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A B S T R A C T

A novel method for the classification and retrieval of 3D models is proposed; it
exploits the 2D panoramic view representation of 3D models as input to an ensemble
of Convolutional Neural Networks which automatically compute the features. The first
step of the proposed pipeline, pose normalization is performed using the SYMPAN
method, which is also computed on the panoramic view representation. In the training
phase, three panoramic views corresponding to the major axes, are used for the training
of an ensemble of Convolutional Neural Networks. The panoramic views consist of
3-channel images, containing the Spatial Distribution Map, the Normals’ Deviation
Map and the magnitude of the Normals’ Devation Map Gradient Image. The proposed
method aims at capturing feature continuity of 3D models, while simultaneously mini-
mizing data preprocessing via the construction of an augmented image representation.
It is extensively tested in terms of classification and retrieval accuracy on two standard
large scale datasets: ModelNet and ShapeNet.

1. Introduction1

In the recent past, convolutional neural networks (CNN) have2

shown their superiority against humans in computing features,3

while they are very sensitive to the input representation. In this4

work an extension of the PANORAMA 3D shape representa-5

tion, previously proposed by our team (Papadakis et al., 2010),6

is exploited as the input representation to a CNN for computing7

descriptor features for 3D object classification and retrieval.8

The 3D models are initially pose normalized using the SYM-9

PAN pose normalization algorithm, (Sfikas et al., 2014) which10

is based on the use of reflective symmetry on their panoramic11

view images. Next, an augmented panoramic view is created12

and used to train the convolutional neural network. This aug-13

mented panoramic view consists of the spatial and orientation14

components of PANORAMA, (see 3.1.1), along with the mag-15

nitude of the gradient image which is extracted from the ori-16

entation component. A reduction in the size of the augmented17

panoramic view representation is shown to benefit the training18

procedure.19
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The motivation behind the aforementioned method is that the 20

PANORAMA representation is able to bridge the dimensional- 21

ity gap between 3D object space and the 2D image input that 22

is typically suitable for a convolutional neural network, in a 23

very efficient manner. PANORAMA has already proven to be a 24

successful hand-crafted 3D model descriptor that has achieved 25

state-of-the-art 3D model retrieval performance in various im- 26

plementations, (Papadakis et al., 2010; Sfikas et al., 2014, 27

2013a, 2016). It has also been used as input to a successful pose 28

normalization method, SYMPAN (Sfikas et al., 2014) (briefly 29

detailed in 3.1.2). 30

This work constitutes an extension of the method presented 31

in (Sfikas et al., 2017). The novel elements are: (a) a new 32

3-channel input schema representation that contains the Spa- 33

tial Distribution Map, the Normals’ Deviation Map and the 34

magnitude of the Normals’ Devation Map Gradient Image; (b) 35

an ensemble of Convolutional Neural Networks architecture 36

along with an analysis of various parameters that were tested 37

for evaluation purposes; (c) an extended evaluation of the pro- 38

posed method on an additional large scale dataset, namely the 39

ShapeNetCore 3D model dataset which is specifically aimed 40

at machine learning; since many recent related works have 41

been tested on this dataset, including the participants of the 42

SHREC2017 and SHREC2016 Large-scale 3D Shape Retrieval 43

from ShapeNet Core55 tracks, (Savva et al., 2016, 2017), this 44
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strengthens the comparability of the proposed method; (d) the1

