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Abstract

Model based supervision and constrained parameter estimation prevent parameter drift
and ensure that the estimated models are admissible. The supervisor selects informative
data using a second adaptive model and a switch. The new formulation of the constrained
least squares estimation problem uses a one-step objective and McCormick over-estimators
for the bilinear constraints. Stability results show that the supervised adaptive control al-
gorithms are robust with respect to plant/model mismatch and unknown, bounded distur-
bances. Input and output signals are attracted to an invariant set independent of choice of
initial conditions. The control parameters converge. Monte Carlo simulations compare the
supervision algorithm’s ability to handle bursting and drifting to unsupervised approaches.
Simulation of a chemical reactor with nonlinear model and a pilot plant heat exchanger
experiment show that parameter drift is eliminated.
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1 Introduction

Supervision: “Managing by overseeing the performance or operation of a person or
system.”

Certainty equivalence adaptive control needs supervision to decide if an event is informative
before it is allowed into the data record. Without event detection the parameter estimates may
drift and the model may become inaccurate since poor information overwhelms the identification
process. The controller performance then suffers and closed loop instability results. The drift
may also cause the models to become ill-conditioned. The control design process then breaks
down and large spikes in the controller output may be created.

Detecting events which cause drift can be viewed as the opposite of large error detection.
Small prediction errors cause drifting since they are associated with poor signal to noise ratio.
One goal of the supervisor is therefore to detect small errors and delete these from the data
record. This is easy to do if an upper bound for the current disturbance is known. The
supervisor then simply compares the prediction error to the bound and rejects the data point
if it is smaller than the bound. A review of the supervision problem can be found in the paper
by Hégglund and Astrém, (2000)[6]. The drift problem is described Golden (1992)[5] and more
extensively in the textbook by Mareels and Polderman (1996) [11].

The supervisor must also ensure that the estimated model is well-conditioned so that a
controller can be designed to meet nominal performance requirements. For example, suppose
that the aim is to assign closed loop poles. The design procedure then breaks down if the
estimated model has pole-zero cancelations. Such events must therefore be avoided. This
second problem, referred to as the admissibility problem, is NP hard. The set of co-prime
models, called the admissible set, is disconnected and the number of non-convex regions grows
faster than exponentially as the model order increase. A description of this problem is given by
Middleton et al., (1988)[12], Staus et al. (1997) [15] and Mareels and Polderman (1996) [11].

Many methods have been developed to solve parameter drift and admissibility problems
in adaptive control. Some methods rely on excitation. In this approach the estimator is
presented with informative data all the time. The parameter estimates remain close to the
“true parameters” and the estimated model is well conditioned, provided that the true model is
well-conditioned. The problem with the excitation method is that the excitation must be strong
enough to overcome the noise yet subtle enough so that performance does not suffer. It must
also be band-limited so that it does not excite high frequency modes. Radenkovic and Ydstie
(1995) [14] showed that hard bounds for the parameter estimation error can be established if
these conditions are satisfied. The deadzone method works by switching the estimator off
when the prediction error gets below a certain threshold [4, 13]. The parameters converge if the
threshold is chosen large enough. The problem now is that the performance may suffer if the
deadzone is too large. Parameter drift is re-introduced if the deadzone is too small. Finally,
parameter projection and/or leakage constrain the parameters so that they do not wander
out of the admissible set. Projection solves the problem using hard constraints [4]. Leakage
[9] uses soft constraints and is similar to the barrier methods used in nonlinear programming.
Neither parameter projection nor leakage solve the drift problem completely and poor closed
loop performance may result if the parameter bounds and/or leakage parameters are not well-
chosen [8]. The leakage and projection methods are difficult to implement if the admissible set
is not convex.
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Figure 1: Supervised adaptive control.

Our paper addresses parameter drift by using a supervisor to detect informative events.
The supervisor uses an adaptive model to estimate the disturbance and a switch to turn on
adaptation if the prediction error of the control design model is larger than the disturbance
estimate provided by the supervisor. We do not provide a bound for the magnitude of the
external disturbances since they are estimated. The approach is advantageous in process control
where the disturbances are difficult to characterize apriori and may vary considerably.

The proposed algorithm solves the admissibility problem using global optimization. Mc-
Cormick over-estimators are used to estimate bilinear constraints and we solve a sequence of
quadratic programs to global optimality using branch and bound as proposed by Staus et al.
(1994) [15]. They reported that the calculations took no more than a small fraction of a second
for a second order model and 1000 data points. Our method is considerably more efficient since
we have reformulated the objective function so that problem complexity is independent of the
estimation horizon. Significant advances have been made in algorithm design and computer
speed since the work by Staus et al. It is now possible to apply such methods in process control
applications where the sampling rate is in the order of a second and the model order is limited
to have three poles or less, which is typically sufficient to model chemical process systems.

The stability theory is quite general and can be used to study model predictive, Hy,, as
well as pole-assignment indirect adaptive control systems. We use a simple model predictive
controller to illustrate the performance of the closed loop adaptive control system. The scope
of the theory is quite broad and opens up for implementing considerably more complex noise
estimation and control design methods than we have discussed here.

2 Supervised Adaptive Control

The schematic in Figure 1 shows an adaptive control system with a supervisor using a switch to
determine when to update the estimated model. Data is considered informative when the model
prediction error differs from a result calculated by the supervisor. The switch is then closed
and the controller model is updated, otherwise, the switch is kept open and the model remains
unchanged. Many different strategies can be implemented. We implement a switch which
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Figure 2: Framework for Certainty Equivalence Adaptive control.

executes “small error detection” to prevent over-fitting the data. By careful management of the
switch we are able to select informative data so that the parameter estimates are not corrupted
by small errors which accumulate over time. The method can be used for identification of linear
and nonlinear models alike. The specific aim of our paper is to use the method to solve the
problem of parameter drift in the context of adaptive linear control.

