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Abstract — This paper proposes an algorithm for determining a minimum generation redispatch 

capable of moving specific oscillation modes to the closest small-signal security boundary that 

guarantees them a desired damping factor. The algorithm combines nonlinear optimization 

techniques with numerical eigenvalue sensitivities obtained from multiple runs of a load flow 

solver and partial eigensolutions. The algorithm, namely Closest Security Boundary for 

Generation Redispatch using Eigenvalue Sensitivities (CSBGRES) relies on sparse matrices and 

is applicable to large-scale power systems. The work presents results on the Brazilian 

Interconnected Power System (BIPS) and the Nordic 44 Test System (N44S). 

  
Keywords — Small-signal stability; Hopf bifurcations; Newton-Raphson method; Stability margins; 
Security boundaries; Nonlinear programming.  
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1. Introduction 

Bifurcation theory [1] applied to power system voltage stability problems had a large momentum in 

early 90’s [2,3], particularly with saddle-node bifurcation analysis in load flow equations. In sequence, 

investigations considering the Hopf bifurcation analysis in differential-algebraic equations (DAE) [4-7] 

were performed under the voltage stability phenomenon. 

The Hopf bifurcation theory was also applied to small-signal stability and control system 

evaluations [8-14]. The early works on Hopf bifurcation in small-signal stability have been 

concentrated on the analysis of eigenvalues with focus on controller parameters, such as power 

oscillation dampers (POD) and power system stabilizers (PSS). Some other works on Hopf bifurcations 

were related to subsynchronous stability analysis [15-18]. 

Some attempts to study Hopf bifurcation with respect to generation or demand parameters were 

made in [19-23], but the analytical determination of eigenvalue sensitivities with respect to the load 

flow parameters is complex and necessary to solve large scale problems [24]. 

This paper uses a numerical computation of eigenvalue sensitivities with respect to generation 

dispatch, obtained through multiple runs of a load flow solver combined with partial eigensolutions, 

namely Generation Sensitivities (GenSens). These numerically-computed sensitivities become the basis 

of the algorithm used to calculate a minimum redispatch for power systems, considering a damping 

factor criterion for oscillation modes, which is being proposed in this paper. Some previous works deal 

with this kind of sensitivities [14,24,25], but this is the first work where these sensitivities are used to 

solve the Hopf bifurcation problem considering minimum redispatch. 

Using nonlinear programming, this algorithm determines the minimum generation redispatch of a 

selected number of power plants capable of moving a specific oscillation mode to the closest small-

signal security boundary, defined by a desired damping ratio locus in the s-plane. 
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Moreover, if the system is unstable and a null damping ratio locus is chosen, corresponding to the 

geometric locus in the s-plane of Hopf bifurcations, the algorithm will find the minimum redispatch to 

stabilize the system. The algorithm can also be used, in the other way around, to calculate the small-

signal security or stability margins with respect to generation redispatch. 

The proposed algorithm, namely Closest Security Boundary for Generation Redispatch using 

Eigenvalue Sensitivities (CSBGRES), uses complete models of system components, numerical 

generation sensitivity calculation and optimization techniques, considering a damping factor criterion 

for system oscillation modes. 

The CSBGRES method relies on sparse matrices and is applicable to large-scale power systems, as 

it was done in [8,13], where only controller parameter variations were considered, but, in the case of 

this paper, dispatch variations can also be considered. This work presents simulation results on the 

Brazilian Interconnected Power System (BIPS) and the Nordic 44 Test System (N44S). The proposed 

method is the first one to solve this kind of problem for large scale power system. 

The remainder of the paper is organized as follows: Section II reviews the small-signal stability 

concept and its relation to the problem being solved; Section III presents the numerical eigenvalue 

sensitivity computation with respect to active power to be used in the development of the proposed 

algorithm, which is described in Section IV; Section V and VI present simulation results for the BIPS 

and the N44S, respectively; and Section VII presents the conclusions of this paper. 

2. Small-signal Stability Review 

The small-signal stability and modal analysis are very important to understand the power system 

dynamic behavior, which can be evaluated through calculating system eigenvalues or oscillation 

modes. The main concepts related to these subjects are the basis of the CSBGRES method definition, 

therefore, they will be reviewed in this section. 
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The set of nonlinear differential and algebraic equations that describes electric power systems for 

electromechanical transient analysis can be represented through (1) and (2), according to [8,13]: 

𝑻𝑻�̇�𝒙 = 𝒇𝒇(𝒙𝒙,𝒑𝒑,𝑢𝑢)    (1) 

𝑦𝑦 = 𝒉𝒉(𝒙𝒙,𝒑𝒑,𝑢𝑢)    (2) 

where 𝒙𝒙 is the vector of state and algebraic variables, 𝒖𝒖 and 𝑦𝑦 are, respectively, input and output 

variables of the system, 𝒑𝒑 is a vector of a system parameter set and 𝑻𝑻 is a diagonal matrix with ones 

and zeros, identifying the algebraic and differential equations of the system. 

