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Abstract This work introduces a new scheme for action unit detection in 3D
facial videos. Sets of features that define action unit activation in a robust
manner are proposed. These features are computed based on eight detected
facial landmarks on each facial mesh that involve angles, areas and distances.
Support vector machine classifiers are then trained using the features of the
descriptor in order to perform action unit detection. The proposed AU detec-
tion scheme is used in a dynamic 3D facial expression retrieval and recognition
pipeline, highlighting the most important AUs, in terms of providing facial ex-
pression information, and at the same time, resulting in better performance
than the state-of-the-art methodologies.
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1 Introduction

Human emotions are often expressed by facial expressions instead of verbal
communication. Facial expressions are generated by facial muscle movements,
resulting in temporary deformations of the face. The detection of facial AUs
lies at the core of facial analysis and has emerged as an active research area
in recent years due to its broad applications in human-computer interaction,
biometrics, facial expression recognition, computer graphics and psychology.

Ekman [19] was the first to systematically study human facial expressions.
His study categorizes the prototypical facial expressions, apart from the neu-
tral expression, into six classes representing anger, disgust, fear, happiness,
sadness and surprise. This categorization is consistent across different ethnic-
ities and cultures. Furthermore, each of the six aforementioned expressions
is mapped onto specific primitive movements of facial muscles, called Action
Units (AUs) as indicated in Table 1. There are 44 AUs in total, but approx-
imately 20 of them are common (see Figure 1). This led to the Facial Action
Coding System (FACS), where facial changes are described in terms of AUs.

Table 1 Facial expression deconstruction into AUs.

FACIAL ACTION
EXPRESSION UNITS

Anger { AU4, AU5, AU7, AU23 }
Disgust { AU9, AU15, AU16 }

Fear { AU1, AU4, AU5, AU7, AU20, AU27 }
Happiness { AU6, AU12 }
Sadness { AU1, AU15, AU17 }
Surprise { AU1, AU5, AU26, AU27 }

There are a lot of works in the literature when it comes facial AU de-
tection, or relative areas, using 2D images [76,24,8,61,46,91,2,25,15,89] or
2D video [34,17,82,3,44,77,31,98,38,32,1,86,75,65,30,42,41,10,62,52,66,27,
83,63,64,84,36,35,37,23,28,102,106]. In addition, fusion of multiple modali-
ties, including video and audio data [74] and removal of speaking effects [88]
are reported for further accuracy improvement in real world applications. Two
very concise surveys on AU detection techniques based on 2D images and 2D
videos can be found in [45,22]. Most of the works are tested on private data
sets. The results of their experimental testing would unlikely hold if pose or
lighting variations existed. When using 2D images or 2D image sequences the
facial data are prone to illumination changes and pose variations that affect
the perceived geometry and appearance of facial features. In addition, subtle
skin deformations that characterize AU activations are difficult to be captured
by a 2D camera.

In recent years, the proliferation of inexpensive 3D scanners and the sim-
plification of 3D modeling software has resulted in a large volume of 3D and
4D data (3D mesh sequences over time or 3D videos). Some of the 4D data
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Fig. 1 The basic AUs as illustrated in Ekman’s work [19].

sets that have recently been created involve human facial data. These data
sets contain 3D videos representing people of different ethnicities taking on a
number of facial expressions which are encoded in different AUs. These data
sets can be used for retrieval and recognition purposes.

In order for the aforementioned 2D modality problems to be handled, 3D
facial data can be recruited for detecting AUs [53,54,4,60,95,103,104,58,57,
56,73]. With 3D data, lighting and head pose variations are no longer issues
of concern. The works presented in [60,59] highlights the advantages of the
3D over the 2D modality when it comes to AU detection.
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Temporal information on 3D data can potentially further improve the ac-
curacy of AU detection, but AU detection using 4D facial data is still a virgin
area and the subject of this paper. There are only five papers, found in the
literature, that deal with 4D facial data. In [79], AU detection is achieved
using a set of mathematical rules, combined with facial anatomy heuristics
on extracted facial areas. However, the usage of such heuristics restricts the
number of AUs that can be handled. In addition, the authors use a propri-
etary data set for their experiments. In [50], AU detection is achieved using
a curvature-based feature based on 83 extracted facial landmarks. However,
when using a plain geometry-based feature, such as curvature, the informa-
tion provided by the facial topology is not exploited. Method [14] presents a
descriptor capturing the topological and geometric information of a 3D facial
mesh sequence. Although the aforementioned descriptor was designed for fa-
cial expression retrieval purposes, its topological part is completely AU -based,
which makes it possible to use it for AU detection. The fact, however, that
it was originally designed for facial expression recognition restricts its flexi-
bility in terms of AU detection. It must be pointed out that GT+ only uses
10 AU -based features, while the proposed method use almost twice as many.
In [81], Haar features are extracted from the dynamic 3D facial data. Ran-
dom Forests are then used to perform the final AU estimation. One drawback
of this work is the necessity to accurately estimate a large number of facial
landmarks that can lead to system failures. Finally, in [69], the authors apply
the Active Appearance Model (AAM), on a selected set of AUs, in order to
track facial features across the 3D model sequences. The more AUs the more
time consuming the aforementioned technique gets. A Hidden Markov Model
(HMM) is employed to recognize the partial AUs. The last four aforemen-
tioned methods use the publicly available data set BP4D− Spontaneous, for
their experiments.

