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Abstract— This paper presents an extension of the L1 adap-
tive controller to output feedback for systems with time-varying
unknown parameters and time-varying bounded disturbances.
The adaptive controller ensures uniformly bounded transient
and asymptotic tracking for system’s both signals, input and
output, simultaneously. The performance bounds can be system-
atically improved by increasing the adaptation rate. Simulations
verify the theoretical findings.

I. INTRODUCTION

This paper extends the results of [1], [2] to an output

feedback framework. The methodology ensures uniformly

bounded transient response for system’s both signals, input

and output, simultaneously, in addition to asymptotic track-

ing. The L∞ norm bounds for the error signals between the

closed-loop adaptive system and the closed-loop reference

system can be systematically reduced by increasing the

adaptation gain.

The paper is organized as follows. Section II gives the

problem formulation. In Section III, the novel L1 adap-

tive control architecture is presented. Stability and uniform

transient tracking bounds of the L1 adaptive controller are

presented in Section IV. In section V, simulation results are

presented, while Section VI concludes the paper. The proofs

are in Appendix.

II. PROBLEM FORMULATION

Consider the following system dynamics:

ẋ(t) = Ax(t) + b
(

u(t) + θ⊤(t)x(t) + σ(t)
)

, x(0) = x0

y(t) = c⊤x(t), y(0) = y0 , (1)

where x ∈ R
n is the system state vector, which is not

measured, u ∈ R is the control signal, y ∈ R is the only

measured output, b, c ∈ R
n are known constant vectors, A

is a known Hurwitz n × n matrix, θ(t) ∈ R
n is a vector

of unknown time-varying bounded parameters, σ(t) ∈ R is

a time-varying bounded disturbance, and H(s) = c⊤(sI −
A)−1b is a stable minimum phase system with relative degree

1.

Assumption 1: Assume θ(t) ∈ Θ and |σ(t)| ≤ ∆ for any

t ≥ 0, where Θ is a known compact set, and ∆ ∈ R
+ is a

known (conservative) bound of σ(t).
Assumption 2: θ(t) and σ(t) are continuously differen-

tiable and their derivatives are uniformly bounded: ‖θ̇(t)‖ ≤
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dθ < ∞, |σ̇(t)| ≤ dσ < ∞, where the numbers dθ, dσ can

be arbitrarily large.

The control objective is to design an adaptive output feed-

back controller to ensure that y(t) tracks a given bounded

reference signal r(t) both in transient and steady state, while

all other error signals remain bounded.

III. L1 ADAPTIVE CONTROLLER

At first, we introduce the following notations that will

be used throughout the paper. For a signal ξ(t), t ≥
0, ξ ∈ R

n, its truncated L∞ norm and L∞ norm are

defined as ‖ξt‖L∞
= max

i=1,..,n
( sup
0≤τ≤t

|ξi(τ)|), ‖ξ‖L∞
=

max
i=1,..,n

(sup
τ≥0

|ξi(τ)|), where ξi is the ith component of ξ. For

a stable proper LTI system H(s), its L1 gain will be denoted

as ||H(s)||L1
.

Lemma 1: For a stable proper multi-input multi-output

(MIMO) system H(s) with input r(t) ∈ R
m and output

x(t) ∈ R
n, we have ‖xt‖L∞

≤ ‖H(s)‖L1
‖rt‖L∞

, ∀ t ≥
0, and ‖x‖L∞

≤ ‖H(s)‖L1
‖r‖L∞

.

In this section, we develop a novel adaptive output feed-

back control architecture for the system in (1) that permits

complete transient characterization for both u(t) and y(t).
Towards that end, we first transform the system in (1) to

another input-output equivalent system with Strictly Positive

Real (SPR) transfer function.

A. System transformation

Let

Hx(s) = (sI − A)−1b =
AT

[

sn−1 sn−2 .. 1
]⊤

sn + a1sn−1 + ... + an

(2)

H(s) = c⊤Hx(s) ,
Hn(s)

Hd(s)
=

b1s
n−1 + b2s

n−2 + ... + bn

sn + a1sn−1 + ... + an

.

(3)

Since H(s) is a stable minimum-phase system with relative

degree 1, both Hn(s) and Hd(s) are stable polynomials and

the order of Hd(s) and Hn(s) are n and n− 1, respectively.

Let

Am =











0 1 · · · 0 0
...

...
...