The differential and algebraic equations are initialized through using the results of a power flow 

solution, considering that the system is operating in a steady-state condition. The correct initialization 

guarantees that the relation between the differential equations in steady-state, the power flow equations 

and the other algebraic equations are consistent. 

Small-signal assessment is obtained through the linearization of (1) and (2) around the steady-state 

condition, yielding (3) and (4): 

𝑻𝑻∆�̇�𝒙 = 𝑱𝑱 (𝒙𝒙𝟎𝟎,𝒑𝒑𝟎𝟎) ∆𝒙𝒙 + 𝒃𝒃 (𝒙𝒙𝟎𝟎,𝒑𝒑𝟎𝟎) ∆𝑢𝑢    (3) 

∆𝑦𝑦 = 𝒄𝒄 (𝒙𝒙𝟎𝟎,𝒑𝒑𝟎𝟎) ∆𝒙𝒙 + 𝑑𝑑(𝒙𝒙𝟎𝟎,𝒑𝒑𝟎𝟎) ∆𝑢𝑢    (4) 

where 𝑱𝑱 is the augmented jacobian matrix, 𝒃𝒃 and 𝒄𝒄 are, respectively, the input and output matrices, 𝑑𝑑 is 

the direct transmission term and the subscript "0" in 𝒙𝒙𝟎𝟎 and 𝒑𝒑𝟎𝟎 means the corresponding initial 

condition of vectors 𝒙𝒙 and 𝒑𝒑. 

The generalized system eigenvalues, which describe the frequency and damping factor of natural 

oscillations of the system, can be computed for the linear matrix pencil (𝑱𝑱,𝑻𝑻), commonly performed in 

small-signal stability solvers [8,13]. These eigenvalues are the poles of the system. 

The problem being solved in this paper consists in obtaining the vector 𝒑𝒑, displaced from 𝒑𝒑𝟎𝟎, 

according to a minimum norm, that moves a critical oscillation mode to lie on a specified security 
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boundary locus in the s-plane (which is a constant damping ratio line). The solution of this problem 

was proposed in [8,13], where parameters in 𝒑𝒑 were PSS or POD gains. 

Some mathematical difficulty arises when elements of 𝒑𝒑 are related to power flow parameters, such 

as generation or demand. In this case, using the same approach of [8,13], the whole set of power flow 

and initialization equations must be included in the equationing, which brings a large complexity to the 

proposed optimization problem and its modelling. 

The main contribution of this paper lies on solving the aforementioned problem in a different way, 

using eigenvalue sensitivities obtained by a numerical differentiation procedure. This methodology 

effectively solves this problem considering an alternating solution, involving data communication 

between a small-signal stability solver and a power flow solver. 

In this work, the small-signal stability software PacDyn [26] was used for the computational 

implementation of the proposed algorithm and the software ANAREDE [27] was used for the power 

flow computations. The communications between them were performed in memory, using a Windows 

Dynamic Link Library version of ANAREDE inside PacDyn’s programming code. 

3 Generation Sensitivity Calculation 

This section presents the procedure to calculate eigenvalue sensitivities with respect to the active 

power dispatched by plants in power systems, namely generation sensitivities. The GenSens can be 

mathematically defined as the derivative of an eigenvalue 𝜆𝜆 related to the active power 𝑃𝑃 dispatched by 

a power plant specified in the power flow data. 

These sensitivities could be analytically computed through building a complete jacobian matrix, 

which includes the linearization of power flow equations, dynamic modeling equations and pole 

definition. However, it yields a very complex mathematical expression. 
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Additionally, some power flow controls (such as transformer tap changes, switching devices or 

intertie power flow controls), which are usually implemented as an alternating procedure in power flow 

solvers, should be fixed or described by approximate equations. 

Due to the aforementioned difficulties, in this work, a numerical procedure was adopted to calculate 

the eigenvalue sensitivities with respect to each power plant dispatch. This numerical method is based 

on the central difference procedure. 

In this procedure, a small positive variation (𝑃𝑃 + ∆𝑃𝑃) and a small negative variation (𝑃𝑃 − ∆𝑃𝑃) are 

applied in the active power dispatched by a given power plant and the corresponding oscillation modes 

are obtained for both situations (𝜆𝜆+∆𝑃𝑃 and 𝜆𝜆−∆𝑃𝑃), through running the power flow solver, initializing 

the system dynamic model and using the DPSE method [28], where a transfer function with high 

residues for the mode under analysis should be used. 