The supervisor in our paper is implemented so that

[ 1 ife()?>Tys(t)+Th
Alt) = { 0 otherwise (1)

where A(t) represents the switch, 7; > 0,7 = {0, 1} are tolerances set by the user and é(t) is the
(apriori) prediction error. The trigger signal s(¢) depends on supervision strategy. For example,
a fixed deadzone (simplest supervisor) is derived by setting 7o = 0 and 77 > 0 in equation 1.
Hill and Ydstie (2004) [7] developed a trigger based on the Fisher Information Matrix which can
be interpreted in the framework described here. More recently Dozal-Mejorada et al. (2007)
and Dozal-Mejorada and Ydstie presented a method using parallel adaptive models to estimate
and filter out the plant disturbances [2, 3]. Their supervision method uses Ty > 0 and 7} = 0
and selects data whenever the prediction error of the control design model exceeds the error
provided by a second estimator.

To motivate the supervision method and technical results needed to establish stability and
convergence, it is helpful to break the feedback control loop into two parts as shown in Figure
2. First insert the controller design model (“model” for short) as shown in Figure 2A. Doing so
has no overall effect since the model output is added and then subtracted. Splitting the loop
between the two models gives the systems in Figure 2B. The “nominal feedback system” on the
left corresponds to the model and the controller in closed loop. The model error (e) and the
setpoint (y*) generate the control signal (u). The “model error system” on the right measures



how accurately the control model represents the plant. The control (u) and disturbance (v)
signals are the inputs to the plant which generate the model error (e) and plant output (y).

It stands to reason that the control system described above performs to specifications if two
conditions are met: first, the model error should be small; and second, the nominal feedback
system should satisfy the control specifications.

3 Assumptions

Let My denote the operator mapping the control signals to the predicted outputs. The estimated
control model is indexed by the parameter vector §. The mapping C : My — Cy represents
a control design procedure. In order to carry out the control design it is necessary that the
parameter vector 6 belongs to a compact set O, called the admissible set. Otherwise the control
design procedure breaks down. The problem of delineating the set ©® and keeping the estimated
parameters in © is the aforementioned admissibility problem.

We now introduce all assumptions needed to delineate the admissible set and establish the
existence of an invariant set for input and output signals and convergence of the parameter
estimates.

Assumption 1. Bounded external disturbances: Real constants k, and k, exist so that
for all t

v(t)? < ky (2)
y* () < kys (3)

where v(t) and y*(t) are the external disturbances and output setpoint respectively.

We do not assume that the values of the constants k, and ky« are known. Nominal stability
of the feedback system illustrated on the left in Figure 2B and the model mismatch condition
for the system illustrated on the right in Figure 2B are characterized using the comparison
signal®

rt+1)=c%z(t) +(1—-cHe®)*, 0<o <1 (4)

where e(t) is the (a posteriori) model error.

Assumption 2. Stability of the nominal feedback system: Real constants K, and ky,
exist so that for all t
y(t) +u(t)? < Kyur(t) + kya (5)

The constant K, measures the gain of the nominal closed loop operator and ky, is related to
the magnitude of the setpoint so that ky, < coky~ for some constant cg.

Assumption 3. Small errors: There exists a parameter 0* € © so that the corresponding
model error ~y(t) is bounded by the normalization signal x(t). Namely,

’Y(t)2 < Kya(t) + ky (6)

2Throughout this paper we deal with sampled data systems and discrete models using the Swedish backward-
shift operator ¢~'. Similar results can be developed for continuous time systems and systems modeled using the
d-operator



The constant K. measures the gain of the unmodeled dynamics whereas k~ is related to the
magnitude of the external disturbances. K. is small in a way to be determined and k. < cok,
for some constant cy.

Ydstie (1992) derived conditions A2 and A3 using minimum variance control and a nearly
stably invertible plant [17]. Kelly and Ydstie (1993) showed how the conditions can be derived
for Ho control and Ydstie and Wahlberg (1997) derived the condition for Model Predictive
Control [10, 18].

Assumption 4. The admissible set: The admissible set, ©, consists of | < oo subsets O
so that if 01 € ©; and 0y € Oy with j # k then ||01 — 02|| > € > 0. Moreover, for any 61 and
02 € © we have ||6h — 62|]? < Ko.

4 Constrained Parameter Estimation

The assumptions in the previous section can be applied to linear and nonlinear problems alike.
We are interested in adaptive linear control. With this in mind we define the equation error for
the model My so that

e(t) = A(g My(t) — Blg Hu(t) (7)

where
Alg) =14a1qg "+ +ang " (8)
Blg ) =big "+ + bmg™™ (9)

The linear model can be adapted to data and used to design a controller to meet the nominal
performance requirements. The objective may be to minimize the tracking error, place closed
loop poles, solve a robust or model predictive control problem. The calculation can be be
carried out as long as the parameters belong to the admissible set. Assuming that this is the
case we obtain the linear feedback law

R(qg Mu(t) =T(q "y (t) — Sg " y(t) (10)

where R(q™1),S(q7!),T(¢ 1) are controller polynomials.
For example, in the case of pole-assignment it is necessary to solve Bezout’s equation

Pl ") =A(gHYR(¢) +B(g S

for R and S. The polynomial P(¢~'), with roots strictly inside a circle with radius o < 1
defined by equation (4) in conjunction with Assumptions A2 and A3, represent the closed loop
characteristic polynomial.

