
A SIMPLE DYNAMIC MODEL OF DRILLING

FOR CONTROL...

Glenn-Ole Kaasa

Research Centre Porsgrunn

Hydro Oil and Energy, N-3908 Porsgrunn, Norway

Email: glenn-ole.kaasa@hydro.com

Abstract: A simple dynamic model of well drilling suited for control design...

Keywords: Drilling, Model, Control

INTRODUCTION

Background. During well drilling, a drilling fluid
(mud) is pumped into the drill string topside and
through the drill bit at the bottomhole of the well.
The mud then transports cuttings in the annulus
side of the well (i.e. in the wellbore outside the
drill string) up to the drill rig, where a choke valve
and a backpressure pump is used to control the
annular pressure 1 . See Figure 1 for a schematic
overview of the system.

A main objective is to precisely control the annu-
lar pressure profile troughout the wellbore contin-
uously while drilling, i.e. to maintain the annular
pressure in the well above the pore or collapse
pressure and below the fracture or sticking pres-
sure. Basically, this amounts to stabilize the down-
hole annular pressure at a critical depth within its
margins, i.e. either at a particular depth where the
pressure margins are small, or at the drillbit where
conditions are the most uncertain. Basically, two
strategies for closed-loop control of the choke are
used:

Indirect topside control The bottomhole pres-
sure is indirectly stabilized by applying feed-

1 Various system configurations and special equipment,
other than choke and pump, exists to enable control of the
annular pressure. These are not considered in this work.

back control to stabilize the topside annulus
pressure instead, where the pressure setpoint
corresponding to a desired bottomhole pres-
sure is calculated online using a steady-state
model. This strategy is the most common and
straightforward mainly due to the availability
of high-frequency and robust topside pressure
measurements.

Direct bottomhole control The bottomhole pres-
sure at the critical depth is stabilized at a
desired setpoint directly. Even though a bot-
tomhole measurement usually exists (at least
near the bit), an estimate of the pressure is
needed between samples because to the transfer
rate of the measurement is usually slow, or for
additional safety because the sensor itself may
be unreliable (since it is exposed to a more
hazardous environment).

State-of-the-art solutions typically employ con-
ventional PI control applied to the choke, using
one of the above strategies. There are significant
drawbacks with both strategies. In both cases,
the PI controller relies heavily on integral action
to balance the pressure drop caused by friction,
which is significant, and the proportional feedback
gain must be low to prevent generating pressure
pulses by fast changes in the control input. As a
result, the control system based on conventional
PI control will react slow to fast pressure changes,



which e.g. results from movements of the drill
string. In other words, the disturbance attenuat-
ing properties of the controller in these cases are
relatively poor.

Another drawback, is the uncertainty in the mod-
elled bottomhole pressure, due to uncertainties in
the friction and mud compressibility parameters
in both the drill string and annulus. Typically, the
model is calibrated by tuning these parameters
to fit the measured bottomhole pressure. This is
typically a computation routine that is initiated
manually.

Litterature review. ...

Motivation. There are significant potentials to im-
prove existing algorithms, either the control law
itself, or the observer used to estimate the critical
downhole pressure. Model-based control enables
improved compensation of pressure fluctuations
during particular critical drilling operations, such
as e.g. operations involving movements of the
drill string where the resulting pressure change
is straightforward to predict by a model. Also, by
using model-based compensation with adaptation
of uncertain parameters rather than integral ac-
tion in the controller, one typically enable faster
reaction to changes in setpoints and disturbances
(such as e.g. a blow-out). An example is model-
based compensation of friction by a feedforward
term with online adaptation of the friction cooeffi-
cient. Furthermore, model-based coordinated con-
trol of both the choke and the backpressure pump
improves controllability and thus performance
in case of shut-down and start-up of the mud
pump, e.g. during pipe connections. Precise and
robust estimation of the downhole pressure during
drilling allows for reduced pressure margins, and
operations closer to balance. Online adaptation
of model parameters is a way of extracting more
information from the system, which can be used
as fault detection.

Some of the main motivating factors for improved
drilling performance, i.e., being able to control
the annular downhole pressure more precisely
and reduce pressure fluctuations during critical
operations and disturbances, are summarized by:

• Reduced formation damage, which is a signif-
icant problem in case of unstable formations
and borehole stability problems.

• Improved rate of penetration (increased oil
recovery and production rate) due to reduced
skin (cleaner wells).

• Being able to reach “undrillable reserves”
where pressure margins are small, like mature
fields with depleted reservoirs, or deep-water
wells.
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Fig. 1. A simplified schematical drawing of the
drilling system.

• Faster drilling operations, e.g. improved drilling
rates, reduced non-productivity time, re-
duced downtime (e.g. due to kick incidents).

• Reduced loss of circulation mud.

In addition, improved pressure control is a tool to
mitigate drilling hazards by ensuring consistent
control, and improved

• Disturbance attenuation and robustness
• Downhole pressure estimation
• Fault detection.

Contribution. The main contribution of this paper
is the derivation of a simple dynamic model of the
system that can be used for observer and model-
based control design.

Overview of note...

1. SYSTEM/PROCESS DESCRIPTION

System. A simplified schematic view of the system
is given in Figure 1.

2. FLUID FLOW FUNDAMENTALS

In this note we derive a model based on the
assumption that the drilling fluid (mud) can be
treated as a hydraulic fluid, i.e. a liquid. The
discrepancy resulting from this simplification will
be discussed.

In addition to the viscosity µ being a function of
pressure and temperature, the flow of a viscous
fluid is completely described by the following four
fundamental equations 2 .