expansion of the Related Work section with additional works2

on machine learning for 3D model categorization and retrieval;3

this was necessary since several works recently appeared on the4

relevant evaluation datasets.5

The performance of the proposed method is evaluated in6

terms of accuracy on both 3D model classification and re-7

trieval. The datasets used for the evaluation are the publicly8

available Princeton ModelNet 3D CAD model dataset, (Wu9

et al., 2015) and the ShapeNet Core55 subset of the ShapeNet10

dataset, (Chang et al., 2015). These datasets are designed for11

machine learning algorithms, containing both training and test-12

ing partitions (the ShapeNet dataset also includes a validation13

partition).14

The remainder of this paper is organized as follows: Sec-15

tion 2 briefly discusses recent works on 3D model classification16

and retrieval with emphasis on deep neural network methods. A17

brief review of recent pose normalization methods is also given.18

Section 3 details the proposed method. Section 4 presents the19

experimental procedure along with the corresponding results.20

Finally, in Section 5 conclusions are drawn and future work is21

discussed.22

2. Related Work23

One way of classifying 3D shape representation methods24

is based on the dimensionality of the representation: (a) 2D25

image-based representations (i.e. planar and panoramic projec-26

tions) using global and/or local descriptors, (b) 3D model-based27

representations (i.e. 3D shapes, point clouds and voxels) and28

(c) higher levels of data representations (i.e. 3D videos, doxels29

etc). Recent works of the first two categories will be discussed30

in the sequel, as these are most relevant to the problem at hand.31

2.1. 2D image-based representation Methods32

One of the earliest methods for 3D object retrieval, based33

on the extraction of features from 2D representations of the34

3D objects, was the Light Field descriptor, proposed by Chen35

et al. (Chen et al., 2003a). This descriptor comprises Zernike36

moments and Fourier coefficients computed on a set of projec-37

tions taken at the vertices of a dodecahedron. Su et al. (Su38

et al., 2015) present a CNN architecture that combines infor-39

mation from multiple views of a 3D shape into a single and40

compact shape descriptor. They show that this descriptor is41

able to achieve higher recognition performance than single im-42

age recognition architectures. Papadakis et al. in (Papadakis43

et al., 2010) propose PANORAMA, a 3D shape descriptor that44

uses a set of panoramic views of a 3D object which describe45

the position and orientation of the object’s surface in 3D space.46

For each view the corresponding 2D Discrete Fourier Trans-47

form and the 2D Discrete Wavelet Transform are computed.48

Shi et al. in (Shi et al., 2015), convert each 3D shape into a49

panoramic view, namely a cylinder projection around its princi-50

pal axis. Then, a variant of CNN is used for learning the repre-51

sentations directly from these views. A row-wise max-pooling52

layer is inserted between the convolution and fully-connected53

layers, making the learned representations invariant to the rota- 54

tion around a principal axis. In (Shi et al., 2015), the authors use 55

panoramic views that feed a CNN for 3D model categorization 56

and retrieval. Although similar to PANORAMA, the authors do 57

not use the two different representations of PANORAMA (one 58

distance based and one angle-based), nor the three standard pro- 59

jection axes. Furthermore, although rotation invariance on one 60

axis is achieved through a specially designed layer of the pro- 61

posed CNN architecture, it is not described how the key prob- 62

lem of pose normalization is solved. (Panoramic views change 63

drastically as the orientation of a 3D model varies). Kanezaki 64

et al. (Kanezaki, 2016)* propose RotationNet, a Convolutional 65

Neural Network-based model that takes multiple views of an 66

object as input and estimates both its pose and object category. 67

The method treats the pose labels as latent variables, which are 68