Note that, this GenSens calculation may consider any power flow controls of the system, since the 

power flow computation is solved stand-alone. Both power flow solution and model initialization are 

performed prior to the eigenvalue calculations, as commonly done in a conventional small-signal 

stability software, in an alternating procedure. Therefore, there is no need of simultaneous solution for 

determining these eigenvalue sensitivities. 

After the calculation of these new oscillation modes, obtained for the mentioned conditions, the 

generation sensitivities of an oscillation mode 𝜆𝜆, computed in the original steady-state condition of the 

power system, with respect to the dispatch 𝑃𝑃 of a specific power plant can be approximately 

determined through (5) and (6): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃
≈ ∆𝜕𝜕

2 ∆𝑃𝑃
 ,    ∆𝑃𝑃 → 0    (5) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃
≈ 𝜕𝜕+∆𝑃𝑃−𝜕𝜕−∆𝑃𝑃

2 ∆𝑃𝑃
 ,    ∆𝑃𝑃 → 0    (6) 

The choice of the value of ∆𝑃𝑃 is a very important task, which impacts directly on the reliability of 

the generation GenSens. If this magnitude is very small, problems related to convergence tolerance of 
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power flow solver may occur. On the other hand, if this magnitude is very high, the sensitivity may not 

be precise. So, it is necessary to choose an intermediate value considering these two limit situations. 

Some tests were made using small-scale power systems and the magnitude chosen to be used in the 

GenSens computations was 0.1 per unit in system power base. 

Note that, in general, any change in power plant dispatches would be compensated by the slack bus 

in the power flow calculation, but, in this method, it does not occur. Instead of leaving the slack bus to 

supply this dispatch variation, in the proposed procedure, the dispatch of the machine of interest is 

varied in 0.1 per unit in system base power and the dispatches of the remaining power plants are varied 

in the opposite direction, weighted by their nominal capability. 

In this way, a higher variation is applied to the machine of interest and small variations are applied 

to the remaining ones. This procedure seems to be a better approximation to represent an isolated 

variation in the dispatch of the power plant of interest, being a good way to perform the numerical 

calculation of the generation sensitivities. 

The numerical method proposed to calculate the GenSens uses two directions of variation (positive 

and negative) for the power plant dispatches. If the power flow calculation does not converge to one of 

these directions, then only the converged one is used to determine the generation sensitivity. If both 

directions have convergence problems, then the generation sensitivity is assumed equal to zero for the 

specific power plant to which the convergence problem occurred. 

The GenSens represents the sensitivity of an oscillation mode 𝜆𝜆 with respect to a certain power plant 

dispatch 𝑃𝑃 and shows the displacement trend of this specific mode in the s-plane when increasing the 

dispatch of this specific power plant. These generation sensitivities are complex values and may be 

decomposed into their real and imaginary components. 

The GenSens will be the basis of the CSBGRES method, since it will be used in the modelling of 

the proposed problem and in the ranking of the best power plants for redispatch, where the machines 
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with highest sensitivities should be selected to be utilized in the optimization method, which will be 

presented in the next section of the paper. 

4 Redispatch and Closest Security Boundary 

This section describes the proposed CSBGRES method, which can be used to determine the 

minimum variation in the active power dispatches of system power plants capable of placing a complex 

eigenvalue λ at a security boundary defined in the s-plane. 

This security boundary is defined as a geometric locus in the s-plane, given by a function that relates 

the real (𝜎𝜎) and the imaginary (𝜔𝜔) components of the eigenvalue, as given in (7): 

𝐵𝐵(𝜎𝜎,𝜔𝜔) = 0    (7) 

In this work, the security boundary was considered as a line in the s-plane that represents the desired 

damping factor 𝜉𝜉𝑑𝑑, whose related functions are presented in (8) and (9), as it was done in [8,13]: 

𝜉𝜉𝑑𝑑 = −𝜎𝜎
√𝜎𝜎2+𝜔𝜔2  →  𝜉𝜉𝑑𝑑 + 𝜎𝜎

√𝜎𝜎2+𝜔𝜔2 = 0 →  𝜎𝜎 + 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2
𝜔𝜔 = 0    (8) 

𝐵𝐵(𝜎𝜎,𝜔𝜔) = 𝜎𝜎 + 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2
𝜔𝜔 = 0    (9) 

The particular case where the desired damping factor is zero (𝜉𝜉𝑑𝑑 = 0) corresponds to the stability 

boundary or points of Hopf bifurcation occurrences, which are related to stability limits. 

Optimization methods and techniques are needed to minimize an objective function capable of 

ensuring the minimum variation of the active power dispatches of the power plants selected to be used 

in the CSBGRES method. The sum of the square differences of these active powers will be used as the 

objective function to be minimized. 