Equation of State The density as a function of
pressure and temperature, ρ = ρ (p, T ).

2 The derivation and description follows Merrrit (1967) to
some extent, with details supplemented by White (1994).



Equation of Continuity The mass balance de-
scribing the conservation of mass of the fluid,
mainly related to the pressure p.

Equation of Momentum The force balance, or
Newton’s 2nd law of motion of the fluid. Mainly
describing the velocity v, or equivalently, the
flow rate of the fluid, as a function of pressure.

Conservation of Energy Law of conservation
of energy, or the first law of thermodynamics,
describing the temperature T .

2.1 Basic assumptions

We make the following assumptions:

(1) We assume turbulent flow, i.e. Re > Recrit,
where Reynold’s number is defined as

Re =
ρvD

µ
.

The range of transition from laminar to tur-
bulent is Recrit ∈ [2000, 4000], often taken as
Recrit = 2300 White (1994).

(2) We assume that all flow is one-dimensional
along the main flow path (drill string, or
annulus), i.e. time-averaging the fluctuations
due to turbulence, and neglecting the mo-
mentum effects of cross- or swirl flow due to
rotation of the drill string. Note, however,
that the resulting friction increase due to
swirl flow, and fluctuations of turbulence, etc.
is not neglected, but is accounted for by an
increased friction coefficient.

(3) To simplify further, we assume homogeneous
cross sectional conditions, i.e. averaging prop-
erties over the cross section of the flow.

(4) We assume that density effects in the flow
are negligible so that we can treat the flow as
incompressible and take density as constant
in the momentum equation 3 : ρ = ρ0. Note,
however, that we will take compressibility, or
the spring effect of the liquid, to account in
the continuity equation.

(5) We assume that changes in temperature has
negligible effect on the flow, and take tem-
peratures as constant. Even though signifi-
cant temperature gradients may exist, this
is justified because the thermal expansion
coefficients for liquids are small, thus den-
sity changes due to temperature changes are
negligible.

3 Density effects in the flow does not become significant
before the flow velocity approaches the speed of sound of
the fluid. In particular, for Mach numbers less than 0.3,
the flow is generally termed incompressible White (1994).

2.2 Viscosity

The primary effect of the viscosity is on frictional
losses in the flow. The viscosity of liquids in-
creases with temperature and pressure, where the
dependence on pressure is negligible compared to
dependence on temperature. Since temperature is
slowly varying, the resulting changes in frictional
losses due to viscosity, are slowly varying and are
treated as constant.

2.3 The equation of state

Since the changes in density as a function of
pressure and temperature are small for a liquid,
it is normal to use the linearized equation of state

ρ = ρ0 +
∂ρ

∂p

∣∣∣∣
T0

(p− p0) +
∂ρ

∂T

∣∣∣∣
p0

(T − T0) ,

where ρ0, p0, and T0 are standard conditions,
or the reference point the density is linearized
around. In accordance with assumption 5 above,
we assume that the density changes due to tem-
perature is negligible such that the last term can
be omitted.

For liquids it is normal to define the bulk modulus

β of the fluid

β � ρ0
∂p

∂ρ

∣∣∣∣
T0

= −V0
∂p

∂V

∣∣∣∣
T0

, (1)

which is related to the speed of sound c according
to

c =

√
∂p

∂ρ
=

√
β

ρ
.

The equation of state becomes

ρ = ρ0 +
ρ0
β
(p− p0) , (2)

or in differential form

dρ =
ρ

β
dp. (3)

Remark 1. Often, the reference point is taken at
zero pressure such that the equation of state
reduces to

ρ = ρ0 +
ρ0
β0
p,

and ρ0 and β0 are the density and bulk modulus at
atmospheric conditions p0 = 0 (relative pressure).

Remark 2. The bulk modulus is a measure of the
compressibility, or stiffness, of the liquid, and is
thus important with respect to dynamic prop-
erties of the system. Liquids are in many cases
treated as incompressible because the bulk mod-
ulus is very high. For example for pure water, the
bulk modulus is approximately 1.5 ·106. However,
the bulk modulus decreases sharply with small
amounts of air entrained in the liquid (or due



mechanical compliance of hoses), such that the ef-
fective bulk modulus is usually significantly lower
Merrrit (1967).

Remark 3. The effective or total bulk modulus
can be obtained experimentally from (1) by mea-
suring the resulting pressure increase ∆p when
compressing a container of initial volume V0 by
∆V :

βe =
V0∆p

∆V
.

2.4 The continuity equation

For one-dimensional flow with cross sectional area
A, the differential equation of continuity becomes

∂ρ

∂t
+
∂

∂x
(ρv) = 0, (4)

which integrated over a deformable control volume
with length L, becomes

d

dt

(∫ L

0

ρAdx

)

=
∑

i

win,i −
∑

i

wout,i, (5)

where win,i and wout,i are the inlet and outlet flow
respectively, where the integral term is the total
mass in the control volume

m =

∫ L

0

ρAdx.

2.5 The momentum equation

Applying the above simplifications, the differen-
tial equation of momentum reduces (from the full
Navier-Stokes equations) to the one-dimensional
equation

ρ
dv

dt
= −

∂p

∂x
−
1

A

∂F

∂x
+ ρg

∂h

∂x
, (6)

which is much simpler, but still relatively accurate
with respect to averaged flow variables. Here,
x is the length coordinate along the flow path,
v = dx/dt the velocity of the flow, A is the
cross sectional area of the flow, F is the friction
force acting on the flow, and h is the depth
of the pipe/flow path, positive direction defined
downwards. See (White, 1994, p. 304).

