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Abstract

In this thesis, a closed-loop control algorithm for regulating the blood glucose
concentration in type 1 diabetic patients is developed. Two control criteria are
imposed on the system, namely:

• Avoidance of hypoglycemia. (blood glucose concentrations should always
be above 3mmolL )

• Reduction in the average blood glucose concentration compared to what
is achieved with manual control. (average blood glucose concentrations
should preferably be less than 7.0mmolL ).

The developed control algorithm manages to fulfill both these control criteria.
Hypoglycemia is avoided, and average blood glucose concentrations is reduced
by 20% and 22% to a level of 7.0mmolL and 6.9mmolL in the two test subjects.
However, further experiments should be carried out to test the robustness of
the control algorithm, and a thorough investigation of safety issues for the user
needs to performed.

As a basis for the implementation of closed-loop blood glucose control, data
from three diabetic patients is used to identify the parameters of a proposed
mathematical model of the human insulin-glucose regulatory system. The iden-
tification process reveals that there is large variations between individual pa-
tient’s parameter values, and the difference in insulin sensitivity is found to be
specially high, both between and within patients.
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2 1 Introduction

1 Introduction

1.1 Motivation

Insulin-depentent diabetes mellitus is a chronic metabolic disorder that is char-
acterized by the disability of the body to maintain blood glucose levels within
physiological ranges. Particularly, it is an autoimmune disease in which the beta
cells of the pancreas are destroyed, resulting in the absence of insulin secretion.
Long term complications from diabetes include heart disease, stroke, vascu-
lar disease, blindness, nerve damage, amputation and kidney disease. These
long term complications are resulting in increasing disability, reduced life ex-
pectancy and enormous health costs for virtually every society. The Diabetes
Atlas claims that ”Some 3.8 million men and women worldwide are expected
to die from diabetes in the year 2007. This is more than 6% of total world
mortality” [12].

In 1993 the Diabetes Control and Complications Trial published compelling
evidence that ”intensive therapy with the goal of maintaining blood glucose
concentrations close to the normal range, effectively delays the onset and slows
the progression of diabetic retinopathy1, nephropathy2, and neuropathy3 in
patients with insulin-dependent diabetes mellitus” [8]. The study proved a 50-
70% reduction in the complications of diabetes with near-normalization of blood
glucose concentrations. This result was confirmed by the U.K. Prospective
Diabetes Study [15] in 1998, encouraging the search for ways to implement
tighter blood glucose control in diabetes. One way of achieving this is to create
a closed-loop artificial pancreas. Recent development in the areas of insulin
pumps and continuous blood glucose monitors are introducing the possibility
for a realization of such a diabetes management scheme in relatively near future.

This thesis will focus on the control algorithm, that is a necessary part of a
closed-loop artificial pancreas. If implemented successfully, closed-loop blood
glucose control could improve quality of life for people with type 1 diabetes
mellitus and insulin-dependent type 2 diabetes mellitus. Ideally, one would
be able to keep blood glucose levels close to those of a non-diabetic person,
ensuring less long term medical complications, as well as avoiding hypoglycemic
and hyperglycemic incidents.

1non-inflammatory damage to the retina of the eye
2damage to or disease of the kidney
3deranged function and structure of peripheral motor, sensory, and autonomic neurons
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1.2 Aim of the Study

The aim of this study is to evaluate how well a closed loop control scheme could
perform for type 1 diabetic patients. Research on long-term diabetic complica-
tions conclude that lowering the average blood glucose has a beneficial effect,
and this will be the performance goal of the implemented control algorithm.
However, reducing average blood glucose concentrations comes with the risk of
increasing hypoglycemic incidents, so performance of the control algorithm will
also be closely connected to its ability to avoid hypoglycemia.

A mathematical model of the human glucose homeostasis has been developed
in an earlier project [32]. In this thesis, some of the model parameters will be
identified by the use of measured data obtained during a study of a continuous
blood glucose monitor [25]. The identified parameters will be used to analyze
how constants related to insulin absorption and glucose sensitivity vary between
patients and through time within each individual subject. The results of the
parameter identification will give an indication of to what extent off-line and
online adaptive model parameter estimaion is necessary in closed-loop blood
glucose regulation.

A discussion of safety issues regarding the closed loop glucose control scheme
is also included in this thesis, and much emphasis is put on the importance of
robust and secure control.
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2 Theory

2.1 Diabetes

The Human insulin-glucose homeostasis makes sure that the concentra-
tion of glucose in the blood stream stays at healthy levels at all times.

Two of the hormones secreted in the pancreas, namely insulin and glucagon,
have important functions in the regulation of blood glucose concentration. In-
sulin increases transportation of glucose from the blood into insulin-sensitive
cells. Glucagon mobilizes glucose from stores in the liver into the bloodstream.
Figure 1 illustrates the role of the two hormones in human glucose regulation.

Page 1 of 1
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Figure 1: Insulin and glucose regulation model. The illustration is used with permis-
sion from [19]

In the absence of insulin, the entry of glucose into skeletal, cardiac, smooth
muscle and other tissues is decreased, as shown in figure 2. Intestinal absorption
of glucose is unaffected by insulin, as is glucose uptake by most of the brain
and the red blood cells. When insulin is lacking for a longer period of time,
the muscle and tissue cells will start using fat as energy source, instead of
glucose from the blood stream. Oxidation of the resulting free fatty acids leads
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Figure 2: Plasma glucose homeostasis in insulin deficiency. The heavy arrows indicate
reactions that are accentuated. The red rectangles across arrows indicate
reactions that are blocked. Inspired from figure 19-9 in the textbook ”Re-
view of Medical Physiology” [49]

to production of ketone bodies, that upset the chemical balance of the blood.
This life threatening condition is called diabetic ketoacidosis, and can only be
treated by insulin injections.

Diabetes is recognized as a group of heterogeneous disorders with the com-
mon elements of high blood glucose concentration and glucose intolerance, due
to insulin deficiency, impaired effectiveness of insulin action, or both [3]. The
most common types of diabetes are diabetes mellitus type 1, sometimes referred
to as insulin-dependent diabetes, and diabetes mellitus type 2, which does not
necessarily require insulin injections. Type 2 constitutes about 85 to 95% of the
approximately 246 million people worldwide with diabetes [12]. The number of
type 1 diabetics is estimated to be 10− 20 million worldwide [2].

Insulin is a hormone needed to enable glucose to enter the cells in the body
in order to provide energy. In response to high levels of glucose in the blood, the
beta cells in the pancreas secrete insulin. Type 1 diabetes occurs when these
beta cells are destroyed by the body’s own immune system [50].
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Untreated T1DM (Type 1 diabetes mellitus) will cause the fasting plasma glu-
cose concentration to be permanently above 7 mmol

L , a state called hyper-
glycemia [50]. The blood glucose levels in diabetes can be a lot higher than
the hyperglycemic limit, but concentrations of more than 10 − 20mmolL

4 will
normally cause symptoms such as nausia, excessive thirst, excessive urination
and fatigue. Concentrations above 30mmolL usually require medical treatment
and may be accompanied by diabetic ketoacidosis5. As mentioned in section
1, high average glucose concentration is believed to be an important factor in
development of the long-term complications of diabetes.

Hypoglycemia is a complication that indirectly occurs from T1DM. This is
an accute and life threatening condition, where the blood glucose concentration
is too low (less than 2.0mmolL [9]). This occurs in diabetic patients if the amount
of injected insulin is too high compared to the the blood glucose concentration.
Incidents of hypoglycemia is quite common for many diabetics, and is very
dangerous if it is not rapidly treated with glucose intake. Since glucose is the
predominant metabolic fuel for the brain, and the brain can not syntesize or
store glucose, this fuel must be provided from the blood circulation. Thus, the
prevention or correction of hypoglycemia is critical to survival [9].

A normal blood glucose level is set by the WHO to be a fasting plasma
glucose concentration of less than 6.1mmolL [50]. One should take special notice
of the fact that blood glucose values below 2.0mmolL is an accute and deadly
condition, whereas concentrations up to 20mmolL can be experienced without
discomfort, at least for shorter periods of time. This results in a tight bound on
the blood glucose concentration downwards, but some deviation can be tolerated
for higher than normal blood glucose levels.

The disturbance of meal intake introduces large challenges to automatic
blood glucose control. In normal functioning human glucose regulation, in-
creased blood glucose concentration after a meal is stimulus for prompt release
of insulin from the pancreas. The relatively large time constants involved in ex-
ternal blood glucose measurement and insulin injection6, makes a response close
to the normal-functioning one hard to achieve in automatic diabetic treatment.
Complicating matters further is the fact that the composition of food affects
intestinal absorption rates. Glucose from some foods is absorbed more rapidly
than the same amount of glucose in other foods. Also, fats and proteins cause
delays in absorption of glucose from carbohydrates eaten at the same time [13].
In addition to this, physical exercise affects the blood glucose regulation by

4the value differs for each individual
5A severe condition caused by lack of insulin. When the cells in the body cannot use glucose

for fuel, the body breaks down fat for energy instead. A by-product of fat breakdown, is a
chemical called ketones, which appear in the blood and urine, causing the blood to become
more acidic than normal [21].

