
May 2008
Tu Duc Nguyen, ITK

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Control of an Underwater Robot System
Connected to a Ship by a Slender
Marine Structure

Wei Li

Problem Description
This report addresses the stabilization problem of a marine structure (i.e. cable/riser), connected
to a surface vessel at one end and to a thruster unit at the other. The passivity of the system shall
be analyzed and a controller shall be designed. A simulation of the system shall be implemented
in Matlab.

Assignment given: 20. January 2008
Supervisor: Tu Duc Nguyen, ITK

Master thesis

Control of an Underwater Robot
System Connected to a Ship by a

Slender Marine Structure

Wei Li

Supervisor:
Tu Duc Nguyen

Trondheim, May 26, 2008

Faculty of Information Technology, Mathematics and Electrical Engineering
department of engineering cybernetics

NTNU Fakultet for informasjonsteknologi,
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk
universitet Institutt for teknisk kybernetikk

Diplom oppgave

Kandidatens navn: Wei Li

Fag: Teknisk Kybernetikk

Oppgavens tittel (norsk):

Oppgavens tittel (engelsk): Control of an Underwater system connected to a ship by a Slender Marine
Structure

Oppgavens tekst:

1. Develop a mathematical model of the system or study the mathematical model given in
([Schjølberg&Egeland,1996]).

2. Controller Design

3. Implementation (in Matlab)

Oppgaven gitt: 20. jan. 2008

Besvarelsen leveres: 15. jun. 2008

Besvarelsen levert: 27. mai. 2008

Utført ved Institutt for teknisk kybernetikk

Veileder: Tu Duc Nguyen

Trondheim, den 20.01. 2008

Tu Duc Nguyen

Faglærer

-

Preface

This thesis is submitted in fulfilment of the degree Master of Science at
Norwegian University of Science and Technology (NTNU), in the Department
of Engineering Cybernetics.

I wish to express special thanks to my supervisor Tu Duc Nguyen for
helpful guidance and comments during the prosjekt, I also wish to thank my
classmate Lars Gronvold for some suggestions in Matlab programming.

2

Abstract

This report addresses the stabilization problem of a marine structure (i.e.
cable/riser), connected to a surface vessel at one end and to a thruster unit
at the other. Here, only motion in the lateral direction has been considered.
Stabilization control laws are designed for position and velocity control of
the robot system. The passivity of the control system is analyzed, and the
closed loop system is shown to be asymptotically stable. Simulation results
are presented.

3

Contents

1 Introduction 7

2 Mathematical Model 9
2.1 Wave Loads and Water Current Loads 9
2.2 Equations of Motion of the Surface Vessel 11
2.3 Equations of Motion of the Tool System 11
2.4 Cable/Riser Dynamics . 11
2.5 Boundary Conditions . 12

3 Passivity Analysis and Controller Design 13
3.1 Analysis of Passivity . 13
3.2 Design of Controllers . 15

4 FEM-Modeling 18
4.1 Beam Element . 18
4.2 Assembling a structure . 20
4.3 Finite Element Model and Galerkin’s Method 22
4.4 Trapezoid Rule . 24
4.5 FEM-modeling . 25

5 Simulation 30
5.1 System Data . 30
5.2 Simulation . 30

6 Conclusion 36

7 Reference 37

8 Appendix Program Code 38
8.1 M-matrise.m . 38
8.2 pro.m . 42
8.3 baat-test.m . 44

4

8.4 baat-system-test.m . 45
8.5 system-matrix.mw . 45

List of Figures 47

Chapter 1

Introduction

In this report the system being studied consist of a cable, production riser,
conductor or an other similar slender structure connected to a surface vessel
at the top end and to a mass module or to a robot system at the bottom
end. The robot system may be a manipulator, a tool system equipped with
thrusters, a simple thruster system or an ROV. The function of the robot
system may be several, one is to perform maintenance and repair on under-
water installations. In this case the marine structure is a cable providing
power and control signals for the robot system. Another function may be to
connect the riser to a well head, the robot system need then only consist of a
thruster unit. In floating oil production systems risers are connected to the
well heads by controlling the surface vessel. Attaching a thruster unit to the
riser bottom end improves performance and time scheduling for this kind of
operation. Slender marine structures undergo deformations induced by the
motion of the surface vessel, wave and current forces, and these deformations
lead to reduced performance of the robot system. This results in the need of
a robust and high performance controller for the robot system.

The aim of this report is to describe the dynamics of the total system
and to design a controller for position and velocity regulation of the robot
system, such that the vibrations and oscillations in the cable/riser unit are
attenuated. The control system is designed based on a mathematical model
derived for the system. The mathematical model used for the cable/riser
system and vessel motion is based on [1]. These equations are combined with
the equations of motion of an underwater thruster unit, taking into account
the reaction forces between the two systems. The model of the total system
is written in a compact form and this facilitates the control system design
and passivity analysis. In this report only the motion in the lateral direction
has been considered.

This report is outlined as follows: The mathematical model of the system

7

is derived in Chapter 2. In Chapter 3, passivity analysis and controller design
are presented. FEM-modeling is derived in Chapter 4. Chapter 5 and 6 holds
the simulation and conclusion.

8

Chapter 2

Mathematical Model

Figure 2.1 depicts the system to be investigated. It consists of a surface vessel
and a cable/riser system connecting an underwater tool system equipped with
thrusters to the vessel. In the present approach only the motion in lateral
direction (x-direction) has been considered. The mathematical model of the
system is adopted from [1] and [7]. It is assumed that the cable/riser is
connected to the vessel and to the tool system by means of ball-joints and
that this results in small angles of deflection and zero bending moment.

2.1 Wave Loads and Water Current Loads

The cable/riser system is affected by sea waves and water current loads. The
lateral wave velocity ω(z, t) for regular waves is according to [4] defined

ω(z, t) = ωnξαe−bzsin(ωnt) (2.1)

where ξα is the wave amplitude, ωn is the nominal dominating wave fre-
quency, b = 2π

λ
and λ is the wave length.