The majority of 4D facial AU detection techniques, discussed in the present
Section, implement facial analysis based on facial landmark points’ temporal
tracking. They do so in order to take advantage of the strong connection
between facial deformations and positions of facial key-points at given times.

The main problem to be solved by the techniques dealing with 4D data is
the creation of descriptors, taking into account both spatial and temporal in-
formation, which can accurately distinguish activation of different AUs. These
descriptors are computational models that are used as digital signatures of
different AUs. The novelty and contribution of this paper consists of:

– A set of novel features that reflect the dynamics of facial AUs and expres-
sions is proposed.

– The detection of a larger number of AUs than state-of-the-art techniques of
the same modality (3D facial sequences) but also most techniques of other
modalities (only the 2D work presented in [46] detects more AUs). Thus,
the proposed technique can serve a broader spectrum of applications.
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– The usage of fewer landmarks than the state-of-the-art leads to a speed-up
when it comes to descriptor construction. Thus, the proposed technique
can be integrated in real-time applications.

– Higher accuracy in AU detection, compared to state-of-the-art techniques
of the same modality, in most experiments.

– Application in dynamic 3D facial expression recognition and retrieval, out-
performing the state-of-the-art.

– Determination of the subset of AUs that are the most essential information
contributors, in terms of facial expressions.

The rest of the paper is organized as follows: Section 2 describes the pro-
posed AU detection scheme using 3D facial videos. Section 3 presents the
evaluation methodology and extensive experimental results of the AU detec-
tion scheme against state-of-the-art works on standard data sets. In Section
4, future challenges are discussed and in Section 5 conclusions are drawn.

2 AU detection scheme

The pipeline of the supervised AU detection scheme proposed here is illus-
trated in Figure 2. The input to the procedure is a 3D facial mesh sequence
data set. These sequences are divided into the training and the testing sub-
sets, based on a 5-fold cross validation procedure [16]. The training process
is applied on the training subset of the data and the testing process on the
testing subset of the data.

The training process consists of four steps:

1. Extract eight facial landmarks for each 3D mesh of a facial mesh sequence
belonging to the training set.

2. Normalize for translation by ensuring that the nose tip is at the center of
the coordinate system.

3. Create the descriptor for each mesh sequence by extracting the proposed
features.

4. Train classifiers based on the descriptor features.

The testing process consists of the following steps:

1. The first three steps of the training process are repeated.
2. Decide on AU activations using classifiers.

If an AU is labeled as activated, then it is recorded on the AU activation list
of the testing sequence, which is the output of the pipeline. Next, each step
will be analyzed.

2.1 3D landmark detection

According to [87], the most essential facial areas for the recognition of emo-
tions/expressions are the eyes and the mouth, which is in agreement with
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Fig. 2 Pipeline of the proposed AU detection scheme.

common intuition. We thus concentrate on the robust extraction of a minimal
number of landmarks that define these facial areas and extract eight facial
landmarks on each 3D facial mesh as illustrated in Figure 3.

We should note here that the number of landmarks used by our method
is significantly smaller than the number used by other state-of-the-art tech-
niques. Any 3D facial landmark detection technique from the bibliography can
be used, as long as it accurately provides the aforementioned eight landmarks.
The main concern of the present work is not landmark detection, but the con-
struction of a robust facial movement descriptor. For experimental purposes,
we have automatically detected the landmarks using the state-of-art method-
ology previously developed by our team [47], making the proposed scheme
self-contained. This facial landmark detection method is robust to noise, rota-
tions about the vertical facial axis of up to 60 degrees and returns the detected
pose; this information is used by our method in order to rotate facial instances
that are not frontal.

We are making the 3D facial landmarks publicly available for the data sets
used throughout this study (BP4D − Spontaneous, dynamic 3D FACS), so
that other researchers can experiment on the same basis. The landmarks can
be found at https://vc.ee.duth.gr/Face4D/BP4D-S/.

2.2 Translation normalization using the nose tip

After the extraction of the 3D landmarks on each mesh, we perform translation
normalization so that the nose tip (5th landmark) coincides with the origin of
the coordinate system (see Figure 4). Thus, we create better correspondence
between the 3D meshes of each sequence.

https://vc.ee.duth.gr/Face4D/BP4D-S/
adane_000
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Fig. 3 Eight facial landmarks used in the proposed AU detection scheme. Here they are
marked on the (a) 2D texture and (b) 3D facial mesh.

Fig. 4 Nose tip transition to the center of the coordinate system.

2.3 Descriptor extraction

The descriptor implemented within the proposed dynamic 3D AU detection
scheme captures the topological information of a given 3D facial mesh se-
quence. The extracted eight critical facial landmarks and the temporal facial
movements are exploited, as indicated by FACS theory, in order for appropri-
ate descriptor features to be selected. Each feature of the descriptor is directly
mapped onto one or more AUs of FACS.