6See section 2.2
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reducing the need for insulin during-, and for quite a long time after, work-out.
This is partly because working muscle has the ability to absorb some glucose
without the help of insulin. Other factors that are even harder to measure,
such as stress, physical illness and many more, are involved in the blood glu-
cose regulation process, making accurate models, prediction of parameters and
satisfactory closed-loop control hard to achieve.

Figure 3: How blood glucose is affected by external factors.

Today’s glucose control schemes for diabetic treatment involve non-continuous
blood glucose measurements by taking blood samples7. This is done several
times a day, usually by the patients themselves. Insulin is then injected through
needles or insulin pumps. The size of the injections are based on the blood
glucose measurements, knowledge about food intake and to a large part on
the personal experience of the individual diabetic [5]. The metabolism of a
non-diabetic person normally keeps blood glucose levels within the range of 4
to 8mmolL at all times. For insulin-dependent diabetes therapy to capture the
insulin-glucose dynamics of a healthy person, Takahashi [47] claims that ”the
designed algorithms and mathematical representations need to be complex and
nonlinearly modeled in order to resemble the real hormone secretion”. An at-
tempt to identify such a mathematical representation will be made in section 3
of this thesis.

7Hereby referred to as ”fingerprick measurement” because the glucose test is normally
performed by piercing the skin (typically, on the finger tip) to draw blood, then placing the
blood on a chemically active disposable strip which indicates the result either by changing the
colour or an electrical characteristic (if an electric meter is used).



8 2 Theory

2.2 Equipment

Three components are essential for the implementation of a closed-loop artificial
pancreas: an insulin injection device, a blood glucose sonsor and a control
algorithm. This section gives a brief introduction to each of the three.

2.2.1 The Insulin Pump

Insulin pumps allow continuous subcutaneous infusion of insulin 24 hours a day
at preset levels, and the ability to program bolus doses of insulin as needed
at meal times. Subcutaneous injection is considered the safest way to infuse
insulin to the body, because it is relatively simple and the risk of infection at
the injection site is smaller than with an intravenous route [47]. Intravenous
injection would, however, have been more optimal from a control technical point
of view, because the time delays are smaller here. The study of [22] found the
lag from subcutaneous injection to insulin concentrations in blood plasma to
vary between 8− 24 minutes.

Figure 4: The MiniMed insulin pump from Medtronic. Insulin is injected through
the syringe. A basal insulin infusion amount can be preprogrammed by the
user, in addition to bolus doses before meals. The picture is taken from [?
].

There are several insulin pumps on the market today. Most of them are powered
by batteries and consist of a small processing module with a display, a dispos-
able insulin reservoir and an insulin syringe. In a closed-loop control scheme,
the amount of insulin supplied from the pump would be set automatically, de-
pending on blood glucose measurements and the control algorithm.
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2.2.2 The Glucose Monitor

Subcutaneous glucose sensors are small electrode devices that can be inserted
into the skin in the fatty tissues. When the sensors are placed correctly, a
current proportional to the concentration of glucose in interstitial fluid can be
detected [47]. An important advantage of subcutaneous glucose sensors over
traditional fingerprick blood glucose measurement, is that monitoring can be
performed continuously in a wearable fashion. Disadvantages of this measure-
ment scheme include [7]:

• Continuous systems must be calibrated with a traditional blood glucose
measurement, requiring a fingerprick blood measurement 2 to 4 times per
day.

• Glucose levels in interstitial fluid, where the sensor is placed, lag tempo-
rally behind blood glucose values by a value of 5− 15 min.

• Depending on the glucose monitor model, the sensor has to be changed
every 3 to 7 days.

• The accuracy of the measurements is variable and very much dependent
on the calibration.

• Today’s sensors are expensive.

R Hovorka states in [17](2005) that ”The glucose monitor remains the main
limiting factor in the development of a commercially viable closed-loop system,
as presently available monitors fail to demonstrate satisfactory characteristics
in terms of reliability and/or accuracy”. Hopefully, this will be improved in the
future, providing better and more reliable continuous blood glucose monitors
than what is on the market today.

Figure 5: Combined continious glucose monitor and insulin pump from Medtronic.
The sensor (located on the upper white device in the picture) is placed in the
subcutaneous tissue, and measurement signals are transmitted wirelessly to
the monitor.
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2.2.3 The Control Algorithm

To be able to close the loop, and thus make the control scheme an automatic
one, a set of decision rules for the insulin injection based on the measured
glucose concentration is required. Several attempts have been made to design
such a control algorithm using the theories of MPC, H-infinity, PID control
and Fuzzy logic among others 8. Some aspects of the human glucose regulation
and todays available diabetes treatment equipment makes automatic control
particularily challenging. These elements are identified as:

• Time delay. Since both insulin delivery and glucose measurement is
done in the subcutaneous tissue, the controller would have to deal with
time delays for the injected insulin to take effect and for the correct blood
glucose value to be measured. Making things even more complicated,
these time constants vary for each individual and also depends greatly on
the blood glucose value and its rate of change.

• Saturated input. The system model is set to have two inputs: delivered
insulin and meal intake. Insulin decreases blood glucose concentrations
and meal intake increases them. But of the two inputs, only insulin injec-
tions are controlled by the algorithm, removing the posibility for agressive
control action when blood glucose is too low. This could lead to dangerous
incidents of hypoglycemia. Glucagon injection has been proposed as a so-
lution to this problem [23], but has not yet been successfully implemented
in human closed-loop glucose regulation.

• Feed forward. To reproduce the insulin secretion of the human glucose
regulation, bolus injections of insulin would have to be administered before
meals. This requires interference by the user, to let the controller know
that a meal will be eaten some 10-20 minutes in advance. An assessment
will have to be done on how detailed the meal information should be,
considering control performance versus simplicity of use.

• Safety issues. Introducing automatic control to a process in the human
body requires heavy focus on safety. A fatal outcome must be avoided by
all means, and security alarms must be able to detect any critical state
or event.

8See [46], [42], [43], [39] and [6].



2 Theory 11

Measured glucose
Insulin input

Knowledge about 
future meal intake

Feed forward

Figure 6: Illustration of the control algorithm.

2.3 The Mathematical Model

The model used in this thesis is an expanded version of the minimal model
developed by Bergman [38]. For a detailed description of the exposition of the
model, the reader is refered to [32]. The elements that added to the original
minimal model equations are:

• The effect of meal intake Eg
-Describes how different composition of meals affects blood glucose con-
centrations.

• Hepatic balance Eb
-Describses how the liver both produces and utilizes glucose depending on
the blood glucose and insulin levels.

• Renal clearance Er
-Describes how glucose is excreted through urine at high blood glucose
levels.

• Subcutaneous compartment in insulin injection S
-Describes the time delay from subcutaneous insulin to blood insulin con-
centration.

• Subcutaneous compartment in glucose measurement Y
-Describes the time delay from blood glucose to measured subcutaneous
glucose concentration.

The model equations are given as:
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dI(t)
dt

=
1
Txi

[−I(t) +Ki · S(t)] (1)

dX(t)
dt

=
1
Tm

[−X(t) + I(t)] (2)

dS(t)
dt

=
1
Ti

[−S(t) + U(t)] (3)

dG(t)
dt

= −G(t)
TY G

+
Y (t)
TGY

+
1
VG

[Eg(t) + Eb(t)]− Er(t) (4)

dY (t)
dt

= KY G[
G(t)
TY G

− Y (t)
TGY

]−KisX(t)Y (t) (5)

As one can see from the equations above, the model includes an insulin kinet-
ics subsystem (equation 1 - 3), featuring a third order, linear, compartmental
model, and a glucose kinetics subsystem (equation 4 - 5), consisting of a second
order, nonlinear, compartmental model. A simulink diagram representation of
the model is given in figure 7.

