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Abstract—this paper introduces various models for optimal and
maximal utility-based distributed generation penetration in the radial
distribution systems. Several problems with different probabilistic
indices as objective functions constrained by power flow equations,
distributed generation penetration, voltage, and thermal limits are
proposed to obtain the optimal penetration of distributed generations on
rural distribution networks. There are trade-offs between interests and
risks that the distribution network operators or distribution companies
may be willing to take on. Thus, to have effective method for maximal
allocation of distributed generations, new indices are proposed and
the problems are formulated as a risk-constrained optimization model.
The obtained problems have mixed integer non-linear programming
and nonconvex forms because of nonlinearity and nonconvexity of
the optimal power flow (OPF) equations and indices, leading to
computationally NP-hard problems. Accordingly, in this paper, convex
relaxations of OPF are introduced instead of the conventional nonlinear
equations. Efficient linear equivalents of the objective function and
constraints are introduced to reduce the computational burden. Test
results of the proposed models on a radial distribution system are
presented and discussed.

Index Terms—Distributed generation, voltage profile, energy losses,
risk constraints, convex models, mixed integer programming, quadratic
programming.

NOMENCLATURE

A. Indices and Sets

E Set of all lines.
G Set of generator buses.
h (H) Index (set) for hours.
i, j, k (N ) Index (set) for buses.
s (S) Index (set) for scenarios.
t (T ) Index (set) for days.

B. Constants

CW Capacity factor of the available wind turbine.
CS Capacity factor of the available PV module.
EL0 Energy losses in the base case.
F Feeder capacity.
γi(t, h) The importance factor of bus i.
H Number of hours.
lmax,ij Square value of the ampacity of line ij.
LCmax,ij Maximum capacity of line ij.
LL0

ij(t, h) Line-loss in the base case.
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λ Maximum penetration limit in the system.
M Big value for the linearization.
N Number of buses.
Ntap Number of tap positions.
Pbus,i Maximum allowable penetration in bus i.
P s
D,i(t, h) Active power of the load connected to bus i.
P r
W Rated capacity of wind turbine.
P r
S Rated capacity of PV module.
P r
B Rated capacity of biomass DG unit.
P s
W (t, h) Output power of wind turbine.
P s
S(t, h) Output power of PV module.
Qs

D,i(t, h) Reactive power of the load connected to bus i.
rij Resistance of line ij.
ρs Probability of scenario s.
T Number of days.
Tmin Minimum voltage magnitude at the lowest tap

position.
Ttap Step ratiot.
υmin,i Lower limit of voltage in bus i.
υmax,i Upper limit of voltage in bus i.
υ0i (t, h) Square of voltage magnitude in bus i in the base

case.
xij Reactance of line ij.
zij Impedance of line ij.

C. Variables

BIVRs
i (t, h) Binary value for indicating interest voltage rise

states in bus i.
BLFOs

ij(t, h) Binary value for indicating line-flow overloading
states in line ij.

BLLI sij(t, h) Binary value for indicating line-loss increment
states in line ij.

BLLRs
ij(t, h) Binary value for indicating line-loss reduction

states in line ij.
BRVDs

i (t, h) Binary value for indicating risky voltage down
states in bus i.

BRVRs
i (t, h) Binary value for indicating risky voltage rise

states in bus i.
ηsn(t, h) Binary variable for counting OLTC tap ratios.
EL Energy losses after DG integration.
ELI Energy losses index.
ELLI Expected line-loss increment.
ELLR Expected line-loss reduction.
IVRP Interest voltage rise probability.
lsij(t, h) The square of the magnitude of current from bus

i to bus j.
LFOP Line-flow overloading probability.
LI sij(t, h) The amount of line-loss increment.
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LRs
ij(t, h) The amount of line-loss reduction.

LLs
ij(t, h) Line-loss after DG integration.

nB,i Integer value of biomass DG units to be installed
in bus i.

nS,i Integer value of the PV modules to be installed in
bus i.

nW,i Integer value of the wind turbines to be installed
in bus i.

PB,i Capacity of biomass DG unit to be installed in
bus i.

P s
DG,i(t, h) DG power generation in bus i.
P s
ij(t, h) Sending-end active power flow from bus i to bus

j.
PS ,i Capacity of the PV module to be installed in bus

i.
PW ,i Capacity of the wind turbine to be installed in bus

i.
Qs

ij(t, h) Sending-end reactive power flow from bus i to
bus j.

RVP Risky voltage probability.
υsi (t, h) The square of the magnitude of voltage in bus i.
V I Voltage stability index.

I. INTRODUCTION

D ISTRIBUTED generation (DG) has rapidly increased in recent
years. Introduction of DGs changes the magnitude and even

the direction of power flows. This may be interesting (if optimally
allocated) from many points of view, but for a higher levels of pene-
tration (or inappropriate placement) it may raise several potential op-
eration challenges. Therefore, distribution system (DS) operation and
planning practices of distribution companies (DISCOs) are affected
by integrating DG from both technical and economic implications
points of view. For example, from supply security perspective,
employment of DGs needs revising the design and coordination
of protective devices; from the DS operation perspective, voltage
profiles, energy losses, and maintenance and system restoration
practices (in the case of faults) are also affected; and finally from DS
design and planning perspective, grid reinforcement and additions
should take into account future DG connections. It is also true that
more renewable DGs are needed to achieve environmental targets.
Therefore, new techniques are needed to determine the optimal and
maximal allocation of DGs in the existing DS for improving its
performance. Hence, optimal and maximal allocation of DGs in the
distribution system is one of the most crucial issues of DG planning.

Because of non-linearity associated with the objective functions,
technical constrains and AC power flow equations as well as discrete
nature of the DG size and location, optimal DG allocation (ODGA)
belongs to a family of optimization known as the mixed integer
nonlinear programming (MINLP) problems. Furthermore, it will
become more complex when counting time-varying characteristics
of the loads and DGs’ output power. Therefore, robust methods are
needed to solve such a nondeterministic polynomial-time hard (NP-
hard) problem in an effective way.

