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Abstract— Small unmanned air vehicles (UAVs) have been
used to collect samples of pollen, plant pathogens, and other
biological particles within the earth’s surface boundary layer
(from about one to fifty meters altitude) and the planetary
boundary layer (from about fifty to one thousand meters). These
samples provide valuable information concerning the release,
transport, and deposition of biological particles, with important
implications for food safety and agricultural practices. In some
sampling applications, it is essential that the UAV’s speed and
altitude be precisely regulated, which suggests the use of an
autopilot. Because the biological sampling apparatus may dra-
matically alter the UAV’s flying qualities, however, the autopilot
must be robust to large, fast changes in the dynamic model
parameters. This paper describes the application of a new
adaptive control technique, referred to as L1 adaptive control,
which quickly compensates for large changes in the aircraft
dynamics, providing an effective platform for aerobiological
sampling.

NOTATION

CD Drag force coefficient

CT Thrust coefficient

D Drag force (N)

g acceleration due to gravity (m/s2)

Iyy Pitch moment of inertia (kg m2)

m Mass (kg)

M Pitch moment divided by

pitch inertia Iyy (Nm/(kg m2))

q Pitch rate (deg/s)

S Reference area (m2)

T Thrust (N)

V Velocity (m/s)

Z Vertical force divided by mass m (N/kg)

α Angle of attack (deg)

δT Thrust input

δe Elevator deflection (deg)

θ Pitch angle (deg)

ρ Density of air (kg/m3)

Dimensional stability derivatives are denoted by sub-

scripts. For example, Mα = ∂M
∂α

. The same is the case

for derivatives of dimensionless coefficients. For example,

CTδT
= ∂CT

∂δT
.

I. INTRODUCTION

Plant pathologists and ecologists are naturally concerned

with the dispersal, transport, and deposition of airborne

This work was supported in part by ONR grant N00014-05-1-0516.

biological particles, such as pollen or mold spores. Re-

cent research, in which small UAVs were used to collect

air samples in the planetary boundary layer (PBL), gives

conclusive evidence that common plant pathogens can be

transported over much greater distances than had previously

been assumed [7]. Ref. [7] describes the use of remotely

piloted UAVs, over a period of four years, to measure

the relative abundance of viable spores of Gibberella zeae,

the causal agent of Fusarium head blight in wheat. The

UAVs were fitted with two spore-sampling devices, each

consisting of two circular petri plates that are opened and

closed like a clam shell while the UAV is in flight; see

Figure 3. Each petri plate contained a Fusarium-selective

medium which captured airborne spores for later cultivation

in the laboratory. An example of an aerobiological culture

is shown in the photograph in Figure 2. More recently, a

similar sampling apparatus has been used to characterize

the dispersal and transport of maize pollen in the surface

boundary layer (SBL), as described in [1]. Advantages of

using UAVs to collect such samples include extremely large

sample volumes, which is important for collecting statisti-

cally significant samples of sparsely distributed particles, and

a sampling method that is essentially independent of wind

speed and direction [1].

Fig. 1. A UAV with sample collection plates [7].

The use of a remotely piloted UAV for aerobiological

sampling requires an experienced pilot and pilot availability

may limit experimental research activities. Moreover, in

applications where it is essential that the UAV maintain con-

stant speed and altitude, a human pilot’s performance may

be inadequate. Autonomous flight control is an appealing

alternative. For more ambitious experimental programs in-

volving coordinated flight of multiple UAVs, automatic flight

control is essential. Unfortunately, conventional automatic

flight controllers do not adapt well to large changes in aircraft

dynamics. In experiments involving a human pilot, sampling
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Fig. 2. Bacterial and fungal colonies cultured from samples collected within
the PBL above Virginia Tech’s Kentland Farm Microbial Observatory.

plates such as those shown in Figure 3 are controlled by a

second operator, allowing the pilot to concentrate entirely on

recovering the aircraft from the large disturbance. Automatic

flight control, for this application, would require a controller

capable of rejecting large, fast disturbances. In this paper,

we apply the newly developed L1 adaptive control method

described in [2]–[4] to the problem of longitudinal control of

a UAV used for aerobiological sampling. This robust control

method provides fast adaptation and guaranteed transient

performance in spite of large uncertainties in the system

dynamics. Analysis and simulations for an aircraft of rep-

resentative size illustrate the effectiveness of the approach.