Remark 4. Note that F is a lumped force that
accounts for all frictional losses due to viscous
dissipation, turbulence, swirl flow, and non-ideal
flow conditions causeed by restrictions, bends, etc.

2.6 The energy equation

We assume constant temperatures, which elimi-
nates the need for the energy equation.

3. MODEL DERIVATION

Our objective is to derive a mechanistic model
which can be used for model-based control and
observer design. Since the model should not be
more detailed than required, we pursue to obtain a
reduced-order model that captures only the dom-
inant phenomena of the system, i.e. we neglect
fast dynamics (and treat unmodelled dynamics
as “fast parasitics” in the design). We may also
lump together phenomena/parameters with simi-
lar effect, and treat slowly varying parameters as
constants, assuming this can be handled by online
adaptation in a controller, or observer.

3.1 Frictional flow losses

The frictional losses for turbulent incompressible
flow can be described by simple empirical equa-
tions for the pressure drop as a function of flow
rate, where various frictional effects are lumped
together in empirical flow coefficients. For special
cases, these equations can be obtained by inte-
gration of the simple one-dimensional momentum
equation (6), letting the various frictional effects
be lumped together by the empirical flow coeffi-
cients in the friction gradient ∂F/∂x. We review
the relevant of these equations below, in order to
relate the empirical flow coefficients to the friction
gradient.

3.1.1. Pipe flow For pipe flow, the friction loss
term can be given as

∂F

∂x
= Sτw, (7)

where S is the total perimeter of the cross sec-
tional area, and τw is the wall shear stress such
that the friction force on the volume element Adx
is τwSdx. For pipe flow, the wall shear stress
can be determined by the dimensionless Darcy’s

friction factor f , through the relation

τw = f
1

4

ρ

2
v2. (8)

Neglecting the acceleration and gravity term in
(6), the pressure gradient becomes

∂p

∂x
= f

S

A

1

4

ρ

2
v2,

Hence, for a horizontal pipe with diameter D
and length L, the steady-state pressure drop for
incompressible, turbulent flow is obtained by in-
tegration to be

p1 − p2 = f
L

D

ρ

2
v2. (9)

Remark 5. Usually, a reasonable estimate of the
friction factor for smooth pipes is given by

f = 0.316Re−
1

4 (10)



developed by Blasius, which applies for Reynolds
numbers less than 105. However, since the drilling
mud is a non-newtonial fluid, this estimate may
be very crude.

3.1.2. Minor losses In addition to friction along
the pipe, there are additional so-called minor
losses due to bends, section changes and other flow
restrictions. For incompressible flow, the equation
for these pressure drops (which need not be minor
at all), takes the same form as for pipe flow

p1 − p2 = K
ρ

2
v2 (11)

where K is an empirical loss coefficient.

Remark 6. For example, for a sudden expansion,
i.e. flow into a large reservoir, all kinetic energy is
lost due to viscous dissipation, and it is straight-
forward to show that K = 1.

3.1.3. Orifice flow A special case of minor loss,
is turbulent flow through an orifice or restriction
where the minimum cross-sectional area A at the
throat is much smaller than the upstream area.
Then, the flow velocity v is given by the equation

v = Cd

√
2

ρ
(p1 − p2).

where Cd is the discharge coefficient which ac-
counts for an additional flow contraction (known
as vena contracta, which occurs typically half a
diameter downstream the throat of the orifice),
plus additional frictional losses. The equation for
the volume flow rate q through the restriction, is
thus given as

q = ACd

√
2

ρ
(p1 − p2). (12)

Remark 7. Note that pressure p2 refers to the
pressure at vena contracta just downstream the
minimum restriction area A. For valves and sim-
ilar restrictions, there is typically a sudden ex-
pansion downstream the restriction such that the
kinetic energy is typically lost due to viscous
dissipation and the upstream pressure p1 is not
recovered. This means that (13) is usually a good
model of the flow rate even if p2 is replaced with
a pressure measurement further downstream the
restriction.

Rearranging, the pressure loss is given by

p1 − p2 =
1

C2d

ρ

2
v2

Comparing with (11) for minor losses, we see that
this corresponds to a loss coefficient

K =
1

C2d
. (13)

Remark 8. For an ideal restriction with no losses,
the discharge coefficient becomes Cd = 1. In
practice, due to losses, the discharge coefficient
will be in the range 0.80 − 0.90 for orifices with
rounded edges, e.g. Cd ∈ [0.92, 0.98] for a venturi
nozzle, and in the range 0.60−0.70 for orifices with
sharp edges, e.g. Cd ∈ [0.60, 0.65] for a thin-plate
orifice (White, 1994, page 364—366).

3.1.4. Friction gradient The friction gradient
∂F/∂x consists of both pipe flow and minor losses.
The friction gradient for pipe flow losses is given in
terms of the friction factor f according to (7)—(8)

∂F

∂x
= S

1

4
f
ρ

2
v2. (14)

The minor losses given by given by (11) with loss
coefficient K over a length ∆L, can be related to
the friction gradient ∂F/∂x according to

∂F

∂x
= A

∂K

∂x

ρ

2
v2, (15)

where the minor loss gradient is simply

∂K

∂x
=
K

∆L
.

For a given mass flow w or volume flow q, the pipe
flow velocity v is determined by the cross-sectional
area A (x) of the pipe according to

v =
w

ρA (x)
=

q

A (x)
. (16)

Summarizing, the total friction gradient of pipe
flow and minor losses can be expressed as

∂F

∂x
=
1

4
fS (x)

ρ

2

(
q

A (x)

)2
(17)

+
∂K

∂x
A (x)

ρ

2

(
q

A (x)

)2
,

where A (x) and S (x) are the cross sectional area
and perimeter of the flow, and ∂K/∂x the minor
loss gradient along the flow path.