...
...

...
...

0 0 · · · 0 1
−an · · · ... −a2 −a1











(4)

and bm = [0 · · · 0 1]⊤. Since Am is Hurwitz, for any Q >
0 there exists a P = P⊤ > 0 that solves the algebraic

Lyapunov equation

A⊤
mP + PAm = −Q . (5)
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Fig. 1. System W

Let

cm = Pbm . (6)

Then, it follows from Kalman-Yakubovich-Popov lemma that

Hm(s) = c⊤m(sI − Am)−1bm , Hp(s)/Hd(s) (7)

is strictly positive real (SPR). Let

u(s) = T (s)v(s) , (8)

where v(t) will be defined later and

T (s) = Hp(s)/Hn(s) . (9)

We notice that Hm(s) = H(s)T (s).
We further let wx(t) be the output of the following system

W , driven by the input x(t):

wx(s) = T−1(s)w1(s) , w1(t) = θ⊤(t)w2(t) , (10)

w2(s) = T (s)AT x(s) , x(0) = 0 . (11)

Fig. 1 presents a sketch of this system. We note that for

constant θ the output of the system (10) simply reduces to

wx(t) = θ⊤AT x(t) . Let θL = max
θ∈Θ

‖θ‖. It follows from

Lemma 1 that

‖wx‖L∞
≤ L‖x‖L∞

, (12)

where

L = θL‖T
−1(s)‖L1

‖T (s)AT ‖L1
. (13)

Lemma 2: Given v(t), θ(t) and σ(t), there exists a

bounded signal σm(t), whose derivative σ̇m(t) is also

bounded, such that the output y(t) of the system in (1) is

equal to the output ym(t) of the following system:

ẋm(t) = Amxm(t) + bm (v(t) + wxm
(t) + σm(t)) ,

ym(t) = c⊤mxm(t) , xm(0) = x̂0 , (14)

where Am, bm, cm are defined in (4)-(6), wxm
(t) is com-

puted following (10) with x(s) being replaced by xm(s) in

(11), and x̂0 is any point satisfying

c⊤mx̂0 = y0, (15)

where y0 , c⊤x0 is the only available initial condition of

the system output in (1).

Remark 1: Condition c⊤mx̂0 = c⊤x0 was crucial for

proving the existence of a bounded σm2(t) with bounded

derivative.

Remark 2: It follows from (62) that

|σm(t)| ≤ ∆m < ∞ , |σ̇m(t)| ≤ dσm
< ∞ , ∀ t ≥ 0 ,

and the bounds ∆m and dσm
can be derived explicitly

from the original bounds using the intermediate filtering

constructions.

B. Closed-loop Reference System

We now consider the following closed-loop reference

system with its control signal and system response being

defined as follows:

ẋref (t) = Amxref (t) +

bm

(

vref (t) + wxref
(t) + σm(t)

)

, (16)

vref (s) = C(s)r̄ref (s) , xref (0) = x̂0, (17)

yref (t) = c⊤mxref (t) , (18)

where wxref
(t) is the output of the system W in (10) for

xref (t), r̄ref (s) is the Laplace transformation of the signal

r̄ref (t) = −wxref
(t) − σm(t) + kgr(t) ,

kg = −1/(c⊤mA−1
m bm) , (19)

and C(s) is a strictly proper stable transfer function with

C(0) = 1, subject to the following L1 gain restriction:

L1-gain stability requirement: The L1 gain of C(s)
needs to verify

‖G(s)‖L1
L < 1 , (20)

where

G(s) = (sI − Am)−1bm(1 − C(s)) , (21)

and L is defined in (13).

We notice that the reference system in (16)-(18) depends

upon the unknown parameters and the disturbance of the

original system. The next Lemma establishes its stability.

Lemma 3: If C(s) verifies the condition in (20), the

closed-loop reference system in (16)-(18) is stable.

Remark 3: We note that in the absence of C(s), i.e. when

C(s) = 1, the reference system in (16)-(18) reduces to

ẋref (t) = Amxref (t) + bmkgr(t), yref (t) = c⊤mxref (t),

with xref (0) = x̂0.

C. L1 adaptive controller

Since for any v(t) the output of the system in (14) is

equivalent to the output of the system in (1) with (8), we

will design an adaptive output feedback controller v(t) for

the system in (14) and, using (8), we will implement it for

the system in (1).

