
June 2008
Morten Breivik, ITK
Vegard Evjen Hovstein, Maritime Robotics

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Collision Avoidance for Unmanned
Surface Vehicles

Øivind Aleksander G. Loe





Problem Description
The candidate will consider the problem of collision avoidance for unmanned surface vehicles
(USVs). The following elements must be considered:

1. Develop a COLREGS-compliant collision avoidance system for USVs that is able to avoid
collisions with both static and dynamic objects. Evaluate the performance of the suggested
scheme by numerical simulations.
2. Assess the collision avoidance capabilities of the Maritime Robotics Viknes 830 vessel
(actuators, sensor suite, computational capacity). Suggest suitable updates to the existing
configuration by performance-price appraisals.
3. Implement the suggested collision avoidance system on the Maritime Robotics hardware-in-
the-loop (HIL) USV simulator, and evaluate all relevant performance aspects thoroughly.
4. Implement the collision avoidance system on the Maritime Robotics Viknes 830 vessel and
perform full-scale experiments in the Trondheim fjord.
5. Evaluate the stability of the closed-loop USV system theoretically, and take into account, e.g.,
maneuverability considerations in your analysis.

Assignment given: 07. January 2008
Supervisor: Morten Breivik, ITK





Preface

Already before I started working on collision avoidance, I dreamed about what could
be achieved with a vehicle able to autonomously navigate its environment. Collision
avoidance is a requirement for achieving autonomy, which will become ever more present
in the future. The work on designing and developing the collision avoidance system
presented in this thesis has been hard but also very rewarding. Being able to try the
system on a full-scale vessel and seeing it work in the real world, and not only in the
simulations, was all along the big carrot, and it all paid off in the end when the system
actually worked.

I would like to express my gratitude to some of the people that made this thesis possible.
First of all, my supervisor Morten Breivik, who guided me in the right directions and
provided me with a lot of help. The people working at Maritime Robotics in Trondheim;
Arild Hepsø, Eirik E. Hovstein, Stein Johansen and Vegard E. Hovstein, generously
made their vessels available for testing through the entire period, and were also of great
assistance. Last but not least, i would like to thank two people from my graduation
class; Åsmund V̊age Fannemel for great help on some vessel dynamics issues and control
analysis, and H̊avard Halvorsen for the collaboration on vessel identification.

Øivind Loe
Trondheim, June 2008

V



VI



Abstract

Considerable progress has been achieved in recent years with respect to autonomous ve-
hicles. A good example is the DARPA Grand Challenge, a competition for autonomous
ground vehicles. None of the competing vehicles managed to complete the challenge in
2004, but returning in 2005, a total of five vehicles were successful. Effective collision
avoidance is a requirement for autonomous navigation, and even though much progress
has been done, it still remains an open problem.

The focus of this thesis is on the development of a collision avoidance system for
unmanned surface vehicles (USVs), which is compliant with the International Regula-
tions for Avoiding Collisions at Sea (COLREGS). The system is based on a modified
version of the Dynamic Window algorithm, taking both acceleration and lateral
speeds into account for reactive collision avoidance. Path planning is provided by the
Rapidly-Exploring Random Tree (RRT) algorithm, extended to use the A* algorithm
as a guide, which significantly increases its efficiency.

Extensive simulations have been performed in order to determine the value of the mod-
ifications done to the original algorithms, as well as the performance of the total control
system. Full-scale experiments have also been carried out in an attempt to verify the
results from the simulations. The collision avoidance system performed very well during
the simulations, finding near-optimal paths through the environment and evading other
vessels in a COLREGS-compliant fashion. In the full-scale experiments, important sen-
sor data was erroneous, resulting in reduced avoidance margins. However, the collision
avoidance system still kept the controlled vessel safe, showing significant robustness.

VII



VIII



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical background 7
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Global vs. local methods . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 The hybrid approach . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Operating spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Vessel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Collision avoidance methods . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Local method: Dynamic Window . . . . . . . . . . . . . . . . . . . 15
2.2.2 Global method: RRT . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Global method: A* . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Head-on situation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Overtaking situation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Crossing situation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 The give-way vessel . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.5 Action to avoid collision . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 A novel hybrid collision avoidance concept 33
3.1 Local collision avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 No longer on arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 World representation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.4 Following the rules of the road . . . . . . . . . . . . . . . . . . . . 40
3.1.5 Utility function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Global collision avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

IX



3.2.1 Milestone generator . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 The local controller . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.4 Medial nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.5 When the algorithm fails . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Glued together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Path tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Simulation results 65
4.1 Basic collision avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 The RRT modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 A* assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3 Medial nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 The Dynamic Window modifications . . . . . . . . . . . . . . . . . . . . . 73
4.4 COLREGS-compliant collision avoidance . . . . . . . . . . . . . . . . . . . 75

4.4.1 Head-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Crossing from left . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.3 Crossing from right . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 The advantage of the hybrid approach . . . . . . . . . . . . . . . . . . . . 79

5 Full-scale implementation 81
5.1 The Viknes 830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.2 Vessel capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.3 Model identification . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.1 Low-level controllers . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 HIL system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 HIL for the Viknes . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Full-scale experiments 99
6.1 HIL simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 Reactive scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.2 Hybrid scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Sea trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.1 Reactive scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.2 Hybrid scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Control system analysis 111
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1 The simplest case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

X



7.2.2 It gets worse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Discussion 119

9 Conclusion 123

Bibliography 125

XI



List of Figures

1.1 The Global Hawk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Interceptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Hybrid architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Vessel control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Dynamic Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

(a) Vessel and obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
(b) Distance map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
(c) Heading map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
(d) Speed map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
(e) Final dynamic window map . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Path generated by RRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 A* example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

(a) Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
(b) Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Path generated by A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 A* distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

(a) Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
(b) Poor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Head-on situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(a) Correct pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(b) Incorrect pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Crossing situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(a) Correct crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(b) Incorrect crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 A new hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 No longer on arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

(a) Original . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
(b) Modified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Error in C-space approximation . . . . . . . . . . . . . . . . . . . . . . . . 39
(a) Small error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(b) Large error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 World representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

XII



(a) Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(b) Collapsed C-space with safety reagion . . . . . . . . . . . . . . . . . 39

3.5 Collision cone geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 COLREGS sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Head-on penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Crossing penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 Dynamic Window maximum distance . . . . . . . . . . . . . . . . . . . . . 46
3.10 Modified Dynamic Window . . . . . . . . . . . . . . . . . . . . . . . . . . 47

(a) Vessel and dynamic obstacle . . . . . . . . . . . . . . . . . . . . . . 47
(b) Distance map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
(c) COLREGS map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
(d) Environment map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
(e) Unsafe map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
(f) Heading map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
(g) Speed map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
(h) Final dynamic window map . . . . . . . . . . . . . . . . . . . . . . . 48

3.11 Halton sequence distribution . . . . . . . . . . . . . . . . . . . . . . . . . 51
(a) Random distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
(b) Halton distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 Candidate milestones with and without A* assistance . . . . . . . . . . . 52
(a) Without A* assistance . . . . . . . . . . . . . . . . . . . . . . . . . . 52
(b) With A* assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.13 Continuity with old path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.14 Path tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.15 Line following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.16 Circle of Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.17 Another switching scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.18 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Basic collision avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
(a) Single simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
(b) Multiple simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Simulations w/o continuity extension . . . . . . . . . . . . . . . . . . . . . 69
(a) Poor performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
(b) Limit cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Simulations with/without A* . . . . . . . . . . . . . . . . . . . . . . . . . 71
(a) No A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
(b) 10% A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
(c) Less CPU, no A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
(d) Less CPU, 50% A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Regular vs. improved Dynamic Window: Scenario 1 . . . . . . . . . . . . 73
(a) Regular Dynamic Window . . . . . . . . . . . . . . . . . . . . . . . . 73
(b) Improved Dynamic Window . . . . . . . . . . . . . . . . . . . . . . . 73

XIII



4.5 Regular vs. improved Dynamic Window: Scenario 2 . . . . . . . . . . . . 74
(a) Regular Dynamic Window . . . . . . . . . . . . . . . . . . . . . . . . 74
(b) Improved Dynamic Window . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Dynamic Window Head-on . . . . . . . . . . . . . . . . . . . . . . . . . . 76
(a) Without COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
(b) With COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 RRT Head-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
(a) Without COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
(b) With COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Dynamic Window crossing from left . . . . . . . . . . . . . . . . . . . . . 77
(a) Without COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
(b) With COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 RRT crossing from left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
(a) Without COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
(b) With COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.10 Dynamic Window crossing from right . . . . . . . . . . . . . . . . . . . . 78
(a) Without COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
(b) With COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.11 RRT crossing from right . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
(a) Without COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
(b) With COLREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.12 Advantage of the hybrid approach . . . . . . . . . . . . . . . . . . . . . . 79
(a) Initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
(b) Following RRT path . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
(c) Deviating from path . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
(d) Back on path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.13 RRT outmanoeuvring hostiles . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 The Viknes 830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 GPS satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 AIS display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 ECDIS display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Yaw-dynamics identification . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6 Vessel control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.7 HIL system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Reactive scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
(a) Starting out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
(b) COLREGS manoeuvre . . . . . . . . . . . . . . . . . . . . . . . . . . 102
(c) Final trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Hybrid scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
(a) Starting out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
(b) Initial RRT path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
(c) Improved RRT path . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

XIV



(d) COLREGS compliant path . . . . . . . . . . . . . . . . . . . . . . . 104
(e) Deviating from path . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
(f) Final trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Reactive scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
(a) Starting out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
(b) Approaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
(c) Evasive manoeuvre . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
(d) Final trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Reactive scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
(a) Starting out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
(b) Initial RRT path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
(c) Improved RRT path . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
(d) Other vessel enters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
(e) COLREGS compliant path . . . . . . . . . . . . . . . . . . . . . . . 109
(f) Deviating from path . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
(g) Back to the path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
(h) Approaching goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
(i) Final trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1 Limit cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

XV



List of Tables

2.1 The notation of SNAME for marine vessels . . . . . . . . . . . . . . . . . 11

4.1 Low-level controller parameters . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Dynamic Window parameters . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 RRT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Computer specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Gains using RRT modifications . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Gains using RRT modifications at lower CPU usage . . . . . . . . . . . . 72

5.1 Viknes 830 specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Vessel mass and inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Nomoto model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Yaw-dynamics identification . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Parameters for the vessel’s equation of motion . . . . . . . . . . . . . . . . 92

XVI



Chapter 1

Introduction

1.1 Motivation

Automation has been a part of the human nature for a long time. Whether for making
life easier, or to get more work done in less time, we constantly try to find ways to au-
tomate processes. In most cases, automation results in higher quality, faster execution
and more cost-effectiveness. It is not hard to see why automated processes are taking
over.

This trend has been visible for years in the process industry. Ever since the industrial
revolution, factories have seen human labour being more or less replaced by automated
machines, moving people into surveillance and management of the autonomous control
systems.

It is not only factories that are seeing humans replaced by machines however. Vehicle
control is slowly but surely relying more and more on automation. The evolution seen
in aircraft is a good example of this. In the first planes, humans controlled the plane
manually by wires connected to the actuators of the plane. For slow-going aircraft, this
is feasible, but as planes got faster and unstable designs became more common, the re-
action time of a human was suddenly too slow to be able to control the aircraft. In these
systems the pilot gives commands to an aircraft computer, which then tries to control
the plane according to the commands of the pilot.

In current fighter-plane designs, humans are often the limiting factor for the manoeu-
vres possible to execute. To improve the performance further, humans have to be re-
moved from the planes. There are then two possible solutions: The plane can be remotely
controlled by a pilot stationed on the ground, or it can be controlled autonomously by an
onboard control system, receiving goals from an operator and achieving them on its own.

Because of the opportunities of saving human lives and reducing costs, the military
has been at the forefront of development of autonomous vehicles for a long time. From

1



autonomous aerial drones to armed land-based vehicles, such tools can give an important
edge on the enemy.

Figure 1.1: The RQ-4 Global Hawk is an unmanned US surveillance aircraft designed
to operate autonomously. (Image courtesy of Northrop Grumman [25])

As the technology for controlling vehicles semi- or fully-autonomously matures and
gets more available, we will se applications in civilian sectors becoming more com-
mon. The DARPA Grand Challenge [1, 54] is an important contributor to civilizing
autonomously controlled vessels.

The focus of this thesis is on the development of a collision avoidance system for au-
tonomous unmanned surface vehicles (USV). Being able to operate a vessel autonomously
has a lot of benefits. As humans are no longer needed on the vessel, it can have a more
compact design and focus on its equipment. The manoeuvrability and efficiency of the
vessel is increased, as vessel motions don’t have to be reduced for the comfort of the
crew. By not carrying other supplies than fuel, and not carrying people, the vessel can
operate for extended periods of time. Given enough fuel, for instance by nuclear fission
or some future technology, the vessel can potentially operate for years without stop.

The most important benefits however may be those of safety and cost. An unmanned
vessel can operate in dangerous areas without the risk of losing human life. This may
be anything from reconnaissance in hostile areas to operations in dangerous weather
conditions. The issue of cost is what might actually be responsible for the first civilian
adoption of autonomous vehicles. Being able to remotely operate a vehicle may severely
reduce the number of people required per vessel. With fully autonomous vessels, one
could also imagine a single operator having the responsibility for several vessels, reducing
the operating costs even further.

One of the main obstacles to autonomously operated vehicles is the lack of a legal
framework. For military applications this may be of less concern, but for civilian appli-
cations, where the autonomous vehicles have to interact with and avoid other civillian

2



Figure 1.2: The Interceptor is an unmanned surface vessel (USV). Commanded by an
on-board computer it is designed to autonomously complete the goals it
is given by an operator [49]. Applications for USVs include patrol and
surveillance, for instance for harbour security and customs, mapping of
the seabed, geological surveys, etc. (Image courtesy of 5G Marine Systems
[6])

vehicles, safety and regulatory frameworks must be in place. The legal groundwork for
UAVs has come much further than that for other unmanned vehicles, and the Global
Hawk shown in Figure 1.1 was the first UAV cleared for routine operation in US na-
tional airspace [14]. Much work need to be done before USVs can operate legally under
autonomous control however.

Effective collision avoidance is a prerequisite for an autonomous vehicle, since it has
to be able to navigate its environment safely. Much work has already been done in the
field of collision avoidance, but it is still an open problem. It is in fact impossible to
create a system that is able to guarantee 100% collision avoidance. If a hostile vehicle
deliberately tries to collide with the controlled vehicle, collision avoidance is only pos-
sible if the controlled vehicle is more manoeuvrable than the hostile. If the controlled
vehicle has a limited endurance however, e.g., is limited on fuel, an escape may not be
possible even though it has better manoeuvrability.

There are still major gains to be achieved by higher quality collision avoidance sys-
tems. The only way for autonomous vehicles to be commonly accepted is if they are
shown to be as safe, or hopefully safer, than vehicles under manual control.

3



1.2 Contribution

The contribution of this thesis is the development of a collision avoidance system com-
pliant with the International Regulations for Avoiding Collisions at Sea (COLREGS).
The system is based on the Dynamic Window and Rapidly-Exploring Random Tree
(RRT) algorithms, which have both been modified giving a documented improvement.
The Dynamic Window algorithm has been modified to include acceleration and lateral
movement into its predictions, making it much more suitable for controlling surface ves-
sels, and the RRT has been given multiple extensions to improve its performance. The
COLREGS implementation is somewhat based on the ideas presented in [13].

Extensive simulations have been done to show the qualities of the system. Combined
with the results from a couple of full-scale experiments, they show that the collision
avoidance system works as expected. An analysis has also been done of the system.

1.3 Outline

This thesis is made up of several distinct chapters. Chapter 2 goes through basic the-
ory around collision avoidance and vessel models. It also lists the basic parts of the
COLREGS that applies to a collision avoidance system. Chapter 3 discusses the hybrid
collision avoidance system developed as part of this thesis, detailing the modifications
made to the original algorithms. Chapter 4 shows results from simulations with the
collision avoidance system done in Matlab. Chapter 5 goes through the identification
of the model for a physical vessel, the target for our full-scale experiments, and gives a
short overview of the control-system for the vessel. Results from full-scale experiments,
both with a Hardware-in-the-Loop simulator and with the physical vessel are given in
Chapter 6. A short analysis of the collision avoidance system is done in Chapter 7, while
a discussion and final conclusion follows in Chapter 8 and Chapter 9.

4



1.4 Notation

x State vector
u Input vector; vector of manipulated variables
u Surge velocity of a vehicle
usp Set-point for surge velocity
ψ The heading of a vehicle
ψsp Set-point for heading
r Yaw rate of a vehicle
rsp Set-point for yaw rate
W Workspace
C Configuration space
Cfree Free part of C
Cobs Obstructed part of C

1.5 Abbreviations

AIS Automatic Identification System
ARPA Automatic Radar Plotting Aid
CA Collision Avoidance
CDP Control Design Platform
CG Center of Gravity
COLREGS International Regulations for Avoiding Collisions at Sea
DOF Degree Of Freedom
DP Dynamic Positioning
DW Dynamic Window
GPS Global Positioning System
ICD Industrial Control Design
IMO International Maritime Organization
IMU Inertial Measurement Unit
LOS Line Of Sight
ROT Rate Of Turn
RRT Rapidly-Exploring Random Tree
TCPA Time of Closest Point of Approach
USV Unmanned Surface Vehicle

5



6



Chapter 2

Theoretical background

2.1 Preliminaries

Over the years, a wealth of different collision avoidance methods have been developed.
The methods differ greatly in their levels of sophistication, ranging from the obvious
methods such as the potential field method [31, 33] to more involved methods as the
Rapidly-Exploring Random Tree method [36]. A thorough review is given in [38].

In order to give a better understanding of the presented collision avoidance algo-
rithms, some distinctions must first be made. The most important may be the difference
between global and local collision avoidance methods.

2.1.1 Global vs. local methods

Global methods are often referred to as path planning or motion planning methods [37].
They store information about the surrounding environment in a map, and use this map
to find a route from a given start to a given goal. The goal can either be a set of spatial
coordinates, or a complete description of the vehicle state, including velocity, orienta-
tion, etc.

A global method is thus a method that uses global information about the environ-
ment. This includes information that is not directly sensable from the current state of
the vehicle, but exists in a memory available to the global method.

The major downside to the global methods is their long computation time. The
amount of required processing power results in updates taking everything from a couple
of seconds to several minutes. This makes the global methods inappropriate for rapidly
changing dynamic environments, as their reaction time is too long.

Local methods on the other hand, require orders of magnitude less computing power
than the global methods. This makes them excellent for dynamic environments, as they

7



are able to react to changes very quickly. The local methods are fast because they only
consider the immediate environment of a vehicle. They are also memoryless, as they
generally have no knowledge of the environment not currently covered by the vessel sen-
sors.

Local methods can make good progress towards the goal, but they can never guar-
antee that the goal is reached, as they lack global information. In other words: global
convergence cannot be proved for local methods.

Global methods may also fail in finding a valid path to the goal, but they are more
likely to succeed than the local methods.

Global methods are often referred to as deliberate methods, while local methods are
named reactive or reflexive [9, 17].

2.1.2 The hybrid approach

As explained in Section 2.1.1, both global and local methods have their weaknesses. The
hybrid methods try to solve this problem by combining a global method with a local
method. This is often done as a multi-tier system as illustrated in Figure 2.1, where the
global method generates a nominal path which the local method tries to follow.

Figure 2.1: The hybrid architecture matches a global method with a local method to
create a controller with good responsiveness, and a good chance of effi-
ciently finding the goal. Completeness is used as a measure of a method’s
ability to find a solution to a problem if such a solution exists. Low-level
controllers are included for reference.

The global method uses global information and memory to ensure global convergence
to a given goal. Running at a higher rate than the global method, the local method is
able to see and react to events not planned for by the global method. This makes the
hybrid approach more robust than the global method alone, while it still maintains the
tractable properties of the global methods.

The superiority of the hybrid approach was demonstrated by the simulations in [38].

8



2.1.3 Operating spaces

Another thing worth mentioning is the use of different operating spaces in the collision
avoidance algorithms. An operating space is a world representation. We mainly dis-
tinguish between two types of operating spaces: The workspace and the configuration
space.

The workspace

The physical two- or three-dimensional environment of the vehicle is called the workspace
W of the vehicle. The workspace is global in the sense that it applies to all physical ob-
jects. Unlike the next space to be presented, it is not specific to any vehicle or dynamic
system.

The workspace can be defined as W = R2 or W = R3 depending on the number of
world dimensions we are working with. Regions in W occupied by obstacles are denoted
O ⊂ W, and are forbidden for our vehicle.

The configuration space

To make collision avoidance simpler to manage, especially for vehicles with many de-
grees of freedom (DOF), a new space is defined, namely the configuration space C [37] is
required.

Also known as the C-space, the configuration space of a physical system encompasses
all its possible configurations. A 6 DOF vehicle for instance results in a 6-dimensional
configuration space, with one dimension for each system state. A C-space is thus par-
tially specific to a given system, as opposed to the general workspace.

C also contains regions that are forbidden due to physical constraints such as obstruc-
tions. If our vehicle is defined by V(q) ⊂ W at a configuration/state q, the forbidden
configurations are defined as:

Cobs = {q ∈ C | V(q) ∩ O 6= Ø} . (2.1)

Cobs thus contains all the configurations of our vehicle where it would have been inter-
secting obstacles. By avoiding this set, our vehicle avoids collisions. The set containing
the allowed configurations is called the free set and is given by:

Cfree = C\Cobs. (2.2)

Collision avoidance is now reduced to keeping our vehicle inside Cfree, and path
planning is a matter of finding a path from qinit to qgoal inside Cfree

9



Other spaces

The Ego-Dynamic space [40], and the more advanced Ego-KinoDynamic space [39] are
examples of other spaces that can make collision avoidance even simpler. They are both
derived from the configuration space C, and add features such as removing parts from
Cfree that our vehicle cannot access without entering Cobs at a later time.

2.1.4 Vessel model

Many control systems depend on having a mathematical model of the system to be con-
trolled. For the simpler controllers, the model is used to tune the control system. More
advanced controllers however, such as the one to be presented in this thesis, use the
model actively to predict how the controlled system will react to control inputs Then
the accuracy of the model can have a big impact on the performance of the controller.
On the other hand, simple models are often preferred because they can make controller
synthesis simpler. A model with less parameters is also preferred because there are less
parameters to determine.

One of the simplest surface-vessel models is the 1st-order Nomoto model [20] which
can be seen in (2.3). The model describes the steering dynamics of a vessel travelling at
a given forward speed as a 1st-order transfer function from the rudder angle δ to the yaw
rate r of the vessel. While it is not very accurate, it is linear, has only two parameters,
and is thus very easy to work with. Examples can be found in [26, 27].

r

δ
(s) =

K

1 + Ts
. (2.3)

The quality of the model can be improved with gain-scheduling, but in this thesis, a
more involved model which captures more of the vessel dynamics will be used.