The descriptor is a function T (i, j), see Equation 1, which represents the
value of the j-th feature (related to one or more AUs) in the i-th 3D facial
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mesh of the sequence. The descriptor thus represents the dynamic behavior of
AUs along a 3D facial expression sequence. Out of the 17 features, two are
angles, eight are based on facial areas and seven are distances on the face. The
calculations of the values of these features are performed exclusively using the
3D coordinates of the eight landmarks on each 3D facial mesh. The set of
landmarks will be denoted as LMs, see Equations 2, 3.

T (i, j) =

Anglei,j({LMs}) : j ∈ {1, 2}
Areai,j({LMs}) : j ∈ {3, . . . , 9}
Distancei,j({LMs}) : j ∈ {10, . . . , 16}

(1)

where

LMs = {P1, P2, . . . , P8} (2)

and

Pi =

xi
yi
zi

 (3)

The features of the proposed descriptor are based on the eight extracted
landmarks, and have been selected in such a manner as to express the temporal
behavior of the AUs of the eyes, mouth, chin and jaw, as those are the most
important and frequently used AUs of the human face [19]. The motivation
behind the feature selection follows. Each of the 16 selected features can be
thought of as a facial muscle which has been directly related to one or more
AUs of FACS, as illustrated in Table 2. The features have been chosen in
order to maximize the discrimination of their value ranges between activated
and the corresponding non-activated AUs. In case more than one AU are
mapped onto the same feature, only one of them can be active at a time,
due to human facial anatomy; different AU activations will correspond to
different value ranges of the shared feature. In other words, the activated
facial AU is defined by the dynamic behavior of the corresponding features
values. These features produce discrete dynamic behaviors which indicate the
currently activated AU . According to the experimental results, these facial
features are sufficient to detect the activation of 24 AUs.

In Table 2, function MEAN(P1, P2) stands for the mean of two 3D points
P1 and P2: MEAN(P1, P2) = P1+P2

2 . To calculate the angle Angle(P1, P2, P3)
formed by three 3D points P1, P2 and P3 on P2, the following formula is used:

Angle(P1, P2, P3) = arctan(|(D1 ×D2)| − (D1 ·D2)) (4)

where D1 = P1 − P2, D2 = P2 − P3. For the calculation of the area of a
triangle formed by three 3D points P1, P2 and P3, returned by the function
Area(∆(P1, P2, P3)), Heron’s formula is used. Finally, Distance(P1, P2) de-
notes the euclidean distance between two 3D points P1 and P2. LMi denotes
the i-th extracted landmark as per Figure 3. Figures 5, 6 and 7 illustrate the
mapping of the selected 16 features on a 3D facial mesh. Figure 8 illustrates the
selected 16 features on the corresponding activated AUs. It should be pointed
out that, in order to achieve scale invariance, distance features are normalized
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with respect to the distance formed between the outer part of the eye and the
jaw (see Figure 7 image (e)), which is expected to be the biggest valued dis-
tance. Towards the same direction, area features are normalized with respect
to the area formed by the outer part of both eyes and the jaw (see Figure 6
image (h)).

The key advantages of the proposed features compared to the state-of-the-
art can be summed up as follows: 1) fewer landmarks are used, thus achieving
a computational speed up of the descriptor, which results into a potential
real-time procedure, 2) Geometrical information, which is usually found in
the state-of-the-art works, is complemented by topological information. This
combination is advantageous as some AUs (i.e. the ones involved in happiness
expression) cause obvious topological but negligible geometrical changes of
the face while other AUs (i.e. the ones involved in sadness expression) act the
opposite way.

Table 2 Connecting AUs with features of the proposed descriptor.

AU DESCRIPTION FEATURE FEATURE FEATURE
NUMBER TYPE VALUE

AU1: Inner Brow Raiser 1 Angle Angle(LM2,MEAN(LM2, LM3), LM5)
AU4: Brow Lowerer
AU2: Outer Brow Raiser 2 Angle Angle(LM1,MEAN(LM2, LM3), LM5)

AU5: Lid Raiser 3 Area
Area(∆(LM1,LM2,LM5))+Area(∆(LM3,LM4,LM5))

2
AU7: Lid Tightener

AU6: Cheek Raiser 4 Area
Area(∆(LM1,LM5,LM6))+Area(∆(LM4,LM5,LM7))

2
AU9: Nose Wrinkle 10 Distance Distance(MEAN(LM2, LM3), LM5)

AU10: Upper Lip Raiser 5 Area
Area(∆(LM5,LM6,LM7))+Area(∆(LM6,LM7,LM8))

2
AU19: Tongue Show
AU24: Lip Pressor

AU11: Nasolabial Deepener 6 Area
Area(∆(LM2,LM5,LM6))
Area(∆(LM3,LM5,LM7))

AU12: Lip Corner Puller 11 Distance
Distance(LM1,LM6)+Distance(LM4,LM7)

2
AU15: Lip Corner Depressor

AU13: Cheek Puffer 7 Area
Area(∆(LM1,LM2,LM6))+Area(∆(LM3,LM4,LM7))

2
AU14: Dimpler 8 Area Area(∆(LM5, LM6, LM7))
AU16: Lower Lip Depressor 9 Area Area(∆(LM6, LM7, LM8))
AU17: Chin Raiser

AU18: Lip Puckerer 12 Distance
Distance(LM5,LM8)
Distance(LM6,LM7)

AU22: Lip Funneler
AU20: Lip Strecher 13 Distance Distance(LM6, LM7)
AU23: Lip Tightener

AU27: Mouth Strech 14 Distance
Distance(LM1,LM8)+Distance(LM4,LM8)

2

AU28: Lip Suck 15 Distance
Distance(LM6,LM8)+Distance(LM7,LM8)

2

AU30: Jaw Sideways 16 Distance
Distance(LM5,LM6)
Distance(LM5,LM7)

2.4 AU detection as classification

The last step deals with the training/use of the classifiers. Since there are no
huge training 4D facial data sets available, justifying the choice of deep learn-
ing techniques, we have opted for standard Support Vector Machine (SVM)
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Fig. 5 Angular features used to model (a) AU1, AU4 and (b) AU2.

