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Abstract

The classical chemostat models of Monod and others were designed for unicellular organisms. We summarize
evidence that these models are not adequate for the rotifer chemostat, then propose a new, physiologically struc-
tured model that resolves some of their key problems yet remains biologically simple. The new model includes
separate ontogenetic stages for eggs and free-swimming rotifers, with generalized age structure in the egg stage
and body mass structure in the free-swimming stage. We present several numerical examples to illustrate the
model’s behavior, and we compare these in a preliminary way with experimental evidence from the literature.

Introduction

Current knowledge of the principles of population dy-
namics is unsatisfactory on both empirical and theoret-
ical grounds. The main problems are a weak empirical
base, overly simple models with but vague links to
real systems, and little effective interplay between
theory and experiment. We therefore believe there is
a need for renewed emphasis on carefully controlled
laboratory studies of population dynamics, and on the
development of structured population models that can
be related clearly, directly, and convincingly to real
experimental systems.

The rotifer chemostat is an excellent system
for conducting laboratory population-dynamics stud-
ies. Relevant experimental techniques, concepts, and
sample data are outlined in a companion paper (Boraas
et al., 1998). Here we summarize the basic ideas un-
derlying classical models of the chemostat, show that
these models are inadequate for rotifers, and outline a
new model that we believe has the potential to provide
a more satisfactory theory.

Classical chemostat models

The main component of the rotifer chemostat is an
enclosed culture vessel containing a suspension of ro-
tifers and algae (Figure 1A). The culture is kept well
mixed to maintain spatial homogeneity. Fresh algal
suspension (from an algal chemostat) is pumped into
the culture at a continuous, regulated rate. Since the
culture volume is fixed, outflow exactly balances in-
flow (dimensions: volume·time−1). The culture vessel
is kept in the dark (to minimize algal growth and divi-
sion) under tightly controlled physical conditions and
is monitored regularly. (See Boraas et al., 1998, for
additional details.)

In attempting to characterize the rotifer chemo-
stat mathematically, previous studies have employed
models originally developed for unicellular organisms,
including Monod’s (1950) model and a few straight-
forward variants. We refer to these collectively as
classical chemostat models. A typical example is the
Monod-Herbert model (Herbert, 1958), which differs
from Monod’s model simply by permitting loss of
biomass via catabolism.

All classical chemostat models assume that the
state of a rotifer population at any timet can be ad-
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Figure 1. A—Basic components of the rotifer chemostat (highly schematic). See text for description, and Boraas et al. (1998) for additional
details. B—Schematic of the Monod-Herbert model. See text for description.

equately characterized by a single numberM(t), which
usually is some measure of the total mass of the pop-
ulation (e.g. total carbon). The dynamics ofM(t) are
assumed to be determined by the difference between
the rate at which total rotifer biomass grows (as a result
of ingesting algae and converting it into rotifer bio-
mass) and the rates at which total rotifer biomass is
diminished by catabolism and by being washed out of
the chemostat. Similarly, it is assumed that the state of
the algae population can be adequately characterized
by a single number representing its total mass, whose
dynamics are determined by the difference between
the rate at which algal biomass is fed into the che-
mostat and the rates at which it is removed by rotifer
ingestion and by being washed out of the system.

Equations governing the states of the algae and
rotifer populations are usually stated in terms of the re-
spective volume-normalized mass concentrationsA(t)
and R(t) (dimensions: mass·volume−1); e.g. R(t) =
M(t)/V, whereV is the (constant) culture volume. The
Monod-Herbert model, for example, can be written in
the form:

dA

dt
= A0D − AD − IsupAR

Kh + A,

dR

dt
= Y IsupAR

Kh + A − ρR −DR, (1)

where the first and second equations specify the in-
stantaneous rates of change in mass concentrations of

algae and rotifers, respectively, and

A0 =algal mass concentration in the feed;

D =dilution rate (inflow divided byV);

Isup=asymptotic mass-specific rate of ingestion

by rotifers;

Kh =half-saturation constant for ingestion;

Y =yield coefficient (rotifer biomass produced

per unit algal biomass ingested);

ρ =mass-specific rate of metabolic loss of

rotifer biomass.

The three terms on the right side of the algae equa-
tion correspond to algal input, washout, and ingestion
by rotifers. The three terms on the right side of the
rotifer equation correspond to production of rotifer
biomass from ingested algae, metabolic loss of bio-
mass, and washout. The model is shown schematically
in Figure 1B.

