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Problem Description
Estimation of the annular pressure at critical locations in the well is crucial for high-precision
pressure control. Certain parameters which are important in order to determine the pressure
profile of the well (in particular the friction  factor, bulk modulus and density in the annulus), are
encumbered with high uncertainty and are besides, continuously, but slowly changing. The
objective of the thesis is to design an adaptive observer for estimation of the bottomhole pressure
and certain important parameters/slowly varying variables, during drilling.

Topics that should be addressed are:

1) Literature review of existing estimation schemes for drilling

2) Design an adaptive observer that estimates the bottomhole pressure and adapts to uncertain
parameters during common drilling scenarios.

3) Analyze performance of the parameter estimation. Determine which parameters are reasonable
to estimate.

4) Analyze the adaptive observer with respect to the following cases: pipe connection, drill string
movements, changes in choke valve opening and mud pump flow.

5) Analyze performance/robustness with respect to unmodeled dynamics.
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Abstract

To satisfy the increasing petroleum consumption on a world wide basis there is a need
to find new resources. As mature fields are drained, reservoir pressure falls, which again
leads to tight pressure margins. To reduce down time due to hole stability problems (e.g.
kicks) there is a demand for accurate control of the pressure profile in the well. As the
pressure profile is not known and depends on unknown factors such as friction loss there
is a need to estimate the pressure.

In this thesis an observer that adapts to unknown factors, such as friction and density
changes, and estimates the bottomhole pressure is presented. Furthermore, a parame-
ter estimator for the bulk modulus in the annulus is developed as an extension to the
observer to facilitate for future control design. Both designs are based on a third order
model and provide rigid proofs of stability and convergence of the estimated pressure
and parameters. The pressure estimate from the observer is shown to converge to the
true pressure under reasonable conditions. For parameter estimates to converge to their
true values conditions on excitation are presented.

The observer and parameter estimator are tested in simulations and also on log data
from a well drilled at the Grane field in the North Sea. Simulation results show that the
observer performs very well during typical drilling procedures affecting choke valve
opening, pump flows and drill string movements. The observer shows promising behav-
ior when tested on log data from the Grane field.
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Chapter 1

Background

1.1 Motivation and Introduction to Drilling

To meet the increasing demand for oil and gas on a world wide basis, see figure 1.1,
there is a need to find new reserves and to extract these. The remaining resources are
harder to extract as the easier resources have already been developed (Hydro 2007).
Challenges related to drilling complex wells with narrow pressure margins, e.g., drilling
into depleted reservoirs, demand accurate pressure control. At the same time more wells
need to be drilled as the remaining reservoirs are smaller. Therefore there is a demand
for drilling technologies that provide precise pressure control, while still being cost and
time efficient (Hydro 2007).

As an introduction to drilling consider the drill rig set-up illustrated in figure 1.2.
The figure illustrates a jacket platform performing offshore drilling. At the top of the
derrick the drill string is attached to the topdrive which is a motor that turns the drill
string. The drill string can move up and down inside the derrick as the topdrive is
attached to a hook that can be lowered or raised. As the drilling progresses the top of
the drill string sinks towards the drill floor. After approximately 27m a new stand of drill
pipe is connected to the top and drilling resumes. This procedure is referred to as a pipe
connection. For a typical rate of penetration of 15 m

hr
a pipe connection is performed

roughly every two hours.
During drilling, down hole cuttings need to be transported out of the bore hole. This

is done by using a mud circulation system. On board the rig, tanks filled with drilling
mud feed the main mud pump which pumps the drilling fluid through the topdrive and
into the drill string. The mud then flows down through the bit and up through the
annulus carrying the cuttings along before the flow exits through a choke. After exiting
the fluid is recycled and returned to the mud tanks. The example illustrated in figure 1.2
has a rotating control device which seals off the annulus from the outside while a choke
controls the flow of mud out from the annulus. Conventional drilling techniques do not

1



2 CHAPTER 1. BACKGROUND

Figure 1.1: Total final consumption of oil worldwide, by sector. (Key World Energy
Statistics 2007)

have a sealed off annulus. This is cheaper and less complex but does not allow for the
pressure control rendered possible by the seal and choke.

The main reason for pressure control is to prevent uncontrolled reservoir influx
which in the worst case scenario can lead to a surface blowout with large financial
losses, environmental damages and possible loss of lives. Controlling the pressure is
also important to prevent the bore hole from collapsing or fracturing and to reduce skin
damage. Skin damage is caused by drill mud entering and clogging porous sections in
the reservoir which lowers production at a later stage.

The pressure in the annulus is mainly affected by the hydrostatic weight and the
pressure due to friction losses (Brill & Mukherjee 1999). In addition, if the annulus is
closed off, the pressure at the top of the annulus will significantly affect the pressure in
the well.

There are several operational procedures that affect the pressure in the annulus. Pipe
connection affects the pressure as the main pump must be disconnected to attach a new
section of drill pipe, this leads to zero flow and loss of pressure due to friction. Moving
the drill string all the way out/in of the well (tripping) increases/decreases the volume in
the annulus. Tripping out pipe can lead to reduced fluid column height which will lead
to a reduced pressure in the annulus. On the other hand tripping in can create a surge
in the pressure. Similarly effects can be experienced due to heave when drilling from a
floater.

Drilling into depleted sections of the reservoir can lead to a partial or complete loss
of mud which is both critical to hole stability and directly linked to financial losses
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through the cost of mud. On the other hand drilling into high pressure zones will in-
crease the pressure which can bring with it kicks (reservoir fluid influx) which if not
handled correctly can lead to the above mentioned blowout scenario.

Seabed

Sea Level

Drill Rig

Rotating Control Device

Drill String

Drill Bit

Casing

Topdrive

From

Main

Pump To Choke

and Back-

pressure

Pump

Riser

Derrick

Annulus

Figure 1.2: Example of Drilling System



4 CHAPTER 1. BACKGROUND

1.2 Pressure Control
As described in the previous section there is a demand for accurate control of the annulus
pressure. As a response to these demands a fairly new (for offshore drilling) technology
for pressure control has emerged (Hannegan 2006). It is named Managed Pressure
Drilling (MPD) and is defined by the IADC Underbalanced Operations Committee as:
"Managed Pressure Drilling is an adaptive drilling process used to precisely control the
annular pressure profile throughout the well bore. The objectives are to ascertain the
down hole pressure environment limits and to manage the annular hydraulic pressure
profile accordingly" (Hannegan, Todd, Pritchard & Jonasson 2004).

An important part of MPD is to determine the annular pressure profile. The pressure
profile can be hard to obtain as it is a complex function of geometry, fluid velocity, fric-
tion, density, etc. Therefore the bottom hole pressure (BHP) is often used as the variable
to control (Nygaard & Nævdal 2006), (Nygaard, Johannessen, Gravdal & Iversen 2007),
(Nygaard, Vefring, Fjelde, Nævdal, Lorentzen & Mylvaganam 2004). The bottomhole
pressure (BHP) can be measured but the measurement is usually based on mud-pulse
telemetry. It is therefore hampered with slow sampling and no signal when the circu-
lation is low, e.g., during pipe connection procedures. Wired drill pipe is an emerging
technology that will make the BHP more accessible in future, but at the moment it is not
fully developed (Fischer 2003), (Hydro 2007). As mentioned there are several factors
such as pressure drop due to friction, pressure variations due to movement of the drill
string and reservoir influx affecting the BHP. Friction and influx are cumbered with high
degree of uncertainty as there is no direct way of measuring them. Because of this the
BHP has to be estimated and uncertainties should be taken into account when doing so.

1.3 Pressure Estimation in Wells
This section gives a brief overview of existing estimation/observer designs for MPD
found in the literature. The (possibly) multiphase flow dynamics of a well can be de-
scribed accurately by a set of partial differential equations (PDE’s), see e.g. (Lage
2000), (Nygaard 2006). The models found in (Lage 2000) and (Nygaard 2006) are based
on mass balance equations and a simplified momentum balance known as the drift-flux
formulation. These models can be discretized and implemented (for simulation) as a
large set of ordinary differential equations (ODEs). Such flow simulators can be used to
predict the pressure gradient in the well if all parameters are known and inputs (such as
pump flows and choke flows) are measured and fed into the simulator. This is basically
an open-loop estimation scheme as the estimation error is not used to adjust the future
estimate. In (Fossil & Sangesland 2004) a new MPD concept which uses a modified
version of OLGA 2000 to provide an estimate of the pressure profile in the annulus
is presented. OLGA 2000 is a powerful multiphase flow simulator developed for the
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petroleum industry (SPT Group 2007). The behavior of complex estimation schemes
like these in conjunction with a control system is hard to analyze in a rigid manner.
Verification by simulation or trials seem to be the preferred method to guarantee proper
functionality.

The complexity is increased by the fact that many of the parameters in such models
are uncertain/unknown and possibly slowly changing, which implies that they would
need to be tuned as operating conditions change. This tuning can be done by an ex-
perienced operator or by using automatic tuning methods such as parameter estimation
algorithms. In (Gravdal, Lorentzen, Fjelde & Vefring 2005) an unscented Kalman filter
was used to update the friction estimate in both the drill string and the annulus. The
scheme uses a measurement of the BHP to update the parameters every 30 seconds.
Although no formal proofs are shown the estimation scheme shows promising behavior
with better estimates of the BHP than without the unscented Kalman filter, and fairly
accurate estimation of the friction factors.

Attempts at using low order models for control and estimation of the BHP can be
found in (Nygaard, Imsland & Johannessen 2007) and (Nygaard, Johannessen, Gravdal
& Iversen 2007). In (Nygaard, Imsland & Johannessen 2007) nonlinear model predic-
tive control (NMPC) was used together with an unscented Kalman filter to control the
BHP. A third order nonlinear model was used as the basis for the control and estimation
design. The Kalman filter was used to estimate the states, and the friction and choke co-
efficients. The estimated parameters showed unwanted and unexplained spikes and os-
cillations during and after a pipe connection procedure. The BHP was kept fairly stable.
In (Nygaard, Johannessen, Gravdal & Iversen 2007) it is shown that pressure variations
in the BHP during surge and swab can be suppressed by controlling the choke and main
pump. The control is based on a fourth order model and assumes that all parameters and
the BHP is known, hence there is no estimation scheme involved.

1.4 Scope and Emphasis
The main goal for this thesis is to develop an adaptive observer, based on a low order
model, that:

1. Estimates the bottomhole pressure during common drilling scenarios.

2. Adapts to key unknown parameters to give robustness to the estimate.

3. Provides rigid proofs and conditions for stability and convergence.

4. Facilitates for future control design.

The performance and robustness of the observer should be verified and analyzed
through simulations. Due to time constraints the following assumptions will be made in
the observer design:
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� Only fluid phase

� No reservoir influx

Depending on the drilling conditions the first assumption can be justified if the amount
of gas in the drilling mud is low. The second assumption should be removed as part of
future work.

1.5 Thesis Outline
The thesis is divided into four main parts.

1. In Chapter 2 the low order model used as a basis for the observer design is derived.
Inputs, disturbances and measurements are described.

2. In Chapter 3 observers based on a linearized version of the nonlinear model de-
rived in Chapter 2 are presented. Important limitations in design based on the
linearized model are pointed out. The chapter thus serves as an introduction to
Chapter 4.

3. The main result of this thesis is presented in Chapter 4 where an adaptive observer
based on the nonlinear model presented in Chapter 2 is derived.

4. In Chapter 5 simulations are presented to illustrate the performance of the ob-
server derived in Chapter 4. In Chapter 6 conclusions are drawn, main contribu-
tions are highlighted and future work commented.



Chapter 2

Modeling

To facilitate the design of an observer a dynamic model for the system will be derived in
this chapter. As stated in Section 1.4 only fluid phase flow will be considered. The third
order model consists of nonlinear ODE’s with a nonlinear measurement equation for the
pressure at the bit. The model is originally developed in the internal document (Kaasa
2007), therefore the derivation will be shown here. A similar model for two phase flow
in a well can be found in (Nygaard & Nævdal 2006).

For modeling purposes we divide the well into two separate compartments. Figure
2.1 shows the two control volumes considered, one control volume for the drill string
and one for the annulus. The volumes are connected through the drill bit. There is a
mud pump that pumps drilling mud into the drill string. Under normal conditions the
mud flows from the pump through the drill string, the drill bit, and then up through the
annulus and out through the choke. After the choke the mud is recycled and returned to
the mud reservoir. The purpose of the drilling mud circulation is to clean out cuttings
and to help maintain a correct pressure profile in the well bore. The pressure in the well
bore at constant flow consist of three main components. The largest component is the
hydrostatic weight of the mud, the second largest is the choke pressure and finally there
is a pressure component due to friction (Brill & Mukherjee 1999). Equation (2.1) shows
these main components for the steady state pressure at the bit .pbitss

/, a more detailed
derivation will follow later in this chapter.

pbitss
D �aghbit C pc C Fajqajqa (2.1)

�a is the density of the mud in the annulus, g is gravity, hbit is the depth, pc is the
choke pressure, Fa is the friction factor and qa is the volume flow in the annulus. From
the equation we can see that changing the density �a, choke pressure pc or flow qa

will effect pbitss
. Changing �a takes time as it is necessary to circulate out old mud

before changes become effective. Changing pc gives a much faster response as it can
be controlled by using the choke opening. When the choke is fully closed pc can be

7
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increased by using the back-pressure pump. qa can be changed by changing the flow
through the mud pump.

Figure 2.1: Division of system into two control volumes

2.1 Pressure dynamics
The model for the system in Figure 2.1 will be developed using mass and momentum
balance relations. First, using the mass balance, expressions for the pressure dynamics
will be found. The method used can be found in (Merrit 1967). Consider the control
volume shown in Figure 2.2 with mass

m D N�V;

where N� is the average density in the volume V defined by

N� D 1

V

Z L

0

�.x/A.x/dx; (2.2)
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where L is the length of the volume in the x-direction and A.x/ is the cross-sectional
area. For a circular pipe, A.x/ D �

4
di.x/

2 where di.x/ is the inner diameter. Conservation

x

L

0

ρ̄

Figure 2.2: General Control Volume

of mass (m) gives
X

min �
X

mout D Pm

D d. N�V /

dt

D V
d N�
dt
C N�dV

dt
: (2.3)

As we want to find an expression for the dynamics of the pressure we make the custom-
ary assumption (Egeland & Gravdahl 2002)

d�
�
D dp

ˇ
; (2.4)

where the assumption 1 has been made.

Assumption 1. Isothermal conditions in the fluid.

The bulk modulus ˇ is given as (Merrit 1967)

ˇ D �V0

@p

@V

ˇ̌
ˇ̌
T0

: (2.5)
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Substituting (2.4) into (2.3) and using � D N� and p D Np, where Np is the average
pressure in the control volume gives

X
min �

X
mout D V

N�
ˇ

d Np
dt
C N�dV

dt
(2.6)

) V

ˇ
PNp C PV D 1

N�.
X

min �
X

mout/: (2.7)

We further assume that:

Assumption 2.
P

min D
P

qin N� and
P

mout D
P

qout N�
This gives

V

ˇ
PNp C PV D

X
qin �

X
qout : (2.8)

Making the assumption:

Assumption 3. The change w.r.t. time in average pressure is the same as the change in
pressure anywhere in the control volume, PNp D Pp.

Using assumption 3 and (2.8) gives

V

ˇ
Pp C PV D

X
qin �

X
qout ; (2.9)

which describes the pressure dynamics anywhere in the control volume. Applying (2.9)
to the control volume in the drill string, see Figure 2.1, we have one flow in from the
main pump (qpump) and one flow out through the bit (qbit ). The pressure dynamics for
the pump pressure (pp) is therefore given by

Vd

ˇd

Ppp D qpump � qbit � PVd ; (2.10)

where Vd is the drill string volume and ˇd is the bulk modulus of the drilling mud. As
the drill string volume is constant between each pipe connection PVd D 0 and (2.10)
reduces to

Vd

ˇd

Ppp D qpump � qbit : (2.11)

The same procedure for the control volume in the annulus gives the choke pressure
dynamics, see Figure 2.1,

Va

ˇa

Ppc D qbit C qback � qchoke C qres � PVa; (2.12)
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where Va.t/ is time varying as the volume is dependent on drill string movements and
drilling progress. qback is the flow from the back pressure pump, qchoke is the flow
through the choke and qres is reservoir influx. The flow through the choke can be
modeled by the classic orifice equation (Manring 2005)

qchoke D Kczc

s
2

N�a

.pc � p0/; (2.13)

where the flow constant Kc D AcCd , with Ac being the valve opening at fully open
valve and Cd being the discharge coefficient of the choke valve. zc 2 Œ0 1� is the
normalized choke opening and p0 is the pressure at vena contracta which will be ap-
proximated with the pressure further downstream of the choke. Note that the orifice
equation is based on assumptions of steady, incompressible, high-Reynholds-number
flow (Manring 2005). The assumptions of steady and incompressible flow are not valid
for our system. For simplicity these assumptions will be neglected when using (2.13).