II. PROBLEM FORMULATION

We consider the special case of wings-level flight. Be-

cause the sampling plates are located symmetrically about

the aircraft’s symmetry plane, and because they open and

close in unison, the three longitudinal degrees of freedom

decouple from the remaining dynamics. Under reasonable

assumptions, the airspeed dynamics are:

V̇ =
1

m
(T cosα − D) − g sinγ.

If the angle of attack α and flight path angle γ remain small,

this equation may be approximated as

V̇ =
1

m
(T − D) (1)

where T = ρV 2

2 SCTδT
δT, D = ρV 2

2 SCD(α). When the

spore samplers open, as depicted in Figure 3, they generate

an increment in drag and a nose-down pitch moment. Both

disturbance effects are considered to be unknown functions

of the angle of attack. The aerodynamic drag force becomes

D =
ρV 2

2
SF (α) (2)

where the unknown nonlinear function F (α) represents the

induced drag coefficient. The uncertainty in the drag force

is largely due to the dramatic change in configuration as-

sociated with opening the spore samplers. The drag force

certainly increases when the spore samplers are opened, but

Wing front view

closed

open
Wing front view

d
2

d
1

Fig. 3. Front view of the wing with dishes

modelling this effect accurately, particularly while the plates

are opening, is quite challenging. It is far more convenient

to treat the effect as an uncertain disturbance.

In our control design step, we represent the uncertainty due

to the increment in drag using step functions (i.e., we assume

that the sampler plates open quickly). The magnitude of this

step function is large and can easily compromise aircraft

stability and performance. The control objectives, therefore,

are to reject this disturbance by (1) modulating thrust in

order to regulate the aircraft’s speed and (2) modulating pitch

control moment in order to regulate the aircraft’s angle of

attack.

Neglecting the influence of gravity and thrust on the angle

of attack rate, and assuming the speed to be well-regulated

by the thrust control loop, we consider the longitudinal

dynamics to be well-described by equation (1) along with

the following two equations:

α̇ =
1

V0
(Zαα + Zδeδe) + q (3)

q̇ = Mαα + Mqq + Mδeδe (4)

The first equation relates to the aircraft’s vertical, or “plunge”

dynamics while the second describes the pitch dynamics.

We develop an “inner loop” controller for these dynam-

ics with the understanding that a well-designed outer loop

controller can then regulate the aircraft’s altitude. Regarding

equation (3), we will neglect the increment in total lift due to

elevator deflections, as represented by the term (Zδeδe)/V0.

This term is small compared to the other terms on the right

hand side of equation (3). Note that we are working the

“stability reference frame” so that, in nominal flight, the

angle of attack and elevator deflection are zero.

Opening the sampling plates generates an incremental

nose-down pitch moment:

q̇ = Mαα + Mqq + Mδδe − ∆M (5)

where ∆M > 0. The sampling plate geometry and the

parameters d1 and d2 shown in Figure 3 may be used to

estimate the unknown force and moment, or at least to obtain

bounds on the uncertainty.
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Equations (1) and (3-4) may be written in the form

ẋ1(t) = A1x1(t) + B1(u1(t) + ∆1(x(t))) (6)

ẋ2(t) = A2x2(t) + B2(u2(t) + ∆2(x(t))) (7)

with the terms defined as follows:

[V̇ ]
︸︷︷︸

ẋ1

= [0]
︸︷︷︸

A1

[V ]
︸︷︷︸

x1

+ [1]
︸︷︷︸

B1

[
ρV 2S

2m
CTδT

δT
︸ ︷︷ ︸

u1

−

(
ρV 2S

2m

)

(CD(α)η1(α) + η2(α))

︸ ︷︷ ︸

∆1

]

[
α̇
q̇

]

︸ ︷︷ ︸

ẋ2

=

[
Zα

V0

1

Mα Mq

]

︸ ︷︷ ︸

A2

[
α
q

]

︸︷︷︸

x2

+

[
0

Mδe

]

︸ ︷︷ ︸

B2

[ δe
︸︷︷︸

u2

−
1

Mδe

∆M

︸ ︷︷ ︸

∆2

].