Fig. 6 Area features used to model (a) AU5, AU7, (b) AU6, (c) AU10, AU19, AU24, (d)
AU11, (e) AU13, (f) AU14 and (g) AU16, AU17, (h) Normalization area.
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Fig. 7 Distance features used to model (a) AU9, (b) AU12, AU15 (c) AU18, AU22, (d)
AU20, AU23, (e) AU27 (f) AU28 and (g) AU30.

Fig. 8 Selected features on the corresponding 24 activated action units.
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classifiers. We use 24 SVM classifiers, each corresponding to one AU . The
Radial Basis Function (RBF ) is used as kernel function, where ||x−x′|| is the
squared Euclidean Distance between two feature vectors x, x′. The cost pa-
rameter C and the scaling factor σ of the SVMare free parameters and their
values were determined by implementing a ”grid-search” on C and σ using
cross-validation (for our case σ = 0.2 and C = 0.1). The SVM which classifies
the i-th AU as activated or not, is trained by using the feature vectors of the
descriptors of the training sequences corresponding to the i-th AU .

In the testing process, the feature vector of the descriptor of a testing
sequence, which corresponds to the i-th AU , is given as input to the trained
SVM corresponding to the same AU . The SVM , then, decides if the i-th
AU is activated within the testing sequence or not. If the AU is classified as
activated, then it is recorded on the AU activation list of the testing sequence,
which is the output of the proposed scheme.

3 Experimental results

This section illustrates the experimental results of the proposed methodology.
Initially, the data sets used for conducting experiments are discussed. Then,
the results of the AU detection scheme, which is the main task of the pro-
posed procedure, are illustrated. The achieved results are compared against
state-of-the-art techniques using the same modality. Moreover, as additional
applications, a new descriptor is presented, based on our AU detection scheme.
The aforementioned descriptor is used for 4D facial expression retrieval and
recognition. The performance on these tasks is also illustrated and compared
against the state-of-the-art.

3.1 Data sets

Experiments have been conducted on the standard 4D facial data set BP4D−
Spontaneous [101], which is publicly available for a small fee and encodes AUs
on 4D facial data, as well as the dynamic 3D FACS [11] data set. These
are the only available data sets containing 4D facial data accompanied with
AU encoding. This is why all the AU detection techniques working on 3D
video modality use one of the aforementioned data sets. One additional often
used data set is BU − 4DFE [93] which only codes facial expressions, and
is less challenging than BP4D − Spontaneous. On the contrary, BP4D −
Spontaneous codes both facial expressions and AUs and that is why it is
selected for experimental purposes over the BU − 4DFE data set.

BP4D−Spontaneous [101] involves 41 subjects (23 females and 18 males)
of various ethnicities. For each subject, eight expressions (anger, disgust, em-
barrassment, fear, happiness, pain, sadness and surprise) were recorded and
consist of the following phases: neutral face, outset, apex, offset and back to
neutral face. The dynamic facial acquisition system Di3D (www.di3d.com)
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was used and produced roughly 328 3D videos, lasting about 25 seconds each.
The corresponding texture images are provided for each 3D mesh of a 3D
mesh sequence. The temporal resolution of the 3D videos is 25 fps and each
3D mesh consists of approximately 35,000 vertices. Finally, each 3D mesh is
associated with 83 facial landmark points which are provided with the data
set. The BP4D − Spontaneous data set includes spontaneous facial behavior
for all the provided facial expressions, making the experiments harder, and
annotates the corresponding set of AU activations. In Figure 9, examples of
BP4D − Spontaneous data are illustrated.

In general the facial data constituting the data set are of good quality.
However, inconsistencies are exhibited as some videos contain occluded meshes
(see Figure 10). It should be pointed out that, despite the 3D data artifacts,
no corrective actions took place so that our results can be comparable to
those of future methods that may report results on this data set. In addition,
the existence of inconsistencies highlights the true strength of the proposed
descriptor.

All eight expressions for all 41 subjects of the data set were employed. Only
the dynamic 3D mesh sequences were used (not the corresponding textures).
Thus, 328 dynamic 3D sequences were processed. The BP4D− Spontaneous
data set contains approximately 360.500 3D meshes in total. In order to reduce
the processing time, temporal subsampling was performed; this was possible
without sacrificing accuracy as we saw by inspection that the sequences of the
data set were very dense with little variation between successive frames. The
ratio of the subsampling was 1:6, reducing the number of 3D meshes which
were finally processed to 60.100.