optimized to self-align in an unsupervised manner during the 69

training using an unaligned dataset. The proposed pose align- 70

ment strategy enables one to obtain view-specific feature repre- 71

sentations shared across classes. In (Bai et al., 2016), Bai et al. 72

present a real-time 3D shape search engine based on the projec- 73

tive images of 3D shapes. The authors utilize efficient projec- 74

tion and view feature extraction using GPU acceleration. A first 75

inverted file, referred as F-IF, is utilized to speed up the proce- 76

dure of multi-view matching and a second inverted file (S-IF), 77

which captures a local distribution of 3D shapes in the feature 78

manifold, is adopted for efficient context-based reranking. As a 79

result, for each query the retrieval task can be finished very fast, 80

despite the necessary cost of IO overhead. The method is named 81

GIFT, GPU acceleration and Inverted File Twice. The method 82

of Tatsuma and Aono, as presented in (Savva et al., 2017), con- 83

sists of feature extraction from a Convolutional Neural Network 84

(CNN) with reduced number of filters for depth-buffer images 85

and similarity calculation by an improved method of Neighbor 86

Set Similarity (NSS), (Bai et al., 2015). The authors extract the 87

feature vector of a 3D model by inputting the rendered depth- 88

buffer images to a CNN. Initially, the translation, scale and then 89

the rotation of the 3D models is normalized by using Point 90

SVD, (Tatsuma and Aono, 2009). Next, the method renders 91

38 depth-buffer images at 224 × 224 resolution by setting the 92

view point at each vertex of a unit geodesic sphere. Finally, the 93

feature vector of a 3D model is obtained by averaging the CNN 94

output vectors, which denote the classification probability, of 95

each depth buffer image. For the dissimilarity between two fea- 96

ture vectors, the Euclidean distance is employed. Sedaghat et 97

al. in (Sedaghat et al., 2016)* approach the category-level clas- 98

sification task as a multi-task problem, in which the network is 99

forced to predict the pose of the object in addition to the class 100

label. The authors show that this yields significant improve- 101

ments in the classification results. They implement different 102

network architectures for this purpose and test them on differ- 103

ent datasets representing various 3D data sources: LiDAR data, 104

CAD models and RGBD images. 105

Ohbuchi et al. in (Ohbuchi et al., 2008), based on multi-scale 106

local visual features, describe a shape-based 3D model retrieval 107

method. Features are extracted from 2D range images of 3D 108

models viewed from uniformly sampled locations on a sphere. 109

The method is view-based, and is able to handle all models that 110
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Methods evaluated on the ModelNet dataset(s) Methods evaluated on the ShapeNetCore dataset

2D MVCNN, (Su et al., 2015) RotationNet, (Kanezaki, 2016)*
DeepPano, (Shi et al., 2015) GIFT, (Bai et al., 2016)
LFD, (Chen et al., 2003a) ReVGG, (Savva et al., 2017)

PANORAMA, (Papadakis et al., 2010) MVCNN, (Su et al., 2015)
GIFT, (Bai et al., 2016) MVCNN Multires, (Qi et al., 2016a)*

ORION, (Sedaghat et al., 2016)*
Fusion-Net, (Hegde and Zadeh, 2016)*
MVCNN Multires, (Qi et al., 2016a)*

PANORAMA-NN, (Sfikas et al., 2017)

3D 3D ShapeNets, (Wu et al., 2015) DLAN, (Furuya and Ohbuchi, 2016)
Geometry Image, (Sinha et al., 2016) MVCNN Multires, (Qi et al., 2016a)*

SPH, (Kazhdan et al., 2003)
Set-Convolution, (Ravanbakhsh et al., 2016)*

3D-GAN, (Wu et al., 2016)*
VRN Ensemble, (Brock et al., 2016)*

Fusion-Net, (Hegde and Zadeh, 2016)*
VoxNet, (Maturana and Scherer, 2015)

PointNet-Garcia, (Garcia-Garcia et al., 2016)
MVCNN Multires, (Qi et al., 2016a)*

FPNN, (Li et al., 2016)*
Klokov & Lempitsky, (Klokov and Lempitsky, 2017)*

Xu & Todorovic, (Xu and Todorovic, 2016)*

Table 1: Method categorization based on evaluation dataset and dimensionality of the descriptor (2D or 3D). Methods indicated by an (*) are arXiv versions, at the
time of writing