The proposed optimization problem can be formulated according to the objective function (10), 

considering the constraints (11) and (12): 

𝑀𝑀𝑀𝑀𝑛𝑛 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑃𝑃) = ∑ �𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖0�
2𝑛𝑛

𝑖𝑖=1   (10) 
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S.t.: 𝜎𝜎(𝑃𝑃) + 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2
𝜔𝜔(𝑃𝑃) = 0            (11) 

       ∑ 𝑃𝑃𝑖𝑖𝑚𝑚
𝑖𝑖=1 − ∑ 𝑃𝑃𝑖𝑖0

𝑚𝑚
𝑖𝑖=1 = 0             (12) 

where 𝑃𝑃 is the dispatch vector, 𝑃𝑃𝑖𝑖 is the dispatch of power plant 𝑀𝑀, 𝑃𝑃𝑖𝑖0 is the initial dispatch of power 

plant 𝑀𝑀, 𝜎𝜎 is the real component of mode 𝜆𝜆, 𝜔𝜔 is the imaginary component of mode 𝜆𝜆, 𝑛𝑛 is the number 

of selected power plants and 𝑚𝑚 is the total number of power plants in service in the system, (11) 

represents the displacement of mode 𝜆𝜆 in the damping factor 𝜉𝜉𝑑𝑑 line in the s-plane and (12) represents 

the power flow balance of the system, neglecting the variation of active losses. 

This loss variation can be absorbed by the slack bus or can be divided proportionally through the 

selected generators during the iterative process of the method. 

A special heuristic was used in the computational implementation of the CSBGRES method to deal 

with this specific issue. In each iteration, the method calculates the loss variation and redistributes it 

into the dispatches obtained for the selected machines. This redistribution of the active losses is made 

through a weighted way, which is based on the nominal capability of the selected power plants. In this 

way, the variation of the losses, which really happens when redispatching the system power plants, is 

indirectly considered in the method. 

Note that, in the proposed problem, economic aspects are not being considering in the redispatch, 

which could be easily done through using weights for the elements of the vector 𝑃𝑃. 

In [8,13], the components 𝜎𝜎 and 𝜔𝜔 were independent variables of the optimization problem, since 

they are directly calculated in each iteration of the algorithm, as well as the parameters of interest and 

the lagrangian multipliers. On the other hand, in the CSBGRES method, these components are 

considered dependent variables of the proposed optimization problem. It means that they are not 

directly calculated in each iteration of the method, but only the active power dispatches of interest and 

the lagrangian multipliers. 
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The oscillation modes are (indirectly) obtained in the beginning of the iterations, using the most 

recent values determined for the active power dispatches. Because of this characteristic, these variables 

can be considered dependent variables of the optimization problem defined in the development of the 

proposed method. This is an important contribution of this work. 

Now, using the Lagrange method to solve the optimization problem, the lagrangian function (LF), 

which must be minimized, can be defined in (13): 

𝑀𝑀𝑀𝑀𝑛𝑛 𝐿𝐿𝐿𝐿 = ∑ �𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖0�
2𝑛𝑛

𝑖𝑖=1 + 𝑙𝑙1 �𝜎𝜎(𝑃𝑃) + 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2
𝜔𝜔(𝑃𝑃)�  + 𝑙𝑙2�∑ 𝑃𝑃𝑖𝑖𝑚𝑚

𝑖𝑖=1 − ∑ 𝑃𝑃𝑖𝑖0
𝑚𝑚
𝑖𝑖=1 �  (13) 

where 𝑙𝑙1 and 𝑙𝑙2 are, respectively, the first and second lagrangian multipliers. 

The problem is solved when the lagrangian function gradient is null, in other words, ∇𝐿𝐿𝐿𝐿 = 0. 

Through this gradient, (14), (15) and (16) can be defined: 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃

= 2 (𝑃𝑃 − 𝑃𝑃0) + 𝑙𝑙1 �
𝜕𝜕𝜎𝜎
𝜕𝜕𝑃𝑃

+ 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2

𝜕𝜕𝜔𝜔
𝜕𝜕𝑃𝑃
� + 𝑙𝑙2 = 0  (14) 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙1

= 𝜎𝜎 + 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2
𝜔𝜔 = 0  (15) 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙2

= ∑ 𝑃𝑃𝑖𝑖𝑚𝑚
𝑖𝑖=1 − ∑ 𝑃𝑃𝑖𝑖0

𝑚𝑚
𝑖𝑖=1 = 0  (16) 

where the derivatives 𝜕𝜕𝜎𝜎
𝜕𝜕𝑃𝑃

 and 𝜕𝜕𝜔𝜔
𝜕𝜕𝑃𝑃

 can be obtained through the calculation of generation sensitivities 

given in (5) and (6) for the mode 𝜆𝜆 with respect to dispatch vector 𝑃𝑃. 