2.2 Flow dynamics
Equations (2.11) and (2.12) describe the dynamics of the pump and choke pressure.
They both depend on qbit . Using the momentum balance the qbit dynamics will be
derived. One important simplification will be used in this derivation:

Assumption 4. � is constant in the flow dynamics, compressible flow effects due to
pressure variations will be neglected, this implies that the flow will be considered rigid
(q is constant along the flow path).

Using results found in (White 1999, p. 224) the momentum balance for a differential
volume is

X
F D �dV

dt
dxdydz; (2.14)

where
P

F is the sum of forces acting on the differential volume, � is the mass density
in the differential volume, and V is the velocity vector. For one-dimensional flow in the
x-direction with cross-sectional area A.x/, (2.14) reduces to

X
Fx D �

du

dt
A.x/dx; (2.15)

where u is the velocity in the x-direction, see Figure 2.3. The forces acting on the
differential volume in the x-direction are

X
Fx D Fsurf C Fgrav: (2.16)
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dx

u

ρ

x

∂h
∂x

Figure 2.3: Differential Control Volume

Fsurf is due to stresses on the sides of the control volume consisting of the hydrostatic
pressure gradient plus the viscous stresses (friction). Hence Fsurf D � @p@x

A.x/dx �
@Ff
@x

dx, where Ff is the friction force acting on the flow. Fgrav is the gravity force in
the x-direction and can be expressed as Fgrav D �g @h

@x
A.x/dx, where @h

@x
is the depth

gradient, see Figure 2.3. For a more detailed derivation of this result see (White 1999,
ch. 4). Using (2.15), (2.16) and the above mentioned expressions we get

�
du

dt
A.x/dx D �@p

@x
A.x/dx � @Ff

@x
dx C �g

@h

@x
A.x/dx (2.17)

) �
du

dt
dx D �@p � 1

A.x/

@Ff

@x
dx C �g@h: (2.18)

Inserting q D A.x/u, integrating (2.18) along the flow path (x-direction), using as-
sumption 4 and replacing � with N� defined in (2.2) gives

Z l

0

N�
A.x/

dx
dq

dt
D �

Z p.l/

p.0/

@p �
Z l

0

1

A.x/

@Ff

@x
dx C

Z h.l/

h.0/

N�g@h

D p.0/ � p.l/ �
Z l

0

1

A.x/

@Ff

@x
dx C N�g Œh.l/ � h.0/� : (2.19)

Figure 2.1 explaines the notation. The pressure loss due to friction is given by the
term

R l

0
1

A.x/

@Ff
@x

dx. The expressions for the friction gradient, @Ff
@x

, can be quite com-
plex depending on amongst other the Reynolds number, density and geometry (White
1999, chp. 6). As the mud flow in the well is dynamic (volume flow changes, geome-
try changes, density changes) so will the friction gradient be. This complexity can be
avoided by stating the pressure loss due to friction directly. Using formulations found
in (Manring 2005), the loss can be divided into minor and major losses. Note that major
and minor do not have anything to do with the size of the loss. Major losses are losses
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that occur over straight sections of pipe while minor losses are losses due to bends in
the flow path or obstructions such as valves. Figure 2.4 illustrates an example of how
the system can be divided into major and minor loss sections. Section S1 illustrates the
main length of the drill string which would be a major loss. Section S2 illustrates the bit
(dynamics similar to a valve) which would be a minor loss. While S3 and S4 illustrate
the annulus with a varying diameter, representing major losses.

S2

S1

S3

S4

Figure 2.4: Sections of major and minor losses

A general expression for a major pressure loss is (where u � 0 has been assumed)
(Manring 2005)

�pmaj D f
1

2

l

D
�u2; (2.20)

If the flow can flow both ways (no assumption on u) (2.20) can be written as

�pmaj D f
1

2

l

D
�juju; (2.21)

where f is called the friction factor which is dependent on the Reynolds number, surface
roughness and diameter. u is velocity, l is length and D diameter. The pressure loss
from minor losses can be described in a similar manner as

�pmin D Kl

1

2
�juju; (2.22)
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where Kl has to be determined experimentally and will according to dimensional analy-
sis (Manring 2005) vary with the Reynolds number and the geometry. The total pressure
loss due to friction in the drill string is thus simply the sum of all major and minor losses
in the drill string. Using (2.21) and (2.22) this can be stated as

�pfd D
X

i

fi

1

2
�i

li

Di

juijui C
X

i

Kli

1

2
�ijuijui : (2.23)

Changing from velocity to volume flow using ui D qi

Ai
gives

�pfd D
X

i

fi

1

2
�i

li

A2
i Di

jqijqi C
X

i

Kli

1

2

�i

A2
i

jqijqi: (2.24)

Using assumption 4 which implies �i D � D N� 8 i , where N� is the average density
defined by (2.2), and qi D q 8 i gives

�pfd D
"X

i

fi

li

A2
i Di

C
X

i

Kli

A2
i

#
1

2
N�jqjq: (2.25)

Defining

Fd D
"X

i

fi

li

A2
i Di

C
X

i

Kli

A2
i

#
1

2
N�; (2.26)

gives

�pfd D Fd jqjq: (2.27)

Similarly for the annulus we get

�pfa D
"X

i

fi

li

A2
i Di

C
X

i

Kli

A2
i

#
1

2
N�jqjq (2.28)

D Fajqjq: (2.29)

Note that both Fd and Fa will change with operating conditions as the factors in (2.26)
and (2.28) will vary. In the observer design later on this is an important reason for
designing an observer that adapts to changes in friction.

Inserting (2.27) for the friction term in (2.19) the flow dynamics for the drill string
(where the bit is considered a part of the drill string) are

Z LdN

0

N�d

Ad.x/
dx

dqd

dt
D pp � pbit � Fd jqd jqd C N�dghbit ; (2.30)
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where LdN is the total length of the drill string, qd is the volume flow in the drill string,
pp is the pump pressure, pbit is the pressure just after the bit and hbit D h.lbit/. See
Figure 2.1 for further description. Defining

Md D
Z LdN

0

N�d

Ad.x/
dx (2.31)

D N�d

Z LdN

0

1

Ad.x/
dx (2.32)

simplifies (2.30) to

Md Pqd D pp � pbit � Fd jqd jqd C N�dghbit : (2.33)

Deriving the dynamics for the volume flow in the annulus in a similar manner gives

Ma Pqa D pbit � pc � Fajqajqa � N�aghbit ; (2.34)

where

Ma D N�a

Z lw

0

1

Aa.x/
dx: (2.35)

From Figure 2.1 and assumption 4 it can be seen that qbit D qd , where qbit is the
volume flow through the bit. It can also be seen that qa D qbit C qres where qres is
reservoir influx/out flux. Using these relations and adding (2.33) and (2.34) together
gives

Md Pqd CMa Pqa D pp � pbit � Fd jqd jqd C N�dghbit C pbit � pc � Fajqajqa � N�aghbit

D pp � pc � Fd jqd jqd � Fajqajqa C . N�d � N�a/ghbit

)M Pqbit D pp � pc � Fd jqbit jqbit � Fajqbit C qresj.qbit C qres/C . N�d � N�a/ghbit ;

(2.36)

where M DMd CMa. Note that Pqa D Pqbit C Pqres D Pqbit by the assumption:

Assumption 5. qres is constant.

2.3 Model summary

A simplified model for control and observer design has been presented. The pressure
dynamics are given by (2.11) and (2.12), while the volume flow dynamics are given by
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(2.36). Summarizing the equations we have

Vd

ˇd

Ppp D qpump � qbit (2.37)

Va

ˇa

Ppc D qbit C qback � qchoke C qres � PVa (2.38)

M Pqbit D pp � pc � Fd jqbit jqbit � Fajqbit C qresj.qbit C qres/C . N�d � N�a/ghbit :

(2.39)

As mentioned in the beginning of Chapter 2 the pressure profile in the well is of main
concern. To limit the scope of this thesis only the pressure at the bit will be considered.
Note that the bit is usually the place where the pressure margins are smallest. The
pressure at the bit can be found from (2.33) giving

pbit D pp �Md Pqd � Fd jqd jqd C N�dghbit

D pp �Md Pqbit � Fd jqbit jqbit C N�dghbit : (2.40)

It can also be found from (2.34) which gives

pbit D pc CMa Pqa C Fajqajqa C N�aghbit : (2.41)

Inserting (2.39) for Pqa and qa D qbit C qres gives

pbit D pc CMa Pqbit C Fajqbit C qresj.qbit C qres/C N�aghbit

D Ma

M
pp C

Md

M
pc C .

Md

M
Fa �

Ma

M
Fd/jqbit C qresj.qbit C qres/

C .Md

M
N�a C

Ma

M
N�d/ghbit ; (2.42)

where the steady state solution to (2.41) is (2.1) introduced in the beginning of this
chapter. The derivation from (2.41) to (2.42) can be found in the appendix A.1.

2.3.1 Reservoir Influx/Out flux
The reservoir influx/out flux qres can be both positive (reservoir fluids entering the well)
or negative (mud loss). It is an unknown disturbance that enters in equations (2.38)–
(2.42). The main complexity due to the reservoir flux is caused by the friction term
in the annulus, Fajqbit C qresj.qbit C qres/. The friction term is very complex as it
has both an absolute term and a multiplicative term involving an unknown disturbance.
Therefore, to limit the scope of this thesis the reservoir influx will assumed to be zero.

Assumption 6. qres � 0



2.3. MODEL SUMMARY 17

2.3.2 Constant Parameters and Time Varying Signals

The model presented in (2.37)– (2.42) has both constant parameters and time varying
signals. Va.t/ and PVa.t/ are the volume and the change in volume of the annulus. They
will change with drill string movement and drilling (which increases the volume). Drill
string movements can be caused by surge or swab (moving the drill string down or up),
heave (if drilling from a floater) or tripping (moving the drill string all the way out/in
of/to the well). hbit.t/ also varies with drill string movements and drilling. M.t/ D
Ma.t/CMd.t/, further defined in (2.32) and (2.35), varies with the length of the well.
To limit the scope of this thesis only M D M.t/ D constant will be considered
here. Note that M only affects transient behavior, see equations (2.39) and (2.41). The
density in the annulus �a, the bulk modulus ˇa and the friction factor F D Fa C Fd

all vary slowly due to the amount of cuttings and the length of the well. The following
parameters are constant: Vd , ˇd , N�d , g.

2.3.3 Drill Bit Check Valve

To prevent flow from the annulus back into the drill string there is a check valve in
the bit (Altermann, Bingham, Grayson, Linenberger, Mueller, Odelius & Taylor 2007).
This implies that qbit � 0. This physical constraint limits the validity of the model
summarized in Section 2.3 as Pqbit is not described by (2.39) for qbit D 0. At qbit D 0,
Pqbit can be described by

M Pqbit D max
˚
0;pp � pc C . N�d � N�a/ghbit

	
for qbit D 0; (2.43)

where assumption 6 has been used. This gives the complete model

M Pqbit D
�

pp � pc � .Fd C Fa/jqbit jqbit C . N�d � N�a/ghbit qbit > 0

max
˚
0;pp � pc C . N�d � N�a/ghbit

	
qbit D 0

; (2.44)

where the max function is defined as:

max fa; bg D
�

a a � b

b a < b
: (2.45)

The added complexity in the qbit dynamics will not only affect qbit but more impor-
tantly it will affect pbit , see equation (2.41), as Pqbit enters the measurement equation.
Furthermore it is not possible to use equation (2.40) for the pressure at the bit when the
check valve is active as the pressure in the drill string does not affect pbit . The com-
plexity in (2.44) will directly affect the main results in this thesis derived in Chapter
4.
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2.4 Measurements

2.4.1 Pressures
Standard measurements include measurement of top-side pressures, pp and pc . The
down hole pressure pbit is measured and transmitted to the surface through mud-pulse-
telemetry (MPT). MPT requires a minimum flow velocity to function hence this mea-
surement is not available at pipe connections. MPT also has low sampling rate (Kaasa
2007) and it is unreliable as the pressure sensor operates in a harsh environment. Due
to these impediments the pbit measurement will not be used for estimation.

2.4.2 Flows
For pump volume flows qpump and qback there might be flow meters, if not, one can
estimate the volume flow by using the known pump speeds (!p), the number of pistons
(Np) and volume per stroke per piston (Vp) according to

qpump D NpVp2�!p

D Kp!p; (2.46)

where pump leakage has been neglected. The volume flow through the choke, qchoke is
sometimes measured with a flow meter. If not it can be estimated using the relationship
given in equation (2.13).

2.4.3 Geometry
Drill string geometry is well known as both length and drill pipe dimensions are mea-
sured/known. Annulus geometry is well known as bore hole diameter and casing geom-
etry is well known. The depth of the bit hbit is measured. Hence hbit.t/, Va.t/, PVa.t/

and Vd are known signals. hbit.t/, Va.t/ and PVa.t/will be treated as known disturbances
while Vd will be treated as a constant. To summarize, the measurement assumption is:

Assumption 7.

� pp and pc are measured

� pbit is measured at low sampling rate and is unreliable

� qpump, qback and qchoke are measured

� hbit.t/, Va.t/ and PVa.t/ are measured

� Vd is known



Chapter 3

Linear Observer Design

In this chapter an adaptive observer based on a linearized version of the model summa-
rized in Section 2.3 will be derived. The observer will try to estimate the BHP (pbit ),
and adapt to an unknown friction parameter in the annulus. Due to the serious limita-
tions in using a linear model, the designs proposed in this chapter should be seen as an
introduction to the main result of this thesis, presented in Chapter 4, not as a design that
should be used. Before the adaptive observer is derived, the state space model defined
in (2.37) – (2.39) and the measurement equation (2.42) will be linearized and a multiple
input multiple output (MIMO) linear observer will be designed. Only the case where
qbit > 0 will be considered. The goals for this chapter are:

� Find a linear model that is suitable for linear observer design.

� Design a linear observer.

� Design an adaptive observer that adapts to an unknown friction parameter.

3.1 Linearization of State Space Model
The model defined by equations (2.37) – (2.39) and (2.42) is, using assumption 6
(qres D 0)
Vd

ˇd

Ppp D qpump � qbit (3.1)

Va

ˇa

Ppc D qbit C qback � qchoke � PVa (3.2)

M Pqbit D pp � pc � .Fd C Fa/jqbit jqbit C . N�d � N�a/ghbit (3.3)

pbit D
Ma

M
pp C

Md

M
pc C .

Md

M
Fa �

Ma

M
Fd/jqbit jqbit C .

Md

M
N�a C

Ma

M
N�d/ghbit :

(3.4)

19
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Defining the state (x), input (u), and known time varying disturbance (v) vectors to
be

x D
2
4

pp

pc

qbit

3
5 u D

�
qpump

qback � qchoke

�
v D

2
4

Va

PVa

hbit

3
5 : (3.5)

Inserting these definitions into (3.1) – (3.4) gives

Vd

ˇd

Px1 D u1 � x3 (3.6)

v1

ˇa

Px2 D x3 C u2 � v2 (3.7)

M Px3 D x1 � x2 � .Fd C Fa/jx3jx3 C . N�d � N�a/gv3 (3.8)

pbit D
Ma

M
x1 C

Md

M
x2 C .

Md

M
Fa �

Ma

M
Fd/jx3jx3 C .

Md

M
N�a C

Ma

M
N�d/gv3:

(3.9)

Defining

f1.x;u/ D
ˇd

Vd

.u1 � x3/ (3.10)

f2.x;u; v/ D
ˇa

v1

.x3 C u2 � v2/ (3.11)

f3.x; v/ D
1

M
.x1 � x2 � .Fd C Fa/jx3jx3 C . N�d � N�a/gv3/ (3.12)

h.x; v/ D Ma

M
x1 C

Md

M
x2 C .

