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Abstract

This thesis discusses the implementation of ultrasound beamforming on the
GPU using CUDA. Fractional delay filters and the need for it when implement-
ing beamforming is discussed. An introduction to CUDA programming is given
as well as a study of the workings of the NVIDIA Tesla GPU(or G80). A number
of suggestions for implementing beamforming on a GPU is presented as well as
an actual implementation and an evaluation of it’s performance.
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1 Introduction

1.1 Ultrasound Imaging

Ultrasound imaging is widely used in medicine. It allows a doctor to see inside
the body of a patient for diagnosing(e.g. detecting cancer or heart diseases) or
to guide surgery. Most people probably know about it from its use in obstetrical
ultrasound, where it is used during pregnancy to check on the development of
the fetus.

1.1.1 Ultrasound compared to other medical imaging techniques

Compared to other medical imaging techniques(like MRI, CT and X-ray) the
advantages of ultrasound are(1):

• It images muscle and soft tissue very well and is particularly useful for
delineating the interfaces between solid and fluid-filled spaces.

• It renders "‘live"’ images, where the operator can dynamically select the
most useful section for diagnosing and documenting changes, often en-
abling rapid diagnoses.

• It has no known long-term side effects and rarely causes any discomfort
to the patient.

• Equipment is widely available and comparatively flexible. Small, easily
carried scanners are available; examinations can be performed at the bed-
side.

• Relatively inexpensive compared to CT and MRI.

On the downside:

• Limited penetration(3-25cm depending on frequency).

• Difficult to penetrate bone. For example, ultrasound imaging of the adult
brain is very limited.

• Performs very poorly when there is a gas between the transducer and the
organ of interest, due to the extreme differences in acoustic impedance.

• The method is operator-dependent. A high level of skill and experience is
needed to acquire good-quality images and make accurate diagnoses.
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Transducer

Ultrasound beams

Figure 1.1: Ultrasound image of a fetus. With arrows indicating the direction of the
scanlines/beams.

1.1.2 How it works

1.1 shows an ultrasound image of an unborn baby. The image is made out
of several1 scan lines(The orientation of the scanlines are illustrated by the
arrows).

Each scan line is produced by one ultrasound pulse. The pulse is focused to
form a narrow beam in the directions illustrated by the white arrows in the
image. The pulse is partially reflected back when it hits boundaries between
tissue of different density(see 1.2). The reflected pulses are recorded and the
amplitude and time of the returned pulses gives an image of the tissue structure
along the path of the beam(bright parts in the image are where pulses are
reflected). Each pulse is transmitted in slightly different directions to get all the
scanlines needed to make the complete image.

1.2 Beamforming

The ultrasound pulse is transmitted from a transceiver that has an array of
small piezo-electric elements. Each element can transmit and receive ultra-
sound pulses independant of the other elements. When multiple elements trans-
mits simultaneously, the combined pressurewaves produces an interference pat-
tern. Figure 1.3 shows an interference pattern generated by eight wave sources.
In the left plot, all the sources generates waves with the same phase, but in the

1about 100 scanlines would be my guess.
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Transducer
Reflecting
boundaries

time

Transducer emits a pulse

Pulse is partially reflected
of the first boundary

Transducer receives 
the first reflected pulse

Pulse is partially reflected
of the second boundary

Pulse travels in a straight
line(beam)

Etc...

The received signal is used to 
construct an image of the internal
structure of the subject.

Figure 1.2: Illustration of how the pulse is reflected and image is reconstructed.

Figure 1.3: Interference pattern with 8 wave sources. a) no phase delay(unfocused) b)
with phase delay(focused)

right plot, some of the waves are delayed in order to create a focused beam in
the interference pattern.

Transmit beamforming is essentially the process of controlling the delay of
the emitted pulse for each transducer element in order to form a focused beam.

Beamforming is also performed when receiving. The pulses that are reflected
back to the transceiver will hit the individual transceiver elements and be
recorded at slightly different times depending on their origin. The receive beam-
former delays the signals from each channel(element) so that signals gener-
ated by pulses originating from along the beam will be synchronized. The sig-
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Transmit
beamformer

Receive
beamformerTransducer Image

processing
Amps &

ADC Display

SOFTWAREHARDWARE HARDWARE

Figure 1.4: Block diagram of an ultrasound system. The time has come for beamform-
ing to turn soft.

nals from all the channels are then summed, making the synchronized pulses
stronger and the unsynchronized pulses weaker. In this way the beamformer
focuses the signals that originates from the beam.

Receive beamforming is in a way the reverse of transmit beamforming. One
important difference though, is that when transmitting the pulse, it is only pos-
sible to focus on one point, while when receiving, the delay can be adjusted
dynamically to focus on all the points along the beam.

1.3 Software beamforming on GPU

The purpose of this thesis is to investigate the possibility of performing beam-
forming in software using GPUs.

1.3.1 Moving From Hardware to Software

As microprocessors get faster we see that more and more tasks that were pre-
viously implemented in hardware now is being implemented in software. One
reason for this is that specially designed hardware and ASICs(Application Spe-
cific ICs) are produced in smaller volumes and therefore more expensive than
general purpose processors. Another reason is that software easily can be up-
graded as new versions are developed.

Receive beamforming requires a lot of computing power and is therefore
usually performed on hardware using ASICs and FPGAs. GPU processing power
has lately been evolving rapidly and might now make it possible to perform
beamforming in software. Figure 1.5 shows how the processing power of the



1 Introduction 5

GFLOPS 

G80GL = Quadro 5600 FX

G80 = GeForce 8800 GTX 

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

G80GL

Figure 1.5: The evolution of FLOPS on GPU vs GPU for the last couple of years

GPU has been increasing and surpassed CPUs.

1.3.2 CUDA

CUDA ("Compute Unified Device Architecture"), is a technology that allows a
programmer to use the C programming language to code general purpose algo-
rithms for execution on the newest NVIDIA GPUs.

CUDA will be used in this project because it is a new and interresting tech-
nology and it allows for better control of the GPU than writing shaders.

1.3.3 Tesla C870 Specifications

Tesla C870 is a GPU card from NVIDIA that is specifically made for general
purpose high perfomance computing. It has a GPU that is essentially the same
as those used on video cards, but this card does not have any connection for a
monitor.

Specifications for the Tesla C870(from nvidia.com1):

• Processor: based on the G802

Contains 128 processor cores running at 1.35GHz

• Memory: 1.5GB

• Memory bandwidth: 76.8GB/s peak

1 http://www.nvidia.com/object/tesla_c870.html
2No documentation available on this particular chip. Assuming that it is the same as the G80
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• Floating Point Precision: IEEE 754 single-precision

• Floating Point Performance: 430 GFLOPs achievable with a CUDA pro-
gram. (512 peak1)

• Power Consumption: 170W peak, 120W typical

• System Interface: PCI Express x16 (Generation 1)

• Compute capabilty: 1.0

1.3.4 Getting the data into device memory

Beamforming requires a lot of bandwidth. A typical transceiver could have 128
channels and use a 40 MHz sampling frequency. Each channel is typically 12-
bit, but since the GPU does not support 12-bit data types it has to be converted
to 16-bit. This would generate:

128 × 40 × 106 × 2 = 9.54GB/s

All this data has to be transferred to the device memory(the memory on the
GPU card) before it can be used. The Tesla card has PCI Express x16 (Genera-
tion 1) interface and can therefore not manage this datarate.

In this paper we will therefore assume that the data is already stored in
device memory (as 16-bit signed integers).

1128 cores × 1.35GHz × 3 operations(Dual issue multiply-add and multiply)
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Figure 2.1: Shape of transmit beam with different focus points.

2 Beamforming

2.1 Transmit Beam Shape

Figure 2.1 shows an amplitude plot of a transmit beam given four different
focus point1. Notice that the beam is thinnest at the focus point.

The shape of the beam is determined by delaying the pulses transmitted from
each individual transducer element. The delay is calculated so that the pulses
all reach the focus point at the same time and is therefore only dependent on
the geometry of the transducer, the focus point and the speed the pulses travel2.

2.2 Receive Beam Shape

As mentioned in the introduction, a receive beamformer delays the received
signals and sums. The delays are calculated according to a focus point that
moves along the beam. In section 4.3 the calculation of the delay is discussed
in detail.

1The transducer in this case has a 1 cm aperture(it is 1 cm wide).
2the speed of sound through flesh is about 1560m/s. About the same as in water
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Figure 2.2: Shape of receive beam

Figure 2.2 shows an amplitude plot of the receive beam. The width of the
receive beam is the same as the transmit beam at the focus point, but since the
receive beam is focused along the whole beam while the transmit beam only
has one focus point, the receive beam is generally thinner.

2.3 Apodization

If you look at the plots of the transmit beam shape you will se there are many
weaker beams at each side of the beam, these are called sidelobes. The side-
lobes can cause artifacts in the ultrasound image and is therefore not wanted.
Apodization is a method to reduce the sidelobes and works by reducing the
signal strength on the channels at the edge of the transducer. Figure 2.3 shows
how the shape of the beam is affected by the apodization. The sidelobes almost
completely disappears at the cost of a little wider beam.

Apodization is also used with receive beamforming and is implemented by
multiplying the signals from the channels with a windowing function.

2.4 MLA

The speed of sound imposes a physical limitation to the pulse repetition rate.
Example: If you want to scan to a depth of 10 cm, it will take 2 × 0.1/1560 =
1.3ms(two times the depth divided by the speed of sound) until the last pulse
echo is received and the next pulse can be transmitted. If each frame is made
out of 100 scanlines you can only construct about 8 frames per second which
is far to slow to image moving parts like the heart. The solution is multiple line
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Figure 2.3: Shape of beam with and without apodization.

Array

Beam

Window of active 
array elements

The beam is moved
by moving the window
along the array.

Figure 2.4: Linear array transducer

acquisition(MLA). MLA uses the received data from one pulse and performs the
receive-beamforming several times to acquire multiple scanlines.

2.5 Transducer types

Transducers come in many shapes and sizes but the same principles of beam-
forming applies to any shape. The most common are the linear array transducer
and the phased array transducer.

2.5.1 Linear array transducers

Linear arrays only use a window of the total elements when shooting a beam(see
2.4). That window is moved along the array to create several parallel beams
that make up the whole picture.
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Linear scan Phased scan

Figure 2.5: Linear and phased scan image shapes

There are also curved linear arrays which work in the same way, but the
curve makes the beams fan out to create a wider image.

2.5.2 Phased arrays

Phased arrays use all of the array elements. The beam is steered in different
directions to make up the image. The transducer is usually smaller to allow the
beams to enter through narrow openings like between the ribs.

2.6 Fractional Delay Filters/Interpolation

As stated earlier, beamforming is just delaying signals and adding them. Adding
signals is trivial but delaying is more complicated and will be discussed in this
section.

2.6.1 Delaying Sampled Signals

A sampled signal can easily be delayed by a discrete number of samples by
using a sample buffer. But as shown in figure 2.6, this produces a degraded
result when performing delay and sum.

To produce a better result it is necessary to be able to delay the signal by a
fractional number of samples. This can be achieved by using fractional delay
filters.
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(a) (b) (c)ideal signal
sampled signal

Figure 2.6: Delay and sum without interpolation.(a) Incoming signals. (b) Delayed
signals. (c) Sum of delayed signals.

