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Abstract—This paper proposes a methodology for solving
the curved path following problem for underactuated vehicles
under unknown ocean current influence using deep reinforcement
learning. Three dynamic models of high complexity are employed
to simulate the motions of a mariner vessel, a container vessel and
a tanker. The policy search algorithm is tasked to find suitable
steering policies, without any prior info about the vessels or
their environment. First, we train the algorithm to find a policy
for tackling the straight line following problem for each of the
simulated vessels and then perform transfer learning to extend
the policies to the curved-path case. This turns out to be a much
faster process compared to training directly for curved paths,
while achieving indistinguishable performance.

Index Terms—Deep reinforcement learning, path following,
transfer learning, marine control systems, unknown disturbances

I. INTRODUCTION

The objective of a path-following controller is to generate
and execute heading angles that enable a constant-speed vehi-
cle to follow a predefined path with minimum cross-track error
and without temporal constraints. The literature pertaining to
solving the path following problem for marine vehicles is rich
and diverse. Compared to straight lines, curved path following
presents additional challenges, the most obvious one being the
time-varying effect of (even constant) disturbances while the
vehicle follows the path. In previous works, a well-studied
framework has been to utilize models representing the vessel
dynamics and kinematics before employing methods from
linear/nonlinear control theory for devising suitable kinematic
(i.e. guidance) and dynamic (i.e. control) laws to achieve the
control objective.

The guidance and control systems are often viewed as a
cascaded system, with guidance being the perturbing system,
and vehicle control the perturbed system. Vehicle control is
significantly slower compared to guidance, since it involves
stabilizing the dynamics. The cascade structure helps simplify
the stability analysis and has been used extensively in the past,
see for instance [1–3]. The guidance system often involves the
line-of-sight (LOS) guidance law (see [4, 5]), which can be
extended to account for external disturbances and optimize
performance at the kinematic level [6–10].

Reinforcement learning (RL), also known as neuro-dynamic
programming and approximate dynamic programming, is a

theory developed by the Artificial Intelligence (AI) community
for reaching optimal performance under system and environ-
ment uncertainty [11–13]. Contrary to optimal control theory,
RL is based on evaluative, rather than instructive, feedback and
comes in different forms, which might, or not, include partial
knowledge of the environment or the system. The process
typically involves hand-engineering a reward function, which
determines the good actions that receive a reward, and the
undesired actions that receive a penalty. The RL algorithm is
then assigned to find a policy (series of control actions) that
solves the control objective in the best possible way.

After the recent breakthrough by Deep Mind, where Deep
Neural Networks (DNNs) were fused with RL and resulted
in the AlphaGo program, the field of Deep Reinforcement
Learning (DRL) started to receive significant attention. No-
table results include [14, 15] for problems with discrete state
and action spaces, and for continuous state and action spaces,
algorithms such as [16–19] have been shown to work for
a number of complex problems such as robotic manipula-
tion, bipedal locomotion, and game play. The fact that DRL
algorithms can discover efficient policies with limited prior
information about the system and its environment make them
good candidates for tackling marine control problems. A few
recent works have already moved toward this direction and
the brief overview given here focuses on using DRL for path
following of underactuated surface vessels.

In [20, 21], the authors combined an actor-critic method
with DNNs to find a policy for controlling the course of an un-
deractuated ship. The guidance system, however, was designed
in the traditional LOS-based manner. In [22], the authors
implemented the Deep Deterministic Policy Gradients (DDPG)
algorithm for trajectory tracking of underwater vehicles, but
since only horizontal motion is considered, the problem is
identical to the 3-DOF surface case. A simple model was
used to simulate the vehicle and the authors used Lyapunov
theory to justify the reward function they chose and compared
the efficiency of their method with that of a PID controller.
In [23], the authors developed two DRL-based controllers
(DDPG and Normalized Advantage Function) for steering
an underactuated ship through a specified gate, instead of
following a desired path. In [24], the present authors developed
a DRL methodology, based on DDPG, for solving the straight-



path following problem for underactuated marine vessels under
the influence of unknown ocean currents. The vessel model
used was much more complex compared to earlier works and
the reward function was designed to be simple, but at the same
time, able to generate smooth rudder commands.