Md

M
Fa �

Ma

M
Fd/jx3jx3 C .

Md

M
N�a C

Ma

M
N�d/gv3;

(3.13)

results in a more compact formulation

Px D f .x;u; v/ (3.14)
pbit D h.x; v/; (3.15)

where f is a vector consisting of f1, f2 and f3.
The compact model stated in (3.14) and (3.15) can be linearized around a solution

.x0.t/;u0.t// where v.t/ will be treated as a known time varying signal. Using the
approach found in (Egeland & Gravdahl 2002) we get

Px0.t/ D f .x0.t/;u0.t/; v.t//: (3.16)
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Defining the perturbations in x, u and pbit as

x.t/ D x0.t/C�x.t/ (3.17)

u.t/ D u0.t/C�u.t/ (3.18)

pbit.t/ D h.x0.t/; v.t//C�pbit (3.19)

D p0.t/C�pbit ; (3.20)

and using a Taylor series expansion around .x0.t/;u0.t// gives

Px D f .x0.t/;u0.t/; v.t//C @f

@x

ˇ̌
ˇ̌
x0.t/

�x C @f

@u

ˇ̌
ˇ̌
u0.t/

�u (3.21)

pbit D h.x0.t/; v.t//C @h

@x

ˇ̌
ˇ̌
x0.t/

�x: (3.22)

Inserting (3.16) into (3.21) and comparing the result with the derivative w.r.t. time of
(3.17) gives

� Px D @f

@x

ˇ̌
ˇ̌
.x0.t/;u0.t//

�x C @f

@u

ˇ̌
ˇ̌
.x0.t/;u0.t//

�u: (3.23)

Inserting (3.22) into (3.19) gives

�pbit D
@h

@x

ˇ̌
ˇ̌
x0.t/

�x: (3.24)

Define the matrices A , B and C as

A.x0.t/;u0.t/; v.t// D @f

@x

ˇ̌
ˇ̌
.x0.t/;u0.t//

(3.25)

B.x0.t/;u0.t/; v.t// D @f

@u

ˇ̌
ˇ̌
.x0.t/;u0.t//

(3.26)

C.x0.t// D @h

@x

ˇ̌
ˇ̌
x0.t/

: (3.27)
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Using (3.10) – (3.12) and (3.13) A, B and C can be expressed as

A.x0.t/; v.t// D

2
64

0 0 �ˇd

Vd

0 0 ˇa

v1

1
M

�1
M

�2.FdCFa/jx0
3
.t/j

M

3
75 (3.28)

B.x0.t/;u0.t/; v.t// D B.v.t// D

2
64

ˇd

vd
0

0 ˇa

v1

0 0

3
75 (3.29)

C.x0.t// D

2
64

Ma

M
Md

M

2
�

Md

M
Fa � Ma

M
Fd

�
jx0

3.t/j

3
75

T

; (3.30)

where the relationship

@jxjx
@x

D
(

@x2

@x
x � 0

�@x2

@x
x < 0

D
�

2x x � 0

�2x x < 0

D 2jxj; (3.31)

has been used.
A linearized model for the system described by (3.1) – (3.4) has been developed.

The model is valid for small perturbations .�x; �u/ around the solution .x0.t/;u0.t//.
The equations defining the model are (3.17)–(3.19), (3.23) and (3.24), summarized com-
pactly in Table 3.1. Note that the solution .x0.t/;u0.t// selected is usually chosen to be
steady state solution thereby satisfying Px0 D f .x0.t/;u0.t/; v.t// D 0.
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Table 3.1: Linearized model

Px D f .x;u; v/
Nonlinear system pbit D h.x; v/

x D � pp pc qbit

�T

Linearized system � Px D A.x0.t/; v.t//�x C B.v.t//�u.t/

�pbit D C.x0.t//�x

x.t/ D x0.t/C�x.t/

Perturbations u.t/ D u0.t/C�u.t/

pbit.t/ D h.x0.t/; v.t//C�pbit

Design Choices Solution .x0.t/;u0.t// that satisfies, Px0 D f .x0.t/;u0.t/; v.t//

3.2 Reduced Order Linear Observer

As stated in Section 2.4.1 the pressures pc and pp are both measured reliably, while the
measurement of pbit is encumbered with slow sampling, and during pipe connections,
it is not available. In this section a reduced order observer will be designed for the linear
time varying (LTV) system found in the previous section, see Table 3.1. We will assume
that .x0.t/;u0.t// has been chosen and that Md and Ma, see (3.28)-(3.30), are constant.
The observer will estimate the unmeasured state�x3. Using the estimated�x3 and the
measured states �x1 and �x2 an estimate of the output �pbit will be constructed. The
system considered is

� Px D A.t/�x C B.t/�u.t/ (3.32)
�pbit D C.t/�x; (3.33)
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where �x1 and �x2 are measured and, see (3.28)–(3.30),

A.t/ D
2
4

0 0 a13

0 0 a23.t/

a31 �a31 a33.t/

3
5 (3.34)

B.t/ D
2
4

b11 0

0 b22.t/

0 0

3
5 C.t/ D

2
4

c1

c2

c3.t/

3
5

T

; (3.35)

where b22.t/, a23.t/ are bounded since the volume in the annulus v1 � c > 0. And
a33.t/, c3.t/ are bounded by assuming jx0

3.t/j bounded.

3.2.1 Observer for �x3

For the observer design we will assume that �x and �u are bounded. Using an ap-
proach similar to one found in (Narendra & Annaswamy 1989) we divide the states
(3.32) into measured and unmeasured states,

� Px1 D a13�x3 C b11�u1

� Px2 D a23.t/�x3 C b22.t/�u2

�
Measured (3.36)

� Px3 D a31�x1 � a31�x2 C a33.t/�x3 Unmeasured: (3.37)

Note that (3.36) implies that the system is observable, since �x1 and �x2 are mea-
sured, hence it should be possible to design an observer for �x3. For a definition of
observability for LTV systems see e.g. (Skelton, Iwasaki & Grigoriadis 1998). Define
the observer to be

�bx3 D � � l1�x1 � l2�x2 (3.38)
P� D F� C g1�x1 C g2�x2 C h1�u1 C h2�u2: (3.39)

The estimation error is defined as

e D �x3 ��bx3: (3.40)

Differentiating (3.40) w.r.t. time the dynamics of the estimation error are

Pe D � Px3 �� Pbx3:

Differentiating (3.38) w.r.t. time and inserting for � Pbx3.

Pe D � Px3 � P� C l1� Px1 C l2� Px2
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Using (3.36),(3.37) and (3.39) with � D �bx3 C l1�x1 C l2�x2 gives

Pe D a31�x1 � a31�x2 C a33�x3 � F.�bx3 C l1�x1 C l2�x2/ � g1�x1

� g2�x2 C l1.a13�x3 C b11�u1/C l2.a23�x3 C b22�u2/ � h1�u1 � h2�u2

D .a33 C l1a13 C l2a23/�x3 � F�bx3 C .a31 � Fl1 � g1/�x1

C .�a31 � Fl2 � g2/�x2 C .�h1 C l1b11/�u1 C .�h2 C l2b22/�u2: (3.41)

From (3.40) we have �bx3 D �x3 � e, inserting this gives

Pe D .a33 C l1a13 C l2a23/�x3 � F.�x3 � e/C .a31 � Fl1 � g1/�x1

C .�a31 � Fl2 � g2/�x2 C .�h1 C l1b11/�u1 C .�h2 C l2b22/�u2

D Fe C .a33 C l1a13 C l2a23 � F /�x3 C .a31 � Fl1 � g1/�x1

C .�a31 � Fl2 � g2/�x2 C .�h1 C l1b11/�u1 C .�h2 C l2b22/�u2: (3.42)

To zero out the terms multiplying �x3, �x2, �x1, �u1 and �u2 we choose

F.t/ D a33.t/C l1a13 C l2a23.t/ (3.43)
g1.t/ D a31 � F.t/l1 (3.44)
g2.t/ D �a31 � F.t/l2 (3.45)

h1 D l1b11 (3.46)
h2.t/ D l2b22.t/; (3.47)

where the dependence on t has been included. This gives

Pe D F.t/e) e.t/ D e.0/ exp
R t

0 F.�/d� ; (3.48)

which implies that e.t/ D �x3 ��bx3 converges to zero exponentially if
R t

0
F.�/d� <

0 8 t . Conditions on the gains l1 and l2 such that
R t

0
F.�/d� < 0 8 t will now be

found. Using (3.43) we have
Z t

0

F.�/d� D
Z t

0

a33.�/C l1a13 C l2a23.�/d�:

Since a33.t/ D �2.FdCFa/jx3
0
.t/

M
� 0 8 t we get

Z t

0

a33.�/C l1a13 C l2a23.�/d� �
Z t

0

l1a13 C l2a23.�/d�

< 0 for l1a13 C l2a23.t/ < 0 8 t: (3.49)

Using the fact that a13 < 0 and a23.t/ > 0 8 t and therefore choosing l1 > 0 and
l2 < 0 satisfies (3.49). To summarize, the estimate �bx3.t/ defined by equations (3.38)
and (3.39) converges exponentially to the true state �x3.t/ for any initial conditions
provided the gains are chosen to satisfy (3.43) – (3.47) and (3.49). The convergence
rate can be made arbitrarily fast by proper choice of l1 and l2.
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3.2.2 Convergence of � Qpbi t

The observer designed in the previous section exponentially tracks the unmeasured state,
but what happens to the estimation error in �pbit? Constructing the estimate of �pbit

as

�bpbit D c1�x1 C c2�x2 C c3.t/�bx3; (3.50)

gives the estimation error, see (3.33),

� Qpbit D �pbit ��bpbit (3.51)
D c3.t/� Qx3: (3.52)

As c3.t/ is bounded and Qx3 converges exponentially to zero, � Qpbit converges exponen-
tially to zero and the convergence rate can be made arbitrarily fast by proper choice of
l1 and l2.

3.2.3 Example, Observer
To illustrate some of the functionality of the designed observer a simulation was carried
out. The observer was based on a linear model around the steady state solution to the
nonlinear system (3.1) – (3.3) with

qpump D �qchoke D 1000
l

min
(3.53)

qback D PVa D 0 (3.54)
hbit D 2000 m; (3.55)

which gives

u0
1 D u0

2 D x0
3 D 1000

l

mi n
: (3.56)

Using (3.2) and the orifice equation (2.13) with x2 D pc gives

0 D x0
3 C qback � qchoke

D x0
3 �Kczc

s
2

N�a

.x0
2 � p0/

) x0
2 D

N�a

2

�
1

Kcz0
c

x0
3

�2

C p0/ D 86:6 zc ¤ 0: (3.57)

For x0
1 we use (3.3) to find the last element x0

1 to be

x0
1.t/ D x0

2.t/C .Fd C Fa/jx0
3.t/jx0

3.t/ � . N�d � N�a/ghbit D 126: (3.58)
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Table 3.2: Parameter values for simulation of linear observer

Parameter Value Description
Vd 28.2743 Volume drill string (m3)
ˇd 14000 Bulk modulus drill string (bar)
Va 96.1327 Volume annulus (m3)
ˇa 14000 Bulk modulus annulus (bar)
Kc 0.0046 Choke valve constant
z0

c 0.04 Normalized choke valve opening
p0 1 Pressure outside system (bar)
N�a 0.0119 Density annulus (10�5 � kg

m3 )
N�d 0.0125 Density drill string (10�5 � kg

m3 )
Fd 165000 Friction factor drill string
Fa 20800 Friction factor annulus
Ma 1:6009 � 103 (10�5 � kg

m4 )
Md 5:7296 � 103 (10�5 � kg

m4 )

The parameters used are shown in Table 3.2.
In the simulation the nonlinear model (3.1) – (3.4) was considered the true system

and the observer was used to estimate x3.t/ and pbit.t/ using equations (3.17), (3.19)
and (3.50) in the following manner

bqbit.t/ D x0
3 C�bx3.t/ (3.59)

bpbit.t/ D h.x0; v.t//C�bpbit (3.60)

D h.x0; v.t//C c1�x1 C c2�x2 C c3.t/�bx3: (3.61)

The gains in the observer were chosen to be l1 D 5 � 10�3 and l2 D �5 � 10�3. The
initial condition �.0/ D 0. The simulation consisted of three parts. After an initial
period to allow the system to reach steady state the choke valve was opened at t D
2 mi n giving an increased flow �u2 D qchoke through the valve, see Figure 3.1(d).
This results in a small perturbation away from .x0;u0/. From figures 3.1(a) and 3.1(b)
it can be seen thatbqbit follows qbit with a very small deviation. As a consequence the
estimated BHP bpbit follows pbit well, see Figure 3.1(c). Note that the gains l1 and l2
can be increased to give a smaller deviation but at the same time this will amplify noise.
In the second part of the simulation (t D 8 min), the choke valve is tightened back to
its original setting which gives a similar response as before. The third part (t D 14min)
consist of a reduction of the main pump flow to 500 l

min
, see Figure 3.1(d). Due to the

reduction the steady state qbitss
D 500 l

min
¤ x0

3 which uncovers a major weakness of
the observer. It only gives a good estimate as long as the solution stays around x0

3 .
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Figure 3.1: Simulation results linear observer
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3.3 Adaptive Observer
As mentioned in Chapter 2 the friction parameter in the annulus Fa, see equation (2.28),
is slowly changing and unknown. Therefore the observer should simultaneously esti-
mate qbit and Fa. In this section an adaptive observer based on the LTV model in Table
3.1 will be designed. The main purpose of this design is to serve as an introduction to
the adaptive observer design in Chapter 4 and to highlight some of the short comings of
an approach based on a linear model. Considering the same system as in the previous
section

� Px D A.t/�x C B.t/�u.t/ (3.62)
�pbit D C.t/�x; (3.63)

where �x1 and �x2 are measured and

A.t/ D
2
4

0 0 a13

0 0 a23.t/

a31 �a31 a33.t/

3
5 (3.64)

B.t/ D
2
4

b11 0

0 b22.t/

0 0

3
5 C.t/ D

2
4

c1

c2

c3.t/

3
5

T

; (3.65)

with a23.t/ D ˇa

v1
, a33.t/ D �2.FdCFa/jx0

3
.t/j

M
and c3.t/ D 2.Md

M
Fa�Ma

M
Fd/jx0

3.t/j, from
the definition of A, B and C in (3.28)–(3.30). We will only consider the case where
x0

3.t/ D x0
3 is a positive constant. As a33 is dependent on Fa we will simply denote

� D a33 and estimate � . An estimate of Fa can then be found as bFa D �b�M

2x0
3
.t/
� Fd ,

where b� is an estimate of � . Using a similar approach as in Section 3.2.1, we divide the
states (3.23) into measured and unmeasured states according to

� Px1 D a13�x3 C b11�u1

� Px2 D a23.t/�x3 C b22.t/�u2

�
Measured (3.66)

� Px3 D a31�x1 � a31�x2 C ��x3 Unmeasured: (3.67)

As in the previous section we will assume that �x and �u are bounded.

3.3.1 Error dynamics
Motivated by the approach found in (Tan, Kanellakopoulos & Jiang 1998), define the
change of coordinates

� D �x3 C l1�x1; (3.68)
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where l1 is an injection gain. Note that it is possible to include feedback from�x2. This
might give better noise attenuating but has been omitted for simplicity. Differentiating
(3.68) w.r.t. time, the dynamics for � are

P� D � Px3 C l1� Px1

D a31�x1 � a31�x2 C ��x3 C l1.a13�x3 C b11�u1/

D a31�x1 � a31�x2 C .� C l1a13/�x3 C l1b11�u1: (3.69)

Let the estimate of �x3 be denoted �bx3 and the estimate of � be denoted as b� . An
observer for �x3 is

�bx3 Db� � l1�x1 (3.70)
Pb� D a31�x1 � a31�x2 C .b� C l1a13/�bx3 C l1b11�u1: (3.71)

The estimation error is, using (3.68) and (3.70),

� Qx3 D �x3 ��bx3 D � �b� D Q�: (3.72)

Using (3.69) and (3.71) the estimation error dynamics are can be found to be

PQ� D P� � Pb�
D .� C l1a13/�x3 � .b� C l1a13/�bx3

D ��x3 �b��bx3 C l1a13� Qx3 (3.73)

As ��x3�b��bx3 D ��x3���bx3C��bx3�b��bx3 D �� Qx3C Q��bx3 the error dynamics
can be written as

PQ� D �� Qx3 C Q��bx3 C l1a13� Qx3

D .� C l1a13/� Qx3 C Q��bx3

D .� C l1a13/ Q� C Q��bx3; (3.74)

where (3.72) has been used.