can be rendered as a range image. For each range image, a set1

of 2D multi-scale local visual features is computed by using2

the SIFT algorithm. To reduce the cost of distance computation3

and feature storage, a set of local features that describe a 3D4

model is integrated into a histogram, using the Bag-Of-Features5

approach.6

In (Lian et al., 2013), Lian et al., propose a visual similarity-7

based 3D shape retrieval method (CM-BOF) using Clock8

Matching and Bag-of-Features. Initially, pose normalization is9

applied to each 3D model to generate its canonical pose, then10

the normalized object is represented by a set of depth-buffer im-11

ages captured on the vertices of a geodesic sphere. Each image12

is described as a word histogram obtained by the vector quan-13

tization of the corresponding salient local features. Finally, a14

multi-view shape matching scheme is employed to measure the15

dissimilarity between two models.16

In (Sfikas et al., 2016), the authors present a method for par-17

tial matching and retrieval of 3D objects based on range im-18

age queries. The proposed methodology addresses the retrieval19

of complete 3D objects using range image queries that repre-20

sent partial views. The base method relies upon Bag-of-Visual-21

Words modelling and enhanced Dense SIFT descriptor com-22

puted on local features of PANORAMA views and range image23

queries.24

2.2. 3D model-based representation Methods25

In (Kazhdan et al., 2003), Kazhdan proposes the Spherical26

Harmonic Representation, a rotation invariant representation of27

spherical functions in terms of the energies at different frequen-28

cies. This descriptor is a volumetric representation of the Gaus-29

sian Euclidean Distance Transform of a 3D object, expressed 30

by norms of spherical harmonic frequencies. Wu et al. (Wu 31

et al., 2015) propose to represent a geometric 3D shape as a 32

probability distribution of binary variables on a 3D voxel grid, 33

using a Convolutional Deep Belief Network. Sinha et al. (Sinha 34

et al., 2016) propose an approach of converting the 3D shape 35

into a ‘geometry image’ so that standard CNNs can directly be 36

used to learn 3D shapes, thus bridging the associated represen- 37

tation gap. Geometry images using an authalic parametrization 38

are created on a spherical domain. This spherically parame- 39

terized shape is then projected and cut to convert the original 40

3D shape into a flat and regular geometry image. The algo- 41

rithm proposed in (Furuya and Ohbuchi, 2016) aims at extract- 42

ing 3D shape descriptors that are robust against geometric trans- 43

formations including translation, uniform scaling, and rotation 44

of 3D models. The algorithm is called Deep Local feature Ag- 45

gregation Network (DLAN). DLAN takes as its input a set of 46

low-level 3D geometric features having invariance against 3D 47

rotation. It produces a compact, high-level descriptor per 3D 48

model for efficient and effective matching among 3D shapes. 49

The DLAN pipeline consists of the following steps: Generating 50

oriented point set, Extracting rotation invariant local features, 51

Aggregating local features and Comparing aggregated features. 52

In (Ravanbakhsh et al., 2016)*, Ravanbakhsh et al. introduce 53

a simple permutation equivariant layer for deep learning with 54

set structure. This type of layer, obtained by parameter-sharing, 55

has a simple implementation and linear-time complexity in the 56

size of each set. Deep permutation-invariant networks are used 57

to perform point-could classification and MNIST-digit summa- 58

tion, where in both cases the output is invariant to permutations 59
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of the input. In (Wu et al., 2016)* Wu et al., study the problem1