The physical interpretation of the model parameters are given in table 1 and
some are described mathematically in equation 6 - 12 below. For information
about the numerical coefficients of the equations the reader is referred to sections
3.5 and 3.6.
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Figure 7: Model structure
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Eb = Qr −Qc (6)

Erel =
14
I
− 0.17 (7)

Qr =


0.88 ifErel > 0.88
Erel if0.88 ≥ Erel ≥ 0
0 else

(8)

Qg =
{

0.061 ·G− 0.25 if0.061 ·G− 0.25 ≥ 0.23
0.23 else

(9)

Qc = 0.25 · Eg +Qg (10)

Em = 0.117(0.87 + tanh 0.0045(G− 175)) (11)

Er =
{
Em ifEm ≥ 0
0 else

(12)
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Table 1: Model parameters

Parameter Unit Description

U(t) mU
min Rate of insulin subutaneous infusion, input

S(t) mU
min Insulin flow from the subcutaneous

to the plasma compartment

I(t) mU
mL Blood plasma insulin concentration

X(t) mU
mL Insulin-excitable tissue glucose activity

G(t) mmol
L Blood plasma glucose concentration

Y (t) mmol
L Subcutaneous glucose concentration, output

Ti min Time constant of insulin diffusion
in the subcutaneous compartment

Tm min Time constant of insulin in the remote compartment
Txi min Time constant of insulin in the plasma compartment

Ki
mL
min Constant related to the plasma insulin distribution volume

TGY min Time constant of glucose diffusion
from interstitial to blood compartment

TY G min Time constant of glucose diffusion
from blood to interstitial compartment

Kis

mL
mU

min Sensitivity coeffisient
in the insulin-dependent glucose metabolism

Eg(t) mmol
min Rate of exogenous glucose input in blood (intestinal absorption)

Fs − Starch fraction in the total meal carbohydrate amount
Fm − Fraction of mixed meal in the starch absorption model

Ri
mmol
min Rate of carbohydrate ingestion during meals

Ag
mmol
min Rate of glucose apperance in blood from sugar

As
mmol
min Rate of glucose apperance in blood from fast absorption starch

Am
mmol
min Rate of glucose apperance in blood from slow absorption starch

Eb
mmol
min Rate of endogenous glucose input in blood from hepatic balance

Qr
mmol
min Rate of hepatic glucose release

Qc
mmol
min Rate of hepatic glucose uptake

Erel
mmol
min Auxiliary variable in the hepatic release description

Qg
mmol
min Auxiliary variable in the hepatic uptake description

Er
mmol
min Rate of renal glucose clearance

Em § mmol
min Auxiliary variable in the renal clearance description



3 System Identification 15

3 System Identification

3.1 Collected Data

Throughout the work on this thesis, an attempt has been made to identify
the parameters of the model described in section 2.3. To achieve this, data
from 4 type 1 diabetics was collected during a time period of 4 days. The
patients were wearing the Guardian REAL-Time, Medtronic Minimed glucose
sensor, and insulin was injected through insulin pumps. Each of the patients
kept a meal diary, where the time and content of every meal was written down.
Information about physical activity, exercise and extraordinary events was also
recorded. The meal diary sheets are included as attached files. For further
details on the execution of the study, the reader is referred to the report of
medical student Line Langeland [25].

Information about measured blood glucose and infused insulin was transferred
to excel sheets by use of the Medtronic software ”Carelink” [30]. The dietary
accounting software ”Mat p̊a data 5.0” [29] was used to find the parameters
connected to each specific meal; the rate of carbohydrate ingestion Ri, the frac-
tion of slow acting starch Fm and the fraction of fast acting starch Fs. This
information was punched into an excel sheet together with information about
measured blood glucose values and amount of injected insulin. The result-
ing sheets are given in the attached files Data patient1.xls, Data patient2.xls,
Data patient3.xls.

Due to the time comsuming task of identifying parameters for every meal and
the poor quality of some of the measurement data, some of the collected data
was not analysed to the full extent in this thesis. The three data sets that
contained the longest continuous measurement time series and the most com-
plete meal diaries, were chosen to be analyzed, and the patients whose data
were used are hereby referred to as patient 1, 2 and 3. The included data of
patient 3 is based on data collected throughout two days, -that is only half the
time series of patient 1 and 2. The data obtained from patient 3 is also less
complete than the other two data sets, because of a longer time period in which
the glucose sensor did not function correctly. It was chosen to include patient
3 in the report, but because the data is insufficient, the main discussion of this
thesis will focus on the results of patient 1 and 2.

The collected data was used to estimate the patient specific model parameters
using the System Identification Toolbox in MATLAB. Some theory on the sys-
tem identification method used is given in section 3.2, and the following sections
will give a description of the specific model identification done in this thesis.
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3.2 Gray box modeling

According to Ljung [26], the construction of a model from data involves three
basic entities:

• A data set ZN . In this experiment blood glucose measurements, records
of insulin infusion and meal diaries from the three test subjects.

• A set of candidate models. In this experiment, the model described in
section 2.3, with four of its parameters set as unknown.

• A rule by which candidate models can be assessed using the data. In this
experiment the nonlinear least squares selection rule was implemented, by
use of the System Identification Toolbox in MATLAB.

Model equations 1 - 5, section 2.3, are developed based on physical laws and
experimental results through the theoretical work and experiments of several
researchers. All though the model equations are set to be fixed in time, some of
the model parameters are expected to vary within different people and at differ-
ent times. Such model sets, where the equations have a physical interpretation
and a set of adjustable parameters, are called gray box models.

The essence of gray box modeling is that the structure of a system is assumed
known, but that some of the parameter values need to be identified. An illustra-
tion of the general idea can be seen in figure 8. The matlab code for the system
identification used in this thesis is given in the attached identify.m-files.

 

Model with known structure: 
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Figure 8: Gray box modeling. The known input and output data are used to find the
optimal parameters of the model. In this thesis, this is done by minimizing
the difference between measured values and model output, using a nonlinear
least squares algorithm.
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Open-loop identification An important factor for estimating model param-
eters is the informativeness of an experiment, meaning how much information
about the system a data set contains. This issue will be addressed for the spe-
cific experiment of this thesis in section 3.5. Theorem 13.1 in [26] states that an
input signal must be persistently exciting of the same order as the model, for
an experiment to be informative enough. This theorem is valid for open-loop
systems. When a satisfactory informativeness of the data set is established and
a candidate model structure is found, it is time to start the actual parameter
identification. A rule for estimating the parameters of the model with the goal
of reproducing the measured data must be introduced. There are many differ-
ent ways of organizing such a search and also different views of what one should
search for. One view is set by Ljung [26] to be: A good model is one that
produces small prediction errors when applied to the observed data. Identifi-
cation methods based on this criteria are called prediction-error identification
methods. A special case of these methods, namely the least squares method
shown in equation 13, will be used in this thesis.

θLSN = argmin
1
N

N∑
t=1

1
2

[Y (t)− φ(t)θ]2 (13)

The identified parameter set θLS is the one that minimizes the prediction error
ε = Y (t)−φ(t)θ. This adaptive estimation algorithm is chosen because it is easy
to understand and implement, it is robust and has good convergence properties
[20]. Performance is evaluated by comparing the resulting identified model to
the measured data.

Open loop parameter identification using the method above is done for three of
the model parameters in section 3.5.

Persistently exciting signals A signal being persistently exciting with re-
spect to a model set means that the signal contains sufficiently many distinct
frequencies to uniquely identify any two different models in the set. More specif-
ically, an input signal u(t) is PE of order n if its power specter φu(ω) is different
from zero in at least n points. The PE properties for this specific experiment
will be illustrated in figure 12a.

Closed loop identification Some fallacies are associated with closed loop
identification, which is done for one of the model parameters in section 3.6 of
this thesis. The basic problem of identification with closed loop data is that
it typically contains less information about the open loop system, since an
important purpose of feedback is to make the closed loop system less sensitive
to changes in the open loop system.

One challenge is that the closed loop experiment may be non-informative even if
the input u in itself is persistently exciting. For closed loop systems, we instead
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introduce the criteria from theorem 13.2 [26]: The closed loop experiment is
informative if and only if the reference r is persistently exciting.

A directly applied prediction error method will work well for closed loop sys-
tems if the true system can be described within the chosen model structure.
Therefore, the identified model will give consistent estimates for closed loop
data only if both the noise and dynamics model describes the true system well.
The only modeled noise in the experiment of this thesis is meal intake. If any
other noise or disturbances were to be present, convergence to the true model
set is not guaranteed.

Model validation The testing of whether a given model is appropriate is
called model validation. The quality of the estimated model in this thesis is
measured by a mean-square error criterion, by comparing the estimated output
to the measured one. An analysis of whether the model performs satisfactory
for its intended purpose of regulator design will be carried out in section 6.1.

3.3 Performance of the original model

Before starting the parameter estimation process, let’s take a closer look at the
performance of the model with its original parameters. The real input values of
patient 1 were set as input to the theoretical model, and a comparison between
the model output and the measured values of the patient was done. This gives
an indication of how realistic the model structure is, and the result is given in
figure 9.

As one can see from the figure, the performance of the original model is not
satisfactory. Several aspects contribute to this, and some of the most significant
error factors are:

• Time of meal. There is reason to believe that some of the patients have
used approximate values for the time of some of the meals written in the
meal diary. This would result in the model graph being moved to the
right or left compared to the measured data.

• Insulin sensitivity. The body’s ability to respond to insulin in the blood
plasma changes over time. This means that the same amount of insulin
will give a lesser or larger effect depending on the time it is injected. A
constant set of model parameters will not be able to describe this change
in insulin sensitivity, and insulin response will sometimes be under- or
overestimated.