The equations of motion

The work in this thesis is based on a 3-DOF surface-vessel model, using a total of 6
states to describe the motions of the vessel.

The states of the vessel are given according to the SNAME notation as shown in
Table 2.1. They consist of the vessel’s generalized coordinates η = [x y ψ]T given in a
world frame, and the velocity of the vessel ν = [u v r]T , defined in the body frame of
the vessel. The generalized coordinates consist of the spatial coordinates of the vessel
(x, y) and its heading ψ. The forward/surge/longitudinal speed of the vessel is given by
u, while the sideways/sway/lateral speed is given by v. The vessel’s rate of turn (ROT),
or yaw rate, is given by r.

The equations of motion are given as [20]:

10



forces/
moments

linear/angular
speeds

positions/
angles

Motions in the x-direction (surge) X u x
Motions in the y-direction (sway) Y v y
Rotations about the z-axis (yaw) N r ψ

Table 2.1: The notation of SNAME for marine vessels. Only the values applicable for
a 3-DOF model are shown. The vessel model in this thesis has the forces,
moments and velocities defined in the body frame of the vessel, and the
positions and angles in a world frame.

η̇ = R(ψ)ν (2.4)
Mν̇ +C(ν)ν +D(ν)ν = w + τ . (2.5)

To make this system and its matrices as simple as possible, we let the body origin
coincide with the vessel’s center of gravity, and the body axes with the longitudinal,
lateral and normal symmetry axes of the vessel.

In (2.5), R(ψ) is a rotation matrix used to transform the vessel-fixed velocities to
the world frame:

R(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (2.6)

M is the inertia matrix. In addition to rigid-body mass, the mass of the physical
vessel, it contains the added mass of the vessel: M = MRB + MA. Added mass is a
hydrodynamic phenomenon. It can be understood as pressure-induced forces and mo-
ments due to a forced harmonic motion of the vessel body proportional to its acceleration
[20]. By assuming an ideal fluid, zero relative velocity to the fluid and zero frequency
of motion due to water surface effects, the added mass matrix is constant and strictly
positive [44].

The rigid-body inertia matrix of the vessel is given as:

MRB =

 m 0 0
0 m 0
0 0 Iz

 , (2.7)

where m is the vessel mass, and Iz is the moment of inertia about the z-axis of the
vessel. The added mass matrix for the simplified case defined above is defined as:

MA = −

 Xu̇ 0 0
0 Yv̇ Yṙ
0 Nv̇ Nṙ

 , (2.8)

11



C(ν) is a coriolis and centripetal matrix, and as the mass matrix it is given as
C(ν) = CRB(ν) +CA(ν), where the last term counts for added coriolis. The rigid-body
coriolis and centribetal matrix is for our system:

C(ν) =

 0 0 −mv
0 0 mu
mv −mu 0

 , (2.9)

and the added coriolis for our system is defined as:

C(ν) =

 0 0 −Yv̇v + Yṙ+Nv̇
2 r

0 0 Xu̇u

Yv̇v + Yṙ+Nv̇
2 r −Xu̇u 0

 . (2.10)

The last matrix, namely D(ν) is a damping matrix. It accounts for hydrodynamic
damping effects such as skin friction and vortex shedding. There are many ways to
define the damping matrix, and simplifications always have to be made. In this thesis
it is defined as follows:

D(ν)ν = DLν + DNL(ν)ν, (2.11)

where DL accounts for linear damping, and is given as:

DL = −

 Xu 0 0
0 Yv Yr
0 Nv Nr

 , (2.12)

and DNL accounts for nonlinear damping:

DNL(ν)ν = −

 X|u|u|u|u+Xuuuu
3

Y|v|v|v|v + Yvvvv
3

N|r|r|r|r +Nrrrr
3

 . (2.13)

Environmental forces such as wind, waves and currents are represented by w. In this
thesis such influences are not considered, giving w = 0.

The actuators of the vessel influence it through the generalized force vector τ :

τ =

 τX
τY
τN

 , (2.14)

where τX and τY are the forces applied along the longitudal and lateral axes of the
vessel, respectively. Torque applied about the z-axis of the vessel is given by τN .

The target vessel has only two actuators; a propeller and a rudder, and is thus
under-actuated because it has less actuators than degrees of freedom. The actuators are
simplified to the point where they are forces that can be controlled directly. This can

12



be justified by assuming that the vessel has low-level control loops for the actuators,
adjusting them to match the requested force.

With the propeller generating a force Fx in the longitudal direction, and the rudder
generating a lateral force Fy, the generalized forces in (2.14) become:

τX = Fx (2.15)
τY = Fy (2.16)
τN = lrFy, (2.17)

where lr is the distance from the vessel’s center of gravity to the point of attack of
the rudder force. The forces Fx and Fy are available for manipulation by the low-level
controllers.

Low-level controllers

In most cases, it is not desirable to have higher level controllers such as collision avoid-
ance algorithms controlling the actuators of a vessel directly. It is much more convenient
to let those algorithms control values such as desired vessel speed and turn-rate. This is
accomplished by having a set of low-level controllers drive the actuators trying to fulfill
the commands from the higher level algorithms. Dividing a control system into separate
components is often preferred over having a large monolithic controller. This is because
the resulting modularity helps reduce complexity and can make controller development
more manageable.

The resulting control structure is visualized in Figure 2.2.

Figure 2.2: This figure shows the control structure employed for the vessel. Starting
from the left, high-level controllers receive commands from an external
source. Combining this with a state measurement (or estimate) x, the
high-level controllers generate set-points usp for the low-level controllers,
which then provide the vessel with actuator commands u.

Two options for controlling the vessel are made available to the algorithms. They can
either control the surge speed and turn-rate of the vessel by using the set-points (usp, rsp),
or they can control the surge speed and heading of the vessel through (usp, ψsp).

13



For controlling the vessel model (2.5) during simulations, the following low-level
controllers will suffice. When controlling (usp, rsp) the controller equations are:

Fx =

FF︷ ︸︸ ︷
−Xuu−X|u|u|u|u−Xuuuu

3 −mrv+

P FB︷ ︸︸ ︷
Kp,um(usp − u) (2.18)

lrFy = −Nrr −N|r|r|r|r −Nrrrr
3︸ ︷︷ ︸

FF

+Kp,rIz(rsp − r)︸ ︷︷ ︸
P FB

, (2.19)

Since the exact vessel model, parameters and vessel state is known at all times, these
controllers can cancel most of the terms of the vessel model using feed forward (FF),
compensating for unwanted motions by prediction before they can be sensed. By remov-
ing the nonlinear damping terms and coriolis, the controllers turn the nonlinear vessel
model into a linear system, which is controlled by the proportional feedback (P FB) in
the controllers.

The act of removing nonlinear elements from a system by feed forward is called feed-
back linearization. The problem with this approach is that it requires a rather accurate
system model, so for a real vessel, other controllers must be used.

When controlling (usp, ψsp), the yaw rate controller is replaced with the following
heading controller:

lrFy = Kp,ψIz(Γ(ψsp − ψ) + Td,ψ(ψ̇sp − r))︸ ︷︷ ︸
PD FB

, (2.20)

which is a general proportional-derivative (PD) controller, that does not use any kind
of feed forward. The function Γ : R → 〈−π, π] maps the heading error to the interval
〈−π, π], making sure that the proportional term of the controller always causes the ves-
sel turn the correct way in order to reduce the heading error.

The derivative of the set-point is often set to zero, but when the derivative is known
and continuous, using it in the controller can give the system better performance.

2.2 Collision avoidance methods

As already mentioned, many methods for avoiding collisions exist. A review of some of
the most important methods is given in [38]. Of the reviewed methods, the combination
of the Dynamic Window algorithm and the Rapidly-Exploring Random Tree algorithm
came out on top, neck and neck with the combination of Dynamic Window and the A*
algorithm.

A description of these collision avoidance methods is given in the following sections.
The methods are presented as they have been described and implemented in the liter-
ature, and provide a basis for the collision avoidance methods used in this thesis. To

14



improve the performance of these algorithms, a number of modifications and extensions
have been developed, which are presented in Chapter 3.

2.2.1 Local method: Dynamic Window

The Dynamic Window approach was first published in the article The Dynamic Window
Approach to Collision Avoidance by Fox, Burgard and Thrun in 1997 [21]. The method
was designed to take the limited velocities and accelerations of vehicles into account,
giving a collision avoidance method that does not ask for impossible control actions.

Traveling along arcs

The method assumes that the velocity of our vehicle, including linear velocity and rate of
turn, is constant within a given time-interval. Neglecting sway motion, the trajectory of
our vehicle during a time-interval can then be estimated as a straight line or a constant-
radius arc. The arc centers for different velocities can be calculated as:

aix = x− ui
ri

sinψ (2.21)

aiy = y +
ui
ri

cosψ, (2.22)

where ui is the surge speed and ri is the rate of turn of the vehicle during interval i,
(x, y) is the position of the vehicle, and ψ is its heading. The radius of the arc is given
by:

air =
∣∣∣∣uiri
∣∣∣∣ . (2.23)

Admissible velocities

As sway is neglected, the pair (ui, ri) now represents the velocity of our vehicle during
interval i, and it is up to the Dynamic Window algorithm to select the best values for
these. Not all of the pairs represent valid choices.

One of the restrictions on the choice of (ui, ri) is that it must not put the vehicle
in danger of colliding in the next interval. In other words: the vehicle must be able to
come to a complete stop by braking in the next interval for the choice to be valid. The
set of these velocities is called admissible velocities, and is defined as follows:

Va =
{
u, r

∣∣∣ |u| ≤√2 · dist(u, r) · u̇b, |r| ≤
√

2 · dist(u, r) · ṙmax
}
, (2.24)

where dist(u, r) is the distance the vehicle can travel along the given arc before
hitting an obstacle, ṙmax is the maximum angular acceleration of the vehicle, and u̇b is
the maximum braking acceleration, given by:

15



u̇b =
{
u̇min, u ≥ 0
u̇max, u < 0

, (2.25)

where u̇max > 0 is the maximum forward acceleration of the vehicle, and u̇min < 0
is the maximum reverse acceleration.

The notion of admissible velocities in the Dynamic Window method can be related
to the Ego-Dynamic and Ego-KinoDynamic spaces, see Section 2.1.3.

The Dynamic Window

The second restriction put on the choice of velocities is that they have to reside in a
dynamic window. The dynamic window consists of all the velocities that can be reached
during the next time interval using the limited accelerations of the vehicle. This window
is centered around the current velocities of the vehicle (ua, ra). With Ta being the time
allowed for acceleration during the next interval, the dynamic window Vd is defined as:

Vd = {u, r | u ∈ [ua + u̇minTa, ua + u̇maxTa] , r ∈ [ra − ṙmaxTa, ra + ṙmaxTa]} . (2.26)

Let umin ≤ 0 be the maximum reverse speed of the vehicle, umax > 0 the maximum
forward speed, and rmax the maximum angular rate. The set Vs, denoting the velocities
reachable by our vehicle can then be defined as:

Vs = {u, r | u ∈ [umin, umax] , r ∈ [−rmax, rmax]} . (2.27)

The set of valid velocities Vr for the next time interval is then given by (2.28), which
constitutes the search space of the algorithm:

Vr = Vs ∩ Va ∩ Vd. (2.28)

Selecting the optimal velocities

When the search space has been determined, it is time to select the optimal velocities in
the space. This is done by maximizing the following objective function over the search
space:

G(u, r) = σ (α · heading(u, r) + β · dist(u, r) + γ · speed(u, r)) , (2.29)

where σ(...) is a low-pass filter to help reduce fluctuations. The objective function is
a linear combination of the three functions heading, distance and speed, with the impor-
tance of the functions being decided by the constants α, β and γ. With correctly chosen
weights, maximizing the objective function should make sure our vehicle travels in the
right direction while avoiding obstacles and keeping its velocity high.

16



(a) Vessel and obstacles

(b) Distance map

Figure 2.3: In (a) our vessel is navigating the map using the Dynamic Window
method. The distance map is shown in (b). The choices of angular rates
lie along the x-axis, and the different surge speeds lie along the y-axis.
The brighter a cell in the distance map is, the further our vehicle can
travel using that velocity command. Brighter is better. The blue rectan-
gle marks the current velocity of the vehicle, and the commanded velocity
is marked by the red rectangle. The blue lines in (a) show the predicted
trajectories for different velocity choices. The red line shows the chosen
trajectory.

17



(c) Heading map (d) Speed map

(e) Final dynamic window map

Figure 2.3: The heading-map is displayed in (c), and the speed map is shown in (d).
Combined with the distance map, they result in the dynamic window map
shown in (e). This map is the basis for the commanded velocity shown in
red, ideally resulting in the vessel following the red trajectory in (a).

18



The distance and speed functions should be self-explanatory. The heading function
is also pretty simple, and is given as 180 − θ, where θ is the angle between a vehicle
heading estimate ψ̂ and a desired heading ψsp. This promotes choices where the heading
estimate is closer to the target heading, hopefully making the vessel travel in the target
direction.

The vehicle direction ψ̂ estimate is calculated as the direction obtained by holding
the yaw rate r for a given time Tr > 0, and then doing a full angular deceleration using
the maximal angular acceleration of the vehicle ṙmax > 0. With ψ being the current
heading of the vehicle, the estimate becomes:

ψ̂ = ψ + rTr +
1

2 · ṙmax
r|r|. (2.30)

To make the search simple, the search area is discretized, giving us a set of M pos-
sible translational velocities uj , and N possible angular velocities rk. The number of
different choices is now M ·N , and the value of the objective function can be calculated
for each choice. Selecting the optimal velocities is then reduced to a matter of picking
the choice with the largest objective function value.

Summary

The Dynamic Window algorithm is a collision avoidance algorithm that only takes the
immediate surroundings of the vehicle into account. In contrast to simpler methods such
as the Virtual Force Field (VFF) [32, 38] and Vector Field Histogram (VFH) [9, 32, 38],
the method takes vehicle dynamics into consideration when deciding on how to steer
the vehicle. Consequently it requires a good deal more computational power than these
simpler methods, but also gives better results.

The Dynamic Window algorithm tries to keep a given target heading. As shown in
[38], the algorithm is often able to lead a vehicle to a goal in a simple environment. An
example of this is shown in Figure 2.3. For more complex environments however, the
lack of memory and a global view of the environment causes problems, often leading the
algorithm into local minima in the environment, making further progress impossible.

When used in combination with a global path-planner, responsibility of the Dynamic
Window algorithm is dynamic collision avoidance along a generated path.

2.2.2 Global method: RRT

The Rapidly-Exploring Random Tree method (RRT), was introduced by LaValle in 1998
[36]. It is a motion planning method that can plan a path while taking the dynamics
of the vehicle into account. As a randomized method, the RRT can explore the space
of possible solutions several orders of magnitude faster than a complete method. The
solution provided by the RRT is sub-optimal, but will in most cases prove sufficient.

19



Tan discusses the method with application to AUVs in [47], while Frazzoli uses it for
spacecraft motion planning in [22].

A tree

The RRT method will, as its name indicates, generate a tree structure during its exe-
cution. This tree starts at the state of our vehicle, and iteration after iteration explores
larger portions of the configuration space C of the vehicle. An important property of the
RRT method is that it not only plans the workspace-coordinates of our vehicle, but all its
states, i.e., coordinates, heading and velocities. The result is a path through the C-space
of the vehicle, or more specifically the admissible part of the C-space, namely Cfree. If
a path has been generated by the RRT method, we thus know it is a feasible path, at
least if no changes have occurred in the environment after the path was generated.

The algorithm

The RRT algorithm is relatively simple to implement. Given the initial state of our
vehicle xinit and a requested goal configuration xgoal, the algorithm looks like this:

1: T ← TREE({xinit, 0})
2: if CAN CONNECT(xinit, xgoal) then
3: T ← {CONNECT STATE(),CONNECT INPUT()} as child of xinit
4: goal found
5: end if
6: for k ← 1 . . . N do . The main loop
7: mc = CANDIDATE MILESTONE()
8: if mc ∈ Cfree then
9: xnear = NEAREST NEIGHBOUR(mc, T )

10: if CAN CONNECT(xnear, mc) then
11: u← CONNECT INPUT()
12: xnext ← CONNECT STATE()
13: T ← {xnext, u} as child of xnear
14: if CAN CONNECT(xnext, xgoal) then
15: T ← {CONNECT STATE(),CONNECT INPUT()} child of xnext
16: goal found
17: end if
18: end if
19: end if
20: end for
21: if goal found then
22: return cheapest path from xinit to xgoal in T
23: else
24: return cheapest path from xinit taking us closest to xgoal
25: end if

20



The concept of milestones is the heart of the algorithm. At each iteration, a candi-
date milestone mc is chosen. It represents a potentially unexplored configuration of the
controlled vehicle, for instance an unvisited location in the environment. The algorithm
then tries to predict whether it can get the vehicle to mc from any of the configurations
previously explored, i.e., the configurations currently in the tree. If the algorithm man-
ages to do this, the candidate is added to the tree as an explored milestone/node. An
attempt is then made to connect this new node to the goal configuration xgoal.

CAN CONNECT(x, mc) is the function that does most of the work. It uses a local
motion planner to try to connect the vehicle state/configuration x with the new can-
didate milestone mc. For the local planner, a compromise has to be made between its
accuracy and computational complexity. An accurate planner will more often be able
to connect x with mc, while a fast planner will be able to make more attempts with
different candidate milestones in the same amount of time.

A vehicle state is connected to a milestone by integrating the vehicle from x while
applying a series of inputs u. If the vehicle comes within a predefined distance of mc

within a given time and without exiting Cfree, then the connection was successful, and
the function returns true. CONNECT INPUT() can later be called to get the series of
inputs u that made this possible, and CONNECT STATE() can be called to get the
final state, which by definition must be in the vicinity of mc.

CANDIDATE MILESTONE() returns a random state vector within the state space
of our vehicle. There are many ways of generating these random states, and the way
they are generated can have a serious impact on the performance of the algorithm. Us-
ing a uniform distribution makes sure all parts of Cfree are explored, while selecting a
distribution biased towards a smaller area may speed up the algorithm significantly.

NEAREST NEIGHBOUR(m, T ) returns the node in T whose state vector is closest
to the milestone m by some metric. Using the Euclidean distance metric is common
since it ensures that the algorithm tries to connect nodes that are geometrically close,
creating a short path through Cfree.

N is the maximum number of times to run the algorithm. Logic can be implemented
to end the algorithm prematurely if a satisfying path to xgoal has been found.

When the algorithm fails

The RRT method is not complete. Even though a solution to the planning problem ex-
ists, it cannot be guaranteed that the algorithm will find one in a limited time interval.
This is however not as catastrophic as it might sound. The most obvious solution to the
problem is to re-use the previously-generated path, which will likely still be valid.

21



Another way to solve the problem is to use one of the partial solutions existing in
T . All of these branches are feasible, even though they don’t end up at the goal. By
selecting a branch that makes progress towards the goal, the vehicle has something to
do until the completion of the next iteration of the algorithm.

Optimizations and modifications

One of the strengths of the RRT method is the number of ways in which it can be mod-
ified and optimized. An optimization for speed is to reuse the tree generated during the
previous iteration. This is possible if the local planner is able to reconnect with a node
in the old tree for the next iteration. The nodes descending from this node can then be
re-used. All other nodes have to be discarded.

Another optimization, which can improve both speed and path-quality, is adding an
intermediate node on the edges between all nodes. While this may not seem like a good
idea at first, it helps reduce overshoots in the planned path.

As already mentioned, the choice of the local planner and randomization function has
great influence on the performance of the algorithm and the characteristics of the final
path. The different metrics used in the algorithm can also be used as tuning parameters.

Summary

The RRT method finds a path through the environment by trying a number of different
paths and selecting the most optimal. The algorithm takes vehicle dynamics into ac-
count, so we can be sure the path it generates is feasible, i.e., possible to follow for the
controlled vehicle.

The algorithm actually tries to optimize an objective function when generating a new
path, so by manipulating the objective function, the properties of the final path can be
manipulated in various ways. This makes RRT a very flexible algorithm. The objective
can for instance be manipulated to favor time optimality, fuel optimality, shortest path,
etc.

Figure 2.4 shows the RRT method in action. The paths generated by the RRT tend
to be a bit bendy, but if this ever becomes a problem, smoothing techniques can be
employed to enhance them.

There has been a lot of activity going on around the RRT algorithm, and attempts
are still made to improve it. A promising method showing off good results can be found
in [42]. The method is well suited for parallel processing systems, which is a property
that will become more important in the years to come.

22



Figure 2.4: The figure shows a path through an environment generated by the RRT
algorithm. The blue tree structure originating at the vessel in the lower
right shows the paths explored by the RRT algorithm while searching the
configuration space. The red line shows the best of the explored paths
ending at the goal in the upper right. It is not optimal, but not that bad
either.

2.2.3 Global method: A*

The first method that comes to mind when thinking about path planning is often Di-
jkstra’s algorithm. It can calculate the shortest path between two points in a map
consisting of nodes/cells. In this section, a more general method will be presented,
namely the A-star method, or simply A*. A* is a best-first search algorithm, which uses

23



heuristics to achieve computational optimality [48, 52].

Cell decomposition

To be able to use the A* method, the environment of the vehicle must first be decomposed
into cells, connected to make up a graph. There are many ways to do this, including
the use of quad-trees, but a straight-forward way is to decompose it into a set of equally
sized rectangular cells, creating a grid structure covering the map. A bitmap can then
be used to represent the map, where a value 1 at location (i, j) in the bitmap means
that the area covered by cell (i, j) contains an obstacle. A 0 indicates that the area is
clear of obstacles.

This representation can easily be extended to three or more dimensions, to include
height information, time, etc. Note however, that the memory requirement grows expo-
nentially with the number of dimensions included.

The A* algorithm

The algorithm starts exploring the map at the start coordinates. It uses a closed and an
open set. The closed set contains all the nodes that the algorithm knows a path to, while
the open set contains all the nodes that have been encountered but not yet explored. At
every iteration, the algorithm extracts a node from the open set. If this node is the goal,
then we are done. Else, all the immediate neighbors of the node that are not obstructed
get added to the open set and the explored node is added to the closed. Figure 2.5 shows
the A* algorithm solving a general path-planning problem.

1: closed← Ø
2: cost(start)← 0
3: open← MIN HEAP(start) . Sorted by h(node) + cost(node)
4: while open 6= Ø do
5: node← EXTRACT MIN(open)
6: if node = goal then
7: return GET PATH(node) . Minimal path to goal found
8: end if
9: for nb← GET NEIGHBOURS(node) do

10: cost← cost(node)+ MOVECOST(node, nb) . Total cost to nb
11: if (nb ∈ open) ∧ (cost ≤ cost(open(nb))) then
12: continue . Goto next neighbour
13: end if
14: if (nb ∈ closed) ∧ (cost ≤ cost(closed(nb))) then
15: continue . Goto next neighbour
16: end if
17: parent(nb)← node
18: cost(nb)← cost
19: h(nb)← heuristic estimate of minimal distance from nb to goal

24



20: open← nb
21: end for
22: closed← node
23: end while

(a) Problem (b) Solution

Figure 2.5: (a) represents the problem: The black cells are walls, and the A* algorithm
has to find the shortest route from the red cell in the lower-left to the green
cell in the upper-right. The solution is shown in (b).