of 3D object generation. They propose 3D Generative Adver-2

sarial Network (3D-GAN), which generates 3D objects from a3

probabilistic space by leveraging recent advances in volumet-4

ric convolutional networks and generative adversarial nets. The5

proposed model uses an adversarial criterion, instead of tradi-6

tional heuristic criteria. Brock et al. (Brock et al., 2016)* ex-7

plore voxel-based models, and present evidence for the viabil-8

ity of voxelized representations in applications including shape9

modeling and object classification. The contributions are meth-10

ods for training voxel-based variational autoencoders, a user11

interface for exploring the latent space learned by the autoen-12

coder, and a deep convolutional neural network architecture for13

object classification. In (Hegde and Zadeh, 2016)*, Hegde and14

Zadeh, tackle the object recognition problem by using Convo-15

lutional Neural Networks on two different data representations:16

a volumetric representation and a pixel representation. Their17

aim is to bridge the gap between the efficiency of the above18

two representations. They combine both representations and19

exploit them to learn new features, which yield a significantly20

better classifier than using either of the representations in iso-21

lation. To this end, they introduce the Volumetric CNN (V-22

CNN) architecture. In (Maturana and Scherer, 2015), Maturana23

and Scherer propose VoxNet, an architecture for tackling the24

problem of robust object recognition by integrating a volumet-25

ric Occupancy Grid representation with a supervised 3D Con-26

volutional Neural Network (3D CNN). In (Garcia-Garcia et al.,27

2016), Garcia et al. propose PointNet, an approach inspired28

by VoxNet and 3D ShapeNets, as an improvement over exist-29

ing methods by using density occupancy grid representations30

for the input data, and integrating them into a supervised Con-31

volutional Neural Network architecture. Qi et al. in (Qi et al.,32

2016a)* aim to improve both volumetric CNNs and multi-view33

CNNs by introducing two distinct network architectures of vol-34

umetric CNNs. In addition, the authors examine multi-view35

CNNs, where they introduce multi-resolution filtering in 3D.36

In (Li et al., 2016)*, Li et al. represent 3D spaces as volumet-37

ric fields, and propose a novel design that employs field prob-38

ing filters to efficiently extract features from them. Each field39

probing filter is a set of probing points - sensors that perceive40

space. Their learning algorithm optimizes the weights associ-41

ated with the probing points and also their locations, which de-42

forms the shape of the probing filters and adaptively distributes43

them in 3D space. Klokov and Lempitsky present a new deep44

learning architecture (called Kd-network) that is designed for45

3D model recognition tasks and works with unstructured point46

clouds (Klokov and Lempitsky, 2017)*. The new architecture47

performs multiplicative transformations and shares parameters48

of these transformations according to the subdivisions of the49

point clouds imposed onto them by Kd-trees. Unlike the cur-50

rent convolutional architectures that usually require rasteriza-51

tion on uniform two-dimensional or three-dimensional grids,52

Kd-networks do not rely on such grids and thus exhibit better53

scaling behaviour. To address the issue of efficiently recogniz-54

ing voxelized 3D shapes of large magnitude, (Xu and Todor-55

ovic, 2016)* formulates CNN learning as a beam search aimed56

at identifying an optimal CNN architecture, namely, the num-57

ber of layers, nodes, and their connectivity in the network, as 58

well as estimating parameters of such an optimal CNN. Each 59

state of the beam search corresponds to a candidate CNN. Two 60

types of actions are defined to add new convolutional filters or 61

new convolutional layers to a parent CNN, and thus transit to 62

children states. The utility function of each action is efficiently 63

computed by transferring parameter values of the parent CNN 64

to its children, thereby enabling an efficient beam search. 65

A categorization of the aforementioned methods based on 66

the representation dimensionality and the dataset that they have 67

been evaluated on (see section 4.1) is presented in Table 1. 68

Methods indicated by an (*) are arXiv versions, at the time of 69

writing. 70

The view-based method presented in our previous 71

work (Sfikas et al., 2017) is based on the successful hand- 72

crafted PANORAMA descriptor representation, extending its 73

usage based on CNNs. The method, in a manner similar to, but 74

in many ways extending (Shi et al., 2015), feeds a CNN with 75

the PANORAMA representation (both spatial and orientation) 76

for the three principal projection axes. In addition, it uses 77

a PANORAMA-based pose normalization method (Sfikas 78

et al., 2014). In (Shi et al., 2015) the spatial component of a 79

single panoramic view was used and pose normalization was 80

apparently not performed (except for rotation invariance with 81

respect to the 2D panoramic image projection axis). Table 2 82

summarizes the differences between the proposed method, 83

/hldenoted as PANORAMA-ENN, (ENSEMBLE NEURAL 84

NETWORK) for the remainder of this paper, and the method 85

of (Shi et al., 2015), (denoted as DeepPano). 86

PANORAMA-ENN DeepPano
2D Image Representation spatial, orientation spatial
Projection Axes X, Y, Z one axis
Pose Normalization Axes X, Y, Z one axis

Table 2: Differences between the proposed PANORAMA-(E)NN and Deep-
Pano (Shi et al., 2015).

