@ NTNU

Norwegian University of
Science and Technology

Implementing Controller Strategies in
FPGA

Erik Normann Nass

Master of Science in Engineering Cybernetics
Submission date: June 2009
Supervisor: Sverre Hendseth, ITK

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Problem Description

Some controllers have to be very fast, and one solution is to implement them in FPGA-circuits.

This assignment is to create a library of blocks for some controller types, namely PID and MPC

(Model Predictive Control). Central to the implementation would be to achieve greatest possible
performance while using the least possible amount of resources on the FPGA.

By implementing the controllers in FPGA, it should be possible to implement different realizations
of arithmetic operators, which should be considered for increasing the performance.

Implementations on FPGAs also give the possibility to implement controllers in parallel, which
should be reflected by the implementations of the controllers in the library.

The controller parameters should be configurable, for instance by using a serial interface.

Assignment given: 12. January 2009
Supervisor: Sverre Hendseth, ITK

Abstract

In todays industrial applications there is an iasieg demand for good control algorithms
and implementions. This may be because of increesegbetition leading to smaller
economic margins, safety reasons or even envirotahesasons.

With such demands comes the need for faster and aefficient hardware. Unfortunately,
even though CPU-speed has more or less sky-rocketdest decades, using such solutions
for a typical embedded system is not very costieifit, practical or robust. Thus, many
embedded systems these days use complete microldenstrsuch as the ATMEL AVR-chips.
These however, run on far slower clock speeds pige CPUs, and are not capable of
performing the calculations needed for real-timetaaling using for example an MPC
controller.

One way of getting around the performance issugddoe to construct the controller entirely
in hardware, designed specifically for the taskatd. This paper will look at how this is
possible to accomplish by using an FPGA, and howmperformance gain it is possible to
achieve on this platform.

Preface

This master thesis is the result of 5 months ofessdsynthesizing of FPGA code on behalf of
Siemens Oil & Gas in Trondheim. The work took pldoeing the spring semester of 2009.

As my previous knowledge on FPGAs was basically-existing, this has been a great
opportunity for me to learn about a new and exgifiald. In the beginning of the project a
lot of time was spent trying to learn VHDL. This ame working my way up from blinking
LEDs up to a complete VGA driver showing graphstfa implemented PID-controller. It's
amazing how much one can do with an FPGA!

Of course | have learned about more than just FPi@Ghs these months. MPC and QP-
solvers are fields one can never have read too mbett, and actually implementing and
analyzing this gives a greater understanding on they work in general.

I would like to thank Karstein Kristiansen at Siemmend Sverre Hendseth at NTNU for
giving me the opportunity to work with this projeand lending me the Xilinx FPGA
development kit. | would also like to thank Stefdertelli at NTNU for supplying me with
the NI-DAQ board.

Table of Contents

A {1 oo (B o 1o I PP 3
P 1 R ot o] o] | = P PPPPUPPPPPPPR 4
2.1 T a1 goTo [¥ox 1o o PP URPPPPPPRRTTUPRRTIN 4
2.2 T g o] (=700 T=T] €= U1 o] o P PSRUUR 5
3 Model Predictive Controller (MPC)......coooo i eeeeee e eeeeeeeees 6
3.1 Basic idea behind MPC ... 6
3.2 MPC problem formulationu e s 7
3.3 Formulating MPC as a standardized QP-problem..............cccovvviiiiiiiiciinnennn. 8..
3.4 Solving the QP-problem ... 9
3.5 Algorithm for “infeasible interior point meth@d..............ccccccciiiiiii 10
4 Implementation of MPC 0N FPGA.... ... 11
ot R O 0T 1Y = T =T o (0 = o o I 11
4.2 StONNG the data.......ccoeeiiiiiii e e e e 12
4.3 Testing the MPC implementationeuee.ooeeeeeeeereerereeeeriisni s eeeeeens 13
4.4 ClOCK CYCIE USBQE....ceuuiiiiuiiiiiie s sttt e e e e e aa e e e e e e e e e e aaaeees 16
4.5 Resource usage inthe FPGA ... 17
5 Improving performance 0N the FPGA.........oo i eee e 18
5.1 ParalleliSIM ... e 18
5.2 Breaking down matrix operations into parall@i@ns...............ccccevviiiiiiiiinnnnnn. 9.1
5.3 Several matrix operations in parallell................ceeeiiiiiiiiiees 20
54 Finding an efficient QP-SOIVETua e 21
G 0] ol 11 13 o] 1S PP PPPUPUPPPRP 22
6.1 RESUIES e e 22
6.2 FUINEE STUTIES ... et 22
A 3= (=] (=] o= ST 23
S Y o] o 1= o TP 24
8.1 LISt OF FIQUIES .. e e e e e e e e e e eeeaeees 24
8.2 LISt Of taDIES ... 24
8.3 CONENL ON CD ... e et e e e e e e ee e e e e aaeees 24