2.6.2 Ideal Fractional Delay Filter

A continuous signal can be delayed by an arbitrary amount using convolution
with a dirac impulse:

x(t − τ) = x(t) ∗ δ(t − τ) (1)

where x is the input signal, τ is the delay and δ(t − τ) is the dirac function.
If the dirac function could be represented as a discrete signal it could be

used as a FIR filter. The frequency response of the dirac can be found by fourier
transformation:

δ(t − τ)
�→ e−2πjfτ (2)

Which shows that the dirac function contains all frequencies i.e. |e−2πjfτ | = 1
for all f . A sampled signal can only represent frequencies up to half of the
sampling frequency fs. The frequency response outside that region is therefore
removed by multipling with the rect function. The discrete filter can then be
found by reverse fourier transform:

e−2πjfτ rect(fsf)
�−1→ sin(πfs(t − τ))

πfs(t − τ)
= sinc(fs(t − τ)) (3)

Which shows that the ideal fractional delay filter is found by using the sinc
function. If we define D as the delay given in number of samples and n as
sample number we get the FIR filter coefficients:

h[n] = sinc(n − D) (4)

Figure 2.7 shows the impulse response of the ideal fractional delay filter.
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Figure 2.7: Impulse response of the ideal delay filter with the delay a) D = 3.0 and b)
D = 3.3

2.6.3 Delay Filters

The ideal delay filter, i.e the sinc filter, is infinitely long, it is therefore purely
theoretical. In practice it is necessery to make an approximation which has a
limited number of filter coefficients. There are many ways to design such a delay
filter. In this thesis only a few will be considered. Linear interpolation is imple-
mented in the GPU hardware and will therefore be considered. The lagrange
interpolation filter and the truncated sinc will also be considered because they
are very easy to calculate and may be calculated on-the-fly on the GPU. More
advanced filters needs to be pre-calculated. One such filter will be considered.

2.6.4 Choosing the Right Filter

The characteristics of a delay filter is usually measured by looking at the am-
plitude response and and phase delay response with respect to the normalized
frequency. This response is also dependent on the amount of the delay and the
length of the filter. All these factors combined with the amount of filter designs
that are available, makes it hard to choose. In an attempt to make it easier
to compare the filters a filter-test program has been developed that measures
the performance of the filters. The filter-test tries to imitate what is actually
happening when beamforming is performed. It works like this:

1. Generate a reference signal by combining several pulses with random ar-
rival times and amplitudes. This signal should have the same charactestics
and bandwidth as a typical signal received by an ultrasound transciever
but with no noise.

2. Downsample the reference pulse to get a new reference pulse with the
desired normalized frequency.
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3. Delay and downsample the original reference pulse to get a number of
delayed pulses with the desired normalized frequency. This simulates the
time difference of the arrived signal on the different transducers. The
delays are negative and evenly distributed between 0 and -1.

4. Add white noise to each of the delayed signals. This represents the uncor-
related noise that will occur in an actual system. The reason for including
this is to see if the filters have any noise reducing effect.

5. Use the filters that are being tested to undo the negative delay created in
the previous step. This simulates the delay filter in the beamformer and
should reconstruct the reference signal generated in step 2.

6. Sum the reconstructed signals and divide by the number of different de-
lays to get the mean reconstructed signal.

7. Subtract the mean reconstructed signal from the reference to get the
noise. The noise is a combination of the added white noise and the er-
ror from the filters.

8. Calculate a signal-to-noise ratio between reconstructed signal and the
noise using the formula in equation 5.

9. Repeat steps 2-8 for each frequency.

SNR =

√∑
signal[n]2∑
noise[n]2

(5)

2.6.5 Linear and Lagrange Interpolation

Linear interpolation can be implemented as a FIR filter with two coefficients
h[0] = 1 − D and h[1] = D. This is the same as a 1.order lagrange filter. The
higher the order of the filter the closer it gets to the ideal sinc filter. The formula
for generating the coefficients for a N th order lagrange filter is

h[n] =
N∏

k=0,k �=n

D − k

n − k
forn = 0, 1, 2, ...N (6)

Figure 2.8 shows the results from the filter-test program for lagrange filters
of order 1,2,3,4 and 5. One thing to point out is that the filters of even order,
i.e. 2nd and 4th order, seems to perform better than the odd ordered filters.
Figure 2.9 shows that magnitude and phase response of lagrange filters with
delay=0.5 samples. The even-ordered filters, i.e those with length L=3 and 5,
have a poor phase delay response but a better magnitude response. The reason
why the poor phase response does not affect the filter-test result is connected
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Figure 2.8: Signal-to-Noise ratio using lagrange filters

to the fact that the delays are evenly distrubuted between 0 and 1, causing an
equal amount of phase shift in both directions. Indeed, when delays are limited
to the range between 0 and 0.5 there is no difference in the test-results for even
and odd length lagrange filters.

How the filter’s phase response affects the image quality of an actual ul-
trasound image is still unclear. The filter-test can therefore not be completely
trusted.

2.6.6 Truncated sinc filter

Another way to make a delay filter is to truncate the sinc filter to only a number
of samples around the center. Figure 2.12 compares the truncated sinc filter
with lagrange. The lagrange filter seems to perform better at lower frequencies
but above 0.26 cycles/samples the sinc filter performs better.

2.6.7 LS Optimized Delay Filter

A more computationally demanding approach is to generate the filter by creat-
ing an optimal filter for certain frequencies. The idea is that it does not matter if
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Figure 2.9: Magnitude and phase delay response of lagrange delay filters with 0.5 sam-
ple delay. L is filter length. (from (5). Note that the frequency is given in
cycles per half-sample)
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Figure 2.10: Signal-to-Noise ratio using truncated sinc filter and optimal filter.

the delay filter has a poor response for frequencies that does not exist in the sig-
nal. The frequency spectrum of the signal is estimated to be gauss distributed
around the center frequency. The filter is genereted by using least square er-
ror estimation, resulting in a filter that gets best possible phase and magnitude
response at frequencies near the center frequency(5).
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Figure 2.11: Signal-to-Noise ratio using truncated sinc filter to upsample followed by
linear interpolation.

Figure 2.10 compares the optimal filter with the truncated sinc filter. The
truncated sinc filter seems to have an overall better performance.

2.6.8 Upsample + Delay

When performing MLA beamforming, delay filters are applied to the same re-
ceived signals several times to produce multiple scanlines. In this case it could
be advantageous to first use a long filter to upsample the received data once,
and then use a shorter filter (e.g. linear interpolation) on the upsampled data
to calculate the delay for each scanline.

Figure 2.11 shows that when the signal has been upsampled to 3 or 4 times
higher sampling rate, then using linear interpolation on the upsampled signal
will produce almost as good results as using the filter used for upsampling.
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Figure 2.12: Signal-to-Noise ratio using lagrange and truncated sinc filters.

3 CUDA

This section gives a brief introduction to CUDA programming. For more details
refer to the CUDA Programming Guide (3)(hereby referred to as The Guide).

In an attempt to make things easier to understand I refer to specific values
(number of multiprocessors, cache size, performance tests, etc.) instead of gen-
eralizing. These values are valid for the Tesla C870 that was used in this project
but may vary on other devices. Since there is little documentation on the C870
it is assumed that information on the G80 also applies to the C870.

3.1 The CUDA processor

3.1.1 Core architecture

The GPU can execute 128 instructions in parallel. It contains 16 multiproces-
sors(Also refered to as SM = Streaming Multiprocesor) that each has 8 pro-
cessors(Also refered to as SP = Streaming Procesor), as illustarted in figure
3.1. The SM’s have a Single Instruction, Multiple Data (SIMD) architecture: At
any given clock cycle, each processor of the multiprocessor executes the same
instruction, but operates on different data.

Each SM has on-chip memory of the four following types:

• 8192 32-bit registers divided among the processors.
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Figure 3.1: The G80 architecture

• 16Kb of shared memory.

• 8Kb read-only constant cache that is shared by all the processors and
speeds up reads from the constant memory space, which is implemented
as a read-only region of device memory. Only

• 8Kb read-only texture cache that is shared by all the processors and speeds
up reads from the texture memory space, which is implemented as a read-
only region of device memory.1

The on-chip memory has virtually no latancy and is not limited by the band-
width of the memory bus. When accessing the device(off-chip) memory there
is a latency of about 400 to 600 clock cycles.

Each multiprocessor accesses the texture cache via a texture unit that imple-
ments the various addressing modes and (bi)linear interpolation which will be
further discussed in 3.2.7.

1Actually there is 16Kb cache per texture unit, but each texture unit is shared by two SMs.
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3.1.2 Execution model

The GPU is designed as a stream processor, which means that it takes a large set
of data (a stream) and applies a series of operations (a kernel function) to each
element in the stream. The processing of each element must be independent of
each other so that they can be executed in parallel.

Another way of seeing it, is as if we have a large set of threads, each ex-
ecuting the same kernel function in parallel on its respective element of the
dataset.

However, in the CUDA architecture, not all threads need to be independent.
The threads are grouped into equally sized blocks of threads(max 512 threads
per block). Whereas each block has to be completely independant of each other,
the threads within the blocks can share data and synchronize their execution if
neccessary. This is possible because each block is executed on only one multi-
processor.

The thread execution manager schedules the blocks for execution by passing
it to one of the multiprocessors (see 3.2). Each multiprocessor can run up to
8 blocks at a time (max 768 threads1). The blocks that are running are called
active blocks. When all the threads of an active block has finished, a new block
is scheduled. This goes on until there are no more blocks in the grid2. A new
kernel can only be launched when all the blocks of the previous launch have
finished.

The SM divides the blocks into warps of 32 consecutive threads. Active warps
(warps in the active blocks) are scheduled in a way that maximizes utilization
and tries to hide the delays associated with memory loads. This means that
every 4th clock cycle, the warp scheduler(instruction dispatch unit) selects one
of the active warps that are ready to go(all operands are available), and loads
the next instruction for that warp into the SPs. That instruction is then executed
on all 8 processors for 4 clock cycles(once for each of the 32 threads of the
warp).

3.1.3 The Special Functions Unit(SFU)

Each SM consists of 8 SPs and 2 Special Functions Units(SFU’s). Each SP has
one 32-bit, single-precision floating-point, multiply-add arithmetic unit that
also can perform 32-bit integer arithmetic (but only 24 integer multiplica-
tion). The SFU on the other hand, is responsibel for calculating more complex
floating-point operations like sine, cosine, reciprocal, reciprocal square root,
log2 and 2x (sin, cos, rsqrt, rcp, lg2 and exp2)(4)(2). The SFU uses only one

1It is also limited by the amount of free registers and shared memory as will be discussed in
3.3.1

2The grid refers to the set of blocks in a kernel launch
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Figure 3.2: Illustration of how the blocks are scheduled for execution by the multipro-
cessors

clock cycle to execute one instruction, but sin and cos takes two instructions1.
Since there is only 1 SFU per 4 SP’s it needs to run the same instruction 4
times(on different data) which makes the SFU instructions effectively run 4
times slower than the normal instructions.

3.1.4 Speculations about the Instruction Issue rate

Every 4th cycle the instruction fetch/dispatch unit issues a new instruction to
the SPs. Some instructions, i.e SFU instructions and texture fetch instructions
needs to be issued to their corresponding units. The question is: Do these in-
structions need to through the SP’s first?

While analyzing the performance of the implemented kernels it was found
that sometimes the kernels actually executed faster than the expected optimal
performance(see section 4.5.1). This implies that more than one instruction is
issued per cycle.

It is possible that the instruction fetch/dispatch unit can load more than
one instruction every 4 cycles. If two following instructions are independant it
should be possible to dispatch one of them to the SPs and one to the texture
unit or SFUs within 4 cycles.

1This is discussed in section 3.3.3
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3.1.5 The Texture Fetch Unit

There is one texture fetch unit for every two SMs.

• (bi)linear interpolation.

• Type conversion.

• Address calculations.

• Load up to four 32 bit registers at one time.

• Runs in parallel with the SM’s, thus making it possible to hide the time it
uses. Issueing an instruction to the texture fetch unit takes only one clock
cycle.

• Can load a total of 32(4 per tex unit) pixels per clock with bilinear filter-
ing.

3.2 CUDA programming

3.2.1 Example of a CUDA program

Say we wanted to make a procedure that calculates the square of every element
in an array. In C we would write something like this:

void square(float *in, float *out, int length){

int i;

for( i = 0; i < length; i++)

out[i] = in[i] * in[i];

}

In CUDA it would be more natural to create a kernel that calculates the
square of one element and launch one thread for each element of the array.
The kernel would look something like this:

__global__ squareKernel( float *in, float *out)

{

int i = threadIdx.x + blockDim.x*blockIdx.x;

float x = in[i]

out[i] = x*x;

}

Selecting the number of threads that will be launched is done by specifying the
block and grid dimensions when the kernel function is called. In this example
the block size is 128, and the grid size is calculated according to the length of
the array so that threads = block size × grid size = arraylength.
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dim3 dimBlock( 128 );

dim3 dimGrid( length/128 );

squareKernel<<< dimGrid, dimBlock >>>( in, out );

Listing 1 shows a more complete version of this example. Let’s first take a
closer look at the kernel code:

• Line 1: The __global__ qualifier tells the compiler that the function is a
kernel and is compiled to run on the GPU. Just like any normal C function,
kernels can take anything as parameters but there is a limit to size. This
kernel takes two pointers as parameters. Note that for kernels, pointers
refer to global(device) memory. Also note that kernels don’t have a return
value.