This work extends the results of [24]. More specifically,
we implement a technique called transfer learning to allow
the DRL controller to learn to follow curved paths under the
influence of unknown currents using minimum training. We
start with the neural network (policy) that solves the straight
path following problem and then perform additional training to
produce a policy which solves the more complex curved path
following problem. Similarly to [24], the reward function is
very simple and avoids bang-bang rudder behavior. Finally, we
implement this process to three complex vessel models, one
of which is a 4-DOF model that simulates the roll angle.

II. PRELIMINARIES

A. Path following

Path following is a motion control scenario where the vehi-
cle must converge to a predefined trajectory without temporal
constraints. The vehicle can be assumed to have a constant
total speed and, consequently, suitable heading angle actions
must be taken in order to achieve the control objective.

For curved paths we describe the path in terms of a
parameterized curve Pd(ω) = [xd(ω), yd(ω)]>, defined in the
the North-East-Down (NED) coordinate system, where ω is
the parameterization variable. The angle of the path defined
by the parameterized curve can then be computed by:

γp = atan2(y′d(ω), x′d(ω)) (1)

where atan2(y, x) is the four quadrant version of arctan(y/x).
Using the path angle γp we can find the cross-track error
normal to the path using the following equation.

ye = − sin(γp)(x− xd(ω)) + cos(γp)(y − yp(ω)) (2)

The path reference point xd(ω), yd(ω), when the vessel is
located at x, y, is found by computing the parameterization
variable ω, which minimizes the Euclidean distance between
the path and the vessel.

min
ω
f(ω) = (x− xd(ω))2 + (y − yd(ω))2 (3)

The path and vessel geometry is visualized in Figure 1. For the
path following task, the objective is for the vessel to converge
to the desired path, this means that we want the cross-track
error to go to zero, i.e. limt→∞ ye(t) = 0.

B. Vessel models

The three vessel models used to perform the simulations
were taken from the Marine Systems Simulator (MSS) toolbox
[25], and include the 3-DOF Mariner vessel [26], 3-DOF
Tanker vessel [27], and a 4-DOF Container vessel [28]. While
the vessels all have similar structures, they exhibit very dif-
ferent performance. The Tanker is large with slow dynamics,
the mariner vessel is smaller and faster, with the Container
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Fig. 1: The origin of the path centered coordinate frame pd
is the point on the path the shortest Euclidean distance from
the vessel, and the orientation γp is given by the directional
derivative of the path at pd
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Fig. 2: Visualization of the agent environment interactions in
reinforcement learning

vessel being in between. The container vessel also takes into
consideration the roll dynamics which is strongly coupled to
the sway and yaw, making it a more complex model. It should
be noted that the vessel models were treated as a black boxes,
and only used for simulations during training and verification
of the control algorithms. The detailed models are given in
Appendix A.

C. Reinforcement learning

We assume the environment can be modeled by a Markov
Decision Process (MDP) as presented by Bertsekas [12]. An
MDP consists of a set of states X , a set of actions U , a discrete
time transition model, which describes the probability of tran-
sitioning from one state xt to another state xt+1 when taking
an action ut, and a reward function rt = R(xt,xt−1,ut−1).
The reinforcement learning agent acts on the environment by
taking actions and observing the resulting state and reward, as
can be seen in Fig. 2.

The goal of the reinforcement learning algorithm is to find
the optimal policy for selecting control actions ut

∗ = π∗(xt)



which maximizes the reward gathered over time, that is, we
wish to maximize the expected discounted return:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =

∞∑
k=0

γkrt+k+1 (4)

where 0 ≤ γ ≤ 1 is called the discount rate. This can be
expressed in terms of an action-value function

Q(x, u) = E [Gt|xt = x, ut = u] (5)

describing the expected discounted reward when taking action
u in the state x, while following a given policy. The goal of
reinforcement learning is to find the optimal policy:

π∗(xt) = arg max
u

Q∗(xt,u) (6)

where Q∗ is the action-value function when following the
optimal policy π∗. The RL Agent does this by interacting with
the environment, learning from the feedback, and using this
experience to improve the policy.