• Meal model accuracy. The calculated amount of carbohydrates in each
meal is based on the patient eating ”standard sized” meals. Obviously, a
piece of bread is not necessary exactly 30g as the ”Mat P̊a Data” - software
claims. Wrong calculations of meal sizes and carbohydrate content will
introduce errors in the estimated meal contribution on blood glucose.
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Figure 9: Comparison between the measured blood glucose and the model output
with input from one specific patient and a fixed model parameter set ob-
tained from [32].
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• Measurement error. The continuous glucose sensors on the market
today are not perfect, and all the patients in the test group had time
intervals where the measurements failed, or were far out of range when
calibrated. Earlier studies have shown [4] that the sensor is function-
ing best when blood glucose values are in the normal and hyperglycemic
range, giving larger deviations when hypoglycemia occurs.

• Active glucose/insulin at initial time. Due to time delays in the
intestinal meal absorption and subcutaneous insulin absorption processes,
insulin and glucose that are not accounted for will be present at initial
time. It is therefor impossible to get a good parameter prediction at the
beginning of the model identification.

Most notisable when looking at figure 9 is the effect of increased insulin sen-
sivity after exercise. The patient whose data is shown in the figure went cross
country skiing for two hours after approximately 2560 minutes of the experi-
ment period had passed. One sees that the following days (from approximately
t = 3000 min and throughout the experiment period), less insulin is needed to
keep blood glucose values in the normal range, even after intake of large meals.
The theoretical model, however, does not take this increased insulin sensitiv-
ity into consideration, and the model output becomes as high as 65mmolL (at
t = 4100 min), and has an average value of 14.7mmolL more than the real out-
put throughout the post-exercise time period. To be able to deal with this
element, the model parameters that describe insulin sensitivity would need to
be estimated and updated in real time.

The online identification of insulin sensitivity will be handled in section 3.6, but
no specific measure will be taken to eliminate the other error factors described
above. This means that the identified model will contain uncertainties, and it
is not expected to reproduce the exact course of real life diabetic blood glucose
concentrations.

3.4 Model identification

To successfully use the model in feedback control, some of the model param-
eters need to be identified to achieve personalization to each single patient’s
requirements, and to follow changes in the patient’s physiological responses
over time. In normal glucose regulation, two biological variables of interest
are easily accessible; namely blood glucose concentrations G(t) and plasma in-
sulin concentrations I(t). When closing the loop outside the body, evaluation
of insulin concentration requires lengthy laboratory analysis, which makes it
unsuitable for feedback control. Therefore, control action must be performed
on the basis of measured glucose values Y (t) only.

Another limitation is the time required for online model identification, which
increases with the number of parameters to be identified. This number should
therefore be as low as possible, while still keeping the personalization of the
model at a satisfactory level. The following two sections will explain the choices
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Table 2: Parameters to be estimated

Parameter Description
Txi Time constant of insulin diffusion in the plasma compartment
Tm Time constant of insulin diffusion in the remote compartment
Ki Constant related to the plasma insulin distribution volume
Kis Sensitivity coeffisient in the insulin-dependent glucose metabolism

that have been made in the process towards making the model an easily iden-
tifiable one. Table 2 lists the four parameters that will be estimated for each
patient in this thesis. Section 3.5 describes the off-line identification of the three
parameters connected to the absorption of insulin in interstitial tissue, and sec-
tion 3.6 gives a description of the online estimation of the insulin sensitivity
parameter Kis. An analysis of the obtained parameters is done in section 3.7
and two criteria for model validation is given in section 3.8.

3.5 Insulin submodel - open loop identification

The insulin submodel consists of the subcutaneous, blood plasma and remote
compartments. It is modeled to describe the delay of the insulin concentration
from it is injected subcutaneously S(t) until it reaches the blood I(t), and
after that is transported out to the cells and peripheral tissue X(t). The time
constant related to insulin diffusion in the subcutaneous compartment Ti is
obtained from litterature, and depends on the insulin type.
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Figure 10: Insulin kinetics

The parameters that will be estimated here are the time constants Txi and Tm,
related to insulin diffusion in the plasma and remote compartment, respectively,
and the constant Ki, related to the plasma insulin distribution volume. The
estimation is done in an off-line manner before closed-loop control is introduced.
To be able to uniquely identify these parameters, the input has to be a percis-
tently exciting signal. This means that the signal going into the system has to
envoke a signal on the output that is rich enough for the parameter estimates
to converge to their true values [26]. For each patient, a relatively short data
time series right after a meal intake and its corresponding insulin boluses was
used to identify the insulin submodel parameters. The time series that was
used for estimation of the parameters in patient 1 is shown in figure 11, and
the frequency spectra of the input signals are shown in figure 12.
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Figure 11: Inputs and output for the insulin submodel parameter estimation shown
for patient 1.
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Figure 12: Frequency specter for the insulin submodel parameter identification input
data series of patient 1.
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Table 3: Estimated insulin submodel parameter values.

Parameter Patient 1 Patient 2 Patient 3
Txi[min] 108.6 115.8 106.0
Tm[min] 147.0 133.9 149.4
Ki[ mLmin ] 0.0202 0.0233 0.3997

Figure 12a confirms that the input signal used in identifying the insulin sub-
model parameters is persistently exciting, since the power specter is non-zero
for all frequencies. This is often the case for real life input signals, as they tend
to contain several frequency components.

During the off-line insulin submodel parameter identification of this section, the
parameter Kis, which is to be estimated online during blood glucose control, is
set to a constant value. Its value is chosen as the average result of estimated
Kis from the experiments of [33].

3.5.1 Off-line estimation results

The estimated insulin parameters for each of the patients are given in table
3. The result of the model identification for the data set time series used
is illustrated in figure 13. A model fit of 65.77% is achieved. Matlab code
for the insulin submodel parameter identification is given in the attached file
identify insulin parameters.m.
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Figure 13: Comparison between the measured blood glucose and the model output
with estimated insulin parameters for patient 1 during the time series used
for the off-line identification.
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Figure 14: Comparison between the measured blood glucose and the model output
with estimated insulin parameters during the total experiment period for
patient 1.

Figure 14 compares measured data with the model output for the whole ex-
periment period of patient 1. It illustrates how the time constants are now
more accurate than they were when insulin submodel parameters were set to
non-personalized values, see figure 9. However, the insulin sensitivity parame-
ter is still not adequately identified, as can be observed from the mismatch in
estimated and measured amplitude of blood glucose concentrations.

For the rest of the work done in this thesis, the insulin submodel parameters
are set to the estimated values found in this section for each individual patient.

3.6 Glucose submodel - closed loop identification

The glucose submodel consists of the blood plasma and subcutaneous compart-
ment. This is because the glucose monitor measures glucose concentrations in
the subcutaneous compartment Y (t), even though this value lags some time
behind the actual blood glucose concentration G(t). Meal glucose contribution
Eg(t) is set as an input to the system, even though it, for the purpose of this
analysis, is to be considered as a measured disturbance.
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Figure 15: Glucose kinetics

Table 4: Preset parameter values

Parameter Value Description
Ti[min] 9.12 Time constant of insulin diffusion

in the subcutaneous compartment
VG[L] 9.91 Distribution volume

of the blood glucose compartment
KY G[−] 0.95 Rate between the distribution volumes

of interstitial and blood compartment
TY G[min] 11.64 Time constant of glucose diffusion

from blood to interstitial compartment
TGY [min] 11.64 Time constant of glucose diffusion

from interstitial to blood compartment

The values of VG, KY G, TY G and TGY are obtained from litterature, and set to
the values obtained by Fabietti et al in[33]. The parameter values are given in
table 4. The numerical coefficients of the renal clearance and hepatic balance
equations are taken from [33], where they have been chosen as to reproduce the
biological effects that have been shown in several other studies [35], [10], [36],
[28], [40].

The value of Kis, which is related to insulin sensitivity of the individual subject,
is chosen to be estimated online. Kis is a coefficient that describes how much
insulin that is needed to reduce the blood glucose concentration by a certain
amount, see equation 5, section 2.3. This parameter varies a lot from individual
to individual, and also changes within the individual through time, due to
changes in exercise level, stress and other factors. For this reason, Kis needs to
be identified online during automatic blood glucose control.
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Table 5: Estimated insulin sensivity parameter Kis · 10−4.

Subject Day 1 Day 2 Day 3 Day 4 Average Whole period
Patient 1 14.0 5.3 41.0 25.0 21.0 22
Patient 2 1.2 0.4 7.8 4.1 3.37 0.62
Patient 3 1.7 0.6 − − 1.15 7.8

3.6.1 Day by day estimates

To illustrate why online estimates of Kis is a necessity, parameter estimation
of the insulin sensitivity coeffisient was done seperately for the four experiment
days in all the patients. The parameter values of the insulin submodel were
set to the ones that were found in the offline estimation in section 3.5 for each
individual. Table 5 shows the result of the day by day parameter estimation
for each patient. The identified values of Kis demonstrates large variations in
insulin sensitivity, both within and between subjects. Patient 1 has a insulin
sensitivity value that is a lot higher than patient 2 and 3 in general. Also, the
parameter of patient 1 varies a lot over time, while patient 2 and 3 both have
a more narrow range of insulin sensitivity.