3.2 Steady-state pressure profile

Since changes in the flow rate are usually slow
compared to the acceleration of the fluid, the pres-
sure distribution along the flow path is dominated
by its steady-state characteristics. The steady-
state characteristics of the flow is obtained by
neglecting the acceleration term in the momentum
equation and integrating along the flow path.

Neglecting the acceleration term in (6), the pres-
sure gradient is given by

dp

dx
= −

1

A (x)

∂F

∂x
+ ρg

∂h

∂x
.



Substituting (17) for the friction gradient ∂F/∂x,
and taking the density as constant ρ = ρ0 (ac-
cording to assumption 4), we can write

dp=−
1

4
f
S (x)

A (x)

ρ0
2

(
q

A (x)

)2
dx

−
∂K

∂x

ρ0
2

(
q

A (x)

)2
dx

+ρ0g∂h.

Integrating the pressure along the flow path x,

p∗(l)∫

p(0)

dp= p∗ (l)− p (0)

=−

l∫

0

(
1

4
f
S (x)

A (x)
+
∂K

∂x

)
ρ0
2

(
q

A (x)

)2
dx

+

h(l)∫

h(0)

ρ0g∂h.

The steady-state pressure profile of the flow,
p∗ (l), can thus be given as

p∗ (l) = p (0)− [B0 (l) + fB1 (l)]
ρ0
2
q2 (18)

+ρ0g [h (l)− h (0)] ,

where the frictional loss coefficients B0 and B1 are
defined by

B0 (l)�

∫ l

0

∂K

∂x

1

A (x)2
dx (19)

B1 (l)�

∫ l

0

1

4

S (x)

A (x)
3 dx. (20)

3.3 Complete PDE model

3.3.1. Pressure dynamics From the differential
continuity equation (4) we get

Adx
∂ρ

∂t
=−A (ρv) = −dw

⇓

∂ρ

∂t
=−

1

A

dw

dx
.

Substituting with the equation of state (3),

dρ =
ρ

β
dp,

and rewriting in terms of volume flow according
to w = ρq, we obtain

∂p

∂t
= −

β

A

dq

dx
. (21)

3.3.2. Flow dynamics In terms of volume flow
q = ρA, the momentum equation can written as

ρ
∂q

∂t
= −A

∂p

∂x
−
∂F

∂x
+Aρg

∂h

∂x
.

The complete PDE model in differential form is
given as

∂p

∂t
=−

β

A

dq

dx

ρ
∂q

∂t
=−A

∂p

∂x
−
∂F

∂x
+Aρg

∂h

∂x
.

3.4 Simplified ODE model

For model-based control, an even simpler ODE
model is desirable.

3.4.1. Simplified pressure dynamics To derive
a simplified equation describing the pressure dy-
namics at a point, it is conventient to represent
the mass m in the form

m = ρ̄V,

where ρ̄ is the average density, defined by

ρ̄ �
1

V

∫ L

0

ρAdx.

The left-hand side of the continuity equation (5)
can then expressed in the form

d

dt

(∫ L

0

ρAdx

)

=
d

dt
(ρ̄V )

= V
dρ̄

dt
+ ρ̄

dV

dt
.

To change from density to pressure as our main
variable, we use (3)

dρ̄ =
ρ̄

β
dp̄.

Substituting this, gives

d

dt

(∫ L

0

ρAdx

)

= V
dρ̄

dt
+ ρ̄

dV

dt

= V
ρ̄

β

dp̄

dt
+ ρ̄

dV

dt
.

Replacing the left-hand side integral term in (5)
with its right-hand side (dropping the summation
operators for breviety of notation), gives

ρ̄

(
V

β

dp̄

dt
+
dV

dt

)
=
d

dt

(∫ L

0

ρAdx

)

=win −wout

⇓

V

β

dp̄

dt
+
dV

dt
=
1

ρ̄
(win −wout) .



We further assume that the inlet and outlet mass
flows be given in terms of the average density
according to

w = ρ̄q.

The differential equation describing the dynamics
of the average pressure then simplifies to

V

β

dp̄

dt
+ V̇ = qin − qout, (22)

where V̇ denotes the time-derivative of the control
volume, and qin and qout are the inlet and outlet
volume flows, respectively.

3.4.2. Simplified flow dynamics To obtain a
simplified model describing the dynamics of the
flow rate we consider the average flow rate q̄
through a pipe. Since the acceleration term dv̄/dt
for the average flow q̄ is constant along the flow
path, the momentum equation (6) can be written
as

ρdx
dv̄

dt
= −

∂p

∂x
dx−

1

A

∂F

∂x
dx+ ρg

∂h

∂x
dx.

Inserting q̄ = Av̄, and taking density as constant
ρ = ρ0, we can write

ρ0
A (x)

dx
dq̄

dt
= −∂p−

1

A (x)

∂F

∂x
dx+ ρ0g∂h.

Integration along the flow path x, gives

∫ l

0

ρ0
A (x)

dx
dq̄

dt
=−

∫ p(l)

p(0)

∂p

−

∫ l

0

1

A (x)

∂F

∂x
dx

+

∫ h(l)

h(0)

ρg∂h.