Completeness, admissibility and computational optimality

A* is a complete algorithm, meaning that it will always find a solution if one exists. This
is because it will look for a path until the entire search-space has been searched, which
is possible because the search-space is discrete and of limited size. Whether a solution
actually exists in our case depends on the type and resolution of the world map.

To decide which node to examine next, the algorithm sorts all the nodes in the open
set by the estimated total cost of a path to the goal through the different nodes. The
cost from the start to a node in the open set, g(x) is already known. The algorithm
needs a minimal estimate h(x) of the cost from the node to the goal. The total estimated
cost is then given by g(x) + h(x). If the heuristic function h is admissible, i.e., never
over-estimates the cost to the goal, then A* will always find the optimal path from the
start to the goal with respect to the cost of the path.

Summary

The A* method is able to calculate the shortest path from the controlled vehicle to the
goal through an environment graph, using limited computational power, but possibly

25



Figure 2.6: The figure shows a path through the map generated by the A* algorithm.
The path is generated in the configuration space C of the vessel. The
colored regions around the obstacles are part of Cobs, and can thus not be
traversed by the A* algorithm. The limited resolution of the environment
map can clearly be seen in the jagged path generated by the algorithm.

large amounts of memory. Whether this path is actually the shortest path through the
environment depends on the type and resolution of the graph.

A* uses magnitudes less computation time than the RRT algorithm, as it does not
take vehicle dynamics into account when generating a path. While the efficiency of A*
makes the algorithm a good choice, the neglection of vehicle dynamics can be a problem
for vehicles with limited manoeuvring capabilities, as the algorithm may construct paths
that the vessel is unable to follow. This is especially true when navigating cluttered en-
vironments. The algorithm is therefore not complete for the vehicle control problem, as
it may generate infeasible paths. Another problem is the algorithm’s limited concept of
distance, as shown in Figure 2.7.

The A* algorithm has been used extensively as the deliberate, path planning part of
larger navigation and collision avoidance systems, and an example can be found in [35].
An example showing the A* algorithm guiding a vesel through an environment is shown
in Figure 2.6.

26



(a) Good (b) Poor

Figure 2.7: For the A* algorithm, the paths shown in (a) and (b) are of equal length.
For the controlled vessel however, (a) is preferred, because it is straighter
on average. When following (a), the vessel will most likely travel in a
near stright line from start to finish, evening the path. Travelling along
(b) however will take the vessel detour. The inability of the A* algorithm
to destinguish between the two can result in the A* algorithm producing
less-than-optimal paths.

2.3 COLREGS

Collisions at sea have always been a great problem for the maritime industry. From the
very start, efforts have been made to reduce this risk, including the use of lights and
signals, and establishing working rules for mariners to follow when encountering other
ships. As time went by, the need for a common set of rules was seen, and the result even-
tually became the International Regulations for Avoiding Collisions at Sea, or simply
COLREGS. The regulations were adopted by the International Maritime Organization
(IMO) member countries on 20 October 1972, and brought into force on 15 July 1977
[2, 19, 59].

COLREGS is a set of international rules defining measures to be taken to avoid col-
lisions. It defines everything from the lights a vessel is required to carry, to which course
of action a vessel should follow when encountering other vessels at sea. Where the rules
come short, the individual governments can make supplements. The COLREGS has
been steadily evolving, e.g., by recognizing the radar as an important aid in collision
avoidance and including it in the regulations.

There are several reasons for why CA systems for vessels should adhere to the
COLREGS, but mainly it is to produce predictable maneuvers compatible with the
maneuvers of other vessels. Following is a review of the rules that affect our collision
avoidance system in a significant way.

27



2.3.1 Head-on situation

Rule 14 defines the head-on situation. When in a head-on situation, a vessel should pass
the other vessel on the port side. This situation is depicted in Figure 2.8.

Rule 14a:
When two power driven vessels are meeting on reciprocal or nearly recipro-
cal courses so as to involve risk of collision each shall alter her course to
starboard so that each shall pass on the port side of the other.

Rule 14b:
Such a situation shall be deemed to exist when a vessel sees the other ahead or
nearly ahead and by night she could see the masthead lights in line or nearly in
line and/or both sidelights and by day she observes the corresponding aspect
of the vessel.

(a) Correct pass (b) Incorrect pass

Figure 2.8: Our vessel can never rely on the other vessel taking preventive action to
avoid a possible collision. In (a), our vessel coming from the left makes a
correct pass of the other vessel.

2.3.2 Overtaking situation

When overtaking another vessel, the overtaking vessel should keep well clear of the
other vessel. Special rules apply when in a narrow channel or fairway, but these mainly
consider signaling.

Rule 13a:
Notwithstanding anything contained in the Rules of Part B, Sections I and
II, any vessel overtaking any other shall keep out of the way of the vessel
being overtaken.

Rule 13b:
A vessel shall be deemed to be overtaking when coming up with another vessel
from a direction more than 22.5 degrees abaft her beam, that is, in such a
position with reference to the vessel she is overtaking, that at night she would
be able to see only the stern light of that vessel but neither of her sidelights.

28



2.3.3 Crossing situation

The crossing situation is defined in rule 15. When two vessels are about to cross paths
in a way that risks a collision, the give-way vessel should pass behind the other vessel.
This can be related to driving, where the right of way must be yielded to the driver
coming from the right in an intersection.

Rule 15:
When two power driven vessels are crossing so as to involve risk of collision,
the vessel which has the other on her own starboard side shall keep out of the
way and shall, if the circumstances of the case admit, avoid crossing ahead
of the other vessel.

(a) Correct crossing (b) Incorrect crossing

Figure 2.9: Our vessel approaches the other vessel from the bottom of the figure, and
(a) shows the correct course of action. Another option is to slow down,
letting the other vessel pass before crossing.

2.3.4 The give-way vessel

In many situations, including the crossing situation, one of the vessels has the right-of-
way. This does not take away this vessel’s responsibility to avoid a collision, but as long
as a collision can be safely avoided in good time by actions of the give-way vessel, the
vessel that has the right-of-way can continue on its path.

Rule 16:
Every vessel which is directed to keep out of the way of another vessel shall,
so far as possible, take early and substantial action to keep well clear.

Rule 17a:
(i) Where one of two vessels is to keep out of the way the other shall keep
her course and speed.
(ii) The latter vessel may however take action to avoid collision by her ma-
neuver alone, as soon as it becomes apparent to her that the vessel required
to keep out of the way is not taking appropriate action in accordance with
these Rules.

29



In most cases, our vessel will not have the right of way. Rule 18a contributes to this.
In addition, our vessel should keep clear of larger vessels, as forcing a larger vessel to take
evasive maneuvers is inefficient and can be dangerous. A distinction should be made for
smaller or equal-sized vessels. The essence of the rules is that the most manoeuvrable
vessel should take responsibility and avoid collision with the other vessel.

Rule 18a:
A power driven vessel underway shall keep out of the way of: (i) a vessel not
under command; (ii) a vessel restricted in her ability to maneuver; (iii) a
vessel engaged in fishing; (iv) a sailing vessel.

2.3.5 Action to avoid collision

As seen, COLREGS requests specific actions depending on what type of situation a
vessel encounters, and also defines some general rules related to these actions. Rule 8b
aims to reduce uncertainty when in a situation with another vessel:

Rule 8b:
Any alteration of course and/or speed to avoid collision shall, if the circum-
stances of the case admit, be large enough to be readily apparent to another
vessel observing visually or by radar; a succession of small alterations of
course and/or speed should be avoided.

Rule 8d requests that the action taken should provide a buffer zone between the
vessels, and that the situation should be monitored carefully. When in a situation with
a vessel unwilling to comply with COLREGS, e.g., with a hostile ship, this rule gives
our vessel a better chance of avoiding a potentially dangerous situation:

Rule 8d:
Action taken to avoid collision with another vessel shall be such as to result
in passing at a safe distance. The effectiveness of the action shall be carefully
checked until the other vessel is finally past and clear.

2.3.6 Summary

Of the rules defined by COLREGS, the head-on and crossing rules are the main to con-
sider when developing a COLREGS-compliant collision avoidance system. These rules
define very specific courses of action to apply in the given situations and are thus easy
to concretize.

The overtaking rule on the other hand does not specify any course of action, except
from keeping clear of the other vessel. Keeping clear of other vessels is an underlying
criterion for any collision avoidance system, so this rule will not be considered further.

30



Providing significant alterations in course and/or speed to signal the intended course
of action to the other vessel is important. As is keeping a safe distance to other vessels
and continuously monitoring the situation. A COLREGS-compliant collision avoidance
system should follow these rules whenever possible.

31



32



Chapter 3

A novel hybrid collision avoidance
concept

The simulation results from [38] declared the combination of Dynamic Window and
Rapidly-Exploring Random Tree, and the combination of Dynamic Window and A* the
best of the reviewed collision avoidance systems. In both the systems, the Dynamic
Window algorithm successfully performs its duties as a local collision avoidance compo-
nent. However, there is a significant difference between the characteristics of the global
components.

The advantage with the A* algorithm is that it consistently finds a short route for
the vessel using very little processing power, but this comes at a cost. The A* algorithm
has no way of knowing whether or not the vessel is actually capable of following the
generated path, and also lacks the ability to determine the time along the path, i.e.,
when our vessel will be at the different locations along the path. This makes avoidance
of dynamic objects by prediction difficult.

On the other hand, the RRT algorithm simulates the vessel along all examined paths,
guaranteeing that the paths it generates can be followed by the vessel. Exact time is
also known along the path, making prediction and avoidance of dynamic objects easy.
The downside of the RRT algorithm is that it selects paths at random, and will thus
only find the optimal path given an infinite amount of processing time.

The ability of the RRT algorithm to take dynamic objects into account gives it a
higher compatibility with the Dynamic Window algorithm, as both algorithms act in the
same way to objects in the environment. Theoretically, this tighter integration should
make it the better choice, as the RRT algorithm selects a rough but good path through
the environment and lets the Dynamic Window improve on it. A* on the other hand has
a higher probability of choosing paths that are incompatible with the Dynamic Window
algorithm, forcing the Dynamic Window to find a new path on its own.

33



The controller developed as a part of this thesis tries to incorporate the best of the
two approaches. As seen in Figure 3.1, the new hybrid makes use of both the A* and
RRT global algorithms, as well as the local Dynamic Window algorithm. The new algo-
rithm also attempts to follow the rules defined by the COLREGS as best it can.

Figure 3.1: The RRT algorithm uses vehicle dynamics and different cost functions
to generate a path that is known to be feasible and have a given set of
properties. This is very time-consuming however. The A* algorithm on
the other hand is able to generate a relatively optimal path through the
environment very quickly. The problem with A* is that the path may not
be feasible. By combining these approaches, an algorithm that is both
efficient and produces feasible paths may be created.

34



3.1 Local collision avoidance

As explained in 2.1.1, local methods are all about reaction time. They need to be
fast enough to react to unforeseen events in the environment, but still be sophisticated
enough to make good control decisions. As seen in [38], there are many local methods
that are fast enough, and most work well under normal conditions. Serious weaknesses
appear in the simpler algorithms under more difficult conditions however, and many are
difficult to extend with advanced features like COLREGS compliance.

The Dynamic Window algorithm performs the duties of the local controller in this
hybrid because it showed good performance in [38]. Being based on the evaluation of
a utility function, it is also easy to extend the controller to implement additional features.

The controller is implemented as explained in Section 2.2.1 with details and modifi-
cations as covered in the following sections.

3.1.1 No longer on arcs

The original Dynamic Window algorithm predicts vehicle motion as movement along
constant-radius arcs at constant velocities. The algorithm expects the vehicle to achieve
an instant jump in its velocities from (u, r) to the velocities along the arcs (ui, ri). This
assumption results in a problem: For the prediction to be accurate, the choices of (ui, ri)
must lie very close to the current velocities of the vehicle, preferably within the velocities
reachable by the vessel within a short time interval Ta. As the arcs predict the motion
of the vehicle over a much larger interval, this severely limits the choices available to
the controller, since its commanded velocities must come from the set of tested velocities.

In [38], the set of velocity choices was expanded by artificially increasing Ta, increas-
ing the dynamic window of the algorithm. The downside to this however was severely
reduced prediction accuracy for velocities some distance from the current velocities of
the vehicle. The increased window size gave good results, but simulations have shown
that in situations where abrupt changes in velocities are required, the mispredictions
significantly increase the probability of collision.

When applied to the control of surface vessels, the Dynamic Window algorithm also
has another flaw. It does not take lateral speeds into account when predicting vehicle
trajectories. This is ok for wheel-based vehicles such as cars, as they experience minimal
lateral speed during normal operation, but for a vessel it can be devastating.

To make the control algorithm safer, the predictions had to be improved. The in-
creased dynamic window is required for good performance, so reducing Ta was not an
option. Another possibility was to include vessel accelerations in the dynamic window
predictions, going away from constant velocity arcs. An estimate of lateral speed was
also included in the controller, providing far more accurate predictions. The result is

35



(a) Original (b) Modified

Figure 3.2: In the original Dynamic Window algorithm, movement is approximated
as constant radius, constant velocity arcs, as seen in (a). This either
results in large inaccuracies, or a very small dynamic window. To increase
the accuracy of the Dynamic Window algorithm, lateral velocities and
vehicle accelerations are included in the predictions. As seen in (b), this
gives a more realistic and accurate approximation. The vessel is travelling
forward at 10 m/s in both figures.

shown in Figure 3.2.

The new predictions are based on the assumption that the vessel will use its maximum
accelerations to reach the commanded velocities (ui, ri). From the model in Section 2.1.4,
the maximum accelerations can be estimated as:

u̇max(u) =
1
m

(
Fx,max +Xuu+X|u|u|u|u+Xuuuu

3
)

(3.1)

ṙmax(r) =
1
Iz

(
Fy,maxlr +Nrr +N|r|r|r|r +Nrrrr

3
)
. (3.2)

The lateral speed of the vessel is estimated as the steady-state speed at given values
of u and r. It is assumed that the damping in sway can be described using only the first
and second order damping parameters, giving Yvvv = 0. The lateral speed can then be
estimated as:

36



v̂(u, r) = sgn(mur − Yrr)

Yv +
√
Y 2
v − 4Y|v|v|mur − Yrr|

2Y|v|v

 (3.3)

Square roots are generally expensive in terms of the processing power needed to cal-
culate them. The introduction of lateral speed estimation increased the calculation time
of the Dynamic Window algorithm by about 20%. In applications where this is not toler-
able, approximations to the square root, such as a Taylor series expansion could be used.

To reduce the processing time needed to simulate the vessel along the trajectories
determined by the different combinations of (ui, ri), the simulation time-step Ts is set to
the lowest value required to make sure the vessel does not skip cells in the world map,
failing to observe a collision. At high angular velocities, the system becomes relatively
stiff, so to improve the prediction of the vessel trajectories, the modified Euler method
[16] is used for integration.

The modified Euler method uses the derivatives halfway through the integration step
when integrating a differential equation. For reference, the traditional Euler method uses
the derivatives at the beginning of the integration step. For a vessel travelling in a circle,
the error in the Euler integrator would have given a position prediction spiraling out-
wards, as the derivatives change during the integration step. By using the derivatives
halfway through the step, the modified Euler method estimates the average derivative
through the step, generally giving a much better prediction. In the case of a perfect cir-
cle, the prediction should be exact, and as the paths in the Dynamic Window approach
circles, the modified Euler method should be superior to the standard Euler method.

The heading and velocities of the vessel halfway into the integration step is approx-
imated as:

ψk+ 1
2

= ψk + rk
Ts
2

+ ṙk

(
Ts
2

)2

(3.4)

uk+ 1
2

= uk + u̇k
Ts
2

(3.5)

rk+ 1
2

= rk + ṙk
Ts
2

(3.6)

vk+ 1
2

= v̂(uk+ 1
2
, rk+ 1

2
). (3.7)

The vessel states can now relatively accurately be integrated using the following
equations:

37



xk+1 = xk +
(
uk+ 1

2
cos
(
ψk+ 1

2

)
− vk+ 1

2
sin
(
ψk+ 1

2

))
Ts (3.8)

yk+1 = yk +
(
uk+ 1

2
sin
(
ψk+ 1

2

)
+ vk+ 1

2
cos
(
ψk+ 1

2

))
Ts (3.9)

ψk+1 = ψk + rk+ 1
2
Ts (3.10)

uk+1 = uk + u̇kTs (3.11)
rk+1 = rk + ṙkTs. (3.12)

The initial condition for the integration is the current vessel state. The accelera-
tions u̇k and ṙk are chosen such that they provide the maximal acceleration as given by
u̇max(u) and ṙmax(r), but they are reduced when uk and rk approach their goals ui and
ri to avoid overshoots.

The Dynamic Window from (2.26) is also redefined to allow different ranges for the
linear and angular velocities:

Vd = {u, r |u ∈ [ua − u̇maxTa,u, ua + u̇maxTa,u] , r ∈ [ra − ṙmaxTa,r, ra + ṙmaxTa,r]} .
(3.13)

where u̇max = u̇max(ua) and ṙmax = ṙmax(ra). As well as making the window more
realistic, this scheme allows the resolution of surge speeds in the dynamic window to be
reduced without spreading the velocities too much by also reducing Ta,u.

3.1.2 World representation

The dynamic window approach uses a configuration space representation of the world.
Our vessel has three states, resulting in a C-space C ∈ R3. To simplify the algorithms,
and reduce memory requirements, which will be important when introducing prediction,
an approximation to this C-space is made.

The approximation consists of collapsing the orientation-dimension ψ in C, giving a
two-dimensional C-space C ∈ R2. This approach is the same as pretending that the ves-
sel is a circle centered in the origin of the vessel with a radius that covers the entire vessel.
Configurations where this circle intersects obstacles are not allowed. The downside to
this scheme is that we disallow certain configurations that were allowed in the original
three-dimensional C-space, possibly closing some of the passages through the original
C-space. For slim vessels, i.e., vessels with a large length-to-breadth L/B ratio, this is un-
necessarily conservative as shown in Figure 3.3, but normally it should not be a problem.

The modified C-space is implemented in practice by expanding all obstacles with
the radius of the controlled vehicle as shown in Figure 3.4. A map is generated of this
C-space, and the vessel center is not allowed to enter any of the expanded objects. This
constraint will avoid collisions, at least with static obstacles, but the controlled vehicle

38



(a) Small error

(b) Large error

Figure 3.3: The error in the C-space approximation depends on the length-to-breadth
ratio of the vessel. For the vessel in (a), the circle approximation is good,
resulting in a small error. For the vessel in (b), the error is quite large as
shown by the size of the red area.

is allowed to travel arbitrarily close to them. The next step is to add an unsafe region
to the map, where the vessel is allowed to enter, but only if absolutely necessary.

(a) Workspace (b) Collapsed C-space with safety reagion

Figure 3.4: The environment, or workspace, of the vehicle is shown in (a). This is
the physical representation as we know it. In (b), the red areas show
the corresponding collapsed configuration space of the vehicle. The outer
colored area is a safety-region which the controlled vessel should steer
clear of if possible.

3.1.3 Prediction

To make the collision avoidance method more effective, prediction of dynamic obstacles
(other vehicles) is introduced. It is assumed that our vehicle knows the position, heading
and velocity of all other vehicles in its vicinity. Our controller can then integrate the
states of the other vehicles forward in time to get a prediction of their future states.

However our vehicle can normally not predict the future steering commands of the

39



other vehicles. An exception is with cooperating vehicles [23, 24, 38, 50]. One could
imagine analyzing where the other vehicles had to move with respect to obstructions,
etc. and combine it with a measure of uncertainty, but even doing so cannot safeguard
us from false predictions. What if the vehicle suddenly decides to speed up, or suddenly
takes a sharp turn?

A considerably simpler approach is used in this implementation. For all other ve-
hicles, it is assumed that rsp = 0 and usp = u. Then the vehicle states are integrated
using the vessel model of Section 2.1.4. Our collapsed C-space is then expanded to in-
clude a time dimension, using the predictions of the other vehicles for future times t > t0.

As time is known along the predicted paths in the dynamic window, these can now
be collision tested against the new three-dimensional C, providing us with simple, yet ef-
fective prediction. The shorter the prediction window, the more accurate the prediction
will be, and since the prediction window of the Dynamic Window algorithm is relatively
short, the prediction should be sufficiently accurate in most cases.

3.1.4 Following the rules of the road

A strength of the Dynamic Window algorithm is its utility function. By adding terms
to the function, it is easy to modify the behaviour of the controller, and this is exactly
what is done to implement COLREGS compliance.

To be able to apply the rules defined by COLREGS to an autonomous vessel, they
have to be concretized. Till now it has always been up to the vessel captain to use his
good judgement to determine whether the vessel is approaching a collision situation or
not, and decide on a corresponding action. The decisions of the captain are based on
available information, regulations and experience. When a computer is in charge of a
vessel, the experience of the captain must be replaced with a set of rules for the computer
to follow.

The collision cone

The regulations given in Section 2.3 are a means of resolving situations where two vessels
are on a collision course. We therefore need a way of determining whether the controlled
vessel is on collision course with another vessel or not. The Collision Cone Approach,
introduced in 1998 by Chakravarthy and Ghose [11], provides an elegant method for
solving this problem.

Figure 3.5 shows the geometry of the collision cone approach. The collision cone can
be used to predict a collision between a point and a circle moving at constant velocities.

Given

40



Figure 3.5: Our vessel starts at O, and has a constant velocity vector VO. The other
vessel starts at P , and has a constant velocity vector VF . The radius of
the circle F is set to the combined safety radiuses of both vessels. C will
be the point where the safety radiuses of the vessels intersect. The grey
collision cone includes the values of α that will result in an intersection.

Vr = ṙ = ‖VF ‖ cos(β − θ)− ‖VO‖ cos(α− θ) (3.14)
Vθ = rθ̇ = ‖VF ‖ sin(β − θ)− ‖VO‖ sin(α− θ), (3.15)

where r is the distance between the centers of the vessels, and R is the combined
safety radius of the vessels, the vessels are on a collision course if

r2V 2
θ ≤ R2(V 2

r + V 2
θ ) (3.16)

Vr < 0. (3.17)

The second criterion says that to be on a collision course, the distance between the
vessels must be decreasing. We thus have ṙ = Vr < 0. The first criterion is a bit more
complex, but by introducing V =

√
V 2
r + V 2

θ it can be simplified to:

r

|V |︸︷︷︸
Tpass

≤ R

|Vθ|︸︷︷︸
Tevade

. (3.18)

V is actually the speed of vessel P relative to the controlled vessel O, and the left
side of the inequality thus represents the time until the two vessels pass each other. The
right side of the equation is the time required for the vessels to move out of each other’s
way, and if the vessels pass before they have done this, resulting in Tpass < Tevade, they
will collide.