2.3. Pose Normalization Methods 87

The best-known approach for computing the alignment of 3D 88

models is Principal Component Analysis (PCA) or Karhunen - 89

Loeve transformation (Paquet et al., 2000; Shilane et al., 2004; 90

Theodoridis and Koutroumbas, 1999; Vranić et al., 2001; Za- 91

haria and Prêteux, 2004). The PCA algorithm, based on the 92

computation of 3D model moments estimates the principal axes 93

of a 3D model that are used to determine its orientation. In 94

its original form, PCA can be imprecise and often the princi- 95

pal axes of 3D models that belong to the same class produce 96

poor alignments (Chen et al., 2003b). To alleviate these prob- 97

lems, Vranic introduces an improvement to the original method, 98

the Continuous PCA (CPCA) algorithm (Vranic, 2004; Vranić 99

et al., 2001; Vranic, 2005). Based on the continuous triangle set 100

of a 3D model, CPCA computes the principal axes. Similar to 101

the CPCA method, Papadakis et al. propose the Normal PCA 102

(NPCA) algorithm (Papadakis et al., 2007, 2008). NPCA com- 103

putes the principal axes of the 3D model based on its surface 104
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normal set. Related to PCA is the use of Singular Value Decom-1

position (SVD) for alignment (Theodoridis and Koutroumbas,2

1999).3

Another major category of normalization methods exploits4

symmetry features that are present in a large number of 3D5

models. Kazhdan et al. (Kazhdan et al., 2002a) defines a reflec-6

tive symmetry descriptor that represents a measure of reflec-7

tive symmetry for an arbitrary 3D voxel model, for all planes8

through the model’s center of mass. This descriptor is used for9

finding the main axes of symmetry or to determine that none of10

them exist in a 3D model. The descriptor is defined on the unit11

sphere and describes the global characteristics of a 3D shape.12

In (Podolak et al., 2006), Podolak et al. extend this work and13

introduce a Planar Reflective Symmetry Transform (PRST) that14

computes a measure of the reflective symmetry of a 3D shape15

with respect to all possible planes. This measure is used to de-16

fine the center of symmetry and the principal symmetry axes17

of the global coordinate system. Rustamov improves this ap-18

proach with the augmented symmetry transform in (Rustamov,19

2007). Martinet et al. (Martinet et al., 2006) use generalized20

moments to detect perfect symmetries in 3D shapes. The au-21

thors perform an analysis of the extrema values, as well as the22

components of the spherical harmonics and compute the pa-23

rameters of the symmetries that characterize a 3D model. The24

algorithm operates incrementally, thus enabling the determina-25

tion of symmetries in larger models, based on existing sym-26

metries of their parts. Mitra et al. (Mitra et al., 2006) com-27

pute partial and approximate symmetries in 3D models. The28

method is based on the matching of simple local characteris-29

tics, in pairs, and the use of these matchings for the augmen-30

tation of information about the existence of symmetries in the31

corresponding space transformations. A segmentation step ex-32

tracts potential significant symmetries of the 3D model. Using33

both PCA-alignment and planar reflective symmetry, Chaouch34

and Verroust - Blondet (Chaouch and Verroust-Blondet, 2009a)35

compute a 3D model’s principal axes and then, using a Local36

Translational Invariance Cost (LTIC), make a selection of the37

most suitable ones.38

Using a rectilinearity measure, Lian et al. (Lian et al., 2010)39

compute a 3D model’s best rotation by estimating the maximum40

ratio of its surface area to the sum of its three orthogonal pro-41

jected areas. Similar to the previous approach, (Chaouch and42

Verroust-Blondet, 2009a), a selection between the rectilinearity43

measure and a PCA-based alignment is made. In (Axenopoulos44

et al., 2011) Axenopoulos et al. combine the properties of plane45