1 Introduction

The purpose of this paper is to shed some morediglithe use of FPGAs to implement
advanced controller strategies, or more specifiddiPC.

While traditional microcontrollers and processas i@stricted to sequential computing,
FPGAs are able to perform calculations in para@l@n this be exploited in some way to
increase the speed of MPCs?

To answer this, an MPC was implemented and testedsimple system. By analyzing this
implementation it was possible to say somethinguatite time and resource utilization for
MPC on FPGA in general.

In the final chapter of the report, the gatherddrimation and experience was used to make
conclucions regarding parallelization to improve ®8peed on FPGA, and what challenges
one might face in such an implementation.

Also, the first chapter contains some basic infdromeon PID-controllers in FPGA. This is of
course not very groundbreaking stuff, but it alldascomparison of PID vs MPC in terms of
lines of computer code needed, resources needdé aevice, and last but not least; the end
result.

2 PID-controller

2.1 Introduction

The PID-controller is one of most used controliarthe industry today. This has to do with
the fact that such controllers are not very appbeaspecific, and are relatively easy to tune
for acceptable performance. However, the PID-cdlet®are not capable of handling
constraints, setpoint-handling is far from optinaadd if tuned poorly, may go into an
oscillating and unstable state.

As a part of this thesis, a PID-controller was iempénted on the FPGA. Of course, due to the
simplicity of the PID-controller, there are no magmlvantages to using an FPGA instead of a
microcontroller for this task as long as only ooetcoller is needed. However, the true power
of the FPGA lies in parallellism, and if severahtiollers are needed, this may easily be
implemented without any loss of performance.

The PID-controller that was implemented requiress ldhan 100 lines of VHDL code and less
than 1% of the capacity on the FPGA. A great tlahgut the PID-controller is that it doesn’t
need to deal with float integers. The floating pdioraries take a lot of space on the FPGA,
and they also require some clock cycles to geneeatdts.

As a result, the PID-regulator is able to calculateew output within less than 10 clock
cycles.

2.2 Implementation

The implementation was done using integer variafdles only difficult operation that needs
to be done in a PID regulator is division by saniptee (because of the integrator and
derivator functions). A neat trick to make thismgle task is to keep the number of
samples/second to some power of two, making thisidiva simple bit shift operation.

As the development board that was used had a peritala driver for this was created. This
allowed the user to enter controller values (Kp&Tid), and also to set the reference from a
terminal window on a computer.

The PID-controller was tested using reference jubgisreen 100, 200 and 250 rad/s in

varying sequence. Due to the reference not beiagiavle in MATLAB, it is not displayed
in the plots.

20 25 30 35 40

Figure 1: Plotsfor implemented PID

3 Model Predictive Controller (MPC)
3.1 Basic idea behind MPC

Model Predictive Control — as the name says — aseedel of the system to predict the
systems future states, given some future calculafads. A QP problem is generated, that
when solved will find the optimal control inputsatiwill minimize the difference between
setpoints and system outputs.

