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The double shadowed Rician model was recently proposed to describe
some realistic physical signal propagation phenomena, where a Rician
faded signal is impacted by cascaded shadowing processes. In this
letter, we study the outage performance of the double shadowed Rician
model. More specifically, we investigate the impact of two different
shadowing processes on the secrecy performance by deriving novel and
exact expressions for secrecy outage performance metrics. The obtained
results reveal the following physical implications: 1) when a Rician
faded signal undergoes line-of-sight (LoS) shadowing, which is futher
cascaded by another round of composite shadowing, the latter form of
shadowing imposes larger impact on the secrecy performance; 2) the
widely investigated concept of "protected zone" to improve the secrecy
performance should not be limited to the legitimate transmitter but also
extended to the legitimate receiver due to the adverse shadowing effect
cased by objects in its vicinity; and 3) the rate of outage performance
degradation grows larger as the shadowings become severer.

Introduction: Physical layer security (PLS) has been widely considered
as a promising paradigm to enhance communication security against
eavesdropping in wireless systems [1]. The secrecy performance analysis
of different communication setups over different shadowing/fading
conditions such as double Rayleigh, generalized-Gamma, κ-µ, and
Fisher-Snedecor F , etc., have been investigated in [2–5] and the
references therein. On the other hand, the emerging communication use
cases greatly expand the conventional propagation environments to all
sorts of new scenarios including, but not limited to, Internet of Things
(IoT), body area network (BAN), drone communications, and vehicular
network, etc [2]. A new communication scenario often implies new
physical propagation phenomena, which might require to develop new
mathematical models to correctly describe the propagation phenomena.

Recently, the double shadowed Rician model was developed in [6] to
underpin some realistic signal reception scenarios, where a Rician faded
signal undergoes line-of-sight (LoS) shadowing followed by another
round of composite shadowing. Physically, this may arise when the
dominant LoS signal power between the transmitter and receiver is
subject to varying levels of shadowing while further shadowing of the
received power (combined LoS and multipath components) occurs due
to obstacles moving around it [6]. In this letter, we study the secrecy
performance over the double shadowed Rician channel by deriving exact
expressions for the secrecy outage probability (SOP) and probability of
non-zero secrecy capacity (PNZSC).

Channel and system models: We consider the classic Wyner wiretap
model: a source node (S) equpped with a directional antenna tries to
transmit secret information to a desired destination node (D) over the
main channel while an illegitimate eavesdropper (E) attempts to intercept
the messages by decoding its received signals from the wiretap channel.
It is assumed that both channels experience the independent but not
necessarily identical double shadowed Rician fading.

With the signal envelop following double shadowed Rician model,
the probability distribution function (PDF) of the instantaneous signal-
to-noise ratio (SNR) can be written as [6]
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where the parameters md and ms indicate the shadowing severity of the
first and second rounds of shadowing processes (the lower value indicates
more severe shadowing), respectively; k is the Rician k parameter, γ
represents the corresponding average SNR, and 2F1(·, ·; ·; ·) denotes the
Gauss hypergeometric function [7, Eq. (9.10)].

The cumulative distribution function (CDF) of the SNR γ follows
immediately from its relationship with PDF as
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is the Meijer G-function [7, Eq. (9.343)] and
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with (x)n being the Pochhammer symbol [7, p. xli].
In the following, we denote γD and γE as the instantaneous SNRs

of the main and wiretap channels, respectively. Furthermore, the main
channel is described by the parameters md1, ms1, k1, and γ1; and the
wiretap channel is determined by the parameters md2, ms2, k2, and γ2.

SOP analysis: The instantaneous secrecy capacity of the considered
wiretap model is defined as [8]

Cs(γD, γE) = max{ln(1 + γD)− ln(1 + γE), 0}. (4)

The SOP is defined as the probability that the instantaneous secrecy
capacity Cs(γD, γE) falls under a predefined secrecy rate Rs, i.e., [5]

SOP=Pr [γD<ΘγE+Θ−1] =

∫∞
0

FγD (Θx+Θ−1) · fγE (x) dx, (5)

where Θ = exp(Rs)> 1.
Applying the Parseval’s formula for Mellin transform [9, Cor. 12.1],

the SOP in (5) can be rewritten as the following contour integral:

SOP =
1
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where L1 is the integration path from c− j∞ to c+ j∞ with c being a
constant, andM[f(x), s] is the Mellin transform of f(x) [9, Chpt. 8.2].