Finally, as far as the BP4D − Spontaneous data set is concerned, we use
the proposed technique in two variations. The first includes all 24 AUs pre-
sented in Table 2 and is destined for AU detection purposes; however we have
also included it in the retrieval and recognition experiments for comparative
purposes. The second variation includes only the 13 AUs which are directly
connected to the six prototypical facial expressions according to FACS, and
are presented in Table 1 (AU26 is excluded, as the BP4D−Spontaneous data
set does not provide corresponding ground truth). This variation is destined
for facial expression retrieval and recognition purposes. The motivation for
the second variation is to filter only the meaningful information of the AUs
directly connected to the relevant facial expressions, as irrelevant AUs may be
translated into noise during the training process of the SVM classifiers.

The second data set used for experiments is dynamic 3D FACS [11]. This
data set involves 10 subjects (6 females and 4 males) of average age 23.6
years. Each subject activates from 19 to 97 different AUs both individually
and in combinations. The peak expression frame of each sequence has been
manually FACS coded by certified FACS experts. The data set consists of
519 3D videos. Each sequence lasts from 5 to 10 seconds depending on the
complexity of the recorded AU . The temporal resolution of the 3D videos is
60 fps and each 3D mesh consists of approximately 30,000 vertices. However,
the creators of the data set provide, approximately, 90 3D frames per sequence.
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Fig. 9 Representative examples of expressions in BP4D − Spontaneous.
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Fig. 10 Illustration of occluded mesh in the BP4D − Spontaneous data set.

Corresponding texture images are provided for each 3D mesh of a 3D mesh
sequence but were not used. Finally, no facial landmarks are provided for
the 3D frames. In Figure 11, examples of the dynamic 3D FACS data are
illustrated.

The sequences of the dynamic 3D FACS data set are very dense. In fact,
the temporal resolution of this data set is more than twice than that of the
BU4D − Spontaneous data set. This means that the variation between suc-
cessive frames in dynamic 3D FACS data is quite low. For this reason we
have performed, once again, sequence subsampling on the temporal domain.
The ratio of the subsampling was 1:4. The eight landmarks for each 3D frame
of the dynamic 3D FACS data set were manually extracted. This highlights
the ability of our method to be smoothly combined with any facial landmark
detection technique as long as the aforementioned technique detects the eight
landmarks specified within subsection 2.1.

The dynamic 3D FACS data set encodes only AUs and not facial expres-
sions. Consequently, we have used the aforementioned data set only for AU
detection and not for facial expression retrieval/recognition purposes. We de-
tect the subset of AUs which contains the intersection of the set of all the 24
AUs that can be detected by our method, and the set of all the AUs provided
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that are jointly encoded for all the subjects of the data set (not the same AUs
are encoded for each subject of the dynamic 3D FACS data set).

3.2 AU detection results

The AU detection methods presented in [50,81,69] are the only methods
of the state-of-the-art which are tested on the publicly available data set
BP4D − Spontaneous. That is why we can only be reliably compared with
the aforementioned methods.

Table 3 illustrates the detection results of both variations of our proposed
technique and the state-of-the-art on BP4D − Spontaneous. ’N/A’ stands
for not available information. Bold indicates the best performance among the
methods compared. Notice that the variants of the proposed method gener-
ally outperform the state-of-the-art. There are only 7 exceptions (AU1, AU2,
AU4, AU5, AU15, AU24, AU27) where we are outperformed by [50,81,69].
An explanation for this is that the methods of [50,69] use 83 landmarks, while
we use only 8. Thus, [50,69] use more primary information while we use much
less. The evaluation presented in Table 3, was calculated based on valid AU
detection within the entire 3D facial mesh sequence.

Table 4 illustrates that we detect more AUs than state-of-the-art tech-
niques. The proposed 24 AU detection method detects seventeen more AUs
(AU6, AU7, AU9, AU10, AU11, AU12, AU13, AU14, AU16, AU17, AU18,
AU19, AU22, AU23, AU24, AU28 and AU30) than the method of [69], twelve
more AUs (AU5, AU9, AU11, AU13, AU16, AU18, AU19, AU20, AU22,
AU27, AU28 and AU30) than the method of [50], thirteen more AUs (AU5,
AU9, AU11, AU13, AU16, AU18, AU19, AU20, AU22, AU24, AU27, AU28
and AU30) than the method of [81], and ten more (AU2, AU10, AU11, AU13,
AU18, AU19, AU22, AU24, AU28 and AU30) than [14]. It achieves an average
per sequence detection rate of 80.45% for these 24 AUs, compared to 63.51%
for the 12 AUs of [50] and 77.85% for the 14 AUs of [14]. In most cases, the
proposed 13 AU detection method performs slightly better than the proposed
24 AU detection method. This is because, in the first case, there are fewer
classes and the SVM classification problem is simpler.