1) Notations: Let

∆̄ = ∆m + L

(

ρ +
‖C(s)‖L1

1 − ‖G(s)‖L1
L

γ̄

)

, (22)

where γ̄ > 0 is an arbitrary constant. Let

β1 = β01

‖C(s)‖L1

1 − ‖G(s)‖L1
L

, β2 = β02 + β01ρ , (23)

β01 = 4∆̄L

(

dθ

θL

+ ‖Am‖L1
+ ‖bm‖L1

L

)

β02 = 4∆̄
(

d∆ + L‖bm‖L1

(‖C(s)‖L1
(kg‖r‖L∞

+ ∆̄) + ∆m)
)

, (24)
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β3 =
λmax(P )

λmin(Q)
β1, β4 = 4∆̄2 +

λmax(P )

λmin(Q)
β2 . (25)

2) L1 adaptive controller: The elements of L1 adaptive

controller are introduced below.

State Predictor: We consider the following state predic-

tor:

˙̂x(t) = Amx̂(t) + bm (v(t) + σ̂(t)) ,

ŷ(t) = c⊤mx̂(t) , x̂(0) = x̂0 , (26)

where x̂0 is defined in (15), and the adaptive estimate σ̂(t)
is governed by the following adaptation law.

Adaptive Law: The adaptation of σ̂(t) is defined as:

˙̂σ(t) = ΓcProj(σ̂(t),−ỹ(t)), σ̂(0) = 0, (27)

where ỹ(t) = ŷ(t) − ym(t) is the error signal between the

outputs of the system in (14) and the state predictor in (26),

Γc ∈ R
+ is the adaptation rate subject to the following lower

bound:

Γc > max

{

αβ3

(α − 1)2β4λmin(P )
,

αβ4

λmin(P )γ̄2

}

(28)

with α > 1 being an arbitrary constant, while projection is

performed on the set σ̂ ∈ ∆̄, the latter being defined in (22).

Letting

γ0 =
√

αβ4/(Γcλmin(P )) , (29)

it follows from (28) that γ̄ > γ0 , and hence

∆̄ ≥ ∆m + L

(

ρ +
‖C(s)‖L1

1 − ‖G(s)‖L1
L

γ0

)

(30)

and

|σ̂(t)| ≤ ∆̄ , ∀ t ≥ 0. (31)

Control Law: The control signal is generated as:

v(s) = C(s) (kgr(s) − σ̂(s)) , (32)

where kg is introduced in (19).

The complete L1 adaptive controller consists of (26), (27),

(8), (32) subject to the lower bound in (28) for the adaptive

gain, and the L1-gain restriction in (20) for the filter choice.

Remark 4: We note that the lower bound for Γc in

(28) depends upon ∆m, which in its turn depends upon

||σm2(t)||L∞
. The latter can be reduced only via minimiza-

tion of ||x̂0 − x0|| over the set to which x0 might belong.

In that sense, the approach in this paper establishes only

semiglobal results.

IV. ANALYSIS OF L1 ADAPTIVE CONTROLLER

In this section, we analyze stability and performance of L1

adaptive controller. Same as in [1], we have the following

Lemma.

Lemma 4: If (A, b) is controllable and (sI − A)−1b is

strictly proper and stable, there exists co ∈ R
n such that

c⊤o (sI − A)−1b is minimum phase with relative degree one.

It follows from Lemma 4 that there exists co ∈ R
n such that

c⊤o Hxm(s) = Nn(s)/Nd(s) , (33)

where the order of Nd(s) is one more than the order of

Nn(s), and both Nn(s) and Nd(s) are stable polynomials.

Theorem 1: Given the system in (14) and the L1 adaptive

controller defined via (26), (27) and (32) subject to (20), we

have:

‖x̃‖L∞
< γ0 , (34)

‖xm − xref‖L∞
≤ γ1 , (35)

‖ym − yref‖L∞
≤ ‖c⊤m‖L1

γ1 , (36)

‖v − vref‖L∞
≤ γ2 , (37)

where x̃(t) = x̂(t) − xm(t), γ0 is defined in (29), and

γ1 = γ0‖C(s)‖L1
/(1−‖G(s)‖L1

L), γ2 = L ‖C(s)‖L1
γ1 +

∥

∥

∥
(C(s)/(c⊤o Hxm(s)))c⊤o

∥

∥

∥

L1

γ0.