The Bezout equation can be re-written as

1 0 ... ... ... 0 1 1
a by 1 P
1 0 Tn—1 = Pn—1 (11)
an, a1 by b1 50 Dn
b1
0 an, 0 bn Sn1 Don_1



with
max |a;| < ¢,, max|b| < ¢, max|ri| < ¢, max|s;| < cs (12)
7 7 7 7

The matrix on the left is called the Sylvester eliminant matrix. It is invertible if and only if the
polynomials A and B are co-prime. The eliminant matrix exposes the bilinear nature of the
estimation problem since the a;, 7;, b;, s; are variables to be optimized using adaptation.

Other design procedures lead to different definitions of the admissible set. For example, if
we use minimum variance control to control a stably invertible plant then the admissible set
simply consists of two disconnected convex regions. One region with models with positive high
frequency gain and another with negative high frequency gain.

We now introduce the parameter and regression vectors

0(t) = (ai,...,an,bi,...,bp)T (13)
go(t—l)T = (—y(t—=1),....,—yt—n),u(t—1),...,u(t —m)) (14)

The prediction error of the supervisor (1) and the equation error are then defined so that

e(t) = yt)—pt—-1)"0(t—1) (15)
e(t) = y(t) -t —1)"0(t) (16)

The prediction error is used to assess the accuracy of the model, whereas the model error is
used to drive the nominal feedback system. This is because the most current parameters are
used to design the feedback control law.

Constrained least squares solves the problem

0(t) = argergin J(0,1) (17)

where © is the admissible set and the objective function given by

t

J(0,1) =Y A() = (y(i) — i = 1)70)* + (6 — 6(0))TQ(1)(¢ — 6(0)) (18)

=

The supervisor switch (1) determines if the current data point is selected for estimation or not.
Weights defined by the backwards recursion

q(i —1) = Ai)q(i), i=t,t —1,..,1

with ¢(¢) = 1 and forgetting factor 0 < Apin < A(t) < Amax < 1, allow for fading past data.
The signal
r(t+1) = max {O‘QT(t) + (1 — o%)e(t)?, o'r(0)} (19)

represents a moving average estimate of the variance of the model error and r(0) represents its
initial condition. The matrix Q(¢) > 0 is introduced to bias the estimated parameters towards
some pre-set values #(0). This approach is called leakage. We assume that the following is
satisfied

Q(t) <Q(t—1)



with Q(0) > 0. Sometimes we set
Q(t) = q(0)Q(0)

The effect of the leakage then dies away exponentially fast as data accumulates. The estimation
problem posed above is not computationally tractable since its complexity grows as the number
of data points grows.

Staus et al. (1994) [15] solved the problem of tractability using moving horizon estimation.
In this approach only the most recent data points are kept and old ones are deleted from the
data record. Convex (McCormick) overestimates were used to represent the bilinear constraints
and branch and bound was used to find the global optimum. The algorithm is explained in
[15].

One innovation in our current paper is that we convert the objective function (18) to a one-
step objective. This reduces computational cost significantly while retaining the possibility of
using growing data records. The solution time is now independent of the number of data-points
as it is in the recursive least squares method frequently used in adaptive control®.

Constrained Least Squares Estimation:

Initialization: Define the admissible set ©, choose 0 < o < 1,7y, T1,Q(0) > 0 and 6(0) € ©.
Set t = 1 and execute the following algorithm:

Step 1: Update the signal r(¢) in equation (19) and the switch A(¢) using supervisor (1) with

prediction error (15).

Step 2: If A(t) =1 update A(t) and set

Ft) = MO)F(t—1)+ T(lt)cp(t — Dt -1T

W) = A(t)W(t—1>+7jﬂw<t—1>y<t>

Choose Q(t) < Q(t — 1) so that
Q(0) < F(t) + Q1) (23)

3The estimation problem is often implemented using the familiar recursive method when the set © is convex
or consists of multiple convex regions. Using the rank one update formula we write

y(t) — Qp(t — 1)T9(t — 1) } (20)

n(t)

The projection operator P(-) prevents the estimates from leaving the admissible set. The initial covariance is
updated recursively so that

0(t) = 0(t — 1) + A()P(t) {P(t — 1yt —1)

P(t) = ﬁ (P(t 1) = A —— Pt — 1)t — Dp(t — 1)TP(t — 1)) (21)

n(t)
where
n(t) = AXt)r(t) + ot — 1) Pt — 1)p(t — 1) (22)
The covariance update is typically implemented using Cholesky factorizations to improve numerical stability. The
constrained least squares can be implemented using the recursive approach for solving the convex sub-problems
in the branch an bound algorithm. A discussion of a similar approach can be found in Middleton et al. (1988)



Solve the following optimization problem using the algorithm of Staus et al.

o(t) = arégergin {—2(W (@) +Q(t)0(0))" 0 + 6T (F(t) + Q(1))0}

Redesign the controller (10) using the new estimates.

If A(t) =0 set

Ft) = F(t—1
W(t) = W(t—1)
o) = 0(t—1)

Leave the controller (10) unchanged.
Step 3: Implement the control action
Step 5: Set t =t + 1 and go to Step 1.

The algorithm does not allow the leakage to disappear completely unless the matrix F'(t) is
positive definite, indicating that the regression vector is excited in all directions. Leakage
comes back if excitation is lost.