The promise of effective ODGA in the DS is widely accepted
and has led to a great deal of research activities [1]–[33]. A brief
overview of some of the recent works is given in Table I. From the
current literature, the methods of solving ODGA problem can be

classified into analytical [1]–[7], numerical [8]–[25] and population-
based [26]–[33] methods. Analytical methods are straightforward
alternatives to find the optimum size and location of DGs for a
specific technical performance over a simplified cluster of relations
and iterations and they are computationally fast. Two analytical
methods are presented in [1] for finding optimal location of a single
DG with fixed size in the radial and meshed networks. Another
analytical method is introduced in [2] which uses a loss sensitivity
analysis to get the optimum size and site of a single DG. Authors
in [3] propose analytical expressions for the optimal placement of
one and two DGs. An analytical method as well as Kalman filter
algorithm are investigated in [4] for finding the optimal location and
size of multiple DGs. Authors in [5] suggest analytical expressions
for finding optimal size and power factor of different types of DGs.
Problem of multiple distributed generators (DG units) placement
to achieve a high loss reduction in large-scale primary distribution
networks is investigated in [6]. In [7], the combination of analytical
and genetic algorithm methods is used for an optimal allocation
of multiple DGs in a distribution network to minimize the system
losses. The main disadvantages of this class of approaches are: a)
traditionally, a single peak load scenario is considered to calculate
the power losses rather than energy losses , while load demand and
DG’s output power have time-varying nature and also distribution
network operator (DNO) and DISCOs use energy losses measure; b)
as the analytical formulation is only provided for a single technical
attribute, accordingly different potential limitations such as voltage
down/rise and line overloading as well as voltage control schemes
have not been considered; c) for a given time period, only one DG
plant can be assessed, i.e., an iterative procedure is required for
multiple connections of DGs. Thus, these methods result in only
declarative solutions.

Numerical methods have been widely used and developed for
solving ODGA problem. Gradient search and sequential quadratic
programming are used to solve ODGA constrained by fault levels
in [8], [9], respectively. Authors in [10] utilize linear programming
to solve the problem of ODGA in order to maximize the DG
energy harvesting. ODGA problem is formulated as the nonlin-
ear programming in [11]–[13]. MINLP is employed for optimal
allocation of different types of DG units in the hybrid electricity
market in [14] and the electricity market price fluctuation has been
considered in [15]. Authors in [16] and [17] introduce probabilistic-
based MINLP models for the energy losses minimization by the
allocation of only wind power generation and mix of renewable
DGs, respectively. The same model for the placement of DGs for
the voltage stability improvement is introduced in [18]. Authors in
[19] utilize a dynamic programming model to solve the problem
of the optimal placement of DGs in a distribution system with the
objectives of power loss minimization, voltage profile improvements
and reliability maximization. An ordinal optimization method is
proposed in [20] for exploring the trade-offs between the loss
minimization and DG penetration maximization. Exhaustive searches
are proposed for solving the ODGA in distribution networks with
different load models in [21], with time-varying generation and load
model in [22], and through the evaluation of interests and risks anal-
ysis using several performance-based metrics in [23]. A stochastic-
based mixed-integer conic programming (MICP) formulation for
optimal wind generation allocation is presented in [24], [25] with
the objective of maximizing a multiobjective performance index.
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As mentioned, the ODGA problem belongs to the MINLP prob-
lems which are well-known for their complexity and computation-
ally expensive features. Due to the lack of efficient mathematical
approaches for solving this class of optimization problems within a
reasonable time, the heuristic algorithms have been widely used in
the literature to find fast, while suboptimal solutions. There are many
heuristic methods that have been applied to the problem of ODGA
with different characteristics. For example, genetic algorithm (GA)
is used in [26] to solve single and multiobjective models of ODGA.
Authors in [27] use GA combined with Tabu search (TS) to solve a
stochastic planning model to minimize the life-cycle cost of the DG
constrained by the reliability criterion. Particle swarm optimization
(PSO) is implemented in [28] for maximizing DG penetration with
the harmonic and protection constraints. Ant colony optimization
(ACO) is proposed in [29] for co-optimal placement of protection
devices and DGs for reliability enhancement in radial distribution
networks. Artificial bee colony (ABC) is presented in [30] for
determining optimum size, power factor, and location with the
objective of power losses minimization. In [31] differential evolution
(DE) algorithm is proposed for minimizing transmission losses by
optimally allocating DGs in a sub-transmission system. Harmony
search (HS) is presented in [32] to solve the problem of network
reconfiguration in the presence of DGs in order to minimize the real
power losses and improve the voltage profile in a distribution system.
Practical heuristic algorithms (PHA) is proposed in [33] for ODGA
in a distribution system with the objective of reliability improvement.
Despite their broad applicabilities, the intrinsic problem structure
which is important for the large-scale problems, is often neglected
in the heuristic methods [34]. The intrinsic structure of a problem
includes linearity, convexity, differentiability, and continuity of the
objective function and constraints. The heuristic methods such as
GA, SA, PSO, TS, and etc., consider the problem as a “black
box” and hence, they may neglect the intrinsic problem structure. In
addition, these population approaches have no guarantee for finding
optimal solutions within a finite amount of time, parameter tuning
mostly is done by the trial-and-error strategy, they may be expensive
and have no complete theoretical basis yet [34], [35].

Due to the nonconvexity of the power flow equations and some
constraints, most problems of ODGA are nonconvex; resulting in no
assurance of convergence to the global solution. Recent researches
have shown that the load flow equations describing the steady-state
conditions in the distribution network can be placed in the extended
conic quadratic format [24], [25], [34]–[37]. The implementation
of this format in the OPF problem is proposed in [38] considering
several control devices such as tap-changing transformers, phase-
shifting transformers, and unified power flow controllers. Authors
in [34], [35], [39] propose MICP formulation for the minimum loss
distribution network reconfiguration problem based on the recently
developed convex relaxation of the AC OPF problem. Reference [34]
has the extended convex relaxations of the network reconfiguration
problem which is differ from the ODGA problem as each problem
has its own mathematical format.

In summery, to the best of authors’ knowledge, the contributions
of this paper with respect to the researches in the area are: (i) The
uncertain characteristics of renewable DG units and loads for ODGA
are taken into account in the distribution systems towards higher
performance networks. (ii) New performance-based indices have
are introduced and formulated which comprehensively evaluate the

TABLE I
TAXONOMY OF THE REVIEWED ODGA MODELS.

Technique
Analytical [1]–[7]

Numerical [8]–[25]
Heuristic [26]–[33].