The following corollary follows from Theorem 1 directly.

Corollary 1: Given the system in (1) and the L1 adaptive

controller defined via (26), (27) subject to (28), and (8), (32)

subject to L1-gain restriction in (20), we have:

lim
Γc→∞

(y(t) − yref (t)) = 0 , ∀t ≥ 0, (38)

lim
Γc→∞

(u(t) − uref (t)) = 0 , ∀t ≥ 0 , (39)

where uref (s) = T (s)vref (s).

Thus, the tracking error between y(t) and yref (t), as well

between v(t) and vref (t), is uniformly bounded by a constant

inverse proportional to Γc. This implies that during the tran-

sient one can achieve arbitrarily close tracking performance

for both signals simultaneously by increasing Γc.

We note that the control law uref (t) in the closed-loop

reference system, which is used in the analysis of L∞ norm

bounds, is not implementable since its definition involves

the unknown parameters. Theorem 1 ensures that the L1

adaptive controller approximates uref (t) both in transient

and steady state. So, it is important to understand how these

bounds can be used for ensuring uniform transient response

with desired specifications. We notice that the following ideal

control signal for system in (16)

videal(t) = kgr(t) − wxideal
(t) − σ(t) (40)

is the one that leads to desired system response:

ẋideal(t) = Amxideal(t) + bmkgr(t) (41)

yideal(t) = c⊤mxideal(t), xideal = x̂0 , (42)

by cancelling the uncertainties exactly. It follows from (41)-

(42) that yideal(s) = Hm(s)r(s) . In the closed-loop refer-

ence system (16)-(18), videal(t) is further low-pass filtered by

C(s) in (17) to have guaranteed low-frequency range. Thus,

the reference system in (16)-(18) has a different response

as compared to (41), (42) with (40). In [3], specific design

guidelines are suggested for selection of C(s) if the unknown

parameters θ are constants. In case of fast varying θ(t), it

is obvious that the bandwidth of the controller needs to be

matched correspondingly.
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V. SIMULATIONS

As an illustrative example, consider the system in (1)

where A =

[

−2 −1
−1 −2

]

, b =

[

2
1

]

, c =

[

1
0

]

are

known, θ(t) = [0.5 + 0.5 sin(0.3t) 0.5 + 0.2 sin(0.3t) +
0.1 cos(0.2t)]⊤, σ(t) = sin(0.2t), x0 = [1 1]⊤ are

unknown time-varying parameters, disturbances and initial

conditions, respectively. Let Θi = [−1.5, 1.5], i = 1, 2,

and ∆ = 2, Q = I2×2. It follows from (5), (6), and (9)

that P =

[

1.1667 0.1667
0.1667 0.1667

]

, cm =

[

2.5
0.5

]

, T (s) =

0.5s+2.5
2s+3

. Let C(s) = 8

s+8
, it can be verified numerically

that ‖G(s)‖L1
L ≈ 0.5 and, hence, the condition in (20) is

satisfied. For implementation of the L1 adaptive controller

in (26), (27), (8), and (32), we choose ∆̄ = 10 and Γc =
500000. The simulation results are shown in Figures 2(a)-

2(b) for the reference input r = sin(0.3t). Next, we consider

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

Time t

(a) y(t) (solid) and r(t) (dashed)

0 10 20 30 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

time t

(b) Time-history of u(t)

Fig. 2. Performance for σ(t) = sin(0.2t)

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

Time t

(a) y(t) (solid) and r(t) (dashed)

0 10 20 30 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

time t

(b) Time-history of u(t)

Fig. 3. Performance for σ(t) = sin(0.6t)

the same controller for a faster time-varying disturbance

σ(t) = sin(0.6t) without any retuning. The system response

and the control signal are plotted in Figs. 3(a)-3(b). We notice

that theoretically we can always increase the bandwidth of

C(s) to compensate for such uncertainties, however, it will

require to further increase the adaptive gain.