• Line 3: threadIdx, blockDim and blockIdx are special built-in variables
of the type dim31. As the the function is executed once for each thread,
threadIdx and blockIdx tells which thread and block is currently be-
ing executed. blockDim tells how many threads there are per block. The
whole line calculates a unique index that can be used to access data. This
is a very normal pattern.

• Line 5: Reads one element of the in array into the variable x. Variables
like x will use a register on the GPU. The number of available registers is
limited and using to many will cause poor performance.

• Line 6: Some calculation is done on the data and it is stored in the array
out. Note that lines 5 and 6 accesses global memory and care should be
taken to ensure coalescing, in this example there is no problem. Coalesc-
ing will be discussed later in section 3.3.2.

Because the kernel only can read from device memory it is neccessary to
copy the data from host to device before the kernel is launched. Most of the
code that runs on the host deals with allocating device memory and moving
data to and from the device.

Launching the kernel and choosing block and grid size will be discussed in
the following sections.

3.2.2 Launching a Kernel

Launching a kernel is done just like calling any other function except for the
extra <<< >>> between the name of the kernel function and the parameters. It
contains configuration parameters for the kernel launch.

1dim3 is one of the built-in vector types in CUDA
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Listing 1: Simple CUDA program

1 __globa l__ squareKernel ( f l o a t ∗ in , f l o a t ∗out )
2 {
3 i n t i = threadIdx . x + blockDim . x∗ blockIdx . x ;
4
5 f l o a t x = in [ i ]
6 out [ i ] = x∗x ;
7 }
8 void square ( f l o a t ∗h_idata , f l o a t ∗h_odata , i n t length )
9 {

10 // a l l o c a t e dev ice memory
11 f l o a t ∗d_idata , ∗d_odata ;
12 cudaMalloc ( ( void ∗∗) &d_idata , s i z e o f ( f l o a t )∗ l ength ) ;
13 cudaMalloc ( ( void ∗∗) &d_odata , s i z e o f ( f l o a t )∗ l ength ) ;
14
15 // copy data from host to dev ice
16 cudaMemcpy( d_idata , h_idata , mem_size ,
17 cudaMemcpyHostToDevice ) ;
18
19 // choose block and gr id s i z e
20 dim3 dimBlock ( 128 , 1 , 1) ;
21 dim3 dimGrid ( length / dimBlock . x , 1 , 1) ;
22
23 // launch the kerne l
24 myKernel<<< dimGrid , dimBlock >>>( d_idata , d_odata ) ;
25
26 // copy r e s u l t from device to host
27 cudaMemcpy( h_odata , d_odata , s i z e o f ( f l o a t ) ∗ length ,
28 cudaMemcpyDeviceToHost ) ;
29
30 // f r e e memory
31 cudaFree ( d_ idata ) ;
32 cudaFree ( d_odata ) ;
33 }



24 3 CUDA

<<< dim3 grid, dim3 block, size_t sharedMem, cudaStream_t stream >>>

• grid: specifies how many blocks of this kernel that are to be launched. The
maximum size of each dimension of the grid is 65535.

• block: specifies how many threads there are per block. The maximum size
of the x-, y- and z-dimension of a block are 512, 512 and 64, respectively.

• sharedMem: specifies the amount of shared memory (bytes) that are allo-
cated per block. This parameter is optional and defaults to 0.

• stream: defines which stream the kernel belongs to(will be discussed later
in 3.2.6). This parameter is optional and defaults to 0.

3.2.3 Grid and Block Dimensions

When specifiyng how many threads and blocks that are to be launched, this
is done with the vector type dim3. You can say that the threads are divided
into a three dimensional grid of three dimensional blocks of threads. Each
thread knows its position in the grid and block by the dim3 threadIdx and
dim3 blockIdx variables. Organizing the threads in this way is convenient
when the data you are working is organized in a similar way.

Example: If the data is a 1024 × 1024 texture and each thread is responsible
for processing one element of the texture. The texture is to big to handle in
one block so it needs to be divided into smaller subtextures, let’s say, of the
size 16 × 16. Then we can set the block dimensions to (16, 16, 1) and the grid
dimensions to (64, 64, 1). The following kernel code calculates the x and y
texture coordinates for the current thread:

x = threadIdx.x + blockIdx.x*blockDim.x;

y = threadIdx.y + blockIdx.y*blockDim.y;

3.2.4 Using Shared Memory

To access the shared memory you declare a variable in your kernel with the
__shared__ qualifier. Example:

__shared__ float mat[16][16];

__shared__ int n;

extern __shared__ float whatever[];

The size of the extern __shared__ array is chosen at launch time1.
Shared memory is limited to 16kB per multiprocessor which is diveded among

the active blocks. The kernel will fail to launch if it requires more than 16kB of
shared memory. Kernel function parameters are also stored in shared memory.
Check the .cubin file to see how much shared memory your kernel is using.

1Shared memory size is the third kernel launch configuration parameter. Refer to 3.2.2
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3.2.5 Using Constant Memory

Using constant memory can in some cases greatly increase the performance.
Constant memory is cached and on a cache hit it is as fast as reading from a
register as long as all the threads in the half-warp1 reads from the same address.
Constants are declared as global variables with the __constant__ qualifier:

__constant__ float pi = 3.14;

__constant__ int sequence[3] = {1,2,3};

__constant__ char notSoConstantString[100];

It is possible to write to the constants from the host using cudaMemcpyToSymbol():

char str[] = "Hello World!";

cudaMemcpyToSymbol(notSoConstantString, str, strlen(str));

Constant memory cache on each multiprocessor is 8Kb. The total amount of
constant memory is 64Kb. Declaring more than 64Kb of constants will give a
compiler error.

3.2.6 Asynchronous execution and streams

Kernel launches are asynchronous, meaning that the host will continue exe-
cution in parallel with the GPU. If several kernels are launched, they will be
launched in sequence after the previous has finished.

Memory operations can also be run asynchronously by using the cudaMemcpyAsync()
and similar functions with the Asynch suffix.

Compute capabilty 1.12 allows concurrent execution of memory copies and
kernel execution. To control the sequence of execution all operations are as-
signed to a stream. Operations in the same stream will be executed in sequence
while operations in different streams may execute in parallel.

For now it is not possible to have several kernels running concurrently, but
this might be implemented in future versions of CUDA.

3.2.7 Using textures

The main reasons for using textures is that:

• Texture reads are cached.

• Data can be accessed in a random fashion. No need to worry about coa-
lescing.

1A half-warp is either the first 16 or last 16 threads of a warp.
2The Tesla C870 has compute capability 1.0
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There are two different ways to use textures in CUDA. The difference comes
from whether the texture reference is bound to linear memory (using cudaMalloc()

and cudaBindTexture()) or a CUDA array (using cudaMallocArray() and cudaBindTextureToA

Each way has its advantages and disadvantages:

• Texturing from CUDA arrays

Supports 2D textures with maximum width=216 and maximum height=215.

Supports 1D textures with maximum width=213.

Supports (bi)linear interpolation

Supports normalized texture coordinates(values in the range [0.0,
1.0]).

Supports alternative addressing modes for out-of-bound texture coor-
dinates(only with normalized coordinates): Clamp, wrap or mirror.

It is not possible to write to a CUDA array from a kernel.

• Texturing from device memory(linear addressing)

No 2D textures.

Supports 1D textures with maximum width=227.

No interpolation.

Integer texture coordinates.

Out-of-bound texture coordinates return 0.

Writing to texture is done just like writing to global memory.

The following list shows the usual stages that is implemented when using
textures and which functions to use for both linear and array textures:

• Declare a texture reference.

Both: texture<Type, Dim, ReadMode> texRef;

• Create a channel descriptor.

Both: cudaCreateChannelDesc()

• Allocate or free device memory.

linear: cudaMalloc() and cudaFree()

array: cudaMallocArray() and cudaFreeArray()

• Transfer data between host and device.

linear: cudaMemcpy()

array: cudaMemcpyToArray()
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• Bind texture reference to data.

linear: cudaBindTexture()

array: cudaBindTextureToArray()

• Fetch from texture(in kernel).

linear: tex1Dfetch(texRef, int x)

array: tex1D(texRef, float x) or tex2D(texRef, float x, float y)

The channel descriptor defines the format of the texture. The Type parame-
ter of the texture reference defines the datatype that is returned when fetching
from that texture and should match the format defined in the channel descrip-
tor. An exception to this, and a nice feature, is that 8-bit and 16-bit integer
input data can be converted to 32-bit normalized floating-point values i.e val-
ues in the range [0.0, 1.0] or [-1.0, 1.0]. This is done by setting ReadMode

to cudaReadModeNormalizedFloat. The default is cudaReadModeElementType

where no conversion is performed.

3.3 Optimization

Writing CUDA code is very much like writing c code, but if you want to take full
advantage of the speed of the GPU you have to carefully design your algorithms
to match the architecture of the GPU. This section discusses the most important
points.

3.3.1 Occupancy

The multiprocessor can have up to 24 active warps and schedules them to
maximize the computational power and hide the delays associated with device
memory access. However there are several factors that may limit the number of
warps that can be active. These are:

• Block size: Since only whole blocks can be loaded, the size of the blocks(in
number of warps per block), must be a factor of 24 warps to achieve full
warp occupancy. Maximum block size is 16 warps(512 threads). Maxi-
mum number of active blocks1 is 8. This leaves only 5 optimal choices
when choosing the block size: 962,128, 192, 256 or 368 threads (3, 4, 6,
8 or 12 warps)

1active blocks = blocks running concurrently on the multiprocessor
2The Guide states that the block size should be a multiple of 64 to minimize register bank

conflicts.
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• Shared memory: The available shared memory(16kB) will be divided
among the active blocks. Therefore, the number of active blocks is limited
by how much shared memory each block uses. A good rule of thumb is to
use no more than 5 floats per thread (16kB/768 ≈ 21 bytes ≈ 5 floats).
Be aware that also kernel parameters are stored in shared memory.

• registers: Each multiprocessor has 8192 registers that are divided among
the active threads. To be able to have the maximum of 768 active threads
each thread must not use more than 8192/768 ≈ 10 registers. To find out
how many registers the kernel is using you can check the .cubin file that
the CUDA compiler can generate for you.

Note that compute intensive kernels might run just as fast without full occu-
pancy.

3.3.2 Coalescing

When accessing global(device) memory each thread in a half-warp should coop-
erate to read/write one contiguous chunk of memory whose address is aligned
to the size of the chunk. Failing to do this, the memory access will be split into
several parts and performance could be lost.

More precisely, as The Guide(3) states: In each half-warp, thread number N
within the half-warp should access address

HalfWarpBaseAddress + N

where HalfWarpBaseAddress is of type type* and sizeof(type) is 4,8 or 16
(32-bit, 64-bit or 128-bit). Moreover, HalfWarpBaseAddress should be aligned
to 16*sizeof(type) bytes (i.e. be a multiple of 16*sizeof(type)).

Note that if a half-warp fulfills all the requirements above, the per-thread
memory accesses are coalesced even if some threads of the half-warp do not
actually access memory.

3.3.3 Instruction throughput

Most intructions take only one clock cycle to execute, including floating-point
multiply-add instructions. There are however some instructions that take more
than one cycle. Here is a list of some of those that where mentioned in section
5.1.1.1 of The Guide(3)1:

• 4 cycles: 1/x (reciprocal)

• 4 cycles: rsqrt(x) (reciprocal square root)
1The Guide states the number of cycles one multiprocessor(8 processors) takes to execute

one instruction for one warp(32 threads) and therefore has 4 times higher values.
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• 4 cycles: __log(x) (fast version of log)

• 4 cycles: 32-bit integer multiplication. Note that you can use __mul24 or
__umul24, which gives you 24-bit integer multiplication in one cycle.