The optimized objective function is given by

M(t) = J(6(t),1) (24)

Lemma 1. Forallt >1

with M(0) = 0.

Proof. From the definition of M (t) we have

1
@(y(t) —o(t —1)T6(t))°

However M (t—1) < J(6(t),t—1) since 6(t—1) is the minimizer for J(#,t—1) and Q(t) < Q(t—1).
The result follows. O

M(t) = M) J(0(t),t — 1) +

5 Stability of a Supervisor Class
Two signals, z;(t), z2(t) are close of order o(t) if
|21(t) = 22(t)] < koo (25)

where k, is constant. We write
z1(t) = 22(t) + o(t) (26)



A switching function, not used in the algorithm but rather used as a tool in the stability
analysis, is defined so that

10={ o gheewie @)

We see that the switch A(t) is equal to 1 if the normalization signal does not decrease faster
than the given exponential and it is zero otherwise. Define the constants

2 2

n n

_ 0 _ 0
K, =Kyt and kp =y

where
ng =n+m and n = max{n,m}

From Assumption 2 and definition (14) we deduce that the regressor is bounded in terms of the
comparison signal so that
lo(t = DII* < Kpa(t) + ke (28)

Assumption A5 below provides a sufficient condition for stability of a class of supervised
adaptive control algorithms. This assumption can be used to check if a particular supervisor
provides stable adaptive control.

Assumption 5. Supervisor Condition: Suppose there exist constants ey and R so that if
r(t) > R for all t € [t — N, t|, then

% D A - NG L (29)

i=t—N r <Z)

and
o Ino

K <
7t l+olno—Ing;

where g1 = K, K9+ K.,. The constants K,, Kg and K., derive from equation (28), Assumptions
A8 and A4 respectively.

The supervisor condition implies that the estimator is turned on if the comparison signal r(t)
increases and at the same time s(t) is large relative to r(¢). We can assert that the supervisor
condition is satisfied for any supervisor with s(t) < so < co.

Theorem 1. Supervised Adaptive System Stability: If Assumptions A1-A5 are satisfied,
then there exist constants Ry, R1 and 61 > 0 so that

lu(@®)|? + [Jly(@®)||> < Ro(ky + kye) + e OIR,
The constant R1 depends on the initial conditions whereas the other constants do not.

The result shows that there exists an attractive invariant set which does not depend on the
choice of initial conditions. The size of the set scales with the size of the external perturbations.
The result therefore shows that the steady state performance can be optimized by filtering and
removing biases so that k, and k,~ are as small as possible. The result also shows that the

10



nominal performance and robustness can be met if the model mismatch is sufficiently small. It
implies that the controller must be designed so that it does not excite the unmodelled dynamics.
It is easy to check that Assumption A5 is satisfied using a fixed deadzone. The problems with
the fixed deadzone are that drift is introduced if the deadzone is too small and that performance
suffers if it is too large.

To help the reader follow the proof we present a brief outline of the main ideas. First we
establish the relationship between the signals x(¢) and r(¢). Then we introduce a new Lyapunov
candidate function suitable for analyzing least squares estimation with non-convex admissibility
constraints. Next we use the results obtained in the first two steps to establish properties of
the indicator function A(t). In the last step we tie everything together using the Switching
Lemma introduced for analysis of hybrid systems by Ydstie (1989) [16]. The switching lemma
is reviewed for completeness in the Appendix.

Step 1: The comparison sequence

Lemma 2. Suppose rqg > 0. Then

8

ﬂSl—i—o(i&)

r(t)

The Lemma shows that the signals x(¢) and r(t) are identical apart from the choice of initial
condition whose influence decays exponentially over time.

Proof. From the definitions of r(¢) and z(t) in equations (4) and (19) we get
x(t) —r(t) = (ng(t — 1)+ (1 - o?)e(t — 1)2) - (0'27"(75 — 1)+ (1 — o?)e(t — 1)2)

Hence

Therefore,

Equation (19) gives r(t) > o'ro. Hence

o) gty 0
r(t) 70

The result follows. O

Step 2: The Estimator

In this section we define a Lyapunov function candidate V' (¢) for the estimator and relate the
size of the prediction error to the comparison sequence x(t). This intermediate result aims to
establish properties of the feedforward system in Figure 2B.
Define
M*(t) = J(6%,¢) (30)

11



where 0* € ©* is any parameter satisfying Assumption 3. It follows that we can write the
recursion

M*(t) < AME)M*(t — 1) + A(t) (31)

with
M*(0) = (6% - 6(0))" Q(0)(6" - 6(0))
The equation error corresponding to #* is defined so that
Y(t) = y(t) — ot = 176" (32)

Lemma 3. Let V(t) = M*(t) — M(t). Then there exists a constant M* so that 0 < V(t) <
M*(t) < M* and

e(t)? 2

with V(0) = M*(0).

Proof. The objective function, J(6,t), in equation (17) is minimized for § = 6(t). Therefore by
comparing (24) and equation (31) we see that

M(t) < M*(t) (33)

From Lemma 2 and (31) we have

e(t)? 2
MwwwﬂwsMMMw—U—M“—m‘A@<ﬁg‘ﬁg)

The result follows using the definition of V(¢), Assumption 3 and the fact that the forgetting
factors are less than 1. O

Step 3: The Indicator Function A(t)

The following lemma bounds the indicator function using the ratio between the model error
and the comparison signal.