VI. CONCLUSION

A novel L1 adaptive output feedback control architecture

is presented that has guaranteed transient response in addition

to stable tracking for systems with time-varying unknown

parameters and bounded disturbances. The control signal

and the system response approximate the same signals of

a closed-loop reference system, which can be designed to

achieve desired specifications.
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APPENDIX

Proof of Lemma 2. Consider the following system:

ẋ1(t) = Ax1(t) + b
(

u(t) + θ⊤(t)(x1(t) + x2(t)) + σ(t)
)

y1(t) = c⊤x1(t) , x1(0) = 0 , (43)

where x2(t) is the solution of:

ẋ2(t) = Ax2(t) ,

y2(t) = c⊤x2(t) , x2(0) = x0 . (44)

It can be verified immediately that

y(t) = y1(t) + y2(t) . (45)

It follows from (2) and (43) that

x1(s) = Hx(s)T (s)(v(s) + T−1(s)z(s)) , (46)

where z(s) is the Laplace transformation of z(t) = θ⊤(t)(x1(t) +
x2(t)) + σ(t). Define

Hxm(s) = (sI − Am)−1bm =

[

sn−1 sn−2 .. 1
]⊤

Hd(s)
. (47)

It follows from (2) that Hx(s) = AT Hxm(s) . Letting

xm1(s) = Hxm(s)(v(s) + T−1(s)z(s)) , (48)

subject to xm1(0) = 0, it follows from (46) that

x1(s) = T (s)AT xm1(s) . (49)

Letting ym1(t) = c⊤mxm1(t) , it follows from (7) and (48) that

ym1(s) = Hm(s)(v(s) + T−1(s)z(s)) . (50)

Eqs. (43) and (46) lead to

y1(s) = H(s)T (s)(v(s) + T−1(s)z(s)) . (51)

Since (9) implies that Hm(s) = H(s)T (s) , and both x1(0) = 0
and xm1(0) = 0, it follows from (50) and (51) that

ym1(t) = y1(t) . (52)
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Hence, using the expression for x1(s) via xm1(s) from (49), we
notice that ym1(t) is the output of the following well-defined
system:

ẋm1(t) = Amxm1(t)

+ bm(v(t) + wxm1
(t) + z1(t) + σm1(t)) ,

ym1(t) = c⊤mxm1(t), xm1(0) = 0 , (53)

where wxm1
(t) is the output of the system W in (10) for

xm1(t), while z1(t) is defined as z1(s) = T−1(s)z2(s), z2(t) =
θ⊤(t)x2(t), and

σm1(s) = T−1(s)σ(s) . (54)

It follows from (44) that the Laplace transformation of y2(t) is:

y2(s) = c⊤(sI − A)−1x0 . Define

ym2(s) = c⊤m(sI − Am)−1x̂0 . (55)

Since A and Am have the same characteristic polynomial, it is
straightforward to verify that the Laplace transformation of y2(t)−
ym2(t) can be rewritten as:

y2(s) − ym2(s) = H2(s)/Hd(s) , (56)

where Hd(s) is defined in (3) and H2(s) is a polynomial of
order < n. Since from definition of x̂0 it follows that y2(0) −
ym(0) = c⊤x0 − c⊤mx̂0 = 0, the initial value theorem implies

lim
s→∞

s
H2(s)

Hd(s)
= y2(0) − ym2(0) = 0 , and, hence, the order of

H2(s) is ≤ n − 2. Let σm2(t) be

y2(s) − ym2(s) = Hm(s)σm2(s) . (57)

It follows from (56) that σm2(s) = y2(s)−ym2(s)
Hm(s)

= H2(s)
Hp(s)

. Since

the order of H2(s) is less and equal than n − 2 and the order of
Hp(s) is n− 1, we note that σm2(s) is a strictly proper and stable
transfer function, which implies that σm2(t) is a continuous and
bounded signal, and its derivative σ̇m2(t) is also bounded. Denoting

ym3(t) = y2(t) − ym2(t), (58)

it follows from (55) and (57) that:

ẋm2(t) = Amxm2(t) ,

ym2(t) = cmxm2(t) , xm2(0) = x̂0 ,

ẋm3(t) = Amxm3(t) + bmσm2(t) ,

ym3(t) = cmxm3(t) , xm3(0) = 0 , (59)

and (45), (52), (58) imply that

y(t) = ym1(t) + ym2(t) + ym3(t) . (60)

Letting xm(t) = xm1(t)+xm2(t)+xm3(t) , it follows from (53),
(59) and (60) that:

ẋm(t) = Amxm(t) + bm

(

v(t) + wxm(t) + z1(t)

−(wxm2
(t) + wxm3

(t)) + σm1(t) + σm2(t)
)