• 5 cycles: fdividef(x,y) (faster floating-point division)

• 8 cycles: sqrt(x) (is implemented as 1/rsqrt(x))

• 8 cycles: __sin(x) (fast version of sin(x))

• 8 cycles: __cos(x) (fast version of cos(x))

• 9 cycles: x/y

All the math functions that are available in C (like sin(x)) seems to be
available in CUDA. Many of these math functions has a faster version that has
the same name but with two undescores prefixed (like __sin(x)). If you specify
the compiler flag --use-fast-math then only the fast functions are used. Be
aware that the fast functions are not as accurate. For a full listing of math
functions and their respective accuracy refer to appendix B in The Guide(3).

As discussed in section 3.1.3, the arithmetic functions sin, cos, rsqrt, rcp
and lg2 are implemented on the SFU. There is one SFU per 4 SP’s, which can
explain why instructions like 1/x and rsqrt(x) are said to take 4 cycles. This
indicates that the SFU actually executes one instruction per cycle but has to
execute 4 instructions to keep up with the SP’s.

The instructions that are said to take more than 4 cycles are actually com-
piled to several instructions. Decuda shows that the sine function is divided
into two instructions called pre.sin and sin. It also shows that x/y compiles
to several instructions that multiplies x and y with 0.25 if |y| > 8.5 · 1037 before
the actual division, which is implemented with rcp and mul.

The SFU can run in parallel with the SP. This implies that the latancy of the
SFU can be hidden by scheduling other threads while the SFU is busy. The result
of this is that SFU instruction can effectively execute in one cycle if less than
1/4 of the instructions are SFU instructions.

3.3.4 Bandwidth

The Tesla Card has a peak bandwidth of 76.8GB/s but it in practice the band-
width is a bit lower. Table 1 shows the result of of a test where each thread
performs a read and/or write. The kernels use either float(32-bit), float2(64-
bit) or float4(128-bit). As you can see, the actual bandwidth varies with how
the memory is accessed.

Figure 3.3 and 3.4 shows how gridsize and blocksize affects the bandwidth.
In both cases it is clear that it is necessary to launch many blocks to get good



30 3 CUDA

float float2 float4
read and write 61.62 GB/s 61.13 GB/s 47.21 GB/s

read only 38.61 GB/s 53.64 GB/s 27.69 GB/s
write only 51.10 GB/s 51.96 GB/s 52.44 GB/s

texture read only 43.72 GB/s 51.00 GB/s 55.44 GB/s
texture read and write 58.52 GB/s 59.92 GB/s 60.49 GB/s

Table 1: Bandwidth test.
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Figure 3.3: Bandwidth test plot. Read only. Each thread reads one 32-bit float.

bandwidth. The case in figure 3.3 only read is performed and there is a clear
pattern of peaks at the blocksizes that give maximum occupancy (as discussed
earlier in 3.3.1). It also seems that the smaller blocksizes are faster. The memory
latancy is probably limiting the performance here. In figure 3.4 where both read
and write is performed it seems that occupancy isn’t that important but there
is still a slightly better performance at the optimal blocksizes and a significant
drop as the occupancy drops to 50% when the blocksize passes 384.

3.3.5 The Compiler

When compiling CUDA code nvcc separates the GPU code from the CPU code.
The CPU code is compiled by a normal C compiler. The GPU code is first trans-
lated to PTX code, which is an assembly-like device-independent language. The
PTX code is then compiled to a device-dependant binary.

By using the -keep option when invoking nvcc, all intermediate files are
kept. Among them are the PTX code (.ptx) and .cubin file which can be very
usefull. The .cubin lets you know how much shared memory and how many
registers each kernel uses.

There exists a disassembler called decuda made by a third party. It takes the
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Figure 3.4: Bandwidth test plot. Read and write. Each thread reads and writes one
32-bit float.

binary code from the .cubin file and translates it back to a PTX-like language.
Unfortunately it does not understand the whole instruction-set, but it will give
you a better idea of what the actual code is doing than by just looking at the
PTX code.
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4 Implementation

This section discusses different ways to implement beamforming on the GPU
using CUDA. Several methods have been implemented and tested. A detailed
analysis of the code and how it performs is presented. The analysis helps give
a better understanding of the G80 architecture and how to write optimized
applications for it.

4.1 How to Implementat the Fundamental Parts of a Beam-
former

Figure 4.1 shows the basic building blocks that make up a beamformer1. Each
block needs to do calculations for every sample from every channel and there-
fore has the same order of impact on the overall performance.

4.1.1 Calculate Delay

Each sample is delayed by a different amount. This delay is represented as an
floating point index into the receive buffer which is sent to the interpolator.
The calculation of the delay varies with implementation but there are two main
different approaches:

• Calculate delays on-the-fly

(computationally expensive)

• Load pre-calculated delays

(requires bandwidth)

1The arrows indicate dataflow. The gray ones are optional depending on the implementa-
tion.

interpolate sum

calculate 
delay

apodize

Figure 4.1: Fundamental building blocks of a beamformer
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Which approach to choose relies on rest of the beamformer implemetation.
To take full advantage of the GPU there needs to be a balance between band-
width use and arithmetic operations, e.g. If there is no bandwidth to spare it
makes sense to calculate delays on-the-fly.

4.1.2 Interpolate

Using the texture unit to perform linear interpolation frees the SM from the
job and will therefore always be the fastest way. But as discussed in section 2.6
linear interpolation is not always good enough.

One way to make use of the texture unit interpolator and still get good re-
sults is to upsample received signals before interpolation. One problem with
this approach is that the amount of data increases and more bandwidth is re-
quired. However, when doing MLA beamforming the same data is read several
times which makes it possible utilize the cache and reduce the bandwidth re-
quirement.

The other approach is to implement the interpolation as a fractional delay
filter. One problem with this is that the coefficients of the delay filter needs to
be calculated for each sample which is very computationally expensive. It is
therefore only possible with simple delay filters (in section 2.6 lagrange and
truncated sinc was suggested as possible candidates). It is also possible to load
precalculated coefficients, but this will require considerable bandwidth if they
are not cached.

One other problem when using fraction delay filters is coalescing memory
access. Since there is an unlinear reletionship between input address and output
address it is not easy to get both reads and writes coalesced. One solution is
to let the writes be uncoalesced since there are much less writes than reads.
Another is to use textures when reading but without using texture interpolation.

4.1.3 Apodize

Apodization is a window function which is multiplied with the data from each
channel to reduce sidelobes. The width of the window function is proportional
to the depth to keep the width of the beam constant.

It is the same situation as the delay calculation: either calculate on-the-fly or
load pre-calculated values.

One interresting aspect with the apodization is that many samples can be
ignored because they are outside the apodization window as illustrated by fig-
ure 4.2. If delay calculation and interpolation is skipped for these samples it is
possible to save up to 50% of computing time (if half of the samples are outside
the window).
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Figure 4.2: Area of input buffer which can be ignored because of apodization.

4.1.4 Sum

The way the sum is implemented depends on how the algorithm is structured
with respect to threads and blocks:

• Sum is accumulated sequentially in a loop. E.g. One thread is responsible
for one output sample for all channels.

• Sum is acquired by a block of cooperting threads. E.g. Each thread respon-
sible for one input sample, while each block is responsible for one output
sample.

• Sum is accumulated sequentially in global memory by threads from differ-
ent blocks. (This requires some kind of synchronisation mechanism that
does not exist in CUDA 1.0.)

4.2 The Implemented Kernels

Section 4.1 showed that there are many ways to implement a beamformer. Only
some of the mentioned methods have been used:

• Delay is calculated on-the-fly. Described in section 4.3

• Interpolation is performed by texture filtering(linear interpolation)

• 4x upsamplimg is implemented.

• Apodization is implemented as pre-calculated coefficients.
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• Sum is accumulated per thread.

The delay calculation, interpolation and sum is implemented in a single ker-
nel called TEXF1. Upsampling is implemented in another kernel called 4xUP.

The TEXF kernel was first implemented in the most basic form then later
altered to implement more functions, resulting in an array of different versions:

TEXF : The original.

1/4 TEXF : Altered to accomodate the output from 4xUP.

TEXF MLA : MLA support.

1/4 TEXF MLA : MLA support on the upsampled version.

TEXF APO : Added apodization.

1/4 TEXF MLA APO : Added apodization on the upsampled vesrion.

4.2.1 TEXF

The TEXF kernel calculates one sample of the output data. Texture filtering is
used when loading the input data, thus giving linear interpolation for free. The
sum is accumulated in a loop, which probably is the easiest and fastest way. The
delay calculation is discussed in section 4.3. Apodization is not implemented in
this version.

The kernel source code can be found in C.1.1. Here is a pseudo code:

TEXF_Kernel

{

sum = 0;

For each channel{

x = CalculateDelay(Idx);

y = channel;

sum += textureFetch(x,y);

}

outData[Idx] = sum;

}

The thread’s index is used to calculate the delay so that each consecutive
thread calculates the consecutive sample. This ensures that writes are coalesced
and that the texture cache is utilized efficiently2.

Figure 4.3 illustrates the area of the input texture that one block fetches
from. At the top and bottom there will be an area of the texture that is cached

1It is called TEXF since it employs TEXture Filtering
2The texture cache is optimized for 2D locallity i.e. coordinates should not be to spread.
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Figure 4.3: Data access pattern for TEXF. The darker blue areas illustrates that the
warps may progress at different rates.

but not used by this block. The cache should therefore be best utilized when
there are many threads per block1.

However, the number of threads per beam is the same as the number of
samples and must be a factor of the block size. It is therefore not always optimal
to use large blocks since the number of samples may vary.

4.2.2 4xUP

Three pre-calculated fractional delay filters are applied to the signal data. The
filters delay the signal by 0.25, 0.5 and 0.75 samples. The three delayed signals
and the original signal is then interleaved to form a new signal with four times
higher sample rate. Figure 4.4 illustrates the principle.

¾ delay

½ delay

¼ delay

...
...

...
...

Input
Buffer

Output
Buffer

Figure 4.4: 4x upsampling principle diagram.

Kernel source code can be found in C.2.1. Here is a pseudo-code version:
1The only way to guarantee that consecutive threads use the same cache(i.e. runs on the

same SM) is to put them in the same block.
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4xUP_Kernel

{

// cooperative load:

__shared__ data[Idx] = InBuffer[Idx];

// 0 delay:

out[0] = data[Idx];

// 1/4 delay:

out[1] = filter(CoEffs[0], &data[Idx-TAPS/2]);

// 1/2 delay:

out[2] = filter(CoEffs[1], &data[Idx-TAPS/2]);

// 3/4 delay:

out[4] = filter(CoEffs[2], &data[Idx-TAPS/2]);

// store

outData[Idx] = out;

}

The filtering is performed by convolution of the signal and the filter coeffi-
cients:

y[k] =
TAPS∑
n=0

c[n]x[k − n]

For every output sample it is necessary to read TAPS(length of filter) input
samples. To limit the number of times the input data needs to be fetched, the
input data is stored in shared memory. For each block it is then only necessary
to read one sample per thread in the block + as many samples as there are
coefficients in the filter. The coefficients are stored in constant space so that
they are cached.

The input data is stored in a texture(linear memory bound). The reason for
this is that the input data format is 16-bit integers. The texture unit converts
the data to normalized 32-bit floating-point. The output data is stored as 32-bit
floating point values.

4.2.3 1/4 TEXF

The TEXF kernel is altered to accommodate the data output from 4xUP. Two
alterations were made:

Firstly, the input data now has a 4 times higher sampling rate while output
data should have the same sample rate as before. To downsample the data the
index is simply multiplied by 4. The sampling frequency used to calculate the
delay also needs to be 4 times higher.

Secondly, the input data is now 32-bit floats instead of 16-bit integers. This
is fixed by changing the channel descriptor of the texture reference.
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The amount of data fetched is now 8 times higher, making the bandwidth a
limiting factor.

4.2.4 TEXF MLA

With MLA, beamforming is performed several times on the same input data,
but with a different angle each time. The TEXF MLA kernel implements this as
a loop around the TEXF kernel code. The loop iterates once for each MLA using
a different angle.