DRL is a field of machine learning that fuses the ideas of
deep learning and reinforcement learning. DRL has two main
classes of algorithms for control problems with continuous
action and state spaces, namely actor-only algorithms, and
actor-critic algorithms. In actor-only algorithms, only the
control policy, called the actor, is approximated by a function
approximator, in this case the DNN. In actor-critic algorithms,
both the policy as well as a value function, called the critic,
are approximated.

To find the optimal policy, we implement an actor-critic
method called Deep Deterministic Policy Gradients (DDPG)
by [16], where both the policy and action-value functions are
learned using DNNs. We denote the parameterized policy and
action-value functions as π(x; θa), and Q(x,u; θc), respec-
tively, where θa and θc are the vectors of the DNN parameters.
Learning takes place by implementing gradient descent on
parameter vectors, θa and θc, as follows:

θ ← θ − α∇θJ(θ), (7)

where α is the learning rate, and J(θ) is the loss function
which we want to minimize. The update rules for the policy
and action-value function parameterizations are given in the
next section, Eqs. 10–11 respectively.

D. Transfer Learning

In the context of machine learning, transfer learning refers
to the the situation where what has been learned in one
setting, is used in order to improve generalization in an other,
usually similar setting. In the context of DRL, models trained
in one domain are used as initial models for training the
agent in new, similar domains [29]. It has also been used
in transferring knowledge from simulated environments, to
physical environments [30]. This has proven to be a useful
tool as it speeds up training, and increases robustness, however
the extent to which it works is highly dependant on the task
similarity. In this work, we first train the agent to perform
straight path following and then perform additional training
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Fig. 3: Gaussian reward functions. The algorithm gives a
reward dependant on distance from the path.

to achieve curved path following. In both cases, unknown
external disturbances act on the vehicles. Our experience so far
shows that in this way shorter overall training time is needed
and it is possible to keep increasing the complexity of the
environment.

III. IMPLEMENTATION

For the path following control problem of marine vessels,
the objective is to control the vessel in such a way that it
converges to the path. The main indicator of convergence is
the cross-track error ye, which tells us how far away the vessel
is from the path. Using the cross-track error we propose the
following Gaussian reward function:

R(ye, ψ̃, δ̇) = −cδ̇δ̇ δ̇
2 +

{
ae−

y2
e

2σ if |ψ̃| < π
2 ,

0 otherwise.
(8)

The first term assigns a penalty to solutions that involve fast
rudder changes, see [24] for more details. The Gaussian reward
function is given as a Gaussian curve with an amplitude a =
1 and a standard deviation σ = 10m, illustrated in Figure
3. The Gaussian reward function is chosen, as it is strictly
increasing, as the path converges, while having properties that
give it a time minimizing characteristic. The reward function
additionally includes a bound on the yaw error ψ̃, which is
the angle between the yaw angle of the vessel and the path
heading. This is included in order to ensure the vessel travels
along the path in the forward direction.

The state representation for the learning algorithm is given
in terms of the error dynamics in a path relative coordinate
frame, and chosen as:

x = [ye, ẏe, χ− γp, χ̇− γ̇p, ψ − γp, r − γ̇p, u, v, r]> (9)

where ye is the cross-track error, χ− γp is the course relative
to the path and ψ − γp is the heading relative to the path.
We also include the surge u, sway v, and yaw rate r, as well
the derivatives of the path relative course and heading, this, in
order to give the learning algorithm the necessary information
to be able to observe the system states, and hence be able
to learn how to perform the path following task. The action
available to the algorithm is controlling the desired rudder
angle δc which is saturated according to the vessel model.

We implement an actor-critic method, based on [16], in
where the policy π(x; θa) and the action-value function



Q(x,u; θc), are neural networks, which each consist of two
fully connected layers with 400 and 300 units respectively,
and rectified linear unit activation functions.

Training was performed by simulating the environment
in episodes of 1000 seconds. Each episode was randomly
initialized in where the position of the vessel was chosen
within a certain bound of the path, this was done in order
to generate new training data for better generalization. During
training the state xt, action ut, reward rt and successive state
xt+1 was recorded and saved in a replay buffer at each time-
step t. In addition to training the models from scratch, transfer
learning was used in where models trained on straight line
paths were used to initialize training for curved paths.