The derivatives 𝜕𝜕𝜎𝜎
𝜕𝜕𝑃𝑃

 are the real components of the GenSens and the derivatives 𝜕𝜕𝜔𝜔
𝜕𝜕𝑃𝑃

 are the imaginary 

components of these sensitivities, as shown in (17) and (18): 

𝜕𝜕𝜎𝜎
𝜕𝜕𝑃𝑃

= 𝑅𝑅𝑅𝑅 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃
�  (17) 

𝜕𝜕𝜔𝜔
𝜕𝜕𝑃𝑃

= 𝐼𝐼𝑚𝑚 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃
�  (18) 



 
 

11 

The nonlinear system defined by (14), (15) and (16) can be solved through using an alternating 

Newton-Raphson method, with a linear approximation given by (19), (20) and (21): 

2 ∆𝑃𝑃 + �𝜕𝜕𝜎𝜎
𝜕𝜕𝑃𝑃

+ 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2

𝜕𝜕𝜔𝜔
𝜕𝜕𝑃𝑃
�∆𝑙𝑙1 + ∆𝑙𝑙2 = ∆ 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑃𝑃
  (19) 

�𝜕𝜕𝜎𝜎
𝜕𝜕𝑃𝑃

+ 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2

𝜕𝜕𝜔𝜔
𝜕𝜕𝑃𝑃
�∆𝑃𝑃 = ∆ 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑙𝑙1
  (20) 

∆𝑃𝑃 = ∆ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙2

  (21) 

In (19), the second order derivatives of oscillation mode 𝜆𝜆 in relation to the dispatch vector 𝑃𝑃 was 

not considered to simplify the optimization problem and improve the computational time performance, 

since it would require additional eigensolutions for their numerical computation. 

Upper and lower active power limits should be modeled through using a variable replacement in the 

CSBGRES method. Considering minimum and maximum limits to the dispatches, the dispatch vector 

𝑃𝑃 may be replaced by an auxiliary variable vector 𝑎𝑎 [8,13], according to (22) and (23): 

𝑃𝑃 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚+𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
2

+  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
2

sin𝑎𝑎  (22) 

𝑎𝑎 = sin−1 �
𝑃𝑃−

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚+𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
2

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
2

�  (23) 

where 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is a vector that represents the active power upper limits and 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 is a vector that represents 

the active power lower limits of the system power plants. 

In this procedure, the derivatives calculated with respect to vector 𝑃𝑃 must be corrected through using 

the factors 𝑓𝑓1 and 𝑓𝑓2, in order to obtain the derivatives with respect to vector 𝑎𝑎. These corrective factors 

can be calculated according to (24) and (25): 

𝑓𝑓1 = 𝜕𝜕𝑃𝑃
𝜕𝜕𝑚𝑚

= 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
2

cos(𝑎𝑎)  (24) 

𝑓𝑓2 = 𝜕𝜕2𝑃𝑃
𝜕𝜕𝑚𝑚2

= −𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
2

sin(𝑎𝑎)  (25) 
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Using the corrective factors 𝑓𝑓1 and 𝑓𝑓2, the linearized system shown in (19), (20) and (21) can be 

rewritten by (26), (27) and (28), where vector 𝑃𝑃 is replaced by vector 𝑎𝑎: 

�2𝑓𝑓1
2 + �2 (𝑃𝑃 − 𝑃𝑃0) + 𝑙𝑙1 �

𝜕𝜕𝜎𝜎
𝜕𝜕𝑃𝑃

+ 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2

𝜕𝜕𝜔𝜔
𝜕𝜕𝑃𝑃
� + 𝑙𝑙2�𝑓𝑓2�∆𝑎𝑎 + 𝑓𝑓1 �

𝜕𝜕𝜎𝜎
𝜕𝜕𝑃𝑃

+ 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2

𝜕𝜕𝜔𝜔
𝜕𝜕𝑃𝑃
�∆𝑙𝑙1 + 𝑓𝑓1∆𝑙𝑙2 = 𝑓𝑓1∆

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃

  (26) 

𝑓𝑓1 �
𝜕𝜕𝜎𝜎
𝜕𝜕𝑃𝑃

+ 𝜉𝜉𝑑𝑑

�1−𝜉𝜉𝑑𝑑
2

𝜕𝜕𝜔𝜔
𝜕𝜕𝑃𝑃
�∆𝑎𝑎 = ∆ 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑙𝑙1
  (27) 

𝑓𝑓1∆𝑎𝑎 = ∆ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙2

  (28) 

Thus, the model represented by (26), (27) and (28) should be used in an alternating Newton-

Raphson algorithm to solve the proposed problem, which works in two steps. First, the power flow 

execution, model initialization and the eigensolution are made. After that, a Newton-Raphson iteration 

must be done, using the relation defined in (22), to obtain new estimates for the redispatch. 

During the iterative process, the power flow data is updated, through running a load flow solver, and 

the pole of interest is recalculated, through using the DPSE method, at the beginning of each iteration. 