It is reasonable to expect some conservative knowledge

concerning the magnitude of the uncertainties ∆i and their

growth rates from analysis, experimental evaluation, or wind-

tunnel testing. Thus, for xi(t) ∈ Di, where Di is some known

compact set, we assume that the following uniform bounds

hold with known positive constants Li and Di for i ∈ {1, 2}:

|∆i(x
′
i) − ∆i(x

′′
i )| ≤ Li‖x

′
i − x′′

i ‖

max
i=1,2

|∆i(0)| ≤ Di

The two sets D1 and D2 will be specified shortly. The control

objective is to maintain the nominal performance, i.e., to

regulate the speed and altitude, in the face of these bounded

uncertainties in drag force and pitch moment.

III. L1 ADAPTIVE CONTROL

Referring once again to equations (6) and (7):

ẋi(t) = Aixi(t) + Bi(ui(t) − ∆i(xi(t)),

xi(0) = xi0 (8)

where i ∈ {1, 2}. The controllers ui(t) are chosen for each

subsystem in the following form:

ui(t) = −Kixi(t)
︸ ︷︷ ︸

ulini
(t)

+uadi
(t), (9)

where ulini
(t) is the baseline linear controller for the ith

subsystem. These controllers may be designed using any

standard linear control design technique. The control signal

uadi
(t) is an adaptive element which augments the ith

baseline controller.

The subsystem uncertainties ∆i(xi) may be approximated

to arbitrary precision within the compact set Di using a

linearly parametrized neural network. Specifically, we write

∆i(xi) = W⊤
i Φi(xi) + ǫi(xi), xi ∈ Di, (10)

where Φi(xi) is a vector of suitably chosen Gaussian basis

functions of dimension ki × 1, Wi ∈ R
ki×1 is a vector of

constant unknown parameters, and ǫ∗i is a uniform bound for

the approximation error over the set Di.

To derive the adaptive laws, consider the following pre-

dictor model:

˙̂xi(t) = Ami
x̂i(t) + Biuadi

(t)

−BiŴ
⊤
i (t)Φi(x(t)), x̂i(0) = xi0 , (11)

where Ami
= Ai −BiKi is a Hurwitz matrix. The predictor

model leads to the following state error dynamics with

x̃i(t) = x̂i(t) − xi(t) and W̃i(t) = Ŵi(t) − Wi:

˙̃xi(t) = Ami
x̃i(t) − BiW̃

⊤
i (t)Φi(xi(t))

+Biǫi(xi), x̃i(0) = 0. (12)

Since Ami
is Hurwitz, by assumption, there exists a unique,

positive definite solution Pi to the Lyapunov equation

PiAmi
+ A⊤

mi
Pi = −Qi for any symmetric positive definite

matrix Qi. Choose an adaptive gain Γic
> 0 and define

Γi = Γic
Ik where Ik is the k× k identity matrix. Define the

adaptation law

˙̂
Wi(t) = ΓiProj

(

Ŵi(t), Φi(xi(t))x̃
⊤
i (t)PiBi

)

,

Ŵi(0) = 0, (13)

where Proj(·, ·) represents the projection operator defined in

[6]. This adaptation law ensures that all error signals remain

bounded, regardless of the choice of uadi
(t). This does not

ensure stability of the closed-loop system, however; one must

define the adaptive control uadi
(t) and show that either xi(t)

or, equivalently, x̂i(t) is bounded. Moreover, one must define

the set Di and show that, with the given choice of adaptive

control signal uadi
(t), the state xi(t) remains within Di for

all t ≥ 0.

Consider the following L1 adaptive controller, given in the

Laplace domain:

uadi
(s) = Ci(s)r̂i(s) , (14)

where Ci(s) is a low pass filter with unity DC gain and

r̂i(s) is the Laplace transform of r̂i(t) , Ŵ⊤
i (t)Φi(x(t)).