,

ym(t) = cmxm(t) , xm(0) = x̂0 , (61)

where wxm(t), wxm2
(t), wxm3

(t) are the outputs of the system
(10) for the inputs xm(t), xm2(t) and xm3(t) respectively. Letting
σm(t) = z1(t) − (wxm2

(t) + wxm3
(t)) + σm1(t) + σm2(t) , the

system dynamics in (61) leads to (14) directly. It follows from (54),
(12) and Lemma 1 that

‖σm‖L∞
≤ θL‖T

−1‖L1
‖x2‖L∞

+ L‖xm2 + xm3‖L∞
+

‖T−1(s)‖L1
∆ + ‖σm2‖L∞

. (62)

Since x2(t), xm2(t), xm3(t) and σm2(t) are bounded, then σm(t)
is also bounded. Since x2(t), xm2(t), xm3(t) σm2(t), σ(t) and θ(t)

are differentiable with bounded derivative, it follows that σ̇m(t)
exists and is bounded. Since (61) implies that ym(t) = ym1(t) +
ym2(t) + ym3(t) , it follows from (60) that y(t) = ym(t) . The
proof is complete. �

Proof of Lemma 3. The closed loop system in (16)-(17) can be
equivalently represented as:

ẋref1
(t) = Amxref1

(t) + bm

(

vref (t) + wxref1
(t) +

wxref2
(t) + σm(t)

)

, xref1
(0) = 0, (63)

vref (s) = C(s)(r̄ref1
(s) + r̄ref2

(s)) ,

ẋref2
(t) = Amxref2

(t) , xref2
(0) = x̂0, (64)

where r̄ref1
(t) = −wxref1

(t) − σm(t) + kgr(t) , r̄ref2
(t) =

−wxref2
(t) , and wxref1

(t) and wxref2
(t) are the outputs of the

system W in (10) for xref1
(t) and xref2

(t) respectively. It follows
that

xref (t) = xref1
(t) + xref2

(t) , ∀ t ≥ 0 . (65)

For any given bounded x̂0, it follows from (64) that xref2
(t) is

uniquely defined and bounded. Let

ρ2 = ‖xref2
‖L∞

. (66)

It follows from (47), (21) and (63) that

xref1
(s) = G(s)r1(s) + Hxm(s)C(s)kgr(s) , (67)

where r1(t) = wxref1
(t)+wxref2

(t)+σm(t). The following bound
that can be derived from (12) and (66):

‖r1‖L∞
≤ L‖xref1

‖L∞
+ Lρ2 + ‖σm‖L∞

. (68)

Since C(s) verifies the condition in (20), then application of
Theorem 1 in [1] to (67) ensures that the closed-loop system in (16)-

(18) is stable. It follows from (67) and (68) that ‖xref1
‖L∞

≤ ρ1 ,

(kg‖Hxm(s)C(s)‖L1
‖r‖L∞

+‖G(s)‖L1
(‖σm‖L∞

+Lρ2))/(1−
‖G(s)‖L1

L), and hence (65) implies that

‖xref‖L∞
≤ ‖xref1

‖L∞
+ ‖xref2

‖L∞
≤ ρ , (69)

where ρ = ρ1 + ρ2. The proof is complete. �

Proof of Theorem 1. Let

σ̃(t) = σ̂(t) − wxm(t) − σm(t) , (70)

r2(t) = wxm(t) + σm(t) ,

where wxm(t) is the output of the system W in (10) for xm(t). It
follows from (32) that

v(s) = C(s)(kgr(s) − r2(s) − σ̃(s)) , (71)

and the system in (14) consequently takes the form:

xm(s) = Hxm(s)
(

(1 − C(s))r2(s) (72)

+C(s)kgr(s) − C(s)σ̃(s)
)

+ (sI − Am)−1xm(0) .

It follows from (16)-(17) that

xref (s) = Hxm(s)
(

(1 − C(s))(wxref
(s) + σm(s))

+ C(s)kgr(s)
)

+ (sI − Am)−1xref (0) , (73)

where wxref
(s) is the Laplace transformation of the signal

wxref
(t), which is the output of the system W in (10) for xref (t).