A block accesses approximately the same area of the input texture for each
MLA. When the first MLA is finished, most of the data for the next MLA would
be cached, thus redusing the required bandwidth. Or so was the idea. In perfect
hindsight it is easy to see that the 8Kb cache is to small to be of any use. E.g.
With 128 channels, 16-bit data and a block size of 256, the amount of data
accessed by the first MLA would be 128 × 256 × 2 = 64Kb, which means that
the cache would be overwritten about 8 times before the next iteration.

A possible solution to this would be to let the MLAs be executed in parallel.
To implement this one could use the second dimension of the thread-block to
index the MLA. E.g. A block with dimensions (32, 8, 1) would beamform 32
samples for 8 MLAs. Note that the x dimension should be a multiple of 16 to
maintain coalescing of the writes.

4.2.5 1/4 TEXF MLA

The MLA version of 1/4 TEXF is simply a combination of 1/4 TEXF and TEXF
MLA. One interresting point is that since 1/4 TEXF requires more bandwidth, it
is more important to be able to utilize the cache.

4.2.6 TEXF APO and 1/4 TEXF MLA APO

Apodization is implemented as a pre-calculated coefficient that is multiplied
with the delayed data before it is summed. The Apodization data is fetched
from a 16-bit texture.

4.3 Delay Calculation

The most important part of the implementation is perhaps the calculation of
the delay. All beamforming is based on the same basic idea: delay the signal for
each channel according to a focus point then sum all the channels.



4 Implementation 39

Beam direction 

Focus point

rn

z

Center
element

Current 
element

Transducer
array 

n

an

Figure 4.5: Geometry for calculating the delay.

4.3.1 Geometry of the problem

The focus point moves along the beam as the signal is being received and is
therefore dependent on time and the angle of beam. The delay is also depen-
dent of the position of the transducer array elements1. It is therefore neccessary
to recalculate the delay for every element at every sample.

The delay for element n is defined as the time difference of arrival of an echo
pulse originating from the focus point to the center element and element n.

Assuming that the speed of the pulses are constant, the delay can be calcu-
lated with simple geometry. 4.5 illustrates the geometry of the problem where:

z: The distance from the center element to the focus point.

rn: The distance from the focus point to element n.

τn: The delay.

an: The distance from the center of the center element to the center of element
n.

θ: The angle of the beam.

Furthermore we need to define:

t: The time since the pulse was transmitted (from the center element).

c0: The speed of the pulses(speed of sound).

1It is assumed that the array is a straight line. If the array were to be curved, the calculation
of the delay would be slightly different.
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Figure 4.6: The input and output buffer

The relationship between all these are:

t =
2z

c0

(7)

t + τn =
z + rn

c0

(8)

r2
n = z2 + a2

n − 2zansinθ (9)

4.3.2 The discrete version

In the implementation the signals from each channel will be sampled and stored
in a buffer. The time will then just be a discrete index in that buffer(sample
number) and the delay will be an offset from that index.

The sum can be formulated like this:

dataout(iout) =
N∑

n=0

datain(iin,n, n) (10)

Where:

dataout(sample): The buffer for resulting sums.

datain(sample, channel): The sample-buffer for all the channels as a two-dimensional
array.

N : Number of channels.
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iout is the known value (all values from 0 to number of samples in a beam)
therefore iin,n has to be defined as a function of iout. The relationships between
the indices and t are as follows:

t =
iout

fs

(11)

t + τ =
iin,n

fs

(12)

By combining equation 7, 8, 9, 11 and 12 we get:

iin,n =
iout

2
+

√
i2out

4
+

a2
nf

2
s

c2
0

− iout
anfssinθ

c0

(13)

4.6 illustrates the relationship between iin,n and iout.

4.3.3 Constants (version 1)

It is not necessary to calculate the whole expression 13 every time. Some of the
constants can be combined to make new constants like this:

C1,n =
a2

nf
2
s

c2
0

(14)

C2,n =
anfssinθ

c0

(15)

The new expression will then be:

iin,n =
iout

2
+

√
i2out

4
+ C1,n − ioutC2,n (16)

The constants can be stored in constant space which is cached and therefore
costs nothing to load after the first time.

4.3.4 Constants (version 2)

When beamforming several beams at once, each with a different θ, the constant
space easily gets full since C2,n is dependent of both channel number(n) and θ.
By seperating them, it is possible to calculate more beams at the same time,
which might increase performance. The new constants would be:

C3,n =
anfs

c0

(17)

C4 = sinθ (18)
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The new expression will be:

iin,n =
iout

2
+

√
i2out

4
+ C1,n − ioutC3,nC4 (19)

4.4 Verification of the Kernels

All the kernels have been verified by creating a MATLAB script that creates a
reference result which is compared with the results from the CUDA code.

4xUP was tested using white noise as input. Beamforming was tested using
simulated input signals. Table 2 lists the maximum deviation between the re-
sults from the MATLAB scripts and the CUDA implementation. The deviation is
normalized by dividing with highest absolute value.

deviation =
max(abs(matlabOutput − cudaOutput))

max(abs(cudaOutput))

The MATLAB scripts operate on 64-bit floats while the GPU use 32-bit floats
for calculations. And when data is transferred to the CUDA version, the data is
converted to 16-bits which causes more deviation. The texture unit also does
some approximations which contributes to the deviation. Therefore there will
always be some deviations.

The deviation results shown in the table are small, which indicates that the
CUDA code is working.

Max deviation
TEXF 3.46 × 10−4

4xUP 5.7 × 10−5

1/4 TEXF 1.04 × 10−4

TEXF MLA 6.09 × 10−4

1/4 TEXF MLA 1.07 × 10−4

TEXF APO 6.47 × 10−4

1/4 TEXF MLA APO 1.77 × 10−4

Table 2: Verification of kernel code: Maximum normalized deviation from reference.
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4.5 Code Performance Analysis

The performance of the implemented kernels is analysed to determine if it pos-
sible to utilize the GPU more efficiently.

4.5.1 TEXF

There are several parameters that affect the performance of TEXF. The param-
eters for TEXF are:

Channels Number of channels

Beams Number of beams to be calculated per kernel launch

Samples Number of samples per beam

BlockSize Number of threads per block.

Figure 4.7 shows a plot of the performance of TEXF with different values
for the Samples and Beams parameters. There is a clear pattern in the local
maximums(dark blue) which corresponds with white lines. These lines mark
where the number of blocks is a multiple of 96. The number of blocks launched
per kernel is given by Beams× Samples/BlockSize. The block size in this case
is 128, which means that the maximum number of concurrently active blocks
per SM is 6. The number of SM’s is 16, giving a total of 6 × 16 = 96 maximum
active blocks. This explains the drop in performance when the number of blocks
exceeds 96.

Example: If 97 blocks were to be launched, 96 of the blocks would fully
occupy the GPU. These blocks would run in parallel and therefore finish at
about the same time. The last block will not start until the one of the first 96
blocks is finished. This block will then eventually be the only one running, and
the next kernel launch will have to wait for it to finish.

Note that in future versions of CUDA it might be possible for several kernels
to run simultaneously, thus eliminating this problem.

Table 3 shows the performance of TEXF using different block sizes. Perfor-
mance is measured in cycles per thread per SP, i.e. the number of cycles it takes
for one processor to execute one thread. It is calculated like this:

Cycles = 128 × 1.35 × 109 × wallT ime

Samples × Beams × Repetitions

where 128 is the number of SPs and 1.35 × 109 is clock speed (1.35 GHz).
Repetitions is the number of times the kernel is launched, this is to get a better
average time1. wallT ime is the total time it takes to run all repitions.

1With 1000 repitions the results can still vary with about 0.1%
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Figure 4.7: TEXF performance. Block size = 128. (Blue is good performance, red is
poor performance.)

Samples and Beams are 1536 and 32 respectively which gives full occu-
pancy for all block sizes.

Block size: 96 128 192 256 384
Cycles: 1889.1 1591.8 1571.6 1563.5 1559.8

Table 3: Block size performance test

We can observe that performance increases as the block size increases. This
could be because of better use of texture cache for large blocks as discussed in
section 4.2.1 but it does not explain the drop in performance when block size is
96. However, it is said that there is a higher risk of register bank conflicts when
block size is not a multiple of 64(3), this could be the case here.

By increasing the number of beams and samples the per thread performance
can increase even more. Using these parameters:
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Test Parameters:
Channels: 128
Samples: 6144
Beams: 40
Block size: 384
Repetitions: 1000

we got a performance reading of 1545.7 cycles per thread. By analyzing the
disassembled kernel code we can see if there is any room for further optimiza-
tion. The disassembled code can be found in C.1.2 and contains:

• 22 instructions outside of loop

• 13 instructions inside loop

10 normal instructions (of which 1 is half)

2 SFU instructions: RSQRT and RCP (of which RCP is half)

1 texture fetch instruction

The loop iterates once per channel (channels = 128). Assuming that normal
instructions take one cycle and SFU instructions take 4 cycles we get

cycles = 22 + 10 × channels + 4 × 2 × channels = 22 + 1280 + 1024 = 2326

which is almost twice of what was measured. If we assume that the 22 instruc-
tions outside the loop are executed in 22 cycles, then the loop is executed in no
more than 1545.7 - 22 = 1523.7 cycles, which means that each iteration of the
loop is executed in no more than 1523.7/128 = 11.9 cycles. This implies that:

• More than one instruction is issued and executed per cycle. This is dis-
cussed in section 3.1.4

• The SFU execute instructions in parallel with the SPs

It is also possible that the GPU clock is a bit higher than the statet 1.35GHz
but it would have to more than 10% higher to account for the performance
measured in this test, which is highly unlikely.

Anyway, this shows that the kernel is not slowed down by bandwidth or
latency of any kind and that the delay calculation is very fast. In other words:
it is unlikely that it is possible to optimize further.

4.5.2 4xUP

C.1.2 shows the disassembly of the 4xUP code with filter length = 11. The code
consists of:
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• 34 instructions independent of filter length(of which 8 are half)

• 66 instructions dependent of filter length(6×length)

6 MUL instructions

60 MAD instructions

If one instruction is executed per clock cycle, one thread would execute in
100 cycles.

Test parameters:

Filter length: 11

Channels: 128

Samples: 32768

Block size: 256

Result:

Cycles/thread: 135

The test shows that the kernel runs on 35 more cycles than optimal. In order
to discover the reason for this several more tests have been done:

Removing synchronization: Uses 1 less cycle. Indicating that __syncthreads()
has no impact on performance.

Removing loading from global memory(15 instructions): Uses 19 less cy-
cles. Indicating that neither memory latancy nor bandwidth are limiting
factors.

Trying different block sizes(96, 128 and 384): No effect (less than 1 cycle
difference).

Trying filter length = 22: Uses 234 cycles. 1.5 added cycles per added MAD
instruction.

Trying filter length = 31: Uses 316 cycles. 1.5 added cycles per added MAD
instruction.

Trying filter length = 50: Uses 516 cycles. 1.6 added cycles per added MAD
instruction.
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It seems that each MAD instruction takes on average 1.5 cycles to execute.
Assuming that no instructions can execute in a fraction of a cycle, this means
that some of the MAD instructions are executed in one cycle and some are
delayed (e.g. every second instruction uses two cycles).

A possible source of the delay could be the loading of the operands. Each
MAD instruction reads three operands, one operand from constant cache, one
operand from shared memory and one from the registers. The program is writ-
ten so that there are no shared memory bank conflicts and the constants are
all read from the same address by all threads in the warp at the same time and
therefore should not cause any delays. The only hypothesis left is register bank
conflicts, which The Guide states that there are no direct way of controlling.

It should be possible to execute a MAD each cycle, which means that it might
be possible increase the performance by about 20%.

4.5.3 1/4 TEXF

Tunning the 1/4 TEXF kernel and the TEXF kernel with the same parameters
resulted in:

TEXF : 1544.3 cycles per thread

1/4 TEXF : 11805.1 cycles per thread

Which means that 1/4 TEXF takes 7.6 times longer to complete. This can be
explained by the fact that 1/4 TEXF has 4 times more input samples which are
32-bit instead of 16 i.e. 8 times more data to read.

But if we assume that the data is read only once, the bandwidth used would
be 27.97 GB/s which is less than half of what should be possible.

