it follows from (20) that
~ Ca(s) M, (s)An(s)
H(s) = Hals) , (33)
where
Hy(s) = Cr(s)An(s)Ma(s) + My (s)Aq(s)(Cy(s) — Crn(s)). (34)

Incorporating (32), one can verify that the denominator of the system in (31) is exégth). Hence, stability of
H (s) is equivalent to the stability of the closed-loop system in (31).

The selection of\/(s) andC(s) can be restricted due to the properties of the plfit). Thus, it is not a trivial
task. However, it can be done using linear systems theory. The essential objective in this step is to design, based on the
nominal systen¥,(s), a feedback controller that can be decomposeddhte) and M (s) according to the equation
(30), while achieving stability off (s) in (20) and verifying the condition in (21) based on conservative knowledge of
parametric variations irl(s). In the following subsection we describe one method towards the select@(spand

V.A.1. Design via pole placement

We use a pole placement method (see examples in loannou and Sun [5]) to design a dynamic compeHAs&tor for
The block diagram in Fig. 7 shows the structure of the closed-loop system, where the dynamic captellérs)

is determined by the solution of the following equation

Ay, (8)P(s) + Ao, (s)L(s) = Au(s). (35)

n

All terms in (35) are polynomials of. The Hurwitz polynomiald;(s) defines the desired pole locations of the closed-

loop system. The coefficients of polynomidt§s) and L(s) may be obtained by solving the algebraic equation
Br=8"o

containing the Sylvester matri; of Ay, andAy,, while §; is a vector containing coefficients of baf(s) and L(s),

andq; is a vector containing coefficients df,;(s) (defined next).

Definition 1 Given two polynomialg(s) = a,,s™ + a, 15" + -+ 4+ ag, b(s) = bys™ + b, 18" "L + -+ + by, the
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Sylvester MatrixS; is defined to be the followingn x 2n matrix:

[ anp, 0 o --- 0 0 b 0 0O --- 0 0 ]
Ap—1  Gnp 0 0 0 bn_1  bn 0 0 0
Gp_1 Qp - . bp_1 by
0 0
6 o . . ay, by . .,
a0 a . an b by B
0 ag 0 bo
0 0 0 0
0
as a1 .oby by
0 0 - 0 0 a 0O 0 - 0 0 b |

Definition 2 If L(s) = 8"~ + 1,,_9s" 2 + - + I35+ lo, P(8) = pp_18""L + pp_28""2 + -+ + p15s + po, then
ﬂl = [17 ln*27 ln*37 IR lla lOv Pn—-1, Pn—2, ", P1, PO]T-

If Ay(s) =821+ a3, 52" 2+ +afs+af, then

]T

_ * * * *
O‘l*[lv Aop—2y Gopn_3, *°°, Gy, Qg

The polynomialsd,,, (s) and Ao, (s) should be coprime to ensure the existence and uniqueness of solutiBs)of

andL(s), and non-singularity ob;.

O

e
L(s)

Figure 7. Block diagram of pole placement method.

Incorporating (32) we have

(36)
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Since the low pass filtef'(s) has DC gain ofl, the polynomialCy(s) — C,,(s) has no constant term, which means

that the transfer function (36) has at least one pole at the origin. To obtain suitable dynamic compensators which can
. : . A . :

be decomposed intd/ (s) andC'(s), we need to design a dynamic compensator for the syst%@. Observing Fig.

8, it can be seen that the two closed-loop systems have the same characteristic equation. Hence wé @arafiad
P(s)
L(s)

! : . .
M (s) from the transfer function . Upon selection of the structure 6f(s) and M (s), we can write explicitly
S

the transfer function in (36) and obtain the coefficients by equating it tol ]LD((S; .
S S
@ A(s) ™ A(S)
— S —
HS 1 P(s)
L(s) s L(s)

(@) (b)

Figure 8. Block Diagrams

Upon obtaining the dynamic compens 5 (C;(i)c( ik one can apply Nyquist criterion or Root Locus meth-

S S
ods to tune the gains of this compensator by changing the polég (s). If the low-pass filteiIC(s) and the desired

systemM (s) do not lead to satisfactory performance, we need to re-select the desired locations of the closed-loop
poles. Notice that the above method isimtuitive one and other methods from linear systems theory can be equiva-
lently explored for determining a structure 6¥s) and M (s).

We show how to seledt/(s) andC'(s) for our missile model. If we choose the desired pole locations 2t +

2004, —200 £ 2007, —20, —20 and—20, then
Ay(s) = s7 + 860s° + 3.7E05s° 4 8.4E07s* + 1.0E10s> + 4.6E11s? + 8.2E12s + 5.1E13 .