Inserting (17) for the friction gradient ∂F/∂x, the
simplified flow dynamics can thus be expressed in
the form

ρ0l

Ā

dq̄

dt
= p (0)− p (l)

− [B0 (l) + fB1 (l)]
ρ0
2
q̄2

+ρ0g [h (l)− h (0)] , (23)

where Ā is the average cross sectional area of the
pipe, defined by

Ā �
1

l

l∫

0

A (x) dx (24)

and the friction coefficients B0 and B1 as

B0 (l)�

∫ l

0

∂K

∂x

1

A (x)2
dx (25)

B1 (l)�

∫ l

0

1

4

S (x)

A (x)3
dx. (26)

Remark 9. Note that gravity term in (23) is pos-
itive as long as the volume flow q̄ is defined as
positive in the same direction as the depth h.

3.5 Drill string

We assume that the topside mud pump pressure
ppump can be described by (22), and that the flow
qd through the drill string can be described by
(23)—(26).

Pressure dynamics. The mud pump pressure is
thus given by

Vd
βd

ṗp = qpump − qbit, (27)

where qpump is the volume flow rates through the
mud pump, qbit = qd is the flow through the
drill bit given by (30), and the parameters Vd
and βd, are the volume and the bulk modulus of
the drill string mud, respectively. Note that Vd is
constant between each pipe connection, hence we
have taken V̇d = 0.

Mud pump flow. The pump flow qpump (ωp) is
given by the pump speed ωp according to

qpump = NpVp2πωp, (28)

where ωp rad/ s is the rotational speed of the
pump given by (29), and the parameters Np and
Vp are the number of pistons and volume per
stroke per piston, respectively.

Mud pump dynamics. We let the dynamics of the
pump speed ωp be given by

τpω̇p = −ωp +Kpumpup, (29)

where up ∈ [0, 1] is the control input, τp the time
constant, and Kpump the steady-state input gain
of the mud pump.

Flow dynamics. The volume flow through the drill
string qd = qbit is desribed by

ρd0LdN
Ād

q̇d = pp − pbit

− (Bd0 + fdBd1)
ρd0
2
q2d

+ρd0ghbit, (30)

where pbit is the bit pressure at the annulus side
at location lbit at the depth hbit = h (lbit). The
parameter LdN is the total length, ρd0 a constant
average density, and Ād the average cross sectional
area of the drill string, given by

Ād =
1

LdN

LdN∫

0

Ad (x) dx, (31)



where Ad (x) is the cross sectional area at location
x. The total minor losses along the drill string is
given by

Bd0 =

∫ LdN

0

∂Kd
∂x

1

Ad (x)
2 dx, (32)

where ∂Kd/∂x is the minor loss gradient at loca-
tion x of the drill string. The pipe friction losses
are given by the friction factor fd and the coeffi-
cient

Bd1 =

∫ LdN

0

1

4

Sd (x)

Ad (x)
3 dx, (33)

where Sd (x) is the perimeter of the total cross
sectional friction surface of the drill string.

3.6 Annulus

In a similar manner as for the drill string, we
let the annular choke pressure pc be described by
(22), and the flow qa through the annulus by (23)—
(26).

Pressure dynamics. The choke pressure pc is thus
given by

Va
βa

ṗc + V̇a = qbit + qres + qback − qchoke, (34)

where qbit is the volume flow rate through the bit,
qres a disturbance reservoir influx (which should
be zero under normal operation), qback the flow
from the back pressure pump, and qc the flow rate
through the choke valve. The parameter βa is the
effective bulk modulus of the annulus mud.

The choke flow qc is modelled by the orifice
equation (12) as

qchoke = Kczc

√
2

ρ0
(d− p0), (35)

where zc ∈ [0, 1] is the normalized choke open-
ing given by (??), p0 the pressure downstream
the valve, and the parameter Kc the valve flow
constant. The flow constant Kc can be given by

Kc = AcCd,c,

where Ac is the valve opening at fully open valve,
and Cd,c the corresponding discharge coefficient of
the choke valve.

Choke valve dynamics. A simple model of the
choke opening zc is given by

τ cżc = −zc + uc, (36)

where uc ∈ [0, 1] is the normalized control input,
and τ c the time constant of the dynamics.

Backpressure flow. The backpressure flow qback (ωb)
is given by the pump speed ωb according to

qback = NbVb2πωb, (37)

where ωb rad/ s is the rotational speed of the pump
given by (29), and the parameters Nb and Vb are

the number of pistons and volume per stroke per
piston, respectively.

Backpressure dynamics. We let the dynamics of
the back pressure pump speed ωback be given by

τ bω̇b = −ωb +Kbackub, (38)

where uback ∈ [0, 1] is the control input, τ b the
time constant, and Kback the input gain of the
back pressure pump.

Annulus and well volume. The volume Va (lbit, lw)
in the annulus side of the well, depends on both
the position of the bit lbit and the length of the
well lw, and can be given by

Va = Aalbit +Awmax (lw − lbit, 0) , (39)

where Aa (lbit) and Aw (lbit) are the cross sectional
area of the annulus (around the drill string) and
the well at the drill bit, lbit. The length lw of the
drilled well can be described by

dlw
dt

=

{
l̇bit , lbit = lw ∧ l̇bit ≥ 0
0 , otherwise

(40)

Flow dynamics. The volume flow qa = qbit + qres
through the annulus is governed by

ρa0lbit
Āa

q̇a = pbit − pc

− (Ba0 + faBd1)
ρa0
2
q2a

+ρd0ghbit, (41)

where pc is the pressure downstream the choke
valve, ρa0 a constant average density, and the
parameter Āa the average cross sectional area of
annulus, given by

Āa =
1

lbit

lbit∫

0

Aa (x) dx, (42)

where Aa (x) is the cross sectional area at location
x. The total minor losses along the annulus is
given by the loss coefficient

Ba0 =

∫ lbit

0

∂Ka
∂x

1

Aa (x)
2 dx, (43)

where ∂Ka/∂x is the minor loss gradient at loca-
tion x of the annulus. The pipe friction losses are
given by the friction factor fa and the coefficient

Ba1 =

∫ lbit

0

1

4

Sa (x)

Aa (x)
3 dx, (44)

where Sa (x) is the perimeter of the total cross
sectional friction surface of the drill string.