The MPC horizon is typically somewhere between 5Gsamples. Even though the optimal
control input is found for all these samples, dsmmon to use only the input calculated for
the current sample, and then solving the QP-prolaiece again for the next sample. This
allows us take into account differences betweemtbdel and the real process.

Initialize static
matrices

l

Update model

[

Generate
QP-problem

|

Perform one

[iteration

Are we done?
1 Yes

QOutput the
solution

l

Wait for
next sample

]

Figure2: MPC state diagram

3.2 MPC problem formulation

The MPC can be formulated either as an LP (lineallpm) or as a QP (quadratic problem).
With both formulations, the objective is to minimia cost function.

Example cost functions for MPC as LP and QP:
Np)) Nu-1)
LP: £ = Y [x(K+ 1) = Xeer (K +)]+ - A+)]
j=1 =0
JNp) 12]N”_l 12
QP: f =) x(K+ j) = Xeer (K+)|+ D_|Au(k +)|
=1 i=0

Here Np and Nu are prediction and control horizaspectively. Clearly, the first part of the
cost function aims to minimize the deviation betweestate and its reference, while the
second part minimizes changes in the control viaidlthere are different ways to set up the
cost function, and one could for instance also miné the use of the control variable, not just
the derivative of it.

A comparison of MPC as LP vs MPC as QP:

Table 1: MPC defined asLP vs QP

Linear Programming Quadratic Programming
Easy to solve Harder to solve.
Possible non-unique solutions Unique solution.
Difficult to tune
Slow action when far away from Much action when far away from
desired state. desired state.
Much action and jumping when close Smooth action when close to
to desired state. desired state.

Due to these differences, Quadratic Programmingésl almost exclusively for solving MPC
problems.

3.3 Formulating MPC as a standardized QP-problem

In a time-discreet system, a model of the systembeadescribed as

x(k +1) = A* x(k) + B* u(k)
x(k+2) = A* x(k +1) + B* u(k +1) = A * x(k) + A* B*u(k) + B* u(k +1)
x(k+3) = A* x(k+2)+ B*u(k +2) = A®* x(k) + A>* B*u(k) + A* B*u(k +1) + B*u(k + 2)

If this is continued, we end up with the following matrix form:

X | |A B 0 - 0] |y

2 ‘. :
o P o BB et
Xien A An_lB An_z B -~ B Ugin1

Or on short form:
%= A* x(K) + B*
We may now generate the standardized QP-problemhvgion this form:
min 05* Z'*Q*z+c *z
Jz<g

Where:
Q=B"*Q,*B+Q,
c= (AT *X(K)" — Xer)* Q.* B

Qx and Qu are the weight matrices for the statdscantrol inputs.

J is a matrix that when multiplied with z will giveture control inputs, and changes to states
due to control input. This is usually a negative ammbsitive identity matrix stacked over
negative and positive B_hat.

g is the boundary matrix, containing minimum andimam control inputs, and minimum
and maximum allowable change to the states, dtleetéuture control inputs. This is usually
some fixed level for the control inputs, while alable change to states due to control inputs
are calculated with a combination of x(k), A_hadl dine chosen boundaries.

z is the 1-D matrix containing the calculated (aptimal) control inputs.

3.4 Solving the QP-problem

There exist many algorithms that solve QP-problesasne of these are:

* Gradient (Steepest descent).
* Interior Point.
» Active-set.

These algorithms are described in detail with psexadie in [1]. Originally none of these are
very efficient, but throughout time there has bdeweloped several subversions of them
which has greatly improved their performance.

When measuring the performance of such an algorithene are usually two criterias. These
are the number of iterations needed for convergandehe computational cost for each
iteration.