In order to improve the policy and action-value function
estimates, π(x; θa) and Q(x,u; θc), stochastic gradient decent
is performed on batches B of transitions (xi, ui, ri, xi+1),
using the following update rules:

θc ← θc − αc
1

N

∑
i∈B
∇θc (yi −Q(xi, ui; θc))

2 (10)

θa ← θa + αa
1

N

∑
i∈B
∇uiQ(xi, ui; θa)∇θaπ(xi; θa) (11)

where yi is the action-value estimate of the state action (xi,
ui), given as:

yi = ri + γQ(xi+1, π(xi+1; θa′); θc′) (12)

Additionally soft target updates were used in order to stabilize
training, where the target networks given by the parameteriza-
tions θa′ and θc′ slowly tracked the learned parameterizations
using the following update rule at each time step.

θa′ = (1− τ)θa′ + τθa (13)
θc′ = (1− τ)θc′ + τθc (14)

The training was performed by randomly drawing batches of
64 transitions from a buffer of previously observed transitions,
with learning rates αa = 1e − 4 and αc = 1e − 3, target
network update rate τ = 1e−3, and discounting rate γ = 0.99.
An overview of the architecture is given in Figure 4, and the
DDPG algorithm is summarized in Algorithm 1.

Vessel

Performance

Environment
Control policy

Value function

DRL Agent

x, r

r

x u

u

Fig. 4: DDPG architecture used in this paper. Note that the
vessel model is unknown to the RL Agent.

Algorithm 1 Deep Deterministic Policy Gradients

1: Randomly initialize critic and actor weights θc and θa.
2: Initialize target networks with weights θc′ ← θc, θa′ ←
θa

3: for episode = 1, ...,M do
4: Receive initial observation state x1
5: for time step t = 1, ..., T do
6: Take action ut based on current policy π(xt;θa),

observe reward rt and new state xt+1, and store
transition (xt, ut, rt, xt+1) in replay buffer

7: Sample N transitions from replay buffer, and up-
date critic and actor using Equations 10 and 11

8: Update target networks using Equations 13 and 14
9: end for

10: end for

Mariner Container Tanker
Current 0m/s 0.9m/s 0m/s 0.9m/s 0m/s 0.9m/s
LOS 161 499 807 829 65 62
DRL 3264 3134 2430 2763 1010 819

TABLE I: Cumulative Gaussian reward for the curved path
following problem

IV. SIMULATIONS

Simulating the policies found when training for the curved
path following problem with current, we got the results seen
in Figure 5, 6 and 7, for the Mariner, Container and Tanker
vessel respectively. We observe that the learned policies are
able to control the vessels such that they follow the desired
path with very small cross-track errors, especially given the
size and complexity of the simulated vessels.

When recording the cumulative reward for the curved path
following task we get the results seen in Table I. From the
results we see a significant increase in performance for the
DRL guidance in comparison to standard line-of-sight (LOS)
guidance. While LOS results may vary depending on the
tuning of the control parameters, they still give a indication of
the performance of the proposed DRL guidance method.

In addition to training the models from scratch, transfer
learning was performed using models trained on straight line
paths. This resulted in similar performance, however gave
faster training. In particular, for a transfer learning approach
where 30% of the training data pertained to straight lines,
there was a reduction of 40-50% in training time compared to
training with curved path data only. This is likely due to the
intermediate straight line path following problem being easier
to learn, and refine when training for curved path following.

V. CONCLUSION

In this paper we extended our previous results and imple-
mented a framework based on deep reinforcement learning
for curved path following of marine vessels in the presence
of ocean currents. The DDPG algorithm was tasked to find
suitable steering policies without having any prior info about
either the vessel or its environment. In addition to attempting
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Fig. 5: Mariner curved path following when exposed to ocean
currents.
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Fig. 6: Container curved path following when exposed to
ocean currents.

to solve the problem from scratch (i.e. train the algorithm
to follow curved paths directly), we used transfer learning
to extend a previously trained policy (originally for straight
paths) for the same purpose. It turned our that the transfer
learning approach was much faster while achieving indistin-
guishable performance. Three vessel models, with different
characteristics and increased complexity compared to previous
works, were employed to demonstrate the practicality of the
approach and its ability to generalize. This is an indication that
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Fig. 7: Tanker curved path following when exposed to ocean
currents.