The current velocity Uc is assumed to be independent of time

Uc(t, z) = Uc(z) (2.2)

Assuming Uc is a linear function. According to fig.(2.2)

Uc(0) ∈ R+ Uc(0) = Uc0 > 0 (2.3)

Uc(z) = −Uc0

L
z + Uc0 z ∈ [0, L] (2.4)

9

Figure 2.1: A slender marine structure connecting a thruster unit to a ship

Figure 2.2: Illustration of function Uc(z)

10

2.2 Equations of Motion of the Surface Vessel

The equation of motion of the surface vessel in the lateral direction at depth
(z=0) is given by

Mη̈(0, t)+D1η̇(0, t)+D2[η̇(0, t)−Uc(0)] |η̇(0, t) − Uc(0)| = τ0−fcx(0, t) (2.5)

where
fcx(0, t) = [(EIηzz)z]z=0 − [Tηz]z=0 (2.6)

η(0, t) is the surface vessel position in x-direction, M is the mass and
added mass of the surface vessel in x-direction, D1 is the linear damping
coefficient, D2 is the drag coefficient, Uc(0) is the current velocity at depth
z = 0, τ0 is the truster force in the lateral direction and fcx(0, t) is the lateral
cable/riser force acting on the surface vessel. The Coriolis and centrifugal
forces are small compared to the damping forces and are therefore neglected.

2.3 Equations of Motion of the Tool System

The equation of motion of the tool system in the lateral direction at depth
(z=L) is given by

mη̈(L, t) + d1η̇(L, t) + d2[η̇(L, t)] |η̇(L, t)| = τL + fcx(L, t) (2.7)

where
fcx(L, t) = [(EIηzz)z]z=L − [Tηz]z=L (2.8)

η(L, t) is the tool system position in x-direction, m is the mass and added
mass of the tool system in x-direction, d1 is the linear damping coefficient,
d2 is the drag coefficient, τL is the truster force in the lateral direction and
fcx(L, t) is the lateral cable/riser force acting on the tool system. The Coriolis
and centrifugal forces are small compared to the damping forces and are
therefore neglected.

2.4 Cable/Riser Dynamics

The horizontal equation of motion of an underwater cable/riser can for small
angles of deflection be bescribed by the differential equation [3]

∂2

∂z2
(EI(z)

∂2η(z, t)

∂z2
)− ∂

∂z
(Te(z)

∂η(z, t)

∂z
)+cη̇(z, t)+ρη̈(z, t) = fxs(z, t) (2.9)

11

where EI is the cable/riser stiffness, Te is the cable/riser tension, c is
the structural damping and ρ is the mass of the cable/riser per unit length.
The lateral displacement η(z, t) is normal to the cable/riser axis in some
direction and varies with the time t and longitudinal displacement z, which
is the displacement along the cable/riser axis. It is reasonable to assume that
the cable/riser is designed so that the stiffness is constant, EI(z) = EI. It
is assumed that the cable/riser has a moderate tension and the tension Te(z)
is approximated by the mean value T . This gives a good approximation of
the vibration frequencies.

The fluid loading is according to Morison’s equation given as

fxs(z, t) = c1ω̇(z, t) + c2(ω(z, t) − η̇(z, t) − Uc(z)) |ω(z, t) − η̇(z, t) − Uc(z)|
(2.10)

where c1 = π
4
ρwCmD2

0, c2 = 1
2
ρwCdD0, ρw is the mass density of wather,

D0 is diameter of the cable/riser, Cm and Cd are drag coefficients. It is
common to assume that Cm and Cd does not vary along the cable/riser. The
system is assumed to be designed so that is neutrally buoyant. This results
in less energy consumption in the longitudinal direction. Lift forces have
been neglected. Moreover it is common to assume that the wave and current
velocities are much larger than the cable/riser velocity, this gives

fxs(z, t) = c1ω̇(z, t) + c2(ω(z, t) − Uc(z)) |ω(z, t) − Uc(z)| (2.11)

2.5 Boundary Conditions

As we mentioned in mathematical modeling, it is assumned that the ca-
ble/riser is connected to the vessel and to the tool system by means of ball-
joins and that this results in small angles of deflection and zero bending
moment. Hence, in addition to (2.5) and (2.7), we have the following static
boundary conditions [

EI
∂2η

∂z2

]
z=0

=

[
EI

∂2η

∂z2

]
z=L

= 0 (2.12)

12

Chapter 3

Passivity Analysis and
Controller Design

The concept of passivity is very useful in control systems analysis and design.
If a system is passive in the sense that it can store and dissipate energy, but
it cannot produce energy, then it can be concluded that the total energy of
the system will decrease or hold constant, which under certain assumption
implies that the system is stable. In this chapter, we will analyse the system
and show that the system is passive. Then proper controllers are designed.

3.1 Analysis of Passivity

First of all, let all external forces be zero

Uc = 0, ω(z, t) = 0, fcx(z, t), fxs(z, t) = 0 (3.1)

Then, we assume that we have the input signals

τ(t) = [τ0(t), τL(t)]T (3.2)

and the measurements

y(t) = [η̇(0, t), η̇(L, t)]T (3.3)

Consider the storage function

Etotal = Ev + Et + Ec (3.4)

where

Ev =
1

2
Mη̇2(0, t) (3.5)

13

Et =
1

2
mη̇2(L, t) (3.6)

Ec =
1

2

∫ L

0

ρη̇2(z, t)dz +
1

2

∫ L

0

Tη2
z(z, t)dz +

1

2

∫ L

0

EIη2
zz(z, t)dz (3.7)

Note that Ev, Et and Ec represent energy functions for the surface vessel,
the tool system and the cable/riser.

The time derivative of Etotal along the solutions of the system (2.5),(2.7),(2.9)
and (2.10) is

Ėtotal = Ėv + Ėt + Ėc (3.8)

where

Ėv = Mη̇(0, t)η̈(0, t)
= {τ0 − [(EIηzz)z]z=0 + [Tηz]z=0 − D1η̇(0, t) − D2η̇(0, t) |η̇(0, t)|} × η̇(0, t)

(3.9)

Ėt = mη̇(L, t)η̈(L, t)
= {τL + [(EIηzz)z]z=L − [Tηz]z=L − d1η̇(L, t) − d2η̇(L, t) |η̇(L, t)|} × η̇(L, t)

(3.10)

Ėc =

∫ L

0

ρη̇η̈dz +

∫ L

0

Tηzη̇zdz +

∫ L

0

EIηzzη̇zzdz (3.11)

Applying the homogeneous equation of (2.9) to the first part in (3.11)
gives ∫ L

0

ρη̇η̈dz =

∫ L

0

[−EI
∂4η

∂z4
+ Tηzz − cη̇] × η̇dz (3.12)

∫ L

0

EI
∂4η

∂z4
η̇dz = [EI

∂3η

∂z3
η̇]L0 −

∫ L

0

EI
∂3η

∂z3
η̇zdz

= [EI
∂3η

∂z3
η̇]L0 − [EI

∂2η

∂z2
η̇z]

L
0 +

∫ L

0

EI
∂2η

∂z2
η̇zzdz

= (EIηzz)z |z=L × η̇(L, t) − (EIηzz)z |z=0 × η̇(0, t)

− [EIηzzη̇z]
L
0︸ ︷︷ ︸

=0,dueto(2.12)