3.6.2 Online estimation results

By looking at figure 9, where measured and model estimated blood glucose is
compared, one gets an impression of how fast and to what extent insulin sen-
sitivity is able to change. The information in figure 9 suggests that the insulin
sensitivity parameter needs to be identified on the basis of data reaching no
longer than 4 hours back in time, since measurements going further back than
this contain little information about the present sensitivity towards insulin.
However, it is also important that the estimation interval is above a certain
length, due to the possibility of measurement errors and other uncertainties in
the model. For this reason, the online parameter estimation was performed by
considering data from the past 3.5 hours and updated every 25 minutes. MAT-
LAB code for the identification is given in the attached file identify online.m.
For an illustration of how Kis is found to change through time in each subject,
the time course of the identified parameter for all three patients is given in
figure 16. One sees that the insulin sensitivity of patient 1 is identified to be
higher than normal after approximately 3400 min, as was suggested to happen
in section 3.3 as a reaction to the patient’s exercise. The reader should be aware
of the different resolutions on the y-axes, and thereby see that patient 1 has the
highest insulin sensitivity, followed by patient 2. Patient 3 is found to have the
lowest insulin sensitivity, and also the least varying one. The peak value right
after t = 4000 min for patient 2 is due to what seems to be an erroneous entry
in the meal diary, see appendix Appendix A.1. The collected data sets are used
in their original form through all of this thesis, but it should be noted that
some of the results, like this one identified high insulin sensitivity for patient 2,
suggests that some of the obtained data is incorrect or inaccurate.
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Figure 16: The time course of the estimated Kis with online parameter estimation
using data from the past 3.5 hours.
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Table 6: Some properties of the identified Kis. Values are given in Kis · 10−4.

Subject Average Maximum Minimum Range
Patient 1 111 1105 1.4 1104
Patient 2 40 470 1.0 469
Patient 3 12 385 0.1 385
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Figure 17: Measured value and model output blood glucose concentration for patient
1 with online estimated Kis. The red line represents measured blood
glucose, and the blue line represents the model output.

Some properties of the identified parameter Kis for the three patients are given
in table 6.

When applying the online estimated Kis for patient 1 to the model, the curve fit
shown in figure 17 was achieved. This is the best model identification achieved
in the work of this thesis, all though it is clear by looking at the figure that the
blood glucose concentration is not well estimated at all times. An important
observation, which is to be used in the model validation process in section 3.8,
is the fact that the model at no time is found to overestimate the blood glucose
concentration. Issues regarding performance of this identified model when it
comes to its ability to be used in closed-loop glucose control are discussed in
section 6.1.
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3.7 Analysis of the Identified Parameters

The identified parameters that will be discussed in this section are listed in
table 3 and table 7 in the previous sections 3.5.1 and 3.6.2.

3.7.1 Parameter variability between patients

In this study, it will be difficult to draw any conclusions on parameter variability
between subjects, because only three subjects are analysed. What will be done,
is to provide a brief overview and some comments on the parameter variation
between patients and how this will affect closed-loop control.

For the insulin submodel parameter set, there is a quite significant difference
between each subjects parameters. Patient 2 has a value of Txi that is 5.9%
higher than patient 1, but Tm is 8.9% lower for patient 2 than for patient
1. This means that the overall time delay from subcutaneous injection until
insulin reaches the remote compartment is approxematly the same for the two
subjects. But patient 1 will have a faster uptake from subcutaneous tissue in
to the blood plasma, and an equivalently slower transportation of insulin to the
cells and peripheral tissue, according to the identified parameters. The value of
Ki is 15.3% higher for patient 2 than for patient 1. Patient 1 and 3 have quite
similar parameter values for Txi and Tm, but the plasma insulin distribution
volume parameter Ki is identified to be as much as 20 times larger for patient 3
than for the other two patients. Ki is related to the plasma insulin distribution
volume, and a high value here must be seen in relation to the low estimate of
insulin sensitivity for patient 3, as these parameters will have a balancing effect
on each other.

The difference in average insulin sensitivity between the subjects in this study
is high, that is for example almost three times higher in patient 1 than in
patient 2 and as much 9.25 times higher in patient 1 than in patient 3. The low
estimated insulin sensitivity of patient 3 could to some extent be explained by
the high estimate of the same patient’s insulin distribution volume parameter.
But even when this is adjusted for, insulin sensitivity of patient 3 is still found
to be lower than for patient 1. The range of the parameter value is also a lot
larger for patient 1 than for patient 2 and 3. This means that change in insulin
sensitivity will have a larger impact in blood glucose control for patient 1 than
the other two patients.

One conclusion can be made based on the otherwise insufficient analysis of
this section: Parameter values need to be identified and personalized for each
individual diabetic patient. With such large variation between each patient’s
parameters as is shown in the experiments of this thesis, it is obvious that a
general model cannot produce satisfactory results for different individuals.
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Table 7: Statistical properties of the identified Kis. Numbers are given as Kis · 10−3

Parameter Patient 1 Patient 2 Patient 3
Kis 111± 154 40± 71 12± 45

3.7.2 Parameter variability within each patient

The parameters of the insulin submodel were estimated off-line, so any changes
in these parameters in time are not reflected in the model identification process
of this thesis. Thus, no analysis of the insulin submodel parameters is done in
this section. The only time-varying identified parameter is the insulin sensitivity
coefficient Kis. Table 7 lists some statistical properties of the identified Kis for
each patient. In all the three cases, the standard deviation of the identified
parameter has a higher value than the estimate. This suggests that parameter
variability is high.
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18a: Histogram of estimated values of Kis for
patient 1.
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18b: Histogram of estimated values of Kis for
patient 2.
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18c: Histogram of estimated values of Kis for
patient 3.

Figure 18: Histogram showing the distribution of estimated Kis for each patient.
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By looking at figure 18, which illustrates the probability distribution of Kis, it
is evident that the parameter variability is highest for patient 1, where Kis is
seen to obtain the largest variety of parameter values compared to the other
two patients. The histograms are divided into bins of 50 from the lowest to the
highest identified parameter of each patient. It should be noted that patient 3
only had data from 2 days available, and therefore have half as many identified
insulin sensitivity parameters than patient 1 and 2. With this in mind, one can
see that patient 2 and 3 have quite similar parameter distributions, with almost
all the identified parameters at low values, and some single incidents of higher
estimated Kis.

3.8 Model validation

In addition to the goal of minimizing the difference between measured data and
estimated model output, two criteria are identified as crucial for the model to
be able to be used as a basis for control decisions in automatic feedback control.

• Model validation criterion 1: The estimated model should never fail to
predict hypoglycemia or close to hypoglycemic blood glucose concentra-
tions.

• Model validation criterion 2: Time delays should be restricted to those
already imposed by the natural dynamics of the system.

Section 6.1 contains a discussion on how the identified model performs with
respect to the two model validation criteria listed here.
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4 Control structure

4.1 Requirements for the controller

Once a patient specific model is identified, closed loop control can be introduced.
In this thesis, the goal of automatic blood glucose control in diabetic patients is
set to be a reduction in average blood glucose concentration compared to what
is achieved with manual glucose control. Another, and more important, control
criterion is to avoid hypoglycemia. Under no circumstances must the blood
glucose concentration fall below 3.0mmolL . These are the two control criteria
that are imposed on the system, and that the controller performance will be
measured from:

• Control criterion 1: A hard lower constraint on the output. Under no
circumstances should the system output be less than 3.0mmolL .

• Control criterion 2: Minimize the average output value, where an average
blood glucose concentration of less than 7mmolL is the ultimate goal. This
is, however, not a strict condition, like criterion 1, but rather a measure
of the performance of the controller.

Figure 19: The goal of the control algorithm is to keep average blood glucose concen-
trations between the lines. The solid line shows the strict lower constraint,
and the dotted line shows the desired upper limit for the average blood
glucose value. The blue line is an example of a desired controlled output.
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It should be emphasized that the control criteria here offers no constraint on
the upper limit for single values of the blood glucose concentration. As long as
the average output value is low enough, shorter time periods of hyperglycemia
is tolerated.

4.2 The challenges of automatic blood glucose control

In this section, the main challenges of closed-loop blood glucose control will be
identified, and some possible solutions to them will be discussed.

4.2.1 Time delays

One of the main challenges of blood glucose control in diabetes is illustrated in
figure 20. The figure illustrates that subcutaneous glucose concentration lags
behind blood glucose concentration by a factor of 6 − 10 minutes. Because
of this time delay, a good decision based on real time data will possibly be a
poor one based on the actual present blood glucose concentration. Therefore, in
order to make the optimal decision from measured data, the control algorithm
should be able to predict the blood glucose value 10 minutes into the future
based on the present information available.