It is important to note that equation (1) asserts that
the dynamics of algal and rotifer mass can be under-
stood and predicted with no knowledge of the internal
structure of either population (e.g. age or size struc-
ture). Thus, according to (1), if we set up a chemostat
with fixed initial masses of algae and rotifers, it should
make no difference to the system’s short-term dynam-
ics whether the rotifer population consists entirely of
eggs (which would not ingest algae, and would neither
reproduce nor increase in dry mass), entirely of gravid
females (which would ingest algae, reproduce, and
possibly increase in dry mass, as well), or of some
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Figure 2. Examples of rotifer chemostat dynamics in laboratory experiments. All examples apply toBrachionus calyciflorus. A—Approach to
quasi-steady state. Mass concentration units:µg·mL−1 for rotifers,µg·mL−1 × 5.7 for algae. B—Dynamics predicted by the Monod-Herbert
model for data-series A. Units: same as in A. C—Effect of a downward shift in dilution rate (arrow) following the end of data-series A.
Units: µg·mL−1 for rotifers and algae. D—Dynamics predicted by the Monod-Herbert model for data-series C. Units: same as in C. E,
F—Observed dynamics of the rotifer size distribution in data-series A and C. Size distributions are normalized to achieve a constant egg-peak
height; non-normalized distributions are shown in Figure 5 of Boraas et al. (this volume). Body size units:µm3× 106. G—Steady-state rotifer
size distributions at three different dilution rates. Top distribution shows approximate sizes of eggs, juveniles, and adults. Data: A—F: Boraas
(1983), G: Bennett & Boraas (1989).
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Figure 3. Schematic of the proposed physiologically structured chemostat model. See text for description.

mix of life stages. If this property were to hold for real
rotifer chemostats, it would be a most remarkable one,
indeed.

Key experimental evidence

We now show results of several experiments that
permit an assessment of classical chemostat models,
here represented by the Monod-Herbert model. Fig-
ure 2A shows the results of an experiment conducted
by Boraas (1983) in whichBrachionus calyciflorus
was introduced into a chemostat at low abundance and
allowed to grow. Figure 2B shows the dynamics pre-
dicted by a calibrated Monod-Herbert model. Note the
contrast between the smooth approach to steady state
predicted by the model and the pronounced and per-
sistent fluctuation observed. This result is typical of
such experiments (e.g. Rothaupt, 1993; Walz, 1993)
and reveals that the Monod-Herbert model exhibits
too little tendency toward oscillation, compared to real
rotifer populations.

A more striking discrepancy is demonstrated in
panels C and D of Figure 2, which show the results of
a downwardD-shift experiment conducted by Boraas
(1983). The chemostat was allowed to run for roughly
1000 h atD = 0.045 h−1, after which D was ab-
ruptly decreased to 0.0135 h−1 (by reducing the pump
speed). As the figure shows, the observed transient
dynamics following the downward shift inD (panel
C) bear little resemblance to the behavior predicted by
the calibrated Monod-Herbert model (panel D). Most

notably, the algae showed a dramatic resurgence fol-
lowing their initial crash, whereas the model predicted
essentially none. A similarly gross discrepancy was
observed by Walz (1993) in aD-shift experiment with
Brachionus angularis.

Another serious problem with classical chemostat
models as applied to rotifers is that they are unable to
address phenomena dealing with population structure.
For example, panels E and F of Figure 2 (from Bor-
aas, 1983) show dynamics of the rotifer size structure
corresponding to the mass dynamics in panels A and
C. In panel F, note that theD shift is followed by loss
of the egg peak, accumulation of juveniles and small
adults, then return of the egg peak (egg, juvenile, and
adult segments of the size distribution are identified in
panel G). Another example appears in panel G (from
Bennett & Boraas, 1989), which shows the steady-
state rotifer size distribution at three different dilution
rates. Note that the steady-state egg peak is taller
relative to the adult peak at higher dilution rates. Size-
structure patterns such as these provide valuable clues
about the mechanisms of rotifer population regulation
but cannot be addressed using classical models.

Based on the inability of classical chemostat mod-
els to account for observed transient dynamics of total
mass, and on their inability to address observed pat-
terns in population structure (and also for theoretical
reasons beyond the scope of this paper), we believe
that these models are inadequate tools for studying the
rotifer chemostat. In the next section, we propose a
new model that resolves some of these problems.
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Figure 4. Examples of model dynamics. A—Total algal and rotifer masses atD = 0.02 h−1. B—Total algal and rotifer masses atD = 0.05 h−1.
C—Continuation of B after a step-change in dilution rate toD = 0.02 h−1. D—Rotifer size distributions corresponding to A. Vertical axis is
population density. E—Rotifer size distributions corresponding to B. F—Rotifer size distributions corresponding to C.