3.3.2 Lyapunov analysis

For the error system described by the �-dynamics in (3.74), and Q� dynamics to be de-
cided consider the Lyapunov function candidate

V . Q�; Q�/ D 1

2
Q�2 C 1

2

Q�2 (3.75)
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Where 
 > 0. Differentiating w.r.t. time and using (3.74) gives

PV D Q� PQ� C 1



Q� PQ�

D Q�..� C l1a13/ Q� C Q��bx3/C
1



Q� PQ�

D .� C l1a13/ Q�2 C Q�.�bx3
Q� C 1



;
PQ�/ (3.76)

which suggest choosing the parameter estimation error dynamics as

PQ� D �
�bx3
Q�: (3.77)

This gives the adaptive law Pb� D � PQ� D 
�bx3
Q� since � is assumed slowly varying

which gives P� D 0. Note that the adaptive law can not be used for implementation as Q�
is an unknown signal. This issue will be resolved in Section 3.3.3. Continuing with the
Lyapunov analysis by inserting (3.77) into (3.77) we get

PV D .� C l1a13/ Q�2: (3.78)

Noticing that Q� D Q� D 0 is an equilibrium for the system (3.74), (3.77) and that the
system is locally Lipschitz in ( Q�; Q� ) uniformly in t if �qbit is bounded. See (Khalil
2002) for details on Lipschitz conditions. Choosing l1 to satisfy .� C l1a13/ � 0, we
can conclude, using LaSalle-Yoshizawa theorem, see appendix A.4, that all solutions to
(3.74), (3.77) are globally uniformly bounded and satisfy

lim
t!1

.� C l1a13/ Q�2 D 0 (3.79)

Which for l1 chosen to satisfy .� C l1a13/<0 implies, limt!1 Q� D limt!1� Qx3 D 0.
As � < 0 and a13 < 0 this is satisfied for any l1 � 0.

3.3.3 Adaptive Law

In assigning the parameter estimation error dynamics (3.77), Q� is used. As Q� is unknown
it can not be used for implementation. To solve this issue we define

� D � C �.�bx3/; (3.80)

where � is a function of known signals. Using P� D 0 the � -dynamics can be written as

P� D @�

@�bx3

� Pbx3; (3.81)
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where � Pbx3 can be found by differentiating (3.70) w.r.t. time which gives

� Pbx3 D Pb� � l1� Px1: (3.82)

Inserting this into (3.81) gives

P� D @�

@�bx3

.
Pb� � l1� Px1/: (3.83)

Inserting (3.66) for � Px1 gives

P� D @�

@�bx3

.
Pb� � l1.a13�x3 C b11�u1//

D �l1a13�x3

@�

@�bx3

C .Pb� � l1b11�u1/
@�

@�bx3

; (3.84)

where both �u1 and Pb� are known signals. An estimate b� of � can be constructed as

Pb� D �l1a13�bx3

@�

@�bx3

C .Pb� � l1b11�u1/
@�

@�bx3

(3.85)

b� Db� � �.�bx3/: (3.86)

Using (3.80) and (3.86) the estimation error can be expressed as

Q� D � �b� (3.87)
D � � � � .b� � �/ (3.88)
D � �b� (3.89)
D Q� (3.90)

Using (3.84), (3.85) and (3.72) the dynamics of the estimation error is

PQ� D P� � Pb�
D �l1a13� Qx3

@�

@�bx3

D �l1a13

@�

@�bx3

Q�: (3.91)

Comparing (3.91) with (3.77) suggest

�l1a13

@�

@�bx3

D �
�bx3: (3.92)

There are several solutions �.�bx3/ to this PDE, one simple solution is

�.�bx3/ D

�bx2

3

2l1a13

: (3.93)
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3.3.4 Convergence of � Qpbi t

The adaptive observer presented in the previous section guarantees that limt!1� Qx3 D
0. Defining the estimate of �pbit as, see (3.33),

�bpbit D C.t/�x

D c1�x1 C c2�x2 Cbc3�bx3; (3.94)

where bc3 D 2.Md

M
bFa � Ma

M
Fd/x

0
3 from the definition of the C matrix in (3.30), and

bFa D �b�M

2x0
3
.t/
� Fd from the definition of � . Expressingbc3 as a function of b� gives

bc3 D �b�Md � 2Fdx0
3 : (3.95)

Using (3.63) and (3.94) the estimation error, � Qpbit , can be expressed as

� Qpbit D �pbit ��bpbit

D c3�x3 �bc3�bx3

D .��Md � 2Fdx0
3/�x3 � .�b�Md � 2Fdx0

3/�bx3

D �Md.��x3 �b��bx3/ � 2Fdx0
3� Qx3: (3.96)

As ��x3 �b��bx3 D �� Qx3 C Q��bx3 we get

� Qpbit D �Md.�� Qx3 C Q��bx3/ � 2Fdx0
3� Qx3

D Q��bx3 � .Md� C 2Fdx0
3/� Qx3: (3.97)

From the previous Lyapunov analysis limt!1� Qx3 D 0. Hence limt!1� Qpbit D 0 if
limt!1 Q��bx3 D 0. Looking at the error dynamics for Q� in (3.74) we have

lim
t!1

PQ� D lim
t!1

.� C l1a13/ Q� C lim
t!1

Q��bx3

lim
t!1

PQ� D lim
t!1

Q��bx3: (3.98)

Hence if limt!1
PQ� D 0 then we have limt!1� Qpbit D 0. limt!1

PQ� D 0 can be
proved using Barbălat’s lemma, see appendix A.5, and demanding uniform continuity

of PQ� . The uniform continuity condition will be satisfied if �x and �u are bounded.
The derivation for these results will not be shown here as they involve some tedious
calculations. However similar derivations are shown later for the main result in this
thesis, namely the adaptive observer based on the nonlinear model, derived in Chapter
4.
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Before summarizing the adaptive observer a quick note on initial conditions. There
are two initial conditions to be chosen. In (3.71) b�.0/ must be chosen, and in (3.85)
b�.0/ must be chosen. These should be chosen as

b�.0/ D �bx3.0/C l1�x1.0/ (3.99)

b�.0/ D b�.0/C �.�bx3.0//; (3.100)

where �x1.0/ is known since it is measured. The user can now simply specify the
initial guess for b�.0/ and �bx3.0/ and then use relations (3.99) and (3.100) to findb�.0/
andb�.0/. Table 3.3 summarizes the observer.

Table 3.3: Summary of adaptive observer based on linear model

Plant � Px D A.t/�x C B.t/�u.t/

�pbit D C.t/�x

�x1 and �x2 are measured, �x3 unmeasured.

�bpbit D c1�x1 C c2�x2 � .b�Md C 2Fdx0
3/�bx3

�bx3 Db� � l1�x1

Observer Pb� D a31�x1 � a31�x2 C .b� C l1a13/�bx3 C l1b11�u1

b�.0/ D �bx3.0/C l1�x1.0/

b� Db� � �.�bx3/

Pb� D �l1a13�bx3
@�

@�bx3
C .Pb� � l1b11�u1/

@�

@�bx3

Adaptive law b�.0/ D b�.0/C �.�bx3.0//

�.�bx3/ D 
�bx2
3

2l1a13
@�

@�bx3
D 
�bx3

l1a13

Observer gain l1 > 0

Design variables Adaption gain: 
 > 0

Initial conditions: �bx3.0/ and b�.0/
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3.3.5 Example, Adaptive Observer
To illustrate how the adaptive observer works a simulation was performed. In the sim-
ulation (3.62) and (3.63) with constant parameters was considered the true plant. The
same operating point (x0;u0) and the same parameter values as in Section 3.2.3 were
used, resulting in the following A, B and C matrices:

A D
2
4

0 0 �495:1487

0 0 145:6320

0:0001 �0:0001 �0:8449

3
5

B D
2
4

495:1487 0

0 145:6320

0 0

3
5 C D

2
4

0:2184

0:7816

�659:2337

3
5

T

The state estimation gain l1 D 5 � 10�3 and the adaptation gain was chosen to be

 D 104. Initial conditions were, b�.0/ D 1:5� and b�.0/ D 0. The simulation was
carried out with the same input as in Section 3.2.3, see Figure 3.2(e). As before, the
simulation has three parts. In part one, starting from the step in u2 at t D 2 mi n we can
see that the step leads to an increase in state estimation error for a short period of time,
see Figure 3.2(b). This triggers the adaptation and leads to a decrease in parameter
estimation error, Figure 3.2(c). Note that the Lyapunov function V is monotonically
decreasing, Figure 3.2(f), as proved in Section 3.3.2. The second step, at t D 8 min

shows similar responses. At t D 14 min a step is applied the main pump flow. This
results in a large state estimation error and Q� ! 0. This shows that a change in the main
pump flow has better effect on parameter estimation than a transient change in the choke
flow. Figure 3.2(d) shows that�bpbit tracks�pbit well, only with small deviations when
� Qqbit moves away from zero.

3.3.6 Issues With Design Based On Linearized Model
From Section 3.3.5 we have seen that the adaptive observer based on a linear approach
works well under the assumption the the true (nonlinear) plant can be approximated well
with a linear model with a constant � D �2.FdCFa/jx0

3
j

M
. This assumption is far from valid

under realistic conditions as x0
3 will vary with e.g., changes in pump flows which will

occur frequently (e.g., during pipe connections). One could of course use the adaptive
observer presented and hope for the best, but no proof of convergence can be stated.
Furthermore a design based on the linear model is quite complex as the trajectory that
the model is based on is changing and unknown, see equation (3.21). Due to these issues
the preceding chapter should only be used as an introduction to adaptive observers and
a motivation to why a design based on a nonlinear model i pursued.
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Figure 3.2: Simulation results adaptive observer



Chapter 4

Adaptive Observer Based On
Nonlinear Model

The main goal of this chapter is to design an observer that estimates the bottomhole
pressure, pbit . This goal will be achieved by first designing an adaptive observer that
estimates qbit and certain unknown parameters, which is done in sections 4.2.1–4.2.4.
Using the LaSalle-Yoshizawa theorem the error dynamics of the observer is shown to be
uniformly bounded and the state estimation error is shown to converge to zero. Then in
Section 4.2.5 an estimate of pbit based on a measurement equation is shown to converge
to pbit under certain reasonable conditions. The observer and its properties are summa-
rized in Section 4.2.6. In Section 4.3 a parameter estimator for the bulk modulus ˇa is
derived to facilitate for future control design. Due to the model complexity at qbit D 0,
commented on in Section 2.3.3, the results are only valid for qbit > 0. In Section 4.4 a
pragmatic approach to the case where qbit D 0 is presented.

4.1 Model
The model that will be used for the observer design was derived in Chapter 2. Assump-
tion 6, qres D 0, will still be used. As commented in Section 2.3.3 there is a check
valve in the drill bit which implies qbit � 0. The check valve introduced a complicated
expression for Pqbit at qbit D 0, see (2.44). This is further complicated by the fact that
the switching condition is dependent on an unknown state, qbit . Therefore we will make
the following assumption for the observer design presented in this chapter.

Assumption 8. qbit > 0

This will limit the proved performance of the observer during pipe connections.
However a pragmatic solution to the case where qbit D 0 will be presented later in this
chapter.

37



38 CHAPTER 4. ADAPTIVE OBSERVER BASED ON NONLINEAR MODEL

Under assumptions 6 and 8 the model used for observer and parameter estimator
design is:

Ppp D �a1qbit C b1up (4.1)
Pqbit D a2.pp � pc/ � �1jqbit jqbit C �2v3 (4.2)

Ppc D
�3

v1

.a3qbit C uC v2/ (4.3)

Where pp and pc are measured, up is the known speed of the main pump and u D
b2ub�qchoke is the known combined flow through the back pressure pump and the choke
valve. The constants are a1 D ˇd

Vd
, b1 D ˇd

Vd
Kp, a2 D 1

M
,a3 D 1

1000
, b2 D Kb and they

are all known. Note that a3 appears due to numerical conditioning, see appendix A.2.
There are three known time-varying terms, v1.t/ D Va.t/ � c > 0, v2.t/ D � PVa.t/,
v3.t/ D hbit.t/. And three unknown constant/slowly varying parameters, Fa, �a and
ˇa that are lumped into:

�1 D
Fd C Fa

M
> 0) Fa DM�1 � Fd (4.4)

�2 D
. N�d � N�a/g

M
) N�a D N�d �

M

g
�2 (4.5)

�3 D ˇa > 0 (4.6)

The pressure at the bit pbit is given by the measurement equation, (2.41), using assump-
tions 6 and 8:

pbit D pc CMa Pqbit C Fajqbit jqbit C N�agv3 (4.7)
D pc CMa.a2.pp � pc/ � �1jqbit jqbit C �2v3/

C .M�1 � Fd/jqbit jqbit C . N�dg �M�2/v3 (4.8)

In the choice of the unknown parameter �2 certain assumptions have been made.
The reason for choosing �2 as an unknown is because �a is encumbered with uncer-
tainty. From (2.35) one can see that Ma is linearly dependent on �a. This implies that
M D Ma CMd will also depend on �a. In our choice of unknows this dependency
has been neglected. The motivation for neglecting the dependency comes from reducing
complexity of the observer. Neglecting the dependency can be justified by two obser-
vations. First Ma does not affect the system in steady state and second the sensitivity
of M w.r.t. changes in �a is small as Md is typically larger than Ma. Figure 4.1 plots
MdCMa.�a/

MdCManom
vs. �a

�d
for a typical well, defined later in Table 5.1, where Manom

DMa.�d/.
The figure shows that variations of 20% in �a gives variations less than 5% in M .
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Figure 4.1: Sensitivity of M to changes in �a

4.2 Adaptive Observer for pbi t

The goal for this section is to design an observer that estimates pbit and adapts to un-
known �1 and �2. The estimated states and estimated parameters will be denoted with a
hat. We will assume that all signals in (4.1) and (4.2) are bounded.

Assumption 9. All signals in (4.1) - (4.2) are bounded, pp;pc; qbit ;up; v3 2 L1
Considering that the system is stable and v3 is the vertical depth of the well this

assumption is mild.