transfer learning might be a reasonable path when attempting
to transition DRL-based controllers from simulated environ-
ments to the real world.
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APPENDIX

Mariner-class vessel: The mariner model is a 3-DOF
surface vessel based on the work of M.S. Chislett and J.
Stroem-Tejsen [26], and released as a MATLAB model in the
MSS Toolbox [25]. The vessel takes in the control rudder angle
δc, and has the following vessel dynamics:

η̇ = R(ψ)ν (15)

ν̇ = M−1N(ν, δ) (16)

δ̇ =

{
δc − δ If δ <= δmax

0 otherwise
(17)

The mass matrix is given as

M =


L
U2 0 0

0 L
U2 0

0 0 L2

U2


m 0 0

0 m mxg
0 mxg Iz

 +

−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Yṙ −Nṙ


(18)



where U =
√
u2 + v2 is the absolute velocity of the

vessel. The nonlinear terms are based on the Abkovitz model
described above, giving the following polynomial vector:

N(ν, δ) =

X(ν, δ)
Y (ν, δ)
N(ν, δ)

 (19)

where the polynomials describing the nonlinear components,
are given as:

X(ν, δ) =Xuu+Xuuu
2
r +Xuuuu

3
r +Xvvv

2
r +Xrrr

2

+XrvrvrXδδδ
2 +Xuδδurδ

2Xvδvrδ +Xuvδurvrδ

Y (ν, δ) =Yvvr + Yrr + Yvvvv
3
r + Yvvrv

2
rr + Yvuvrur

+ Yrurur + Yδδ + Yδδδδ
3 + Yuδurδ + Yuuδu

2
rδ

+ Yvδδvδ
2 + Yvvδv

2δ+

(Y0 + Y0uur + Y 0uuu
2
r)

N(ν, δ) =Nvvr +Nrr +Nvvvv
3
r +Nvvrv

2
rr +Nvuvrur

+Nrurur +Nδδ +Nδδδδ
3 +Nuδurδ +Nuuδu

2
rδ

+Nvδδvrδ
2 +Nvvδv

2
rδ

+ (N0 +N0uur +N0uuu
2
r)

For the mariner vessel, the parameters are given in Table II,
it should also be noted that the velocities ur = u/U and
vr = v/U used in the nonlinear terms, are relative velocities,
with respect to the absolute velocity.

Term Value Term Value Term Value

Xu̇ −42e − 5 Yv̇ −748e − 5 Nv̇ 4.646e − 5
Xu −184e − 5 Yṙ −9.354e − 5 Nṙ −43.8e − 5
Xuu −110e − 5 Yv −1160e − 5 Nv −264e − 5
Xuuu −215e − 5 Yr −499e − 5 Nr −166e − 5
Xvv −899e − 5 Yvvv −8078e − 5 Nvvv 1636e − 5
Xrr 18e − 5 Yvvr 15356e − 5 Nvvr −5483e − 5
Xδδ −95e − 5 Yvu −1160e − 5 Nvu −264e − 5
Xuδδ −190e − 5 Yru −499e − 5 Nru −166e − 5
Xrv 798e − 5 Yδ 278e − 5 Nδ −139e − 5
Xvδ 93e − 5 Yδδδ −90e − 5 Nδδδ 45e − 5
Xuvδ 93e − 5 Yuδ 556e − 5 Nuδ −278e − 5

Yuuδ 278e − 5 Nuuδ −139e − 5
Yvδδ −4e − 5 Nvδδ 13e − 5

L 160.93 Yvvδ 1190e − 5 Nvvδ −489e − 5
m 798e − 5 Y0 −4e − 5 N0 3e − 5
Iz 39.2e − 5 Y0u −8e − 5 N0u 6e − 5
xg −0.023 Y0uu −4e − 5 N0uu 3e − 5

TABLE II: Mariner parameter value table

Tanker Model: The tanker model is a 3-DOF surface vessel
based on the work of Van Berlekom, W.B. and Goddard, T.A.
[27], and released as a MATLAB model in the MSS Toolbox
[25]. The vessel takes in the control vector u consisting of
the desired rudder angle δc, and desired shaft velocity nc. The
vessel dynamics of the tanker are given as:

η̇ = R(ψ)ν (20)

ν̇ = M−1N(ν, δ) (21)

δ̇ =

{
δc − δ If δ <= δmax

0 otherwise
(22)

ṅ =
60

Tm
(nc − n) (23)

The mass matrix is given as

M =

m11 0 0
0 m22 0
0 0 m33

 (24)

The nonlinear terms are based on the Abkovitz model de-
scribed above, where the the nonlinear terms are given by the
following polynomial vector:

N(ν, δ) =

X(ν, δ)
Y (ν, δ)
N(ν, δ)

 (25)

where the polynomials describing the nonlinear components,
are given as:

X(ν,u) =1/L(Xuuu
2 + Ld11vr +Xvvv

2 +Xccδδ|c|cδ2

+Xccβδ|c|cβδ + LgT (1− t) +Xuuzu
2z

+ LXvrzvrz +Xvvzzv
2z2)

Y (ν,u) =1/L(Yuvuv + Yvv|v|v + Yccδ|c|cδ + Ld22ur

+ Yccββδ|c|cββδ + YT gTL

+ LYurzurz + Yuvzuvz + Yvvz|v|vz
+ Yccββδz|c|c|β|β|δ|z)

N(ν,u) =Nuvuv + LNvr|v|r +Nccδ|c|cδ + Ld33ur

+Nccββδ|c|c|β|β|δ|+ LNT gT

+ LNurzurz +Nuvzuvz + LNvrz|v|rz
+Nccββδz|c|c|β|β|δ|z

where β, gT and c are computed as the following

β =
v

u
gT = 1/LTuuu

2 + Tunun+ LTnn|n|n
c =

√
cunun+ cnnn2;

and the parameters for the tanker are given in Table III.

Term Value Term Value Term Value

d11 2.020 m11 1.050 Tuu −0.00695
d22 −0.752 m22 2.020 Tun −0.00063
d33 −0.231 m33 0.1232 Tnn 0.0000354

Xuuz −0.0061 YT 0.04 NT −0.02
Xuu −0.0377 Yvv −2.400 Nvr −0.300
Xvv 0.3 Yuv −1.205 Nuv −0.451
Xudotz −0.05 Yvdotz −0.387 Nrdotz −0.0045
Xuuz −0.0061 Yurz 0.182 Nurz −0.047
Xvrz 0.387 Yvvz −1.5 Nvrz −0.120
Xccdd −0.093 Yuvz 0 Nuvz −0.241
Xccbd 0.152 Yccd 0.208 Nccd −0.098
Xvvzz 0.0125 Yccbbd −2.16 Nccbbd 0.688

Yccbbdz −0.191 Nccbbdz 0.344

t 0.22 cun 0.605 L 304.8
Tm 50 cnn 38.2 g 9.8
T 18.46

TABLE III: Tanker parameter value table

Container Model: The tanker model is a 4-DOF surface
vessel based on the work of K.-H Son and K. Nomoto [28].
The model includes the additional roll dynamics, and can be
written on vectorial form as:

η̇ = J(ν)ν (26)
Mν̇ +C(ν)ν +D(ν)ν = τ (27)

The major differences from the 3-DOF model is the addition
of the pitch angle φ, giving the state vector:

ν = [u, v, ψ, φ]> (28)



and the addition of pitch in the rotation matrix.

J(η) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)


(29)

A. Container model

The Container model is a 4-DOF surface vessel based on
the work of Son og Nomoto [28], and released as a MATLAB
model in the MSS Toolbox [25]. The vessel model takes in
the control vector u consisting of the desired rudder angle δc,
and desired shaft velocity nc, and returns the state derivatives
ν̇ and η̇. The vessel dynamics of the tanker are given as:

η̇ = J(η)ν (30)

ν̇ = M−1N(ν, δ) (31)

δ̇ =

{
δc − δ If δ <= δmax

0 otherwise
(32)

ṅ =
60

Tm
(nc − n) (33)

The mass matrix is given as

M =
L

U2


m+mx 0 0 0

0 m+my −mylyL myαyL
0 −myly (Ix + Jx)L 0
0 myαy 0 (Iz + Jz)L


(34)

where U =
√
u2 + v2 is the absolute velocity. The nonlinear

terms are based on the Abkovitz model described above, where
the the nonlinear terms are given by the following polynomial
vector:

N(ν, δ) =


X(ν, δ)
Y (ν, δ)
K(ν, δ)
N(ν, δ)

 (35)

where the polynomials describing the nonlinear components,
are given as:

X(ν,u) =Xuuu
2 + (1− t)T +Xvrvr +Xvvv

2 +Xrrr
2

+Xφφφ
2 + cRXFN sin(δ) + (m+my)vr

Y (ν,u) =Yvv + Yrr + Ypp+ Yφφ+ Yvvvv
3 + Yrrrr

3

+ Yvvrv
2r + Yvrrvr

2 + Yvvφv
2φ+ Yvφφvφ

2

+ Yrrφr
2φ+ Yrφφrφ

2 + (1 + aH)FN cos(δ)

− (m+mx)ur

K(ν,u) =Kvv +Krr +Kpp+Kφφ+Kvvvv
3 +Krrrr

3

+Kvvrv
2r +Kvrrvr

2 +Kvvφv
2φ+Kvφφvφ

2

+Krrphir
2φ+Krφφrphi

2 − (1 + aH)zRFN cos(δ)

+mxlxur −WGMφ

N(ν,u) =Nvv +Nrr +Npp+Nφφ+Nvvvv
3 +Nrrrr

3

+Nvvrv
2r +Nvrrvr

2 +Nvvφv
2φ+Nvφφvφ

2

+Nrrφr
2φ+Nrφφrφ

2 + (xR + aHxH)FN cos(δ)

utilizing the following calculations

vR = gav + cRrr + cRrrrr
3 + cRrrvr

2v

uP = cos(v)((1− wp) + τ((v + xpr)
2 + cpvv + cprr))

J = uPU/(nD)

KT = 0.527− 0.455J

uR = uP ε
√

1 + 8kkKT /(πJ2)

αR = δ + atan(vR/uR)

FN = −((6.13∆)/(∆ + 2.25))(AR/L
2)(u2R + v2R) sin(αR)

T = 2ρD4/(U2L2ρ)KTn|n|
W = ρg∇/(ρL2U2/2)

where the parameters are given in Table IV.

Term Value Term Value Term Value

m 0.00792 mx 0.000238 my 0.007049
Ix 0.0000176 αy 0.05 lx 0.0313
ly 0.0313 Ix 0.0000176 Iz 0.000456
Jx 0.0000034 Jz 0.000419 xG 0

B 25.40 dF 8.00 g 9.81
dA 9.00 d 8.50 ∇ 21222
KM 10.39 KB 4.6154 AR 33.0376
∆ 1.8219 D 6.533 GM 0.3/L
ρ 1025 t 0.175 T 0.0005

Xuu −0.0004226 Xvr −0.00311 Xrr 0.00020
Xφφ −0.00020 Xvv −0.00386

Kv 0.0003026 Kr −0.000063 Kp −0.0000075
Kφ −0.000021 Kvvv 0.002843 Krrr −0.0000462

Kvvr −0.000588 Kvrr 0.0010565 Kvvφ −0.0012012

Kvφφ −0.0000793 Krrφ −0.000243 Krφφ 0.00003569

Yv −0.0116 Yr 0.00242 Yp 0
Yφ −0.000063 Yvvv −0.109 Yrrr 0.00177

Yvvr 0.0214 Yvrr −0.0405 Yvvφ 0.04605

Yvφφ 0.00304 Yrrφ 0.009325 Yrφφ −0.001368

Nv −0.0038545 Nr −0.00222 Np 0.000213
Nφ −0.0001424 Nvvv 0.001492 Nrrr −0.00229

Nvvr −0.0424 Nvrr 0.00156 Nvvφ −0.019058

Nvφφ −0.0053766 Nrrφ −0.0038592 Nrφφ 0.0024195

kk 0.631 ε 0.921 xR −0.5
wp 0.184 τ 1.09 xp −0.526
cpv 0.0 cpr 0.0 ga 0.088
cRr −0.156 cRrrr −0.275 cRrrv 1.96
cRX 0.71 aH 0.237 zR 0.033
xH −0.48

TABLE IV: Container parameter value table