+

∫ L

0

EI
∂2η

∂z2
η̇zzdz (3.13)

∫ L

0

Tηzzη̇dz = [Tηzη̇]L0 −
∫ L

0

Tηzη̇zdz (3.14)

14

Insertion of (3.12-3.14) to (3.11) yields

Ėc = − [(EIηzz)z]z=L × η̇(L, t) + [(EIηzz)z]z=0 × η̇(0, t) −
∫ L

0

EIηzzη̇zzdz

+ [Tηz]z=L × η̇(L, t) − [Tηz]z=0 × η̇(0, t) −
∫ L

0

Tηzη̇zdz −
∫ L

0

cη̇η̇dz

+

∫ L

0

Tηzη̇zdz +

∫ L

0

EIηzzη̇zzdz (3.15)

Hence

Ėtotal = Ėv + Ėt + Ėc

= [τ0 − D1η̇(0, t) − D2η̇(0, t) |η̇(0, t)|] × η̇(0, t)

+[τL − d1η̇(L, t) − d2η̇(L, t) |η̇(L, t)|] × η̇(L, t) −
∫ L

0

cη̇η̇dz

≤
[

τ0

τL

]T [
η̇(0, t)
η̇(L, t)

]
(3.16)

where (3.9),(3.10) and (3.15) have been applied. This shows that the
system is passive with input vector τ(t) and measurement vector y(t).

3.2 Design of Controllers

The objectives of the controllers are to control the position and velocity of the
thruster unit and the surface vessel such that {η(0, t), η(L, t), η̇(0, t), η̇(L, t)} →
{0, 0, 0, 0} as t → ∞. Additionally, the designed controllers should also be
able to attenuate the vibrations and oscillations in the system due to the sea
loads, i.e. {|η(z, t)| , |η̇(z, t)|} < ∞, ∀z ∈ (0, L) and t ≥ 0.

Due to the passivity analysis above, we propose the DP controllers

τ0 = −Kd1 × η̇(0, t) − Kp1 × η(0, t) (3.17)

τL = −Kd2 × η̇(L, t) − Kp2 × η(L, t) (3.18)

for t ≥ 0, where Kd1, Kp1, Kd2, Kp2 > 0 are controller gains. Since
the system is passive with respect to the input vector τt and measurements
vector y(t), the stability at the closed loop system (2.5)-(2.9)is guaranteed.
(see Theorem 6.1, 6.2 and Lemma 6.8 on page 247-248 in [2]).

15

We choose another storage function

Ẽ = Etotal +
1

2
Kp1 × η2(0, t) +

1

2
Kp2 × η2(L, t) (3.19)

where Etotal is given by (3.4). Taking the time derivative of Ẽ along
solution trajectories of (2.5), (2.7) and (2.9) gives

˙̃E = Ėtotal + Kp1 × η(0, t)η̇(0, t) + Kp2 × η(L, t)η̇(L, t)

= [−Kd1 × η̇(0, t) − Kp1 × η(0, t) − D1η̇(0, t)

−D2η̇(0, t) |η̇(0, t)|] × η̇(0, t)

+[−Kd2 × η̇(L, t) − Kp2 × η(L, t) − d1η̇(L, t)

−d2η̇(L, t) |η̇(L, t)|] × η̇(L, t)

−
∫ L

0

cη̇η̇dz + Kp1 × η(0, t)η̇(0, t) + Kp2 × η(L, t)η̇(L, t)

= −Kd1 × η̇2(0, t) − D1η̇
2(0, t) − D2η̇

2(0, t) |η̇(0, t)|
−Kd2 × η̇2(L, t) − d1η̇

2(L, t) − d2η̇
2(L, t) |η̇(L, t)|

−
∫ L

0

cη̇η̇dz

≤ 0 (3.20)

The time dirivative of Ẽ is negative semidefinite, which implies that
Ẽ(t) < Ẽ(0), for all t ≥ 0. This shows that all the states, η(0, t), η(L, t),
η̇(0, t), η̇(L, t) are bounded.

In order to prove convergence of states, we need to establish ˙̃E(t) is uni-

formly continous. To prove this, it is sufficient to prove that ¨̃E(t) is bounded
∀t ≥ t0.

We take the second derivative of Ẽ and get

¨̃E = [−2Kd1 × η̇(0, t)η̈(0, t) − 2D1η̇(0, t)η̈(0, t)

−2D2η̇(0, t)η̈(0, t) |η̇(0, t)| − D2η̇
2(0, t) |η̈(0, t)]

+[−2Kd2 × η̇(L, t)η̈(L, t) − 2d1η̇(L, t)η̈(L, t)

−2d2η̇(L, t)η̈(L, t) |η̇(L, t)| − d2η̇
2(L, t) |η̈(L, t)|]

+[−2

∫ L

0

cη̇η̈dz] (3.21)

Equation (2.5) and boundedness of η(0, t), η̇(0, t) can be utilized to show
that η̈(0, t) is bounded ∀t ∈ [0,∞).

16

Similarly, (2.7) and boundedness of η(L, t), η̇(L, t) can be utilized to show
that η̈(L, t) is bounded ∀t ∈ [0,∞).

Hence, ¨̃E(t) is bounded, which proves that ˙̃E(t) is uniformly continous.

According to Barbalat’s Lemma (page 323 i [2]), ˙̃E(t) → 0 as t → ∞, and
then, the states of the system converge to zero as t → ∞.

Now since η(0, t) = 0, ∀t ∈ [0,∞) and all states converge to zero as
t → ∞, it is concluded that η(z, t) converges to zero as ∀t ∈ [0,∞).

Hence, the system is asymptotically stable.

17

Chapter 4

FEM-Modeling

An alternative technique for analyzing the Euler Bernoulli beam is to use the
finite-element method. The finite-element method can be seen as a model
formulation based on the Galerkin method [5], where special set of shape
functions are used. The characteristic feature of the finite-element method
is that the shape functions are locally defined in the sense that they are
nonzero only in short intervals of the beam. An alternative way of seeing
the finite-element method is that the beam is divided into beam elements.
The equations of motion are then derived for the beam element using a cubic
shape function, and then the beam model is obtained by connectiong the
beam element models using multiport techniques.

4.1 Beam Element

In a finite-element model of an Euler Bernoulli beam the basic building block
of the model is a beam element of length h. The element is defined for the
interval 0 ≤ x ≤ h. At x = 0 the shear force is V1 and the bending moment
is M1, the elastic displacement is ω1, and the elastic angle is ω′

1. This can be
seen as one port with effort V1 and flow ω̇1, and one port with effort M1 and
flow ω̇′

1.