Objective Single objective [1]–[10], [13], [14], [16]–[18],
[21], [42]–[44]

Multi objective [12], [15], [22]–[25]

Objective
function

Min power loss [1]–[7], [9], [21]
Min energy loss [16], [17], [23]–[25], [44]

Max profit [10], [19], [20], [43]
Min cost [14], [42]

Max voltage [18], [23], [24]
Max penetration [8], [13], [25], [45]

Design
variable

Type [17], [18], [23]–[25]

Size [2]–[9], [13]–[21], [23]–[25],
[42]–[45]

Site [1]–[8], [10], [12], [14]–[21],
[23]–[25], [42]–[45]

Number [14], [17], [18]

OPF Linear/ Convex [8], [24], [25]
Non-

linear/Nonconvex
[9], [10], [14]–[18], [20], [21],

[45]

Modeling Deterministic [1]–[10], [20], [21], [42]

Stochastic [12], [16]–[18], [22]–[25], [43],
[45]

steady state technical impacts of DGs’ penetration on the distribution
networks. These indices include both interests and risks of DGs’
penetration. (iii) A basic probabilistic-based AC OPF technique
is provided to minimize energy losses, maximize voltage profile
and find maximal DGs’ penetration by optimally allocating DGs
in the distribution systems. (iv) Mmixed-integer quadratic program-
ming (MIQP), mixed-integer quadratically constrained programming
(MIQCP), and second-order cone programming (MISOCP) formu-
lations are extracted for ODGA, as seen in Table II. Furthermore,
efficient linearization and relaxation techniques are used to ex-
ploit these models which can be solved using available powerful
commercial softwares. (v) Risk-based maximal DG penetration in
the distribution systems is formulated and evaluated using MIQCP
model considering the probability of voltage constraint violation
and line flow overloading as the risk constraints. (vi) The potential
advantages of adopting real-time control and communication systems
as a part of the future smart grids are evaluated in the problems of
ODGA.

The main advantage of the above-mentioned features in the
proposed models is that the ODGA problem can be solved using
available powerful commercial software such as CPLEX [40] and
GUROBI [41]. Also, unlike the most population-based optimization
algorithms, the proposed models guarantee the optimal global so-
lution. The rest of the paper is organized as follows: In Section
II, the model description of renewable energy resources and load is
presented. The problem formulation of ODGA is reviewed in Section
III. The proposed convex relaxations of the obtained nonconvex
formulation are explained in Section IV. Section V proposes addi-
tional interests and risks of implementing DGs. The results obtained
by applying the proposed models to a variety of case studies are
demonstrated in Section VI. The conclusions are summarized in
Section VII.
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II. MODEL DESCRIPTION

A. Modeling of Renewable Resources

1) Data: In this paper, the probabilistic generation of each DG
unit has been modeled according to the hourly historical data of the
site under study, during two years, as well as specific characteristics
of each DG. On this basis, each year is divided into four seasons. In
order to characterize the random behavior of the renewable energy
resources during each season, a typical day with 24-h time periods
is considered. For each season, the data related to the same hours
of the day are utilized to obtain the probability distribution func-
tions (PDFs) corresponding to each time period. The probabilistic
model of DGs including wind turbines (WTs) and PV systems are
characterized as follows.

2) Probabilistic Model of WTs and PV System: The hourly wind
speed and solar irradiance of the site under study have been utilized
to generate Rayleigh [46] and Beta [47] distribution functions for
each time period, respectively. These continuous PDFs are sliced
into several segments where each segment yields a mean value and
a probability of occurrence. Note that the probability of each segment
during any specific hour can be expressed as follows:

probi =

Xi+1∫
Xi

f(x) dx (1)

where f(x) indicates PDFs. Xi and Xi+1 are the starting and
ending points of the interval i, respectively.

B. Load Data

From the hourly load data for the system under study and the
IEEE-RTS system [48], the load profile is considered as a percentage
of the annual peak load.

C. Whole System Characterization

• Generating related PDFs: Firstly, the PDFs for solar irradiance
and wind speed are obtained using historical data (24 PDFs
for each season related to 24-h of a typical day). As it was
discussed in the previous section, these continuous PDFs are
sliced into several segments for each time period.

• Developing scenarios with their own probability: Next, the
different realization of the random variables, i.e., solar irra-
diance and wind speed are generated using the roulette wheel
mechanism [46], separately. By the way of illustration, consider
winter which is modeled through a typical day with a 24-h
time period. In this case, NS and NW scenarios are generated
for solar irradiance and wind speed, respectively. For example,
for solar irradiance, each scenario contains 24 values of solar
irradiance related to the 24-h time period of the typical day. It
should be noted that each scenario has its own probability of
occurrence.

• calculating the output power of DGs: Then, based on the
characteristics and power curves of DG units, the solar irra-
diance and wind speed of each state during each time period is
transformed into the output power of PV and wind-based units.

• Reducing the number of scenarios: A large number of scenarios
may contribute to a more accurate model of the random
variables. Nevertheless, this increases the computational burden

of the problem. Thus, finally, a fast forward scenario reduction
method based on the Kontorwish distance [49] is employed to
reduce the number of scenarios while provides a reasonable
approximation of random variable of the system.

For more details about the probabilistic modeling the work [23] is
suggested.

III. ODGA PROBLEM FORMULATION

A. Notations

A radial distribution system (RDS) can be represented by the
graph G = (N , E) and the set of generator buses G ⊆ N . Let
N := {1, · · · , n} denote the collection of all nodes. Each line
connects an ordered pair (i, j) of nodes where node i is the sending
end and node j is the receiving end bus. Let E denote the collection
of all lines, and (i, j) ∈ E is abbreviated by ij for convenience.
Note that, as G is directed, if (i, j) ∈ E then, (j, i) /∈ E . For
each bus i ∈ N , let V s

i (t, h) = V s
re,i(t, h) + iV s

im,i(t, h) denote
its complex voltage and it is defined that υsi (t, h) := |V s

i (t, h)|
2.

Let Isij(t, h) = Isre,ij(t, h) + iIsim,ij(t, h) denote the complex current
from bus i to bus j and it is defined that lsij(t, h) :=

∣∣Isij(t, h)∣∣2.

B. Constraints

1) Power Flow Equations: Given the network graph (N , E), the
impedance z, and the substation voltage υ1, then the other decision
variables satisfy the DistFow equations [24]: ∀ (i, j) ∈ E , ∀ j ∈ N ,
∀ s ∈ S, ∀ t ∈ T and ∀ h ∈ H,

P s
ij(t, h)−rij lsij(t, h) = −P s

DG,j(t, h)+P
s
D,j(t, h)+

∑
k:j→k

P s
jk(t, h)

(2)
Qs

ij(t, h)− xij lsij(t, h) = Qs
D,j(t, h) +

∑
k:j→k

Qs
jk(t, h) (3)

υsi (t, h)−υsj (t, h) = 2
[
rijP

s
ij(t, h) + xijQ

s
ij(t, h)

]
−|zij |2lsij(t, h).