The proposed AU detection scheme functions on a per mesh basis. Thus,
we are capable of evaluating our scheme in terms of valid AU detections per 3D
mesh of the sequence. Similar results can be drawn using the method of [14].
Table 5 illustrates the detection results on the BP4D−Spontaneous data set
for the per frame case. ’N/A’ stands for not available information. The average
detection rate of the proposed 24 AUs detection method is 66.23% compared to
65.50% for [14]. The proposed 13 AUs detection method also performs slightly
better than the proposed 24 AUs detection method in the per mesh case for
the reason explained above. Notice that per sequence detection is better than
per mesh detection. This is because, in the first case we take into consideration
temporal information in addition to the spatial information.
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Fig. 11 Representative examples of AUs’ encoding in the dynamic 3D FACS data set.
Top rows: 2D images from 2 viewpoints, bottom rows: 3D meshes.
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Table 3 AU detection results compared to the state-of-the-art on BP4D − Spontaneous
data set, per sequence.

AUs 1 2 4 5 6 7 9 10 11 12 13 14
Proposed Method 62.9% 55.3% 63.8% 76.4% 84.6% 90.4% 72.6% 86.9% 91.6% 80.5% 99.3% 86.9%

(24 AUs)
Proposed Method 65.8% N/A 64.1% 75.8% 85.0% 90.8% 72.7% N/A N/A 80.0% N/A N/A

(13 AUs)
Sun et al. [69] 93.0% 91.0% 89.0% 82.0% N/A N/A N/A N/A N/A N/A N/A N/A

Reale et al. [50] 58.4% 64.8% 63.1% N/A 68.8% 58.9% N/A 66.4% N/A 59.1% N/A 59.1%

Tulyakov et al. [81] 60.0% 50.0% 56.0% N/A 79.0% 70.0% N/A 77.0% N/A 81.0% N/A 66.0%

GeoTopo+ [14] 62.5% N/A 63.3% 76.1% 84.2% 90.1% 72.5% N/A N/A 80.2% N/A 86.7%

AUs 15 16 17 18 19 20 22 23 24 27 28 30
Proposed Method 69.2% 73.5% 88.5% 93.0% 85.2% 77.9% 90.3% 77.4% 65.3% 89.0% 74.2% 96.1%

(24 AUs)
Proposed Method 69.4% 74.2% 88.7% N/A N/A 77.8% N/A 77.7% N/A 89.0% N/A N/A

(13 AUs)
Sun et al. [69] 94.0% N/A N/A N/A N/A 67.0% N/A N/A N/A 99.0% N/A N/A

Reale et al. [50] 69.0% N/A 65.6% N/A N/A N/A N/A 61.4% 67.6% N/A N/A N/A

Tulyakov et al. [81] 56.0% N/A 63.0% N/A N/A N/A N/A N/A 60.0% N/A N/A N/A

GeoTopo+ [14] 68.9% 73.3% 88.4% N/A N/A 77.6% N/A 77.3% N/A 88.8% N/A N/A

Table 4 AUs detected by the proposed and state-of-the-art techniques.

METHOD DETECTED AUs NUMBER OF DETECTED AUs

Sun et al. [69] AU1, AU2, AU4, AU5, AU15, AU20, AU27 7

Tsalakanidou et al. [79] AU1, AU2, AU4, AU5, AU7, AU9, 11
AU12, AU15, AU25, AU26, AU27

Tulyakov et al. [81] AU1, AU2, AU4, AU6, AU7, AU10, 11
AU12, AU14, AU15, AU17, AU23

Reale et al. [50] AU1, AU2, AU4, AU6, AU7, AU10, 12
AU12, AU14, AU15, AU17, AU23, AU24

Proposed Method AU1, AU4, AU5, AU6, AU7, AU9, AU12, 13
(13 AUs) AU15, AU16, AU17, AU20, AU23, AU27

GeoTopo+ [14] AU1, AU4, AU5, AU6, AU7, AU9, AU12, 14
AU14, AU15, AU16, AU17, AU20, AU23, AU27

Proposed Method AU1, AU2, AU4, AU5, AU6, AU7, 24
(24 AUs) AU9, AU10, AU11, AU12, AU13, AU14,

AU15, AU16, AU17, AU18, AU19, AU20,
AU22, AU23, AU24, AU27, AU28, AU30

Table 5 AU detection results on BP4D − Spontaneous data set, per 3D mesh.

AUs 1 2 4 5 6 7 9 10 11 12 13 14
Proposed Method 80.0% 63.1% 74.9% 74.9% 54.0% 48.6% 69.6% 51.6% 76.1% 50.3% 63.0% 57.3%

(24 AUs)
Proposed Method 80.2% N/A 75.1% 74.2% 53.8% 46.5% 73.2% N/A N/A 50.1% N/A N/A

(13 AUs)
GeoTopo+ [14] 79.6% N/A 74.2% 74.5% 53.5% 47.9% 69.3% N/A N/A 49.8% N/A 57.1%

AUs 15 16 17 18 19 20 22 23 24 27 28 30
Proposed Method 66.4% 84.8% 57.6% 70.5% 63.7% 69.2% 71.6% 63.9% 63.7% 72.0% 69.4% 73.4%

(24 AUs)
Proposed Method 69.0% 84.7% 57.6% N/A N/A 69.7% N/A 69.8% N/A 72.1% N/A N/A

(13 AUs)
GeoTopo+ [14] 66.1% 84.1% 57.2% N/A N/A 68.8% N/A 63.4% N/A 71.6% N/A N/A
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The automatically detected landmarks, provided by the algorithm of [47]
during the first step of the pipeline, have an average estimation error of 2.53
mm compared to the ground truth landmarks, provided by the data set. Ta-
ble 6 illustrates the performance of the proposed technique when using the
ground truth versus the automatically detected landmarks. It is clear that the
ground truth landmarks make only a marginal contribution in AU detection,
indicating that the proposed features are robust AU detectors.