At x = h the shear force is V2, the bending moment is M2, the elastic
deflection is ω2, and the elastic angle is ω′

2. This is described as a port with
effort V2 and flow ω̇2, and one port with effort M2 and flow ω̇′

2.

The usual finite-element model of the Euler Bernoulli beam is based on
the displacement formulation where the inputs to the model are the forces
and torques, and the outputs are the displacements and the displacement
angles.

18

The displacement in the element is modeled as the cubic expression

ω(x, t) = c0(t) + c1(t)x + c2(t)x
2 + c3(t)x

3 (4.1)

The motivation for using this expression is that in the stationary case
the displacement satisfies ω′′′′ = 0, which has solution (4.1). The generalized
coordinates ai(t) of the beam element are defined as

a1(t) = ω1(t) a2(t) = ω′
1(t) (4.2)

a3(t) = ω2(t) a4(t) = ω′
2(t) (4.3)

Combination of (4.1),(4.2) and (4.3) leads to

ω(z, t) =
4∑

i=1

αi(x)ai(t) (4.4)

where the shape functions αi(x) are given by

α1(x) = 1 − 3(
x

h
)2 + 2(

x

h
)3 (4.5)

α2(x) = h[(
x

h
) − 2(

x

h
)2 + (

x

h
)3] (4.6)

α3(x) = 3(
x

h
)2 − 2(

x

h
)3 (4.7)

α4(x) = h[−(
x

h
)2 + (

x

h
)3] (4.8)

These cubic shape functions are called the Hermitian shape functions.
Galerkin’s method for the beam element leads to

Meä + Kea = f (4.9)

where the mass matrix of the element is given by

Me =

∫ h

0

ρααT dx =
ρh

420

⎡
⎢⎢⎣

156 22h 54 −13h
22h 4h2 13h −3h2

54 13h 156 −22h
− 13h −3h2 −22h 4h2

⎤
⎥⎥⎦ (4.10)

and the stiffness matrix of the element is given by

19

Ke =

∫ h

0

EIα′′(α′′)T dx =
2EI

h3

⎡
⎢⎢⎣

6 3h −6 3h
3h 2h2 −3h h2

−6 −3h 6 −3h
3h h2 −3h 2h2

⎤
⎥⎥⎦ (4.11)

and f = (f1, f2, f3, f4)
T where

fi =

∫ h

0

αi(x)f(x) (4.12)

4.2 Assembling a structure

To establish the model for a beam of length L where L = Nh it is necessary
to connect N beam elements. Elements k and k + 1 can be connected by
requiring that the end-point variables satisfy ak,3 = ak+1,1 and ak,4 = ak+1,2.
Then, there must be forces and torques of constraints to hold the two element
together, and the equations of motion for elements k and k + 1 are given by

Me
d2

dt2

⎛
⎜⎜⎝

ak,1

ak,2

ak,3

ak,4

⎞
⎟⎟⎠+ Ke

⎛
⎜⎜⎝

ak,1

ak,2

ak,3

ak,4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

fk,1

fk,2

fk,3 + f3

fk,4 + f4

⎞
⎟⎟⎠ (4.13)

Me
d2

dt2

⎛
⎜⎜⎝

ak+1,1

ak+1,2

ak+1,3

ak+1,4

⎞
⎟⎟⎠+ Ke

⎛
⎜⎜⎝

ak+1,1

ak+1,2

ak+1,3

ak+1,4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

fk+1,1 − f3

fk+1,2 − f4

fk+1,3

fk+1,4

⎞
⎟⎟⎠ (4.14)

These forces and torques of constraint are eliminated by adding rows 3
and 4 of element k to rows 1 and 2 of element k + 1. This gives the model

Mq̈ + Kq = u (4.15)

where q = (ak,1, ak,2, ak+1,1, ak+1,2, ak+1,3, ak+1,4). The mass matrix is ob-
tained from

M =

(
Me 04,2

02,4 02,2

)
+

(
02,2 02,4

04,2 Me

)
(4.16)

In the same way the stiffness matrix is obtained from

20

K =

(
Ke 04,2

02,4 02,2

)
+

(
02,2 02,4

04,2 Ke

)
(4.17)

Alternatively, the model of the two elements can be written

M̄
d2

dt2
ā + K̄ā = f̄ (4.18)

ā = (a1, · · · , ap)
T (4.19)

M̄ = blog diag(Me1, · · · ,Mep), K̄ = blog diag(Ke1, · · · ,Kep) (4.20)

where the connection of the elements is obtained by requiring

ā = Cq, u = CTf̄ (4.21)

where

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.22)

when N=2. Then the mass matrix and the stiffness matrix are found from

M = CTM̄C, K = CT K̄C (4.23)

to be

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

m11 m12 m13 m14 0 0
m21 m22 m23 m24 0 0
m31 m32 m33 + m11 m34 + m12 m13 m14

m41 m42 m43 + m21 m44 + m22 m23 m24

0 0 m31 m32 m33 m34

0 0 m41 m42 m43 m44

⎞
⎟⎟⎟⎟⎟⎟⎠ (4.24)

21

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

k11 k12 k13 k14 0 0
k21 k22 k23 k24 0 0
k31 k32 k33 + k11 k34 + k12 k13 k14

k41 k42 k43 + k21 k44 + k22 k23 k24

0 0 k31 k32 k33 k34

0 0 k41 k42 k43 k44

⎞
⎟⎟⎟⎟⎟⎟⎠ (4.25)

and the resulting model is

Mq̈ + Kq = u (4.26)

4.3 Finite Element Model and Galerkin’s Method

A finite-element model for an Euler Bernoulli beam can alternatively be
established by applying Galerkin’s method with shape functions φi(x) based
on the element shape functions in (4.5-4.8). For the Euler Bernoulli beam,
N nodes are defined at x1 < x2 < · · · < xN , and the deflection is described
by

ω(x, t) =
N∑

j=1

[αj,1(x)aj,1(t) + αj,2(x)aj,2(t)] (4.27)

which is expressed in the form

ω(x, t) =
2N∑
j=1

φj(x)qj(t) (4.28)

where the generalized coordinates are q = (a1,1, a1,2, · · · , aN,1, aN,2)
T and

the mode shape vector is φ = (φ1,1, φ1,2, · · · , φN,1, φN,2)
T . The shape func-

tions αj,1(x) and αj,2(x) for the Euler Bernoulli beam are selected in agree-
ment with (4.5-4.8) as the Hermitian shape functions

αi,1(x) =

⎧⎪⎨
⎪⎩

1 − 3 (x−xi)
2

�2i
+ 2 (x−xi)