The kernel code for 1/4 TEXF is identical to TEXF in the loop. This means
that the texture fetch is the only possible reason for the degraded performance.

4.5.4 1/4 TEXF MLA

MLA is implemented by placing an outer loop around the 1/4 TEXF code. When
running 1/4 TEXF MLA with just 1 MLA it should do exactly the same as 1/4
TEXF. You would expect that it would run in about the same time, probably a
little bit slower, but:

1/4 TEXF : 11805.1 cycles per thread

1/4 TEXF MLA : 6455.6 cycles per thread

It finishes in 55% of the time that 1/4 TEXF does!
The main difference is in how the constants are implemented. 1/4 TEXF MLA

uses the constants as discussed in 4.3.4. The new constants are implemented
as:
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__constant__ float C1_gpu[NO_CHANNELS];

__constant__ float C3_gpu[NO_CHANNELS];

__constant__ float C4_gpu[BEAMS][NO_MLA];

which with 128 channels, 40 beams and only 1 MLA takes only:

4 × (128 × 2 + 40 × 1) = 1184bytes

which easily fits in the 8Kb cache.
The old version was implemented like this:

__constant__ float C_gpu[BEAMS][2][NO_CHANNELS];

which gives
4 × (40 × 2 × 128) = 40960bytes

which does not fit in the cache. But it does not really explain the huge difference
in performance.

4.5.5 TEXF MLA

TEXF MLA uses the same constants as 1/4 TEXF MLA which caused significant
improvement in performance. Let’s see how this affects TEXF:

TEXF (Blocksize=384) : 1545.7 cycles per thread

TEXF MLA(MLA=1, Blocksize=384) : 1533.7 cycles per thread

TEXF MLA(MLA=1, Blocksize=128) : 1503.6 cycles per thread

TEXF MLA is slightly faster than TEXF. It also seems that TEXF MLA runs
better with smaller blocks, which indicates that it is not limited by bandwidth.
Since the reasen for using large blocks in TEXF was to reduce required band-
width it must mean that TEXF was bandwidth limited.

By looking at the disassembly (C.4.1) we see that compared to TEXF there
are

• 28 intructions outside loop

6 more than TEXF

• 14 instructions in loop

one MOV has been changed to MUL

an additional ADD
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Blocksize: 384 128 96
Max active blocks: 1 5 7

Max active threads: 384 640 672
Cycles per thread: 4048.1 2974.5 3398.6

Cycles per MLA: 2024 1487 1699

Table 4: TEXF MLA performance with different blocksizes

There is one more instruction in the loop, yet each iteration of the loop runs
in only 11.5 cycles:

1503.6 − 28

128
= 11.5

Note that the compiler has removed the outer loop since MLA is 1. When
MLA is more than 1, the code is altered. One alteration is that two more regis-
ters are used:

MLA = 1 : Registers used = 10

MLA > 1 : Registers used = 12

With 12 registers per thread it is only possible to have 8192/12 = 682 active
threads, which makes a blocksize of 384 a poor choice as shown in table 4. Note
that even though there are more active threads with a blocksize of 96 there is
better performance with a blocksize of 128. This could be because of register
bank conflicts.

4.5.6 1/4 TEXF MLA APO

When adding apodization the number of required registers increased to 16.
This means that only 512 threads can be active per SM. The optimal blocksize
was found to be 64.

Apodization also increases the required bandwidth.

4.6 Performance Summary

Table 5 shows the performance of the kernels measured in number of samples
processed per second. This means that to achieve real-time performance this
number must be greater than the number of channels×sampling rate of the
transducer.

Example: With 128 channels and 40MHz sampling rate, 1/4 TEXF MLA APO
(16 MLA) would run in:

0.20 × 109

128 × 40 × 106
= 0.04 x realtime
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Performance (per MLA)
TEXF 14.32 × 109 -

4xUP (TAPS=7) 3.43 × 109 -
4xUP (TAPS=11) 2.55 × 109 -
4xUP (TAPS=15) 2.02 × 109 -

1/4 TEXF 1.87 × 109 -
TEXF MLA (1 MLA) 14.71 × 109 14.71 × 109

TEXF MLA (4 MLA) 2.83 × 109 11.32 × 109

TEXF MLA (16 MLA) 0.73 × 109 11.67 × 109

1/4 TEXF MLA (1 MLA) 3.43 × 109 3.43 × 109

1/4 TEXF MLA (4 MLA) 0.95 × 109 3.81 × 109

1/4 TEXF MLA (16 MLA) 0.24 × 109 3.92 × 109

TEXF APO 8.32 × 109 -
1/4 TEXF MLA APO (1 MLA) 2.96 × 109 2.96 × 109

1/4 TEXF MLA APO (4 MLA) 0.77 × 109 3.10 × 109

1/4 TEXF MLA APO (16 MLA) 0.20 × 109 3.15 × 109

Table 5: Performance of kernels. (samples/sec)

Which means that you would need 25 GPUs in order to run in real time. But it
is also necessary to run 4xUP (here with 11 taps):

2.55 × 109 × 109

128 × 40 × 106
= 0.50 x realtime

Which would require two additional GPUs in order to run in real time.

4.7 Possible Optimizations

• Utilize cache better when upsampling and MLA is used. This was dis-
cussed in 4.2.4. This could reduce the required bandwidth by a factor of
number of MLA. Possible improvement: about 300% added performance.

• Convert 4xUP output to 16-bit. Possible improvement: up to 100% added
performance.

• Find out how to make 4xUP perform 1 MAD operation per cycle as dis-
cussed in 4.5.2. Possible improvement: about 20% added performance on
4xUP.

If the cache where utilized better when using upsampling and MLA it is possi-
ble that when there are enough MLAs it will no longer be limited by bandwidth
but by instruction throughput. This means that 1/4 TEXF MLA could run as fast
TEXF MLA, which is about 3 times faster.
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5 Conclusion

Even though beamforming is easily adapted for computation on a GPU, we have
showed that there are many ways to accomplish this and that finding an optimal
solution requires good knowledge of the architecture and much tweaking.

A fully functional beamforming algorithm has been implemented that per-
forms:

• Delay and sum on an arbitrary number of channels, where the delay is
calculated from a given angle and transducer element positions1.

• Linear interpolation for fractional delays.

• Apodization using pre-calculated coefficients.

But it has been shown that the implementation is not optimal so there is still
some work to do. Section 4.7 gives some suggestions as to where to start.

Linear interpolation gives poor results at low sampling rates. An upsampling
filter has therefore been implemented to counter this. The upsampling filter
uses three 11-tap pre-calculated FIR fraction delay filters to produce a four
times higher sample rate.

To compare the performance of the implementations we use an example
case:

• 128 channels

• 40 MHz sampling frequency

• 5120 samples per beam i.e. depth ≈ 10cm.

If we perform beamforming on all the incoming data, i.e no pause between
pulses, we can measure the speed as:

Speed =
computed data rate
incoming data rate

If the speed is more than 1 then the GPU can perform the beamforming in real-
time. If the speed is less than one it is necessary to use several GPUs to achieve
real-time performance.

Table 6 shows the speed and GPUs needed to perform real-time beamforming
using the implemented algorithms.

Note that:

1Array elements must be positioned in a straight line
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Implemented Optimized
Speed GPUs needed Speed GPUs needed

No upsampling: 1.62 1 1.62 1
Upsampled: 0.27 4 0.41 3

Upsampled and 2xMLA: 0.18 6 0.32 4
Upsampled and 4xMLA: 0.12 9 0.24 5
Upsampled and 8xMLA: 0.07 16 0.15 7

Upsampled and 16xMLA: 0.04 28 0.09 12

Table 6: Number of GPUs needed to perform beamforming in real-time.

• The optimized performance is hypothetical since it has not been imple-
mented yet1.

• The time it takes to get the data in and out of the GPU card is not ac-
counted for.

• The current version of CUDA does not support writing to textures from
the kernel. It is therefore necessary to copy the data output from the up-
sampler into the texture used by the beamforming kernel. This introduces
an extra delay which is not included in the speed calculation.

From the table it seems that you would need a lot of GPUs to manage MLA
beamforming. But keep in mind that if the current rate of development of GPU
performance continues, it is not unlikely that we will see GPUs with 4 times the
performance within the next couple of years.

1It is assumed that if the optimization suggested in section 4.7 are implemented, that when
4 or more MLA is used, the performance is as good as without upsampling divided by number
of MLA.
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APPENDIX

A Tesla C870 physical requirements

A.1 Size matters

The Tesla C870 card is full length and dual slot, in other words, huge. Therefore
it does not fit into any PC case, mostly because of the length. Many modern
cases have harddrive bays in the front and leaves too little room for a full length
card.

4.736 inches 

12.283 inches 

Figure A.1: Dimensions of the C870 board.

A.2 Cooling

The card produces a lot of heat and for that reason has a large cooling fan that
sucks in air which is expelled at the back of the PC.

An old PC case was used in the first attempt to install the card. It was the
only easily available case which had room for the full length card. Unfortunately
it was not designed for air circulation and had no built in fans or ventilation
holes. To allow air to get into the case it had to be left open.

But, even with the cover off, the card still did not get enough air circula-
tion! When running heavy simulations1 the temperature2 would rise and the
simulation would eventually hang at about 75 ◦C.

A new case was acquired that had better air circulation. It is a good idea to
have more case fans blowing in than sucking out. This creates a higher pressure
on the inside which forces the more air to exit through the fan on the Tesla GPU.

1The N-Body application from the CUDA SDK
2As reported by the NVIDIA Monitor application
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B Overview of Attached Files

There was no time to clean up the files so it really is a mess, but this overview
should help you find the important files.

Note that the beamforming kernels exists in two versions: one that runs from
matlab and one that runs as a normal executable.

/CUDA beamforming/ Contains all CUDA files and related MATLAB scripts

/CUDA beamforming/CUDA beamforming project.sln Visual Studio Solution
that contains all the non MATLAB beamforming kernels

/CUDA beamforming/MATLAB Contains all the MATLAB beamforming ker-
nels and other related MATLAB scripts

[TEXF.cu] TEXF kernel

[TEXF_MLA.cu] TEXF MLA kernel

[TEXF_APO.cu] TEXF APO kernel

[quarterTEXF.cu] 1/4 TEXF kernel

[quarterTEXF_MLA.cu] 1/4 TEXF MLA kernel

[quarterTEXF_MLA_APO.cu] 1/4 TEXF MLA APOkernel

[Verify???.m] Scripts to verify the kernels

/CUDA beamforming/MATLAB/README.TXT Instructions on how to com-
pile CUDA MEX(MATLAB executable) files.

/CUDA beamforming/MATLAB/Generate data/ Scripts to generate simulated
received ultrasound data.

[TestSweep] Generates data. Performs beamforming and displays re-
sulting image.

/CUDA beamforming/MATLAB/ReceiveBeamAmp/ Script that uses the beam-
forming kernels to generate the receive beam shape.