4.2.2 Underestimation of blood glucose

Another effect that can be seen from figure 20 is that the subcutaneous glucose
concentration is lower than the blood glucose one in general. This is because
some glucose from the blood is transported out to cells and peripheral tissue.
At low blood glucose concentrations, this works as an extra safety in glucose
control, because decisions are made based on output values that are somewhat
lower than the real glucose concentration, resulting in some extra time to act if
hypoglycemia should occur.

4.2.3 Unpredictable insulin absorption in subcutaneous tissue

Because of the time delay from insulin is injected until it’s effect can be seen in
the measured blood glucose concentrations, infused insulin tends to accumulate
in the subcutaneous layer when control action is set on reducing a too high blood
glucose concentration. When the glucose concentration start sinking, and no
more insulin is needed, this built up storage of insulin in the subcutaneous layer
could cause glucose concentrations to fall too low, resulting in hypoglycemia
and violation of control criterion 1. To avoid this, aggressive injection of insulin
must be avoided, even when blood glucose is high and increasing. The controller
should also keep track of how much of the earlier injected insulin that is active
in the body at all times.
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Figure 20: Subcutaneous glucose concentration Y (t) and blood glucose concentration
G(t) are plotted after a simulated meal intake for patient 1, and shows
that subcutaneous glucose concentration lags behind the blood glucose
concentration.

For sinking blood glucose concentrations, the situation is quite different. The
only available control input is insulin, which only has the ability to reduce blood
glucose. If a situation that could lead to hypoglycemia is detected, aggressive
control is required to set insulin input to zero immediately.

4.2.4 Meal blood glucose response

The rapid increase in blood glucose following a meal, makes it difficult to fulfill
control criterion 2 with pure feedback control. Due to the time delay before
post-meal increase in blood glucose concentration is seen on the output, closed-
loop control reaction will be slow. Without implementation of a feed forward
mechanism in the controller, hyperglycemic peaks after meal intake are likely
to be unavoidable.

4.3 Tools for decision making

Figure 21 illustrates the decission making pattern of automatic blood glucose
control used in this thesis. 6 different zones, indicated by the numbers in blue,
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Figure 21: Diagram showing the decision making scheme for the controller. Blue
numbers identify the six different zones.

are identified, based on information about measured blood glucose concentra-
tion Y (t) and how it changes through time dY (t)

dt . Each zone requires its own
set of control actions to ensure a healthy glucose level. An overview of each
specific zone and its control requirements is given in the list below figure 21.

• 1: Green zone
This is the preferable state. Blood glucose concentrations are in the de-
sired range and changes little over time. Control structure 2 should be
used.

• 2: Yellow zone downwards
Glucose concentrations are decreasing towards the green zone at a desir-
ably low rate. Control structure 2 should be used.

• 3: Orange zone downwards
Glucose concentrations are higher than desired and decreasing at a rela-
tively high rate. To avoid ending up in the red zone, control structure 1
should be used.
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• 4: Red zone
The most critical zone. Blood glucose concentrations are too low and
falling, or in the normal range and falling at a disturbingly high rate.
Control structure 3 should be used.

• 5: Yellow zone upwards
Glucose concentration are increasing towards the green zone at a desirable
rate. Control structure 2 should be used.

• 6: Orange zone upwards
Blood glucose concentrations are higher than desired and increasing. The
concentration must be reduced, but aggressive input action must be avoided.
Control structure 1 should be used.

4.4 Control algorithm

The controllers that are implemented in this thesis are deliberately kept simple,
using only pure proportional feedback control. Focus has been kept on designing
the algorithm for choosing control structure, and assuring safe output values. It
should be made clear that different, and maybe better, results could be achieved
by introducing more sophisticated controllers.

4.4.1 Control implementation

Three different control structures were identified to assure optimal control in
accordance to the control criteria and the challenges stated above:

• Control structure 1:
Simple proportional feedback control. The control parameter is set to
Kp = 80. The control response here is slow acting and it’s goal is to force
output values to fall within the desired range, without introducing large
changes on the administered insulin input.

• Control structure 2:
Simple proportional feedback control. The control parameter is set to give
a more aggressive response than for control structure 1: Kp = 160. This
structure is used when blood glucose concentrations show no indication
of approaching hypoglycemic values, and thus a more aggressive insulin
infusion scheme can be tolerated. The goal here is to keep values within
the desired range.

• Control structure 3:
All insulin infusion is stopped immediately. If hypoglycemia is likely to
occur, an alarm notifies the patient about the situation.
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Figure 22: How gain scheduling is implemented in the simulink diagram.

Implementation of the three different control structures is done by introducing
a control decission parameter Kc, as illustrated in figure 22. The control gain
parameter Kc has a value of either 0, 1 or 2, based on the value of the measured
blood glucose Y (t) and its derivative dY (t)

dt . The decission rules for deciding Kc

are set as illustrated in figure 21 in the matlab function decisionrules.m, which
is called from the Decidecontrolstructure - block in the simulink diagram.

The described control structure guarantees that control is tight when blood
glucose concentrations are in the yellow zone. For those values of Y (t) and dY (t)

dt ,
Kc is set to 2, and thus the proportional gain of the PID controller is twice as
high as it is in the orange zone. This is reasonable because aggressive control
is acceptable when blood glucose is too low and for smaller deviations upwards
in blood glucose concentrations. However, if the measured concentration of
blood glucose is significantly higher than the reference value, aggressive control
is undesired, as it would lead to large amounts of infused insulin input, which
again may lead to a state that of hypoglycemia, conflicting with control criterion
1.

4.4.2 Keeping track of active insulin

To ensure insulin from accumulating in the body, the parameter Active ins is
introduced to keep track of how much insulin that is injected in the past 10
minutes. If this number exceeds 10000 µU

min , insulin infusion is stopped. The
same is done when blood glucose concentrations are in the red zone; Kc is set
to 0, and no insulin is infused whatsoever. MATLAB code for the update of
Active ins is found in the attached file Update active ins.m, which is called
from the Decidecontrolstructure - block in the simulink diagram.
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Figure 23: How feed forward is implemented in the simulink diagram.

4.4.3 Feed forward

Feed forward in the control algorithm is introduced through the input vector
Feed Forward. This vector is obtained by injecting a insulin bolus 10 minutes
before every meal. The amplitude of the bolus is proportional to the size of the
meal. MATLAB code for construction of the Feed Forward-vector is given in
the attached file Control init.m

Some results of the implemented control schemes are plotted in section 5.
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5 Results

In this section, the results of the attempted closed-loop blood glucose control are
shown. All plots in this section are from patient 1. The corresponding results
for the other two patients are given in appendix Appendix A.2 and Appendix
A.3, but only patient 1 and 2 will be discussed in this thesis. MATLAB code
and simulink diagrams for the cases illustrated in this chapter is given in the
attached files Control algorithm.m and Controlstructure.mdl. For further
details on how control was implemented, the reader is referred to section 4.

5.1 Closed-loop control
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Figure 24: Blood glucose output and insulin input after the control algorithm has
been implemented.
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Figure 24 illustrates how the control algorithm alternates between the three
different values for the control decision parameter Kc, and how insulin input
and blood glucose output is affected by this. The upper plot shows blood
glucose concentrations for patient 1 when feedback control is implemented. The
reference value is set to 5.0mmolL , and the meal input is taken from the meal
diary of patient 1. The plot in the middle shows the insulin input that was
applied by the control algorithm, and the lower plot illustrates which control
structure that was used throughout the control period. Kc = 1 and Kc = 2
means control structure 1 and 2 are active. Kc = 0 means control structure 3 is
active. Control structure 3 represents control response to output values in the
red zone, unless a red marker is shown on the x-axis, which illustrates that the
setting of insulin infusion to zero is set by the Active ins-parameter.

Figure 25a illustrates how the control algorithm performs regarding the control
criteria defined in section 4.1. The solid black line represents control criterion 1,
and the dotted black line represents control criterion 2. It is seen that criterion
1 is fulfilled at all times, all though the blood glucose concentration generally
experiences a dip that brings it close to the hypoglycemic limit after meal intake.
Control criterion 2 is violated, as the average blood glucose concentration in
closed-loop control is found to be 7.5mmolL in this experiment. Insulin and meal
input during the control period is shown in figure 25b. Figure 31 shows the same
plots for patient 2, and illustrates that the same general tendency of close to
hypoglycemic blood glucose values after meal intake is seen in this patient too.
Patient 2 is shown to have an average closed-loop blood glucose concentration
of 7.6mmolL , which is very close to the one achieved in patient 1.