3

�3i
if xi ≤ x ≤ xi+1

3 (x−xi−1)2

�2i−1
− 2 (x−xi−1)3

�3i−1
if xi−1 ≤ x ≤ xi

0 otherwise

αi,2(x) =

⎧⎪⎨
⎪⎩

x − 2 (x−xi)
2

�i
+ (x−xi)

3

�2i
if xi ≤ x ≤ xi+1

− (x−xi−1)2

�i−1
+ (x−xi−1)3

�2i−1
if xi−1 ≤ x ≤ xi

0 otherwise

22

Figure 4.1: Shape function for Euler-Bernoulli beam

These shape functions satisfy

φ2k−1 = αj,1(xk) = δjk, φ′
2k−1 = α′

j,1(xk) = 0 (4.29)

φ2k = αj,2(xk) = 0, φ′
2k = α′

j,2(xk) = δjk (4.30)

This gives the following physical interpretation of the generalized coordi-
nates q2k−1 = ak,1(t) and q2k = ak,2(t):

q2k−1 = ak,1(t) = ω(xk, t) (4.31)

q2k = ak,2(t) = ω′(xk, t) (4.32)

Insertion of (4.28) gives

2N∑
i=1

[ρq̈j(t)φj(x) + ρc2qj(t)φ
′′′′
j (x)] = b(x)u(t) (4.33)

In the Galerkin method the equation of motion is premultiplied by φi(x)
and intergrated over the interval x ∈ [0, �]. This gives the expression

∫ �

0

φi(x)
2N∑
i=1

[ρq̈j(t)φj(x) + ρc2qj(t)φ
′′′′
j (x)]dx =

∫ �

0

φi(x)b(x)u(t)dx (4.34)

23

Figure 4.2: Trapezoid Rule

4.4 Trapezoid Rule

The Trapezoid Rule [9] is applied to get the approximation of the fluid loading
fxs(z, t).

The Trapezoid Rule is based on an estimation of the area beneath a curve
using trapezoids. The estimation of

∫ b

a
f(x)dx is approached by first dividing

the interval [a, b] into subintervals according to the partition P = {a = x0 <
x1 < x2 < · · · < xn = b. For each such partition of the interval (the partition
points xi need not be uniformly spaced), an estimation of the integral by the
trapezoid rule is obtained. We denote it by T (f ; P). Fig.(4.2) shows what
the trapezoids are.

A typical trapezoid has the subinterval [xi, xi+1] as its base, and the two
vertical sides are f(xi) and f(xi+1).(see fig.(4.3)).

The area is equal to the base times the average height, and we have the
Basic Trapezoid Rule for the subinterval [xi, xi+1]∫ xi+1

xi

f(x)dx ≈ Ai =
1

2
(xi+1 − xi)[f(xi) + f(xi+1)] (4.35)

Hence, the total area of all the trapezoids is

∫ b

a

f(x)dx ≈ T (f ; P) =
n−1∑
i=0

Ai =
1

2

n−1∑
i=0

(xi+1 − xi)[f(xi) + f(xi+1)] (4.36)

which is called the Composite Trapezoid Rule.

24

Figure 4.3: Typical trapezoid

The division points xi are equally spaced, xi = a+ih, where h = (b−a)/n
and 0 ≤ i ≤ n, so, the formula for T (f ; P) can be given in simpler form
because xi+1 − xi = h. Thus

T (f ; P) =
h

2

n−1∑
i=0

[f(xi) + f(xi+1)] (4.37)

It should be emphasized that, in order to economize the amount of arith-
metic, the computationally preferable formula for the composite trapezoid
rule is

∫ b

a

f(x)dx ≈ T (f ; P) = h

{
n−1∑
i=1

f(xi) +
1

2
[f(x0) + f(xn)]

}
(4.38)

4.5 FEM-modeling

For Cable/Riser: we use the homogeneous equation of (2.9) first, and then we
will use the Trapezoid Rule to get a approximation of fluid loading fxs(z, t) .

25

ρη̈(z, t) + EI
∂4η(z, t)

∂z4
− T

∂2η(z, t)

∂z2
+ cη̇(z, t) = 0 (4.39)

In the Galerkin method the equation of motion is premultiplied by test
function ϑ and intergrated over the interval x ∈ [0, L]. This gives the expres-
sion ∫ L

0

ϑ[ρη̈ + EI
∂4η

∂z4
− T

∂2η

∂z2
+ cη̇]dz = 0 (4.40)

ϑ ∈ {φ1, φ2, φ3, ...φN} (4.41)

η(z, t) = φ(z)T q(t) (4.42)

Inserting (4.42) to (4.40) gives

∫ L

0

ρϑφ(z)q̈(t)dz +

∫ L

0

EIϑφ′′′′(z)q(t)dz︸ ︷︷ ︸
eq.(4.44)

−
∫ L

0

Tϑφ′′(z)q(t)dz︸ ︷︷ ︸
eq.(4.45)

+

∫ L

0

cϑφ(z)q̇(t)dz = 0 (4.43)

∫ L

0
EIϑφ′′′′(z)q(t)dz = [EIϑφ′′′(z)q(t)]L0 − ∫ L

0
EIϑ′φ′′′(z)q(t)dz

= [EIϑφ′′′(z)q(t)]L0 − [EIϑ′φ′′(z)q(t)]L0︸ ︷︷ ︸
=0,dueto(2.12)

+
∫ L

0
EIϑ′′φ′′(z)q(t)dz

(4.44)

∫ L

0

Tϑφ′′(z)q(t)dz = [Tϑφ′(z)q(t)]L0 −
∫ L

0

Tϑ′φ′(z)q(t)dz (4.45)

Let ϑ = {φ1, φ2, φ3, ...φN}. From (4.44) and (4.45), we get

∫ L

0

EI

⎡
⎢⎢⎢⎢⎣

φ1

φ2

φ3

...
φN

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ(z)

φ′′′′(z)q(t)dz = [EI

⎡
⎢⎢⎢⎢⎣

φ1

φ2

φ3

...
φN

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ(z)

φ′′′(z)q(t)]L0 +

∫ L

0

EI

⎡
⎢⎢⎢⎢⎣

φ′′
1

φ′′
2

φ′′
3

...
φ′′

N

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ′′(z)

φ′′(z)q(t)dz

(4.46)

26

∫ L

0

T

⎡
⎢⎢⎢⎢⎣

φ1

φ2

φ3

...
φN

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ(z)

φ′′(z)q(t)dz = [T

⎡
⎢⎢⎢⎢⎣

φ1

φ2

φ3

...
φN

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ(z)

φ′(z)q(t)]L0−
∫ L

0

T

⎡
⎢⎢⎢⎢⎣

φ′
1

φ′
2

φ′
3

...
φ′

N

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ′(z)