When looking at convergence speed vs computatmslit is generally the two last-
mentioned algorithms, interior point and active Heit are mentioned most in the litterature,
and accepted as “better” than steepest descentisTimisst likely due to the fact that steepest
descent often requires very many iterations.

In this implemention a version of the interior-pamethod [2,3] was chosen both due to its
reputation as a fast algorithm and the availiatmftgode.

In [4], it is proposed a modified version of theiee-set method, which is supposedly much
faster than earlier versions, and this should Imsidered a possible candidate for later
implementations.

3.5 Algorithm for “infeasible interior point method "

The code for the infeasible interior point method caughly be written as follows:

0 10 0 O 1 0 0 O 1
Z=(,),T201,0 O’/‘201.0 O,e:%
: 00 -0 00 . O :
0 00 01 00 0 1 1
Hu=1
while(s > f1,,)
{
F=-27T

R=-Qz-J"1-c
R,=-JZ+g-oul'e
AZ=(Q-JT)™ (R-JIJT™R)
A =T7'R,-TAZ
AT =-T+g-J(Z+AZ)
(Z,A,T)=(Z,A,T)+a* (AZ,AN,AT)

_ (1) * 2e

Nc

}

Figure 3: Detailed codefor "infeasible interior point method"

Notice that this algorithm is computationally quebepensive. However, it doesn’t require
very many iterations, and this makes it a good ichate for parallelism as described in
chapter 5.

10

4 Implementation of MPC on FPGA
4.1 Chosen approach

First, the controller was set up in MATLAB, usingusdard MATLAB notation and matrix
operations. The “Quadprog” routine was used to sthleeoptimization problem.

Because there are no libraries for matrix operatmmFPGA’s, the creation of such a library
was considered. However, this turned out to beerattefficient and complex due to the
nature of matrix operations. One would have to aotfor different matrix sizes, their
location in BRAM, all the different operations (aiiloh, multiplication etc), and the fact that
sometimes the transpose of the matrix is used. Té¢wast drawback though, would be the
lack of control, resulting in wasted time cyclesisTtould be for instance if performing
operations with diagonal or triangular matrices.

Because of this, it was decided to simply implenteatmatrix operations as series of (nested)
for-loops, combined with some whiles and ifs, mgkiine FPGA-code rather dirty and large
(the finished code was a slightly more than 1008d). The MATLAB code was converted
into this simplified form, which actually also ireased the performance in MATLAB. The
Quadprog routine was replaced with the interionpaiethod.

This was then implemented on the FPGA, using VHDate\that this gives great possibilities
for debugging on the different levels of abstrattiGomparisons to the Quadprog routine
shows if the chosen QP-solver is working, and campas to the simplified MATLAB code
allows for “finer” debugging.

MATLAB code

!

Simplified
MATLAB code

!

VHDL

Figure 4: Different layersof abstraction for the M PC code

Because MPCs perform a lot of calculations reqgigonod accuracy, and the the fact that the
controller is based on a model of a real systemag chosen to use floating point integers.
The IEEE standard 32-bit floating point integers withitSexponent and 23 bit mantissa were
chosen.

11

4.2 Storing the data

Due to the amount of data involved in an MPC-cdigrdor any huge problem for that
matter) it is not possible to store the data inRR&As registers. For this given
implementation, the Block RAM within the FPGA wased.

To make accessing of the variables as easy as [@ssaich matrix used in the MPC-routine
was given its own slice of the BRAM. Single precrsiloats are 32 bit, so each BRAM slice
would need its own 32-bit data bus. The size oftldress-bus naturally depends on the size
of the matrix. For a matrix of size 30*6, the addréus would be 8 bit. The first 5 bits would
represent the row in the matrix, and the last 8 Wituld be the column. This would allow for
a matrix of size 32*8.

An example of addressing one of the matrices, tékan the implementation:
Q_addr <= conv_std_logic_vector(i, Q_r) & conv_stdjic_vector(j, Q_c);

Here, Q_r is some constant integer saying how mawg the matrix has, and Q_c is the
number of columns. “i” and “j” are iteration varial, iterating over the rows and columns.