Then, new estimates for the minimum redispatches of the selected power plants are determined. This 

procedure is very similar to a predictor-corrector method. The CSBGRES method should execute these 

iterations until the desired damping factor is reached for the oscillation mode of interest. 

Note that, if a convergence problem occurs in the power flow calculation during the execution of an 

iteration of the CSBGRES method, then the proposed algorithm aborts its execution and does not 

calculate the optimum redispatch for the power system. A step control should be used in order to 

increase the robustness of the proposed method, avoiding power flow calculation problems and 

improving the convergence of the method. 

The algorithm of the CSBGRES method can be summarized in the flow chart presented in Figure 1, 

where the proposed alternating procedure can be easily understood. 
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Figure 1 – CSBGRES method algorithm for computational implementation. 

 

The lagrangian multipliers should be initialized with a small value in this optimization problem. In 

the CSBGRES method, both lagrangian multipliers have been initialized with value “one” (𝑙𝑙1 = 𝑙𝑙2 = 1) 

and this choice worked very well for the proposed algorithm. 
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The objective of the CSBGRES method is the determination of the minimum dispatch variation of 

selected power plants to move a specific mode to a desired damping factor line in the s-plane. 

However, special heuristics were made in the computational implementation of this method, so it could 

consider a set of oscillation modes. In this case, the method will consider this set of modes and will 

choose the worst damped one to be used in each iteration. 

Then, the CSBGRES method will present the results of redispatch obtained to reach the desired 

damping factor for the worst damped mode of the oscillation mode set. If the desired damping factor 

could not be reached, considering this set of oscillation modes, then the proposed method will present 

the redispatch calculated for the best situation obtained during the execution of its iterations, where the 

damping factor was as close as possible to the desired value. 

It should be emphasized that a step-length control in the desired damping factor and in the active 

power dispatches should be used to avoid convergence issues in the power flow solver execution and in 

the eigensolver execution. This mathematical trick helps the convergence to the global minimum 

solution (solution of minimum redispatch) for the oscillation mode of interest, since it limits the 

amplitude of redispatch, avoiding convergence to local minimum solutions. 

5 Brazilian Interconnected Power System 

An example case of the BIPS, obtained from the data base of the Brazilian Transmission System 

Planning Company (EPE) [29], was used to test the CSBGRES method. 

This example case was presenting, 8,065 buses, 11,547 branches, 19 HVDC links, 46 FACTS 

devices, 329 synchronous machines and 911 control systems. 

After running the QR method [30,31], which computes the all system eigenvalues, the North-South 

electromechanical oscillation mode -0.0527 + j 2.5482, with 2% of damping factor, was obtained and 

selected to have its damping enhanced by the CSBGRES method. 
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First, the generation sensitivities were calculated for the mode of interest. The results obtained can 

be visualized in Figure 2 and Table I, where the power plants TUC70, TUC71, BMT1, BMT2, CNV, 

MCD, GBM1, GMB2 and PPM can be highlighted, due to their sensitivity results and their importance 

to the Brazilian Interconnected Power System. 

The power plants TUC70, TUC71, BMT1 and BMT2 are located in the North region of Brazil, 

whereas the power plants CNV, MCD, GBM1, GMB2 and PPM are located in the South. 

 

Figure 2 – Normalized GenSens phasors for the BIPS. 

Table I – Normalized GenSens list for the BIPS (main results). 

Power Plant Module Phase 
TUC71 0.4577 -60.615 
TUC70 0.4516 -60.697 
BMT1 0.4490 -62.937 
BMT2 0.4249 -62.908 
CNV 0.3593 116.490 
MCD 0.3464 118.750 
GBM1 0.3455 122.110 
PPM 0.3438 119.380 

GBM2 0.3384 121.860 
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The GenSens results show the displacement trends of the oscillation mode position in the s-plane 

when trying to increase the power plant dispatches. These sensitivities are very important, since their 

amplitudes and these displacement trends of the desired oscillation mode will define the most adequate 

generators to be redispatched in the CSBGRES method. In other words, the generation sensitivities 

may be used to select the set of power plants that should be used for the redispatch. 

An excessive number of redispatched generators, besides being not practical from an operation point 

of view, increases unnecessarily the computational time of the proposed method, since each sensitivity 

involves the execution of two complete power flow calculations and eigensolutions, and the results are 

quite similar when neglecting the power plants with small sensitivity from the redispatch. 

The example system used in the GenSens test had 7868 state variables. Using a processor 

Intel (R) Core (TM) i7-3537U CPU @ 2.00 GHz, the processing time for the generation sensitivity 

calculation, considering all 329 generators of the system, was around 18 minutes. This processing time 

could be significantly reduced if using parallel computing. 

After that, the CSBGRES method was used for the selected generators in Table I to calculate the 

active power dispatch variations capable of moving the oscillation mode -0.0527 + j 2.5482 to a 5% 

damping factor line in the s-plane. 