4.2.1 Error Dynamics
Using a similar procedure as in Section 3.3.1, motivated by (Tan et al. 1998), define the
following change of coordinates

�1 D qbit C l1pp;

where l1 is a feedback gain. One might ask the question why injection from the pc

measurement is not used, the reason for this is the unknown �3 appearing in (4.3) which
complicates the analysis. If �3 was known pc could be included as an extension to the
design presented here. The dynamics for �1 is

P�1 D Pqbit C l1 Ppp

D a2.pp � pc/ � �1jqbit jqbit C �2v3 C l1.�a1qbit C b1up/

D �l1a1qbit � �1jqbit jqbit C �2v3 C a2.pp � pc/C l1b1up:

An observer for qbit is

Pb�1 D �l1a1bqbit �b�1jbqbit jbqbit Cb�2v3 C a2.pp � pc/C l1b1up (4.9)

bqbit Db�1 � l1pp: (4.10)
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The state estimation error is

Q�1 D �1 �b�1 D Qqbit ; (4.11)

which is driven by the differential equation

PQ�1 D P�1 � Pb�1

D �l1a1 Qqbit � .�1jqbit jqbit �b�1jbqbit jbqbit/C Q�2v3 (4.12)

Noticing that

�1jqbit jqbit � b�1jbqbit jbqbit D �1jqbit jqbit � �1jbqbit jbqbit C �1jbqbit jbqbit �b�1jbqbit jbqbit

D �1.jqbit jqbit � jbqbit jbqbit/C Q�1jbqbit jbqbit ;

which implies that (4.12) can be written as

PQ�1 D �l1a1 Qqbit � .�1.jqbit jqbit � jbqbit jbqbit/C Q�1jbqbit jbqbit/C Q�2v3

D �l1a1 Qqbit � �1.jqbit jqbit � jbqbit jbqbit/ � Q�1jbqbit jbqbit C Q�2v3: (4.13)

Let the parameter errors be denoted as Q� D
" Q�1

Q�2

#
and the regressor as

�.bqbit ; v3/ D
� �jbqbit jbqbit

v3

�
: (4.14)

Using this and Q�1 D Qqbit from (4.11) gives

PQ�1 D �l1a1
Q�1 � �1.jqbit jqbit � jbqbit jbqbit/C Q�T�; (4.15)

4.2.2 Lyapunov Analysis

For the error system

" Q�1

Q�

#
with Q�1 dynamics described by (4.15) and Q� dynamics to

be found, consider the candidate Lyapunov function

U1. Q�1; Q�/ D
1

2
Q�2
1 C

1

2
Q�T��1 Q�; (4.16)

where � D �T > 0 is the adaptation gain matrix. The time derivative of U1 is, using
(4.15),

PU1 D Q�1Œ�l1a1
Q�1 � �1.jqbit jqbit � jbqbit jbqbit/C Q�T��C Q�T��1 PQ�

D �l1a1
Q�2
1 � �1.jqbit jqbit � jbqbit jbqbit/ Q�1 C Q�T .� Q�1 C ��1 PQ�/:
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Choosing the Q� dynamics to be

PQ� D ��� Q�1 (4.17)

gives

PU1 D �l1a1
Q�2
1 � �1.jqbit jqbit � jbqbit jbqbit/ Q�1: (4.18)

Defining

fq.qbit ;bqbit/ D .jqbit jqbit � jbqbit jbqbit/ Q�1

D .jqbit jqbit � jbqbit jbqbit/.qbit �bqbit/; (4.19)

and noticing that

qbit �bqbit D Q�1 D 0) fq.qbit ;bqbit/ D 0

qbit �bqbit D Q�1 ¤ 0) fq.qbit ;bqbit/ > 0

implies that fq.qbit ;bqbit/ is positive semidefinite w.r.t. Q�. Using this and �1 > 0 gives

PU1 � �l1a1
Q�2
1 : (4.20)

Since a1 > 0 choosing l1 > 0 gives PU . Q�; Q�/ � 0. Noticing that Q�1 D Q� D 0 is an
equilibrium point for the system defined by (4.15) and (4.17). And that the system is
locally Lipschitz in ( Q�; Q� ), uniformly in t under assumption 9. For details see appendix
A.3. Using these properties we can conclude, by using LaSalle-Yoshizawa theorem (see
appendix A.4) that all solutions to (4.15) and (4.17) are uniformly bounded. Further-
more

lim
t!1
�l1a1

Q�2
1 D 0

) lim
t!1

Q�1 D 0;

which implies that bqbit ! qbit as t ! 1 8 qbit > 0. There is no guarantee that the
parameter estimates converge to their true values. The results derived hold 8 . Q�1; Q�/ 2
R3 but only for qbit > 0 8 t 1. The limitation in qbit is a consequence of the complex
model dynamics at qbit D 0.

1qbit > 0 can be slightly relaxed as the model (4.2) for Pqbit is sometimes valid at qbit D 0, more on
this in Section 4.4
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4.2.3 Adaptive Law

In (4.17) Q� is unknown which implies that the adaptive law, Pb� D � PQ� can not be imple-
mented, as-is. This problem will be dealt with now. Define

� D � C �.bqbit ; v3/; (4.21)

where � is a function of known/measured signals that is to be designed to assign �
desired dynamics. Differentiating � with respect to time (remembering that P� D 0)

P� D @�

@bqbit

Pbqbit C
@�

@v3

Pv3;

where Pbqbit can be found by differentiating (4.10) w.r.t. time giving

Pbqbit D Pb�1 � l1 Ppp (4.22)

This gives

P� D @�

@bqbit

.
Pb� � l1 Ppp/C

@�

@v3

Pv3

D �l1
@�

@bqbit

Ppp C
@�

@bqbit

Pb� C @�

@v3

Pv3

D �l1
@�

@bqbit

.�a1qbit C b1up/C
@�

@bqbit

Pb� C @�

@v3

Pv3; (4.23)

where Pb� is known from (4.9). From here assumption 10 is made.

Assumption 10. Pv3 is a known signal.

Using the assumption implies that only qbit in (4.23) is unknown. To deal with this
an estimate Pb� is used

Pb� D �l1
@�

@bqbit

.�a1bqbit C b1up/C
@�

@bqbit

Pb� C @�

@v3

Pv3 (4.24)

b� Db� � �.bqbit ; v3/: (4.25)

The estimation error, using (4.21) and (4.25), can be expressed as

Q� D � �b�
D � � � � .b� � �/
D � �b�
D Q�:
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The dynamics of the estimation error is, using (4.23), (4.24) and Q�1 D Qqbit ,

PQ� D PQ�
D l1a1

@�

@bqbit

Q�1: (4.26)

Comparing (4.26) to (4.17), suggest

�l1a1

@�.bqbit ; v3/

@bqbit

D ��: (4.27)

There are several solutions �.bqbit ; v3/ to this partial differential equation. Simplicity
will be the motivating factor when selecting one. Remembering that the regressor is

�.bqbit ; v3/ D
� �jbqbit jbqbit

v3

�
and integrating w.r.tbqbit gives

�.bqbit ; v3/ D �
"
jbqbit j3
3l1a1

�v3bqbit

l1a1

#
:

The partial derivatives of �.bqbit ; v3/ are

@�

@bqbit

D �
"
jbqbit jbqbit

l1a1� v3

l1a1

#

@�

@v3

D �
�

0

�bqbit

l1a1

�
:

4.2.4 Initial Conditions

There are two initial conditions that needs to be set. One isb�1.0/ in (4.9) and the other
isb�.0/ in (4.24). The initial conditions should be constructed by using the relationships

b�.0/ Dbqbit.0/C l1pp.0/ (4.28)

b�.0/ D b�.0/C �.bqbit.0/; v3.0//; (4.29)

where pp.0/ and v3.0/ are known since they are measured. The user can now come up
with estimates ofbqbit.0/ and b�.0/ and then use relations (4.28) and (4.29) to findb�.0/
andb�.0/.
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4.2.5 Convergence of Qpbi t

The goal of Section 4.2 was to design an observer so that the estimated BHP bpbit tracks
pbit . In section 4.2.1 – 4.2.4 an observer for the unmeasured state qbit was designed. In
this section convergence properties of Qpbit will be proved. The measurement equation
for pbit stated in (4.8) is

pbit D pc CMa.a2.pp � pc/ � �1jqbit jqbit C �2v3/

C .M�1 � Fd/jqbit jqbit C .�dg �M�2/v3;

where pc , v3 are measured and Ma, M , a2, Fd and �d are known. An estimate of pbit

is

bpbit D pc CMa.a2.pp � pc/ �b�1jbqbit jbqbit Cb�2v3/

C .Mb�1 � Fd/jbqbit jbqbit C .�dg �Mb�2/v3:

The error in the estimate is

Qpbit D pbit � bpbit

DMa.�.�1jqbit jqbit � b�1jbqbit jbqbit/C Q�2v3/CM.�1jqbit jqbit � b�1jbqbit jbqbit/

� Fd.jqbit jqbit � jbqbit jbqbit/ �M Q�2v3:

Using M DMa CMd this can be rewritten as

Qpbit DMd.�1jqbit jqbit �b�1jbqbit jbqbit/ � Fd.jqbit jqbit � jbqbit jbqbit/ �Md
Q�2v3

(4.30)

DMd.�1.jqbit jqbit � jbqbit jbqbit/C Q�1jbqbit jbqbit � Q�2v3/ � Fd.jqbit jqbit � jbqbit jbqbit/

DMd.�1.jqbit jqbit � jbqbit jbqbit/ � Q�T�/ � Fd.jqbit jqbit � jbqbit jbqbit/: (4.31)

From the error equation (4.31) and remembering that .qbit�bqbit/! 0 from the previous
Lyapunov analysis it can be seen that if Q�T� ! 0 then Qpbit ! 0. Conditions for
Q�T� ! 0 will now be derived.

The error system

" Q�1

Q�

#
has the following dynamics, from (4.15) and (4.17)

PQ�1 D �l1a1
Q�1 � �1.jqbit jqbit � jbqbit jbqbit/C Q�T� (4.32)

PQ� D ��� Q�1: (4.33)

From the Lyapunov analysis it is known that Q�1 D .qbit �bqbit/! 0 which implies by

(4.33) that PQ� ! 0. Hence, as � is bounded, the adaptation will slow down and stop as
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the state estimation error goes to zero. Furthermore if it can be proved that PQ�1 ! 0 then
from (4.32)

Q�T� ! 0:

Using Barbălat’s lemma, see appendix A.5, PQ�1 ! 0 will be proved. Let

'.t/ D PQ�1.t/

D �l1a1
Q�1 � �1.jqbit jqbit � jbqbit jbqbit/C Q�T�: (4.34)

Using limt!1 Q�1.t/ D 0 we then have

lim
t!1

Z t

0

'.t/d� D lim
t!1

. Q�1.t/ � Q�1.0//

D �Q�.0/:

Hence limt!1
R t

0
'.t/d� exists and is finite. Assume that '.t/ is uniformly continuous.

Then, by Barbălat’s Lemma

lim
t!1

'.t/ D 0:

Hence, under the assumption that '.t/ is uniformly continuous limt!1 '.t/ D limt!1
PQ�1 D

0.
According to (Ioannou & Sun 1996) P'.t/ 2 L1 implies uniform continuity of '.t/.

From (4.34) one can find

P'.t/ DRQ�1.t/

D� l1a1
PQ�1 � �1.2jqbit j Pqbit � 2jbqbit j Pbqbit/C Q�T P� C PQ�T�:

Inserting (4.32), (4.2), (4.22), (4.33) and the derivative w.r.t. time of the regressor de-
fined in (4.14) gives

P'.t/ D� l1a1.�l1a1
Q�1 � �1.jqbit jqbit � jbqbit jbqbit/C Q�T�/

� �1

�
2qbit.a2.pp � pc/ � �1jqbit jqbit C �2v3/ � 2bqbit.

Pb�1 � l1 Ppp/

�

C Q�T

�
�jbqbit j Pbqbit

Pv3

�
� �T�� Q�1:
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Finally, inserting (4.9), (4.1) and remembering that Pbq D Pwh�1 � l1 Ppp gives

P'.t/ D� l1a1.�l1a1
Q�1 � �1.jqbit jqbit � jbqbit jbqbit/C Q�T�/

� �1

�
2qbit.a2.pp � pc/ � �1jqbit jqbit C �2v3/

�

C �12bqbit

h
.�l1a1bqbit �b�1jbqbit jbqbit Cb�2v3

Ca2.pp � pc/C l1b1up/ � l1.�a1qbit C b1up/
�

C Q�T

"
�bqbit

h
.�l1a1bqbit �b�1jbqbit jbqbit Cb�2v3 C a2.pp � pc/C l1b1up/

i

Pv3

#

C Q�T

� bqbit l1.�a1qbit C b1up/

0

�

� � �jbqbit jbqbit v3

�
�

� �jbqbit jbqbit

v3

�
Q�1:

Hence, under the conditions on the signals in P'.t/ found in Table 4.1, P�.t/ 2 L1.

Table 4.1: Conditions on signals for uniform continuity

Condition Comment
pp.t/; qbit.t/;pc.t/;up.t/ 2 L1 Should be provided by the controller, se assumption 9
bqbit.t/;b� 2 L1 Satisfied by the observer if the states are bounded
v3.t/; Pv3.t/ 2 L1 Condition on v3 is satisfied by assumption 9

For the condition on Pv3 see below

Pv3 2 L1 , Phbit 2 L1, where hbit is the vertical depth of the bit, see Figure
2.1. From physical considerations one can assume that the vertical speed of the bit is
bounded, therefore the condition is not unrealistic.

The proof for Qpbit ! 0 is summarized below:

� P'.t/ 2 L1) '.t/ uniformly continuous

� '.t/ uniformly continuous and Barbălat’s lemma) limt!1
PQ�1 D 0

� ) limt!1 Q�T� D 0

� ) limt!1 Qpbit D 0

What can be said about parameter estimatation error from the previous analysis? We
have limt!1 Q�T� D 0 which only implies that

�jbqbit.t/jbqbit.t/ Q�1.t/C v3.t/ Q�2.t/! 0: (4.35)
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It might be possible to come up with conditions on the signals in (4.35) to achieve per-
sistent excitation (PE) and Q�.t/ ! 0. Due to time constraints a mathematical analysis
of this has not been pursued in this thesis. However (4.35) is used later on to decide
when to turn on/off the adaption to get good parameter estimates.

4.2.6 Summary Adaptive Observer
The adaptive observer summarized in table Table 4.2, has the following properties:

� All solutions to (4.15), (4.17) are uniformly bounded.

� limt!1 Qqbit D 0

� limt!1
Pb� D 0

Furthermore, if the signal conditions in Table 4.1 are satisfied, then the observer has
the following additional properties:

� limt!1 Q�T� D 0

� limt!1 Qpbit D 0

The properties are valid for qbit > 0. This limitation is a result of the switched dynamics
at qbit D 0.
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Table 4.2: Summary of adaptive observer based on nonlinear model

Ppp D �a1qbit C b1up

Pqbit D a2.pp � pc/ � �1jqbit jqbit C �2v3

Plant Ppc D �3

v1
.a3qbit C uC v2/

pbit D pc CMa.a2.pp � pc/ � �1jqbit jqbit C �2v3/

C.M�1 � Fd/jqbit jqbit C .�dg �M�2/v3

pp and pc are measured

bpbit D pc CMa.a2.pp � pc/ �b�1jbqbit jbqbit Cb�2v3/

C.Mb�1 � Fd/jbqbit jbqbit C .�dg �Mb�2/v3

Observer bqbit Db�1 � l1pp

Pb�1 D �l1a1bqbit �b�1jbqbit jbqbit Cb�2v3 C a2.pp � pc/C l1b1up

b�1.0/ Dbqbit.0/C l1pp.0/

b� Db� � �.bqbit ; v3/

Pb� D �l1
@�

@bqbit
.�a1bqbit C b1up/C @�

@bqbit

Pb�1 C @�

@v3
Pv3

b�.0/ D b�.0/C �.bqbit.0/; v3.0//

Adaptive law �.bqbit ; v3/ D �
"
jbqbi t j3
3l1a1

�v3bqbit

l1a1

#

@�

@bqbit
D �

"
jbqbit jbqbit

l1a1� v3

l1a1

#

@�

@v3
D �

�
0

�bqbit

l1a1

�

Observer gain l1 > 0

Design variables Adaption gain: � D �T > 0

Initial conditions: bqbit.0/ and b�.0/
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4.3 �3 parameter estimator
As the bulk modulus ˇa D �3 is encumbered with high uncertainty it will be estimated
too. ˇa does not enter in the analysis for the observer derived in Section 4.2, but it will
prove useful for later control design. It might also prove useful for detecting gas influx
from the reservoir (i.e. qres > 0) as gas in the annulus will change the bulk modulus.

Define the error variable

Q�2 D pc � bpc;

where bpc is the solution to

Pbpc D
a3
b�3bqbit

v1

C
b�3.uC v2/

v1

C l2 Q�2; (4.36)

with bpc.0/ D pc.0/. Pbpc is similar to Ppc in (4.3), with estimates of the unknown state
and the unknown parameter and in addition an injection term l2 Q�2 for stabilization. Note
that Q�2 is a known signal as pc is measured.