Let e(t) = xm(t) − xref (t). Then, using (72), (73), and taking
into consideration that xm(0) = xref (0) = x̂(0), one gets
e(s) = Hxm(s) ((1 − C(s))we(s) − C(s)σ̃(s)), where we(t) is
the output of the system W in (10) for e(t). Lemma 1 gives the
following upper bound:

‖et‖L∞
≤ ‖Hxm(s)(1 − C(s))‖L1

‖wet‖L∞
+ ‖r3t‖L∞

, (74)
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where r3(t) is the signal with its Laplace transformation r3(s) =
C(s)Hxm(s)σ̃(s). It follows from (14) and (26) that

˙̃x(t) = Amx̃(t) + bmσ̃(t), x̃(0) = 0 , (75)

which leads to x̃(s) = Hxm(s)σ̃(s), and therefore r3(s) =
C(s)x̃(s) . Hence ‖r3t‖L∞

≤ ‖C(s)‖L1
‖x̃t‖L∞

. Using the defini-
tion of L in (13), one can verify easily that ‖wet‖L∞

≤ L‖et‖L∞
.

From (74) we have ‖et‖L∞
≤ ‖Hxm(s)(1−C(s))‖L1

L‖et‖L∞
+

‖C(s)‖L1
‖x̃t‖L∞

, and hence

‖et‖L∞
≤

‖C(s)‖L1

1 − ‖G(s)‖L1
L
‖x̃t‖L∞

. (76)

First we prove the bound in (34) by a contradiction argument.
Since x̃(0) = 0 and x̃(t) is continuous, then assuming the opposite
implies that there exists t′ such that

‖x̃(t)‖ < γ0, ∀ 0 ≤ t < t′ , (77)

‖x̃(t′)‖ = γ0 , (78)

which leads to

‖x̃t′‖L∞
≤ γ0 . (79)

Since xm(t) = xref (t) + e(t), it follows from (69), (76) and (79)
that

‖xmt′
‖L∞

≤ ‖xreft′
‖L∞

+ ‖et′‖L∞

≤ ρ +
‖C(s)‖L1

1 − ‖G(s)‖L1
L

γ0 . (80)

It follows from (12) and (30) that |σm(t)+wxm(t)| ≤ ∆̄ and hence
|σ̃(t)| ≤ 2∆̄ for any 0 ≤ t ≤ t′. Consider the following candidate

Lyapunov function: V (x̃(t), σ̃(t)) = x̃⊤(t)P x̃(t) + Γ−1
c σ̃2(t),

where σ̃(t) is defined in (70). It follows from (6) that

V̇ (t) = −x̃⊤(t)Qx̃(t) + 2ỹ(t)σ̃(t) + 2Γ−1
c σ̃(t) ˙̃σ(t) . (81)

The adaptive law (27) ensures the following inequality for all 0 ≤
t ≤ t′:

V̇ (t) ≤ −x̃⊤(t)Qx̃(t) − 2Γ−1
c σ̃(t)(σ̇m(t) + ẇxm(t)). (82)

It follows from (32) and (31) that ‖vt′‖L∞
≤

‖C(s)‖L1
(kg‖r‖L∞

+ ∆̄), and hence (14) implies that

‖ẋmt′
‖L∞

≤ ‖Am‖L1
‖xmt′

‖L∞
+ ‖bm‖L1

(

‖vt′‖L∞
+ L‖xmt′

‖L∞
+ ∆m

)

≤ (‖Am‖L1
+ L‖bm‖L1

)‖xmt′
‖L∞

+ ‖bm‖L1

(

‖C(s)‖L1
(kg‖r‖L∞

+ ∆̄) + ∆m

)

. (83)

Let

wm1(t) = θ⊤(t)wm2(t), wm2(s) = T (s)AT xm(s) . (84)

It can be verified easily that

‖ẇxm
t′
‖L∞

≤ ‖T−1(s)‖L1
‖ẇm1t′

‖L∞
,

‖ẇm2t′
‖L∞

≤ ‖T (s)AT ‖L1
‖ẋmt′

‖L∞
.

Eq. (84) imply that

‖ẇm1t′
‖L∞

≤ θL‖ẇm2t′
‖L∞

+ dθ‖wm2t′
‖L∞

,

‖wm2t′
‖L∞

≤ ‖T (s)AT ‖L1
‖xmt′

‖L∞
,

and hence
∥

∥

∥
ẇxm

t′

∥

∥

∥

L∞

≤ L‖ẋmt′
‖L∞

+
dθL

θL

‖xmt′
‖L∞

. (85)

It follows from (82), (83), (85) and the definitions of β01, β02 in
(24) that for all 0 ≤ t ≤ t′

V̇ (t) ≤ −x̃⊤(t)Qx̃(t) + 4∆̄Γ−1
c (dσm + ‖ẇxm

t′
‖L∞

)

≤ −x̃⊤(t)Qx̃(t) + (β01‖xmt′
‖L∞

+ β02)/Γc .