Remark 10. Note that the parameters Āa (lbit),
Ba0 (lbit) and Ba1 (lbit) depends on the location
lbit of the drill bit. Typically, the annulus diameter



will be piecewise constant along the flow path,
which means that Āa and Ba0 will also be con-
stant, while Ba1 (lbit) will depend linearly on lbit
within a section with constant annulus diameter.

4. DESIGN MODEL

The equations derived in Section 3 constitute the
simplified model of the drilling dynamics, which
we will use in the design of an observer and model-
based control, thus it is referred to as the design
model.

The pump pressure pp and choke pressure pc are
given by (27) and (34), while the dynamics of qbit
is described by both the flow dynamics (30) of the
drill string and of the annulus (41). Combining
both equations, the downhole bit pressure pbit is
cancelled, and the flow qbit is described by a single
equation.

Summarizing, the main dynamics of the drilling
system can be described by

Vd
βd
ṗp = qpump − qbit

Va
βa

ṗc =−V̇a + qbit + qres

+qback − qchoke (45)

[Md +Ma] q̇bit = pp − pc

−Fdq
2
bit − Fa (qbit + qres)

2

+(ρd0 − ρa0) ghbit,

where states pp and pc are the inlet mud pump and
outlet choke pressure, qbit the flow through the
drill bit, and qres (t) the reservoir influx, which
is an unknown disturbance that should be zero
under normal conditions.

The main controlled quantity is the choke flow
qchoke (pc, zc), which is given by (35),

qchoke = Kczc

√
2

ρ0
(pc − p0).

The choke opening zc is given by the actuator
dynamics (36), which is typically negligible fast
compared to the remaining system such that for
control design, zc can be taken as

zc = uc.

The mud pump flow qpump (ωp) and back pres-
sure flow qback (ωb) are usually treated as known
inputs, assuming negligible leakage such that the
pump characteristics (28) and (37) provide accu-
rate estimates of the flows given the pump speeds
ωp and ωb are known.

Remark 11. In existing drilling systems, the pump
speeds ωp and ωb are either controlled manually,

or by decentralized control loops with manual set
points. Note, however, that it may be advanta-
geous to control qpump (ωp) and qback (ωb) actively,
coordinated with the choke flow qchoke (pc, zc),
in order to improve the disturbance attenuating
properties of the drilling system.

The annulus volume Va (lbit, lw) is given by

Va = Aalbit +Awmax (lw − lbit, 0)

where lw is the length of the well which can be
modelled according to (40), and which is indirectly
measured during drilling via the location of the
drill bit, lbit.

The true vertical depth of the drill bit, hbit,
is given indirectly by the geometry of the well
path as a function of the location of the drill bit
according to hbit = h (lbit).

In the flow dynamics, the mass and friction coef-
ficients for the drill string are defined as

Md �
ρd0LdN
Ād

(46)

Fd � (Bd0 + fdBd1)
ρd0
2
, (47)

where the average cross sectional area Ād is given
by (31), and the friction coefficients Bd0 and
Bd1 by (32) and (33). Similarly, the coefficients
Ma (lbit) and Fa (lbit) for the annulus flow, are
defined as

Ma �
ρa0lbit
Āa (lbit)

(48)

Fa � [Ba0 (lbit) + faBa1 (lbit)]
ρa0
2
, (49)

where Āa (lbit) are given by (42), and Ba0 (lbit)
and Ba1 (lbit) by (43) and (44).

4.1 Annular pressure profile

The main variable of interest is the annular down-
hole pressure pa at critical locations l along the
well. From (23), we obtain the annular downhole
pressure as a function of location l according to

pa (l) = pc +Ma (l) q̇bit + Fa (l) q
2
bit + ρa0gh (l) .

(50)
We see that in the case pbit = pa (lbit), (50)
becomes identical to the flow dynamics of the
annulus (41).

4.2 Measurements

Assuming conventional instrumentation for the
system (45), we make the following assumptions
regarding available measurements.



Topside measurements. The downstream choke
pressure p0 is assumed to be equal to atmospheric,
i.e. constant.

The topside pressures pp and pc are measured with
negligible sampling effects and sensor dynamics,
such that the measurement can be given according
to

pp,m = pp +wp

pb,m = pb +wb,

where pp,m and pb,m are measurements of pp
and pb, respectively, and wp and wb are the
corresponding measurement noise of the sensors.

The pump speeds ωp and ωb used to determine
the flow rate qpump (ωp) and qback (ωb) are usually
not actually measured, but given by the inputs up
and ub according to

ωp,m =Kpumpup

ωb,m =Kbackub

neglecting the pump dynamics (29) and (38).

The drill string is pulled down by its own weight
and is positioned in desired position by the topside
hook, where lbit is given indirectly by the position
of the hook, and the total length of the drill string.
A measurement of lbit is usually taken as

lbit,m = lhook + LdN ,

where lhook is the position of the hook, defined
in accordance with the well coordinates such that
lhook = 0 just upstream the choke, and LdN is the
nominal (unstrained) length of the drill string. In
practise, the drill string is strained due to its own
weight. The measurement of lbit is thus hampered
with an uncertainty according to

lbit,m = lbit +∆l

where the elastic deformation∆l (t) = σ̄ (t)LdN/E
of the drill string can be regarded as an unknown
disturbance where the average stress σ̄ (t) in the
drill string is unknown.