Lemma 4. We have

o e(t)?
i J)A(t) < A(t) < ) + 0(t)> (34)
Proof. First multiply expression (4) through with A(t). We get
A)r(t+1) = A®t) (o?r(t) + (1 — o?)e(t)* + o(t)) (35)
By dividing through with r(¢) and re-arranging we get
r(t+1) _g2) = _ g2 e(t)? o
aw (M ) = (- ) 4 ot0) (36)

From (27) it follows that r(t+1) > or(t) if A(t) = 1. The expression above therefore simplifies
to

o— o’ e(t)?
<
o2 A(t) < A(t) ( ") + o(t)) (37)
and the result follows by noting that (1 — o2) = (1 — o)(1 + o). O

12



Lemma 5. Suppose that r(i) > R > 0 for alli € [t — N,t|, then we have

o 1 ) -
S0 <O o
with
U(R,N) = (V( ]; ) + K, + ﬁ%) (39)
Proof. From Lemma 4
o e(t)? B e(t)?
a +U)A(t) < A(t) <A(t) r(t) + (1= A(1)) ) ) (40)
From Lemma 3 (1)? (0)?
e g
A(t) ) <ANOV(E—1)=V(t) + At) (1) + o(t) (41)
Supervisor (1) gives e S
e(t os(t) +17
(1—A(1)) ) <(1- A(t»T (42)

Now we sum equation (40) from ¢ = ¢t — N to ¢ = ¢ and use inequalities (41) and (42) and
Lemma 2 to give

t t Z ,
: DA < D A®) <)\(t)V(i—1)_V(i)+A(i)7T((i))
i=t—N i=t—N

41— A(i)ﬂw + o(t)>

Now At)V(i—1)=V(@) =V(@i—1) = V() — (1 = X4))V(i—1). With (1 =X@)V(i—1)>0
and V (t) > 0 we get

t (V(i—1)— V(@) =V(t—N)— V() <V(t—N)
i=t—N

The result follows by dividing with N and using the facts that (i) > R, A\(7) < 1 and
1 1

= (1+o(t

MO CL

Step 4: Proof of Theorem 1

In this section we establish boundedness of the comparison signal z(t) using the Switching
Lemma from the Appendix.

13



Lemma 6. Suppose that there exist positive numbers R and N so that

1. - Ino

where
91 =2(K Ky + K)
Then we have
z(t) < o~ max {R, e_‘s(N'H):U(O)}
Proof. We have from definition (4) and the definition of A(t) in equation (27)
z(t) < A(t) (P2t — 1) + (1 — 0)e(t)?) + (1 — A(t))ox(t — 1) (43)
Now y
e(t) = o(t = 1)T0(t) +(t)
Hence, using the fact that [|0(t)||? < Kj from A4 and applying A3 and inequality (28) we get
2((p(t = D)T0(1))* +7(1)°)
2 (|lp(t — D|*Kp + Kya(t — 1) + k)
2(Kpz(t—1) + ky) Ko+ Kyx(t — 1) + k)
2(KoKg+ Ky)x(t — 1) + ky + k)

e(t)?

INIA N IA

It follows from inequality (43) that we can write
w(t) = A(t) (gro(t — 1) + k1) + (1 — A(t))ox(t — 1) (44)

where g7 was defined above and
ki = 2(k¢K9 + k‘»},)

The Switching Lemma applies with the following assignments

g1 =G
o =Gy
k=K
0= Ko
The result as stated above follows. O

Proof of Theorem 1: From the definition of U(R, N) in (39) (lemma 5) we have

M* k
K el
N TR

U(R,N) <
It follows that for any € > 0, by choosing R and N sufficiently large we have

UR,N)<K,+e

14
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Figure 3: Block diagram of the supervised dual-model adaptive control approach.

hence

UR,N)+e <Ky +e+e
From Assumption A5 we know that there exists € > 0

_ o Ino
U(R,N) — <
(R, N) 6jLEO_1—}—0’1110’—1119/1

Hence for large enough R and N

_ o Ino

U(R,N)+¢€ <

l1+olnoc—Ing

Lemma 6 applies and Theorem 1 follows by appropriate choice of constants.

6 Model Based Supervision with Parameter Convergence

Lemma 3 shows that the Lyapunov function decreases if s(¢) approximates the prediction error
v(t)2. This observation leads to the idea of model based supervision. In this approach a second
estimator generates the noise model. We then simply compare the prediction errors of the two
models and update the control model when these are sufficiently different. Figure 3 shows the
architecture used to adapt the control parameters and the noise model on-line. We call the

approach model based supervision.

Definition 1. Model based supervision. Let 05(t) be a vector of supervisor parameters and

define the supervisor error
es(t) = y(t) — et —1)"0s(t —1)
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The trigger signal used in model based supervision defined by equation (1) is given by
s(t) = es(t)? (45)
The parameters are set so that Ty > 1 and Ty > 0.
We have the following convergence result concerning model based supervision.