The objective function defined in the optimization problem, proposed in this paper, is of particular 

high interest for Brazil. Being a hydroelectricity powerhouse, with many river basins running across a 

continent-size country and having a sole transmission system operator (ONS) [32] for the whole 

country, the centralized dispatch takes heavily into account the hydrological conditions. Therefore, the 

solution based on generation redispatch, like the one proposed in this paper, should target a minimum 

deviation from a previously optimized energetic solution. 

The redispatches determined through the CSBGRES method for the previously selected power 

plants can be observed in Figure 3 and Table II. 
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Figure 3 – CSBGRES histogram for the BIPS, in MW. 

Table II – CSBGRES list for the BIPS (main results), in MW. 

Power Plant Old Dispatch (MW) New Dispatch (MW) Variation (MW) 
TUC71 2460.00 1930.70 -529.30 
TUC70 1406.00 987.14 -418.86 
MCD 468.50 837.00 368.50 
CNV 364.20 622.00 257.80 

BMT1 8151.00 8014.50 -136.50 
PPM 616.00 672.00 56.00 

GBM1 376.65 419.00 42.35 
GBM2 376.65 419.00 42.35 
BMT2 2299.00 2260.50 -38.50 

 

The CSBGRES method has two possible applications for small-signal security assessment in power 

systems. The first application consists of determining security margins, where the damping factor of the 

mode of interest should be decreased to the value that represents this security limit for the system, and 

the second application consists of determining corrective measures, where the damping factor of the 

mode of interest should be increased to respect the security limits. 
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In the BIPS example, the proposed method was used to determine a corrective measure, increasing 

the damping factor of the chosen mode to 5%, which could be understood as a security limit. 

Considering the dispatches calculated through the CSBGRES method, the mode -0.1351 + j 2.6886 

can be obtained, with a damping factor of 5.0186%, in 16 iterations. 

The damping factor obtained by the proposed method is not exactly 5%, previously established 

value, because of the tolerance of 0.1% used in CSBGRES algorithm, which is directly associated to 

the damping factor of the oscillation mode of interest. 

The processing time for the CSBGRES method calculation, using a processor Intel (R) Core (TM) 

i7-3537U CPU @ 2.00 GHz, was around 1 minute, to reach the damping factor of 5% for the 

oscillation mode of interest, without using parallel computing. 

6 Nordic 44 Test System 

An example case of the N44S, which is a Nordic Power System equivalent presented in [33], was 

used to test the CSBGRES method and show its on-line application. 

The Nordic 44 Test System represents interconnections between Norway, Sweden and Finland. 

The example case used in this section was presenting, 44 buses, 79 branches, 18 synchronous 

machines, 40 control systems and no HVDC link. 

In the performed tests, an on-line monitoring of oscillations was simulated, where the software 

PacDyn was used to monitor the frequency and the damping factor of two inter-areas electromechanical 

oscillation modes of major importance for the system. 

The modes -0.3750 + j 3.7519, with 10% of damping factor, and -0.1021 + j 2.0400, with 5% of 

damping factor, obtained in the initial operating point, were monitored in this simulation. 

An actual historical power flow database of the Nordic Power System was used to create the 

variation of operating points for the N44S. Then, PacDyn was used to calculate the oscillation modes 

for all the operating points created, in sequence, building a timeline of frequency and of damping factor 



 
 

19 

for these oscillation modes. The CSBGRES method was used to calculate the dispatch needed to keep 

the power system with, at least, 5% of damping factor. 

The operating points of the N44S were being sent to PacDyn every 6 seconds, updating the system 

power flow data. Each operating point was representing one hour of system operation, such that a 

sequence of 22 days (or 527 hours) of continuous operating conditions could be simulated. 

Figure 4 presents the damping factors and the frequencies of the monitored oscillation modes, 

considering the operating point modifications along the time. 

 

Figure 4 – Damping factor and frequency timelines for the N44S. 

The damping factor of oscillation mode 2 presents undesired values in some operating conditions, 

lower than 5%, which is the minimum damping factor allowed for the system. 

The CSBGRES method can be utilized to determine an optimum redispatch, which is the minimum 

variation in the power plant dispatches, that should be used in the system to improve the damping 

factor of this oscillation mode, ensuring the minimum damping factor of 5% for all the monitored 

poles, considering the whole set of generators for redispatch. 

The proposed method was, then, applied inside the on-line monitoring execution loop, so, in every 

operating point where the system presents a minimum damping factor lower than 5%, an optimum 

redispatch could be obtained to solve the small-signal security problem. 
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Figure 5 presents the damping factors and the frequencies of the monitored oscillation modes, with 

the corrective solution determined by the CSBGRES method. 