φ′(z)q(t)dz

(4.47)
Thus

[

∫ L

0

ρφ(z)φ(z)dz]q̈(t) + [EIφ(z)φ′′′(z)q(t)]L0 − [EIφ′(z)φ′′(z)q(t)]L0

+[

∫ L

0

EIφ′′(z)φ′′(z)dz]q(t) − [Tφ(z)φ′(z)q(t)]L0 + [

∫ L

0

Tφ′(z)φ′(z)dz]q(t)

+[

∫ L

0

cφ(z)φ(z)dz]q̇(t) = 0 (4.48)

The equation of motion of the surface vessel is

Mη̈(0, t) + D1η̇(0, t) + D2[η̇(0, t) − Uc(0)] |η̇(0, t) − Uc(0)|
= τ0 − [(EIηzz)z]z=0 + [Tηz]z=0 (4.49)

We deal with D2[η̇(0, t)−Uc(0)] |η̇(0, t) − Uc(0)| later, because it contains
ulinear element.(see calculation of matrix G3 in Chapter 8.2) The equation
of the surface vessel is premultiplied by ϑ, so it gives

[ϑMφ(z)q̈(t)]z=0 + [ϑD1φ(z)q̇(t)]z=0

= [ϑτ0]z=0 − [ϑEIφ′′′(z)q(t)]z=0 + [ϑTφ′(z)q(t)]z=0 (4.50)

when ϑ = {φ1, φ2, φ3, ...φN}, and we do as same as eq.(4.46), the expres-
sion for the surface vessel is

[Mφ(z)φ(z)q̈(t)]z=0 + [D1φ(z)φ(z)q̇(t)]z=0

= [φ(z)τ0]z=0 − [EIφ(z)φ′′′(z)q(t)]z=0 + [Tφ(z)φ′(z)q(t)]z=0 (4.51)

The equation of motion of the tool system is

27

mη̈(L, t) + d1η̇(L, t) + d2[η̇(L, t)] |η̇(L, t)|
= τL + [(EIηzz)z]z=L − [Tηz]z=L (4.52)

The same reason as the surface vessel, we deal with d2[η̇(L, t)] [η̇(L, t)]
later.(see calculation of matrix G3 in Chapter 8.2) The equation of the tool
system is premultiplied by ϑ, so it gives

[ϑmφ(z)q̈(t)]z=L + [ϑd1φ(z)q̇(t)]z=L

= [ϑτL]z=L + [ϑEIφ′′′(z)q(t)]z=L − [ϑTφ′(z)q(t)]z=L (4.53)

The same method as the surface vessel, the expression for the tool system
is

[mφ(z)φ(z)q̈(t)]z=L + [d1φ(z)φ(z)q̇(t)]z=L

= [φ(z)τL]z=L + [EIφ(z)φ′′′(z)q(t)]z=L − [Tφ(z)φ′(z)q(t)]z=L (4.54)

(4.48) + (4.51) + (4.54) →:

{
[

∫ L

0

ρφ(z)φ(z)dz] + [Mφ(z)φ(z)]z=0 + [mφ(z)φ(z)]z=L

}
︸ ︷︷ ︸

M−matrix

q̈(t)

+

{
[

∫ L

0

cφ(z)φ(z)dz] + [D1φ(z)φ(z)]z=0 + [d1φ(z)φ(z)]z=L

}
︸ ︷︷ ︸

D−matrix

q̇(t)

+

{∫ L

0

EIφ′′(z)φ′′(z)dz +

∫ L

0

Tφ′(z)φ′(z)dz

}
︸ ︷︷ ︸

K−matrix

q(t) = [φ(z)τ0]z=0 + [φ(z)τL]z=L

(4.55)
The right side av the equation above is

[φ(z)τ0]z=0 + [φ(z)τL]z=L =⎡
⎢⎢⎢⎢⎢⎣

−Kd1 · · · 0 0
0 · · · 0 0
...

...
...

...
0 · · · −Kd2 0
0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
KD−matrix

⎡
⎢⎢⎢⎢⎢⎣

η̇(0, t)
0
...

η̇(L, t)
0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

−Kp1 · · · 0 0
0 · · · 0 0
...

...
...

...
0 · · · −Kp2 0
0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
KP−matrix

⎡
⎢⎢⎢⎢⎢⎣

η(0, t)
0
...

η(L, t)
0

⎤
⎥⎥⎥⎥⎥⎦

(4.56)

28

The eq.(4.55) and eq.(4.56) give the model

Mq̈ + (D − KD)q̇ + (K − KP)q = 0 (4.57)

or:

q̈ = M−1[(−D + KD)q̇ + (−K + KP)q] (4.58)

29

Chapter 5

Simulation

5.1 System Data

L = 600 Length of the cable[m]
ρ = 1 mass density of cable [kg/m]

EI = 4.27 × 108 stiffness of the cable[Nm2]
M = 9.6 × 107 mass of the rig/master vessel[kg]
m = 30 mass of the tool system[kg]

D1 = 0.9 × 106 linear drag coefficient of the surface vessel
D2 = 1 × 106 quadratic drag coefficient of the surface vessel
d1 = 100 linear drag coefficient of the tool system
d2 = 820 quadratic drag coefficient of the tool system
λ = 20 the wave length[m]

Uc = 2 the current velocity[m/s]
ωn = 10π the nominal dominationg wave frequency[Hz]
ξa = 0.1 the wave amplitude[m]
b = 2π/λ

D0 = 0.1 the outer diameter of the cable[m]
Cm = 1 added mass coefficient
Cd = 1.6 friction coefficient
c1 = π

4
ρCmD2

0 hydrodynamic added mass coefficient
c2 = 0.5ρCdD0 hydrodynamic drag coefficient

5.2 Simulation

In fact, we choose the following PID controller in the system

30

τ0 = −Kd1 × η̇(0, t) − Kp1 × η(0, t) − Ki1 ×
∫ L

0

η(z, t)dz (5.1)

τL = −Kd2 × η̇(L, t) − Kp2 × η(L, t) − Ki2 ×
∫ L

0

η(z, t)dz (5.2)

where Kd1, Kp1, Ki1, Kd2, Kp2, Ki2 > 0 are controller gains.
The purpose of the integral is to wield the influence of the sea waves and

water current. The stability of the closed loop is not proved her, but it is
proved in [8].

To illustrate the theoretical results and the properties of the closed loop
system, simulation results are presented. The figures below are divided three
cases, each case has one figure in 2 dimension and one or two figures in 3
dimension. In all cases, we use the same controller gains, which are

Kd1 = 5 × 107

Kd2 = 20
Kp1 = 8 × 107

Kp2 = 15
Ki1 = 1 × 107

Ki2 = 18

The initial conditions are
Case 1:

∫ L

0
η(z, 0)dz = 0, η(z, 0) = 0, η̇(z, 0) = 0.

