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Recent papers™ have introduced a new paradigm for design of adaptive contriers that enablesa priori
prediction of performance bounds and also analytical quanification of the time-delay margin of the closed-
loop nonlinear system. In this paper, we revisit the main arbitecture from Refs.}? and consider several filter
design methods for maximizing the time-delay margin, whileetaining the same performance bounds.

[. Introduction

Direct Model Reference Adaptive Control (MRAC) schemesehpwoven to be extremely useful in a number
of flight tests for recovering nominal performance in thesprece of modeling and environmental uncertainties (see
Ref5® and references therein). A major challenge in analysisesdrsystems is determining their stability margins,
which is directly dependent upon the adaptive control legrrate. Today this analysis largely relies on the numérica
sensitivity provided by Monte-Carlo analysis. The MRAC piilge gain algorithm typically has the following form

k. (t) = —Te' (t)Pbx(t), (1)

whereT is the adaptive learning rate, is the state vector(t) = x(t) — xres(t) is the tracking errorg,.;(t) is

the state of the reference modgl,is the solution of the algebraic Lyapunov equation, &artlde control distribution
matrix. One would naturally like to use a large learning iaterder to drive the erroe(t) = x(t) — x,.s(t) to zero
as quickly as possible, forcing the staftg) to track the state,.;(¢) of the reference model.

In the recent application of MRAC to the JDAM munition, R&the MRAC algorithms with large learning rates
were found to be sensitive to time-delay. This was discavdtging hardware-in-the-loop bench simulations, in which
a larger than normal time delay is present due to the labgrattup. It was later reproduced in 6DOF simulation
analysis focused on determining the time-delay margine.MIRAC learning rates were then “tuned” using the 6DOF
to reduce the sensitivity and provide adequate margin. dtahgo been observed in practice that large learning rates
can produce high-frequency oscillations in the contrahalgln systems that use electric actuation this high fraque
oscillation significantly increases the current draw anghidesirable.

Thus, a major challenge in analysis of these systems isrdigtielg the stability margins, gain and time-delay,
which are known to depend upon the adaptive control leamaiteg". Refs! 2 addressed this challenge and introduced
a new paradigm for design of adaptive controllers, the tegpbhrchitecture being nameg, adaptive control. The
L, adaptive control architectures adapt fast, leading toréégransient performance with analytically computable
performance bounds. Moreover, as demonstrated inRainlike the standard MRAC algorithms, tifg adaptive
control architectures have guaranteed time-delay mangime presence of fast adaptation. Theadaptive controller
and its variants have been used for control of wing rbaerial refueling® and also flight tested on a miniature
unmanned air vehicl.

In this paper, we develop a design technique for the undeglijiter in the£; adaptive control architecture that
maximizes the time-delay margin, while retaining the saerégsmance bounds. We consider several filters, and using
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frequency domain tools along with nonlinear optimizatiogthods, we compare the performance of the different filters
towards obtaining the largest time-delay margin.

The rest of the paper is organized as follows. In Sectionéljmroduce theC, adaptive control architecture from
Refs!~* and its associated time-delay margin. In Section I, weoiditice the problem formulation addressed in this
paper. In section IV, we give an overview of multi-objectwetimization used to optimize the filter coefficients. In
Section V, we present an optimization method for filter desithen a filter design procedure based on multi-objective
optimization is given in Section VI, where filters with diffmt forms and design methods are compared and evaluated.
Conclusions are summarized in Section VII.

II. £, Adaptive Control Architecture, Its Performance Bounds and Time-delay Margin
Consider the following single-input single-output systdymamics:
i(t) = Apa(t) — 00T x(t) + bu(t), x(0) =z
y(t) = ¢ z(t),

wherex € R” is the system state vector (measurable) R is the control signalp, ¢ € R™ are known constant
vectors,A,, is a givenn x n Hurwitz matrix,y € R is the regulated output, and the unknown paramgtelongs to
a given compact convex seétc O. Let

)