41



Situation determination

When the control system has determined that the vessel is on collision course with
another vessel, the next step is to determine a course of action. COLREGS defines
a set of situations and corresponding actions, so the algorithm needs to be able to
distinguish between the different situations in a reliable manner. If the heading of the
approaching vessel is known, this can easily be done by calculating αh, the angle of the
controlled vessel relative to the approaching vessel. If the coordinates and heading of
the approaching vessel are given by (xo, yo) and ψo, and the controlled vessel is located
at (x, y), αh is given by:

αh = atan2 (y − yo, x− xo)− ψo (3.19)

According to regulation 13b, a vessel is overtaking another vessel when it is coming
up with another vessel from a direction more than 22.5 degrees abaft her beam. This
gives a sector of 130◦ centered at the rear of the other vessel labeled overtaking. The
size of the head-on sector is more difficult to determine. A sector of 30◦ was used in
[7, 13] though, and this choice seems reasonable.

One may wonder why the head-on sector should be that much smaller than the over-
taking sector. If the head-on sector was large, that would cause our vessel going to great
lengths to pass the approaching vessel on the correct side. This would often include
our vessel crossing directly in front of the other vessel, creating potentially dangerous
situations. When approaching at larger angles, the case should be treated as crossing
situations, making our vessel pass behind the other vessel and not care about whether
it passes on the starboard or port side.

The sectors are shown in Figure 3.6. When the controlled vessel is approaching an-
other vessel, the type of situation can be determined from which sector it is approaching
from.

Penalty

The final step is to enforce the rules. Both the RRT and Dynamic Window algorithms
are driven by a scalar cost/utility function. This function will now be modified to add
a penalty whenever the controlled vessel violates any of the rules. As both algorithms
rely on calculating the cost/utility for a number of routes before a choice is made, routes
that break the rules get a low score, and will be avoided by the algorithms as long as
better options are available.

Whenever the controlled vehicle is on collision course with another vehicle, the event
is registered and tracked until it is resolved. The way the penalty is calculated depends
on the type of situation. In a head-on situation the controlled vehicle should pass with
the approaching vehicle on its left. Passing on the other side results in a penalty. The
penalty will thus be applied if the following relationship holds:

42



Figure 3.6: Which COLREGS situation our vessel is in can be determined from which
sector it is approaching from. The approaching vessel is displayed inside
the circle, and our vessel is outside. In this case, our vessel is in the
crossing sector, and should act accordingly.

− π

2
≤ αh ≤ αhpo, (3.20)

where αh is the angle between the vessels as shown in Figure 3.6. The constant
αhpo ≥ 0 defines how far the penalty sector is extended. As shown in Figure 3.7, se-
lecting a nonzero value for αhpo makes the sector in front of the vessel a penalty sector.
This extended sector forces the controlled vessel out of the way of the approaching vessel
early, and clearly signals the intent of passing on the correct side.

The situation is over when the two vessels pass each other, or the distance between
them becomes larger than a preset constant. Whether the vessels have passed each other
can be identified by the following relationship:

|αh| >
π

2
. (3.21)

When in a crossing situation, a more elaborate method is required to determine when
to apply a penalty. As shown in Figure 3.8, the penalty is determined by which vessel
reaches the crossing point first. Given x∆ = x2 − x1 and y∆ = y2 − y1, the times of
crossing are calculated as:

t1 =
y∆ cosψ2 − x∆ sinψ2

(cosψ2 sinψ1 − sinψ2 cosψ1) · u1
(3.22)

t2 =
y∆ cosψ1 − x∆ sinψ1

(cosψ2 sinψ1 − sinψ2 cosψ1) · u2
, (3.23)

43



Figure 3.7: When in a head-on situation; if the line between the controlled vessel,
shown in the upper left, and the other vessel lies over the penalty sector,
a penalty should be applied. For the vessels in the figure, the situation is
over.

where ψ1 and ψ2 are the headings of the respective vessels, and u1 and u2 are their
surge speeds. Sideslip can be taken into account by exchanging u1 and u2 with the
velocities of the vessels, and ψ1 and ψ2 with the course angles of the vessels.

If the crossing time of the give-way vessel is less than the crossing time of the other
vessel, the give-way vessel crosses in front of the other vessel, and a penalty should be
applied. If the crossing time is larger than that of the other vessel, the give-way vessel
is crossing behind as it should, and no penalty is applied.

In addition to the overlapping penalty-sector for the head-on situation, a more general
penalty is applied whenever the controlled vessel is on a collision course with another
vessel. These two features encourage the controlled vessel to move out of any dangerous
situations, providing the significant course alteration requested by COLREGS.

3.1.5 Utility function

The utility function of the Dynamic Window algorithm is responsible for the behaviour
of the controlled vehicle. The desired behaviour is ranked as follows, with avoiding
collisions being the most important:

1. Avoid collisions

2. Keep safe distance from obstacles

44



Figure 3.8: When in a crossing situation; the give-way vessel should pass the crossing
point after the other vessel. If vessel 1 is to give-way, its time of crossing
t1 should be larger than the other vessel’s time of crossing t2.

3. Follow COLREGS rules

4. Make good progress towards the goal

Collision avoidance and progress towards the goal is more or less provided by the
original algorithm, while terms for COLREGS compliance and keeping safe distance will
be added to the utility function.

Scaling

The performance of the Dynamic Window algorithm is very dependent on the scaling of
the different components in the objective function. With the original objective function
(2.29), the distance component had to be given a high priority to prevent the vehicle
from colliding. This gave problems when choices leading the vessel away from the goal
had a high dist(u, r) value, as the algorithm often selected paths leading away from the
goal even if it had an available path leading towards the goal.

To mend this problem, the functions heading, velocity and dist are all scaled to give
a value ∈ [0, 1]. For the first two functions, heading and velocity, a linear scaling is

45



applied. The dist function requires a bit more elaborate approach though.

Curved paths and paths with low speeds cover less distance than straight paths and
paths with high speeds. The distance of a path therefore has to be scaled according to
some maximum distance. The result is a distance function where paths are not rated
according to their distance, but rather their degree of lack of obstacles.

Figure 3.9: Maximum distance is limited by the length of the arcs within the black
circle.

To achieve this feature, a circle is defined intersecting the vessel with a center in the
vessels forward direction, see Figure 3.9. The maximum distance of travel for a choice
(ui, ri) is limited by the length of the constant-speed arc defined in Section 2.2.1 that
fits within this circle. The distances travelled for each choice (ui, ri) is thus limited and
scaled by this distance. This scheme is also applied when scaling paths with negative
speeds, but then the circle is flipped to the other side of the vessel.

The speed function of the Dynamic Window algorithm is also modified to make the
algorithm try to follow a commanded velocity usp. Before scaling, the speed function is
given as:

speed(u, r) = −|usp − u|. (3.24)

Additional Terms

In addition to scaling the original terms in the objective function of the Dynamic Win-
dow algorithm, extra terms have to be added. The first term comes from the COLREGS
implementation. This is calculated as a penalty, so before it can be added to the objec-
tive function, it has to be negated and scaled.

The second term to be added is the term that penalizes paths going into unsafe
areas. Both of these terms accumulate over time, and gets larger the longer the vessel

46



(a) Vessel and dynamic obstacle

(b) Distance map (c) COLREGS map

Figure 3.10: In (a) the controlled vessel is approaching another vessel from below. The
blue lines show the predicted trajectories for different velocity choices.
The motion of the other vessel is predicted, and limits the distance that
can be travelled along some of the trajectories before crashing. This is a
situation where COLREGS rules must be followed for correct behaviour.
The COLREGS map shown in (c) clearly suggests passing on the right
side of the other vessel. The distance map is shown in (b). Brighter is
better. The blue rectangle in (b) and (c) marks the current velocity of the
vehicle, while the commanded velocity is marked by the red rectangle.
The red line in (a) shows the chosen trajectory.

47



(d) Environment map (e) Unsafe map

(f) Heading map (g) Speed map

(h) Final dynamic window map

Figure 3.10: The map of the environment is shown in (d). It is centered around
the current position of the vessel, shown in red. The gray area in the
environment map is unsafe, while the black is forbidden. The unsafe-
map shown in (e) weighs down trajectories through the unsafe areas.
The heading map in (f) and the speed map in (g) try to lead the vessel
towards the target at a reasonable velocity. The final dynamic window
is shown in (h).

48



is in violation.

The final objective function thus becomes:

G(u, r) = σ (α · hs(u, r) + β · ds(u, r) + γ · vs(u, r) + ζ · cs(u, r) + υ · ss(u, r)) , (3.25)

where hs is the scaled heading function, ds is the scaled distance function, vs is the
scaled speed function, cs is the scaled colregs function and ss is the scaled unsafe function.
Figure h shows a vessel controlled by the improved Dynamic Window algorithm.

Filtering

Both the original Dynamic Window algorithm and [38] suggest that some kind of filter
should be used on the objective function of the algorithm. A filter may be necessary
if the sensor data used in the algorithm is noisy, but this was never a problem during
the work on the thesis. A couple of filter configurations were implemented and tested,
but as they all slowed down the response of the algorithm to sudden changes in the
environment, the filter was abandoned.

When working with noisy and uncertain sensor data, preprocessing such as filtering
should be applied to the data before it is given to the Dynamic Window algorithm.

3.2 Global collision avoidance

The global part of the algorithm is responsible for long-term planning. As seen in [38]
this is necessary for avoiding local minima in the environment. It also has the potential
of improving the performance of the overall system since it takes a larger area into ac-
count when planning a path than the local method.

The main component of the global collision avoidance system is the RRT algorithm.
It is implemented as described in Section 2.2.2 with the extensions described in this
section. The A* algorithm is introduced as a guide for the RRT algorithm, trying to
force it along the shortest route through the environment.

The RRT algorithm is, like the Dynamic Window algorithm, implemented in the
three-dimensional C-space with prediction as explained in Sections 3.1.2 and 3.1.3. Pre-
diction can be used in the RRT algorithm (as opposed to A*) because the RRT algorithm
integrates the vehicle model and thus has a good estimate of time along any explored
path. The flexibility of the algorithm also allows us to implement COLREGS compliance
in the same way as for the Dynamic Window algorithm.

49



3.2.1 Milestone generator

At the heart of the RRT algorithm is the random state generator. Represented by the
function CANDIDATE MILESTONE() in Section 2.2.2, it is responsible for generating
candidate milestones, or states, which the local planner of the RRT algorithm then tries
to reach. In this implementation, the states calculated for each milestone are [xc, yc, uc]T ,
i.e., the coordinates of the vehicle and its surge speed. When the corresponding states
of the vehicle get close enough to the states of the milestone, the milestone is considered
reached. The rest of the vehicle states are allowed to have arbitrary values at the mile-
stone.

By limiting the number of milestone states, the number of dimensions in the search-
space of the algorithm is reduced from 6, for all the states of the 3-DOF model, to 3.
This size-reduction of the search-space provides a significant increase in the performance
of the algorithm.

The Halton sequence

The distribution of the candidate milestones, and especially their spatial coordinates,
can have a serious impact on the performance of the algorithm. It has been claimed that
the distribution given by the Halton sequence gives better results than ordinary random-
ized and biased distributions [47]. The reason for this is probably that the near-uniform
distribution allows the algorithm to quickly explore the entire search space before cre-
ating major branches impeding path optimality.

The basis for the milestone generator is the Halton sequence. The Halton sequence
is a quasi-random sequence which is nearly uniformly distributed. Even though it ap-
pears random, it is really a deterministic sequence, based on prime numbers [57]. As
seen in Figure 3.11, coordinates created with the Halton sequence are more uniformly
distributed than the ordinary randomized coordinates.

The surge speeds at the milestones are selected a bit differently than the spatial
coordinates. They are first of all biased towards velocities to promote faster routes
through the environment. Secondly, they are chosen from a predefined set of discrete
values, to avoid the unnecessary throttling one would experience when using analog
velocity values.

A* assistance

When trying to find a route through an environment, the search space for the RRT
algorithm can often be very large. Using only the Halton generator, equal attention is
paid to all parts of the search space. This is good because it allows the algorithm to
find alternative and difficult routes through the environment, but it also has a downside.
As the allowed computation time is limited, the uniform distribution often leads to less

50



(a) Random distribution (b) Halton distribution

Figure 3.11: The figure shows a set of coordinates generated by the Matlab twister
pseudorandom number generator (a), and by the Halton sequence (b).
The Voronoi diagrams1 for the points are drawn to better visualize the
distribution of the points. As seen in the figures, the area of the regions
in (b) are more even than those in (a), clearly suggesting that the coordi-
nates generated by the Halton sequence are more uniformly distributed
than those generated by the ordinary randomized method in Matlab.

optimal paths since the attention of the algorithm is scattered over the entire search
space.

What if we could direct the attention of the algorithm towards the area most likely
to hold the most optimal path? The algorithm would then spend more time in this area,
and perhaps come up with a better solution to the path planning problem.

As seen in [38], the A* algorithm consistently found more optimal paths through the
environment than the RRT algorithm. The idea here is that the optimal path through
the environment probably lies around the route generated by the A* algorithm. We
need to direct the attention of the RRT algorithm towards this route, and this can eas-
ily be accomplished by increasing the density of candidate milestones along the A* route.

Before each run of the RRT algorithm, the A* algorithm is run to find the A* path
through the environment. This generates a set of coordinates a1, a2, · · · , aN where
a ∈ R2. A milestone taken from the A* route is now generated as follows:[

xc
yc

]
= aq +R · s, (3.26)

1For a set of points S in a plane, the Voronoi diagram is a partition of the plane associating a region
V (p) with each point p ∈ S. The regions are set up so that all points in a region V (p) are closer to p
than any other point in S [60].

51



(a) Without A* assistance (b) With A* assistance

Figure 3.12: This figure shows the distribution of candidate milestones when A* as-
sistance is disabled (a) and when it is enabled (b). The generator pa-
rameters are chosen as f = 0.1 and R = 50m, which should result in
about 10% of the nodes being placed by the A* generator. The density of
milestones is clearly higher along the A* path. The green milestones are
the ones reached in the given iteration. The red ones were not reached.

where q ∈ {1, 2, · · · , N} and s ∈ {x ∈ R2 | ‖x‖1 ≤ R } are randomly chosen. The
surge speed at the milestone is chosen purely by using the Halton generator.

This strategy will produce candidate milestones in close vicinity to the A* optimal
path, but we also want the rest of the search space to be explored. Every time a candidate
milestone is requested by the algorithm, the CANDIDATE MILESTONE() function has
to determine whether to respond with a candidate generated by the Halton sequence or
one chosen along the A* route. In this implementation, the choice is done by chance:

generator =
{
Halton, if X > f
A∗, if X ≤ f, (3.27)

where X ∈ [0, 1〉 is randomly chosen. This means that an A* milestone is generated
with a probability of f . If for instance f = 0.1, an A* milestone will be generated 10%
of the time on average. Care has to be taken when choosing a value for f , as too high
a value will prohibit exploration of the rest of the search space, possibly resulting in no
path being found. Choosing f too small however, reduces the effect of the A* assistance
to the algorithm. An example is shown in Figure 3.12.

52



Feedback and continuity

During the execution of the RRT algorithm, the Halton and A* generators are responsi-
ble for creating candidate milestones. The first milestones are special however, and are
selected quite differently.

When the algorithm starts, the state of the controlled vessel is xinit. The first mile-
stone is given this state, and is thus placed at the current position of the vessel. As the
vessel already is at this position, the milestone must be feasible, and it can be added
without checking for intersections with the environment.

The first milestone will be the root of the tree generated by the RRT algorithm. All
other milestones connect to the root either directly or indirectly. The root milestone is
what connects the RRT algorithm to the controlled vessel and provides feedback into
the algorithm.

The purpose of the next milestones is to try to connect the new path with the old
one. Because the execution of the RRT algorithm takes a considerable amount of time,
the state of the vessel when a path is complete will not be the same as it was when the
calculation started. If the algorithm can make the paths coincide at the point the vessel
will be when the new path is put into use, the transition between the two paths will
likely be very smooth.

The controlled vessel will probably follow its current path relatively accurately while
the RRT algorithm is creating a new path. If the calculation time of the RRT algorithm
is fixed to TRRT seconds, the vessel will therefore be located at a time 2TRRT along the
previous path when the new path is put into use. It will likely be at a time TRRT along
the new path when it is put into use.

One solution to making the paths coincide is to use the first 2TRRT seconds of the old
path as the start of the new path. Doing so would eliminate the feedback to the algorithm
however, so another approach is needed. The solution chosen for this implementation is
very simple and does not require any modifications to the main algorithm. The first Nh

candidate milestones are simply selected from the interval [0, 2TRRT ] of the old path at
constant intervals. This gives the algorithm an opportunity to connect with the old path.

The first part of the RRT will now reconnect with the old path if possible. To make
the rest of the tree build off of the reconnected branch, causing the final solution to
coincide with the old path, the cost of travelling to these first milestones are reduced by
multiplication with a factor Kh.

53



Figure 3.13: The dotted line coming from the lower right shows the path of the vessel
up till this point. The purple dots are the candidate waypoints generated
from the old path to provide continuity. They successfully guide the new
path, which is shown in red, along the route chosen by the previous path,
providing a smooth transition between the two paths.

3.2.2 Cost functions

The RRT algorithm uses two cost functions (or metrics). The first is used to determine
the cost of travelling along a given path, and the second provides an estimate of the cost
of connecting a path to a new milestone.

Cost of path

The cost of travelling along a path is very context-dependent. Fuel efficiency, speed,
or even stealth may be the priority, and in most cases, a suitable cost function can
be synthesized to create a path with the given properties. In this case there are three
priorities:

1. Keep safe distance from obstacles

54



2. Follow COLREGS rules

3. Maximize path speed and minimize path length

The first two priorities are the same as for the utility function of the local algorithm
in Section 3.1.5. We want to keep a safe distance from obstacles if possible and follow
the rules of the road. The additional element is added to make the generated paths as
fast and short as possible. This is accomplished by weighting a combination of the time
used and the distance travelled. Collision avoidance and progress towards the goal are
not taken into account as these appear other places in the algorithm.

The cost of a path is given by the following expression:

COST(x) =
[
γ

1
uw

+ (1− γ)
1
ū

]
·DIST(x) + ζ · COLREGS(x) + υ · SAFE(x), (3.28)

where DIST(x) is the travelled distance to x, COLREGS(x) is the COLREGS penalty
accumulated along the path, and SAFE(x) is the accumulated penalty for travelling
through unsafe areas. The multiplier for the distance parameter tries to balance keeping
the path length down while also keeping travelling time to a minimum. The value of
γ ∈ [0, 1] determines the weight on path length. Choosing γ = 1 causes the algorithm
to find the shortest path disregarding speed along the path, while setting γ = 0 results
in the path using the least amount of time. ū is the average velocity of the vessel, and
uw is a constant scaling factor for distance to make it compatible with time.

Cost to connect

The cost to connect is an estimate of the COST() function at a new milestone through a
given path. It is used by the NEAREST NEIGHBOUR() function in the RRT algorithm
to figure out which node to try to connect to a new milestone. If this function gives
a wrong estimate, we can end up trying to connect new milestones to the wrong node,
ending up with a very suboptimal path through the environment.

The candidate milestone consists of the three states mc = [xc, yc, uc]T , while the
states of the vehicle of a given node is x = [x y ψ u v r]T . The cost estimate tries to
make sure the selected node is close to the candidate milestone. It also puts a penalty
on nodes where the vehicle is facing away from the candidate milestone in an effort to
reduce the amount of turning required by the vessel:

COSTE(x, mc) = COST(x)+α
[
γ

1
uw

+ (1− γ)
1
ū

]√
x2

∆ + y2
∆+β·(ψ − atan2 (y∆, x∆)) ,

(3.29)
where x∆ = xc−x and y∆ = yc−y. The value of β in the above equation determines

how bendy the resulting path will be. A high value gives a straighter path, but may

55



make it harder for the algorithm to find a feasible path to the goal.

The function atan2 (x, y) computes the arctangent of y/x in much the same way
as the original tan−1. The difference is that because atan2 takes x and y as separate
arguments, it is able to give a result in the range 〈−π, π], as opposed to tan−1 which
gives a result in the range 〈−π/2, π/2]. When calculating the angle of a vector, atan2
thus gives the true angle where the original tan−1 can be wrong by a value of π.

3.2.3 The local controller

The local controller used by CAN CONNECT(x, mc) was designed to be as simple as
possible. When trying to connect a state x with a candidate milestone mc, the controller
simply steers the heading of the vehicle towards the milestone mc. The yaw setpoint for
the vessel is simply calculated as:

ψsp = atan2 (yc − y, xc − x) , (3.30)

where mc = [xc, yc, uc]T is the candidate milestone, and x = [x y ψ u v r]T is the
vessel state vector. The surge speed setpoint is set to the surge speed of the target
milestone:

usp = uc. (3.31)

3.2.4 Medial nodes

The RRT tree expands by selecting candidate milestones and trying to steer the simu-
lated vessel towards them. This process is expensive, especially for large search spaces
where the vessel must be integrated over great distances to reach new candidate mile-
stones. In order to populate the search-space faster, medial nodes are introduced.

Every time a new milestone is reached, a number of medial nodes are added on the
path between the parent node and the new milestone. In [22], a single node was added at
a random position on every path. In this implementation however, the number of nodes
added depend on the distance travelled between the parent node and the new milestone,
positioning Nm nodes per meter. The nodes are evenly distributed on the path.

Adding medial nodes reduces the time needed to populate the search-space, and has
the potential of generating straighter paths with less overshoot as new candidate mile-
stones can connect directly with the medial nodes.

3.2.5 When the algorithm fails

As previously mentioned, the RRT algorithm is not complete, and may fail in finding a
path even though one exists. With no path that leads to the goal, the question is what

56



to do.

In the case of failure, an attempt is made to figure out which of the explored paths
are best to follow even though they don’t lead to the goal. This is done by calculating
a score for each of the paths. The score emphasizes two properties of the paths: how
close to a goal they lead the vessel, and how costly they are. Given a goal g = (xg, yg),
the score function is given as:

s(x,g) =
√

(xg − x)2 + (yg − y)2 + ω · COST(x) (3.32)

The path with the lowest score is considered the best choice.

3.3 Glued together

The local and the global algorithms of the controller have now been described. What
remains is how to join these to create the final hybrid controller.

3.3.1 Path tracker

As shown in Figure 2.1, the global algorithm provides input to the local algorithm. Here
we run into our first problem. The output of the RRT algorithm is a path, while the
Dynamic Window algorithm wants a heading to travel in. This is solved by adding
an intermediate component which takes a path from the RRT algorithm and tracks it,
providing the Dynamic Window algorithm with heading suggestions as the vessel travels
along the path. This concept is visualized in Figure 3.14.

It may be easiest to think of the system as the path tracker generating heading
commands for the vessel, and the Dynamic Window controller modifying the generated
commands if necessary to avoid collisions and dangerous situations. In open waters with
no other objects in the vicinity, the commands of the path tracker will be in near-direct
control of the vessel.