4.3.1 Error Dynamics

The dynamics of the error Q�2 is governed by

PQ�2 D Ppc � Pbpc: (4.37)

Inserting (4.3) and (4.36) gives

PQ�2 D
a3

v1

.�3qbit �b�3bqbit/C
Q�3

v1

.uC v2/ � l2 Q�2 (4.38)

D a3

v1

.�3 Qqbit C Q�3bqbit/C
Q�3

v1

.uC v2/ � l2 Q�2

D a3

v1

�3
Q�1 C

Q�3

v1

.a3bqbit C uC v2/ � l2 Q�2;

where Qqbit D Q�1 from (4.11) has been used. Defining the regressor

�3.bqbit ;u; v1; v2/ D a3bqbit C uC v2

v1

; (4.39)

gives

PQ�2 D
a3

v1

�3
Q�1 C Q�3�3 � l2 Q�2: (4.40)



50 CHAPTER 4. ADAPTIVE OBSERVER BASED ON NONLINEAR MODEL

4.3.2 Lyapunov Analysis
Consider the Lyapunov function candidate

U. Q�1; Q�2; Q�1; Q�2; Q�3/ D U1. Q�1; Q�1; Q�2/C U2. Q�2; Q�3/; (4.41)

where U1 is taken as (4.16) and U2 is

U2. Q�2; Q�3/ D
1

2
Q�2
2 C

1

2
3

Q�2
3 : (4.42)

Differentiating U2 w.r.t. time and inserting (4.40) yields

PU2 D .
a3

v1

�3
Q�1 C Q�3�3 � l2 Q�2/ Q�2 C

1


3

Q�3
PQ�3

D �l2 Q�2
2 C

a3�3

v1

Q�1
Q�2 C Q�3.�3

Q�2 C
1


3

PQ�3/;

suggests choosing the adaptive law as

PQ�3 D �Pb�3 D �
3�3
Q�2; (4.43)

where all signals and parameters are known. Hence Pb�3 can be implemented as-is. This
gives

PU2 D �l2 Q�2
2 C

a3�3

v1

Q�1
Q�2:

Using completion of squares Q�1
Q�2 � 1

2
. Q�2

1 C Q�2
2 / gives

PU2 � �l2 Q�2
2 C

a3�3

v1

1

2
. Q�2

1 C Q�2
2 /

D .�l2 C
a3�3

2v1

/ Q�2
2 C

a3�3

2v1

Q�2
1 ; (4.44)

where an unwanted Q�2
1 appears at the end. This term will be dealt with by using the

previous Lyapunov analysis for U1. Differentiating (4.41) w.r.t. time gives

PU D PU1 C PU2:

Inserting PU1 from (4.20) and PU2 from (4.44) gives

PU D PU1 C PU2

� �l1a1
Q�2
1 C .�l2 C

a3�3

2v1

/ Q�2
2 C

a3�3

2v1

Q�2
1

D .�l1a1 C
a3�3

2v1

/ Q�2
1 C .�l2 C

a3�3

2v1

/ Q�2
2 : (4.45)
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For compact notation define: Qx D Œ Q�1
Q�2
Q�1
Q�3
Q�3�. Noticing that x D 0 is an equilibrium

for the system described by (4.32), (4.33), (4.40) and (4.43). And that the system is Lip-
schitz in x, uniformly in t under assumption 9. We can conclude by LaSalle-Yoshizawa
theorem that for l1 and l2 chosen such that .�l1a1 C a3�3

2v1
/ < 0 and .�l2 C a3�3

2v1
/ < 0

all solutions to (4.32), (4.33), (4.40) and (4.43) are uniformly bounded (note that v1 is
bounded from below). And that

lim
t!1

.�l1a1 C
a3�3

2v1

/ Q�2
1 C .�l2 C

a3�3

2v1

/ Q�2
2 D 0

) lim
t!1

Q�1 D lim
t!1

Q�2 D 0;

which implies thatbqbit ! qbit and bpc ! pc as t !1.

4.3.3 Parameter Convergence

Using a similar approach as in Section 4.2.5 conditions for limt!1 Q�3�3 D 0 will be
found. From (4.40) and the previous Lyapunov analysis we have

lim
t!1

PQ�2 D lim
t!1

�
a3

v1

�3
Q�1 C Q�3�3 � l2 Q�2

�

lim
t!1

PQ�2 D lim
t!1

Q�3�3: (4.46)

Hence, if we can find conditions for limt!1
PQ�2 D 0 we can state that limt!1 Q�3�3 D 0.

This can be done by using Barbălat’s lemma and assuming uniform continuity of PQ�2. As
this leads to some tedious calculations an extension of Barbălat’s lemma will be used
instead. Using the following lemma found in (Lefeber 2000), slightly changed from the
original in (Micaelli & Samson 1993).

Lemma 1. (Micaelli and Samson, 1993) Let f W RC ! R be any differentiable func-
tion. If f .t/ converges to zero as t !1 and its derivative satisfies:

Pf .t/ D f0.t/C �.t/ t � 0

where f0 is a uniformly continuous function and �.t/ tends to zero as t !1, then Pf .t/
and f0.t/ tend to zero as t ! 0.

Define:

Pf .t/ D PQ�2

D a3

v1

�3
Q�1 C Q�3�3 � l2 Q�2

D f0.t/C �.t/ (4.47)
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Where f0.t/ D Q�3�3 and �.t/ D a3

v1
�3
Q�1 � l2 Q�2. From the previous Lyapunov analysis

the following is known:

� f .t/ D Q�2 ! 0

� �.t/! 0

Hence, by Lemma 1 if f0.t/ is uniformly continuous both f0.t/ and Pf .t/ will tend to
zero as t ! 0. If Pf0.t/ 2 L1 then f0.t/ is uniformly continuous, (Ioannou & Sun
1996).

Pf0.t/ D PQ�3�3 C Q�3
P�3 (4.48)

D �
3�3
Q�2�3 C Q�3

P�3; (4.49)

where (4.43) has been inserted in the last equation. And

P�3 D
a3
Pbqbit C PuC Pv2

v1

C v2

v1

�3; (4.50)

where �Pv1 D v2 has been used. Table 4.3 summarize the conditions needed to ensure
that f0.t/ is uniformly continous which implies that limt!1

PQ�2 D limt!1 Q�3�3 D 0 .

Table 4.3: Conditions on signals for �3 estimator

Condition Comment
Q�2; Q�3 2 L1 Proved in Lyapunov analysis
�3 2 L1 True by assumption 9 and the Lyapunov analysis
P�3 2 L1 True by assumption 9, �3 2 L1 and in addition

Pu; Pv2 2 L1

The condition that Pu; Pv2 2 L1 is quite strict. Remembering that u D b2ub � qchoke,
one can assume that Pu is bounded by assuming some sort of dynamic behavior in both
the back pressure pump and the choke valve. E.g., �c Pqchoke D �qchoke C uc where
uc is a bounded control input. This is reasonable to do in practice but will increase the
complexity of a future control problem. The assumption that Pv2 D � RVa.t/ is bounded
could be justified by the fact that inertia and elastic deformation will limit acceleration
in the volume.

The result that limt!1 Q�3�3 D 0 under the signal conditions in Table 4.3 tells us
that Q�3 only converges to zero if the regressor �3 is sufficiently exciting. Practically
this means that ˇa can not be estimated as long as the system is in steady state. This is
obvious in view of (4.3) as ˇa only has an effect on transient behavior. Hence to get a
good estimate of ˇa the pc dynamics must be excited.
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4.3.4 Summary Parameter Estimator
Figure 4.2 shows the interconnection of the parameter estimator for �3 and the observer.
The parameter estimator is summarized in Table 4.4 and the observer is summarized in
Table 4.2.









˙̂
ξ1

˙̂σ









p̂bit

θ̂1, θ̂2

q̂bit








˙̂pc

˙̂
θ3









p̂c

θ̂3

Measurements

Observer

Parameter Estimator

Figure 4.2: Interconnection of observer and parameter estimator

In addition to the properties of the adaptive observer summarized in Section 4.2.6,
the interconnection has the following properties:

� All solutions to (4.40) and (4.43) are uniformly bounded.

� limt!1 Qpc D 0

� limt!1
PQ�3 D 0

Furthermore if the conditions in Table 4.3 are satisfied the estimator has the following
additional property:

� limt!1 Q�3�3 D 0

All results are valid for qbit > 0. The limitation is a result of the switched dynamics at
qbit D 0.
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Table 4.4: Summary of parameter estimator

Plant Ppc D �3

v1
.a3qbit C uC v2/

pc measured

Q�2 D pc � bpc

Observer Pbpc D a3
b�3bqbi t

v1
C b�3.uCv2/

v1
C l2 Q�2

bpc.0/ D pc.0/

Parameter Estimator Pb�3 D 
3�3
Q�2

�3 D a3bqbi tCuCv2

v1

Observer gain l1 and l2 chosen to satisfy:
Design variables .�l1a1 C a3�3

2v1
/ < 0 and .�l2 C a3�3

2v1
/ < 0

Adaption gain: 
3 > 0

Initial condition: b�3.0/

4.4 Pragmatic Approach to qbi t D 0

As the proved performance of the adaptive observer and parameter estimator is limited
to qbit > 0 two pragmatic approaches on how to deal with the case where qbit D 0

will be presented. The approaches are based on practical intuition and thus do not pro-
vide proofs of performance. However, simulation results in chapter 5 shows promising
performance of the approach suggested in section 4.4.2 and should therefore serve as a
stepping stone for future work.

4.4.1 Observer as Before

As the observer dynamics are stable for all bqbit one approach is to assume that the
errors when using the observer at qbit D 0 are so small that they may be neglected.
Using (2.44) it is possible to analyze what affects the modeling error. Restating (2.44)
using the notation introduced in the beginning of this chapter gives

Pqbit D
�

a2.pp � pc/ � �1jqbit jqbit C �2v3 qbit > 0

max
˚
0; a2.pp � pc/C �2v3

	
qbit D 0

: (4.51)

As the observer is based on the top equation we will analyze what affects the modeling
error if we assume that the top equation is valid for qbit D 0 too. Looking at what
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happens when qbit D 0 ) �1jqbit jqbit D 0 which gives the modeling error, em0, at
qbit D 0,

em0 D max.0; a2.pp � pc/C �2v3/ � .a2.pp � pc/C �2v3/

D
�

0 .a2.pp � pc/C �2v3/ � 0

�.a2.pp � pc/C �2v3/ .a2.pp � pc/C �2v3/ < 0
: (4.52)

As a2 D 1
M

and �2 D . N�d� N�a/g

M
The condition .a2.pp � pc/ C �2hbit/ < 0 can be

rewritten as

.pp � pc C . N�d � N�a/gv3/ D pbitds
� pbitas

< 0; (4.53)

where pbitds
D pp C N�dgv3 is the static pressure on the drill string side of the bit

and pbitas
D pc C N�agv3 is the static pressure on the annulus side of the drill string.

This implies that the modeling error is large when the differential pressure over the bit
�pbit D pbitds

� pbitas
<< 0 which is logical as that is when the check valve has the

most influence. If the condition (4.53) never occurred, or when it did it was small, one
could argue that the modeling error could be neglected. Unfortunately this is not the
case. As an example, consider a pipe connection procedure (zero flow, pp D 0) with
N�d D N�a. The condition (4.53) can then be written as �pc < 0. As pc usually is ramped
up during pipe connections to counter loss of friction pressure pc can be in the order of
10’s of bars. This will lead to a very large modeling error.

As explained in Section 2.3.3 this modeling error affects qbit but most important it
will enter directly into the estimate of pbit , see equation (4.7). As a consequence a more
sophisticated approach is needed.

4.4.2 Modified Observer

Motivated by the previous modeling error analysis the observer will be implemented as
before for qbit > 0,but for the condition

qbit D 0 and .a2.pp � pc/C �2v3/ < 0 (4.54)

the following modifications will be made

Pb�1 D l1b1up (4.55)

bpbit D pc C .�dg �Mb�2/v3; (4.56)

where (4.55) is motivated by differentiating (4.10) w.r.t. time and setting Pbqbit D 0 and
bqbit D 0 and (4.56) is motivated by equation (4.7) with Pqbit D 0 and qbit D 0. As the
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condition (4.54) depends on the unmeasured state qbit and the unknown parameter �2 it
will be implemented as

bqbit D 0 and .a2.pp � pc/Cb�2v3/ < 0: (4.57)

Furthermore in view of equation (4.2) the adaptation for �1 at low flows should be turned
off since it becomes unobservable. It is also interesting to note that according to (4.35)

forbqbit D 0 and v3 > 0 we have Q�2 ! 0 at steady state ( PQ�1 D 0). This implies that we
could get a very good estimate for Q�2 during pipe connections. Therefore �2 adaptation
will be turned off permanently as soon asbqbit D 0 during the connection procedure.

The suggested approach raises issues of smoothness, which might affect parameter
estimates. Also it is a pragmatic approach and does not provide any proofs. Therefore
it should be seen as a starting point for future work and analysis.



Chapter 5

Simulations and Results

To analyze the performance of the adaptive observer presented in Chapter 4 several
simulations were performed. First, to verify that the observer performs as proved, sim-
ulations were run to compare the observer estimates with output from the design model
defined in (4.1)-(4.3) and (4.8). The results verify that the observer does indeed perform
as proved. From the simulations interesting trends in which of the unknown parame-
ters one can expect to estimate can be seen. Then, to see how the observer performs
in more realistic scenarios, simulations with drill string movements (swab and surge)
and pipe connection procedures were performed. The observer has no difficulties with
surge and swab scenarios. For the pipe connection scenario both of the pragmatic ap-
proaches in Section 4.4 are simulated. The results show that the modified observer
proposed in section 4.4.2 gives a much better estimates than simply ignoring the mod-
eling error at zero flow. To test the robustness of the observer to unmodeled dynamics
the observer was also tested on a data set from a pipe connection scenario simulated
with WeMod. WeMod is a simulator designed by the International Research Institute
of Stavanger (IRIS) for simulating drilling operations, (Nygaard & Gravdal 2007). It is
based on a distributed parameter model for describing the well dynamics. For qbit > 0

both of the approaches presented in section 4.4 show good estimates of pbit , but at
low flow the modified observer proposed in section 4.4.2 shows the best performance.
Finally the modified observer was tested on a dataset collected from the Grane field.
Due to unmodeled events at Grane the observer is only tested without adaptation and
with adaptation of the friction parameter �1. In both cases the observer shows promis-
ing behavior (especially during steady state) but more work is needed to model certain
manually controlled valves.

57
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5.1 Simulations Verifying Proved Properties
In this section the model defined in (4.1)–(4.3) and (4.8) with qchoke defined in (2.13)
is considered the true system. The model is numerically conditioned according to ap-
pendix A.2. Simulations were carried out using Matlab™and Simulink™. The observer
was implemented with a fixed step solver.

The parameters used in the model where found by fitting the low order model to
a dataset from a WeMod simulation, see (Imsland 2007) and (Nygaard 2007). The
parameters were adjusted for numerical conditioning and are presented in Table 5.1.
Note that Va.t/, hbit.t/ and lbit.t/ are allowed to change with time. All other parameters
are constant, see figure 2.1 for explanation of notation.

Table 5.1: Parameter values for simulation

Parameter Value Description
Vd 28.2743 Volume drill string (m3)
ˇd 14000 Bulk modulus drill string (bar)
ˇa 14000 Bulk modulus annulus (bar)
Kc 0.0046 Choke valve constant
p0 1 Pressure outside system (bar)
N�a 0.0125 Density annulus (10�5 � kg

m3 )
N�d 0.0125 Density drill string (10�5 � kg

m3 )
Fd 0.1650 Friction factor drill string
Fa 0.0208 Friction factor annulus
Ma 1:6009 (10�8 � kg

m4 )
Md 5:7296 (10�8 � kg

m4 )
LdN 3600 Total length drill string
V 0

a 96.1327 Volume (m3) annulus at t D 0

h0
bit

2000 Vertical depth (m) of bit at t D 0

l0
bit

3600 Length of well at t D 0

5.1.1 Simulation 1, step input one unknown
In the first simulation the observer estimates are compared to the low order model to
see how well the observer performes with only one unknown parameter, �1. The de-
sign variables are defined in Table 5.2. The input, shown in Figure 5.1(d), consists of a
constant main pump flow qp D 1000 l

min
, zero back pressure pump flow and a low-pass

filtered step in the choke opening zc from 0:07 to 0:12 at t D 60s. From figures 5.1(a),
5.1(b) and 5.1(c) one can see that the state estimation error Qqbit , the output estimation er-
ror Qpbit and the parameter estimation error Q� all converge to zero within approximately
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10s. All estimation errors remain at zero throughout the step in the choke opening. The
results are in accordance with the proved properties of the observer. Qqbit was proved to
converge to zero in the Lyapunov analysis in Section 4.2.2 while Qpbit ! 0 was proved
in Section 4.2.5. The fact that b� converges to �1 in this case is easily explained by
equation (4.35) which tells us that if �2 is known andbqbit ¤ 0 then Q�1 ! 0.

Table 5.2: Design variables simulation 1

Variable Description
l1 D 1 State estimation gain

1 D 10�5 Adaptation gain
bqbit.0/ D 400 l

min
Initial condition

b�1.0/ D 2�1 Initial condition
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Figure 5.1: Simulation results simulation 1
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5.1.2 Simulation 2, Step Input Two Unknowns
In the second simulation both �1 and �2 are unknown. The design variables are presented
in Table 5.3. As N�a D N�d in Table 5.1, �2 D 0. The initial condition isb�2.0/ D �0:0083

which corresponds to bN�a D 1:5 N�a. The same input as in the previous simulation was
used, see Figure 5.1(d).