T (t) = Amxm (t) + bkgr(t), 2z, (0) =0,

3
Ym(t) = Tz (1) ®)
be the desired reference system, wherec R™, A4,, is the same as in (2}, is a design gain
. 1 1
kg = lli% cTH(s) c¢TH(0)’ )
and
H(s) = (s — A,,) " 'b. (5)
For the linearly parameterized system in (2), we considefdlowing state predictor
E(t) = Api(t) + b(u(t) — 0T (®)x(t)), #(0) = zo ©)
g(t) = cT2(t),
in which the adaptive law foff?(t) is given by
6(t) = TProj(d(t), ()2 " (1)Pb), 0(0) = bo. ™

wherez(t) = &(t) — x(t) is the prediction errof, € R"*" = I'.I,,»,, is the matrix of adaptation gaing, = P is
the solution of the algebraic equatidr], P+ PA,, = —Q, Q > 0, while projection denotes the projection operdtbr.
Letting

() =07 (B)a (), 8)
we consider the following filtered adaptive controller:
u(s) = C(s)(7(s) + kgr(s)) . 9)

whereu(s), 7(s),r(s) are the Laplace transformationsft), 7(¢), 7(t), respectively(C(s) is a stable and strictly
proper system with low-pass gaii{0) = 1, andk, is the same as in (4). Letting
Omax = maxz 10:],

SV
=1

wheref; is thei'” element of9, the completeC; adaptive controller consists of (6), (7), (9) subject tofibleowing
L1-gain stability criterion:

A=[[H(s)(1 = C(s))ll£,fmax < 1, (10)
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where||H (s)(1 — C(s))||z, is theL; gain of the stable transfer functidifi(s)(1 — C(s)), which restricts the choice
of the filter C(s).2:2
We define a linear time-invariant reference system usingitmeadaptive version of (9)

Trep(s) = H(s) (kgC(s)r(s) + (C(s) = 1) wres (s)) (11)
Urep(s) = C(s) (kgr(s) + 0" xref(s)) (12)
along with the desired system
Yaes(s) = c'G(s)r(s) = C’(s)kgcTHo(s)r(s), (13)
Uges(s) = kgC(s) (L+C(s)0T Ho(s) — K" Hy(s)) r(s). (14)
The main result from RefS2 claims that subject to (10) one has
Fliinoo(:v(t) —Zref(t)) = 0, V>0,
Fliinoo(u(t) —ures(t)) = 0, V>0,

along with the following performance bounds

A

lves = aesllew < T 1T, GO e e (15)
lrer —vaesllew < 2Tl sl (16)
[tref = tdesllcoe < %HC(S)N—KTH&HG(S)H&HTllea 17)
lurer —vaeolle. < T 1CEOT — KT e, e 18)

wherehs(t) is the inverse Laplace transformation of
Hs(s) = (C(s) = 1)C(s)r(s)kg Ho(s)0 " Ho(s). (19)
We notice that whe@(s) = 1, u,.;(t) reduces to the followin@leal controller
Wideat (t) = kgr(t) + 0 Tpef(t), (20)

and (11) reduces to (3) by cancelling the uncertaintiestgxade note that the control law,.. () is not imple-
mentable since its definition involves the unknown paransetdowever, theZ, adaptive controller ensures thet)
andu(t) track the stater,.;(t) and the control signal,.;(t) of this reference system both in transient and steady-
state, if the adaptation rate is selected sufficiently laigeference further provides design guidelines for selection
of C(s) to ensure that the output of the reference system in (11) atisfysdesired control specifications. Tiig
adaptive control architecture is illustrated in Fig. 1, @sccomplete design and analysis framework is developed in
Refsl2

Thus, for performance improvement one needs to minimjzghich can be conservatively upper bounded

A= [[(H(s)(A = C(5))]l 21 Omax = [[H(8)(C(5) = Dl 21 Omax < [[H(5)]l2,[|C(8) = 1] 2, Omax- (21)

Minimization of A can be achieved from two different perspectives: iYfis) and minimize|| H (s)|| z,, i) fix H(s)
and minimize theZ, -gain of one of the cascaded systelis(s)(C(s) — 1)z, [[(C(s) = 1)r(s) |z, or [|C(s)(C(s) —
1)||z, via the choice ofZ(s). We further notice thaf’(s) = 1 achieves the best performance.