Case 2: η(z, 0) = sin(2π i
N

).
Case 3: Only η(5, 0) = −0.5.
All the figures show that the controllers (5.1) and (5.2) are well designed,

which can hold the system stable.

31

0 10 20 30 40 50 60 70 80
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time(s)

5(
m
)

Figure 5.1: Case 1: 2D-plot for node 5

Figure 5.2: Case 1: 3D-plot for the system

32

0 5 10 15 20 25 30 35 40
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

5(
m
)

Figure 5.3: Case 2: 2D-plot for node 5

Figure 5.4: Case 2: 3D-plot for the system

33

Figure 5.5: Case 2: 3D-plot for the system in the first 1.5s

0 5 10 15 20 25 30 35 40
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

5(
m
)

Time(s)

Figure 5.6: Case 3: 2D-plot for node 5

34

Figure 5.7: Case 3: 3D-plot for the system

Figure 5.8: Case 3: 3D-plot for the system in the first 1.5s

35

Chapter 6

Conclusion

This report describes modeling and control of a system consisting of a ca-
ble/riser connecting to a surface vessel on the top, and an underwater thruster
system at the bottom. A passivity analysis of the system has been presented
and it was shown that a classical PID-controller for position control of the
thruster system gives good system performance and vibration damping in
the cable/riser system. Simulations confirm these results.

36

Chapter 7

Reference

1. Ingrid Schjølberg and Olav Egeland, Controll of an Underwater Robot
System Connected to a Ship by a Slender Marine Structure, Department
of Eng. Cybernetics, Norwegian University of Science and Technology,
Trondheim, Norway, 1996

2. Hassan K.Khalil, Nonlinear System, Department of Electrical and Com-
puter Engineering, Michigan State University, Third Edition, 2002

3. S.K Chakrabarti and R.E. Framptom, Review of Riser Analysis Tech-
niques. Applied Ocean Research, 4(2): 73-90, 1982

4. O.M. Faltinsen, Sea Loads on Ships and Offshore Structures. Cam-
bridge University Press, New York, 1990

5. Olav Egeland and Jan Tommy Gravdahl, Modeling and Simulation for
Automatic Control. Norwegian University of Science and Technology,
2003

6. Svein Ersdal, An Experimental Study of Hydrodynamic Forces on Cylin-
ders and Cables in Near Axial Flow.Norwegian University of Science
and Technology, 2004

7. Fossen, T. I., Marine Control Systems: Guidance, Navigation, and
Control of Ships, Rigs and Underwater Vehicles, Marine Cybernetics,
Trondheim, Norway, 2002

8. Tu Duc Nguyen, Boundary Stabilization of Marine Structure. Norwe-
gian University of Science and Technology, Trondheim, Norway, 2008

9. Ward Cheney and David Kincaid, Numerical Mathematics and Com-
puting. The University of Texas at Austin, Fourth Edition

37

Chapter 8

Appendix Program Code

Here are program code for simulation. Except the last one is executed by
Maple, all the others are executed by Matlab.

1. M-matrise.m; define the system constant, calculate matrix M , K, D,
G1, G2, G4, and then simulate the system and get the figures

2. pro.m; calculate fxs and matrix G3

3. baat-test.m; this is a test program which makes a controller just for the
surface vessel

4. baat-system-test.m; a function which is used in baat-test.m

5. system-matrix.mw; program Maple is used to calculate some matrix

8.1 M-matrise.m

global M D G1 G2 K N omega_n xi_a b Uc h c1 c2 D2 d2 G4 L

L=600;

N=10;

h=L/N;

rho=1;

EI=4.27*10^8;

C_damping=1;

m_bot=9.6*10^7;

m_ubot=30;

D_0=0.1;

Cm=1;

38

Cd=1.6;

c1=pi/4*rho*Cm*D_0^2;

c2=0.5*rho*Cd*D_0;

T=1.11*10^6;

d1=100;

d2=820;

D1=0.9*10^6;

D2=1*10^6;

lamda=20;

Uc=2;

omega_n= 2*pi*5;

xi_a= 0.1;

b=2*pi/lamda;

Me=rho*h/420*[156 22*h 54 -13*h; ...

22*h 4*h^2 13*h -3*h^2; ...

54 13*h 156 -22*h; ...

-13*h -3*h^2 -22*h 4*h^2];

Kd=2*EI/h^3*[6 3*h -6 3*h;...

3*h 2*h^2 -3*h h^2;...

-6 -3*h 6 -3*h;...

3*h h^2 -3*h 2*h^2;];

Kdd=[6/(5*h) 1/10 -6/(5*h) 1/10;...

1/10 2*h/15 -1/10 -1*h/30;...

-6/(5*h) -1/10 6/(5*h) -1/10;...

1/10 -1/30*h -1/10 2/15*h;];

M=zeros((N+1)*2,(N+1)*2);

K1=zeros((N+1)*2,(N+1)*2);

39

K2=zeros((N+1)*2,(N+1)*2);

for i=1:N

a=2*i-1;

b=2*(i+1);

M(a:b,a:b)=M(a:b,a:b)+Me;

K1(a:b,a:b)=K1(a:b,a:b)+Kd;

K2(a:b,a:b)=K2(a:b,a:b)+Kdd;

end

D=M/rho*C_damping;

D(1,1)=D(1,1)+D1;

D(end-1,end-1)=D(end-1,end-1)+d1;

M(1,1)=M(1,1)+m_bot;

M(end-1,end-1)=M(end-1,end-1)+m_ubot;

K=K1+K2*T;

Kd1=5*10^7;

Kd2=20;

Kp1=8*10^7;

Kp2=15;

Ki1=1*10^7;

Ki2=18;

G1=zeros((N+1)*2,(N+1)*2);

G1(1,1)=-Kd1;

G1(end-1,end-1)=-Kd2;

G2=zeros((N+1)*2,(N+1)*2);

G2(1,1)=-Kp1;

G2(end-1,end-1)=-Kp2;

G4=zeros((N+1)*2,(N+1)*2);

G4(1,1)=-Ki1;

G4(end-1,end-1)=-Ki2;

% test=[zeros(4,4) eye(4,4);...