(4)

2) Branch Current Equation: The line current through ij can be
expressed as follows: ∀ i ∈ N , ∀ s ∈ S, ∀ t ∈ T and ∀ h ∈ H,

lsij(t, h) =
P s
ij(t, h)

2
+Qs

ij(t, h)
2

υsi (t, h)
. (5)

3) Voltage Limits: Bus 1 is reserved for the so-called slack bus,
which balances the active and reactive power in the system, and it
is modeled as a generator: ∀ s ∈ S, ∀ t ∈ T and ∀ h ∈ H,

υs1(t, h) = 1.03 pu (6)

at the other buses voltage magnitude should lie within pre-
specified voltage lower and upper bounds: ∀i ∈ N/{1}, ∀ s ∈ S,
∀ t ∈ T and ∀ h ∈ H,

υmin,i ≤ υsi (t, h) ≤ υmax,i. (7)

4) Feeder Capacity Limits: Thermal limit of the lines is generally
assumed stiff and no overloading is permitted. Accordingly, the
maximum thermal capacity of lines should be limited as follows:
∀ (i, j) ∈ E , ∀ s ∈ S, ∀ t ∈ T and ∀ h ∈ H,
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TABLE II
ODGA PROBLEMS: OBJECTIVES AND CONSTRAINTS.

Model MINLP MIQP MIQCP MISOCP
Minimize ELI

Subject to (2)-(14)
(9)-

(14),(19)-
(22)

(6),(7),(9)-
(14),(19),(22)-

(25)

(2)-(4),(6)-
(14),(18)

Maximize V I

Subject to (2)-(14)
(6),(7),(9)-
(14),(20)-
(22),(25)

(6),(7),(9)-
(14),(22)-

(25)

(2)-(4),(6)-
(14),(18)

lsij(t, h) ≤ lmax,ij . (8)

5) DG Installed Capacity: DG installed capacity is equal to the
product of selected number of DG units with their rated capacities
as follows: ∀i ∈ G,

PW ,i = nW,i P
r
W (9)

PS ,i = nS,i P
r
S (10)

PB,i = nB,i P
r
B (11)

Equations (9)-(11) show sizes of wind turbine, PV and biomass
DG units, respectively, which can be installed on each bus in the
system.

Aggregation of installed DG capacities on each bus gives: ∀ i ∈ G,
∀ s ∈ S, ∀ t ∈ T and ∀ h ∈ H,

P s
DG,i(t, h) = P s

W (t, h) PW ,i + P s
S(t, h) PS ,i + PB,i (12)

where P s
W (t, h) and P s

S(t, h) are the output power of wind and PV
DGs in scenario s at day t at hour h, respectively as described in
section II.

6) Maximum DG Penetration Limits on Each Bus: The maximum
DG penetration on each bus can be selected according to some
factors such as investor decisions, availability of energy resources,
land space, etc. The sum of installed ratings of DGs on each bus is
limited by the maximum allowable penetration on each bus, Pbus,i:
∀i ∈ G,

PW ,i + PS ,i + PB,i ≤ Pbus,i. (13)

7) Maximum DG Penetration Limits in the System: Some distri-
bution system companies may have limitations on the percentage of
DGs allowed in their systems. The amount of DG power (capacity
factor × DG installed capacity) injected into the network should
restricted by the maximum feeder capacity, F , as follows:∑

i∈G
(CWPW ,i + CSPS ,i + PB,i) ≤ λF. (14)

C. Objective Functions

From the available literature, two general indices have been used
as the objective functions of optimal DG allocation in distribution
systems. By comparing and taking the ratio of a measure of an
attribute with and without DG (with the same load pattern), an
index can be derived for the loss reduction and the voltage profile
improvement. The snapshot indices have been proposed in [50].
These indices have been improved and utilized for evaluating DG
increasing penetration effects and optimal DG allocation considering
the uncertainty of DG and loads in [23] and [24].

We consider the energy loss index and voltage improvement
index as objective functions. Thus, a beneficial DG location would
decrease total network losses and improve voltage profile. These two
indices are defined as the following forms:

1) Energy Loss Index: This index should be minimized over a
considered time horizon. Since each time segment t represents 90-
day (30 days per month × 3 months per season), this index can be
formulated as follows:

ELI =
EL

EL0 (15)
where

EL =
∑
s∈S

ρs
∑

(i,j)∈E

∑
t∈T

∑
h∈H

rij l
s
ij(t, h)× 90 (16)

here, ρs is the probability of state s. EL and EL0 denote
the energy losses after and before DG addition in the system,
respectively.

2) Voltage Profile Index: This index can be defined as follows:

VI =
1

T ×H
∑
s∈S

ρs
∑
i∈N

∑
t∈T

∑
h∈H

γi(t, h)

(
υsi (t, h)

υ0i (t, h)

)
(17)

υ0i (t, h) is the square of the magnitude of the complex voltage at
bus i at time t at hour h in the base case (without DG). T is the total
number of time periods during the planning time horizon and H is
the total number of hours in a day. γi(t, h) is the importance factor
of load buses which can be chosen based on the importance and
criticality of the loads [23], [24]. For the sake of simplicity, all load
buses are equally weighted in this paper, i.e., γi(t, h) = 1

N ; ∀i ∈
N , ∀t ∈ T , ∀h ∈ H; here N is the total number of load buses in
the system.

It should be noted that the technical impact indices ELI and
VI illustrate that the employment of DG is beneficial or not. If
the introduction of DG is beneficial, ELI will be less than unity
and VI will be greater than unity. The problem of ODGA tries
to find minimum energy loss index (15) and/or maximum voltage
improvement index (17) subject to the constraints (2)-(14). The
resultant problems has the form of MINLP form.

IV. CONVEX RELAXATIONS OF ODGA

As seen from the above formulations, nonlinear term is only
appeared in the equality constraint (5) of the DistFlow equations.
So, the problem is nonconvex and existing solution methods do
not guarantee to find the global solution in a reasonable time [34],
[35]. Recently, to cope with these challenges, convex relaxation
methods have been proposed and extended by the researchers for the
network reconfiguration practices [34], [35], [39]. Convex functions
are always somewhat bowl-shaped, have no local maxima (unless
constant), and have no more than one local minimum value. If a
local minimum exists, then it is also the global minimum. Hence, the
gradient descent and Newton methods (with line search) guarantee
to produce the global minimum when applied to such functions [51].
The convex forms of the ODGA are extracted bellow:

A. MISOCP model

As mentioned, the equation of line currents in (5) is nonconvex.
If we relax it by the inequality (18) over all lines, we can obtain the
MISOCP model of the ODGA problem [24], [52].
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lsij(t, h) ≥
P s
ij(t, h)

2
+Qs

ij(t, h)
2

υsi (t, h)
. (18)

This relaxed inequality introduces the second-order cones with
respect to (P,Q, l, v).