The time-delay margin of; adaptive controller is introduced in R&and is given by:

T(Ho(s)) = P(Hy(s))/we, H(s)=(sI— A, —b0") b, (22)
whereP(H,(s)) is the phase margin of the open-loop system
Ho(s) = C(s)(1+ 07 H(s))/(1— C(s)),

andw. is the cross-over frequency &f, (s). Itis obvious that while increasing the bandwidth(e(fs) for performance
improvement, the time-delay margin will be reduced.
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Figure 1. Closed-loop system withC; adaptive controller

[Il.  llustration for a Scalar Example

We now give an illustrative example to show the relation leetwthe bandwidth of the filte?'(s), the £,-gain
and the time-delay margin. Consider the following scalatesy:

(t) = ax(t) + bl + u(t). (23)
The state predictor is: ' A
Z(t) = am@(t) + (@ — am)x(t) + bO(t) + u(t), (24)
and let the low-pass filter be
w
C(S):s+w’ w > 0. (25)

Leta=1,a,, = —2,b=1andf = 0.5. We have

S—am—0b0 s+1.5

Fig. 2 shows theC; gain of || H(s)(1 — C(s))||z, and the time-delay margin df,(s) in (22) as the bandwidth
of C'(s) changes. We observe that the choice of the filtés) is crucial both in the performance bounds and in the
time-delay margin, as predicted by theory. One needs smajlgain to accommodate larger uncertainties, and larger
time-delay margin for robustness. Considering this traffef £,-gain and time-delay margin, in the next section we
introduce a multi-objective optimization method for desaf C(s) that retains the samg, -gain for the performance
bounds in (15), (16), (17), (18) and maximizes the timeyeiargin in (22).

°
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@ [[H(s)(1 = C(s)ll e, (b) Time-delay Margin

Figure 2. £ Gain and time-delay margin
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IV. Review of Multi-Objective Optimization

In this section, a brief review of multi-objective optimtin is given. The general form of the constrained,
nonlinear, multiple-objective optimization problem camgdiated as follows:

min fi(z) i=1,2,..,p (26)

subject to
reX={zlreR™ gj(x) <0, j=1,2,..,m}. @27)

There arep objective functionsf;, i = 1,2, ..., p that must be minimized simultaneously. The minimizatidketa
place overtY C R™, X reflects then functional constraints;; (z), on the decision variablese X.

The most widely-used method for multi-objective optimiaatis the weighted sum method. The method trans-
forms multiple objectives into an aggregated objectivecfiom by multiplying each objective function by a weighting
factor and summing up all weighted objective functions:

ful) =) aifi(w), (28)
n=1

whereq;, (i = 1,...,p), is the weighting factor for th¢" objective function. Ify_?_, o; = 1 and0 < a < 1, the
weighted sum is said to be a convex combination of objectivetions. This method will be explored in this paper
later.

V. Filter Structure Design Via ||C(s)(1 — C(s))||z, Minimization

From (15), (16), (17) and (18) it is obvious that one can imprtine performance bounds by minimizing the
gain||(C(s) — 1)C(s)|lz,. For minimization of||C(s)(C(s) — 1)||z, notice that ifC'(s) is an ideal low-pass filter,
thenC(s)(C(s) — 1) = 0 and hencdhs|| ... = 0. Since an ideal low-pass filter is not physically implemétgaone
can minimize||C(s)(C(s) — 1)||z, via appropriate choice af'(s).

So we consider thgC(s)(1 — C(s))]|z, minimization for different classes of filters. First notitet if C(s) is
an ideal low-pass filter, it can be checked easily tHat)(1 — C(s)) = 0. Although an ideal low-pass filter is not
physically implementable, one can still minimi€'(s)(1 — C(s))||¢, via the choice of the low-pass filt€F(s). We
consider the following filters:

1.

_6.(0)
wheref,, (s) = >, %(%)k, andwy is the cutoff frequency.
2. a
02(8)25+a’ 0<a<oo. (30)
3. ) s
3a’s +a
= ) 31
Cs(s) 53 + 3as? + 3a?s + a3’ 0<a<oc (31)
4, @
Cals) = s+ a,stl .+ ay (32)
where the parametets= (a1, ao, ..., a,,) are the solution of the following optimization problem:
min [[Ca(s)(1 = Ca(s))lc, (33)
subject to
b <a; <b, and Cy(s) stable (34)

with b; € R andb,, € R being the given lower and upper bounds respectively.
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Remark 1 C(s) is the well known low-pass Bessel filt€k(s) and C5(s) have been considered in Ref);(s) is a
filter obtained by constrained optimization method. We titdémore general forms @f4(s) such agms” o dbista

s tans"t 4. +ar

can also be considered. We Udse& ncon function in MATLAB optimization tool box to conduct the opiation pro-
cedure.