40

%

% -M^(-1)*(K-G2) -M^(-1)*(D-G1)];

% eig(test)

first = 1;

%%

q0=zeros((N+1)*2,1);

%q0(5)=-0.5;

% for i=1:N

% q0(i*2-1)=sin(i/N*2*pi);

% end

[T,Q]=ode45(’pro’, [0 80], [zeros((N+1)*2,1);q0;zeros((N+1)*2,1)]);

%% continue simulation

if first == 0

[Tcont,Qcont]=ode45(’pro’, [0 20]+T(end), Q(end,:));

Q=[Q;Qcont(2:end,:)];

T=[T;Tcont(2:end)];

end

first = 0;

%%

z=((1:(N+1))-1)*h;

surf(0:h:L,T(1:end),Q(1:end,end/3+1:2:end*2/3))

% surf(0:h:L,T(1:end),Q(1:end,1:2:end/3))

shading interp

%%

XI = linspace(0,L,N*4); % dybde

% YI = T(1:20:end*0.05);%linspace(0,T(end),100); % tid

YI = linspace(0,1.5,50);

[XI,YI] = meshgrid(XI,YI)

ZI = interp2(0:h:L,T(1:end),Q(1:end,end/3+1:2:end*2/3),XI,YI,’cubic’);

41

figure

surf(XI,YI,ZI);

shading faceted

hold on

%%

figure

plot(T,Q(:,end/3 + 11),’-b’);

8.2 pro.m

function [y_dot] = pro(T,Y)

global M D G1 G2 K N omega_n xi_a b Uc h c1 c2 D2 d2 G4 L

q_int=Y(1:(N+1)*2);

q = Y((N+1)*2+1:4*(N+1));

q_dot=Y((N+1)*4+1:end);

% size(M)

% size(D)

% size(G1)

% size(q_dot)

%

% size(K)

% size(G2)

% size(q)

function U=Ucc(z)

U=Uc-Uc*z/L;

end

function w=omega(z,t)

w=omega_n*xi_a*exp(-b*z)*sin(omega_n*t);

end

42

function w=omega_dot(z,t)

w=omega_n^2*xi_a*exp(-b*z)*cos(omega_n*t);

end

function f = f_xs(z,t)

f = c1*omega_dot(z,t)+c2*(omega(z,t)-Ucc(z))*abs(omega(z,t)-Ucc(z));

end

% F=zeros(size(q));

%

% for i=1:(N+1)

% z=(i-1)*h;

% F(2*i-1)=h*f_xs(z,T);

% end

nose = 10;

F=zeros(size(q));

for n=0:N

sum1=0;

sum2=0;

if n>0

for sei=-(nose-1):-1

z=h/nose*sei;

alfa=3*(z+h)^2/h^2-2*(z+h)^3/h^3;

beta=-(z+h)^2/h+(z+h)^3/h^2;

f = f_xs(z+n*h,T);

sum1=alfa*f;

sum2=beta*f;

end

end

if n<N

for sei=0:(nose-1)

z=h/nose*sei;

alfa=1-3*z^2/h^2+2*z^3/h^3;

beta=z-2*z^2/h+z^3/h^2;

f = f_xs(z+n*h,T);

sum1=alfa*f;

43

sum2=beta*f;

end

end

F(2*n+1)=h/nose*sum1;

F(2*n+2)=h/nose*sum2;

end

G3=zeros(size(q_dot));

G3(1) = (q_dot(1)-Uc)*abs(q_dot(1)-Uc)*D2;

G3(end-1) = q_dot(end-1)*abs(q_dot(end-1))*d2;

q_dotdot=M^(-1)*((-D+G1)*q_dot+(-K+G2)*q+F-G3+G4*q_int);

[G1(1)*q_dot(1) G2(1)*q(1) G4(1)*q_int(1) F(1) G3(1) -D(1,:)*q_dot -K(1,:)*q

% % T

y_dot = zeros(3*(N+1)*2,1);

y_dot(1:(N+1)*2)=q;

y_dot((N+1)*2+1:(N+1)*4)=q_dot;

y_dot((N+1)*4+1:end)=q_dotdot;

end

8.3 baat-test.m

function baat_test()

global m D1 D2 Uc P I D

m=9.6*10^7;

D1=0.9*10^6;

44

D2=1*10^6;

Uc=2;

P = -8*10^7;

I = -1*10^7;

D = -5*10^7;

y0=[0;0;0];

[T,y]=ode45(’baat_system_test’, [0 100], y0);

figure

plot(T,y(:,2),’-or’);

8.4 baat-system-test.m

function [y_dot] = baat_system_test(t,y)

global m D1 D2 Uc P I D

x_int=y(1);

x=y(2);

x_dot=y(3);

paadrag = P*x + I*x_int + D*x_dot;

x_dotdot=m^(-1)*(paadrag-D1*x_dot-D2*(x_dot-Uc)*abs(x_dot-Uc));

y_dot=[x; x_dot; x_dotdot];

8.5 system-matrix.mw

45

restart:

>alpha := array(1 .. 4);

>alpha[1] := 1-3*(x/h)^2+2*(x/h)^3;

alpha[2] := h*(x/h-2*(x/h)^2+(x/h)^3);

alpha[3] := 3*(x/h)^2-2*(x/h)^3;

alpha[4] := h*(-(x/h)^2+(x/h)^3);

>‘αd‘ := map(diff, alpha, x);

>with(LinearAlgebra);

>‘αα‘ := Multiply[Z](Transpose(Vector(alpha)), Vector(alpha));

>subs(x = 0, ‘αα‘);

>subs(x = h, ‘αα‘);

>‘αdd‘ := map(diff, ‘αd‘, x);

>map(int, ‘αα‘, x = 0 .. h);

>‘αddαdd‘ := Multiply[Z](Transpose(Vector(‘αdd‘)),

Vector(‘αdd‘));

>map(int, ‘αddαdd‘, x = 0 .. h);

>‘αdαd‘ := Multiply[Z](Transpose(Vector(‘αd‘)),

Vector(‘αd‘));

>map(int, ‘αdαd‘, x = 0 .. h);

46

List of Figures

2.1 A slender marine structure connecting a thruster unit to a ship 10
2.2 Illustration of function Uc(z) 10

4.1 Shape function for Euler-Bernoulli beam 23
4.2 Trapezoid Rule . 24
4.3 Typical trapezoid . 25

5.1 Case 1: 2D-plot for node 5 . 32
5.2 Case 1: 3D-plot for the system 32
5.3 Case 2: 2D-plot for node 5 . 33
5.4 Case 2: 3D-plot for the system 33
5.5 Case 2: 3D-plot for the system in the first 1.5s 34
5.6 Case 3: 2D-plot for node 5 . 34
5.7 Case 3: 3D-plot for the system 35
5.8 Case 3: 3D-plot for the system in the first 1.5s 35

47

	Title Page
	Problem Description
	masteroppgave.pdf