To ensure stability of the entire system, one must show that

the state of either (8) or (11) remains bounded with this

choice of uadi
. The predictor model (11), with the control

signal defined in (14), can be viewed as a linear time-

invariant system with the input r̂i(t). Let x̂i(s) represent the

Laplace transform of x̂i(t). Then x̂i(s) = Ĝi(s)r̂i(s) where

Ĝi(s) = Hoi
(s)(Ci(s)− 1) and Hoi

(s) = (sI −Ami
)−1Bi.

Note that Hoi
(s) is a stable transfer function.

To ensure boundedness of the predictor system state and

desired transient performance for the controller in (14), Ci(s)
must be selected such that

‖Ĝi(s)‖L1
<

1

Li

, (15)

where || · ||L1
denotes the L1 gain of Ĝi(s). In brief review,

the L1-gain of a general system H(s) is defined as:

‖H(s)‖L1
= max

i=1,..,n





m∑

j=1

‖Hij(s)‖L1



 ,
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in which Hij(s) is the ith row jth column element of H(s)
(for details refer to [2]–[4]). We further recall that the L1 gain

of a stable proper single-input single-output system Hij(s)
is defined as ‖Hij(s)‖L1

=
∫ ∞

0 |hij(t)|dt, where hij(t) is

the impulse response of Hij(s).
Following the approach in [2], let

Di = {x | ‖x‖∞ ≤ γri
+ γ1i

+ γ0i
+ σi} , (16)

where σi > 0 is an arbitrary positive constant, while

γri
=

‖Ĝi(s)‖L1
(Di + ǫ∗i ) + ‖Hoi

(s)‖L1
ǫ∗i

1 − ‖Ĝi(s)‖L1
Li

, (17)

γ0i
=

√

λmax(Pi)

λmin(Pi)

(
2ǫ∗i ‖PiBi‖

λmin(Qi)

)2

+
Wmaxi

λmin(Pi)Γci

, (18)

γ1i
=

(5‖Ĝi(s)‖L1
+ ‖Hoi

(s)‖L1
)ǫ∗

1 − ‖Ĝi(s)‖L1
Li

(19)

+
(1 + ‖Ci(s) − 1‖L1

)γ0i

1 − ‖Ĝi(s)‖L1
Li

,

where Wmaxi
, 4 max

Wi∈Θi

‖Wi‖
2. The complete L1 adaptive

controller consists of (8), (11), (13), and (14), all subject to

condition (15) with Di defined in (16).

IV. ANALYSIS OF THE L1 ADAPTIVE CONTROLLER

In this section we characterize the reference system, which

is being tracked by the system (8) via the L1 adaptive

controller both in transient and steady state. Following the

approach in Refs. [2]–[4], consider the ideal version of the

adaptive controller uadi
(t) in (14):

urefi
(s) = ηi(s) , (20)

where ηi(s) is the filtered output of W⊤
i Φi(xref(t)) by Ci(s).

The closed-loop system with the ideal controller takes the

form:

xrefi
(s) = Ĝi(s)η1i

(s) − Hoi
(s)ǫi(s) , (21)

where xrefi
(s) is the Laplace transformation of the state

xrefi
(t) of the closed loop system, ǫi(s) and η1i

(s) are

the Laplace transforms of the signals ǫi(xref(t)) and

W⊤
i Φi(xref(t)), and xrefi

(0) = xi0 . The following lemma

states that the closed-loop system with the controller (20) is

stable and its state remains inside Di for all t ≥ 0.

Lemma 1: [2] The control signal given by (20), subject to

the condition in (15), ensures that the state of the closed-loop

system in (21) remains inside Di for all t ≥ 0:

‖xrefi
‖L∞

≤ γri
. (22)

Thus, the control signal urefi
(s) ensures that for any t ≥ 0

the state xrefi
(t) remains inside the set Di, on which the

neural network approximation has been defined. Next we

need to show the uniform boundedness and the guaranteed

transient performance of the L1 adaptive neural network

controller. The main result from Ref. [2]–[4] is given by

the following theorem.