This way of storing matrices in the BRAM is very @iiaal, but not very efficient. If the
number of columns and rows is barely more than soomeer of two, one would in the worst
case use almost 4 times more BRAM than necessargverage, one would use almost twice
the needed amount. To avoid this, one could crebateck working as a memory allocator.
However, this would probably mean spending morekctycles for each memory access,
which is much worse than spending extra memory.

Giving each matrix its own slice of the BRAM is @lsrucial when considering the time

needed to access the data during run-time. Sepsiegs allow us to fetch data from each
slice during the same clock cycle.

12

4.3 Testing the MPC implementation

The MPC-algorithm was implemented on the Spartan&ldpment board. This board has
a DAC, which in turn was connected to a NI-DAQ liband fed to the computer through
USB. A simple UART protocoll was used for debuggiagg for entering set-points. This
used the RS-232 port on the development boardwasded to the computer using a RS232-
USB adaper.

To test the MPC, a model of a simple DC motor waslu$his model was running in
simulink, and the FPGA should control it. A DC motmly has two states (current and
rotiational speed), and only one input (voltagelt, $hould clearly be able to demonstrate the
functionality of the controller. The MPC-code wastten on such dynamic form that
expanding the system to contain more states/coottpluts should be just to modify some
global parameters.

The implemented MPC had a prediction horizon ofdfi@es, and a sample time of 50 ms.

The following constraints were put on the system:

Table 2: Constraints on the implemented MPC

Minimum Maximum
Current (A) -10 40
Rotational speed (rad/s) 0 1000
Control input (V) 0 200

13

The system was tested with a sequence of referangesj spinning the motor up and down,
varying the set-point between 100, 200 and 25Graddie actual reference is not included in
the plots though, as this was not a part of tha seSimulink.This led to the following
resulting plots:

Figure5: Plotsfor implemented MPC

As we can see, the controller is fast and efficee¢ping the system within the specified
boundaries and following the set-point very goadthis test all the minimum constraints
were at some point active, and also the maximunstcaint for the current.

14

Zooming in on the voltage, we can clearly see tiatMPC is working with a 50 ms
sampling time:

Figure 6: Zoomed view showing 50ms sampling time

When comparing the result from the MPC versus ibe ®is quite obvious why MPC
should become a more common controller strategpadB#-handling is very much better,
power dissipation in the system is reduced angylstem is generally more stable.

On the downside is the added complexity, meaningeased costs both to develop and

maintain. The largest downside though, is probdidyreduced sampling rates when
compared to for instance the PID-controller.

15

4.4 Clock cycle usage

To identify the time needed to solve the QP-problgmple counters were inserted in the
MPC code.

Table 3: Approximate number of clock cycles needed for MPC in FPGA

Number of iterations needed: 6-15
Number of clock cycles/iteration 100 000
Number of clock cycles needed pr sample 620 000 -
(includes updating model etc) 2 000 000

This shows that 50 ms sampling time, as used irctige on a 50 MHz FPGA, is about as fast
as it can go. Note that this implementation wasveoy optimized in any way. There were
many delays that could have been removed, and bizsreot been put any particular effort
into finding optimal settings for the QP-solver. $means that there is probably a lot to gain
in both number of iterations needed and time paiten. Reduction of more than 20% in total
clock cycles should not be impossible with somekwbut because of extremely long time to
synthesize the code (> 20 min) this was ignored&av.

As table 3 shows, the number of iterations varikg.aVhen the controller is stable and
settled it is much faster than when it needs ta ttut of controlling. This is a little bit
unfortunate though, because it is clearly whermptiogess is far from it's setpoint that we
need to be able to control it quicky. There are ssh\actions to choose from if the controller
should happen to not finish in time:

1. Abort the algorithm, output whatever has been dated so far
2. Abort the algorithm, output the same as last samptetry again
3. Continue the algorithm, leaving the current ouggits. Try to “catch up”.