Table 6 AU detection results on BP4D−Spontaneous data set, per 3D mesh, when using
automated and ground truth landmarks.

AUs 1 2 4 5 6 7 9 10 11 12 13 14
Automated Landmarks 62.9% 55.3% 63.8% 76.4% 84.6% 90.4% 72.6% 86.9% 91.6% 80.5% 99.3% 86.9%

(24 AUs)
Ground Truth Landmarks 63.0% 56.4% 66.1% 77.5% 86.8% 91.5% 74.8% 88.0% 92.7% 82.7% 99.5% 88.1%

AUs 15 16 17 18 19 20 22 23 24 27 28 30
Automated Landmarks 69.2% 73.5% 88.5% 93.0% 85.2% 77.9% 90.3% 77.4% 65.3% 89.0% 74.2% 96.1%

(24 AUs)
Ground Truth Landmarks 71.4% 74.6% 89.6% 96.3% 87.4% 79.2% 91.4% 78.5% 68.6% 91.2% 76.4% 97.3%

AU detection experiments were also conducted using the dynamic 3D
FACS data set. The results are illustrated in Table 7 for the per sequence
case. A drawback of this data set is that not the same AUs are encoded for
each subject. Thus, we detect the AUs which belong to the intersection of the
set of 24 AUs that can be detected by our method, and the set of AUs that
are jointly encoded for all the subjects of the data set. There are nine such
AUs (AU1, AU2, AU4, AU5, AU9, AU10, AU12, AU14 and AU17). Finally,
the encoding provided is only on a per sequence basis. Thus, experiments of
AU detection on a per frame basis could not be performed due to the lack of
ground truth.

Table 7 AU detection results on the dynamic 3D FACS data set per sequence.

AUs 1 2 4 5 9 10 12 14 17
Proposed Method 72.3% 89.9% 88.5% 87.7% 87.4% 89.5% 87.6% 89.1% 90.0%

3.3 Facial expression retrieval results

Based on the proposed AU detection scheme using 4D data, we illustrate
a spatio-temporal binary descriptor which can be used to perform 4D facial
expression retrieval. Each dynamic 3D facial mesh of theBP4D−Spontaneous
data set represents a single facial expression. In all tests, Leave-One-Out cross
validation was employed. Initially, for each 3D facial mesh sequence, used as a
query, we apply the AU detection scheme. We thus construct a list indicating
which of the 24 (or 13) tested AUs are activated within the sequence. This
list is the basis for a spatio-temporal descriptor as indicated in Equation 5.
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The descriptor of the query sequence is then compared against the descriptors
of the remaining sequences of the data set using the Hamming Distance [9].
An ascending sort of the sequences based on the similarity scores gives us the
retrieval list for the query.

Bi =

{
1 : if the i-th AU is activated within the sequence
0 : if the i-th AU is not activated within the sequence

}
(5)

The retrieval results are compared in terms of retrieval evaluation met-
rics: Nearest Neighbor (NN), first/second tier, Discounted Cumulative Gain
(DCG) and precision-recall diagram (PR diagram). Table 8 illustrates the
comparison of the proposed retrieval methodologies against the state-of-the-
art 4D facial expression retrieval techniques on the BP4D − Spontaneous
data set. Both variations of the proposed technique outperform the state-
of-the-art. The Proposed Methods with ground truth AUs are based on the
proposed methodology, except that the binary descriptor Bi is constructed
based on the ground truth for the 24 (or 13) AUs instead of the proposed AU
detection scheme, thus effectively assuming 100% detection rate for all 24 (or
13) AUs. Therefore, the performance (in terms of retrieval and recognition)
of the ground truth-based methods are upper bounds for any AU -based tech-
nique. Notice that the ground truth-based method using 13 AUs achieves a
higher upper bound than the one using 24 AUs. This is because these specific
13 AUs are directly connected to facial expressions [19], and thus, they are
more suitable for describing them. The remaining 11 AUs act as noise during
the training process of the SVM classifiers.

In Figure 12 the PR diagrams of the proposed retrieval methodologies are
presented in relation to the best state-of-the-art retrieval methodologies.

Table 8 Comparison of state-of-the-art and the proposed methodologies for the retrieval
process on BP4D − Spontaneous data set.