The path tracker makes sure that the path from the global algorithm is followed.
The paths generated in this system consist of waypoints, each described by its spatial
coordinates and the surge speed which the vessel should keep while approaching the
waypoint. A basic algorithm for following a path can be decomposed into two different
parts, namely line following and waypoint switching.

Line following

Line following is when the vessel is travelling between two waypoints, following the
line between them. See Figure 3.15 for an illustration. One of the simplest ways to
accomplish this is to steer the vessel directly towards the second waypoint. Given two

57



Figure 3.14: The path tracker generates the heading commands required to make the
vessel follow the path given by the RRT algorithm. It is here shown as
a separate component.

waypoints wk = (xk, yk) and wk+1 = (xk+1, yk+1), where the vessel is travelling from
wk to wk+1, the heading-command for the vessel with coordinates p(t) = (x(t), y(t)) is
then calculated as follows:

ψsp(t) = atan2 (yk+1 − y(t), xk+1 − x(t)) , (3.33)

which is the same as the local controller for the RRT algorithm, for which it is good
enough because external noise such as wind and sea currents are not taken into account
in its internal world model. In the real world however, the controller may result in the
vessel deviating from the line between the two waypoints.

In some applications it is desired to follow the path as closely as possible. The lateral
deviation from the path, also known as the cross-track error must then be minimized.
The cross-track error is calculated as [10]:

e(t) = (y(t)− yk) cosαk − (x(t)− xk) sinαk, (3.34)

where αk = atan2 (yk+1 − yk, xk+1 − xk) is the orientation of the line segment be-
tween the two waypoints.

One way of reducing the cross-track error is to use the Line-of-sight (LOS) algorithm
for generating heading commands [20]. Instead of steering the vessel towards the next
waypoint, the vessel is now steered towards a point on the line between the two way-
points. The point is located at a fixed distance L from the vessel, i.e., at the one of the
intersections between a circle with radius L centered at the vessel and the line. When
travelling from wk to wk+1, the intersection closest to wk+1 must be chosen to make

58



Figure 3.15: This figure shows the most important variables to take into account when
trying to make a vessel follow the line between two waypoints. Here, e
is the cross-track error, i.e., the shortest distance from the vessel to the
line. The primary goal is to minimize the cross-track error to the line
currently being followed. Also, p is the position of the vessel, while q
is the point which the vessel velocity (ideally) aims at in an attempt to
minimize e.

sure the vessel travels in the right direction.

A slightly modified version of the LOS algorithm, which also works with a crosstrack
error e > L, is presented here. It gives the following steering command:

ψsp = αk − sgn(e(t)) sin−1

(
min(

|e(t)|
L

, 1)
)
. (3.35)

This method is effective at reducing the cross-track error. If the error gets larger
than L, the vessel will actually steer directly towards the line in an effort to get back
on track. A variation of the algorithm, aims to hold ∆, shown in Figure 3.15, constant
instead of L. This is achieved by applying the following steering command to the vessel
[10]:

ψsp = αk + atan2 (−e(t), ∆) . (3.36)

This scheme is a bit more gentle than LOS when the vessel deviates from the line,
as it never tries to steer directly towards the line. It always approaches the line at an
angle. Consequently, this is the algorithm used in the developed control system.

59



While these approaches are good, and manage to significantly reduce the cross-track
error, they cannot completely eliminate it. Imagine a constant wind blowing perpendic-
ular to the line that the vessel is trying to follow. The methods reduce the cross-track
error to a manageable value, but will not completely eliminate it. The problem is that
while the vessel is travelling along the line, it generates no force to independently oppose
the wind force, and is pushed away from the line.

One way to solve this problem is to use (3.35) or (3.36) to steer the actual velocity
of the vessel instead of its heading. Lower-level controllers will then be responsible for
making the vessel travel in the requested direction. By controlling the course of the
vessel, convergence will be achieved even in the presence of environmental disturbances,
given that they are within the capabilities of the vessel and control system.

Waypoint switching

With line following taken care of, the next issue is what to do when the vessel gets to
the end of the line at the upcoming waypoint. The answer is simple: switch to the next
waypoint and start following the line between the new waypoint and the previous target.
In practice the procedure is a bit more involved however. How do we for instance know
when the vessel has reached the end of the line?

One way is to define a Circle of Acceptance [20] around the target waypoint as shown
in Figure 3.16. The circle is given a radius Ra, and when the vessel gets within the circle,
the controller switches to the next waypoint. The switching criterion thus becomes:

(x(t)− xk+1)2 + (y(t)− yk+1)2 ≤ R2
a. (3.37)

This approach has the advantage that the vessel starts turning towards the next
waypoint before actually getting to the target waypoint, which can reduce overshoots of
the path.

The Acceptance Circle method makes sure the vessel visits every waypoint along a
given path. For some applications this may be desirable, but in others the waypoints are
only there to make up a path, and the goal is to follow the path, not visit the waypoints.
If the vessel misses a waypoint when under the Acceptance Circle method, it will turn
back in an attempt to reach the missed waypoint. When following the path is most
important, this behaviour is very undesirable.

Given the measures in Figure 3.17, the switching criterion in (3.37) can be rewritten
as:

s2 + e2 ≤ R2
a, (3.38)

where s is the distance to the next waypoint projected onto the current line. As
seen in the equation, the cross-track error is a part of the switching criterion. Cross-

60



Figure 3.16: When using the Acceptance Circle method, a circle of acceptance is de-
fined around the next waypoint, in this case w2. When the vessel gets
to the circle, the subsequent waypoint, i.e., w3, takes over as the next
waypoint.

Figure 3.17: In this waypoint switching scheme, the switching occurs when the dis-
tance to the next waypoint along the path, i.e., s, becomes small enough.

track error is handled by the line following algorithm, and should (because of the issues
discussed above) not be a part of the switching criterion. By removing the cross-track
error, the new criterion becomes:

s ≤ Ra. (3.39)

When using this new criterion, waypoint switching will be based solely on the progress

61



of the vessel along the path. The distance to the next waypoint along the current line
is calculated as:

s(t) = (x(t)− xk) cosαk − (y(t)− yk) sinαk, (3.40)

where Ra determines how early the switching should occur. This is the switching
criterion used in the developed controller.

3.3.2 Threads

The final issue of joining the global and local controllers together still remains. The
local algorithm is fast and executes in a fraction of a second. This allows it to be run
in real-time, giving good control bandwidth. The global algorithm on the other hand,
is pretty slow. The quality of the generated path is also heavily dependent on the time
the algorithm is allowed to run.

When implementing the control algorithms on a computer these properties present a
challenge. The local algorithm must be run in real-time and the global algorithm must
be allowed enough time to get a good result. In many control applications, the entire
controller is implemented in a single thread, executing the control algorithms from the
upper layer and down at each iteration. This approach is not possible here since the
long running-time of the global algorithm would slow down the entire controller, and
neutralize the advantage of having a high-bandwidth local algorithm.

The solution is to implement the local and global algorithms in different threads,
allowing them to run in parallel. This scheme allows the local algorithm to run at a con-
sistently high frequency. For every time the global algorithm runs, the local algorithm
runs N times, as seen in Figure 3.18. When the global algorithm is finished, the new
path is passed to the local algorithm, which follows this path until the global algorithm
is done with another path.

When a new path has been delivered to the local algorithm, a search through the
waypoints of the path is done to find the waypoint closest to the vessel. The path tracker
then starts tracking the path at this waypoint, to ensure a smooth transition to the new
path.

62



Figure 3.18: The global and local controllers each have their own thread of execu-
tion. This scheme allows the global algorithm to run in the background,
calculating a new path, while the local controller runs at a constant
high frequency giving good control of the vessel. The arrows show when
control data is passed between the threads.

63



64



Chapter 4

Simulation results

In [38], several simulations were performed in Matlab to quantitatively determine the
properties of the presented collision avoidance algorithms. Simulation is an important
tool as it allows for repeatable testing under controlled conditions. Factors of uncertainty
like noise, component failure, etc. are entirely under control in the simulator, putting
full focus on the properties of the controllers.

The simulations presented in this chapter are meant to highlight the additional fea-
tures and changes in the developed controller, as well as show of some of its strengths.
The vessel model used in the simulations use the parameters from Table 5.5. Parameters
for the low-level controllers of the vessel are given in Table 4.1.

Parameter Value Description
Kp,u 0.1 Proportional gain for speed controller
Kp,r 5 Proportional gain for yaw rate controller
Kp,ψ 5 Proportional gain for heading controller
Td,ψ 1 Derivative time for heading controller

Table 4.1: Parameters for the low-level controllers of the vessel defined in Section 2.1.4.
The parameters were selected by trial-and-error, and provide relatively
good performance.

The performance of the collision avoidance algorithms is very dependent on tuning.
It is not difficult to find parameters that give acceptable performance, but they can def-
initely be improved by further tuning. The parameters used for the Dynamic Window
algorithm in the following simulations are given in Table 4.2 and the parameters for the
RRT algorithm are given in Table 4.3.

The RRT algorithm is given a constant amount of time to find the best path through
the environment, which means that path quality depends heavily on the amount of pro-
cessing power available to the algorithm. Specifications for the machine running the

65



Parameter Value Description
α 1 Heading importance
β 3 Distance importance
γ 1 Speed importance
ζ 2.5 COLREGS importance
υ 3 Safety importance
M 13 Number of translational velocities in window
N 100 Number of angular velocities in window
R 50 m Radius of circle limiting trajectories
Ta,r 5 Number of yaw rate choices in DW
Ta,u 1 Number of surge speed choices in DW
Ra 40 m Path tracker switch distance
∆ 60 m Path tracker look-ahead

Map-res 0.5 m/cell Map resolution
Pred-horz 30 s Prediction horizon

Tr 0.5 s Timestep for heading-map
Col-cone penalty 0 Penalty for being on a collision course
Head-on penalty 1 Penalty for doing wrong in a head-on situation
Crossing penalty 1 Penalty for doing wrong in a crossing situation

Table 4.2: Parameters for the Dynamic Window algorithm. As seen in the table,
distance, COLREGS and safety are given the highest importance to avoid
collisions and dangerous situations. Goal achievement is secondary to keep-
ing the vessel safe. As for COLREGS, the penalty for being on a collision
course with another vessel had to be removed as it prevented the vessel
from making manoeuvres where it temporarily entered the collision cone.
The look-ahead distance ∆ was chosen larger than the switch distance Ra

to give a smooth convergence to the path while still tracking a line segment
close to the vessel.

simulations are given in Table 4.4.

Since the vessel in the simulations is unaffected by waves, currents and other sources
of randomness, simulations only including the local Dynamic Window controller will
have the same outcome every time. The RRT controller however, introduces random-
ness by itself, so simulations featuring this controller are run a number of times to show
the range of paths developed by the controller.

As well as showing the path of the controlled vessel, most of the simulation figures
in this chapter display key values from the simulation. The reported values are energy
usage (E), distance travelled (S), time taken (Tw) and computation time (Tc). For
figures containing multiple simulations, the reported values are an average of the results
from all the simulations.

66



Parameter Value Description
α 2 Distance penalty in NEAREST NEIGHBOUR()
β 20 Angular penalty in NEAREST NEIGHBOUR()
γ 0.5 Weight on time versus distance
uw 10 Distance scaling factor
ζ 10 COLREGS cost
υ 50 Safety cost
ω 0.1 Cost multiplier when algorithm fails
f 0.1 Chance of waypoint being from A*
R 50 Spread of A* waypoints from A* path
Nh 10 Number of nodes for continuity
Kh 0.25 Reduces cost for continued path
TRRT 40 s Allowed execution time
Nm 0.025 nodes / m Medial node density

Map-radius 400 m / 2000 m Radius of world map
Map-res 0.5 / 0.1 Map resolution

Pred-horz 500 s Prediction horizon
Col-cone penalty 0.1 Penalty for being on a collision course
Head-on penalty 1 Penalty for doing wrong in a head-on situation
Crossing penalty 1 Penalty for doing wrong in a crossing situation

Table 4.3: Parameters for the RRT algorithm. The RRT algorithm runs in cycles
of 40 seconds. This enables it to find higher quality paths through the
environment, at the cost of a long update time.

Unit Type
Processor Intel Pentium 4 @ 3.00 GHz
Memory 2048MB DDR2
Operating System Windows XP Pro, SP2
Matlab Version R2007a

Table 4.4: Specifications of the computer which the simulations were run on.

67



4.1 Basic collision avoidance

The first scenario has already been used for a couple of visualizations earlier in the the-
sis, and shows the capabilities of the collision avoidance system in a static environment
using the full control system. The environment is relatively large at 2km · 2km, and so
is the search-area of the RRT algorithm. The vessel starts out in the lower right, and
the goal is in the upper right of the map.

The first simulations, shown in Figure 4.1, use the full controller with all features
enabled. The local, reactive part of the collision avoidance algorithm is relatively unnec-
essary in this scenario, as the environment is completely static. In cases where the vessel
is not able to do exact path tracking, it has some use however, as it avoids obstacles
when the vessel is off-path.

(a) Single simulation (b) Multiple simulations

Figure 4.1: This scenario shows basic collision avoidance by the entire hybrid con-
troller. Here (a) shows a typical run through the map, while (b) shows 25
different runs through the map.

As seen in the figure, the controller has no problem navigating the static environment.
Most of the paths taken by the controlled vehicle are relatively optimal, taking the
shortest route from the start to the goal. Some of the paths are less optimal though, but
this is expected. Unless given infinite processing power, the RRT will always provide
suboptimal paths.

4.2 The RRT modifications

The RRT algorithm has been extended in a number of ways in this thesis. The extensions
were discussed in Section 3.2, but their effect on the performance of the RRT algorithm

68



has not yet been determined. To be able to determine their usefulness, the scenario from
the previous section has been run a number of times for different configurations of the
controller. The Dynamic Window algorithm was not included in the simulations so full
focus could be put on the performance of the RRT algorithm.

As some of the extensions were meant for increasing the efficiency of the RRT al-
gorithm, simulations were also run with a harder constraint on computation time. In
these simulations, the RRT algorithm was only allowed a tenth of the normal compu-
tation time, i.e., 4 seconds for each iteration. By doing this, the suitability of the RRT
algorithm for less powerful computing platforms could also be determined. The results
are given in tables 4.5 and 4.6.

4.2.1 Continuity

Continuity was discussed in Section 3.2.1. The idea is to make a path generated by the
RRT algorithm coincide with the beginning of the previous path, avoiding discontinuity
in the path tracked by the vessel when a new path is put into use. As seen in Figure 4.2,
where this extension has been disabled, its absence is devastating for the performance
of the system.

(a) Poor performance (b) Limit cycle

Figure 4.2: As seen in (a), the absence of the continuity extension may result in the
vessel spending a great deal of time travelling from an old RRT path to a
new one. The worst case scenario is shown in (b) where the path-switching
results in a minimum that the vessel is unable to get out of.

As well as improving the performance of the controller, striving for coinciding paths
also reduces the possibility of limit cycles caused by the path-switching. As seen in
Table 4.5, 4 of the 25 simulations performed resulted in the vessel ending up in a local

69



minimum, preventing it from reaching the goal.

4.2.2 A* assistance

The purpose of A* assistance is to concentrate the attention of the RRT algorithm to-
wards places in the environment that are most likely to contain the shortest path. This
extension was discussed in Section 3.2.1, and as shown in Figure 4.3 it has a very positive
effect on the performance of the algorithm.

4.2.3 Medial nodes

Adding medial nodes had relatively little positive effect on performance. As seen in Ta-
ble 4.5, not placing medial nodes even results in a small performance gain. The results
from the simulations with limited computation time in Table 4.6 are a bit mixed how-
ever. Looking at distance travelled, the controller with the regular settings for medial
nodes comes out on top of the controllers with no and less medial nodes per meter.

The reason for the poor results probably lies in the NEAREST NEIGHBOUR() func-
tion in the RRT algorithm. The more nodes there are in the RRT tree, the longer this
function takes to execute, probably becoming a bottleneck in the algorithm. The value
of a medial node is lower than a regular milestone in terms of exploring the environment.
For the medial nodes to be useful, the number of medial nodes added must be such that
they don’t negate their own value by slowing the further execution of the algorithm,
hindering additional milestones to be placed on the map.

Whether or not this extension can be made useful is probably a question of correct
tuning. By optimizing the NEAREST NEIGHBOUR() function, the negative effect of
the medial nodes can probably also be reduced, possibly giving a better result.

70



(a) No A* (b) 10% A*

(c) Less CPU, no A* (d) Less CPU, 50% A*

Figure 4.3: Figures (a) and (b) shows the RRT algorithm without and with A* assis-
tance. The latter clearly has a higher concentration of paths around the
optimum. This property is even more clear in figures (c) and (d), where
less processing time was available to the algorithm. In (d), 50% of the
milestones were placed by the A* generator, resulting in very good paths
with very little processing power.

71



Success Distance Avg. Vel. Energy Time CPU Time
RRT w/all 100% 3457.0 m 8.7 m/s 4.45 MJ 399.6 s 462.6 s
RRT w/o A*
f = 0

100% 3588.3 m 8.6 m/s 4.58 MJ 420.4 s 480.3 s

RRT w/o medial
Nm = 0

100% 3453.0 m 9.0 m/s 4.53 MJ 384.9 s 445.0 s

RRT w/o continuity
Nh = 0

84% 3604.1 m 8.7 m/s 4.67 MJ 415.6 s 478.4 s

Table 4.5: This table shows the results of running the RRT algorithm with and with-
out its modifications. The scenario was run 25 times for each controller,
and the results averaged. The RRT algorithm had 40 seconds of calculation
time for each iteration. The average CPU times are higher than the time
required to travel through the environment because the first RRT iteration
is not included in the world time. The last iteration is also finished even
though the vessel finishes the scenario halfway through the computation.
As seen in the results, the highest performance is actually gained by not
placing any medial nodes. It is also worth to mention that only the runs
where the vessel got to the goal have been included in the averaged results.

Success Distance Avg. Vel. Energy Time CPU Time
RRT w/all 100% 3647.8 m 8.0 m/s 4.47 MJ 457.8 s 52.4 s
RRT w/o A*
f = 0

100% 3891.8 m 8.2 m/s 4.85 MJ 476.6 s 54.3 s

RRT w/50% A*
f = 0.5

100% 3547.6 m 8.1 m/s 4.41 MJ 438.0 s 50.7 s

RRT w/o medial
Nm = 0

100% 3692.5 m 8.6 m/s 4.73 MJ 429.0 s 49.5 s

RRT w/less medial
Nm = 0.01

100% 3659.2 m 8.0 m/s 4.52 MJ 456.5 s 52.2 s

RRT w/more medial
Nm = 0.05

100% 3778.5 m 7.8 m/s 4.60 MJ 484.1 s 55.0 s

RRT w/o continuity
Nh = 0

64% 3786.9 m 8.3 m/s 4.83 MJ 459.5 s 52.1 s

Table 4.6: In this table, results are shown from simulations with and without the
RRT modifications when less computation time was available to the algo-
rithm. The results are consistent with what was found for the case with no
restrictions on computation time, except for the medial nodes extension.
The results here are a bit more diffuse, but the possible gains are nowhere
near what is gained by the A* and continuity extensions. Results are also
shown for a simulation where 50% of the nodes are placed by the A* algo-
rithm, compared to the normal 10%. Here this addition results in superior
performance relative to the other configurations.

72



4.3 The Dynamic Window modifications

The original Dynamic Window algorithm does not take accelerations and lateral speeds
into account. As shown in Figure 4.4, this can lead to gross mispredictions of the future
behaviour of the controlled vessel. The obstacles in the scenario are given a safety-
distance of only 2 metres, so the controllers cannot rely on the safety-zone to save them
from mispredictions.

(a) Regular Dynamic Window

(b) Improved Dynamic Window

Figure 4.4: The original Dynamic Window algorithm is unable to detect the sideways
motion of the vessel, causing it to crash into the first obstacle as shown
in (a). The improved Dynamic Window algorithm in (b) predicts the
sideways motion of the vessel and steers well clear of the obstacles.

73



In scenario shown in Figure 4.5, the obstacles have been given a larger safety-distance
of 5 metres. Both the controllers are now able to guide the vessel to the goal, but as
seen in the figure the path generated by the improved Dynamic Window algorithm is a
lot smoother than what the original algorithm is capable of.

(a) Regular Dynamic Window

(b) Improved Dynamic Window

Figure 4.5: As in the previous scenario, the original Dynamic Window algorithm is
unable to see the sideways motion of the vessel, and is thus not able
to pre-compensate for it. Being able to predict this motion, the im-
proved Dynamic Window algorithm compensates for it earlier, resulting
at a straighter and safer path.

74



4.4 COLREGS-compliant collision avoidance

Misunderstandings at sea can be costly, so COLREGS compliance is important for any
autonomous vessel operating alongside human-operated vessels. It also improves pre-
dictability when dealing with other autonomous vessels. Some COLREGS rules have
been incorporated in both the global and local collision avoidance algorithms, providing
both long-term COLREGS-compliant path planning and dynamic COLREGS-compliant
collision avoidance.

The scenarios in this section show situations where the correct behaviour is deter-
mined by COLREGS rules. The initial states of the vessels in the scenarios are set up
in such a way that a non-compliant system would choose wrongly. Following the rules
costs something to the system.

The global and local parts of the algorithm are run separately to show the ability of
both layers to follow the rules of the road. As can be seen in the following sections, the
system follows the implemented rules correctly.

4.4.1 Head-on

When in a Head-on situation, the controlled vessel should pass with the other vessel on
its port side. In the following case, it means passing to the right of the other vessel. The
controlled vessel approaches the goal from the bottom of the map, while the other vessel
travels downward. As seen in figures 4.6 and 4.7, the controlled vessel starts out a little
to the left, making a non-compliant manoeuvre easier than a compliant.

4.4.2 Crossing from left

When in a crossing situation, the correct action depends on the context of the situation.
In this case we will assume that the controlled vessel is the give-way vessel, and has to
cross behind the other vessel. The results are shown in figures 4.8 and 4.9.

In a crossing situation where the controlled vessel has to give way, it basically has
two choices. It can either slow down and let the other vessel pass before continuing, or
it can continue at the same velocity and steer around the back of the other vessel. The
choice selected by the algorithms depends on the situation and the algorithm parame-
ters. For the Dynamic Window algorithm, the importance of heading over speed is the
dominant factor. If the target heading points directly towards the crossing vessel and
it is more important to keep the heading, the vessel will slow down. Else it will keep
its speed and travel around. Choices in-between are of course also possible, where the
vessel slows down a bit, but still steers around the crossing vessel.

75



(a) Without COLREGS (b) With COLREGS

Figure 4.6: When COLREGS is disabled, the Dynamic Window algorithm chooses the
easier non-compliant route as expected. Enabling COLREGS gives the
algorithm a large penalty for violating COLREGS, making the compliant
route the best option.

(a) Without COLREGS (b) With COLREGS

Figure 4.7: With COLREGS disabled, RRT is free to pass on any side of the ap-
proaching vessel, as seen from the traces in (a). In (b), COLREGS is
enabled and RRT passes on the correct side.