In this implementation the last point was choseit ass simply the easiest to implement.

Another important issue is how the time usage soalth an increased problem. This can
easily be seen from the loops in the code.

An estimate shows that the algorithm implementediehaunning time o(c,m* +c,n®)The

m®part comes from the fact that a matrix of size (NpNu*Np) has to be inverted, and

there is one calculation where two 2-d matricesnauttiplied with each other. The’ part
basically comes from each time a 2-d matrix is ipligtd with a 1-d matrix. There are a lot of
these multiplications in the used algorithm, tliyss much larger thag).

16

4.5 Resource usage in the FPGA

The FPGA on the Spartan 3E development board isediyfie “xc3s500e”. This is definitely
an FPGA on the smaller end of the scale, and dsisyrobably not the best choice for an
MPC implementation.

Device Utilization Summary
Logic Utilization Used Available Utilization
Mumber of Slice Fip Flops 1.887 9312 20%
Number of 4 input LUTs 8.487 5312 91%
Logic Distribution
Mumber of accupied Slices 4594 4 656 985

Mumber of Slices containing only related logic 4594 4594 100%
Mumber of Slices containing unrelated logic 0 4554 0
Total Number of 4 input LUTs 8.876 5312 95%
Mumber used as logic 8.483
MNumber used as a route-thru 325
Mumber used as Shift registers 4
Mumber of bonded [0Bs
MNumber of bonded 35 232 16%
Number of RAME16s 20 20 100%
Number of BUFGMUXs 3 24 12%

Figure 7: Device Utilization Summary

As figure 6 shows, 98% of the FPGA was used, abagadll the 20 Block RAMs (one block
for each matrix). However, the space needed faviR& implementation does not increase
much with increased problem size (more states,t@nts etc). This means that with a larger
FPGA, even though one also could have a largedgmglone could use the extra space to
add parallellism.

This summary doesn’t specify how many bytes of tRAB! are being used, but counting the
size of the matrices gives us 4336 elements (agldiveations).

4336* 32eI bit " =13875dits. The chip contains 360 kbit BRAM, so there seenriset

some space left over. Of course, most of the nestngll grow quadratically with respect to
the problem size. This is one of the big reasong this specific FPGA is not recommended
for MPC. There are FPGA'’s out there with a lot mBRAM than this one, often several
megabytes.

One trick however, if one has to little BRAM, ootéew multipliers (restricting the number
of BRAM partitions) would be to reuse the same BRA&Veral parts in the program. It
seems that performing arithmetics with simple lolgagls to a lot of temporary matrices
being needed. Once their data has been used, dhesiraply be overwritten by some new
data and used later in the program.

17

5 Improving performance on the FPGA

5.1 Parallelism

The major advantage of FPGAs vs regular microcdletsois the ability to perform several
tasks in parallel. There are several ways thisbeaexploited to achieve better
performance/speed in an MPC implementation.

Using the BRAM on the FPGA gives us some degre&e¢” parallelism, when compared to
typical usage of one external RAM unit. This isduese the BRAM can be divided into
separate RAM parts, with their own address- andhieges. This makes it possible to
retrieve/write data to/from several matrices simudtusly. This can easily reduce the number
of clock cycles needed with 20-25%.

The speed of one algorithmic operation (mainly plittation) is of course important. In the
world of microcontrollers, specifically the AVR $es, this is usually done in 2 clock cycles
as long as we are using the specified amount sf imieéaning 8-bit multiplication for 8-bit
AVRs, 16-bit multiplication for 16-bit AVR etc. Whtthe floating point package in Xilinx,
the user can choose the speed vs area used o\chgrding to the documentation on the
package, doubling the speed almost quadruplestioerat of resources used, meaning that
one could possibly achieve higher throughput bpgisiower arithmetics as this would allow
for many more units, giving us the possibility &riprm a lot of operations in parallel.