A simple physiologically structured model

Our objective in developing a new model of the rotifer
chemostat was to add the minimum biological detail
necessary to account for currently known phenomena,
and to increase the correspondence between model
components and experimentally measurable proper-
ties. We therefore decided to (a) add only a few key
components of structure to the rotifer population, (b)
focus on structural components that are experiment-
ally measurable and directly related to basic physiolo-
gical mechanisms, (c) keep the model simple enough
so it is both computationally tractable and reasonably
transparent to underlying principles, and (d) pose the
model in a form that can be reduced to a classical
model via specializing assumptions (so the reasons

for differences in model properties can be clearly
identified).

The basic idea behind the model is illustrated in
Figure 3. Recall from Figure 1B that classical che-
mostat models can be diagramed as two (connected)
boxes with no internal structure. In the new model, the
algae box of the classical model is retained, but two
types of structure are added to the rotifer box. First, the
population is divided into two discrete stages: eggs and
free-swimming rotifers (hereafter, rotifers). Second,
each stage is given a different type of continuous in-
ternal structure: generalized age for eggs (e.g. degree
days) and body mass for rotifers. Thus, the new model
is only slightly more complex than classical models
and remains biologically quite simple.
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The model works as follows. Rotifers continuously
ingest algae and consequently grow along the body
mass axis (with negative growth allowed). Once a
threshold body mass is crossed, they become adults
and begin allocating some of their net assimilated
mass to egg production. The eggs produced enter the
age axis of the egg stage at generalized age 0 and
begin a process of development, eventually crossing
a threshold age at which they begin to hatch. The
neonates produced return to the body mass axis of the
rotifer stage, with variability in neonatal body size al-
lowed. The newborn rotifers then begin to grow, and
the life cycle is complete.

Using the methods of continuum transport model-
ing, the schematic of Figure 3 is easily translated into
a set of equations comprising an ordinary differential
equation governing the algae, a mass-structured hyper-
bolic partial differential equation (with boundary con-
dition) governing the rotifers, and an age-structured
hyperbolic partial differential equation (with boundary
condition) governing the eggs:

dA

dt
= (A0− A)D − ε

∫ ∞
x0

F(A, x)n(t, x) dx

∂n

∂t
+ ∂(γ n)

∂x
= b(x)

∫ ∞
0

ν(a)ne(t, a) da

− [µ(A, x)+D]n(t, x), x > x0

subject ton(t, x0) = 0 whenγ (A, x0) > 0

∂ne

∂t
+ u∂n

∂a
= −[ν(a)+ µe(a)+D]ne(t, a),

a > 0

subject toune(t,0) =
∫ ∞
x0

β(A, x)n(t, x) dx,

(2)

where:
A(t) = total mass of algae at timet , per unit

volume of culture;
n(t, x) dx = number of rotifers with body mass

betweenx andx + dx at timet, per unit
volume of culture;

ne(t, a) da = number of eggs with generalized age
betweena anda + da at timet, per unit
volume of culture;

γ (A, x) = rate of growth in rotifer body mass at
body massx;

b(x) = probability density function for the mass
of a rotifer egg;

ν(a) = egg maturation rate at generalized agea;
µ(A, x) = mortality rate of rotifers at body massx;

D = dilution rate;
u = temperature-dependent rate of general-

ized aging in eggs;
µe(a) = egg mortality rate at generalized agea;
A0 = input mass concentration of algae;
ε = algal cell mass;

F(A, x) = rotifer ingestion rate at body massx
(cells per time per rotifer);

x0 = lower limit of body mass for a rotifer;
β(A, x) = rotifer egg production rate at body mass

x.
Other choices of the boundary condition for the roti-
fer equation are plausible. All quantities exceptγ are
restricted to being nonnegative, and we assumeb(x)>
0 for x1 < x < x2, andb(x) = 0 otherwise (so all egg
masses fall within a finite interval).

The rates at which eggs and rotifers are transported
along their respective structural axes are determined
by the rates of generalized aging and of growth in
body mass. For simplicity, we assume in the numerical
examples below that generalized aging occurs at a con-
stant rateu = 1, which is equivalent to chronological
aging. Growth in body mass is assumed to be given
by the amount of net assimilation (gross assimilation
minus metabolic loss) allocated to growth rather than
reproduction. The net assimilation rateα(A,x) is given
by

α(A, x) = [εp(A, x)− ξ(A, x)]F(A, x)− ρxθ ,

wherep(A,x) = assimilation fraction,ξ (A,x) = assim-
ilate spent on acquisition and processing, per ingested
cell, andρxθ = resting metabolic loss rate. Growth and
fecundity are then given by