We assume that the geometry of the well path
is accurately known, such that the true vertical
depth hbit of the drill bit is a known function of
lbit according to hbit = h (lbit), and its uncertainty
is given by the uncertainty in the measurement
lbit,m.

Downhole measurements. Conventionally, down-
hole measurements are transferred from the drill
bit by frequency modulated pressure pulses through
the mud. Since a lot of addional information (like
seismic measurements, etc.) are also transmitted,
this results in slow sampling and a significant
time-delay of downhole measurements as only a
few bit can be transferred per second.

The downhole measurement pa,m of the bit pres-
sure pbit, is sampled with sampling period Ts at
every time instant tk ∈ [0, Ts, 2Ts, · · · ] using zero-
order hold between samples, and can thus be given
as

pa,m (tk) = pa (tk − Ts) +wa (tk − Ts) ,

where wa is measurement noise (which is typically
neglected).

Remark 12. In general, downhole measurements
must be regarded as uncertain because downhole
sensors are exposed to a hazardous environment,
and loss of samples can occur due to disturbances
of the frequency modulated pressure pulses.

4.3 Wired drill pipe and additional instrumentation

Additional topside measurements. A Coriolis mea-
surement device can be mounted at the mud
pump outlet to provide measurements of mass
flow wpump = ρd0qpump and density ρd0. ...

Wired drill pipe. ...provide high-frequency down-
hole measurements of pressures at several loca-
tions along the drill string...

4.4 Model uncertainties and discrepancies

Several simplifications and assumptions are ap-
plied to arrive at the simplified design model (45),
and it is important to be aware of the resulting
discrepancies in the model and when they may be
significant.

Parametric uncertainties. Are discussed below.

Pump leakage. Due to leakage in the real dis-
placement pumps, actual pump flow qpump and
qback will be slightly lower than estimated by the
models.

Non-newtonian friction. The drilling mud is a
non-newtonian liquid which exhibits a Bingham
plastic-like behavoir when the mud flow ap-
proaches zero velocity, which results in a stiction-
like error in the modelled friction force.

4.5 Parametric uncertainties

Several parameters in the design model are highly
uncertain, either because they are impossible to
determine before actually drilling the well, or
they are simply slowly time-varying. These are
important uncertainties that must be handled
effectively in an observer or controller design.

Frictional losses. In the design model (45), the
most important uncertainties are related to fric-
tional losses. In particular, the main uncertainty is



related to the friction coefficients fd and fa, which
may vary due to changes in temperature, mud
properties, etc. There is also, initially, a significant
parametric uncertainty related to minor losses,
given by the lumped minor loss coefficients Bd0
and Ba0.

Compressibility. The bulk modulus βd and βa are
measures of the compressibility of the mud in
the drill string and annulus, respectively, and is
ideally an inherent property of the mud which is
known and identical for the drill string and annu-
lus. However, the effective bulk modulus depend
strongly on the amount of entrapped gas in the
mud, which again will depend on the conditions in
the well. Under steady conditions (with no influx
of gas from the reservoir), the bulk modulus of
the mud will stabilise at some constant values,
typically such that βd ≈ βa. However, in the
case of influxes of gas from the reservoir (even for
very small amounts), the bulk modulus βa of the
annulus, may exhibit a significant reduction due
to small amount of entrapped gas in the annulus.
Consequently, the annululs bulk modulus βa may
be uncertain, and an estimate of βa may serve as
a measure, or indicator, for influx of gas.

Density. The average mud densities ρd0 and ρa0
will typically vary slightly with the pressure levels
in the drill string and annulus, and will therefore
typically increase slightly with the length of the
well. When drilling, it is expected that the density
ρa0, which initially is approximately equal to ρd0,
will change slightly according to the properties
of the rock which is being digged out from the
bottom of the well, or due to reservoir influx qres.
The main effect of the density, is that it determine
the mass coefficientsMd andMa and consequently
the time-constant of the flow dynamics. However,
since the flow dynamics is derived based on a
crude assumption that the mud is simply a rigid
mass which is accelerated by the inlet and outlet
pressures, it may be benefitial to view the mass
coefficients as uncertain lumped parameters which
can be estimated to fit the actual flow dynamics
of the system.

Reservoir influx. The most important disturbance
in the system is a non-zero reservoir influx qres (t)
(or outflow if negative, i.e. loss of mud), which is
is utmost important to detect in order to handle
it by the right measures. An alternative, is to view
qres as a constant (or slow varying) disturbance,
which is estimated in the observer or controller.

Remark 13. In general, conditions in the annulus
are to a lesser extent known, such that geometry,
surface conditions and mud properties are more
uncertain than in the drill string.

5. IMPLEMENTATION

To implement the flow dynamics or pressure pro-
file, all terms on the right-hand side of the mo-
mentum equation (6) must be parametrized as
functions of the length coordinate x along the flow
path.

Well properties. The coordinates of the well path
is given by length and depth vectors,

Lw =
[
Lw1 Lw2 · · · LwN

]T
(51)

Hw =
[
Hw1 Hw2 · · · HwN

]T
(52)

such that the depth h (x) at location x is given by
interpolation according to

h (x) =Hwk +
Hw(k+1) −Hwk

Lw(k+1) − Lwk
(x− Lwk) ,

x ∈
[
Lwk, Lw(k+1)

〉
, (53)

where the pipe inclination is given as

∂h (x)

∂x
=
Hk+1 −Hk
Lk+1 − Lk

, x ∈ [Lk, Lk+1〉 . (54)

Likewise, the cross sectional diameter Dw (x) of
the well is piecewise constant function of x, and
is therefore conveniently defined by Lw and

Dw =
[
Dw1 Dw2 · · · DwN

]T
(55)

according to

Dw (x) = Dwkχ [x ≤ lw] , x ∈
[
Lwk, Lw(k+1)

〉
.