/MATLAB/ Contains some matlab scripts used for illustrations

/MATLAB/interpolator test/ Scripts to generate delay filters and the filter com-
parison script refered to in section 2.6.4

/MATLAB/illustrations/ Some illustrations.. example beam_amplitude_plot.m
plots the transmit beam shape.
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C Source Code Snippets

C.1 TEXF

C.1.1 Kernel Source

Listing 2: TEXF Kernel Source
1
2
3 texture<f l o a t , 2 , cudaReadModeNormalizedFloat> tex ;
4
5 __constant__ f l o a t C_gpu[MAX_BEAMS][2][MAX_CHANNELS] ;
6
7 __g loba l__ void delay_and_sum_kernel ( f l o a t ∗out_data , i n t channels , i n t samples )
8 {
9 i n t idx = blockIdx . x∗BLOCK_SIZE+threadIdx . x ;

10 i f ( idx < samples ) {
11 f l o a t i = idx ;
12 f l o a t out = 0.0 f ;
13 i n t beam = blockIdx . y ;
14 f l o a t y = 0.5 f + channels∗beam ;
15 f l o a t y_max = channels∗(beam+1) ;
16 i n t n = 0;
17 do{
18 out += tex2D ( tex , 0.5 f + i /2 + s q r t ( i∗ i /4 + C_gpu[beam][0][ n] − i∗C_gpu[beam][1][ n]) , y ) ;
19 y += 1.0 f ;
20 n += 1;
21 } while ( y < y_max ) ;
22 idx += beam∗samples ;
23 out_data [ idx ] = out ;
24 }
25 }

C.1.2 Disassembly

Listing 3: TEXF Disassembly
1 000000: 41002c05 00000013 mul24 . lo . u32 . u16 . u16 $r1 , s [0x000c ] , 0x0100
2 000008: a0000001 04000780 cv t . u32 . u16 $r0 , $r0 . lo
3 000010: 20000011 04004780 add . u32 $r4 , $r0 , $r1
4 000018: 000a4e05 c0200780 movsh . b32 $ofs1 , s [0x001c ] , 0x0000000a ( shared memory operand type mismatch )
5 000020: 10004e01 0023c780 mov . b16 $r0 . lo , s [0x000e ]
6 000028: 10008009 00000003 mov . b32 $r2 , 0x00000000
7 000030: 40008101 0000000b mul24 . lo . s32 . s16 . s16 $r64 , $r0 . lo , 0x0080
8 000038: 1000801d 03f00003 mov . b32 $r7 , 0x3f000000
9 000040: a0000005 44014780 cv t . rn . f32 . s32 $r1 , $r0

10 000048: 20008001 0000000b add . b32 $r0 , $r0 , 0x00000080
11 000050: b000020d 03f00003 add . rn . f32 $r3 , $r1 , 0x3f000000
12 000058: a0000819 44014780 cv t . rn . f32 . s32 $r6 , $r4
13 000060: a0000015 44014780 cv t . rn . f32 . s32 $r5 , $r0
14 000068: c0060c01 00000780 mul . rn . f32 $r0 , $r6 , $r6
15 000070: e0000c1d 03f00003 mad . rn . f32 $r7 , $r6 , 0x3f000000 (No operand 4 in t h i s i n s t r u c t i o n )
16 000078: c0000021 03e80003 mul . rn . f32 $r8 , $r0 , 0x3e800000
17 000080: b5001001 00000780 labe l0 : add . rn . f32 $r0 , $r8 , c0 [ $ofs1+0x0000]
18 000088: 14010005 2400c780 mov . b32 $r1 , c0 [ $ofs1+0x0200]
19 000090: e0010c01 04000780 mad . rn . f32 $r0 , −$r6 , $r1 , $r0
20 000098: 90000001 40000780 r s q r t . f32 $r0 , $r0
21 0000a0 : 90000000 rcp . h a l f . f32 $r0 , $r0
22 0000a4 : 10008604 mov . h a l f . b32 $r1 , $r3
23 0000a8 : b0000e01 00000780 add . rn . f32 $r0 , $r7 , $r0
24 0000b0 : f2400001 00000784 tex .2d . b32 . f32 {$r0 , _ , _ , _ } , $tex0 , {$r0 , $r1}
25 0000b8 : b000060d 03f80003 add . rn . f32 $r3 , $r3 , 0x3f800000
26 0000c0 : b0030bfd 600107c8 s e t . gt . u16 . f32 . f32 $p0|$o127 , $r5 , $r3
27 0000c8 : b0000009 00008780 add . rn . f32 $r2 , $r0 , $r2
28 0000d0 : d4000805 20000780 add . b32 $ofs1 , $ofs1 , 0x00000004
29 0000d8 : 10010003 00000280 @$p0. ne bra . l a b e l l abe l0
30 0000e0 : 10004e01 0023c780 mov . b16 $r0 . lo , s [0x000e ]
31 0000e8 : 40008101 00000083 mul24 . lo . s32 . s16 . s16 $r64 , $r0 . lo , 0x0800
32 0000 f0 : 20000801 04000780 add . u32 $r0 , $r4 , $r0
33 0000 f8 : 30020001 c4100780 sh l . u32 $r0 , $r0 , 0x00000002
34 000100: 2000c801 04200780 add . u32 $r0 , s [0x0010 ] , $r0
35 000108: d00e0009 a0c00781 mov . end . u32 g[ $r0 ] , $r2
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C.2 4xUP

C.2.1 Kernel Source

Listing 4: 4xUP Kernel Source
1 __constant__ f l o a t c _ c o e f f s [3][TAPS ] ;
2
3 tex ture<f loa t2 , 1 , cudaReadModeNormalizedFloat> tex_shor t2 ;
4
5 __g loba l__ void upsample4x_kernel ( f l o a t 4 ∗out_data , shor t channel_p i tch_ in , shor t channel_p i tch_out )
6 {
7 extern __shared__ f l o a t shared [ ] ;
8
9 const unsigned i n t t i = threadIdx . x ;

10 const unsigned i n t i _ou t = blockIdx . y∗channel_p i tch_out + blockIdx . x∗BLOCK_SIZE∗2 + t i ;
11 const unsigned i n t i _ i n = blockIdx . y∗channe l_p i t ch_ in + blockIdx . x∗BLOCK_SIZE + t i ;
12 f l o a t 4 out ;
13
14 // load data in to shared memory
15 f l o a t 2 in = tex1Dfetch ( tex_short2 , i _ i n ) ;
16 shared [ t i ∗2] = in . x ;
17 shared [ t i ∗2+1] = in . y ;
18
19 i f ( t i < TAPS−1){
20 in = tex1Dfetch ( tex_short2 , BLOCK_SIZE + i _ i n ) ;
21 shared [BLOCK_SIZE∗2 + t i ∗2] = in . x ;
22 shared [BLOCK_SIZE∗2 + t i ∗2+1] = in . y ;
23 }
24
25 __syncthreads () ;
26
27
28 out . x = shared [ t i + TAPS/2] ; // D = 0
29 out . y = 0.0 f ; out . z = 0.0 f ; out .w = 0.0 f ;
30 #pragma u n r o l l
31 f o r ( i n t n = 0; n<TAPS ; n++)
32 out . y += c _ c o e f f s [0][n]∗ shared [ t i+TAPS−1−n ] ; // D = −0.25
33 #pragma u n r o l l
34 f o r ( i n t n = 0; n<TAPS ; n++)
35 out . z += c _ c o e f f s [1][n]∗ shared [ t i+TAPS−1−n ] ; // D = −0.5
36 #pragma u n r o l l
37 f o r ( i n t n = 0; n<TAPS ; n++)
38 out .w += c _ c o e f f s [2][n]∗ shared [ t i+TAPS−1−n ] ; // D = −0.75
39 out_data [ i _ou t ] = out ;
40
41 out . x = shared [BLOCK_SIZE + t i + TAPS/2] ; // D = 0
42 out . y = 0.0 f ; out . z = 0.0 f ; out .w = 0.0 f ;
43 #pragma u n r o l l
44 f o r ( i n t n = 0; n<TAPS ; n++)
45 out . y += c _ c o e f f s [0][n]∗ shared [BLOCK_SIZE + t i+TAPS−1−n ] ; // D = −0.25
46 #pragma u n r o l l
47 f o r ( i n t n = 0; n<TAPS ; n++)
48 out . z += c _ c o e f f s [1][n]∗ shared [BLOCK_SIZE + t i+TAPS−1−n ] ; // D = −0.5
49 #pragma u n r o l l
50 f o r ( i n t n = 0; n<TAPS ; n++)
51 out .w += c _ c o e f f s [2][n]∗ shared [BLOCK_SIZE + t i+TAPS−1−n ] ; // D = −0.75
52
53 out_data [BLOCK_SIZE + i_out ] = out ;
54 }

C.2.2 Disassembly

Listing 5: 4xUP Disassembly
1 000000: 11005408 mov . h a l f . b16 $r1 . lo , s [0x0014]
2 000004: 11002e04 mov . h a l f . b16 $r0 . hi , s [0x000e ]
3 000008: 41002c09 00000013 mul24 . lo . u32 . u16 . u16 $r2 , s [0x000c ] , 0x0100
4 000010: 40010405 00000780 mul24 . lo . u32 . u16 . u16 $r1 , $r1 . lo , $r0 . h i
5 000018: 20000205 04008780 add . u32 $r1 , $r1 , $r2
6 000020: a0000009 04000780 cv t . u32 . u16 $r2 , $r0 . lo
7 000028: 2001840c add . h a l f . b32 $r3 , $r2 , $r1
8 00002c : 10008600 mov . h a l f . b32 $r0 , $r3
9 000030: 00030405 c0000780 movsh . b32 $ofs1 , $r2 , 0x00000003