A comparison with the glucose concentrations achieved with traditional insulin
administration is shown in figure 26. Even though the control algorithm is not
able to fulfill criterion 2, it does result in a lower average glucose concentration
than the 8.8mmolL achieved during the manual control scheme. Looking at figure
32, one sees that the same analysis is valid for patient 2, who achieves an average
blood glucose concentration of 8.9mmolL in manual control.
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25a: Controlled blood glucose output for patient 1
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25b: Insulin and meal input during automatic control for patient 1

Figure 25: Figure showing output and inputs during automatic control without feed
forward for patient 1.
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Figure 26: Comparison between manually administered and automatically controlled
blood glucose.
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5.2 Closed loop control with feed forward

Performance of the control algorithm with feed forward implemented, is illus-
trated in figure 27. It is clear that the algorithm now performs better with
respect to both control criteria. Blood glucose output is never close to the
hypoglycemic limit, and the average glucose concentration is 7.0mmolL . The
corresponding plot for patient 2 is shown in figure 33, which illustrates that
the resulting average closed-loop blood glucose concentration for patient 2 is
6.9mmolL .

Figure 28 illustrates how glucose control with feed forward performs compared
to manual control. Average blood glucose is significantly lowered, but the peak
value in glucose concentrations after a meal is higher in closed-loop control than
it is in the case of manually injected insulin. A comparison between closed-loop
control with feed forward and manual control for patient 2 is shown in figure
34.

For a more thorough discussion of the results presented in this section is pre-
sented in section 6.
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27a: Controlled blood glucose output with feed forward for patient 1
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27b: Insulin and meal input during automatic control with feed forward for patient 1

Figure 27: Figure showing output and inputs during automatic control with feed
forward for patient 1.
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Figure 28: Comparison between manually administered and automatically controlled
blood glucose with feed forward implemented.
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6 Discussion

6.1 The identified model - how well does it perform with re-
spect to closed loop control?

In section 3.8, two criteria for validating the identified model for control pur-
poses were introduced. By looking at figure 17, which shows the model output
after all the identified parameters have been applied, the performance of the
model based on the validation criteria can be analyzed.

Criterion 1 is the most important element for models used in human glycemic
control, and the plot shows that the lower constraint on the system output is
never violated during the experiment period. In fact, the identified model tends
to underestimate rather than overestimate blood glucose concentrations. This
means that a control algorithm would react as if the blood glucose concentration
was lower than its real value, stopping insulin infusion sooner than necessary,
rather than later. This underestimating of glucose concentrations could lead
to hyperglycemia, but it assures that insulin infusion at hypoglycemic levels is
avoided. Criterion 1 is shown to be fulfilled for all three patients in this study.
This does, however, not guarantee that overestimating could never occur. For
that to be stated, several more patients would have to be studied, and more
extreme conditions would have to be applied to the eating and insulin injection
scheme, to see how robust the model identification would prove to be.

The identified model performs adequately when it comes to the second crite-
rion. One sees that the rapid changes in measured blood glucose are being
neatly followed by the estimated output. The ability to fulfill the second cri-
terion is highly dependent on the data series chosen for identifying the insulin
parameters, because this is where the patient specific time constants Txi and
Ti are identified. Patient 1, whos data is used in figure 17, has the best fit for
these parameters, whereas the other two patients seem to have less consistent
insulin compartment time constants. This could be explained by inaccurate
meal information obtained from the patients, but could also be an indication of
a need for online identification of these parameters, as they could turn out to
be time-varying, like the insulin sensitivity parameter Kis.

An effect that is not properly described by the model, is observed in figure
17 after approximately 1300 minutes. What happens is that measured blood
glucose is rising to a hyperglycemic state, and stays high for some 700 min, even
though multiple insulin injections are administered by the patient. This effect
of decreased insulin sensitivity at high blood glucose concentrations is seen in
the data of patient 3 as well. The model identification algorithm estimates
a negative insulin sensitivity factor in these situations, but the identification
algorithm is set to overwrite it with a small positive value, because negative
insulin sensitivity is not physiologically possible according to the model. A
better model fit would have been achieved if Kis was allowed to have negative
values, but this was not done in this thesis, partly because of a desire to keep
the physical foundation of the model intact, and partly as a security measure,
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because a negative insulin sensitivity would encourage insulin input when blood
glucose concentrations are too low. For control purposes, the effect of decreased
insulin sensitivity at high blood glucose concentrations is not crucial, because
the model tends to underestimate the blood glucose concentration instead of
overestimating it. What is disturbing about it is that it illustrates that there
are elements in the human blood glucose dynamics that the identified model is
not able to describe.

Even if a perfect model of each patients glucose regulation system were to be
found, there would still be challenges involved in the parameter identification
process. One issue to be considered is the time used for parameter identification.
It was suggested above that the time constants related to interstitial insulin
absorption might need to be identified in real time. But if more parameters
were to be estimated online, the estimation time would increase, and might
conflict with a need for quick parameter updates.

Another issue to be considered is how detailed the meal feed forward algorithm
should be. The more information about a meal one was to inform the control
algorithm of, the faster and better control response would be safe and achiev-
able. However, the patient might not know in advance what, and how much,
food that is to be eaten. Also, to be able to fully exploit the advantages of
automatic control, it is desirable to keep user interference to a minimum.

One should keep in mind that the output of the control simulations performed
in this thesis, are results of a theoretical model, and not real life data. All the
errors and uncertainties of the model that were identified in section 3.3 affects
the results of the control simulations in section 5.

6.2 The control algorithm - what is achieved compared to man-
ually regulated blood glucose?

Figure 25 shows how controlled blood glucose concentrations perform compared
to the control criteria identified in section 4.1. The control algorithm was im-
proved several times during the work of this thesis to make sure that control
criterion 1, which demands avoidance of hypoglycemia, should always be ful-
filled. Even so, it is seen from the result of control in patient 1(figure 25a) and
also in patient 2 (figure 31a) that the hypoglycemic limit generally is close to be-
ing crossed after meal-response insulin injection. It is likely that intake of more
carbohydrate-rich meals than what was eaten in the experiments of this thesis,
would cause hypoglycemia as a consequence of the control algorithm’s insulin
injection response to the meals. Thus, the way the control algorithm handles
insulin bolus injection after meals needs to be improved. When it comes to
control criterion 2, the control algorithm fails to fulfill this requirement, as av-
erage blood glucose concentrations in automatic control of patient 1 is 7.5mmolL ,
which is 0.5mmolL above the desired upper limit. However, looking at figure 26,
it is clear that the control algorithm performs better with respect to criterion
2 than the manually controlled glucose regulation scheme, which results in an
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average blood glucose concentration of 8.8mmolL for patient 1. The equivalent
numbers for patient 2 are 7.6mmolL with closed-loop control and 8.9mmolL with
manual control, which illustrates that closed-loop control achieves better results
than the manual insulin injection scheme in this case too.

It is now clear that average blood glucose concentrations can be improved when
closed-loop control is introduced, at least in the two example cases shown here.
However, it is also indicated that the cosed-loop response to meal intake is un-
satisfactory, since meals will give a high peak value in glucose concentrations
followed by a rapid dip that often falls close to the hypoglycemic limit. The
post meal glucose regulation is actually done better manually, where insulin is
injected in advance of meal intake, thus reducing the size of the following peak
blood glucose value and avoiding a dangerously low dip afterwards. In auto-
matic control, insulin is not injected until a rise in blood glucose concentration
can be measured in the subcutaneous layer, thus lagging behind manual control
with up to 15 minutes.

To be able to achieve a more clever administration of meal-bolus insulin infusion
in closed-loop control, feed forward as illustrated in figure 23 is implemented.
The resulting course of blood glucose concentration is shown in figure 27 for
patient 1 and in figure 33 for patient 2. In this case, both control criteria 1 and 2
are fulfilled by the implemented control algorithm. Glucose concentrations are
never close to hypoglycemic values, and thus far from violating criterion 1. The
average closed-loop blood glucose output for patient 1 is 7.0mmolL , which falls
just within the desired range imposed by criterion 2. Closed-loop output with
feed froward compared to manually controlled output for patient 1 is shown in
figure 28, and illustrates that closed-loop control performs much better with
regards to average glucose concentration, but that the manual control scheme
is better suited to administer insulin boluses to deal with the large meal at the
end of the experiment period. The achieved average blood glucose concentration
for patient 2 with feed forward is 6.9mmolL , which is in accordance with control
criterion 2 and also a dramatic improvement compared to the manual insulin
injection scheme, which is illustrated in figure 34. In addition to the lowered
average blood glucose concentration achieved with feed forward, control crite-
rion 1 is now also less likely to be violated than in the case of pure proportional
feedback without implementation of feed forward. Thus, the control algorithm
with feed forward implemented have been shown to successfully fulfill the de-
fined control criteria of this thesis for the two analyzed experiment scenarios.
However, for this result to be made general, more tests must be executed.