γ (A, x) = α(A, x)φs(α, x),

β(A, x) = α(A, x)φr (α, x)∫
yb(y) dy

,

where φs(α,x) and φr (α,x) are the proportional al-
locations to somatic growth and reproduction, and
the denominator in the formula forβ(A,x) is the av-
erage mass of an egg (which converts reproduction
from mass of eggs per time to number of eggs per
time). Proportional allocation to somatic growth and
reproduction are related by

φr(α, x) = 1− φs(α, x),

so it suffices to specify onlyφr (α,x).
In the numerical examples below,φr (α,x) is as-

sumed to be the product of a component depending
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only onx and a component depending only onα, with
allocation working as follows. No net assimilate is
allocated to reproduction if body mass is too small
(in which case the size-dependent component is zero)
or if net assimilation is too small (in which case the
assimilation-dependent component is zero). The size-
dependent component is constant except in a certain
interval on the body-mass axis (the maturation win-
dow) over which it increases from the juvenile value
(= 0) to the adult value. The assimilation-dependent
component is zero for negative net assimilation and
increases toward a positive asymptote with increas-
ing positive net assimilation. These assumptions are
for purposes of illustration and probably will require
adjustment in actual applications.

Numerical examples

We now illustrate the behavior of model (2). Our pur-
pose is merely to show a few types of behavior the
model can exhibit, and to compare these with available
data in a qualitative and preliminary way. Thorough
exploration of the model’s properties and accurate es-
timation of parameter values are major tasks and are
beyond the scope of this paper.

Panels A–C in Figure 4 show examples of total-
mass dynamics. Panels A and B show the initial
behavior and approach to steady state withD = 0.02
h−1 andD = 0.05 h−1, respectively. Transient oscilla-
tion is evident in A but effectively disappears at high
dilution rates, as in B. The dilution rate of example
B was shifted downward toD = 0.02 h−1 at t = 500
h, and the subsequent dynamics are shown in panel
C. Note that the initial crash in algal mass is followed
by a pronounced resurgence, which is roughly the be-
havior observed by Boraas (1983) and Walz (1993)
in their laboratory experiments (e.g. Figure 2C). The
assimilation-dependent component of the allocation
function plays an important role in determining how
pronounced this resurgence is.

Panels D–F in Figure 4 show dynamics of the
rotifer size structure during the same numerical experi-
ments whose mass dynamics are shown in panels A–C.
The size distribution shows transient wave-like oscil-
lations in D, but these disappear at high dilution rates,
as in E. Similar oscillations are set off by a downward
shift in dilution rate, as shown in panel F. Note in par-
ticular the initial loss of the egg peak (as the crash in
residual algae causes adults to divert net assimilation
away from reproduction), the accumulation of juven-

iles and small adults, then return of the egg peak at
a lower height. This is basically the pattern observed
by Boraas (1983), shown in Figure 2F above and in
Figure 5 of Boraas et al. (this volume). Also note that
the steady-state egg peak is higher relative to the adult
peak whenD = 0.05 h−1 (panel E) than whenD = 0.02
h−1 (panels D, F). This result is consistent with the
pattern observed by Bennett & Boraas (1989), shown
in Figure 2G.

Discussion

Our preliminary numerical results suggest that the new
model is promising, but final judgement on its value
awaits rigorous empirical tests. We expect laboratory
experiments to indicate that adjustments in the model
are necessary, and we note in this connection that vari-
ous modifications and embellishments can be made
without destroying the model’s tractability. For ex-
ample, accounting for observed chemostat dynamics
at low dilution rates may require modeling the accu-
mulation of fecal debris in the culture, since ingestion
of this material is likely to alter gross assimilation by
rotifers. Or it might be necessary to allow egg size to
vary with factors such as maternal body mass or net
assimilation rate. Generalized or chronological aging
can also be incorporated in the rotifer equation (e.g. if
maturation to adulthood must be allowed to depend in
part on age, or if senescence is important), though we
note that there is no adequate way to measure age in a
chemostat.

If experiments indicate that substantially greater
biological detail must be incorporated into the model,
then it probably will be necessary to abandon the
continuum transport modeling framework in favor of
a stochastic, individual-based, computer simulation
model where the fate of each individual in the ro-
tifer population is tracked separately through time.
Such models have fewer computational constraints
than continuum transport models, mainly because they
avoid the realm of multidimensional partial differ-
ential equations and their attendant numerical diffi-
culties. It must be remembered, however, that regard-
less of the modeling framework employed, including
a high degree of biological detail will produce a
model whose behavior is largely incomprehensible.
Too much detail is therefore as bad as too little in
research aimed at elucidating basic principles.
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