Theorem 1: Given the system in (8), the reference system

in (20), (21), and the L1 adaptive neural network controller

defined via (11), (13), and (14) subject to (15), we have:

‖xi − xrefi
‖L∞

≤ γ1i
, (23)

‖ui − urefi
‖L∞

≤ γ2i
, (24)

where γ1i
is given in (19) and where

γ2i
=

∥
∥Ci(s)(c

⊤
oi

Ho(s))
−1c⊤oi

∥
∥
L1

γ0i

+‖Ci(s)‖L1
Liγ1i

+ 3‖Ci(s)‖L1
ǫ∗i , (25)

with coi
∈ R

n representing some vector for which c⊤oi
Hoi

(s)
is minimum phase with relative degree one. (The existence

of such a vector coi
is guaranteed; see [2].)

From the relationships in (22) and (23) it is straightforward to

verify that ‖xi‖L∞
≤ γri

+γ1i
for any t ≥ 0, i.e. xi(t) ∈ Di.

Corollary 1: For the system in (8) and the L1 adaptive

controller defined via (11), (13), and (14) subject to (15),

we have:

lim
Γci

→∞, ǫ∗→0
(xi(t) − xrefi

(t)) = 0, ∀ t ≥ 0, (26)

lim
Γci

→∞, ǫ∗→0
(ui(t) − urefi

(t)) = 0, ∀ t ≥ 0. (27)

Corollary 1 states that xi(t) and ui(t) follow xrefi
(t) and

urefi
(t) not only asymptotically but also during the transient,

provided that the adaptive gain is selected sufficiently large

and the neural network approximation is accurate enough.

Thus, the control objective is reduced to selection of Ci(s)
to ensure that the reference system with unknown parameters

has the desired response. In Ref. [3] and Ref. [4], specific

design guidelines are provided for selection of Ci(s) to

achieve this objective. For the sake of brevity, we do not

repeat those here. Nevertheless, the following remarks are in

order [2]–[4].

Remark 1: If Ci(s) = 1, the L1 controller

degenerates into a MRAC type. Then, the term
∥
∥Ci(s)(c

⊤
oi

Hoi
(s))−1c⊤oi

∥
∥
L1

in γ2i
in (25) cannot be

finite since Hoi
(s) is strictly proper. Therefore, γ2i

→ ∞,

which implies that in conventional MRAC type neural

network adaptive control, one can not reduce the bound of

the control signal in (24) by increasing the adaptive gain or

improving the approximation accuracy.

Remark 2: Recall that in the conventional MRAC scheme,

the ultimate bound is given by γ0i
defined in (18), which

depends upon ǫ∗i , Wmaxi
and Γci

. While ǫ∗i and Wmaxi

are related via the choice of radial basis functions (RBFs)

used for approximation, Γci
is a design parameter of the

adaptive process that can be used to reduce the ultimate

bound. However, increasing the adaptive gain in conventional

MRAC leads to high-frequency oscillations in the control

signal. With the L1 adaptive control architecture the ultimate

bound of the tracking error is given by γ1i
in (23). From the

definition in (19), it follows that γ1i
> γ0i

. Nevertheless,

the ability of the L1 adaptive control architecture to tolerate

high adaptive gains implies that γ0i
can be reduced leading

to an overall smaller value for γ1i
. This ability is enabled via

the low-pass system in the feedback path that filters out the

high-frequencies in Ŵi(t)
⊤Φi(x(t)) excited by large Γci

.
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Fig. 4. The Sig Rascal 110.
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Fig. 5. State Trajectories without L1 control: velocity, α, θ and altitude
(solid line: with uncertainties; dotted line: nominal)

V. SIMULATION RESULTS

A simulation example is presented to illustrate the benefit

of the L1 adaptive controller. The aircraft model parameters

used in the simulation correspond to the Sig Rascal 110, the

airframe which is used for UAV control research in Virginia

Tech’s Nonlinear System Laboratory [5]. The aircraft starts

from trim conditions α = 5.75 deg, θ = 5.75 deg, and

V0 = 20 m/s. After 2 seconds, the petri plates are opened,

resulting in a sudden change in the drag force and the

pitching moment.