METHOD NN 1st TIER 2nd TIER DCG

Proposed Method with ground truth AUs (13 AUs) 0.83 0.71 0.90 0.91
Proposed Method (13 AUs) 0.72 0.66 0.79 0.86

Proposed Method with ground truth AUs (24 AUs) 0.69 0.57 0.74 0.86
Proposed Method (24 AUs) 0.68 0.55 0.72 0.84

GeoTopo+ [14] 0.67 0.55 0.72 0.83
FELM [94] 0.63 0.35 0.48 0.77

Danelakis et al. [13] (extended to 8 expressions) 0.61 0.52 0.69 0.82
Berretti et al. [5] 0.59 0.49 0.69 0.81

Distribution Vectors [55] 0.50 0.41 0.57 0.76
Curvature [70,71,68,78,80,6,100] 0.39 0.34 0.47 0.71

LBP − TOP [21,20] 0.39 0.34 0.47 0.71
Gradient [68,78,80] 0.38 0.33 0.46 0.71

Shape Index [29] 0.30 0.32 0.47 0.70

3.4 Facial expression recognition results

The AU -based descriptor Bi, illustrated in Equation 5, can be used to per-
form 4D facial expression recognition, in order to test the performance of the
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Fig. 12 PR diagram of the proposed methods and the top retrieval methodologies for
BP4D − Spontaneous data set.

descriptor against state-of-the-art methods whose performance is evaluated in
terms of classification accuracy. To this effect, a supervised procedure is used.
The sequences of the BP4D − Spontaneous data set are divided into train-
ing and testing subsets based on 5-fold cross validation. The training subset
is used to train an SVM classifier on the features of the binary descriptor
Bi. The RBF is used again as kernel function. Then, given a sequence of the
testing set, the trained SVM classifier is recruited to classify it into one of the
eight possible classes/expressions.

Although there are plenty of methods using 2D images, 2D videos and 3D
images for facial expression recognition [26,12,90,96,92,74,43,97,99,72,67,39,
40,49,56,18,48], we are focused on the 3D video modality techniques [7,94,
51,79,85,71,33,55,14,105]. Only the technique presented in [14] is tested on
the BP4D − Spontaneous data set and, thus, it can be reliable compared
to the proposed method. Table 9 presents the results of 4D facial expres-
sion recognition for all the expressions of the BP4D− Spontaneous data set.
The proposed AU -based 4D recognition methodology variations exhibit the
best classification results. The recognition performance of the 13 AU detec-
tion method is better than the 24 AU detection method, which, once again,
proves the superiority of the first subset of AUs when it comes to facial ex-
pression information. The ground truth-based methods achieve significantly
better results; this is because the binary descriptors of these methods achieve
better training for the SVM recognition classifier. It should be pointed out
that the 4D recognition methodology presented is [14] is unsupervised, while
our proposed procedures are supervised.
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Table 9 Overview of research work on dynamic 3D facial expression recognition on the
BP4D − Spontaneous data set.

METHOD NUMBER OF CLASSIFIER CLASSIFICATION
EXPRESSIONS TRAINING ACCURACY

Proposed Method with ground truth AUs (13 AUs) 8 YES 98.90%
Proposed Method with ground truth AUs (24 AUs) 8 YES 97.60%

Proposed Method (13 AUs) 8 YES 92.23%
Proposed Method (24 AUs) 8 YES 90.60%

GeoTopo+ [14] 8 NO 88.56%

3.5 Time efficiency

The experiments required a respectable amount of time in order to be executed.
On a machine with an Intel Core i7 CPU at 3.5GHz and 16GB RAM memory,
approximately 5 seconds per query sequence are needed. The time required for
landmark extraction is not included as the landmark extraction method can
vary. The proposed method is potentially real-time as the part following the
landmark extraction is real-time. The landmark extraction, used here, requires
approximately 3 minutes per mesh and is not real-time but, according to the
authors of the paper [47], it has a real-time potential.

4 Future challenges

TheBP4D−Spontaneous and the dynamic 3D FACS data sets, used through-
out this work, are of good quality. This fact allows our descriptors to be tested
within an almost ideal environment. Our proposed method depends on the
landmark extraction method that is used. The implemented extraction algo-
rithm [47], has been shown to be robust to noise, especially that coming from
facial expressions and their axis variations. A challenge would be to test the
proposed procedure to noisy real data. Such facial data are not yet available
when it comes to 4D modality.

Recently, deep learning methods are being applied when it is not easy to
design good features and large labeled training data sets are available. Such
large data sets are not currently available in the case of 4D facial expressions.
So, no reliable deep learning can be integrated, while human intuition has
resulted in a good set of features. The construction of artificial or real big 4D
data sets containing face data constitute a major future challenge. If such data
sets become available, then deep learning procedures could also be recruited
on the field.

5 Conclusions

AU detection lies at the heart of facial analysis. Applications, such as fa-
cial expression retrieval and recognition, can be based on AU detection. The
present work proposes a robust scheme for AU detection based on sequences
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of 3D facial meshes. Our scheme consists of three steps: (i) Detection of land-
marks for each 3D facial mesh of the sequence, (ii) Creation of a descriptor of
topological information, and (iii) Training classifiers using the features of the
aforementioned descriptor.

Our method employed significantly fewer landmarks than state-of-the-art
techniques. We proposed a set of features, based on the landmarks, which
extract topological information from a 3D facial sequence, resulting in a de-
scriptor for such data. These features are used to train classifiers which perform
AU detection.

The detection performance of the proposed scheme improves on the state-
of-the-art for most AUs while it can detect significantly more AUs than pre-
vious techniques that use 4D data. Among the multitude of applications of
AU detection, we illustrate facial expression retrieval and recognition. To this
end, the optimal combination of AUs for the description of facial expression
is highlighted. The retrieval performance is comparable to the state-of-the-art
while the recognition performance outperforms it.
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