The control criteria defined in this thesis are based on the assumption that low
average blood glucose concentrations should be the goal of automatic blood
glucose control. This is in accordance with the findings of DCCTs report in
1993, but recent research suggests that blood glucose variability could be an
equally dominant factor in late complications of diabetes. [27; 1; 11; 24]. This
topic is not fully investigated yet, and was frequently debatted under the annual
ATTD conference in Athens 2009. If variability turns out to be an important
factor in the long-term health of diabetics, different control criteria than what
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is used in this thesis must be applied.

6.3 Safety - Is closed loop blood glucose control a safe alterna-
tive?

When control theory is applied to biological processes that are crucial for the
vital functions of a human being, safety and quality of life for the individual
should always be the number one priority. This is of extreme importance in
blood glucose regulation, as overestimating insulin input by even small amounts
could be lethal for the diabetic patient. Severe measures must be made to avoid
hypoglycemia, and no course of actions, no matter how unlikely, must lead to
a state of hypoglycemic blood glucose concentrations.

One way of achieving this, which is implemented in many of the continuous
blood glucose monitors on the market today, is alarm systems that alert the
patient, -either by sound, vibration or both. Typically, the alarm will go off if
blood glucose concentrations are low, falling at a high rate or if a meal insulin
bolus is infused, but no rise in glucose concentration is measured afterwords.
Usually, the users can program what is defined as disturbingly low glucose values
and fast falling rates themselves. The study of [25] found that many users were
annoyed by the frequent alarms from the monitor. If many of the alarms are
based on incorrect measurements or set to react in a too conservative manner,
users are tempted to turn the alarms off, or disregard them. Consequently, the
use of alarms could be helpful, but is not enough to ensure a safe blood glucose
regulation.

A desirable feature of the control algorithm with regards to safety would be for
it to include a reliable prediction of future blood glucose levels. If the algorithm
contained information about how the present and recent insulin injections would
affect the future glucose concentration, it could turn insulin input off in time to
avoid any hypoglycemic state. However, for this to be possible, a detailed and
precise model of the individual user‘s insulin - glucose - homeostasis, with online
adaptive parameters, is required. Such a detailed and precise model is not yet
developed, and the mathematical model in thesis should certainly not be relied
upon for control based on glucose predictions. However, if such a model were
to be implemented, it would make the control part of the regulation safe.

But even if a reliable blood glucose prediction algorithm was available, there
would still exist safety issues that could offer large problems. One problem that
is likely to occur is that the user activates the feed forward insulin bolus input,
and then forgets to eat, or get hindered to do so. To avoid hypoglycemia in this
situation, the feed forward bolus could be set to a smaller dose, by the cost of
a higher peak in post meal blood glucose. Another solution proposed to avoid
hypoglycemia in closed-loop control is subcutaneous glucagon injection, which
would counteract the effect of insulin.

No matter how good a monitor, measurement errors could always be a source
of uncertainty in glucose control. There will most likely always be a need for
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calibration from other measurements, that being finger prick measurement, an-
other continuous glucose monitor or another blood glucose measurement device.
These calibrations should be made often enough to correct erroneous measure-
ments before they contribute to hypo-, or hyperglycemic incidents. The predic-
tion algorithm should also notify the user by alarms if glucose measurements
deviates to a large degree from what was predicted, when this could be an
indication of measurement error or blocked insulin input.

A possible effect of introducing automatic blood glucose control could be that
diabetics trusts the control algorithm and measurement device more than their
own intuition. This is not desirable, as the human senses often can provide the
diabetic with more reliable information about the conditions in his or her body,
than any electronic device.
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7 Conclusion

In this thesis, a closed-loop control algorithm for regulating blood glucose con-
centration in diabetic patients has been developed. Performance of the algo-
rithm has been analyzed with respect to two control criteria, one imposing
an absolute lower limit of the allowed blood glucose concentration, and the
other representing a desire to keep average blood glucose concentrations below
7.0mmolL .

To be able to carry out a realistic analysis of closed-loop control performance
in diabetes, data from three diabetic patients participating in a study of con-
tinuous glucose monitors were used to identify some of the model parameters
of a proposed mathematical model of the human insulin-glucose regulatory sys-
tem. The identification process revealed large variations between individual
patient’s parameter values, and the difference in insulin sensitivity was found
to be specially high, both between and within patients.

Simulations of the designed control algorithm resulted in a reduction in average
blood glucose concentrations compared to what was achieved with traditional
manual blood glucose control in two patients. Patient 1 experienced an average
blood glucose reduction of 20%, from 8.8mmolL to 7.0mmolL , and patient 2 was
able to reduce blood glucose by 22%, from 8.9mmolL to 6.9mmolL . This means
that the upper constraint on average blood glucose concentrations was fulfilled.
Also, both test cases resulted in blood glucose outputs that never fell close to,
or below, the hypoglycemic limit, which means that both control criteria were
obeyed. The results here were obtained with a closed-loop control algorithm
with a feed forward mechanism implemented to deal with infusion of bolus doses
of insulin before meals.

All though the requirements for satisfactory control output were met in the
experiments of this thesis, a general conclusion on the success of the algorithm
cannot be drawn. For this to be done, several more test scenarios would have
to be applied to the algorithm, and issues regarding safety of the user would
have to be thoroughly investigated.
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8 Suggestions for Future Work

Improving the model The model identification performed in this thesis, did
not produce a satisfactory result for it to could be implemented in real
life automatic blood glucose control.

Further experiments More data should be obtained to get a better impres-
sion of parameter variability between patients. Also, more extreme meal
intake and insulin injection schemes should be recorded, to get an indica-
tion of how well the model performs under abnormal circumstances.
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Appendix A Plots from MATLAB

Appendix A.1 Collected Data Patient 2 Day 4
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Figure 29: Illustration of what seems to be an erroneous entry in the meal diary for
patient 2. The meal that is recorded at approximately t = 700 min is
not followed by any bolus insulin dosage, and there is a decrease in blood
glucose, instead of the expected post meal rise. It is therefore reason to
believe that the meal never took place, and insulin sensitivity estimates
based on these data will thus be wrong.
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Appendix A.2 Results closed-loop control patient 2
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Figure 30: Blood glucose output and insulin input after the control algorithm has
been implemented.
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31a: Controlled blood glucose output for patient 2
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31b: Insulin and meal input during automatic control for patient 2

Figure 31: Figure showing output and inputs during automatic control without feed
forward for patient 2. Average closed-loop blood glucose is 7.6mmol

L
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Figure 32: Comparison between manually administered and automatically controlled
blood glucose. Average blood glucose concentrations with manual control
is 8.9mmol

L



Appendix A MATLAB plots 61

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18

20

Time [min]

B
lo

od
 g

lu
co

se
 [m

m
ol

/L
]

 

 

Automatic controlled blood glucose output
Average closed loop output
Desired average output
Hypoglycemic constraint

33a: Controlled blood glucose output with feed forward for patient 2
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33b: Insulin and meal input during automatic control with feed forward for patient 2

Figure 33: Figure showing output and inputs during automatic control with feed
forward for patient 2. Average closed-loop blood glucose concentration is
6.9mmol

L .
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Figure 34: Comparison between manually administered and automatically controlled
blood glucose with feed forward implemented.
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Appendix A.3 Results closed-loop control patient 3
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Figure 35: Blood glucose output and insulin input after the control algorithm has
been implemented.
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36a: Controlled blood glucose output for patient 3
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36b: Insulin and meal input during automatic control for patient 3

Figure 36: Figure showing output and inputs during automatic control without feed
forward for patient 3. Average blood glucose concentration is 6.7mmol

L
when automatic control is implemented.
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Figure 37: Comparison between manually administered and automatically controlled
blood glucose. Averaged controlled output is 6.7mmol

L , and manually ad-
ministered average output is 5.4mmol

L
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38a: Controlled blood glucose output with feed forward for patient 3
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38b: Insulin and meal input during automatic control with feed forward for patient 3

Figure 38: Figure showing output and inputs during automatic control with feed
forward for patient 3
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Figure 39: Comparison between manually administered and automatically controlled
blood glucose with feed forward implemented.

Appendix B Attached files

Here is a short explanation of the attached files.

load patient data.m Loads the data sets of each patient from excel sheets
into the MATLAB workspace. This file has to be run initially.

model simulation.mdl Simulink diagram of the model structure with inputs
obtained from the measured data sets.

iddata anydataset.m Creates an iddata object z from the information of any-
dataset. The iddata object is used in the model identification algorithm
Identify anydataset.m.

glucose.m Describes the model structure and defines the value of the fixed
parameters. The idnlgrey-model created here is used in the model identi-
fication algorithm identify anydataset.m

identify anyset.m Identifies the optimal parameter set of anyset, by compar-
ing the iddata information from iddata anydataset.m and the idnlgrey
model structure defined in glucose.m.

online estimation.m File used for the adaptive estimation of insulin sensi-
tivity parameter Kis.
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