76



(a) Without COLREGS (b) With COLREGS

Figure 4.8: In (a), the controlled vessel travels at maximum speed, and passes in front
of the other vessel. The result is manoeuvre that is both dangerous and
non-compliant. With COLREGS enabled, the Dynamic Window algo-
rithm performs correctly, passing behind the other vessel as seen in (b).

(a) Without COLREGS (b) With COLREGS

Figure 4.9: The RRT algorithm also passes behind the other vessel when COLREGS
is enabled. Passing in front of the vessel is the fastest option though, and
without COLREGS the RRT algorithm consistently passes in front of the
other vessel.

77



4.4.3 Crossing from right

The situation where the other vessel is crossing from the right is included for complete-
ness. The controlled vessel still has to pass behind the crossing vessel. The results are
shown in figures 4.10 and 4.11.

(a) Without COLREGS (b) With COLREGS

Figure 4.10: The Dynamic Window performs as expected, passing on the correct side
with COLREGS enabled.

(a) Without COLREGS (b) With COLREGS

Figure 4.11: The RRT algorithm also performs flawlessly with COLREGS enabled.

78



4.5 The advantage of the hybrid approach

The final scenario is a modified and tougher version of one of the scenarios from [38]. It
features five hostile vessels doing their best to collide with the controlled vessel. As seen
in the image series of Figure 4.12, the local algorithm makes the vessel deviate from the
planned path to avoid the other vessels.

(a) (b)

(c) (d)

Figure 4.12: The initial configuration is shown in (a). The controlled vessel is in the
lower right, and the others are hostiles. The goal is in the upper left. In
(b), the RRT has generated a path, but it cannot predict the movements
of the hostile vessels, so in (c) the Dynamic Window algorithm forces
the vessel off-path to avoid them. The last image shows the controlled
vessel back on the path, having outmanoeuvered the hostile vessels.

The simulation shown in Figure 4.12 was run with COLREGS compliance disabled.
This was done for two reasons: First of all, it allowed the RRT to plan a path closer
to the hostile vessels, and second it made sure the manoeuvres of the Dynamic Window

79



algorithm were not limited by having to follow the rules.

Interestingly, this scenario is most successfully run with COLREGS enabled, using
only the RRT controller. With COLREGS enabled, the RRT controller plans a path
around the hostile vessels, taking the controlled vessel far away from them in an effort to
minimize the COLREGS penalty, see Figure 4.13. Even though the vessel then follows
the generated path in open loop, not paying attention to the changing surroundings, it
manages to get to the goal in all the simulations because it has a higher top speed than
the hostile vessels.

Figure 4.13:

The excellent performance shown by the RRT algorithm in Figure 4.13 is partly be-
cause of the way the scenario is set up. If the hostiles were arranged in another way, the
RRT could have planned a path taking the controlled vessel closer to the hostiles, which
would have resulted in a significantly lower success-rate.

In a real-world scenario, the RRT will generally not be able to cope with a rapidly-
changing environment, and requires the assistance of the Dynamic Window algorithm
as shown in Figure 4.12.

80



Chapter 5

Full-scale implementation

Simulation is an excellent tool for determining the performance of control algorithms,
but since simulations introduce a lot of simplifications and inaccuracies, simulation re-
sults have to be verified by performing full-scale experiments.

One of the main goals of this thesis was to test the developed controller on a real
vessel. The vessel would need computer-controllable actuators, as well as an extensive
set of on-board sensors. The Trondheim-based company Maritime Robotics [3] early an-
nounced their interest in the project, and made their vessels available for implementation
of the control system.

5.1 The Viknes 830

The target for the implementation was a vessel of type Viknes 830, as shown in Figure 5.1
[5]. The Viknes is a relatively small vessel with good manoeuvrability. Some technical
specifications are listed in Table 5.1.

Parameter Value
Length 8.52 m
Width 2.97 m
Draught 0.82 m
Weight 3.300 kg

Power 137 kW
Top speed 10.5 m

s
Max rudder 15 deg

Table 5.1: Some of the basic Viknes 830 [5] specifications.

81



Figure 5.1: The Viknes 830 is the testing platform for the collision avoidance system.
(Image courtesy of Viknes [5])

5.1.1 Sensors

To be able to do a good job controlling the vessel, a controller needs accurate infor-
mation about the state of the vessel and the vessel’s surroundings. During the Matlab
simulations, the controller worked with perfect information, meaning that the informa-
tion received was complete and 100% accurate. In a real-world scenario this is seldom
the case however, and one of the limiting factors for controller performance is the sensor
outfit of the vessel.

GPS

The Global Positioning System [18, 20, 56], named NAVSTAR GPS, was developed by
the United States Department of Defense. It is based on a set of at least 24 satellites
which periodically transmit their internal time, as well as data needed to calculate their
spatial coordinates. If a GPS receiver gets signals from at least 4 satellites it can calcu-
late an estimate of its own position (x, y) from the received data. The z coordinate, or
heave, of the vehicle is also calculated. For our 3 DOF model, the z value is not needed,
but in other applications it may be.

Using a series of calculated position, the linear speeds of the vehicle (u, v, w) can be
calculated. The third value w denotes the speed along the z-axis, and is not included
in our 3 DOF consideration. If the vehicle is in motion, the direction of travel can also

82



be calculated. Depending on the vehicle model, the direction of travel can be a good
estimate of the heading of the vehicle.

The Viknes is fitted with a total of 3 GPS receivers. In addition to possibly giving
a better position estimate, this outfit gives the system the ability to determine the true
heading ψ of the vessel. When using GPS for this purpose, it is often called a GPS
compass.

The GPS receiver transmits data every second or so, which is fast enough for con-
trolling vessel position and velocity, but the heading measurement is a bit slow. Trying
to deduce yaw rate from the heading measurement by calculating its derivative gives
poor results.

Figure 5.2: This unlaunched GPS satellite is on public display at the San Diego
Aerospace Museum.

IMU

An Inertial Measurement Unit (IMU) [20, 58] is a component able to measure linear ac-
celerations and angular velocities by relying on a three-axis accelerometer and a three-
axis gyroscope. The accelerometer senses acceleration along all the three body axes
(u̇, v̇, ẇ), and the gyroscope senses the angular rates about the same axes (p, q, r).

The IMU mounted in the Viknes also includes a three-axis magnetometer. The mag-
netometer senses the Earth’s magnetic field giving, the direction of the vessel. In contrast
to the GPS compass which gives the direction of true north, the magnetometer gives the
direction of the magnetic north like a traditional compass. The location of the magnetic

83



north varies, and generally deviates a great deal from the true north, which has to be
compensated for. The advantage of using measurements from the IMU (or a compass)
over the GPS compass is that the measurement-frequency can be much higher, giving
tighter control of the vessel.

The velocities of the vehicle relative to the body axes can be acquired by integrating
the linear accelerations once. The coordinates of the vehicle can also be calculated, by
integrating the velocities after applying a transformation to a suitable reference frame.
The problem with these calculated velocities and coordinates is that they tend to drift,
which is due to factors such as noise, quantization errors and rounding errors. Hence,
an IMU is best used in combination with other sensors.

The strength of the IMU is its bandwidth. When using an IMU in combination with
a GPS, the IMU will improve the bandwidth of the total system. It will also help im-
prove the accuracy of the estimates because the measurements now come from multiple
sources. The GPS is used to realign the coordinate and velocity estimates of the IMU
to prevent drifting.

Fusing the estimates from the IMU with the measurements from a GPS unit requires
some kind of filter [18]. The Extended Kalman Filter [51] is commonly used for this
task. No Kalman filter has been developed for the Viknes however, so the IMU will
not be used for estimation. Position and linear speeds are taken from the GPS, while
angles, angular rates and linear accelerations are taken from the IMU. For the collision
avoidance application this setup will be sufficient.

AIS

AIS is short for Automatic Identification System. This system allows vessels to exchange
information required to perform effective collision avoidance [4, 41, 53].

Every vessel with an AIS transponder regularly transmits data about its own state,
identity and basic handling characteristics. The information is transmitted over VHF,
and all other AIS-enabled vessels within range receives it. This information gives all
AIS-enabled vessels an accurate view of the situation; more accurate than that acquired
by using radar only. The transmission of identification information and handling char-
acteristics makes AIS especially powerful, as it gives the control system the ability to
better predict the future behaviour of the other vessels. The transmitted ship draught
will for example allow trajectories through too shallow waters to be excluded.

A downside of using the AIS system is that only vessels employing AIS are visible
through the system. With some exceptions, only vessels exceeding 300 gross tonnes are
required to be fitted with an AIS system [34]. Smaller vessels, hostile vessels, and other

84



dynamic obstructions such as icebergs and kayaks, will not be detected.

Figure 5.3: A text-only AIS display, listing nearby vessels with range, bearing and
name.

Another downside is that collision avoidance using AIS will only work if the trans-
mitted information is correct. A faulty speed sensor on a vessel can for instance fool
other vessels to believe that the vessel is at a standstill, while it in reality is travelling
at a high speed. This will make the prediction of the vessel’s motion wrong, and can
have a detrimental effect on the performance of the collision avoidance system. In a hy-
pothetical situation, an enemy may also gain control of a vessel by faking AIS messages
to fool the vessel’s collision avoidance system.

Because of these issues, a vessel needs to have a redundant sensor system for de-
tecting and observing other vessels and objects in the environment. In addition to AIS,
employing a radar system should be a requirement. One way of incorporating radar data
into the collision avoidance system is to use raw radar data directly, together with some
measure of uncertainty. This is done using ultrasonic sensors in [8].

The use of radar data has not been implemented here though, and AIS will be the
Viknes’ primary means of detecting other vessels in this thesis.

Digital nautical charts

Charts have always been an important tool for navigators, and even today they are
essential for safe marine navigation. In digital form, they also become available to our
collision avoidance system. The nautical charts provide information on the static fea-

85



tures of the environment, such as coastlines, piers, buoys, shallow water, etc.

It is important to note that even a good chart may have flaws. This fact, in addition
to the fact that charts cannot take dynamic obstructions into account, makes navigation
exclusively by charts potentially disastrous. Digital charts however provide a great value
when combined with other sensors.

Figure 5.4: ECDIS is short for Electronic Chart Display and Information System,
and represents a specific form of computer-based navigation information
system that complies with IMO regulations [55]. The image shows an
ECDIS display.

5.1.2 Vessel capabilities

For the application of collision avoidance, the capabilities of the Viknes vessel and its
sensor outfit are good enough. The lack of a good observer fusing estimates from the
IMU with measurements from the GPS should not be a problem. The state estimate
calculated without such an estimator ought to be accurate enough.

The AIS system on the vessel allows the control system to detect and avoid larger
vessels in the environment. For algorithm verification, this property is all that is needed,
but the vessel will be unable to detect smaller vessels and other objects without AIS
transceivers.

To make the system more capable in a real-life situation, the control system should
also process data from the onboard radar. More sensors, like laser range finders and
computer vision should also be added to enhance the vessel’s perception abilities to-
wards the surrounding environment.

The Viknes is an under-actuated vessel, but so are most vessels when travelling at
higher speeds. The controller developed in this algorithm should be fully capable of

86



controlling the Viknes.

5.1.3 Model identification

As explained in Section 2.1.4 it is often important to have a good mathematical system
model when designing a controller. In this case it is important for two reasons:

The controllers need an internal model . Both the Dynamic Window and the
RRT algorithm require knowledge about the vessel model. The Dynamic Win-
dow algorithm can get away with less information about the vessel model, but
the RRT algorithm on the other hand requires a full model for integration when
exploring different paths through the environment.

A model is needed for simulation . Both the simulations in Matlab, and the ones
in the Hardware-in-the-Loop system (defined in Section 5.3), require a model of
the controlled vessel. The more accurate this model is, the closer the simulations
will be to the real world.

Model identification is the act of finding a good system model, in this case a model
for the Viknes vessel. Using the vessel model defined in Section 2.1.4 as a basis, what
remained was to find good values for the model parameters.

Mass and inertia

As seen in Table 5.2, vessel mass m and moment of inertia Iz were found by summing
up the different parts of the vessel. The exact center of gravity (CG) was not known, so
an average has been calculated.

Part Mass Avg. dist. from CG Moment of inertia
Hull 2780 kg 2 m 11120 kg ·m2

Engine / gear 420 kg 2 m 1680 kg ·m2

Equipment 70 kg 3.2 m 716 kg ·m2

Diesel tanks 300 kg 3.5 m 3675 kg ·m2

Water tanks 120 kg 2.6 m 811.2 kg ·m2

Septik 20 kg 2 m 80 kg ·m2

Targa 90 kg 4 m 1440 kg ·m2

2 people 80 kg 1 m 180 kg ·m2

Total mass: 3980 kg Total moment of inertia: 19703 kg ·m2

Table 5.2: The parts of the vessel are summed up to calculate an estimate of the vessel
mass. Combined with the average distance of the parts from the center of
gravity (COG) of the vessel, the moment of inertia is also estimated.

87



The added mass of the vessel is more difficult to determine. If a model of the vessel’s
hull is available, computer programs can normally calculate an estimate by employing
strip theory. This involves dividing the submerged part of the vessel into a number of
strips and calculating the added mass for each strip. The values are then summed up,
giving an estimate of the added mass of the vessel [20].

Due to time limitations, a good estimate of the Viknes’ added mass was not found.
The added mass is therefore set to zero, omitting added mass and added coriolis:

MA = 0 (5.1)
CA = 0. (5.2)

Disregarding added mass may seem coarse, as it will make the vessel model easier to
accelerate than its physical counterpart, but as the other vessel parameters are calculated
with the assumption of zero added mass, this should be evened out.

Damping

The damping parameters were identified axis by axis. Some work had already been put
into finding the parameters for the Nomoto model (2.3) of the vessel. These parameters
depend on the speed of the vessel, but a decent estimate, shown in Table 5.3, had been
found.

Parameter Value
K 0.5
T 4

Table 5.3: An estimate of the parameters for the Nomoto model (2.3) for the Viknes
830.

The Nomoto model (2.3) gives the following differential equation for the heading of
the vessel:

T ṙ + r = Kδ. (5.3)

This model is too simple however, as the yaw dynamics of the vessel is only relatively
linear for small rudder deflections δ. For larger values of δ, the model will be too
inaccurate. This inaccuracy can be improved by adding second and third order damping
terms to the equation, making it more in-line with the equations of the full vessel model
in (2.5):

T ṙ + n3r
3 + n2r|r|+ n1r + n0 = Kδ. (5.4)

By setting ṙ = 0 in (5.4), the steady-state equation is found:

88



n3r
3 + n2r|r|+ n1r + n0 = Kδ. (5.5)

This equation shows the relationship between δ and r after all transients have died
out, i.e., the yaw rate which the vessel will end up with after the rudder has been held at
a constant value for some time. The parameters (n3, n2, n1, n0) can now be found for
the Viknes experimentally. The steady-state yaw rate for the Viknes was found for a set
of different rudder deflections. A third-order polynomial curve-fit was then performed
to calculate the optimal parameters for the recorded values. The parameter values are
shown in Table 5.4, and with the parameters inserted, the steady state function (5.5) is
plotted in Figure 5.5 along with the source data.

Figure 5.5: The relation between steady-state yaw rate and rudder angle was found
for engine speeds giving 5, 8, 12 and 16 knots steady-state forward speed.
As seen in the figure, the measurements marked by red crosses deviate
significantly from the others. They were obtained at 5 knots, and be-
cause of the large deviation they were not taken into account when fitting
(5.5) to the data. The measurements at the rest of the speeds, shown in
black, coincide relatively well, and the fitted function shown in thick blue
matches the data relatively well. The thin line shows an example of a
linear approximation matching the data well for small rudder deflections.
Matching in this area is important, as these are the deflections that are
used most often. At larger deflections, the polynomial function provides
a much better fit.

To relate the extended Nomoto model in (5.4) with the original vessel model equations
(2.5), the moment of inertia of the vessel is multiplied into the equation, and the equation
is rearranged. Neglecting added inertia and cross-coupling terms, this results in the

89



Parameter Value
n3 1.3089 ·K
n2 1.1374 ·K
n1 0.5202 ·K
n0 0 ·K

Table 5.4: The following values were found when fitting (5.5) to the experimental data.
Since (5.5) is underdetermined, the parameters for the equation depend on
K.

following equation:

Iz ṙ +
Izn3

T
r3 +

Izn2

T
r2 +

Izn1

T
r =

IzK

T
δ. (5.6)

The rudder bias is not included as it was found to be zero. In the case that the bias
of the rudder is non-zero, this effect can be compensated for by calibration.

From (5.6) and (2.5), the following equalities can be found, which give us the values
for yaw damping and the maximum lateral force generated by the rudder:

Nr = −Izn1

T
(5.7)

N|r|r = −Izn2

T
(5.8)

Nrrr = −Izn3

T
(5.9)

Fy,max =
IzK

T
δmax, (5.10)

where δmax is the maximum rudder deflection in radians as given in Table 5.1. This
approximation is by no means an accurate estimate, but it will suffice.

The damping parameters in the surge and sway directions of the vessel were found in
a rather different way. For the surge damping, the Viknes was run at a constant velocity
for a short period of time before the main engines were shut down. For a series of differ-
ent initial velocities, the velocity response was recorded as the vessel slowed down and
came to a stop. The response of the vessel model was then made to match the response
of the Viknes as best as possible by manipulating Xu and X|u|u.

The lateral damping parameters could have been found by towing the vessel side-
ways at different speeds while measuring the required forces. Due to time constraints
however, the parameters were not measured. The parameters for lateral damping pre-
sented in Table 5.5 were found by looking at the behaviour of the simulated vessel for
multiple parameter values, and selecting a set of values that made the vessel movements

90



seemingly realistic.

The cross-damping parameters Nv and Yr were not identified, and are approximated
to zero. At higher speeds, the effect of the cross-damping terms on the lateral motion of
the vessel will most likely be dominated by coriolis. Since the vessel model is intended
for higher speeds, neglecting cross-damping should not give large errors in the lateral
movement of the vessel. The yaw rate is affected however, but the low-level controllers
of the vessel should be able to cope with this effect.

Actuators

For the force generated by the vessel engine Fx, the stationary velocity was recorded for
the engine at different RPMs. This data was then matched against engine charts for
the Viknes giving the effect of the engine at the different RPMs to calculate an estimate
of the force generated by the engine. Fortunately, the force ascended relatively linearly
with the engine RPM, maxing out at Fx,max = 13.1 kN at 3200 RPM.

Although the control system is able to make the vessel travel backwards, reverse force
is mostly used for decelerating the vessel. Lacking good measurements, the maximum
decelerating force Fx,min is estimated to approximately half the forward force. The
reduction in power efficiency comes from a combination of several issues, including the
propeller being less effective when run backwards and the water flowing the wrong way
past the propeller.

The final parameters

The final vessel model parameters are summarized in Table 5.5. For surge speeds larger
than 8 knots, they should provide a sufficient estimate for simulation and prediction.

Several rough estimates were made in order to find the parameters however. The ne-
glection of added mass is somewhat compensated for in the computation of the damping
and force parameters, but error in the lateral damping and cross-damping parameters
will result in a model that deviates somewhat from the physical vessel.

In simulations, the modelling errors will not be problematic, as both the controllers
and the vessel model in the simulator uses the same parameters. They do however give
a certain amount of uncertainty to the results obtained by simulation, as the simulated
vessel does not behave exactly as its physical counterpart.

The importance of full-scale experiments was mentioned at the beginning of this
chapter, and this is clearly seen here. To remove the uncertainty associated with the
simulations, verification is needed. This is why full-scale experiments are important.

91



Parameter Value
m 3980 kg

Iz 19703 kg
m2

Xu −50
X|u|u −135
Xuuu 0
Yv −200
Y|v|v −2000
Yvvv 0
Nr −1281
N|r|r 0
Nrrr −3224
Nv 0
Yr 0

Fx,max 13100 N
Fx,min −6550 N
Fy,max 645 N
lr 4 m

Table 5.5: Parameters for the vessel’s equation of motion. The parameters approxi-
mate the parameters of the Viknes 830 [5].

5.2 Control system

The control system for the physical vessel is built on the Control Design Platform (CDP)
framework provided by Industrial Control Design (ICD) [15], a Norwegian company lo-
cated in Ålesund. As its name suggests, CDP is a platform for control systems. It allows
a control system to be decomposed into several smaller components, making develop-
ment more manageable. CDP also acts as a layer between the operating system of the
control computer and the software, allowing the control system to be run on a multitude
of different operating systems. The framework is written in C++, but includes func-
tionality for implementing control algorithms in Matlab.

A brief overview of the control system is shown in Figure 5.6. An observer is re-
sponsible for fusing sensor data to provide a good estimate of the vessel state, as well
as creating an image of the surrounding environment. This data is passed on to the
different controllers, and together with operator input, provides the input to the control
system.

The control system is divided into several layers. The RRT algorithm assisted by A*
is responsible for creating a path through the environment using all available information.
The path tracker calculates the heading and velocity setpoints required to follow the
path. These are only suggestions though, as the Dynamic Window algorithm in the

92



Figure 5.6: The vessel control system consists of several self-contained components
which cooperate in an effort to control the vessel according to the opera-
tor’s goals.

next layer freely manipulates the setpoints to avoid dangerous situations. The final layer
consists of the low-level controllers of the vessel, which attempt to track the setpoints
given by the Dynamic Window algorithm.

5.2.1 Low-level controllers

When moving to a real vessel, the low-level controllers defined in Section 2.1.4 no longer
suffice. They rely on explicit knowledge of the vessel model which is no longer available.
The model defined by the equations in (2.5) most likely is too simple, and its parameters
too inaccurate for feedback linearization.

A more robust method for control design is sliding mode, but in this implementa-
tion, simple PID regulators are used for all low-level controllers. Implemented with
gain-scheduling, these perform a good job in controlling the vessel.

93



Gain-scheduling is required since the response of the vessel to certain inputs change
in magnitude depending on the state of the vessel. A small rudder deflection will for
instance have more effect on the vessel at higher than lower speeds. A gain-scheduling
controller compensates for this effect by changing the controller gain according to the
system state, making sure the system is stable and has a good response for a large range
of different states.

Both the heading and yaw rate controllers on the Viknes are gain-scheduled with
respect to the vessel’s surge speed u. They both generate desired rudder deflections δsp
for the rudder controller which is responsible of positioning the rudder correctly. The
PID controller for heading and yaw rate is given by:

δsp(t) = Kp,h(u)eh(t) +Ki,h(u)
∫ t

0
eh(τ)dτ +Kd,h(u)

d

dt
eh(t)︸ ︷︷ ︸

PID FB

, (5.11)

where eh(t) is the error in the controlled value. When controlling the heading of the
vessel the error is defined as eh(t) , Γ(ψsp(t) − ψ(t)), and when controlling yaw rate
the error is eh(t) , rsp(t)− r(t). The function Γ : R → 〈−π, π] maps the heading error
to the interval 〈−π, π], making sure that the proportional term of the controller always
causes the vessel turn the correct way in order to reduce the heading error. For the yaw
rate controller this is not required. The controller gains Kp,h(u), Ki,h(u) and Kd,h(u) are
gain-scheduled to make sure the controller performs well for all feasible surge velocities.