Lemma 7. Suppose that Assumptions A1-A5 are satisfied and that
lim [65(t) — O(t — 1) =0

Theorem 1 is then satisfied and the parameter estimates used in the control design do not drift,
1.e.

lim 0(t) = 6y

t—o00
where Oy € © is constant.
Proof. (The development is similar to the one used to prove Lemma 3). From equation (18) we
define

Ms(t) = J(0s(t),t)

It follows that we can write

es(t)?

i

7

[~

; (y(0) — ot — )T 0s(8))* + (0s(t) — 0s(0))"Q(t)(95(t) — 05(0))

—

t—1 (
+ ZA(Z')T
i=1

where eg(t) = y(t) — o(t — 1)T0s(t) is the model error. By using the fact that the forgetting
factors are not equal to one we can conclude that

és(t)2
r(t)

where lime;(t) = 0 since lim [|fg(t) — 0s(t — 1)|| = 0. It follows that for every eg > 0 there
exists a time tg so that for all ¢ > tg we have

Mg(t) = Mt)Mg(t — 1) + A(t) + e1(t)

eg(t)2

r(t)

We now define the Lyapunov function Vg(t) = Mg(t) — M (t) > 0 where the inequality follows
due to the fact that 0(t) is the minimizer. For large ¢ we obtain the recursion

e(t)? es(t)Q)

Va(t) < AVs(e — 1)+ A0 (-0 + s+ 50

Mgs(t) < ANt)Mg(t — 1) + A(t) +€g

The supervisor (1) with Switch (1) gives

e(t)? > s(t) + Ty for A(t) =1
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We now note that
es(t) _ es(t) et —1)"(0F—-1)-0(t)

= +

Vr(t)  /r(t) r(t)
For large t we can therefore interchange the prediction and model errors for the supervisor
since 221 is bounded according to inequality (28) and 6(t — 1) — 0(t) converges to zero. For

Vr(t)

A(t) = 1 we can therefore write

Hence

But for every T7 > 0 there exists tg so that e’S < T for all t > tg. We must therefore conclude
that A(t) converges to zero. The parameter estimator stops and the parameter estimates
converge to a finite limit since the admissible set © is compact.

O

We now get to the issue of how to implement the supervisor. Many different methods can
be proposed. One simple supervisor results using constrained least squares so that

0 (1) = argmin {~2(WWs() + Q(0)0(0))70 + 67 (Fs + Q(0))0} (46)

The update equations are given by

p(t—1)

r(t)
p(t = D)Tp(t - 1)
r(t)

Wi(t) = Ws(t —1) +y(t)

Fs(t) = Fs(t—1) +

The minimization solves problem (17) with A(¢) = 1 and A(t) = 1.

Theorem 2. Performance of model based supervision: Suppose that Assumptions A1-A4
are satisfied with
o Ino

K
i 21+o0)lnoc —Ing

and that the constrained least squares algorithm is implemented using Switch 1 and trigger signal
(45), with Ty = 1 and T1 > 0 and supervisor model (46). The following holds

1. There exist constants Ry, R1 and 61 > 0 so that
[u(@)]I” + |y < Ro(ky + ky-) + ' Ry

The constant Ry depends on initial conditions, the other constants do not.
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2. The parameter estimates do not drift since the limit

lim 6(t) = 6y

t—o0
exists and is finite.

Proof. We first note that least squares with no forgetting forces the difference between con-
secutive parameter estimates to converge. This result generalizes to constrained least squares
using Assumption A4. We get

Jim [[85(t) — 65(t — )| =0 (47)

We now define a Lyapunov function for the supervisor and derive the inequality

We can then write

Equation (47) holds and we can interchange the model and prediction errors so that we can

write
t

1 es(i)? ky 1
- <K, + 24+ _V({t-N t
Ni;N ) S tTRTN ( )+ ealt)

where lim;_, €2(t) = 0. Assumption 5 is now satisfied with trigger signal s(t) = eg(t)? for
large t. We get stability according to Theorem 1. Lemma 7 also applies since the limit (47)
holds and the result follows.

O

The algorithm can be modified in many ways. It can be restarted by including a second
switch which resets the supervisor information matrix so that Fg(t) < Fg(t — 1). This can be
done periodically or by using a special supervisor which determines that re-adaptation is needed.
The stability follows in the sense of Theorem 1. However the parameters do not converge as long
as the resetting continues. Many other modifications can be made and more robust supervisors
with large and small error detection can be implemented. The old parameters can be stored to
build a bank of models which are matched to different operating conditions.

The results of the paper can be developed without using the normalization signal r(¢) in the
constrained least squares algorithm. The analysis, which follows the format developed by Ydstie
(1992), is considerable more cumbersome and the bounds obtained on unmodelled dynamics
are more conservative.
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7 Adaptive Predictive Control with Supervision

The adaptive supervision algorithm is now combined with a Model Predictive Controller (MPC)
minimizing the T-step ahead prediction

min J = [y (t+T) — y(t +T)]* + réu(t)? (48)
u(t
subject to

du(t +1i) = ou(t), i1>1

where § = 1 — ¢! is the increment operator.

The controller is developed by defining F(¢~!) and G(¢~!) satisfying the Diophantine equa-
tion

Flg HAW@ (A —¢ ) +a TG Hl-g ) =01-qT) (49)
Using the method of Lagrange multipliers we find that
T
= /BZ *
) =u(t =1)+ =S T a0 (50)
—a10y(t) — - —andy(t —n) — frou(t — 1) — -+ — Bpdu(t —m))

where q; are the coefficients of the polynomial G(¢~!) and 3; are the coefficients of the poly-
nomial F(¢~1)B(g~!). In direct adaptive control we use the equation error

e(t) =y(t) —y(t = T) — p(t —1)76 (51)

with
ot — 1)T = (dy(t), oyt — 1),...,0y(t — ng)ou(t — 1), o0u(t — 1),...,0u(t —ny — T)) (52)
0 = (1, ey gy By ooy Brpat) (53)

Indirect control estimates a; and b; in equation (13) using the equation error (16). The Dio-
phantine equation (49) is then solved to get the control parameters (50).