The Sylvester Matrix is determined by the coefficientslgf (s) ands Ay, (s). The vectors containing the coefficients

of 4y, (s) andsAy,(s), respectively, are shown below

[0 —13.5 16.5 44796] ", [1 1.06 —290.3 0 0]".
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The Sylvester MatrixS; is

1 0 0 0 0 0 0 0
1.06 1 0 0 0 0 0 0
—-290.3 1.06 1 0 —13.5 0 0 0
S — 0 -290.3  1.06 1 16.5 —13.5 0 0
0 0 —290.3 1.06 44796 16.5 —13.5 0

0 0 0 —-290.3 0 44796 165 —13.5

0 0 0 0 0 0 44796  16.5

0 0 0 0 0 0 0 44796 |

We solve the following algebraic equation

Br=5"a

to get the vectop;:
B =[1 858 4.6E06 2.4E08 3.1E05 1.2E07 1.8E08 1.1E09]',

whereq; is the vector of the coefficients of,; (s).
The first four elements gf; are the coefficients ak(s), and the rest of the elements are the coefficient8(Gf.
Hence,

L(s) = s + 8585 + 4.6E06s + 2.4E08,
P(s) = 3.1E055% + 1.2E07s? + 1.8E08s + 1.1E09.

If we selectC(s) to be a second order, relative degeeansfer function, and/(s) be third order, relative degree

transfer function, we can write explicitly the transfer function in (36) and obtain the coefficiendgofandC/(s) by

equating (36) tc;]LDES; The transfer functions faf'(s) and M (s) take the form:
S S
5% 4 806s + 4.5E06
M = - , 37
(s) % + 39.025% + 5855 + 3665 37)
AE
C(s) = e (38)

s2 +52.61s + 3.1E05°

This selection of\/ (s) andC(s) generate satisfactory performance according to simulation results shown in Section
VI.
V.A.2. Stability check

We notice that the design of the dynamic compensator is based on our knowledge of the nomindl, @lanive

know the bounds for the variation of the system parameters, but not the exact values of these parameters. The stability
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of the transfer function (31), or equivalently stability of the condition (20) can be checked by Kharitonov’s Theorem.

Towards that end, consider the ¢&) of real polynomials of degree of the form
5(8) = 60 + 615 + 028% 4 038% + -+ - 4+ 5,5",
where the coefficients lie within the given ranges:
0o € [Xo,Yo], 61 €[Xy,Y1], -+ ,0, €[Xn, Y]

Letes = [do, 01, - - , 0] @and consider the polynomid(s) with its coefficient vector;. Introduce the hyper-rectangle
box of the coefficients

B .= {05:65€Rn+1, X; <6; <Y;, i:0,1,'~~,n}.

We assume that the degree remains invariant over the family, so thék,,,Y,,]. Kharitonov's Theorem provides a

(conservative) necessary and sufficient condition for Hurwitz stability of the entire family.

Theorem 2 (Kharitonov Theorem) [6]

Every polynomial in the famil¥ (s) is Hurwitz if and only if the following four extreme polynomials are Hurwitz:

K'(s) = Xo+ Xis+ Yos® 4+ V3s® + Xys* + X585 + Yes5 + -+,
K2(s) = Xo+Yis+ Yas® 4+ X35° 4+ Xys? 4+ Vas® + Vgs® + -+,
K3(s) = Yo+ X1s+ Xgs2 4 Y3s® + Vis* + X55° + X8 + -+,
K*s) = Yo+ Yis+ Xos® 4+ X38° + Vys? + Vss® + Xgs® 4+ -+ - .

Proof of this theorem is omitted. To show the relationship between th&laox the vertices corresponding to extreme
polynomials, a plot is shown for a family of second order polynomials [7], Fig. 9.
9,

Figure 9. The box 3 and four Kharitonov vertices

If we consider the bounds of parametric variationslifs) in (34) upon designing’(s) andM (s), we can obtain

the variation rangéX;,Y;], i =0, 1,--- ,n of each coefficient of the polynomi&l,;(s). SubstitutingX; andY; into
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the four extreme polynomials, we only need to check the stability of these four polynomials. If these four polynomials
are stable, the designéd(s) andM (s) are acceptable for verification of the condition in (20).
Upon the design of transfer functions) and M (s), the condition (21) needs to be checked. This follows from

the same procedure of the results in Cao and Hovakimyan [8, 9].

V.B. Performance

The second step is to ensure satisfactory performance. Upon determining the structiite) cfnd C'(s), which
can satisfy the sufficient conditions for stability, we can tune the parametdiS of andC'(s) within the acceptable
parameter space to achieve satisfactory performance. The tuning of parameférs fdollows from conventional
linear systems theory, which we omit here. The guideline for tuning the low-pasgfilterfollows the same lines
of Cao and Hovakimyan [8, 9]. The trade-off between the time-delay margin and the performancé& phitheptive
controller depends solely upd@ry(s). Increasing the bandwidth 6f(s) leads to improved performance at the price of
reduced time-delay margin. In [10], we consider constrained optimization of the performance and/or the robustness of
L, adaptive controller by resorting to appropriate Linear Matrix Inequality (LMI) type conditions. If the corresponding
LMI has a solution, then arbitrary desired performance bound can be achieved, while retaining a prespecified lower-
bound on the time-delay margin.