 

Figure 5–Damping factor and frequency timelines for the N44S, with CSBGRES. 

Figure 6 presents a comparison between the results with and without the application of the 

CSBGRES during the monitoring simulation for the damping factor of mode 2. 

 

Figure 6 – Comparison between the results with and without the use of CSBGRES. 

The results show that the CSBGRES method was able to calculate new dispatches for the system, 

which are minimum variations in relation to the original dispatches that solved the undesired damping 
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factor problem of the oscillation mode 2. Whenever it was needed, the algorithm converged to an 

adequate solution, ensuring the desired damping factor for the system. 

The worst scenario of the N44S observed in this on-line monitoring simulation was presenting the 

critical mode 0.0830 + j 1.8273, with damping factor of -4.5%.The results obtained in the generation 

sensitivity calculation for this mode can be visualized in Figure 7 and Table III. 

 

Figure 7 – Normalized GenSens phasors for the worst scenario of the N44S. 

Table III – Normalized GenSens list for the worst scenario of the N44S (main results). 

Power Plant Module Phase 
GEN5300 1.0000 -48.187 
GEN6100 0.9045 -48.815 
GEN3359 0.3926 123.960 
GEN6000 0.3468 -60.783 
GEN8500 0.3434 125.020 
GEN3245 0.3343 128.650 
GEN3300 0.3337 127.660 
GEN5400 0.3287 -62.383 
GEN6500 0.3166 129.310 
GEN3000 0.3111 128.460 
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The redispatch obtained through the CSBGRES method to solve the problem observed in the worst 

scenario of the N44S can be seen in Figure 8 and Table IV. 

 

Figure 8 – CSBGRES histogram for the worst scenario of the N44S, in MW. 

Table IV – CSBGRES list for the worst scenario of the N44S (main results), in MW. 

Power Plant Old Dispatch (MW) New Dispatch (MW) Variation (MW) 
GEN5300 6326.00 6081.20 -244.80 
GEN6100 5022.30 4785.40 -236.90 
GEN6000 555.32 486.19 -69.13 
GEN5400 1972.80 1907.90 -64.90 
GEN7000 7416.80 7472.70 55.90 
GEN5600 1883.60 1828.10 -55.50 
GEN3249 2196.60 2249.90 53.30 
GEN7100 1707.20 1760.20 53.00 
GEN6700 3034.00 3086.70 52.70 
GEN3115 1823.40 1875.90 52.50 
GEN3300 2537.70 2537.70 0.00 

 

Using the dispatches calculated through the CSBGRES method in this worst scenario, the oscillation 

mode -0.1005 + j 2.0300 can be obtained, with a damping factor of 4.9436%, in 19 iterations. 
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The example system used in these tests had 224 state variables. Using a processor 

Intel (R) Core (TM) i7-3537U CPU @ 2.00 GHz, the processing time for the GenSens determination 

was around 3 seconds and for the CSBGRES method calculation was around 7 seconds to reach the 

desired damping factor for the oscillation mode of interest. 

7 Conclusions 

To achieve the objective of moving specific eigenvalues by active power injection, the paper 

proposed an optimization method, namely CSBGRES, based on a numerical computation of eigenvalue 

sensitivities with respect to generation dispatches, which are calculated through multiple runs of a load 

flow solver combined with a partial eigensolver. A computational framework was developed for an 

effective and reliable communication between both solvers. 

By knowing the numerically-computed generation sensitivities, the mentioned optimization problem 

was defined. The sum of the square differences of selected power plant dispatches was used as the 

objective function that should be minimized, so an optimum redispatch of the system, needed to meet a 

damping factor criterion for oscillation modes, could be determined. 

The proposed method uses a numerical calculation of generation sensitivities, which may be 

inaccurate and not robust if inadequate choices of power variations are used. However, with adequate 

deviations, this alternative solved a very difficult problem, which is the analytical determination of 

these generation sensitivities. 

The CSBGRES method relies on sparse matrices, being applicable to small and large-scale power 

system models. Besides, the method may be used on-line to determine corrective measures to improve 

the dynamic behavior of these systems through power plant redispatches. 

The proposed algorithm was applied in the Brazilian Interconnected Power System (BIPS, which 

has a large-scale model) and in the Nordic 44 Test System (N44S, which has a small-scale model). 
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In the former, the CSBGRES method was applied to determine an optimum redispatch of major 

power plants to enhance the damping factor of the North-South inter-area oscillation mode. 

In the latter, the proposed method was applied in an on-line monitoring simulation. Whenever 

poorly-damped operating conditions were detected, the CSBGRES method was used to determine the 

redispatch needed to improve the dynamic behavior of the power system. 

In essence, this paper presented a method for improving damping factor of natural oscillations 

through the minimum active power redispatch of selected power plants, showing important results 

obtained with the CSBGRES method application in power system analysis. 
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