In the CSTR simulation and heat-exchanger experiments we use the direct approach. We
also make the assumptions that the plant is stable and that the sign and lower bound for the
high frequency gain is known. The admissible set is then convex. The forgetting factor is chosen

so that )
A=1——
My
where My is called the memory length. Setting My = oo gives A = 1 which corresponds to

regular least squares estimation.

Monte Carlo Simulations

The plant is given by the stochastic process

d(t) =d(t—1)+ po(t) (54)
y(t) =ay(t —1) +u(t — 1) +d(t) (55)
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Here v(t) is an i.i.d. noise signal with mean = 0 and standard deviation = 1 generated by the
Matlab® rand command. The disturbance and plant parameters are y = 0.05 and a = 0.5
respectively. The initial conditions for the simulations are y(0) = d(0) = w(0) = 0. The
equation error is given by

e(t) = y(t) — p(t = 1)"0(t) (56)

where the regression vector is ¢(t — 1) = y(t — 1). The model initial conditions are §(0) =
0s(0) = 1E-4 and the leakage is set so that Q(0) = Q¢(0) = 1E-9.
The control law update is given by the following 1-step ahead stochastic predictive controller

u(t) = y* = 0(t)y(t) —e(t) (57)

where y* = 0 is the output setpoint. FEach simulation run is based on 6,000 samples. We use
1000 realizations to calculate the averages. The initial tuning period (1000 sampling points) is
not reported since we are interested in the long term behavior of the adaptive control system.

The results are presented in three figures and one table. Figures 4, 5 and 6 show repre-
sentative simulations for the recursive least squares, fixed deadzone and adaptive model based
supervision algorithms. Each figure is composed of four plots. The topmost plot shows the
control input as well as the signal-to-noise ratio (snr) for a representative run. The signal to
noise ratio is defined as the absolute value of the ratio of the plant output without noise to the
noise, i.e.

snr = |%—1|

Next, we show the process output along with its setpoint. The estimated control model pa-
rameter fc along with the switching condition (for the supervised case) are shown on the next
graph. In figure 6 the third plot also shows the supervisor estimated parameter g for the same
run. The histogram shows the distribution of the estimated parameter at the conclusion of each
run. The results are summarized in Table 7.

The following points are worth highlighting.

1. The table shows that all algorithms have similar average performance as measured by the
standard deviation of the control signal and the tracking error

2. The algorithm with model based supervision has similar performance to the optimal
controller using the true parameter. The other methods investigated show drift and
burst. This shows up as occasional spikes and large tracking errors, resulting in poor
loo performance. The bursts do dot happen frequently enough to impact the average
performance significantly

3. The RLS algorithm and the deadzone approach show output bursting.The instability is
seen with and without exponential forgetting. The supervision approach does not show
signs of the bursting behavior. Figure 6 shows that the supervisor model acts as an
exploratory controller always estimating parameters

4. The histograms show the distribution of the final value of the parameter estimate. The
RLS approach has a wide distribution centered around the true parameter. The fixed
deadzone approach gives bias towards 1. The supervisor allows the parameter to be
centered closer to the true parameter. The RLS and deadzone algorithms occasionally
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Figure 4: Recursive least squares estimation with exponential forgetting.
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Figure 5: Fixed deadzone.

22



Hl(t) y(t) u(t)

Counts

10

I I T
W |M | —Control Input
L b L 1 . .\
1| e S —Signal-to-Noise
i
-10
1 I I I I I I I I I
—Process Output
0 — Setpoint N
-1
17 .AM\ T T T T T T T
A A o J/ ‘M MMWM .......... 05(t) b
0 — 0c(t)
AW
'17 | | | | | | | | | ]
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
400 I I : \: I
Unstable : Stable : Unstable
200+ : I : i
O | 1 5_ :
-3 -2 -1 0 1 2 3
6c(t = 5000)

Figure 6: Supervised adaptive control.
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Std e | Std y —y* | Max |y — y * |
Optimal Model (a = 0.5) 0.0500 1.9668 0.2276
Least squares My = oo 0.0502 1.8308 6.4977
Forgetting Factor My = 1000 0.0970 1.8707 4.3228
Deadzone = 0.1, My = 1000 0.0774 1.8177 1.5905
Deadzone = 1, My = 1000 0.0749 1.6831 1.8199
Deadzone = 5, My = 1000 0.0624 1.8529 1.6311
Supervised Mo = oo, Ty =3, T1 =3 0.0500 2.0305 0.2321
Supervised My = 1000, Ty = 3, T3 = 3 | 0.0500 1.8946 0.2230

Figure 7: Summary of MC simulations with various adaptive control algorithms. Supervised

adaptive control results in italics.

produce parameters yielding an unstable closed-loop. The histogram for the supervision
approach shows that the estimated control model parameter stabilize the plant

5. The supervised algorithm updates the parameter very rarely and only during periods
when the signal to noise ratio is favorable. The parameter estimate stays close to its

optimal value

Chemical Reactor Simulation

Consider an isothermal CSTR with reactions

A+R— B
B+R—-C
C+R<D
D+R—FE

We assume that component R is present in excess so that we get pseudo-first order kinetics.
Thus the material balances can be written

A
V%t — QA;—gA—kVA
B
V% =—gB+ Kk VA—-kVB
dC ,

dD
V— =—qD + ksVC — KV D — k4VD

dt

(58)
(59)
(60)

(61)

where V' is the vessel volume, @ and ¢ are the inlet and outlet flow rates, {A;, A, B,C, D, E}
are component compositions. The feed compositions of B,C, D, and E are equal to zero. All

system parameters are specified in [1].