In nominal conditions, with the petri plates closed, the

linear control law provides adequate regulation of the trim

state. Figure 5 shows the state history once the petri plates

are open. From the figures it can be seen that the velocity,

pitch angle and angle of attack all deviate significantly from

their nominal values; the airplane begins diving.

Next, we apply the L1 adaptive controller to this sce-

nario. First, we examine the growth rate of the assumed

uncertainties and compare their inverse to the L1 gains of

Ĝi(s) in order to choose the bandwidths ωi of the low

pass filters Ci(s). The transfer function Ĝi(s) represents a

cascaded system of low pass filter Hoi
(s) and high pass

filter (Ci(s) − 1). Thus ‖Ĝi(s)‖L1
can be reduced when

5 10 15 20 25
0

1

2

3

4

5

6

7

8

Low−pass filter cutoff frequency  ω

Speed subsystem

Pitch/plunge subsystem

max(1/L
i
)

Fig. 6. Comparison of ‖Ĝi(s)‖L1
and 1/Li; see inequality (15).

the bandwidth of the low pass filter Ci(s) is increased. It is

safe enough to compare the inverse of the largest possible

growth rate of the uncertainties to ‖Ĝi(s)‖L1
. We calculate

the L1 gains of Ĝi(s) at different values of bandwidth ω
numerically, and choose a large enough bandwidth to satisfy

the L1 gain stability requirement. Based on the chosen un-

certainties, we select the larger (conservative) growth rate as

Lmax = max{L1, L2} = 0.1270. Figure 6 indicates a lower

bound on the choice of the filter’s cutoff frequency. Choices

which satisfy this bound and provide good performance are

ω1 = 10 and ω2 = 5.

As shown in Figure 7, when the system is subjected to

the same large disturbance with an L1 adaptive controller

implemented, the nominal performance is recovered. The

adaptive gains of for the L1 controller were chosen quite

high, Γ = 5000I, in order to achieve fast adaptation.

The control signal, however, exhibits only low frequency

components due to the low pass filters. When the uncer-

tainties change, there is no need to re-tune the adaptive gain,

while in conventional MRAC re-tuning may be needed. The

next example, illustrated in Figure 8 shows that when the

amplitude of the uncertainties increase by two times, the

same L1 controller still recovers the nominal performance

without additional tuning.

Figure 9 shows the control inputs (elevator and throttle

inputs) using the L1 adaptive controller for two different

values of uncertainties. The control signals are low frequency

signals even with very large adaptive gains. For different

values of the uncertainties, the control signals show scaled

responses, which is characteristic of a linear system. One

of the benefits of L1 adaptive control is that it guarantees

the system’s control signals track those of a linear reference

system within bounds stipulated by designers, both during

the transient and at steady state.
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Fig. 7. State histories using L1 adaptive control: V , α, θ and q. (Solid
line: with uncertainties; dotted line: nominal)
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Fig. 8. State histories with L1 adaptive control for larger uncertainties:
V , α, θ and q. (Solid line: with uncertainties; dotted line: nominal)

VI. CONCLUSION

This paper describes a well-motivated application of the

newly developed L1 adaptive control theory to flight control

of small UAVs for aerobiological sampling. Because the

sampling mechanisms for these UAVs introduce sudden,

dramatic changes in flight characteristics, It is necessary for

an autopilot to adapt quickly and with guaranteed robustness

and transient performance. Simulations illustrate the control

designer’s ability to choose large adaptation gains for fast

convergence without compromising robustness. Simulations

illustrates the fact that the adaptive controller does not require

re-tuning of the adaptive gains for different reference signals.

These observations are consistent with the rigorous theory

that underlies the method, as described in the references. It

is expected that well-regulated autonomous UAVs equipped

with aerobiological sampling devices will soon provide enor-

mous insight into atmospheric microbial communities and

their relationship to agricultural ecosystems.
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