We first solve the Mellin transform M[FγD (Θx+ Θ− 1), 1− s].
Expressing the Meijer G-funtion in the CDF (2) in terms of Mellin-
Barnes type contour integral [7, Eq. (9.30)], we can obtain
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where L2 is some contour that separates the poles of Γ(−ξ) from those
of Γ(1 + p+ ξ). The inner integral in (7) can be solved with the help
of [7, Eq. (3.194.3)] as∫∞

0
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Substituting (8) into (7), we obtain after some algebraic manipulation
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where (a) is based on the definition of Meijer G-function [7, Eq. (9.30)].
To solve the Mellin transform M[fγE (x), s] =

∫∞
0
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we utilize the result [6, Eq. (14)] and with some manipulations to obtain
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where (b) follows by change of random variable in [6, Eq. (14)] and (c) is
obtained by first expressing the Gauss hypergeometric function in series
[7, Eq. (9.14)] and using the definition of Pochhammer symbol [7, p. xli].

Next, substituting (9) and (10) into (6), we obtain
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Recalling the representation of bivariate Meijer G-function in terms of
double contour integral [10, Table I] in (11), the exact expression for the
SOP can be expressed in terms of bivariate Meijer G-function as
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where the bivariate Meijer G-function can be efficiently evaluated in
terms of double contour integral with numerical softwares such as Matlab
and Mathematica [10, Table II].

PNZSC analysis: The PNZSC is a fundamental metric to evaluate the
system secrecy performance that indicates the probability of transmission
with (strictly positive) secrecy capacity [11]. We may write PNZSC as

PNZSC = Pr [γD > γE ] = 1−
∫∞
0

FγD (x)fγE (x) dx. (13)

The PNZSC in (13) can be solved by first substituting [7, Eq. (9.14)]
in the PDF fγE (x), applying the property [12, Eq. 8.4.2.5], then solving
the resultant integral with [12, Eq. 2.24.1], and simplifying, we obtain
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Numerical analysis and discussions: Figures 1 and 2 show the calculated
SOP for varying values of shadowing parameters md and ms under
different values of Rician k parameter. For the evaluation purpose, the
target secrecy rate is set as Rs = 1 nat/s/Hz. It is obvious from the
analytical results in Figs. 1 and 2 that the multiplicative shadowing
parameter ms has a larger impact on the SOP than the LoS shadowing
parameter md (even when the Rician k factor is relatively large). Also,
it is observed that the SOP performance degrades faster when the
shadowings become severer. The concept of "protected zone" around the
legitimate transmitter was initially proposed to enhance the secrecy by
decreasing the capacity of wiretap channel [1]. Due to the very destructive
effect of multiplicative shadowing resulting from the obstacles in the
vicinity of the receiver, it is also necessary that the "protected zone"
is applied for the legitimate receiver to diminish the adverse effect of
multiplicative shadowing caused by the obstructing objects around it
(thus leading to larger ms).
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Fig. 1 SOP versus shadowing parameters md and ms
md1 =md2 =md, ms1 =ms2 =ms, γ1 = 15 dB, and γ2 = 5 dB
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Fig. 2 SOP versus shadowing parameters md1 and ms1
md2 = 3.2, ms2 = 3.2, γ1 = 15 dB, and γ2 = 5 dB
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md2 = 4.2, ms2 = 4.2, k2 = 6.2, and γ2 = 5 dB

Figure 3 shows the PNZSC in terms of average SNR γ1 under different
shadowing conditions. The results in Fig. 3 reaffirms previous analysis on
the impact of two different types of shadowings on secrecy performance.

The G-functions are evaluated using Mathematica with high precision,
and the infinite series in each expression are truncated to the same finite
number ofN = 20 terms, resulting in a sufficiently small truncation error.

Conclusion: In this paper, we derive novel and exact expressions for the
SOP and PNZSC for the PLS over the newly proposed double shadowed
Rician fading channels. The results provide insights as well as physical
implications on the impact of shadowings on secrecy performance.
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