Using the definitions of β1 and β2 in (23), it follows from (80)
that for all 0 ≤ t ≤ t′

V̇ (t) ≤ −x̃⊤(t)Qx̃(t) + Γ−1
c

(

β1γ0 + β2

)

. (86)

The projection algorithm ensures that |σ̂(t)| ≤ ∆̄ for all t ≥ 0,
and therefore

max
t′≥t≥0

Γ−1
c σ̃2(t) ≤ 4∆̄2/Γc . (87)

Let θmax , β3γ0 + β4 , where β3 and β4 are defined in (25). If
V (t) > θmax/Γc at any t ∈ [0, t′], then it follows from (81) and

(87) that x̃⊤(t)P x̃(t) > λmax(P ) (β1γ0 + β2) /(Γcλmin(Q)), and
hence

x̃⊤(t)Qx̃(t) >
λmin(Q)

λmax(P )
x̃⊤(t)P x̃(t) >

β1γ0 + β2

Γc

. (88)

From (86) and (88) it follows that if for some t ∈ [0, t′] V (t) >
θmax/Γc, then V̇ (t) < 0 . Since x̃(0) = 0, we can verify that

V (0) ≤
(

β3γ0 + β4

)

/Γc . It follows from V̇ (t) < 0 that

V (t) ≤ θmax/Γc , 0 ≤ t ≤ t′. (89)

Since λmin(P )‖x̃(t)‖2 ≤ x̃⊤(t)P x̃(t) ≤ V (t), then it follows
from (89) that

||x̃(t)||2 ≤ (β3γ0 + β4)/(Γcλmin(P )) , 0 ≤ t ≤ t′ . (90)

It follows from (79) and (90) that γ2
0 ≤

β3γ0 + β4

Γcλmin(P )
, which along

with (29) leads to αβ4 ≤ β3γ0 + β4. This further implies that

(α − 1)2β4 ≤
αβ3

Γcλmin(P )
, which limits the adaptive gain

Γc ≤ αβ3/
(

(α − 1)2β4λmin(P )
)

(91)

and hence contradicts (28). Hence, (91) is not true which further
implies that (78) does not hold. Therefore, (34) is true.

It follows from the L1-gain requirement in (20), (34) and (76)

that ‖et‖L∞
≤

‖C(s)‖L1

1−‖G(s)‖L1
L

γ0 , which holds uniformly for all

t ≥ 0 and therefore leads to (35). Since y−yref = c⊤m(xm−xref ) ,
then (36) follows from (35) directly.

To prove the bound in (37), we notice that from (17) and (71) one
can derive v(s) − vref (s) = −C(s)r5(s) − r4(s), where r4(s) =
C(s)σ̃(s) and r5(t) = wxm(t) − wxref

(t). Therefore, it follows
from Lemma 1 and the relationship in (12) that

‖v − vref‖L∞
≤ L‖C(s)‖L1

‖x − xref‖L∞
+ ‖r4‖L∞

. (92)

We have r4(s) = (C(s)/(c⊤o Hxm(s)))c⊤o Hxm(s)σ̃(s) =
(C(s)/(c⊤o Hxm(s)))c⊤o x̃(s), where co is introduced in (33). Using

the polynomials from (33), we can write that C(s)/(c⊤o Hxm(s)) =
C(s)Nd(s)/Nn(s), where Nd(s), Nn(s) are stable polyno-
mials and the order of Nn(s) is one less than the or-
der of Nd(s). Since C(s) is stable and strictly proper,
the complete system C(s) 1

c⊤o Hxm(s)
is proper and stable,

which implies that its L1 gain exists and is finite. Hence,

we have ‖r4‖L∞
≤

∥

∥

∥
C(s)

1

c⊤o Hxm(s)
c⊤o

∥

∥

∥

L1

‖x̃‖L∞
. Lemma

1 consequently leads to the upper bound: ‖r4‖L∞
≤

∥

∥

∥
C(s) 1

c⊤o Hxm(s)
c⊤o

∥

∥

∥

L1

γ0 , which, when substituted into (92), leads

to (37). �
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