Gain scheduling is not needed in the speed controller of the vessel, as the gain-change
here is not as drastic as for the heading and yaw rate modes. The PID controller for
speed controls the engine throttle ω:

ω(t) = Kp,ses(t) +Ki,s

∫ t

0
es(τ)dτ +Kd,s

d

dt
es(t)︸ ︷︷ ︸

PID FB

, (5.12)

where es(t) , usp(t)− u(t) is the error in the speed of the vessel, i.e., the difference
between desired and actual speed. As opposed to the controllers defined in Section 2.1.4,
these low-level controllers only contain feedback terms; they do not try to compensate
for the actions of the vessel before they can be measured.

The outputs of the low-level controllers can be related to the equations of motion
defined in Section 2.1.4 by estimating a linear relationship between the actuator inputs
and their generated forces. We also neglect the dynamics of the rudder, giving δ = δsp, as
well as the dynamics of the engine. Since the dynamics of these actuators are generally
much faster than the vessel dynamics, this approximation is not too crude. The forces
acting on the vessel under these assumptions become:

94



Fx = K1ω (5.13)
Fy = K2δ, (5.14)

where K1 and K2 are some constants. As infinitely large forces are not feasible, the
values of ω and δ are limited. This may cause the integrator in the PID controllers to
wind up, resulting in bad behaviour. This is why integral terms were not used in the
controllers in Section 2.1.4. Many techniques exist to solve this problem though [46].

5.3 HIL system

The simulations done in Section 4 give a good indication of the performance of the ves-
sel control algorithms. The vessel control system consists of more than just algorithms
however, both in terms of software and hardware. These aspects include failure handling
routines, I/O interfaces, operator interfaces, etc., and result in a total system that is
relatively complex and requires extensive testing and verification before being put into
use.

This is where Hardware-in-the-Loop (HIL) simulations come into play. A HIL simula-
tor employs a real-time simulator as a replacement for the physical vessel. The simulator
simulates all signals from the vessel to the control system, optionally adding effects as
sensor dynamics and noise. All commands output by the control system are received
and applied to an internal vessel model, simulating the motion of the vessel. During ex-
ecution, the control system should not experience any qualitative differences from being
used with the physical vessel [28, 43].

The strength of the HIL simulator is the broad range of scenarios that can be tested
without the need of sea trials. As both the hardware and the software making up the
control system is included in the simulation, various failure scenarios can be simulated,
including power outages, sensor noise, different network conditions, etc. These features
enable the verification of failure detection and handling of a number of failure modes.
Realistic operational scenarios can also be simulated to verify the functionality of the
control system under different operating conditions.

By using a HIL simulator, extensive testing can be done early in the development
process. While it cannot replace the costly full-scale sea trials completely, the need for
such trials is reduced since basic problems can be found and corrected at an earlier stage.
Another benefit with HIL simulation is that it allows the testing of scenarios that are
too expensive or risky to test in full-scale. The control system can thus be tested both
deeper and more thorougly at a lower cost with a HIL simulator than with conventional
testing [28].

95



5.3.1 HIL for the Viknes

An overview of the HIL setup for the Viknes is shown in Figure 5.7. The physical vessel
has now been replaced by a simulation computer. Communication between the con-
trol computer, also known as the on-board computer (OBC) and the simulator is done
through the normal hardware I/O interface of the OBC (analog, digital, serial, etc.) to
include these interfaces in the simulation.

Figure 5.7: The HIL simulator replaces the physical vessel with a software-simulated
vessel. The vessel simulator contains a model of the vessel, its sensors
and its actuators, and emulates the vessel for interaction with the on-
board computer (OBC). Dealing with a HIL simulator or dealing with the
physical vessel should be qualitatively the same from the OBC’s viewpoint.
This feature allows extensive testing of the OBC to be performed on land
in a controlled environment.

The HIL system allows most of the aspects of the control computer to be tested and
verified, but also represents a great development platform. The simulator contains a
mathematical model of the vessel as well as its sensors and actuators, allowing control
algorithms to be tested in real-time with very little effort. During development this
proved very valuable, as most bugs in the control system could be found without having
to test the system on the physical vessel.

The vessel model in the HIL system is based on the model presented in Section 2.1.4
with the parameters given for the Matlab simulations in Chapter 4, which should make
the results from the HIL system somewhat comparable with the results from the Matlab
simulations. What separate them is the different low-level controllers, the communica-

96



tion time delay in the control system and simulator, and a more realistic sensor model.
The control system no longer has perfect knowledge, but relies on data from the available
sensors.

97



98



Chapter 6

Full-scale experiments

One of the main goals of the work leading up to this thesis was to test the developed
control system on a real vessel in a set of full-scale experiments. To straighten out all
quirks in the control system and its algorithms, extensive testing was performed on a
HIL simulator (see Section 5.3) prior to running the system on the real vessel. This was
nonetheless an iterative process, as not all errors were detected during HIL testing.

An interesting question is how well the HIL simulator is able to emulate the physical
vessel. In an attempt to answer this question, the scenarios presented in this chapter
have been run on both the HIL simulator and in the real world. As another vessel is
part of the scenarios, controlled by the simulator in the first case and a human in the
second, the scenarios will not be completely identical, but hopefully identical enough for
qualitative comparisons.

The first scenario uses purely reactive control to show the vessel’s ability to follow the
commands given by the Dynamic Window algorithm. The second scenario uses the full
control system. Both of the scenarios feature another vessel approaching the controlled
vessel, to verify that the controllers will choose a COLREGS-compliant course of action.

One of the main differences when moving from the Matlab simulations to the HIL
simulator and the real vessel is, from the control algorithm’s point of view, the lack of
perfect knowledge about the vessel state and the environment. The GPS only transmits
position coordinates every second or so, and other vessels are tracked solely by messages
from the AIS system. Such aspects introduce time delays into the system, as it takes
some time before the response of a control input is measured. Additional time delay
comes from actuator dynamics and the time which signals take to propagate through
the control system.

The introduced time delays were handled at multiple levels. The low-level controllers
had to be tuned less aggressively than their Matlab counterparts to avoid oscillations
and instability. The parameter Tr of the Dynamic Window algorithm, determining the

99



settling time to the desired heading, had to be increased to Tr = 1 for the same reason,
and finally the parameters of the path tracker were increased to ∆ = 90m and Ra = 60m.
Ideally, ∆ and Ra should be functions of the surge speed of the vessel, increasing mono-
tonically with the speed, but the given values resulted in good performance at the higher
velocities used in the following experiments.

Because the throttle-controller hardware for the Viknes was delayed, and could not
be delivered in time for the experiments, both the HIL simulations and full-scale exper-
iments were performed at constant speed of 6 m/s.

The environment is based on the Trondheimsfjord just north of Trondheim, Norway.
The green polygons represent land while the dark blue polygons represent forbidden
areas, attempting to make the environment a bit more interesting. The grid spacing in
the figures is 250 metres.

6.1 HIL simulations

In the HIL simulations, the other vessel is controlled by the simulator. It travels in a
straight line, making good prediction possible by both the Dynamic Window and RRT
algorithms.

6.1.1 Reactive scenario

In the first scenario, the vessel is controlled solely by the Dynamic Window algorithm.
It starts out in the lower right of the map, travelling towards the circular target in the
upper left. The controlled vessel encounters the other vessel in a head-on situation along
the way, opening up for a COLREGS-compliant manoeuvre. The results are shown with
comments in Figure 6.1.

100



(a) Starting out

Figure 6.1: The vessel starts out in the lower right, and has to get to the target in the
upper left while avoiding the other vessel and the blue forbidden zones.

101



(b) COLREGS manoeuvre

(c) Final trace

Figure 6.1: As seen in (b), the controlled vessel passes the other vessel on the correct
side. It also manages to steer clear of the forbidden zones, resulting in a
successful simulation.

102



6.1.2 Hybrid scenario

In the second scenario, the full hybrid controller is put to work. The controlled vessel
starts out in a local minimum in the lower center of the map, and has to reach the target
near the top of the map. The fastest way is in-between the two forbidden zones, where it
meets the other vessel which is travelling downwards. For the experiment to be a success,
the controlled vessel has to pass the other vessel in a COLREGS compliant-fashion, and
get to the goal. The results are shown in Figure 6.2.

(a) Starting out (b) Initial RRT path

Figure 6.2: Figure (a) shows the initial state. The controlled vessel is the barely
visible black dot in the lower part of the map, and the other vessel is not
yet visible. The yellow circle in the upper left is the target. As seen in
(b), the RRT algorithm actually fails in finding a solution to the problem
in the first iteration, but the chosen route still provides good progress
towards the goal. The first part of the route will also act as a guide for
the second iteration. The circle shown on the RRT path in (b) shows the
next waypoint along the path.

103



(c) Improved RRT path (d) COLREGS compliant
path

(e) Deviating from path (f) Final trace

Figure 6.2: In (c), the second iteration of the RRT algorithm has generated a valid
path to the goal with good help from the first iteration. The other vessel
has entered the area from the top in (d), and the RRT algorithm has
generated a path leading the controlled vessel clear of the approaching
vessel. The RRT algorithm leads the controlled vessel a bit close to the
other vessel, causing the Dynamic Window algorithm to make the vessel
deviate from the path as shown in (e). The controlled vessel reaches the
goal in (f), ending the simulation with success.

104



6.2 Sea trials

The sea trials were done with the other vessel being controlled by a human, trying as
best to steer it as in the HIL simulations. As explained in Section 5.1.1, the controlled
vessel relies solely on AIS for information about the state of the other vessel. In the final
experiments, the AIS data transmitted from the other vessel contained invalid heading
and yaw rate data, resulting in a misrepresentation of the vessel state. The position
and speed data was valid however, and the decision was made to go through with the
experiments.

The invalid heading and yaw rate data resulted in gross mispredictions of the move-
ments of the other vessel because the predictions in the system are based on integration
of the full vessel model (2.5). As seen in Figure 6.3, the other vessel appears to be
travelling near-sideways, and the large damping in this direction results in a prediction
where the velocity of the other vessel is reduced very quickly.

Despite the prediction errors, the control system still manages to keep the controlled
vessel clear of collision. This achievement is a sign of the robustness of the collision
avoidance system.

6.2.1 Reactive scenario

Like in the reactive scenario for the HIL simulator, the reactive scenario features control
by the Dynamic Window algorithm alone.

As seen in Figure 6.3, the controlled vessel completed the scenario, but not as grace-
fully as on the HIL simulator. As it could not predict the movements of the other vessel
correctly, it took a lot more time before it started executing evasive manoeuvres to avoid
the other vessel. It eventually saw the vessel, but as it travelled relatively fast at 8 m/s,
giving a relative velocity of 14 m/s, only a limited amount of manoeuvring was possible
before the vessels passed each other. The margins were relatively small.

Moving through the area with the forbidden zones, the control system had a bit of
trouble steering clear of the first zone it encountered, brushing up against the side of
it. The main reason for this was the yaw rate controller, which was tuned too conserva-
tively. This resulted in a significant delay from the time a command was issued by the
Dynamic Window algorithm to when it was put into action. The second zone was no
match for the controller.

105



(a) Starting out

(b) Approaching

Figure 6.3: The initial conditions are shown in (a), with the controlled vessel in the
lower part of the map, and the other vessel within the goal area. In (b),
the vessels are approaching one another. Looking closely at the other
vessel, you can clearly see the error in the received heading data: The
vessel seems to be travelling sideways towards the controlled vessel.

106



(c) Evasive manoeuvre

(d) Final trace

Figure 6.3: As the prediction capabilities are severely reduced, the controlled vessels
reaction to the other vessel comes relatively late. In (c) the controlled
vessel has just started an evasive manoeuvre. The final trace is shown in
(d).

107



6.2.2 Hybrid scenario

The hybrid scenario was the chance to test the full control system on the physical ves-
sel, i.e., the ultimate test, containing both a local minimum and a potential COLREGS
situation.

(a) Starting out (b) Initial RRT path

Figure 6.4: The initial condition is shown in (a), with the first RRT path having been
generated in (b). The other vessel has not yet entered the map.

The results from the scenario are shown in Figure 6.4. Except from the prediction
problems with the other vessel, the performance of both the RRT and Dynamic Window
algorithm was excellent. Identically to the HIL simulation, the first RRT iteration was
unable to find the goal, but still came up with a reasonable path. The next iteration
improved on the first, and all later iterations found valid paths.

Because of the prediction problems, the passing of the other vessel was not as smooth
as in the HIL simulation. The RRT algorithm managed to create a path steering clear of
the other vessel however, but only by a small margin. In this scenario, the other vessel
travelled at a low 3 m/s, so when approaching, the Dynamic Window algorithm had
enough time to steer clear by taking the controlled vessel away from the planned path
to pass the other vessel at a safe distance.

108



(c) Improved RRT path (d) Other vessel enters

(e) COLREGS compliant path (f) Deviating from path

Figure 6.4: Figure (c) shows the first path reaching the goal. The other vessel enters
the top of the map as a tiny red dot in (d). A black rectangle has been
placed around the vessel to make it easier to see. Both in (e) and (f),
the RRT algorithm has generated a path keeping clear of the vessel, but
because of the mispredictions, the generated path takes the vessels very
close. This is corrected by the Dynamic Window algorithm in (f), by
steering the controlled vessel off-path to keep a safe distance to the passing
vessel.

109



(g) Back to the path (h) Approaching goal

(i) Final trace

Figure 6.4: The vessel returns to the path and continues towards the goal in (g) and
(h). The final path trace is shown in (i).

110



Chapter 7

Control system analysis

When designing a control system, simulations and live testing are often the primary
tools for determining the properties of the system. Tests show how the system behaves,
how it is influenced by external influences such as noise, whether it reaches its goals, and
so on. Performing tests would seem to be everything needed to create a control system.
It is not that easy however.

The problem with simulations and live testing is that they only represent a subset
of the possible situations that the control system may be exposed to in the real world.
If the system performs flawlessly during testing, this is a good indication of how the
system will perform under other scenarios, but there is no way of knowing whether a
specific scenario will cause trouble.

For discrete systems it is sometimes possible to simulate and test all possible sce-
narios, but for general systems, the number of scenarios is too large and often infinite.
Another approach is required, and this is where control system analysis comes into play.

7.1 Introduction

When analysing control systems, three properties are of primary concern: stability, tran-
sient behaviour and robustness. Stability says something about what happens to the
system as time approaches infinity. In [30], stability is defined as follows: Given an
autonomous system with state vector x, and a derivative given by a function f :

ẋ = f(x), (7.1)

with an equilibrium point at xg, i.e., f(xg) = 0. This system is said to be stable if
for each ε > 0 there is a δ(ε) > 0 such that:

‖xg − x(0)‖ < δ =⇒ ‖xg − x(t)‖ < ε ,∀ t ≥ 0. (7.2)

111



This relation means that if the system is stable and starts out at x(0) at some
distance from the goal xg, the distance from the goal will be bounded by a function
of the initial distance for all times. A stable system will not move uncontrollably away
from the goal, but it cannot be guaranteed that the system will ever reach the goal either.

A stronger type of stability is asymptotic stability. A system is asymptotically stable
if it is stable and a δ can be chosen such that:

‖xg − x(0)‖ < δ =⇒ lim
t→∞
‖xg − x(t)‖ = 0. (7.3)

An asymptotically stable system will reach its equilibrium point, but there is no
guarantee for how much time it will take, or how the system will reach it. This is the
problem with the definitions of stability. Stability and asymptotic stability can be proven
for many systems, at least locally, but to be able to evaluate the system’s approach to
the goal, their transient behaviour has to be analysed.

A transient can be defined as the path that the system takes from an initial state
x(0) to a goal state xg. For linear systems, there exist many tools for analysing and
managing transient responses. For more general nonlinear systems however, there are
very few. Exponential stability is one such measure. It tries to relate the transient of a
nonlinear system to that of a linear system to give a bound on the transient. A system
is exponentially stable if there exist positive constants c, k, and λ such that:

‖xg − x(t)‖ ≤ k‖x(0)‖e−λt, ∀ ‖x(0)‖ < c. (7.4)

Robustness is the ability of a system to perform well even in the presence of modelling
errors, sensor and actuator inaccuracies, noise, and other parameters that are unknown
at design time. The level of robustness indicates how large inaccuracies the system can
handle before performance and/or stability is severely degraded.

For general nonlinear systems, there are very few tools for determining and ensuring
robustness. The problem with these systems is that there are so many different vari-
ations and levels of complexity, that even though there exist tools, these are normally
targeted towards specific classes of systems.

7.2 Analysis

As low-level controller design is not the purpose of this thesis, the low-level controllers
are assumed to be locally uniformly asymptotically stable, meaning that they will drive
the system to their setpoints given the right circumstances. For the PID controllers
(5.2.1) used in this implementation, these properties can be achieved by correct tuning
of the regulator parameters Kp,h(u), Ki,h(u), Kd,h(u), Kp,s, Ki,s and Kd,s.

112



For a collision avoidance system, stability can be defined in much the same way as
in Section 7.1. Asymptotic stability of the control system implies convergence to a given
goal state in an infinite amount of time. To be able to reach the goal, the controlled
vessel must avoid colliding with other vessels along its route, as a collision will prevent
the vessel from continuing towards the goal. Asymptotic stability thus also means that
the vessel manages to avoid collisions.

In accordance with the definitions, a stable collision avoidance system is able to avoid
collisions, but is not necessarily able to make the controlled vessel converge to the goal
state.

7.2.1 The simplest case

Given a good vessel model and an environment with only static obstacles, the paths
generated by the RRT algorithm will be feasible for all time, and no action is required
by the dynamic window algorithm to avoid unforeseen events. In this case, asymptotic
stability of the algorithm depends on two factors: the RRTs ability to generate a path
to the goal, and the path tracker’s ability to follow the generated path.

Tracking the path

The generated path consists of a chain of straight lines. When tracking a line using
(3.36), the yaw rate command to the vessel is given by the following equation:

ψ̇sp =
u · e

(e2 + ∆2)
3
2

, (7.5)

which, given a constant ∆, is maximized for e = ∆√
2
. If the corresponding ψ̇sp is

within the capabilities of the vessel, it will have no problem tracking and converging to
the line.

When moving to a path consisting of several straight-line segments, the heading
command ψsp will no longer be continuous. Every time the controller switches to a new
line, there will be a step in the heading command; a discontinuity. The size of the step
depends on the difference in angle between the new and the previous line, giving a larger
step for a greater difference in angle.

The step in the heading command can result in the path tracker issuing commands
which the vessel is not able to perform, especially for paths with very short lines and
great variations in line angles. Path trackers able to cope with this is possible to synthe-
sise, for instance by actively adjusting ∆, but in our case it is not necessary. The RRT
algorithm uses the dynamics of the vessel when generating paths, so we can be sure that

113



the path is possible to follow by our vessel given a correctly tuned path tracker.

Dynamic Window

The Dynamic Window algorithm lies as a layer between the path tracker and the low-
level controllers. When the commands given by the path tracker are safe, the Dynamic
Window algorithm should optimally pass them directly through, but as the controller
uses yaw rate to control the vessel, the command is modified to some extent.

When no obstructions are in the vicinity of the vessel, the generated yaw rate com-
mand is found by maximizing the heading objective of the algorithm, which is the same
as assigning ψ̂ = ψsp in (2.30). The heading command ψsp is here given by the path
tracker. Substitution results the following equation:

r|r|+ 2ṙmaxTrr + 2ṙmax(ψ − ψsp) = 0, (7.6)

which when solved for r results in the following control law:

r = sgn(ψsp − ψ)
(
Trṙmax +

√
T 2
r ṙ

2
max + 2ṙmax|ψsp − ψ|

)
. (7.7)

Assume that the vessel and its low-level controllers are able to track the r generated
by the control law directly. If we also assume that the lateral speed of the vessel is
negligible, the cross-track error when following a straight line can be given as:

ė = u sin(ψ − αk), (7.8)

where αk is the orientation angle of the line. Setting ψ̃ = ψsp − ψ, the Lyapunov
function:

V =
1
2
e2 +

L

2
ψ̃2, (7.9)

where L > 0 is some constant, can be used to show stability for the system under
the given control law. The time derivative of the Lyapunov function is:

V̇ = eu sin(ψ − αk)− ψ̃
∆L

∆2 + e2
u sin(ψ − αk)− |ψ̃|K(ψ̃)L, (7.10)

where

K(ψ̃) = Trṙmax +
√
T 2
r ṙ

2
max + 2ṙmax|ψ̃| ≥ 2Trṙmax ∀ ψ̃. (7.11)

The Dynamic Window path tracker is asymptotically stable in all areas where V̇ < 0.
When the vessel travels towards or parallel to the line, i.e., e sin (ψ − αk) ≤ 0, this is
fulfilled as long as u < K(ψ̃)∆. For the vessel and controllers used in this thesis, this

114



relation puts an upper limit on the vessel’s surge speed of umax ∼ 35m/s.

When heading away from the line, i.e., e sin(ψ−αk) > 0, we have asymptotic stability
given that:

L >
eu

|ψ̃|
(
2Trṙmax − u

∆

) . (7.12)

Since the requirement is only necessary when vessel is heading away from the line,
the minimum value of |ψ̃| is limited by |ψsp−αk|, resulting in a stricter requirement for
L:

L > g(e), g(e) =
eu

atan2 (e, ∆)
(
2Trṙmax − u

∆

) . (7.13)

If (7.13) holds, then (7.12) will also hold. One may ask what happens with the right
hand of (7.13) as |ψ̃| → 0, i.e., when e → 0. The limit can be found using L’Hôpital’s
rule:

lim
e→0

g(e) =
u∆(

2Trṙmax − u
∆

) . (7.14)

As seen by plotting g(e), this limit is the lowest point of g(e), so by choosing a
L > g(emax), this L will be valid for all |e| < emax. By choosing L arbitrarily large,
the system is thus asymptotically stable for arbitrarily large cross-track errors e. As
the choice of L is based on e, the analysis does not prove global asymptotic stability
for the system, but this is of no practical concern, as the system will be asymptotically
stable for all finite values of e given the right value of L. Since the system’s convergence
is also time-independent, the classification identified for the system is uniformly locally
asymptotically stable, or ULAS.

When moving to series of connected lines, a piecewise linear path, this result no
longer holds. The system will be ULAS along each of the lines, but this property says
nothing about the tracking of the entire path. Having said this, exact tracking of the
path is really not that important. The Dynamic Window algorithm will track the path
as best it can, but deviating from the path will not increase the hazard of collision or
violation of COLREGS, as the Dynamic Window algorithm also does its best to avoid
these situations.

The generated path

Given that the control system is able to follow a generated path, the next question is
whether the RRT algorithm is able to generate a path that leads the vessel to the goal.

It can in fact be proven that the RRT algorithm is probabilistically complete [29]
given the right technical circumstances, that is, the probability of finding a path through

115



the environment approaches 1 as time approaches infinity if a feasible path exists in the
search space of the algorithm. Hence, given enough processing time, the RRT algorithm
will find a path through an environment if one exists. There are still two practical prob-
lems however.