For the FPGA used in this project, the xc3s500autiplication device using 2 clock cycles
uses almost 7% of the total number of slices, wdwl@dder uses roughly 2%.

One of the main issues for parallellism is “What && done in parallel?” All QP-solvers are
iterative. These iterations are of course depenalamtach other, and as such will have to be
done sequentially. Therefore the objective shoeltobbmake each iteration as efficient as
possible.

18

5.2 Breaking down matrix operations into parallela ctions

Consider the matrix multiplicatioh = B* C where B and C are of sizes NxM and M
respectively. This operation can be written as:

j=M
— *
A= ZBi,j Cj
j=1
Figure 8: Matrix multiplication

This operation would require N*M multiplicationsaugive us a running time dd(n* m)
when done sequentially.

Now what if we use M multiplicators and adders atcalate each element of A in parallell?
This could clearly scale down the problem with degree, giving us a running time 6{n .)

The same could of course also be done when muttgplyvo 2-d matrices, reducing running
time from O(n®) to O(n?*)

Using this method for the QP-solving algorithm wibbbhve tremendous effects, reducing the
running time of the algorithm frod(c;m® +c,n* tp O(c;m* +c,n)

Most of the matrices in the implementation arearfie size related to Np*Nu, the number of
prediction samples and the number of outputs. Alipten horizon greater than 10 is rarely
needed, and more than 3 outputs would definitelgdied a large problem. This would
translate to 30 multiplicators and adders. Usiniinaetic units at maximum speed, this
would roughly use 3 times the space availiablehenRPGA used in this implementation.
However, using a larger FPGA, and maybe reduciagfeed of the arithmetic units some,
this should be possible to implement.

There is a different problem that arises thoughteNlat all these arithmetic units would
work with the same matrices. This means that theylavall try to access the same memory
at the same time, which would not work. A far-fetdtsolution could be to have the same
amount of copies of all the the matrices as theberrof arithmetic units. This would
however require an enormous amount of memory, laisdasically leaves this method of
parallelism unusable.

19

5.3 Several matrix operations in parallell

Another, more realistic approach to the parallellissue, could be to calculate several parts
of the QP-algorithm in parallell as depicted inufig 7:

M=A*B

Q=M*N

N=C*D

Time

Figure9: Parallell multiplication

If we look at the running time of the implementégioaithm,O(c,m® + c,n*), the main goal of
this approach would be to reduce. Considering that, is already quite small, this should
give some very noticable improvements to the rugime.

In this approach, the same problem could be eneoerhtas in (5.2) if the same matrix is used
is several operations. However in this case ondduoot need nearly as many copies of the
matrices to get around the issue. Also, some peegoce gain could definitely be achieved
without addressing this issue at all, leaving thressequential operations.

By looking at the code for the implemented algaonflone can easily see many matrix
operations that would be suitable for performingamellel, and reductions of running time
could easily be as much as 50-60%. Even more ii©able to cut down the time needed for

the matrix inversion.

20

5.4 Finding an efficient QP-solver

Usually when looking for an efficient QP-solveretbnly criterion is how fast it is. When
trying to utilize the parallelism aspect of the FA&Ganother criterion arises: how
parallelizable it is.

As iterations in the QP-algorithm have to be dogguentially, the number of these should
clearly be kept to a minimum.

Most QP-solvers needs to invert some matrix, argeimeral, inverting an M*M matrix
requires O(M”3) calculations [6]. In this implematibn, the matrix inversion was done using
Gaussian Elimination. Another much used way tofinw&trices is by LU-decomposition,

but this should result in roughly the same amotigatculations needed as the Gaussian
Elimination method.

Note also that O(M”3) is the same number of catmria as is needed when multiplying a
M*M matrix with another M*M matrix.