From figures 5.2(a) and 5.2(b) one can see that the state and output estimation errors
converge to zero. This is as expected from the previous Lyapunov analysis. There
are strong transient effects during the first five seconds in both bqbit and bpbit due to
the adaptation. Figure 5.2(c) shows this for bpbit . Note that the transient effect can be
made less aggressive (but it will take longer to pass) by tuning down the adaptation
gains. Figures 5.3(a) and 5.3(b) show that the parameter errors do not converge to zero.
According to (4.35) this can happen as only Q�T� ! 0 is guaranteed, Figure 5.3(c)
shows that Q�T� ! 0. As the parameter estimation errors do not converge to zero
the Lyapunov function U1 defined in (4.16) will not converge to zero either. This is
shown in Figure 5.3(d). As U1 is non-increasing it is possible that during a transient one
parameter estimation error becomes larger while the other one decreases. This effect
can be seen around t D 60s in figures 5.3(a) and 5.3(b).

Table 5.3: Design variables simulation 2

Variable Description
l1 D 1 State estimation gain

1 D 10�5 Adaptation gain, b�1


2 D 10�6 Adaptation gain, b�2

bqbit.0/ D 400 l
min

Initial condition
b�1.0/ D 2�1 Initial condition
b�2.0/ D �0:0083 Initial condition
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5.1.3 Simulation 3, �3 Estimator
To see how the �3 estimator performs a third simulation was carried out. The design
variables are summarized in Table 5.4, the gains were chosen to satisfy the conditions
summarized in Table 4.4. As no information about �3 can be obtained at steady state
. Ppc D 0/, see equation (4.3), it is hard to estimate. It was necessary to choose the
adaption gain 
3 quite large to get Q�3 ! 0. The size of the gain is also related to the
fact that the �3 parameter is several orders of magnitude larger than the other unknown
parameters. As the �3 estimator is decoupled from the observer, see Figure 4.2, only
plots of signals relevant to b�3 will be shown.

To excite the system the same step in the choke as in the two previous simulations
was used, with additional steps in main pump flow and backpressure pump flow, see
Figure 5.4(c). From Figure 5.4(b) it can be seen that bpc tracks pc very well. This makes
the adaptation hard as it is Qpc that drives the adaptation, see equation (4.43). The l2 gain,
which controls the rate of convergence for Qpc , was chosen just large enough to satisfy
the condition imposed by the Lyapunov design to give the adaptation more time. From
Figure 5.4(a) it can be seen that Q�3 comes close to zero towards the end but diverges
slightly at t D 380s. Looking at only one part of the Lyapunov function, namely U2,
defined in (4.42) might lead to the conclusion that this contradicts the Lyapunov based
proof. But as it is U D U1CU2, defined in (4.41), that is nondecreasing, U2 can increase
if U1 decreases. Although not shown here, this is what happens. This illustrates that the
estimate is sensitive to changes as long as U > 0. For the same simulation only with �2

known the results are significantly better. Figure 5.4(d) shows this. For comparison the
end of the simulation with unknown �2, Q�3 � �140 which is about 1% of �1 while at
the end of the second simulation Q�3 � 7 which is twenty times less.

Table 5.4: Design variables simulation 3

Variable Description
l1 D 1 qbit estimation gain
l2 D 0:1 pc estimation gain

1 D 10�5 Adaptation gain, b�1


2 D 10�6 Adaptation gain, b�2


3 D 108 Adaptation gain, b�3

bqbit.0/ D 400 l
min

Initial condition
b�1.0/ D 2�1 Initial condition
b�2.0/ D �0:0083 Initial condition
b�3.0/ D 0:9�3 Initial condition
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5.2 Simulation Results Operational Scenarios
To see how the observer works during more realistic scenarios two simulation cases
were performed. The first case was a surge and swab case which includes movement
in the drill string. The second one was a pipe connection procedure where the main
difficulty lies in qbit D 0 during the actual procedure. The model parameters used are
defined in Table 5.1.

5.2.1 Surge and Swab
Simulations were carried out to see how the observer performs in the presence of drill
string movements. Specifically surge (moving the drill string into the well) and swab(moving
the drill string out from the well) scenarios where simulated. Drill string movements af-
fect pbit through changes in volume in the annulus. The design variables were the same
as in the previous simulation, defined in Table 5.4. The main and back pressure pump
flows were kept constant at 1000 l

min
and 200 l

min
respectively, and the choke opening

was zc D 0:070. The drill string was first moved out (swab) starting at t � 200. The
speed was chosen to be 18 m

min
which is high. Approximately 27m of pipe was moved,

which corresponds to the length of one drill pipe. At t D 400s the reverse procedure
(surge) takes place. Figure 5.5(c) shows the changes in volume in the annulus and ver-
tical depth. Figure 5.5(a) shows that bpbit tracks pbit well after some initial transients.
The same can be seen for bqbit in 5.5(b). The operation does not affect b�1 or b�2 much,
see figures 5.6(a) and 5.6(b). However, it is very interesting to see that b�3 improves sig-
nificantly during the operation compared to the previous simulation. Compare Figure
5.6(c) with 5.4(a) and 5.4(d). In view of equation (4.3) it seems reasonable that changes
in the volume Va D v1 and v2 D �Pv1 gives good excitation for estimating �3.
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5.2.2 Pipe Connection

Pipe connection is a common scenario during drilling. For every drilled 27m a new drill
pipe needs to be connected to the drill string. For the new drill pipe to be connected, the
main pump must be shut down resulting in zero flow, qpump D 0. Furthermore excess
fluid in the drill string is bled off through a valve and returned to the mud tanks to reduce
the main pump pressure to zero barg before the pump is disconnected. The procedure
takes about 10 minutes to complete. As mentioned earlier zero flow is a problem since
the observer is based on a model that is only valid for qbit > 0.

Simulation results for the two approaches presented in Section 4.4 will be presented
here. To achieve a realistic condition where the check valve is active, a proportional-
integral (PI) controller will be used to increase pc to compensate for friction loss. In
addition the pp pressure will be bled off which corresponds to reality. The PI controller
is

zc D Kpe CKie (5.1)
e Dpc � pcr ef

; (5.2)

where pcr ef
is 6 bar step that compensates for loss of friction pressure in the annulus.

The increase in drill string volume Vd as a new pipe is connected is ignored both in
the true system and in the observer to reduce complexity.

Pipe Connection 1

The first pipe connection simulation was carried out using the observer as it was derived,
ignoring the modeling error due to the check valve. The design variables used are
defined in Table 5.5. Figure 5.7(d) shows the inputs to the system during the pipe
connection. The main pump flow (qp) is reduced to zero while the back pressure pump
flow (qb) is increased to 400 l

min
. The choke valve is tightened by the PI controller

increasing pc by 6 bar to compensate for the pressure loss caused by zero circulation.
Note the negative qp which is the simulated bleed off to reduce pp to one bar.

From Figure 5.7(a) it can be seen that after initial transients bpbit tracks pbit as long
as qbit > 0. From t � 790s to t � 900s when qbit D 0 there is a small (4 bar) error
until the bleed off starts. During the bleed off the error grows to around 30 bar. Note
that throughout the simulation bqbit tracks qbit quite well, see Figure 5.7(b). There are
small damped oscillations as bqbit ! 0, see Figure 5.7(c). The 4 bar error in the pbit

estimate from t � 790s to t � 900s is mainly caused by the error in the �2 estimate,
see Figure 5.8(c). This can be seen as the modeling error in ignoring the check valve is
small at this stage since pp is close to pc , see Figure 5.8(a) and equation (4.52). And
asbqbit � qbit D 0 hence Qpbit � �Md

Q�2v3, see equation (4.30). The large error in the
pbit estimate from t D 900s is due to the modeling error commented on in Section 4.4.
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Figures 5.8(b) - 5.8(d) show that none of the estimated parameters converge to the true
values.

Table 5.5: Design variables pipe connection

Variable Description
l1 D 1 qbit estimation gain
l2 D 1 pc estimation gain

1 D 10�5 Adaptation gain, b�1


2 D 10�6 Adaptation gain, b�2


3 D 108 Adaptation gain, b�3

bqbit.0/ D 400 l
min

Initial condition
b�1.0/ D 2�1 Initial condition
b�2.0/ D �0:0083 Initial condition
b�3.0/ D 0:9�3 Initial condition
Kp D 0:0025 Proportional gain
Ki D 0:0005 Integral gain
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Pipe Connection 2

To illustrate that the modified observer presented in Section 4.4.2 outperforms simply
ignoring the modeling error a second pipe connection simulation was performed. The
same input as in the previous simulation was used only this simulation consists of two
pipe connections. Figure 5.9(c) shows the inputs to the system. As commented on
in Section 4.4.2 the �2 adaption is stopped permanently as bq � 0 and the �1 and �2

adaptations were turned off at low flows (less than 200 l
min

). Figure 5.9(a) shows that
bpbit tracks pbit well until the end of the first pipe connection. The figure shows that
bpbit diverges from pbit around t D 1400s, the reason for this is that the �1 adaptation is
turned on again. From Figure 5.10(c) it can be seen that the �2 adaptation is stopped at
the right time. This again leads to a very good estimate of �1 after the pipe connection,
see Figure 5.10(b). As both the �1 and �2 estimates are very good after the first pipe
connection bpbit tracks pbit very well during the second pipe connection. Furthermore
b�3 does not show the strong transient behavior it showed during the first pipe connection,
see Figure 5.10(d). Note that bqbit tracks qbit very well throughout the simulation, see
Figure 5.9(b). The simulation shows that the performance of the modified observer is
much better than the performance of the observer ignoring the modeling error.
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5.3 WeMod Simulations, Pipe Connection
To see how robust the observer is w.r.t unmodeled dynamics the observer was tested on a
data set from a pipe connection simulation in WeMod, (Nygaard & Gravdal 2007). First
the third order model was fitted to the data generated by WeMod. Table 5.6 summarizes
the parameters found.

Table 5.6: Parameter values for WeMod simulation

Parameter Value Description
Vd 26.7131 Volume drill string (m3)
ˇd 13050 Bulk modulus drill string (bar)
ˇa 7317 Bulk modulus annulus (bar)
Kc 0.0045 Choke valve constant
p0 0 Pressure outside system (barg)
N�a 0.0125 Density annulus (10�5 � kg

m3 )
N�d 0.0125 Density drill string (10�5 � kg

m3 )
Fd 40:1700 Friction factor drill string
Fa 0:0158 Friction factor annulus
Ma 1:6215 (10�8 � kg

m4 )
Md 6:0644 (10�8 � kg

m4 )
LdN 3600 Total length drill string
V 0

a 99:9088 Volume (m3) annulus at t D 0

h0
bit

2014 Vertical depth (m) of bit at t D 0

l0
bit

3600 Length of well at t D 0

The pipe connection was simulated by reducing the pump flow to zero and increas-
ing the back pressure pump flow. The choke opening was kept constant at 0:04. To
release excessive pressure in the drill string after qbit D 0 the pressure was reduced to
approximately 2barg by having a negative qp. Both the approaches presented in Sec-
tion 4.4 where simulated. First simply using the observer as it was derived ignoring
the modeling error and then the observer considering the modeling error in a pragmatic
manner.

5.3.1 WeMod Simulation 1
The design variables for the first WeMod simulation is presented in Table 5.7. Three
solutions are compared. The results from the WeMod simulation, results from simulat-
ing the low order model including the check valve dynamics and the results from the
observer. Figure 5.11(a) shows that after initial transients pbit is estimated well by bpbit

between the pipe connections. During zero flow there is a steady state error which is
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caused by neglecting the check valve. When it comes to the parameter estimation, b�1

and b�2 show promising behavior in figures 5.12(a) and 5.12(b) as they gradually con-
verge to their true values. b�3 comes close to its true value during transients but drifts off
during zero flow.

Table 5.7: Design variables WeMod simulation 1

Variable Description
l1 D 1 qbit estimation gain
l2 D 1 pc estimation gain

1 D 10�6 Adaptation gain, b�1


2 D 10�8 Adaptation gain, b�2


3 D 107 Adaptation gain, b�3

bqbit.0/ D 50 l
min

Initial condition
b�1.0/ D 2�1 Initial condition
b�2.0/ D �0:0080 Initial condition
b�3.0/ D 0:9�3 Initial condition
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Figure 5.11: WeMod simulation 1, results



5.3. WEMOD SIMULATIONS, PIPE CONNECTION 79

0 2000 4000 6000
0

0.05

0.1

s

 

 
θ1

θ̂1

(a) �1 and b�1

0 2000 4000 6000
−0.01

0

0.01

s

 

 
θ2

θ̂2

(b) �2 and b�2

0 2000 4000 6000
4000

6000

8000

s

 

 

θ3

θ̂3

(c) �3 and b�3

Figure 5.12: WeMod simulation 1, results



80 CHAPTER 5. SIMULATIONS AND RESULTS

5.3.2 WeMod Simulation 2
Using the same design parameters as in Table 5.7 the same simulation was performed
using the modified observer presented in Section 4.4.2. Figure 5.13(a) shows much
better tracking of pbit during zero flow than in the previous case, see Figure 5.11(a).
Furthermore b�2 is stopped at zero flow giving a very good estimate, see Figure 5.14(b).
This again leads to much better estimates of �1 and �3, see figures 5.14(a) and 5.14(c).
In Figure 5.14(a) it can be seen that the �1 estimate diverges during the pipe connection.
Figures 5.15(a) and 5.15(b) show enlarged plots of qbit and pbit during the last pipe
connection. The pbit estimate is very accurate except for about 20 � 30 seconds just
as the pipe connection starts. The deviation can be seen inbqbit too and should be seen
in connection with the deviation in the �1 estimate. Closer analysis of this behavior is
a topic for future work. Note that one solution to the problem is of course to turn off
the �1 estimate after the first pipe connection. Figure 5.15(b) also shows interesting
behavior in qbit as the flow gets close to zero. It is believed that this behavior does not
affect pbit much as the pressure contribution due to friction, �1jqbit jqbit , is very small
at this stage. Therefore the accuracy provided in bpbit should suffice.
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5.4 Pipe Connection, Grane Data

To see how well the observer performs in realistic scenarios, the observer was tested on
log data from the Grane field provided by StatoilHydro. The data consists of two pipe
connections. The input is shown in Figure 5.17(b) and the pressures are shown in Figure
5.17(a).