10 000038: f7000001 00000784 tex .1d . s32 {$r0 , $r1 , _ , _ } , $tex0 , {$r0}
11 000040: 04001001 e4200780 mov . b32 s [ $ofs1+0x0020 ] , $r0
12 000048: 04001201 e4204780 mov . b32 s [ $ofs1+0x0024 ] , $r1
13 000050: 308005 fd 644107c8 s e t . g t . u32 $p0|$o127 , $r2 , c1 [0x0000]
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14 000058: 21000601 04404500 @$p0. equ add . u32 $r0 , $r3 , c1 [0x0004]
15 000060: 00030405 c0000500 @$p0. equ movsh . b32 $ofs1 , $r2 , 0x00000003
16 000068: f7000001 00000504 @$p0. equ tex .1d . s32 {$r0 , $r1 , _ , _ } , $tex0 , {$r0}
17 000070: 04041001 e4200500 @$p0. equ mov . b32 s [ $ofs1+0x0820 ] , $r0
18 000078: 04041201 e4204500 @$p0. equ mov . b32 s [ $ofs1+0x0824 ] , $r1
19 000080: 861 f fe03 00000000 bar . sync . u32 0x00000000
20 000088: 11005600 mov . h a l f . b16 $r0 . lo , s [0x0016]
21 00008c : 11002e04 mov . h a l f . b16 $r0 . hi , s [0x000e ]
22 000090: 41002c05 00000023 mul24 . lo . u32 . u16 . u16 $r1 , s [0x000c ] , 0x0200
23 000098: 40010000 mul24 . h a l f . l o . u32 . u16 . u16 $r0 , $r0 . lo , $r0 . h i
24 00009c : 20018000 add . h a l f . b32 $r0 , $r0 , $r1
25 0000a0 : 00020405 c0000780 movsh . b32 $ofs1 , $r2 , 0x00000002
26 0000a8 : 20000011 04008780 add . u32 $r4 , $r0 , $r2
27 0000b0 : c480e405 00200780 mul . rn . f32 $r1 , s [ $ofs1+0x0048 ] , c0 [ $ofs1+0x0000]
28 0000b8 : c48be409 00200780 mul . rn . f32 $r2 , s [ $ofs1+0x0048 ] , c0 [ $ofs1+0x002c ]
29 0000c0 : c496e40d 00200780 mul . rn . f32 $r3 , s [ $ofs1+0x0048 ] , c0 [ $ofs1+0x0058]
30 0000c8 : 1400da01 0423c780 mov . b32 $r0 , s [ $ofs1+0x0034]
31 0000d0 : e481e205 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0044 ] , c0 [ $ofs1+0x0004 ] , $r1
32 0000d8 : e48ce209 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0044 ] , c0 [ $ofs1+0x0030 ] , $r2
33 0000e0 : e497e20d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0044 ] , c0 [ $ofs1+0x005c ] , $r3
34 0000e8 : e482e005 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0040 ] , c0 [ $ofs1+0x0008 ] , $r1
35 0000 f0 : e48de009 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0040 ] , c0 [ $ofs1+0x0034 ] , $r2
36 0000 f8 : e498e00d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0040 ] , c0 [ $ofs1+0x0060 ] , $r3
37 000100: 30040811 c4100780 sh l . u32 $r4 , $r4 , 0x00000004
38 000108: e483de05 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x003c ] , c0 [ $ofs1+0x000c ] , $r1
39 000110: e48ede09 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x003c ] , c0 [ $ofs1+0x0038 ] , $r2
40 000118: e499de0d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x003c ] , c0 [ $ofs1+0x0064 ] , $r3
41 000120: 2000c811 04210780 add . u32 $r4 , s [0x0010 ] , $r4
42 000128: e484dc05 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0038 ] , c0 [ $ofs1+0x0010 ] , $r1
43 000130: e48fdc09 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0038 ] , c0 [ $ofs1+0x003c ] , $r2
44 000138: e49adc0d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0038 ] , c0 [ $ofs1+0x0068 ] , $r3
45 000140: e485da05 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0034 ] , c0 [ $ofs1+0x0014 ] , $r1
46 000148: e490da09 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0034 ] , c0 [ $ofs1+0x0040 ] , $r2
47 000150: e49bda0d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0034 ] , c0 [ $ofs1+0x006c ] , $r3
48 000158: e486d805 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0030 ] , c0 [ $ofs1+0x0018 ] , $r1
49 000160: e491d809 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0030 ] , c0 [ $ofs1+0x0044 ] , $r2
50 000168: e49cd80d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0030 ] , c0 [ $ofs1+0x0070 ] , $r3
51 000170: e487d605 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x002c ] , c0 [ $ofs1+0x001c ] , $r1
52 000178: e492d609 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x002c ] , c0 [ $ofs1+0x0048 ] , $r2
53 000180: e49dd60d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x002c ] , c0 [ $ofs1+0x0074 ] , $r3
54 000188: e488d405 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0028 ] , c0 [ $ofs1+0x0020 ] , $r1
55 000190: e493d409 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0028 ] , c0 [ $ofs1+0x004c ] , $r2
56 000198: e49ed40d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0028 ] , c0 [ $ofs1+0x0078 ] , $r3
57 0001a0 : e489d205 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0024 ] , c0 [ $ofs1+0x0024 ] , $r1
58 0001a8 : e494d209 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0024 ] , c0 [ $ofs1+0x0050 ] , $r2
59 0001b0 : e49fd20d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0024 ] , c0 [ $ofs1+0x007c ] , $r3
60 0001b8 : e48ad005 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0020 ] , c0 [ $ofs1+0x0028 ] , $r1
61 0001c0 : e495d009 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0020 ] , c0 [ $ofs1+0x0054 ] , $r2
62 0001c8 : e4a0d00d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0020 ] , c0 [ $ofs1+0x0080 ] , $r3
63 0001d0 : d4084005 20000780 add . b32 $ofs1 , $ofs1 , 0x00000420
64 0001d8 : d00e0801 a0a00780 mov . b128 g[ $r4 ] , $r0
65 0001e0 : c480d405 00200780 mul . rn . f32 $r1 , s [ $ofs1+0x0028 ] , c0 [ $ofs1+0x0000]
66 0001e8 : c48bd409 00200780 mul . rn . f32 $r2 , s [ $ofs1+0x0028 ] , c0 [ $ofs1+0x002c ]
67 0001 f0 : c496d40d 00200780 mul . rn . f32 $r3 , s [ $ofs1+0x0028 ] , c0 [ $ofs1+0x0058]
68 0001 f8 : 1400ca01 0423c780 mov . b32 $r0 , s [ $ofs1+0x0014]
69 000200: e481d205 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0024 ] , c0 [ $ofs1+0x0004 ] , $r1
70 000208: e48cd209 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0024 ] , c0 [ $ofs1+0x0030 ] , $r2
71 000210: e497d20d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0024 ] , c0 [ $ofs1+0x005c ] , $r3
72 000218: e482d005 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0020 ] , c0 [ $ofs1+0x0008 ] , $r1
73 000220: e48dd009 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0020 ] , c0 [ $ofs1+0x0034 ] , $r2
74 000228: e498d00d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0020 ] , c0 [ $ofs1+0x0060 ] , $r3
75 000230: e483ce05 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x001c ] , c0 [ $ofs1+0x000c ] , $r1
76 000238: e48ece09 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x001c ] , c0 [ $ofs1+0x0038 ] , $r2
77 000240: e499ce0d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x001c ] , c0 [ $ofs1+0x0064 ] , $r3
78 000248: 20008811 00000103 add . b32 $r4 , $r4 , 0x00001000
79 000250: e484cc05 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0018 ] , c0 [ $ofs1+0x0010 ] , $r1
80 000258: e48fcc09 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0018 ] , c0 [ $ofs1+0x003c ] , $r2
81 000260: e49acc0d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0018 ] , c0 [ $ofs1+0x0068 ] , $r3
82 000268: e485ca05 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0014 ] , c0 [ $ofs1+0x0014 ] , $r1
83 000270: e490ca09 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0014 ] , c0 [ $ofs1+0x0040 ] , $r2
84 000278: e49bca0d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0014 ] , c0 [ $ofs1+0x006c ] , $r3
85 000280: e486c805 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0010 ] , c0 [ $ofs1+0x0018 ] , $r1
86 000288: e491c809 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0010 ] , c0 [ $ofs1+0x0044 ] , $r2
87 000290: e49cc80d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0010 ] , c0 [ $ofs1+0x0070 ] , $r3
88 000298: e487c605 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x000c ] , c0 [ $ofs1+0x001c ] , $r1
89 0002a0 : e492c609 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x000c ] , c0 [ $ofs1+0x0048 ] , $r2
90 0002a8 : e49dc60d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x000c ] , c0 [ $ofs1+0x0074 ] , $r3
91 0002b0 : e488c405 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0008 ] , c0 [ $ofs1+0x0020 ] , $r1
92 0002b8 : e493c409 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0008 ] , c0 [ $ofs1+0x004c ] , $r2
93 0002c0 : e49ec40d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0008 ] , c0 [ $ofs1+0x0078 ] , $r3
94 0002c8 : e489c205 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0004 ] , c0 [ $ofs1+0x0024 ] , $r1
95 0002d0 : e494c209 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0004 ] , c0 [ $ofs1+0x0050 ] , $r2
96 0002d8 : e49fc20d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0004 ] , c0 [ $ofs1+0x007c ] , $r3
97 0002e0 : e48ac005 00204780 mad . rn . f32 $r1 , s [ $ofs1+0x0000 ] , c0 [ $ofs1+0x0028 ] , $r1
98 0002e8 : e495c009 00208780 mad . rn . f32 $r2 , s [ $ofs1+0x0000 ] , c0 [ $ofs1+0x0054 ] , $r2
99 0002 f0 : e4a0c00d 0020c780 mad . rn . f32 $r3 , s [ $ofs1+0x0000 ] , c0 [ $ofs1+0x0080 ] , $r3

100 0002 f8 : d00e0801 a0a00781 mov . end . b128 g[ $r4 ] , $r0
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C.3 1/4 TEXF MLA

C.3.1 Kernel Source

Listing 6: 1/4 TEXF MLA Kernel Source
1 #def ine DOWNSAMPLE 4
2
3 texture<f l o a t , 2 , cudaReadModeElementType> tex ;
4
5 __constant__ f l o a t C1_gpu[NO_CHANNELS] ;
6 __constant__ f l o a t C3_gpu[NO_CHANNELS] ;
7 __constant__ f l o a t C4_gpu[BEAMS][NO_MLA] ;
8
9 __g loba l__ void delay_and_sum_kernel ( f l o a t ∗out_data )

10 {
11 i n t idx = blockIdx . x∗BLOCK_SIZE+threadIdx . x ;
12 f l o a t i = DOWNSAMPLE∗ idx ;
13 i n t beam = blockIdx . y ;
14 idx += beam∗NO_MLA∗SAMPLES;
15 f o r ( i n t mla = 0; mla < NO_MLA; mla++)
16 {
17 f l o a t out = 0.0 f ;
18 f l o a t y = 0.5 f + NO_CHANNELS∗beam ;
19 f l o a t y_max = NO_CHANNELS∗(beam+1) ;
20 i n t n = 0;
21 do{
22 out += tex2D ( tex , 0.5 f + i /2 + s q r t ( i∗ i /4 + C1_gpu[n] − i∗C3_gpu[n]∗C4_gpu[beam][ mla ]) , y ) ;
23 y += 1.0 f ;
24 n += 1;
25 } while ( y < y_max ) ;
26 out_data [ idx ] = out ;
27 idx += SAMPLES;
28 }
29 }

C.4 TEXF MLA

C.4.1 Disassembly

Listing 7: TEXF MLA Disassembly
1 000000: 41002c09 0000000b mul24 . lo . u32 . u16 . u16 $r2 , s [0x000c ] , 0x0080
2 000008: a0000005 04000780 cv t . u32 . u16 $r1 , $r0 . lo
3 000010: 10008001 00000003 mov . b32 $r0 , 0x00000000
4 000018: 20000211 04008780 add . u32 $r4 , $r1 , $r2
5 000020: 00000005 c0000780 movsh . b32 $ofs1 , $r0 , 0x00000000
6 000028: 10008001 00000023 mov . b32 $r0 , 0x00000200
7 000030: a0004e05 04200780 cv t . u32 . u16 $r1 , s [0x000e ]
8 000038: 00000009 c0000780 movsh . b32 $ofs2 , $r0 , 0x00000000
9 000040: 0002020d c0000780 movsh . b32 $ofs3 , $r1 , 0x00000002

10 000048: 10008009 00000003 mov . b32 $r2 , 0x00000000
11 000050: 10004e01 0023c780 mov . b16 $r0 . lo , s [0x000e ]
12 000058: 10008021 03f00003 mov . b32 $r8 , 0x3f000000
13 000060: 40008101 0000000b mul24 . lo . s32 . s16 . s16 $r64 , $r0 . lo , 0x0080
14 000068: 1c02001d 2400c780 mov . b32 $r7 , c0 [ $ofs3+0x0400]
15 000070: a0000005 44014780 cv t . rn . f32 . s32 $r1 , $r0
16 000078: 20008001 0000000b add . b32 $r0 , $r0 , 0x00000080
17 000080: b000020d 03f00003 add . rn . f32 $r3 , $r1 , 0x3f000000
18 000088: a0000819 44014780 cv t . rn . f32 . s32 $r6 , $r4
19 000090: a0000015 44014780 cv t . rn . f32 . s32 $r5 , $r0
20 000098: c0060c01 00000780 mul . rn . f32 $r0 , $r6 , $r6
21 0000a0 : e0000c21 03f00003 mad . rn . f32 $r8 , $r6 , 0x3f000000 (No operand 4 in t h i s i n s t r u c t i o n )
22 0000a8 : c0000025 03e80003 mul . rn . f32 $r9 , $r0 , 0x3e800000
23 0000b0 : b4801200 labe l0 : add . h a l f . rn . f32 $r0 , $r9 , c0 [ $ofs1+0x0000]
24 0000b4 : c8800c04 mul . h a l f . rn . f32 $r1 , $r6 , c0 [ $ofs2+0x0000]
25 0000b8 : e0010e01 04000780 mad . rn . f32 $r0 , −$r7 , $r1 , $r0
26 0000c0 : 90000001 40000780 r s q r t . f32 $r0 , $r0
27 0000c8 : 90000000 rcp . h a l f . f32 $r0 , $r0
28 0000cc : 10008604 mov . h a l f . b32 $r1 , $r3
29 0000d0 : b0001001 00000780 add . rn . f32 $r0 , $r8 , $r0
30 0000d8 : f2400001 00000784 tex .2d . b32 . f32 {$r0 , _ , _ , _ } , $tex0 , {$r0 , $r1}
31 0000e0 : b000060d 03f80003 add . rn . f32 $r3 , $r3 , 0x3f800000
32 0000e8 : b0000009 00008780 add . rn . f32 $r2 , $r0 , $r2
33 0000 f0 : b0030bfd 600107c8 s e t . g t . u16 . f32 . f32 $p0|$o127 , $r5 , $r3
34 0000 f8 : d8000809 20000780 add . b32 $ofs2 , $ofs2 , 0x00000004
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35 000100: d4000805 20000780 add . b32 $ofs1 , $ofs1 , 0x00000004
36 000108: 10016003 00000280 @$p0. ne bra . l a b e l l abe l0
37 000110: 10004e01 0023c780 mov . b16 $r0 . lo , s [0x000e ]
38 000118: 40008101 00000183 mul24 . lo . s32 . s16 . s16 $r64 , $r0 . lo , 0x1800
39 000120: 20000801 04000780 add . u32 $r0 , $r4 , $r0
40 000128: 30020001 c4100780 sh l . u32 $r0 , $r0 , 0x00000002
41 000130: 2000c801 04200780 add . u32 $r0 , s [0x0010 ] , $r0
42 000138: d00e0009 a0c00781 mov . end . u32 g[ $r0 ] , $r2
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