B. MIQP Model

Neglecting the l terms in (2)-(4), removing constraints (5)-(7) and
fixing the voltage magnitudes at each bus at 1 p.u., the first MIQP
formulation of ODGA for energy loss minimization can be obtained.
The objective is as (15), and we should only substitute the following
quadratic term in (16):∀ (i, j) ∈ E , ∀ j ∈ N , ∀ s ∈ S, ∀ t ∈ T and
∀ h ∈ H,

lsij(t, h) = P s
ij(t, h)

2
+Qs

ij(t, h)
2 (19)

and the constraints are (9)-(14) and the linear DistFlow equations
(20) and (21):

P s
ij(t, h) = −P s

DG,j(t, h) + P s
D,j(t, h) +

∑
k:j→k

P s
jk(t, h) (20)

Qs
ij(t, h) = Qs

D,j(t, h) +
∑

k:j→k

Qs
jk(t, h) (21)

C. MIQCP Model

If we reformulate the problem as MIQCP [53], we can write line
capacity limit (8) as follows:∀ (i, j) ∈ E , ∀ j ∈ N , ∀ s ∈ S, ∀ t ∈ T
and ∀ h ∈ H,

P s
ij(t, h)

2
+Qs

ij(t, h)
2 ≤ LC 2

max,ij (22)

Also, the line flow equations (2) and (3) can be replaced by the
following quadratic constraints:

P s
ij(t, h)− rij

(
P s
ij(t, h)

2
+Qs

ij(t, h)
2
)
+ P s

DG,j(t, h)−

P s
D,j(t, h)−

∑
k:j→k

P s
jk(t, h) ≥ 0 (23)

Qs
ij(t, h)− xij

(
P s
ij(t, h)

2
+Qs

ij(t, h)
2
)
−

Qs
D,j(t, h)−

∑
k:j→k

Qs
jk(t, h) ≥ 0 (24)

Furthermore, by removing the last term in (4), this equation can
be approximated with the following equality constraint:

υsi (t, h)− υsj (t, h) = 2
[
rijP

s
ij(t, h) + xijQ

s
ij(t, h)

]
. (25)

Accordingly, the MIQCP formulations of ODGA are as given in
Table II.

V. PROPOSED NET INTEREST AND RISK INDICES

By comparing a measure of an attribute with and without DG
(with the same load pattern), an index can be derived for each
attribute. A set of typical indices which can be employed to
describe the technical impacts of DG on the DS are: IVRP , RVP ,
LFOP , ELLR, and ELLI which have been defined in [23] and
mathematically are described bellow.

A. Interest Voltage Rise Probability (IVRP)

Introducing DG can improve the voltage profile of the system
because loads will be served locally resulting in less current flow
through the feeder. This reduces the amount of voltage drop and it
results in an overall increase of the voltage in the RDS. With the
optimal penetration of DG units, the rise in voltage is interesting
in the most cases, while improving the voltage profile. For larger
amounts of DGs, the effect is more severe for smaller-size feeders,
for low-load situations, and for DG units far away from the main
substation. In these conditions, the connection of a DG will result
in voltages rise above the allowable limit for end-users. The under-
voltage is formed by the DG units with induction machine interface
where the reactive power consumption could actually result in a
reduction of the voltage.

The voltage limit at each node is assessed probabilistically. If the
voltage magnitude with DG integration at node i at hour t and state
s lays between the lower and upper limits as in (7), and greater
than the voltage before adding DG, the voltage rise will be of an
interest. In some states, the voltage magnitude may be greater than
that of before DG integration, but, still be lower than the minimum
voltage limit. These states, however, show the improvement in the
voltage profile of the system by DG, which we don’t consider as an
interest voltage rise, in this paper. A binary variable BIVRs

i (t, h)
is used to count the interest voltage rise. So, BIVRs

i (t, h) = 1, if
the voltage of node i in the state s at the day t and at the hour
h satisfies (7) and when it is greater than the voltage magnitude
without DG employment, it will be equal to zero. As (7) is satisfied
in the optimization problem, only condition to count the interest
voltage rise is as follows:

BIVRs
i (t, h) =

{
1 ; if υsi (t, h) ≥ υ0i (t, h)
0 ; otherwise

(26)

Let name the probability of these conditions occurring as IVRP .
The proposed IVRP quantifies the improvement in the voltage
profile in a simple manner in the presence of DG. Mathematically,
it is defined as follows:

IVRP =
1

T ×H
∑
s∈S

ρs
∑
i∈N

∑
t∈T

∑
h∈H

γi(t, h)BIVR
s
i (t, h)

(27a)

υsi (t, h)− υ0i (t, h) > [BIVRs
i (t, h)− 1]M (27b)

υsi (t, h)− υ0i (t, h) < BIVRs
i (t, h)M (27c)

Also, considering the duration of each time period in (8) we can
obtain the duration of the interest voltage rise as another voltage
performance metric, if needed.

B. Risky Voltage Probability (RVP) and Line Flow Overloading
Probability (LFOP)

If in the OPF it is allowed that voltage constraints can be violated
as in BS EN50160 standard [54], and power flows through lines or
transformers are also allowed to exceed their thermal capacities, the
notions of risky voltage probability, RVP , and line flow overloading
probability, LFOP , need to be introduced. For example, risk level
can be used to determine the extent to which voltage rise/down
and overloading could exist during a control cycle in the active
network management systems (NMS). The risk-based NMS allows
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investigating in detail the benefits and impacts of adopting different
control cycles, quantifying in particular compliance of voltages
with the EN50160 standard [55]. The proposed risk-based metrics
evaluate the probability of voltage constraint violation and line
flow overloading, respectively. Probability of voltage excursions and
congestions can be controlled using a pre-defined risk level as given
in [55]. These metrics can be defined mathematically as follows:

RVP i(t, h) =
∑
s

ρsγi(t, h) [BRVR
s
i (t, h) + BRVDs

i (t, h)] (28)

LFOP ij(t, h) =
∑
s

ρsBLFO
s
ij(t, h) (29)

where

BRVRs
i (t, h) =

{
1 ; if υsi (t, h) > υmax,i

0 ; otherwise
(30)

BRVDs
i (t, h) =

{
1 ; if υsi (t, h) < υmin,i

0 ; otherwise
(31)

BLFOs
ij(t, h) =

{
1 ; if lsij(t, h) > lmax,ij

0 ; otherwise
(32)

If we want to formulate the previously mentioned ODGA as a risk-
constrained convex model, the equivalent linear inequalities of (30),
(31) and (32) should be defined as (33), (34) and (35), respectively.