There where several unknown parameters ˇa, Kc , N�a, Fa, Fd and Ma that had to
be fitted. No influx was assumed and the effect of cuttings in the drill mud in the
annulus was neglected. Therefore the assumption ˇa D ˇd and N�a D N�d was made.
All pressures were measured in barg and the pressure downstream the choke p0 was
assumed to be zero barg. Furthermore the orifice equation (2.13) was modified to:

qchoke D Kcgc.zc/
p

pc � p0 (5.3)

Where the
q

2
N�a

has been lumped into Kc and the choke characteristic gc.zc/ was fitted
to data and is shown in Figure 5.16.
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Figure 5.16: Choke characteristic

The remaining unknown parameters where found through the following relation-
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ships, using (2.39), (2.40), (2.41) and (5.3):

F D ppss
� pcss

C .�d � �a/ghbit

q2
bitss

(5.4)

Fd D
�pbitss

C ppss
� �dghbit

q2
bitss

(5.5)

Fa D
pbitss

� pcss
� �aghbit

q2
bitss

(5.6)

Kc D
qbitss

gc.zcss
/
p

pcss

(5.7)

Where �ss denotes steady state value. Note that there is no back pressure pump on
Grane. The model fit is shown in Figure 5.17(a) and the parameters for the well are
summarized in Table 5.8. Some issues arose during the model fitting procedure. First
there is an important unmodeled event that occurs before disconnecting the main pump.
As the pressure pp can be quite large at qbit D 0 the remaining pressure is bled off
through a valve releasing excessive fluid back into the drill fluid tank. From Figure
5.17(a) we can see that ppsim

does not go to zero as it should. This modeling error
should be dealt with as part of the future work and is ignored here. Furthermore a more
accurate choke characteristic gc.zc/ is needed to get a good simulation of pc . Due
to these modeling errors the performance of the observer will be degraded, especially
during pipe connections. For all the tests the modified observer presented in Section
4.4.2 was used.
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Table 5.8: Parameter values Grane data

Parameter Value Description
Vd 51.1825 Volume drill string (m3)
ˇd 14000 Bulk modulus drill string (bar)
ˇa 14000 Bulk modulus annulus (bar)
N�a 0.0120 Density annulus (10�5 � kg

m3 )
N�d 0.0120 Density drill string (10�5 � kg

m3 )
Kc 0.0226 Choke valve constant
p0 o Pressure outside system (barg)
Fd 0.1448 Friction factor drill string
Fa 0.0184 Friction factor annulus
Ma 1:7828 (10�8 � kg

m4 )
Md 4:9782 (10�8 � kg

m4 )
LdN 4583 Total length drill string
V 0

a 145.1197 Volume (m3) annulus at t D 0

h0
bit

1825 Vertical depth (m) of bit at t D 0

l0
bit

4681 Length of well at t D 0

5.4.1 No Adaptation
First the observer was tested on the Grane data without adaption. The design variables
for the observer are summarized in Table 5.9. From Figure 5.18(a) we can see that both
bpbit and pbitsim

are close to pbit during steady state. As the pbit measurement is lost
during pipe connection it is hard to evaluate how the observer performs. Considering
the modeling error mentioned in the previous section it is reasonable to assume that
the observer with feedback provides a better estimate during the pipe connection than
the simulation/open-loop. The highly oscillatory behavior of pbitsim

during the pipe
connection strengthens this argument as pbit probably does not change much. Figure
5.18(b) is shown to illustrate thatbqbit shows a smooth and reasonable behavior.
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Figure 5.18: Grane data simulation, no adaptation
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Table 5.9: Design variables Grane simulation, no adaptation

Variable Description
l1 D 0:1 qbit estimation gain
l2 D 0 pc estimation gain

1 D 
2 D 
3 D 0 Adaptation gains
bqbit.0/ D 2020 l

min
Initial condition

b�1.0/ D �1 Initial condition
b�2.0/ D 0 Initial condition
b�3.0/ D �3 Initial condition

5.4.2 Adaptation of �1

A second simulation was carried out to evaluate the performance of the observer in the
presence of an unknown friction parameter. The initial condition bqbit.0/ was chosen
unwisely. Table 5.10 summarizes the design variables. As the system considered is
stable, a copy of the system constitutes an observer. Therefore simply simulating the
low order model can actually give good results if all parameters are known. To illustrate
that this approach does not work well in the pressence of parameter uncertainties both
the low order model and the adaptive observer use an inital �1.0/ D FdC1:5Fa

M
, which

corresponds to a 50% error in the initial estimate for Fa. The adaptive observer estimates
�1 which gives a much better estimate of pbit , than the estimate pbitsim

provided by
simply simulating the low order model with a wrong �1. From Figure 5.19(a) it can
be seen that the open loop simulation pbitsim

gives a steady state deviation due to the
error in the friction estimate. Figure 5.19(c) shows thatb�1 comes very close to �1 during
steady state which gives a much better estimate of pbit than pbitsim

. Note that the �1

adaptation is turned off forbqbit < 1800 l
min

to prevent drifting. From Figure 5.19(c) it
can be seen that the �1 estimate drifts when the pipe connection procedure starts, this is
similar to what was seen in the WeMod simulations, see Figure 5.14(a). The reason for
the drift might be unmodeled dynamics and should be analyzed further as part of future
work on this subject.
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Table 5.10: Design variables Grane simulation, adaptation

Variable Description
l1 D 0:1 qbit estimation gain
l2 D 0 pc estimation gain

1 D 10�7 Adaptation gain, b�1


2 D 
3 D 0 Adaptation gains
bqbit.0/ D 1000 l

min
Initial condition

b�1.0/ D FdC1:5Fa

M
Initial condition

b�2.0/ D 0 Initial condition
b�3.0/ D �3 Initial condition
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Chapter 6

Conclusion, Contributions and Future
work

6.1 Conclusion
1. An adaptive observer that fulfills the main goals stated in Section 1.4 has been

developed in Chapter 4. The observer adapts to key unknown parameters and
estimates the bottomhole pressure.

2. The observer design is based on rigid mathematical analysis and provides con-
ditions for stability and convergence of the estimated bottomhole pressure and
unknown parameters.

3. Simulation studies in Chapter 5 verifies the proved properties of the observer and
show that the observer handles common scenarios during drilling such as, changes
in choke valve opening, mud pump flow and drill string movements, very well.

4. Due to model complexity rigid proofs were not derived for zero flow conditions.
As a starting point for future work a pragmatic solution during zero flow was
proposed in Section 4.4. The proposed method shows promising behavior during
during simulations.

6.2 Contributions
The main contributions to the drilling industry presented in this thesis is the adaptive
observer developed in Chapter 4.

� The observer estimates the bottomhole pressure during drilling and adapts to un-
known friction, density and bulk modulus.
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� The extensions compared to existing results is that the design is based on a low
order model and founded in rigid mathematical analysis which provide conditions
for stability and convergence. As the design is based on a low order model it is
simpler to implement and use compared to estimator designs based on distributed
parameter models.

� Furthermore the results hold over a wide range of drilling operations. This has
been demonstrated through simulation of common drilling scenarios.

� The results facilitate for future control design.

6.3 Future Work
Suggested future work is:

� Derive conditions for stability and convergence for the observer at zero flow based
on the proposed approach in Section 4.4.

� Incorporate manually operated valves into the existing model.

� Remove the assumption of zero reservoir influx stated in Section 1.4.

� Analyze behavior of existing observer scheme with gas in the annulus. If needed
extend the observer to two-phase flow, i.e. remove the fluid phase only assumption
in Section 1.4.

� Include the pbit measurement to achieve better performance.

� Try to get more log data of the bottomhole pressure measurement during typical
drilling scenarios to test the observer.
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Appendix

A.1 Derivation of pbi t

Derivation of pbit in equation (2.42) is based on (2.39) and (2.41):

M Pqbit D pp � pc � Fd jqbit jqbit � Fajqbit C qresj.qbit C qres/C . N�d � N�a/ghbit

(A.1)

pbit D pc CMa Pqbit C Fajqbit C qresj.qbit C qres/C N�aghbit

Inserting the top equation into the bottom gives:

M Pqbit D pp � pc � Fd jqbit jqbit � Fajqbit C qresj.qbit C qres/C . N�d � N�a/ghbit

pbit D pc C
Ma

M
.pp � pc � Fd jqbit jqbit � Fajqbit C qresj.qbit C qres/C . N�d � N�a/ghbit/

C Fajqbit C qresj.qbit C qres/C N�aghbit

D Ma

M
pp C .1 �

Ma

M
/pc C .1 �

Ma

M
/Fajqbit C qresj.qbit C qres/

� Ma

M
Fd jqbit C qresj.qbit C qres/C .1 �

Ma

M
/ N�aghbit C

Ma

M
N�dghbit

D Ma

M
pp C

Md

M
pc C .

Md

M
Fa �

Ma

M
Fd/jqbit C qresj.qbit C qres/

C .Md

M
N�a C

Ma

M
N�d/ghbit (A.2)

A.2 Numerical Conditioning
The states in (2.37)- (2.39) have units of pressures and volume flow. The SI unit for
pressure is pascals (Pa) and for volume flow it is m3

s
, (White 1999). Standard operating
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conditions will for the pressures be in the order of 0� 400bar D .0� 40/ � 106 Pa and
for the volume flow in the order of 0 � 6000 l

min
D 0 � 0:1m3

s . This will lead to a large
spread in parameter values and signal sizes, which will make the model numerically ill-
conditioned. Therefore the states should be normalized. An intuitive choice of units for
flow and pressure is l

s and bar. This conversion and the resulting signals and parameters
will now be found. The signals and parameters after the conversion will be denoted with
a bar.

Nq� D 1000q� Np� D
p�
105

First (2.37) can be used to find PNpp:

105Vd

ˇd

PNpp D
Nqpump

1000
� Nqbit

1000
(A.3)

Using the unit bar for ˇd gives:

Vd

Ň
d

PNpp D
Nqpump

1000
� Nqbit

1000
(A.4)

Similar for (2.38), using assumption 6:

105Va

ˇa

PNpc D
Nqbit C Nqback � Nqchoke

1000
� PVa

Va

Ň
a

PNpc D
Nqbit C Nqback � Nqchoke

1000
� PVa (A.5)

And for (2.39):

M

1000
PNqbit D 105. Npp � Npc/ � .Fd C Fa/

Nqbit j Nqbit j
106

C . N�d � N�a/ghbit

Denoting NN�a D N�a

105 , gives:

Md CMa

108
PNqbit D Npp � Npc � .Fd C Fa/

Nqbit j Nqbit j
1011

C . NN�d � NN�a/ghbit

Denoting NM D M
108 and NF D NFd C NFa D FdCFa

1011 gives:

NM PNqbit D Npp � Npc � NF Nqbit j Nqbit j C . NN�d � NN�a/ghbit (A.6)

For the measurement equation (2.41) a similar approach gives:

105 Npbit D 105 Npc CMa

PNqbit

1000
C Fa

Nqbit j Nqbit j
106

C N�aghbit

Npbit D Npc CMa

PNqbit

108
C Fa

Nqbit j Nqbit j
1011

C N�a

105
ghbit

D Npc C NMa
PNqbit C NFa Nqbit j Nqbit j C NN�aghbit (A.7)
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To summarize, the converted equations are:

Vd

Ň
d

PNpp D
Nqpump

1000
� Nqbit

1000
(A.8)

Va

Ň
a

PNpc D
Nqbit C Nqback � Nqchoke

1000
� PVa (A.9)

NM PNqbit D Npp � Npc � NF Nqbit j Nqbit j C . NN�d � NN�a/ghbit (A.10)

Npbit D Npc C NMa
PNqbit C NFa Nqbit j Nqbit j C NN�aghbit (A.11)

Where the Table A.1 summarizes the conversions

Table A.1: Converted units

Old Signal/parameter Old Unit Conversion Factor New Signal/parameter New Unit
pp,pc , pbit Pa 1

105 Npp, Npc , Npbit Bar
qbit

m3

s 103 Nqbit
liter

s
ˇd , ˇa Pa 1

105
Ň
d , Ňa Bar

Md , Ma
kg
m4

1
108

NMd , NMa
kg

108m4

Fd , Fa - 1
1011

NFd , NFa -
N�d , N�a

kg
m3

1
105

NN�d , NN�a
kg

105m3

A.3 Lipschitz Properties and Equilibrium Points
In this section equilibrium points and Lipschitz properties for the error system described
by (4.15) and (4.17) are analyzed. First the following assumptions are made.

Assumption 11. qbit.t/ is continuous and 0 � qbit.t/ � c <1

Assumption 12. v3.t/ is continuous and 0 � v3.t/ � c <1

PQ�1 D �l1a1
Q�1 � �1.jqbit jqbit � jbqbit jbqbit/C Q�T� (A.12)

PQ� D ��� Q�1 (A.13)

Q� D
" Q�1

Q�2

#
and the regressor as �.bqbit ; v3/ D

� �jbqbit jbqbit

v3

�
.
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Rewriting (A.12)-(A.13) by using the relationshipbqbit D qbit � Qqbit D qbit � Q�1

PQ�1 D �l1a1
Q�1 � �1

h
jqbit.t/jqbit.t/ � jqbit.t/ � Q�1j.qbit.t/ � Q�1/

i
(A.14)

� jqbit.t/ � Q�1j.qbit.t/ � Q�1/ Q�1 C v3.t/ Q�2

PQ�1 D 
1jqbit.t/ � Q�1j.qbit.t/ � Q�1/ Q�1 (A.15)
PQ�2 D �
2v3.t/ Q�1 (A.16)

Where qbit.t/ and v3.t/ are the external time-varying signals.

A.3.1 Equilibrium Points
The equilibrium points of (A.14) - (A.16) are given by setting the left hand side to zero:

0 D �l1a1
Q�eq

1 � �1

h
jqbit.t/jqbit.t/ � jqbit.t/ � Q�eq

1 j.qbit.t/ � Q�eq

1 /
i

(A.17)

� jqbit.t/ � Q�eq

1 j.qbit.t/ � Q�eq

1 /
Q�eq

1 C v3
Q�eq

2

0 D 
1jqbit.t/ � Q�eq

1 j.qbit.t/ � Q�eq

1 /
Q�eq

1 (A.18)

0 D �
2v3.t/ Q�eq

1 (A.19)

Equation (A.19) and assumption 12 gives:
Q�eq

1 D 0 (A.20)

Inserting this into (A.17) gives:

0 D ��1 Œjqbit.t/jqbit.t/ � jqbit.t/jqbit.t/� � jqbit.t/j.qbit.t// Q�eq

1 C v3.t/ Q�eq

2

D �jqbit.t/jqbit.t/ Q�eq

1 C v3.t/ Q�eq

2

) Q�eq

2 D
jqbit.t/jqbit.t/ Q�eq

1

v3.t/
(A.21)

From (A.20) and (A.21) it is obvious that Q�1 D Q�1 D Q�2 D 0 is an equilibrium
(although not unique) for the error system (A.14) -(A.16).

A.3.2 Lipschitz
In this section local Lipschitz properties for the system (A.14) -(A.16) will be proved.
Lemma 3.2 in (Khalil 2002) will be used. Denoting, see (A.14) -(A.16):

PQ�1 D f1. Q�; Q�1; 3 Q�2; t/ (A.22)
PQ�1 D f2. Q�; t/ (A.23)
PQ�2 D f3. Q�; t/ (A.24)
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f� is continuous. Using the relationship:

@jqbit.t/ � Q�1j.qbit.t/ � Q�1/

@ Q�1

D
8
<
:

@.qbit .t/�Q�1/
2

@Q�1

qbit.t/ � Q�1

�@.qbit .t/�Q�1/
2

@Q�1

qbit.t/ < Q�1

D
(
�2.qbit.t/ � Q�1/ qbit.t/ � Q�1

2.qbit.t/ � Q�1/ qbit.t/ < Q�1

D �2jqbit.t/ � Q�1j (A.25)

The Jacobian for (A.22)-(A.24) can be calculated to be:

@f1

@ Q�1

D �l1a1 � 2�1jqbit.t/ � Q�1j C 2jqbit.t/ � Q�1j Q�1 (A.26)

D �l1a1 C 2jqbit.t/ � Q�1j. Q�1 � �1/ (A.27)
@f1

@ Q�1

D �.qbit.t/ � Q�1/jqbit.t/ � Q�1j (A.28)

@f1

@ Q�2

D v3.t/ (A.29)

@f2

@ Q�1

D �2
1jqbit.t/ � Q�1j Q�1 C 
1.qbit.t/ � Q�1/jqbit.t/ � Q�1j (A.30)

@f3

@ Q�1

D �
2v3 (A.31)

The Jacobian is continuous as both qbit.t/ and v3.t/ is continuous from assumptions 11
and 12. Hence f� is locally Lipschitz in . Q�1; Q�1; Q�2/. As qbit.t/ and v3.t/ are bounded
from the same assumptions, the Lipschitz property holds uniformly in t .

A.4 LaSalle-Yoshizawa
The following theorem is used to establish stability and uniform boundedness in the
adaptive observer design. It can be found in (Krstić, Kanellakopoulos & Kokotović
1995).

Theorem 1. (LaSalle-Yoshizawa) Let x D 0 be an equilibrium point of Px D f .x; t/

and suppose f is locally Lipschitz in x uniformly in t. Let V W Rn � RC ! RC be a
continuously differentiable function such that


1.jxj/ � V .x; t/ � 
2.jxj/ (A.32)

PV D @V

@t
C @V

@x
f .x; t/ � �W .x/ � 0 (A.33)
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8t � 0, 8x 2 Rn,where 
1 and 
2 are class K1 functions and W is a continuous
function. Then, all solutions of Px D f .x; t/ are globally uniformly bounded and satisfy.

lim
t!1

W .x.t// D 0 (A.34)

In addition, if W .x/ is positive definite, then the equilibrium x D 0 is globally
uniformly asymptotically stable.

For a definition of class K1 functions see, (Khalil 2002).

A.5 Barbălat
The following theorem is used to establish convergence properties for parameter esti-
mates, it can be found in (Ioannou & Sun 1996).

Lemma 2. (Barbălat) If limt!1
R t

0
f .�/dt exists and is finite, and f .t/ is a uniformly

continuous function, then limt!1 f .t/ D 0.

For a definition of uniformly continuous functions see (Ioannou & Sun 1996).