(56)
Here lw is the currently drilled length of the well,
and χ [X] is the indicator function of the event
X (which is 1 if true, otherwise 0) such that the
diameter is zero for x > lw.

Drill string properties. Like the annulus diame-
ter, the cross sectional inner and outer (annulus)
diameter along the drill string are piecewise con-
stant, defined by the vectors

Ld =
[
Ld1 Ld2 · · · LdN

]T
(57)

Dd =
[
Dd1 Dd2 · · · DdN

]T
(58)

Da =
[
Da1 Da2 · · · DaN

]T
, (59)

such that Ddk and Dak are the diameters corre-
sponding to section [Ldk, Ld(k+1)]. The cross sec-
tional area Ad (x) and perimeter surface Sd (x) of
the drill string can thus be given as

Ad (x) =
π

4
D2dk, x ∈

[
Ldk, Ld(k+1)

〉
(60)

Sd (x) = πDdk, x ∈
[
Ldk, Ld(k+1)

〉
. (61)

To implement minor losses along the drill string,
it is convenient to define the vectors



Kd =
[
Kd1 Kd2 · · · KdN

]T
(62)

∆Ld =
[
∆Ld1 ∆Ld2 · · · ∆LdN

]T
(63)

where Kd and ∆Ld are the loss coefficients and
corresponding loss length at each location in Ld.
The minor loss gradient of the drill string can be
given as

∂Kd
∂x

=KT
dφd (x) , (64)

where the basis functions φi (x) in the regressor
vector

φd (x) =
[
φd1 (x) φd2 (x) · · · φdN (x)

]T
,

are defined according to

φi (x) �






1

∆Li
, x ∈

[
Li −

∆Li
2
, Li +

∆Li
2

〉

0 , otherwise.
(65)

Annulus properties. We let the location coordi-
nate x be defined in accordance with the well
coordinates, i.e., with x = 0 just upstream the
choke. Since the total length of the drill string
from the mud pump to the drill bit is LdN , and
the length of drill string inserted into the well is
lbit, the x coordinate for the drill string must be
shifted LdN − lbit compared to the well. The cross
sectional area Aa (x) and perimeter surface Sa (x)
can then be given as

Aa =
π

4

(
Dw (x)

2 −Da (LdN − lbit + x)
2
)
(66)

Sa = π (Dw (x) +Da (LdN − lbit + x)) , (67)

where x ∈ [0, lbit].

The minor losses along the annulus are either
losses related to the geometry of the well bore,
or losses caused by flow obstructions attached to
the drill string (typically, measurement devices).
The first type of losses occurs at fixed locations
along the well, whereas the location of the latter
are fixed to the drill string, and thus given by lbit.
Letting the minor losses related to the well bore
be defined at locations Lw, and minor losses due
to drill string obstructions at locations Ld, the
resulting total gradient of minor losses along the
annulus can be expressed as

∂Ka
∂x

=KT
wφw (x) +K

T
aφa (LdN − lbit + x) ,

(68)
where

Kw =
[
Kw1 Kw2 · · · KwN

]T

∆Lw =
[
∆Lw1 ∆Lw2 · · · ∆LwN

]T

are the loss coefficients and lengths corresponding
to each location in Lw along the well bore, and
the regressor vector

φw (x) =
[
φw1 (x) φw2 (x) · · · φwN (x)

]T

is defined according to (65) by Lw and ∆Lw.
Similarly, the minor losses caused by obstructions
along the drill string are defined at each location
in Ld by

Ka =
[
Ka1 Ka2 · · · KaN

]T
(69)

∆La =
[
∆La1 ∆La2 · · · ∆LaN

]T
(70)

φa (x) =
[
φa1 (x) φa2 (x) · · · φaN (x)

]T
. (71)

Example 14. ### Simple example to illustrate a
typical well... ###

6. CASES

Consider the case when the

Operations

6.1 Case 1: Pipe connection

Critical drilling operations and disturbances

Pump start / stop

6.2 Case 2: Drill string movements

Surge and swab, heave, cleaning, tripping

Disturbances

6.3 Case 3: Sudden change in bottomhole pressure

To analyse the robustness and fault detection
properties of an observer (or control system) with
respect to sudden changes in the bottomhole pres-
sure, we create a simplified case of drilling into an
isolated reservoir zone.

Let the isolated reservoir zone be modelled simply
as a chamber with volume Vres according to

Vres
βres

ṗres = qres, (72)

where the reservoir flow qres (pres, pbit) is given
simply as

qres = Kres (pres − pbit)χ [t ≥ Tres] , (73)

where Tres is the time the drill bit opens the zone,
and Kres is the flow coefficient.

With the initial reservoir pressure pres (0) set
lower than pbit, we emulate a case similar to
that of drilling into a depleated reservoir section,
resulting in a sudden loss of mud and pressure
drop in the annulus.

Similarly, with pres (0) > pbit, we emulate the case
of drilling into a high-pressure reservoir section,
resulting in a sudden pressure increase.



Table 1. Parameters used...

Parameter Unit Value

λo – 50

k12 – 50

k23 – 1

6.4 Case 4: Gas kick

Gas influx

Example 15. ### .... The parameters used in
the model are given in Table 1.

7. CONCLUSIONS

(Chapter head:)*
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