In [5] it is also conluded that matrix-inversion @aussian Elimination can be done faster by
using parallel processing. However, the paper sises that for an NxN matrix, “we would
like to have parallel transfer capability for n nuens”. This leads us back to the same
problem as in (4.2).

This means that for a QP-solver to be efficienghibuld avoid inverting matrices, and avoid
multiplying two 2-D matrices with each other.

21

6 Conclusions

6.1 Results

It has been shown that implementing MPC on FPGRasible and that there are many things
that influence the achieved speed:

* MPC size, mainly the number of outputs and pregiiciamples
e Choice of QP-solver

« FPGA size

e Choice of speed vs size for arithmetic units

e Choice of integer size

Clearly it's hard to give a presise answer to sgibstions as “how big FPGA is needed for
this or that MPC problem”. However this report sliogive the reader some ideas on both
how to implement MPC on FPGA, and how this can lbeemas efficient as possible.

Specifically the report shows how parallelism canrplemented, and that this can reduce
the running time by a significant factor. It's shothat even though one can use several
arithmetic units, there is a possible bottle necthe way one accesses data from BRAM
which may have to be addressed in some way.

It seems that with todays FPGAs we are quite diloske “barely possible” level when it
comes to MPC and QP-solvers. However, as time lgggsoth the size and speed of FPGAs
are likely to increase a lot, and I'm certain tMRC on FPGA will become quite common in
many industrial applications.

One of the objectives of this thesis was to créatetion blocks for PID and MPC controllers.
Both of these have been created with great sucetss) can be seen by the plots from
MATLAB where the controllers were tested on a siatedl DC motor. These plots clearly
show the difference in result from the two typesatrollers.

6.2 Further studies

As this report has shown, the main problem wheingryo utilize the parallelism aspect of the
FPGA lies in the nature of the QP-solver. Thusdidd be looked into finding a QP-solver
that matches the criterias listed in (5.4).

It would be interresting to see an actual impleragon of MPC using parallelisation, and see
numbers on the actual performance gains comparadgéguential implementation.

22

7 References

[1] Nocedal, J., Wright, SNumerical Optimization. Springer Series in Operations Research.
Springer, 2006.

[2] Wright, S.:Applying New Optimization Algorithms to Model Predictive Control.

[3] Ling, K.V, Yee, S.P., Maciejowski, J.MA FPGA Implementation of Model Predictive
Control. 2006.

[4] Milman, R., Davison, E.JA Fast MPC Algorithm Using Nonfeasible Active-Set Methods.
Springer, 2008.

[5] Pease, M.C Matrix inversion using parallel processing. Journal of the ACM, October
1967

23

8 Appenix

8.1 List of figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Plots for implemented PID ... 5
MPC State diagramccoooo e s e aeaeaes 6
Detailed code for "infeasible interiofqamethod”............cccoooviiiiiiiiiiiiiiiieeene. 10
Different layers of abstraction for théM code..............ooeeeeiiiiiiiiiiiiiiiies 11
Plots for implemented MPC 14
Zoomed view showing 50ms sampling time.............ooovvvvviiiiiiiiiiiieee e, 15
Device Utlization SUMMATYoceemmriiaiieeeeeeee e e 17
MatrixX MUIIPHCALIONceeeeeee e e e e e e e 19
Parallell MUItIPICALION.........oi e 20

8.2 List of tables

Table 1: MPC defined as LP VS QPo e 7
Table 2: Constraints on the implemented MPC oo oeee e 13
Table 3: Approximate number of clock cycles neeldedIPC in FPGA..........ccccoooeeiiiiinnnnn. 16

8.3 Content on CD

This report should be accompanied by a CD contginin

* This report in digital form

* VHDL files for PID regulator with VGA driver
* VHDL files for MPC regulator

 MATLAB code for MPC regulator

» Tutorial: Getting started with VHDL

24

	Title Page
	Problem Description
	