υsi (t, h)− υmax,i > [BRVRs
i (t, h)− 1]M (33a)

υsi (t, h)− υmax,i < BRVRs
i (t, h)M (33b)

υmin,i − υsi (t, h) > [BRVDs
i (t, h)− 1]M (34a)

υmin,i − υsi (t, h) < BRVDs
i (t, h)M (34b)

lsij(t, h)− lmax,ij >
[
BLFOs

ij(t, h)− 1
]
M (35a)

lsij(t, h)− lmax,ij < BLFOs
ij(t, h)M (35b)

Here, the square of the magnitude of the voltage lower bound
υmin,i and upper bound υmax,i are in per unit values, and lmax,ij

is the magnitude of the thermal capacity of line (i, j) in p.u.. Also,
M is sufficiently a big number.

C. Expected Line Loss Reduction (ELLR) and Expected Line Loss
Increment (ELLI)

Depending on the location, generation and load at a given instant,
DG may unload lines and reduce losses or, alternatively may
increase the losses. These indices express respectively, the expected
energy loss reduction or increment for a given time horizon and
mathematically are given as follows:

ELLR =
∑
s∈S

ρs
∑

(i,j)∈E

∑
t∈T

∑
h∈H

LRs
ij(t, h) (36)

ELLI =
∑
s∈S

ρs
∑

(i,j)∈E

∑
t∈T

∑
h∈H

LI sij(t, h) (37)

LRs
ij(t, h) = BLLRs

ij(t, h)
[
LL0

ij(t, h)− LLs
ij(t, h)

]
(38)

LI sij(t, h) = BLLI sij(t, h)
[
LLs

ij(t, h)− LL0
ij(t, h)

]
(39)

where
LLs

ij(t, h) = rij l
s
ij(t, h). (40)

Here LLs
ij(t, h) denotes the line-loss in scenario s, at line ij at

day t and at hour h after DG addition. LL0
ij(t, h) denotes the line-

loss at line ij at day t and at hour h before DG addition. LR and
ELI define the amounts of line-loss reduction and increment with
respect to the line-loss before DG installation, respectively. Binary
variables BLLR and BLLI are used to count the line loss reduction
and increment, respectively. If line loss with DG is lower than that
of before DG employment, BLLR will be equal to one, and will
be zero, otherwise. In contrast, if the line loss with DG is greater
than that of before DG employment, BLLI will be equal to one,
and zero, otherwise.

VI. NUMERICAL RESULTS

A. Test System Data

The performance of the proposed models is evaluated using IEEE
33-bus RDS. Detailed load and branch data of this test system are
obtained from [56]. Base values of this system are 12.66 kV and
100 MVA.

With the consideration of the land space limit, it is also assumed
that the maximum size of DG unit that can be installed at each
node is 1500 kVA with discrete interval capacity of 100 kVA. The
ampacity of conductors between nodes 1-2 and 2-3 are assumed to
be 350 A, and the ampacity of other conductors is assumed to be
250 A. In case studies 1 and 2, the maximum DG penetration limit,
λ, in the system is set at 50%. The square magnitudes of voltage
lower and upper limits are set to be 0.9025 p.u. and 1.1025 p.u.,
respectively.

The hourly wind speed and solar irradiance data for the site under
study have been utilized to generate a Rayleigh and Beta PDFs for
each time segment, respectively. From the hourly load data for the
system under study and the IEEE-RTS system [57], the load profile is
assumed as a percentage of the annual peak load which can be found
in [17]. The DG units are assumed to operate at unity power factor
and are considered as not having the capability to control voltages,
and therefore, they has been modeled in power flow equations as a
negative load, i.e., as a PQ node.

For the study cases in Subsections B to D, nodes 14, 18 and 32
are considered as the candidate nodes and in Subsection E nodes
6,14,18,22,32 are assumed as candidate nodes for DG integration.
The candidate buses can be selected according to some parameters
such as investor decisions, availability of energy resources, land
space, etc. When the candidate buses are determined, it is the utilities
task to install their DGs in the candidate nodes or not. The utility
will perform this task in a way to get the maximum benefits. Several
scenarios are considered in the study which are listed below:
Scenario 1: base case (without DG)
Scenario 2: only wind DG unit (maximum 1500 kW at each

candidate node)
Scenario 3: only PV DG unit (maximum 1500 kW at each candi-

date node)
Scenario 4: only Biomass DG unit (maximum 1500 kW at each

candidate node)
Scenario 5: mix of wind, PV and Biomass DG units (maximum

capacity of 500 kW for each type at each candidate bus)
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TABLE III
RESULTS OF CONVEX MODELS TO SOLVE ODGA: OPTIMIZATION OBJECTIVES

AND COMPUTATION TIMES.

OPF model
energy loss minimization voltage maximization
VI ELI Time(s) VI ELI Time(s)

MISOCP 1.047 0.47 1024 1.073 0.607 1012
MIQP 1.046 0.51 8.0 1.064 0.594 4.0

MIQCP 1.055 0.46 86 1.070 0.600 103

TABLE IV
EFFECTS OF DG TYPES ON PERFORMANCE METRICS, FIXED SUBSTATION

VOLTAGE.

Metrics Scen#2 Scen#3 Scen#4 Scen#5

VI 1.003 1.012 1.035 1.032
IVRP 0.935 0.948 1.0 1.0
ELI 0.92 0.79 0.51 0.512

ELLR (MWh) 46.56 130.0 309.3 304.3
ELLI (MWh) 0.00 6.525 10.23 6.97

Each single objective problem has been solved using the modeling
language GAMS [58] and solver MOSEK on a computer with
Pentium(R) Dual-Core CPU @ 2 GHz and 4 GB of RAM.