The objective is to maintain the composition of component C' close to its setpoint despite
variations in the feed composition R. The composition of C' is measured and the inlet flow rate,

@ is manipulated, as seen in figure 8.
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Figure 8: CSTR schematic with control objective.
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Figure 9: CSTR simulation showing the reactor signals while undergoing set point changes.
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Figure 10: Controller and supervisor estimated parameters for the CSTR simulation during set
point changes.

26



= 9

EXCHANGER ’ Hot Water Out

geeeeeee SAPC ................. :
Cold Water Out

Hot Water In

Cold Water In

Figure 11: CSTR schematic with control objective.

Figure 9 shows the output set point, measured output and manipulated input signals for
the system. The adaptive controller successfully achieves the desired set points with little
overshoot. Figure 10 shows the parameter estimates for both the control (top) and supervisor
(bottom) models. Note that the control model parameters are stable while a noticeable drift is
evident in the supervisor parameters.

Heat Exchanger Experiments

Figure 11 shows the schematic for the pilot plant scale shell and tube heat exchanger used in the
experiments. The hot water flows through the shell side and cold water flows through the tube
side. The supervised adaptive predictive control algorithm was implemented in LabVIEW®
with adjacent field point boxes holding the A/D and D/A converters. Thermocouples were
used to obtain temperature measurements. The sampling time used was Ty = 2 seconds. The
control objective was to regulate the hot water outlet temperature to its set point. The cold
water flow rate was used as the manipulated input. Disturbances enter the system due to
variations in the hot water flow rate and temperature.

The results are shown in the Figures below. Figure 12 shows the hot water outlet tem-
perature controlled by an adaptive regulator without supervision. The typical output bursting
reviewed in [7] is observed. This behavior is due to slow parameter drift. In this case, the esti-
mated parameters cross the linear stability boundary and bursts are seen first around ¢ = 1100
and then again around ¢ = 2600. Figure 13 shows that bursting is eliminated with the supervi-
sor algorithm as. Furthermore, better steady state control is achieved as compared to the RLS
adaptive control algorithm.

8 Conclusions and Discussions

We have presented the theory and application of adaptive control using model based supervision.
The method uses a pair of adaptive models. The supervisor model is used to estimate the noise.
The control model is used to design controller. The supervisor uses a switch to decide when
to update the control model. The admissibility problem is solved using non-convex parameter
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Figure 12: Heat exchanger experiment showing the bursting output behavior observed for
regular adaptive control scheme without supervision.
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Figure 13: Heat exchanger experiment under supervised adaptive control.
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estimation. The latter method is computationally expensive and cannot at present be applied
in applications where the sampling rate has to be high. We expect that this limitation will
become less important as advances in algorithm design are made and computer speed increases.
At present it takes a small fraction of a second to solve each problem to global optimality. The
method can therefore be applied in process control where the sampling rate is typically one
second.

The stability theory shows that supervised adaptive control with non-convex parameter
estimation provides a robust solution to the adaptive control problem. We show that the input
and output signals converge to an invariant set even in the presence of unmodeled dynamics and
unknown but bounded external noise. We do not require that the frequency distribution and
upper bounds for the disturbances are known apriori. We do not rely on persistent excitation.
We furthermore show that the parameters estimates converge.

The analysis highlights the importance of filtering signals so that the magnitude of external
perturbations are reduced as much as possible. this does not effect stability, but it improves per-
formance. It is also important to use controllers that do not excite high frequency unmodelled
dynamics.

Applicability is demonstrated in simulation and experiments. Monte Carlo simulations
show convergence properties when there are large (moving average) disturbances present. A
simple simulation of a chemical reactor and a pilot plant heat exchanger experiment show that
parameter drift and burst do not happen.

Acknowledgement: Mr. Priyesh Thakker carried out the heat-exchanger experiment as part
of his MS studies in the Department of Chemical Engineering at Carnegie Mellon University.
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Appendix: The Switching Lemma

The premise of the Switching lemma [16] is that the dynamics of an adaptive system may
switch between stable and unstable (exploratory) modes in a quasi-periodic manner over finite
intervals so that chaotic bursting may be captured. This property is constructed by utilizing an
indicator function A(t) € [0, 1] which can switch between the unstable and stable systems. The
switching Lemma shows that there exists a positively invariant set if the switching conditions
are satisfied.

Consider the nonnegative comparison signal a(t)

a(t+1) = A(t)[gra(t) + K1] + [1 — A(t)][g2a(t) + K], a(0) < oo (62)

where
0<gp<l<g <o and K{,Ky>0 (63)

Now assume that there exist constants R and N so that

a(t—i) >R Vi=0,1,...,N (64)
implying that
¢
1 . U2
il A7) =
N'Z () =U< = (65)
i=t—N
where
uw =In{g +KiR"'} (66)
uy = —In{gs + KR '} (67)
We then get

Lemma 8. Assuming that expressions (64) through (66) hold, and applying them to (62) then

1. a(t+1) < max {R,e "N +q(0)}

where § = —1In (g2 + KoR™') — (% Zfzt_N A(i)) In (%) >0

2. 15292 liminfa(t) < R and limsupa(t) < g; VR

Proof. Given in [17]. O

The sequence of events corresponding to A(t) = 1 belong to an unstable system where
all signals increase and output bursting is observed and a Lyapunov-like candidate function
decreases. These events inherently result in excited signals and the parameters tune while sta-
bilizing the closed-loop. The second case involves events of the form of A(t) = 0 corresponding
to exponentially stable paths and divergence of the parameter estimates. It is along these paths
that the Lyapunov-like candidate grows.
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