The first problem is that due to real-time demands, the RRT is only given a limited
amount of time to find a path. At the end of the search, the algorithm may not have
found a feasible path through the environment. This problem is solved by selecting the
path that provides the best progress towards the goal at the lowest cost. This solution
makes the RRT algorithm very robust, as it does not rely on being able to find a path
in every iteration; it can still guide the vessel towards the goal.

The second problem can occur when the search space of the controller is too small
to include any feasible paths to the goal. In this case, the RRT algorithm is reduced to
a local algorithm, and as the local algorithms, it may be trapped in a local minimum in
the environment. This situation may also occur as a result of limited processing time
to find a path out of a local minimum. In these cases, convergence to the goal cannot
be guaranteed. The path generated by the RRT provides a stable system however, as
it will always do its best to reduce the distance to the goal, even though it may not be
able to get all the way.

As previously mentioned, a bonus with the RRT algorithm is that it will always gen-
erate a path that our vessel is able to follow given an accurate vessel model. By choosing
a vessel model that is less manoeuvrable than the actual vessel, an additional level of
robustness is added to the system, as the generated paths will be more conservative.
Having a very accurate model is thus not necessary, as long as the controlled vessel is
equally or more manoeuvrable than the model.

Given an environment without considerable local minima, and enough processing
time, the RRT algorithm will be able to guide the vessel to the goal. The rate of con-
vergence provided by a path generated by the RRT algorithm is difficult to determine,
but it will improve with the amount of time allowed for execution.

7.2.2 It gets worse

As seen in the previous section, global convergence to the goal cannot be guaranteed
even in an environment consisting only of static obstacles. When dynamic obstacles such
as other vessels are added to the equation, the situation gets worse.

The behaviour of the RRT algorithm is altered by the presence of dynamic obsta-
cles, but its properties remain the same. Given that there exists a path through the
environment which does not violate safety zones or COLREGS, the RRT is guaranteed
to find a path given enough processing time and a large enough search area. The RRT

116



may also find paths that violate safety and COLREGS, but these will only be used if
there are no better alternatives.

The performance of the RRT algorithm in the presence of dynamic obstacles should
be consistent with the performance expected for a static environment. The line-tracking
abilities of the system can no longer be guaranteed however, because the Dynamic Win-
dow algorithm may deviate an arbitrary distance from the line to avoid dangerous situ-
ations, which may lead the vessel into local minima, making it unable to return to the
path. This behaviour does not represent a major problem however, as the RRT algo-
rithm on the next run will generate a path leading it out of the minimum. As shown in
Figure 7.1, the Dynamic Window algorithm can also enter limit cycles given the right
circumstances.

Figure 7.1: This simulation shows the vessel entering a limit cycle when trying to
reach the goal in the upper left while avoiding five hostile vessels. The
outer circle shows the path that the controlled vessel converges to, while
the hostile vessels converge to the inner circle. The controlled vessel was
in this case guided solely by the Dynamic Window algorithm. The RRT
algorithm could have been able to get the vessel out of the limit cycle.

With correct estimates of the vessel dynamics, the Dynamic Window algorithm
should be able to eliminate the possibility of collisions with static obstacles. When
dynamic obstacles enter the equation this is no longer true however. An example is
when another vessel deliberately tries to hit the controlled vessel. If the hostile vessel is
more manoeuvrable than the controlled vessel, collision avoidance is generally impossible!

117



Another issue is the discontinuity happening when the RRT algorithm has generated
a new path. If the new path does not coincide with the old path at the current location
of the vessel, the vessel will have to manoeuvre to the new path. This discontinuity
can give poor convergence rates towards the goal and in the worst case result in a limit
cycle, preventing further progress towards the goal. Some thought has been put into
the algorithm to make the possibility of the paths coinciding high (see Section 3.2.1)
however, so this effect should not be a big problem.

7.2.3 Conclusion

As a system gets more complex, it also gets harder to analyse. For a simple linear system
such as ẋ = Ax+Bu there are lots of tools for determining performance [12, 45]. In our
case however, we have a nonlinear system with discrete events causing severe disconti-
nuities, which makes determining stability properties nontrivial and very difficult.

The conclusion is that the system is likely to behave well, will likely have a good rate
of convergence, will likely be stable, and it will likely avoid collisions. These properties
are confirmed by the simulations and experiments in chapters 4 and 6.

118



Chapter 8

Discussion

Nearing the end of the thesis, it is time for an assessment of the results: What was
achieved, how well, and what can be done to improve the developed collision avoidance
system?

A number of extensions and modifications were made to base algorithms of the con-
troller. Using the A* algorithm as a guide for the RRT algorithm turned out to give a
great performance gain. In areas where the A* path is feasible and good for the vessel,
the extension is able to improve the paths a great deal. This is especially important
in applications with low processing power, or when the search space of the algorithm is
very large.

The continuity extension also delivered good results. Without it, the switch occur-
ring when a new RRT path has been generated almost makes the controller unusable.
An additional bonus with the extension is that it tends to give the RRT algorithm a
hot-start. By attempting to re-use parts of the old path, this area is explored at almost
no cost, giving the RRT a good start.

The medial nodes on the other hand didn’t have any noticeable positive effect, and
even reduced the performance of the algorithm in some instances. This was a bit sur-
prising, but is probably a result of the NEAREST NEIGHBOUR() function in the RRT.
This function runs in O(N) time, meaning that it gets slower the more nodes there are
in the tree. Optimizing this function could yield a better result for the extension. One
possible optimization includes partitioning the search-space to reduce the number of
nodes to check when looking for the one that is closest to the candidate milestone.

The Dynamic Window algorithm also received some attention. The modifications
done to this algorithm was more a necessity than a performance improvement though,
as the original Dynamic Window had serious problems trying to predict the motions of
a surface vessel. In [38], this was not observed because the vessel model had artificially
high lateral damping coefficients. When lowering the lateral damping to more realistic

119



levels, the Dynamic Window algorithm could no longer keep the vessel from colliding
with objects in the environment. The improved Dynamic Window algorithm incorpo-
rates acceleration and lateral velocities into the original Dynamic Window algorithm.
The quantitative improvement is difficult to determine, but examples of the difference
are given in Section 4.3.

A big point has been made of the importance of COLREGS compatibility. The
system developed to give COLREGS-compliant manoeuvres was included in both the
local and global part of the algorithm to improve the chance of coinciding decisions in
both layers. As seen in both the Matlab and HIL simulations, the vessel successfully
followed the rules where necessary. These scenarios were constructed to give a certain
reaction though, so they give no guarantee for whether the COLREGS system will work
in all situations. This is generally a problem for the algorithmic approach used for the
COLREGS system and the rest of the controller. Verification and guaranteeing perfor-
mance is very difficult, and the only tool one really has to improve the confidence in a
system is empirical testing.

Performance in the case of sensor failure is also an issue. How does the performance
of the system degrade when certain information is wrong or unavailable? An answer
to one such case was given in the full-scale experiments with the Viknes vessel. When
parts of the AIS data received from the approaching vessel was wrong, the prediction
of the controller was severely degraded. The COLREGS performance also suffered, and
whether the vessel passed on the correct side in both cases because of COLREGS or
because of luck is not known.

What is known is that a collision avoidance system is no better than the information
about its environment. If it cannot see an obstacle, it cannot evade it. Because of the
importance of complete and correct data, the sensor outfit should contain multiple sen-
sors of different types, maximizing the probability of acquiring the necessary information
to stay safe from obstacles in the environment.

One may ask how good the vessel model used in this thesis is, and how well it matches
the dynamics of the actual Viknes vessel. This evaluation should in turn be an indicator
of how valid the different simulations are. Such an assessment is both correct and wrong.
If the goal of the simulations were to imitate the response of the Viknes to different en-
vironments as closely as possible, a relatively exact model would have been required. To
verify the collision avoidance system on a more general basis however, the accuracy of
the model would be of lesser concern, as long as the basic handling characteristics of the
vessel were covered by the model.

The way the controller is built, with the Dynamic Window algorithm tracking a
path generated by the RRT algorithm, also reduces the need for an exact model in the
RRT algorithm, as long as it is less manoeuvrable than the target vessel. On the local

120



side, the original Dynamic Window algorithm requires very little model information.
The improved Dynamic Window algorithm requires a bit more however, relying on the
damping parameters and acceleration capabilities of the vessel. Good prediction in this
algorithm is important, and in a simulation this is not a problem, since the parame-
ters of the simulated vessel is known. In a full-scale implementation however, they are
seldom known accurately. This is compensated for by safety-regions defined around all
obstacles, allowing some misprediction without resulting in dangerous situations.

In one of the full-scale experiments, the controlled vessel briefly grazed one of the
illegal zones (virtual obstacles) in the environment. This was the result of tuning is-
sues. The low-level controllers on the Viknes were a bit conservatively tuned, and the
Dynamic Window algorithm expected the vessel to turn faster than it actually did. By
correctly matching the maximum angular acceleration estimate of the vessel ṙmax(r) to
the Viknes with these low-level controller settings, this could have been avoided.

For a collision avoidance system to be adopted and used commercially, it would have
to show both predictable and correct behaviour in all situations. COLREGS compli-
ance is one means of achieving predictable and correct behaviour, but only for a limited
amount of cases, and how can we be sure that the COLREGS system itself is predictable?
Guaranteeing performance is, as already mentioned, very difficult, because of the com-
plexity of the control system.

Performance for physical systems is generally given in terms of statistically deter-
mined properties such as the mean time between failure (MTBF), which can be deter-
mined by a mixture of Monte Carlo simulations and extensive real-world testing. If a
collision avoidance system is determined to have a sufficiently high statistical perfor-
mance, it can be considered safe.

Relying on statistics may seem crude, but as we know all to well, humans are not
perfect either. A collision avoidance system is designed to assist or replace human
decision-making, and if it can provide a significantly higher statistical performance than
the collision avoidance performed by the average human, the human should be replaced.
Being able to show this level of performance may also help remove the legal barriers
concerning autonomous vehicles.

121



122



Chapter 9

Conclusion

A COLREGS-compliant collision avoidance system for an USV has been developed.
Under simulations, the system behaved well, avoiding static obstacles with ease, and
performing COLREGS-compliant manoeuvres to avoid dynamic obstacles.

Good performance was also seen in the full-scale experiments. Because of sensor
problems, where an approaching vessel was reporting false state data, the margins dur-
ing the experiments were reduced from what was seen in the simulations, but this can
be seen as a test of robustness, as the collision avoidance system still behaved well and
managed to avoid collisions.

A collision avoidance system stands and falls on the information made available
to it, and the available sensor suite on the controlled vehicle should reflect this fact.
The limiting factors to the performance of a collision avoidance system are the sensors,
processing power and manoeuvrability of the vessel; in that order, and all need to be
maximized for the optimal performance.

123



124



Bibliography

[1] The DARPA Grand Challenge. http://www.darpa.mil/grandchallenge/. Ac-
cessed 2007.12.09.

[2] International regulations for avoiding collisions at sea. http://www.boatsafe.com/
nauticalknowhow/boating/colregs.html. Accessed 2007.12.09.

[3] Maritime robotics. http://www.maritimerobotics.com/.

[4] SPAWAR. http://www.spawar.navy.mil/robots/surface/usv. Accessed
2007.12.10.

[5] Viknes. http://www.viknes.no/. Accessed 2007.12.09.

[6] 5G-Marine-Systems. http://www.5gmarine.com/. Accessed 2008.06.01.

[7] M. R. Benjamin, J. J. Leonard, J. A. Curcio, and P. M. Newman. A method
for protocol-based collision avoidance between autonomous marine surface craft.
Journal of Field Robotics, pages 333–346, 2006.

[8] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile robots in
cluttered environments. IEEE, 1990.

[9] J. Borenstein and Y. Koren. The vector field histogram - fast obstacle avoidance for
mobile robots. IEEE Transactions on Robotics and Automation, 7:278–288, 1991.

[10] M. Breivik and T. I. Fossen. Guidance laws for planar motion control. submitted to
the 47th IEEE CDC, Cancun, Mexico, 2008.

[11] A. Chakravarthy and D. Ghose. Obstacle avoidance in a dynamic environment: A
collision cone approach. IEEE Transactions on Systems, Man. and Cybernetics -
Part A: Systems and Humans, 1998.

[12] C. Chen. Linear System Theory and Design. Oxford University Press, Inc, 1999.

[13] J. Colito. Autonomous mission planning and execution for unmanned surface vehi-
cles in compliance with the marine rules of the road. Master’s thesis, University of
Washington, 2007.

125

http://www.darpa.mil/grandchallenge/
http://www.boatsafe.com/nauticalknowhow/boating/colregs.html
http://www.boatsafe.com/nauticalknowhow/boating/colregs.html
http://www.maritimerobotics.com/
http://www.spawar.navy.mil/robots/surface/usv
http://www.viknes.no/
http://www.5gmarine.com/


[14] Space Daily. FAA clears global hawk for routine operation in US national airspace.
http://www.spacedaily.com/news/uav-03zl.html. Accessed 2008.05.29, 2003.

[15] Industrial Control Design. http://www.icd.no/. Accessed 2008.05.22.

[16] O. Egeland and J. T. Gravdahl. Modeling and Simulation for Automatic Control.
Marine Cybernetics AS, Trondheim, Norway, 2003.

[17] Ø. Engelhardtsen. 3D UAV collision avoidance. Master’s thesis, Norwegian Univer-
sity of Science and Technology (NTNU), 2007.

[18] J. A. Farrell and M. Barth. The Global Positioning System & Inertial Navigation.
McGraw-Hill Professional, 1999.

[19] A. E. Fiore, R. E. Anderson, and L. J. Kapanka. Historical approach to collision
avoidance. Journal of The Institute of Navigation, 1971.

[20] T. I. Fossen. Marine Control Systems: Guidance, Navigation and Control of Ships,
Rigs, and Underwater Vehicles. Marine Cybernetics AS, Trondheim, Norway, 2002.

[21] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. IEEE Robotics & Automation Magazine, 4:23–33, 1997.

[22] E. Frazzoli. Quasi-random algorithms for real-time spacecraft motion planning and
coordination. Acta Astronautica, 53:485–495, 2003.

[23] A. Fujimori, Y. Ogawa, and P. N. Nikiforuk. A modification of cooperative collision
avoidance for multiple mobile robots using the avoidance circle. Proceedings of
the Institution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, pages 291–299, 2002.

[24] A. Fujimori, M. Teramoto, P. N. Nikiforuk, and M. M. Gupta. Cooperative collision
avoidance between multiple mobile robots. Journal of Robotic Systems, 17:347–363,
2000.

[25] Northrop Grumman. Integrated systems. http://www.is.northropgrumman.com/.
Accessed 2008.05.14.

[26] T. Holzhüter. Operating experience with a high precision track controller for com-
mercial ships. Control Engineering Practice, 4:343–350, 1996.

[27] T. Holzhüter. LQG approach for the high precision track control of ships. IEE
Proceedings Control Theory and Applications, 144:121–127, 1997.

[28] T. A. Johansen, A. J. Sørensen, O. J. Nordahl, O. Mo, and T. I. Fossen. Expe-
riences from hardware-in-the-loop (HIL) testing of dynamic positioning and power
management systems. OSV Singapore, 2007.

126

http://www.spacedaily.com/news/uav-03zl.html
http://www.icd.no/
http://www.is.northropgrumman.com/


[29] J. J. Kuffner Jr. and S. M. LaValle. RRT-connect: An efficient approach to single-
query path planning. Proceedings of the ICRA’00, pages 995–1001, 2000.

[30] H. K. Khalil. Nonlinear Systems. Prentice Hall, 2001.

[31] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Pro-
ceedings of the ICRA’85, pages 500–505, 1985.

[32] Y. Koren and J. Borenstein. Analysis of control methods for mobile robot obstacle
avoidance. Proceedings of the IEEE International Workshop on Intelligent Motion
Control, pages 457–462, 1990.

[33] Y. Koren and J. Borenstein. Potential field methods and their inherent limitations
for mobile robot navigation. Proceedings of the ICRA’91, pages 1398–1404, 1991.

[34] Kystverket. Automatisk Identifikasjons System - AIS. http://www.kystverket.
no/?did=9140988. Accessed 2007.12.11.

[35] J. Larson, M. Bruch, and J. Ebken. Autonomous navigation and obstacle avoidance
for unmanned surface vehicles. Proceedings of the International Society for Optical
Engineering, 2006.

[36] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.
Technical report, Computer Science Dept., Iowa State University, 1998.

[37] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[38] Ø. Loe. Collision avoidance concepts for marine surface craft. Project report,
Norwegian University of Science and Technology (NTNU), 2007.

[39] J. Minguez and L. Montano. The ego-kinodynamic space: Collision avoidance for
any shape mobile robots with kinematic and dynamic constraints. Proceedings of
the IROS’03, pages 637–643, 2003.

[40] J. Minguez, L. Montano, and O. Khatib. Reactive collision avoidance for navigation
with dynamic constraints. Proceedings of the IROS’02, pages 588–594, 2002.

[41] B. Pillich and G. Büttgenbach. ECDIS - the intelligent heart of the hazard and
collision avoidance system. Proceedings of the IEEE International Conference on
Intelligent Transportation Systems, pages 1116–1119, 2001.

[42] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki. Sampling-based
roadmap of trees for parallel motion planning. IEEE Transactions on Robotics,
21(4):597–608, 2005.

[43] R. Skjetne and O. Egeland. Hardware-in-the-loop simulation for testing of DP
vessels. OSV Singapore, 2005.

127

http://www.kystverket.no/?did=9140988
http://www.kystverket.no/?did=9140988


[44] R. Skjetne, Ø. N. Smogeli, and T. I. Fossen. A nonlinear ship manoeuvering model:
Identification and adaptive control with experiments for a model ship. Modeling,
identification and control, 25:3–27, 2004.

[45] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control. Wiley, 2005.

[46] K. J. Åström and T. Hägglund. Advanced PID Control. ISA - The Instrumentation,
Systems, and Automation Society, 2005.

[47] C. S. Tan, R. Sutton, and J. Chudley. An incremental stochastic motion planning
technique for autonomous underwater vehicles. Proceedings of IFAC CAMS’04,
pages 483–488, 2004.

[48] S. Trudslev. Path finding in C#. http://www.codeproject.com/KB/recipes/
csharppathfind.aspx. Accessed 2007.12.10.

[49] Defense Update. Interceptor - unmanned surface vessel unveiled. http://www.
defense-update.com/products/i/interceptor.htm. Accessed 2008.05.14.

[50] I. Škrjanc and G. Klančar. Cooperative collision avoidance between multiple robots
based on bézier curves. Proceedings of the 29th International Conference on Infor-
mation Technology Interfaces, pages 451–456, 2007.

[51] G. Welch and G. Bishop. An introduction to the kalman filter. http://www.cs.
unc.edu/~welch/kalman/kalmanIntro.html. Accessed 2008.05.29, 2004.

[52] Wikipedia. A* search algorithm — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/A%2A. Accessed 2007.12.10.

[53] Wikipedia. Automatic identification system — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Automatic_Identification_System. Accessed
2007.12.10.

[54] Wikipedia. DARPA Grand Challenge — Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/wiki/DARPA_Grand_Challenge. Accessed 2007.12.16.

[55] Wikipedia. Electronic chart display and information system — Wikipedia,
the free encyclopedia. http://en.wikipedia.org/wiki/Electronic_Chart_
Display_and_Information_System. Accessed 2008.06.02.

[56] Wikipedia. Global positioning system — Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/wiki/Gps. Accessed 2007.12.15.

[57] Wikipedia. Halton sequence — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/Halton_sequence. Accessed 2007.12.10.

[58] Wikipedia. Inertial measurement unit — Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/wiki/Inertial_Measurement_Unit. Accessed 2007.12.10.

128

http://www.codeproject.com/KB/recipes/csharppathfind.aspx
http://www.codeproject.com/KB/recipes/csharppathfind.aspx
http://www.defense-update.com/products/i/interceptor.htm
http://www.defense-update.com/products/i/interceptor.htm
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
http://en.wikipedia.org/wiki/A%2A
http://en.wikipedia.org/wiki/A%2A
http://en.wikipedia.org/wiki/Automatic_Identification_System
http://en.wikipedia.org/wiki/DARPA_Grand_Challenge
http://en.wikipedia.org/wiki/DARPA_Grand_Challenge
http://en.wikipedia.org/wiki/Electronic_Chart_Display_and_Information_System
http://en.wikipedia.org/wiki/Electronic_Chart_Display_and_Information_System
http://en.wikipedia.org/wiki/Gps
http://en.wikipedia.org/wiki/Gps
http://en.wikipedia.org/wiki/Halton_sequence
http://en.wikipedia.org/wiki/Halton_sequence
http://en.wikipedia.org/wiki/Inertial_Measurement_Unit
http://en.wikipedia.org/wiki/Inertial_Measurement_Unit


[59] Wikipedia. International regulations for preventing collisions at sea — Wikipedia,
the free encyclopedia. http://en.wikipedia.org/wiki/International_
Regulations_for_Preventing_Collisions_at_Sea. Accessed 2008.05.31.

[60] Wikipedia. Voronoi diagram — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/Voronoi_diagram. Accessed 2008.05.28.

129

http://en.wikipedia.org/wiki/International_Regulations_for_Preventing_Collisions_at_Sea
http://en.wikipedia.org/wiki/International_Regulations_for_Preventing_Collisions_at_Sea
http://en.wikipedia.org/wiki/Voronoi_diagram
http://en.wikipedia.org/wiki/Voronoi_diagram

	Title Page
	Problem Description
	Introduction
	Motivation
	Contribution
	Outline
	Notation
	Abbreviations

	Theoretical background
	Preliminaries
	Global vs. local methods
	The hybrid approach
	Operating spaces
	Vessel model

	Collision avoidance methods
	Local method: Dynamic Window
	Global method: RRT
	Global method: A*

	COLREGS
	Head-on situation
	Overtaking situation
	Crossing situation
	The give-way vessel
	Action to avoid collision
	Summary


	A novel hybrid collision avoidance concept
	Local collision avoidance
	No longer on arcs
	World representation
	Prediction
	Following the rules of the road
	Utility function

	Global collision avoidance
	Milestone generator
	Cost functions
	The local controller
	Medial nodes
	When the algorithm fails

	Glued together
	Path tracker
	Threads


	Simulation results
	Basic collision avoidance
	The RRT modifications
	Continuity
	A* assistance
	Medial nodes

	The Dynamic Window modifications
	COLREGS-compliant collision avoidance
	Head-on
	Crossing from left
	Crossing from right

	The advantage of the hybrid approach

	Full-scale implementation
	The Viknes 830
	Sensors
	Vessel capabilities
	Model identification

	Control system
	Low-level controllers

	HIL system
	HIL for the Viknes


	Full-scale experiments
	HIL simulations
	Reactive scenario
	Hybrid scenario

	Sea trials
	Reactive scenario
	Hybrid scenario


	Control system analysis
	Introduction
	Analysis
	The simplest case
	It gets worse
	Conclusion


	Discussion
	Conclusion
	Bibliography