B. Comparison of solution methods

Here, the proposed multi-period OPF-based ODGA models were
employed with the energy loss index minimization and voltage
index maximization objectives as given in Table III. This study
was implemented for Scenario 5 over the summer season (24 time
periods). This table gives the objectives and computation times
obtained by each model. The results of this case study show that all
models found approximately the same solution results. The energy
losses reduction of 49.1% is obtained by the MIQP, 52.7% by the
MISOCP model and 53.3% by the MIQCP model. The computation
time of the MISOCP model is the most while the MIQP model is the
lowest. The MIQCP model has the computation time between them.
It should be noted that, minimization of ELI and maximization
of VI will enhance each other. For example, when the objective
function is the minimization of ELI , the MISOCP, MIQP and
MIQCP, respectively will present 4.7%, 4.6% and 5.2% voltage
improvement with respect to the voltages before DG addition. On
the other hands, about 40% reductions in the energy losses will
be obtained by all methods when the objective is maximization of
VI . Therefore, the MISOCP and MIQCP models can be more
accurate than MIQP which neglects losses in its constraints, but
significantly have longer computation time to solve using currently
available algorithms.

C. Comparison between DG types

The effects of location and size of wind, PV and biomass DG
units on the voltage profile and losses are evaluated via scenarios 1
to 5. We will show that besides these effects, the system performance
will be affected by the DG energy production patterns. Obviously,
line-loss reductions and voltage profile improvements are due to
reductions in power flows resulting from the introduction of DG. All
scenarios that include biomass DG are superior to other scenarios
(including intermittent generation) from a loss-reduction and voltage

TABLE V
OPTIMAL MW SIZE (NUMBER) AND LOCATION OF DG FOR ENERGY LOSS

MINIMIZATION, FIXED SUBSTATION VOLTAGE.

DG type Candidate bus Scen#2 Scen#3 Scen#4 Scen#5

Wind

14 0.7(7) - - -
18 0.1(1) - - -
32 0.9(9) - - 0.5(5)

PV

14 - 0.8(8) - -
18 - 0.2(2) - -
32 - 1.2(12) - -

Bio.

14 - - 0.4(4) 0.4(4)
18 - - 0.1(1) 0.1(1)
32 - - 0.6(6) 0.5(5)
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Fig. 1. Power losses for scenarios 1 to 5 while minimizing energy losses, fixed tap
position.

improvement perspective, and biomass is the dominant renewable
resource in these scenarios due to the firm output generation. This
is due to the variability of wind power and PV generation and the
limited reliance on power provision at moments where it could be
beneficial particularly at peak demand. Among wind and PV DGs,
the installed capacity of wind DG is lower than that of PV DG.
The explanation is that installed capacity of wind DG restricted by
voltage rise issue in the states of maximum generation and minimum
load (as wind speed involve larger amounts of uncertainty). Despite
wind turbine, PV DG is permitted to be installed more capacity
(about 500 kW), while in most states maximum generations have
been occurred at peak load demand; hence the improvement on
performance indices will be higher than that of wind-based DG.

The results of ODGA for energy loss minimization for Scenarios
2-5 are shown in Tables IV and V, Fig. 1 and Fig. 2. These planning
problems have been solved using MIQCP model. The results of
Scenarios 2-5 show that the introduction of DG reduces the annual
energy losses with respect to scenario 1. The values of ELI , ELLR
and ELLI in Table IV indicate that wind based DG has the least
contribution to energy losses reduction, about 10%, while biomass
DG by 50% reduction is the most beneficial DG option. The energy
loss reduction of Scenario 3 (only PV DG) is higher than that for
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Fig. 2. Effects of DG types on VI while minimizing energy losses, fixed tap position.

Scenario 2 (only wind DG), however, there is large amounts of
uncertainty in both wind speed and solar irradiance. The reason is
that, the capacity of installed PV DG in Scenario 3 is 0.5 MW
which is greater than the wind DG capacity in Scenario 2. Also, it
is evident that ELLR increases as ELI decreases. VI and IVRP
metrics are used to quantify the voltage profile improvement in a year
and the results are given in the 2nd and 3rd rows of Tables IV. It
can be seen that these metrics result the highest value for Scenarios
4 and 5, where the biomass DG units were considered due to its
firm generation pattern. As seen from Table V, in all scenarios the
simulation of ODGA placed and sized the highest DG unit at bus
32. Bus 14 is the second most preferred bus to install DG, and bus
18 is the least one. Considering the case that the total power of three
types is 1500 kW without restriction of each type, the results are
similar to that of scenario 4.

D. Optimal On-Load Tap-Changing (OLTC) adjustment

In this section, we assumed that substation transformers are
equipped with OLTC capability. By implementing OLTC, more
DG may be introduced in the system (see Tables VI and VII), as
OLTC can change dynamically at the substation. This may change
voltage profile and line losses. The effects of OLTC on energy loss
minimization, for example, are evaluated in this part. The static
model of OLTC is used to model the OLTC in the proposed planning
problem. In this model, tap positions are considered as discrete
variables. We consider the voltage magnitude at the substation bus,
V s

1 (t, h), as a decision variable with the following constraints:

V s
1 (t, h) = Tmin + Ttap

Ntap∑
n=1

ηsn(t, h) (41)

υs1(t, h) = (V s
1 (t, h))

2
. (42)

The design of the transformers is in such a way that the tap ratio
usually varies between 0.9 to 1.1 (±10%). Tmin is the minimum
voltage magnitude at the lowest tap position, Ntap is the number
of all possible tap positions. ηn is a binary variable counting tap
ratios. We set Tmin at 0.9, Ttap = 0.05 and Ntap = 4 in this paper.

TABLE VI
EFFECTS OF DG TYPES AND OLTC OPERATION AT SUBSTATION BUS ON

PERFORMANCE METRICS.

Metrics Scen#2 Scen#3 Scen#4 Scen#5

VI 0.99 1.02 0.94 0.96
IVRP 0.422 0.748 0.122 0.243
ELI 0.902 0.80 0.51 0.512

ELLR (MWh) 60.5 132.33 309.3 304.8
ELLI (MWh) 1.24 10.52 10.23 7.412

%OLTC Operation 39.5 16.6 12.5 25

TABLE VII
OPTIMAL MW SIZE (NUMBER) AND LOCATION OF DG FOR ENERGY LOSS

MINIMIZATION CONSIDERING OLTC AUTOMATIC OPERATION.

DG type Candidate bus Scen#2 Scen#3 Scen#4 Scen#5

Wind

14 1(10) - - 0.2(2)
18 - - - -
32 1.5(15) - - 0.5(5)

PV

14 - 0.9(9) - -
18 - 0.3(3) - -
32 - 1.2(12) - -

Bio.

14 - - 0.4(4) 0.4(4)
18 - - 0.1(1) 0.1(1)
32 - - 0.6(6) 0.5(5)

The measure of %OLTC operation is used in this paper to count the
ratio of the number of hours in which a tap position changes over
the number of total hours in a year.