Figure 3 displays thé&; gains of the above mentioned filters with respect to the badttivof each filter. Since
we are concerned about the low frequency interval, the baftbg restricted to be less th800rad/s. Note that we
chooseCy(s) as3™¢ order for convenience. It can be observed thiats) andC,(s) have the smallest; gain for
[IC(s)(1 = C(s))]lz,- We also note thatCa(s)(1 — Ca(s))]|z, is relatively small when the bandwidth is also small,
butitincreases dramatically as the bandwidth gets laiferalso observe the performance similarity’fs) (Bessel
Filter) andC4(s). Figure 3 shows that (s) andCy(s) yield smallerZ,-gains than the other two.

3_
—C,
—C,
2.5F _C3
--e--C,

1 1
100 . 150 200 250
Bandwidth(rad/s)

Figure 3. [|C(s)(1 — C(s)|lcy, C(s) = Ci(s),i =1,2,3,4

Figures 4(a) and 4(b) show the time-delay margins and thgains for filtersC' (s), C2(s) andCs(s) with respect
to their bandwidths. Bessel filté€r, (s) gives a larger time-delay margin compareditds) andCs(s).
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(a) Time-delay margins correspondingd®(s), i =1,2,3. (b) £1 gains ofH(s)(1 — Ci(s)), i=1,2,3.

Figure 4. Time delay margins and£; gains

VI. Filter Design Via Multi-Objective Optimization

In this section, the filter design procedure based on mbijgaive optimization is given and is compared to the
other three filters. By formulating a design objective, we naturally present our design method as optimization of a
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single function representing the trade-off of two objeesiytime-delay margin anfl; -gain):
min f(a) =a7 + (1 —a)(—g), 0<a<1 (35)

subject to stability of
ay
C(s) = 36
(s) s+ aps" 4+ . +ay’ (36)
wherea = (ai,as,...,a,)", T is the time-delay margin of the open-loop transfer functtdy(s), g = || H(s)(1 —
C(s))]lz,, « is the weighting factor for the convex combination®fandg. Once an initial value,, and a factor
are given, the optimal filtef’(s) could be obtained by solving the above nonlinear constdeapéimization problem.
We now take th&"? order filter as an example to show the feasibility of this rralttiective optimization method.
Let H(s) = o5, a = 0.9995andag = (1 3 3)'. The following nonlinear, constrained optimization pretlis
solved by using thém ncon command of MATLAB optimization toolbox:
min  «a(—g)+ (1 - )T (37)

(a17a27a3

subject to
—100000000 < a; < 100000000, i=1,...,3
real part of each root of® + ays3 + a15%2 + a3 =0 < —0.2.
The results are given in the first row of the following tableeT$econd row of the table has thig gain and the

(38)

time-delay margin for a different third order filtg%, w = 0.795 of the same bandwidth.
C(s) | T(sec.) | |H(s)(1 = C(s))||z, | Bandwidth ofC(s) (rad/s) |
3.789e005
5343.521e00452+3.151e0055+3.789¢005 1.4477 0.5126 1.3803
19.
33+8.13952-?-2927.085+19.97 1.0087 0.8911 1.3804

The above result shows that a smallér gain and larger time-delay margin can be obtained via apatep
optimization routines.

VI.A. The Impact of Weighting Factor «

Next we investigate the impact of the weighting factoDifferent values ofx are chosen and tabled as follows:

| o | C(s) | IC(s)1=C(s))lle, | g | T (sec)| Bandwidth ofC(s) (radls) |
0.005 | wryoms s 056 0.8473 0.8997 | 7.3650 0.1747
0.05 | S roiet s 55 0.9893 0.9103 | 5.3887 0.2555
05 | Srrom Boss 06T 0.4751 0.9103 | 62.5668 0.0201
0.95 | 3 iosst s T SI6 1.0308 0.8803 | 3.7025 0.3764
0.995 | = Torrsr s TsT359500 0.7418 0.4262 | 2.3497 1.5362

From the table above, we could not determine an expliciticeiahip betweel and7 or the £, gain. A signif-
icantly large7 can be obtained ifv is properly choseno = 0.5 in this case). The&l; gain does not change much
whena is adjusted.

VIl. Conclusions

This paper addresses two different filter design methodghfor; adaptive control architecture. Standard filter
(Bessel filter) and optimization design methods have be@asidered to demonstrate the benefits{qf adaptive
controller from its design perspective. Its analyticalfpenance bounds and time-delay margin can be used to the
benefit of control engineers to achieve a desirable tratleetiveen performance and robustness.
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