In summary, to gain more freedom in design, it is important for designers to find the largest possible acceptable

parameter space in the first step discussed in section V.A.

VI. Simulation Example

The nominal transfer function of the unstable non-minimum phase missile plant in (15) is repeated below:

 —13.5152 + 16.465 + 44800

A(s) = 39
) = 5 106452 — 20035 (39)
and the desired systei (s) and the low-pass filtef'(s) are taken from (37) and (38):
s + 806s + 4.5E06
= 4
M(s) 5% + 39.025% + 5855 + 3665’ (40)
1E
ols) = e (41)

s2 +52.61s + 3.1E05°

We selectl” = 0.0001. The £; output feedback adaptive control approach is applied to this system. Fig. 10 shows
the system outputs with; controller, in the absence and in the presence of parametric uncertainties. We can see that
the system output tracks the step command satisfactorily. Although this response is different from that of the baseline
LQR controller, we demonstrate later that in different unknown scenariog, tkentrolled system still has a uniform
response close to the one shown in Fig. 10, independent of the nature of the uncertainty. This verifies the theoretical
claim on uniform approximation of the corresponding signals of a bounded reference system. In Fig. 11 the control

signal is shown, which is guaranteed to stay in low frequency range.
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The disturbance is then introduced, as shown in Fig. 12. Sifigedoes not depend on the system outpd,
the condition in (21) is satisfied automatically. We see that the output response is slightly different than that of the
nominal £, case, but is still satisfactory. To explain this, we look into the closed loop reference system (19). It can be

shown that

yref(s) = M(S) [C(S)T(S) + (1 - O(S))UTCf(S)]
C(s)(1 = C(s))(A(s) —
M(s) + (A(s) — M(s))C(s)

M(s) |C(s)r(s) +

The transfer function fromi(s) to y,.s(s) can be expressed as

(Ca(s) = Cn(s))An(s) Mn(s)
(Ca(s) = Cn(s))Aa(s)Mn(s) + An(s)Ma(s)Cn(s)’

(42)

The magnitude curve of the Bode diagram is given in Fig. 13, which shows disturbance attenuation at low and high
frequencies. This behavior of the reference system can be improved by manipulating the bandwiditz$ ahd

C(s). For our non-minimum phase, unstable systé(), the possible selections are not many.

1.2

Acceleration (g)

L1 - no uncertainty no disturbance |

— L1 - with uncertainty, no disturbance|

0.2 0.4 0.6 0.8 1
time (sec)

Figure 10. Closed loop response of ; controller - with/without uncertainties, no disturbance

Finally the parametric uncertainties are changed due to a change in aerodynamic coefficients given below:

C. =12-C C/ =15-Cn,,» Cc. =08-C C! =0.7-C

z 5 z m .
Zag ag? L Z5pg Spg? M5y, Spo

(43)

The system output is shown in Fig. 14. We can see thartheutput feedback adaptive control still has uniform

performance.
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0.15 T T T T
— L, control signal — with uncertainty, no disturbance|
0.1r 4
0.05+ 9
= 0
o
g
o
© —0.05f g
—0.1} ]
-0.15 1
-0.2 . . . .
0.2 0.4 0.6 0.8 1
time (sec)
Figure 11. Control signal of £ controller
1.2
0.8 9
C)
c 06 4
2
s
K
8 04 i
Q
<
0.2 9
0 v Ly =no uncertainty no disturbance
— L - with uncertainty and disturbance|
n n

-0.2 I N
0 0.2 0.4 0.6 0.8 1

time (sec)

Figure 12. Closed loop response of ; controller - with uncertainties and disturbance

Bode Diagram

Magnitude (dB)

Frequency (rad/sec)

Figure 13. Frequency response of transfer function fromd to y,..
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1.2

0.8r

0.6r

0.4

Acceleration (g)

0.2r

o=~/ | L1 - no uncertainty no disturbance

— L1 - with uncertainty case 2, and disturbance

~0.2 L n n n
0 0.2 0.4 0.6 0.8 1

time (sec)

Figure 14. Closed loop response of ; controller with different uncertainties

VIl. Conclusion

Longitudinal autopilot design for a missile model is performed usihgadaptive output feedback controller,
appropriate for non-SPR reference system dynamics. The new piece-wise constant adaptive law along with the low-
pass filtered control signal ensures uniform performance bounds for system’s both input/output signals as compared
to the corresponding signals of a non-SPR reference system. The simulation responses of the proposed controller are
compared to those of baseline LQR and LQG/LTR design, and the benefits 6f theaptive controller are clearly

demonstrated.
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