VI and IVRP metrics are used to quantify the voltage profile
improvement in a year and the results are given in the 2nd and
3rd rows of Table VI. It can be seen that these metrics result in
the lowest value for Scenarios 4 and 5. VI in Scenario 2 is 0.99
which indicates that wind integration has had a negative impact on
voltage profile, but the IVRP metric shows the probability of voltage
improvement is 0.422. In Scenarios 4 and 5, where the biomass DG
units were considered, the VI and IVRP reach the lowest values.
The results of Scenario 4 and 5 show that biomass DG units are
the most beneficial DG unit for energy loss minimization, whereas,
its contribution to voltage improvement is the least with a IVRP
and VI of 0.122 and 0.94 for Scenario 4, and 0.243 and 0.96 for
Scenario 5, respectively. VI = 1 means that DG units will not impact
on the voltage profile. While we can see from the second column of
Table VI that the value of yearly VI couldn’t individually represent
the voltage profile variation due to the DG employment, as IVRP
exhibits more than 40% the probability of interest voltage rise with
the DG addition. The Scenarios including wind based DG units,
i.e., Scenarios 2 and 5, indicate that due to the larger uncertainty of
wind speed with respect to solar radiation, the percentage of OLTC
operations during a year are superior to other Scenarios. Because of
firm output generation of biomass DG units, the %OLTC operation
in Scenario 4 is the lowest one.

E. Risk-constrained maximum DG penetration

The problem of risk-constrained maximum DG penetration is
studied in this section. We will show that how the decision variables
change with the change of proposed risks levels. This study proves
that line overloading and voltage rises are the limiting factors that
manifest themselves under different conditions. Four different cases



IEEE SYSTEMS JOURNAL 10

TABLE VIII
RESULTS OF RISK-CONSTRAINED MAXIMUM DG PENETRATION PROBLEM.

Metrics Case1 Case2 Case3 Case4

λ 0.23 0.32 0.23 0.37
VI 1.084 1.09 1.086 1.02

IVRP 1.0 0.96 1.0 0.50
RVP 0.0 0.037 0.0 0.043
ELI 0.83 1.2 0.813 1.12

ELLR (MWh) 120.6 111.5 135.4 106.9
ELLI (MWh) 21.6 234.7 21.6 183.0

LFOP 0.0 0.0 0.0 0.001

are considered for determining maximum PV DG penetration in the
test system. The problems of these cases are formulated as risk-
constrained probabilistic optimization problems which have the form
of MIQCP problem. The mathematical expression of this problem
can be summarized as follows:

maximize λ (43)
subject to

(6), (9)− (14), (22)− (25), (28), (29), (33), (34) (44a)∑
i∈N

∑
t∈T

∑
h∈H

RVP i(t, h) ≤ α (44b)∑
(i,j)∈E

∑
t∈T

∑
h∈H

LFOP ij(t, h) ≤ β (44c)

P s
ij(t, h)

2 +Qs
ij(t, h)

2 − LC 2
max,ij >

[
BLFOs

ij(t, h)− 1
]
M

(44d)

P s
ij(t, h)

2 +Qs
ij(t, h)

2 − LC 2
max,ij < BLFOs

ij(t, h)M (44e)

where, α and β are the allowable risk levels of RVP and LFOP ,
respectively. Four sets of these risk levels are assumed in this section:
Case1: α = β = 0; Case2: α = 0.05 and β = 0; Case3: α = 0 and
β = 0.05; Case4: α = 0.05 and β = 0.05. Nodes 6, 14, 18, 22 and
32 are assumed as candidate buses. The maximum allowable PV
capacity that could be installed at these buses is set at 3 MW. The
results are shown in Tables VIII and IX. As seen from the second
and fourth columns of Table VIII, Cases 1 and 3 reach the same
results. This highlights situations in which voltage rise are more
restrictive than line overloading, see the results of Cases 1-3. Also,
no line overloading is occurred in Case 3, i.e., LFOP = 0. This
situation highly depends on the magnitude of the substation voltage.
In other words, if we increase the difference between substation
voltage magnitude and maximum voltage limit, line overloading may
be more restrictive constraint than voltage rise. Note that, VI index
is not a reliable measure of voltage profile in a case in which the
voltage magnitude is permitted to be violated i.e., in Cases 2 and
4. It is evident that if the voltage and line overloading violations
are permitted, more PV DG could be installed with respect to Cases
1-3; see Table IX.

VII. CONCLUSION

In this paper, three new convex models are proposed for op-
timal and maximal penetration of different types of DGs into
the RDS. The optimization problem seeks to find the maximum

TABLE IX
OPTIMUM MW SIZE (NUMBER) AND LOCATION OF PV DG OBTAINED BY

RISK-CONSTRAINED MAXIMUM DG PENETRATION PROBLEM.

DG type Candidate bus Case1 Case2 Case3 Case4

PV

6 2.9(29) 0.9(9) 2.4(24) 3(30)
14 - - 0.5(5) -
18 - - - -
22 1.3(13) 3(30) 1.3(13) 3(30)
32 0.7(7) 3(30) 0.7(7) 1.9(19)

DG penetration, the minimum energy losses and the maximum
voltage profile, while tackling thermal and voltage issues as well
as the effects of renewable DGs (such as wind-based DG, PV
DG, and biomass DG) and load uncertainties. At first, the basic
MINLP model of the optimization problem is extracted. Then, this
problem is relaxed to different types of convex models that can
utilize a powerful class of convex optimization algorithms. Different
probabilistic-based performance metrics are introduced to evaluate
the benefits and risks of DG employment on DS. The results show
that the quadratic programming model is efficient and also obtains
satisfactory solutions, demonstrating its practicality for ODGA in
large RDS. The second-order cone model seems more reliable in
obtaining good solutions, but computationally to be somewhat is
expensive. The proposed planning techniques have been applied to
different scenarios for the IEEE 33-bus RDS. The results reveal
that implementing DG can reduce annual energy losses and improve
voltage profile. The effects of scenarios including biomass DG on
energy losses reduction and voltage improvement are significant,
as this DG generates firm output power. However, by allowing the
problem to set optimal tap position of OLTC at substation bus, more
DG can be installed, but the voltage improvement will be reduced in
comparison to ODGA with the fixed tap ratio. Finally, the problem
of the risk constrained maximum DG penetration with the proposed
risk measures is proposed and evaluated in the planning problem.
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