reflection symmetry and rectilinearity for achieving alignment.46

In this paper both CPCA and reflective symmetry are used, in47

order to achieve alignment. Rectilinearity is utilized to improve48

the alignment results.49

Sfikas et al. (Sfikas et al., 2011a) propose a 3D model pose50

normalization method based on the similarity between a 3D51

model and its symmetric model across a plane of symmetry,52

thus determining the optimal plane of symmetry of the model.53

Initially, the axis-aligned minimum bounding box of a rigid 3D54

model is modified by requiring that the 3D model is also in55

minimum angular difference with respect to the normals to the56

faces of its bounding box. To estimate the modified axis-aligned57

bounding box, a set of predefined planes of symmetry are used 58

and a combined spatial and angular distance, between the 3D 59

model and its symmetric model, is calculated. By minimizing 60

the combined distance, the 3D model is fitted inside its modified 61

axis-aligned bounding box and alignment with the coordinate 62

system is achieved. 63

In (Sfikas et al., 2013b, 2014) a pose normalization 64

method, SYMPAN, based on reflective symmetry computed on 65

PANORAMA-based views, is presented. Initially, through an 66

iterative procedure, the symmetry principal plane of a 3D model 67

is estimated, thus computing the first axis of the model. This is 68

achieved by iteratively rotating the 3D model and computing re- 69

flective symmetry scores on panoramic view images. The other 70

principal axes of the 3D model are estimated by computing the 71

pixel variance on the 3D model’s panoramic views. 72

The SYMPAN method has been incorporated in a hybrid 73

scheme, that serves as the pose normalization procedure in a 74

3D object retrieval system. The effectiveness of this system, is 75

evaluated in terms of retrieval accuracy and the results showed 76

improved performance against previous approaches. This per- 77

formance increase justifies the use of SYMPAN as the pose 78

normalization method that complements the PANORAMA de- 79

scriptor, due to its close integration with the PANORAMA rep- 80

resentation (based on the same panoramic views). 81

3. Methodology 82

3.1. Background 83

3.1.1. PANORAMA Representation Extraction 84

The panoramic view of a 3D model is obtained by projecting 85

its surface onto the lateral surface of a cylinder of radius R and 86

height H = 2R, centered at the origin, with its axis parallel to 87

one of the principal axes of space (Papadakis et al., 2010), see 88

Fig. 1a. The value of R is set to 2 ∗ dmax where dmax is the 89

maximum distance of the model’s surface from its centroid. 90

Assuming the cylinder axis to be the z axis, the lateral sur- 91

face of the cylinder is parameterized using a set of points s(φ, y) 92

where φ ∈ [0, 2π] is the angle in the XY plane, y ∈ [0,H] and 93

the φ and y coordinates are sampled at rates 2B and B, respec- 94

tively (B is set to be equal to 360). The φ dimension is sampled 95

at twice the rate of the y dimension to account for the difference 96

in length between the perimeter of the cylinder’s lateral surface 97

and its height. Although the perimeter of the specific cylinder’s 98

lateral surface is 2π ' 3 times its height, the sampling rates 99

are set at 2B and B, respectively, as these values were exper- 100

imentally found to give good results. Thus, the set of points 101

s(φu, yv) are obtained, where φu = u ∗ 2π/(2B), yv = v ∗ H/B, 102

u ∈ [0, 2B − 1] and v ∈ [0, B − 1]. These points are shown in 103

Fig. 1b. 104

Next, the value at each point s(φu, yv) of the panoramic view 105

must be determined. The computation is carried out iteratively 106

for v = 0, 1, ..., B − 1, each time considering the set of coplanar 107

s(φu, yv) points, i.e. a cross section v of the cylinder at height yv 108

and for each such cross section casting rays from its center cv 109

in the φu directions. 110

The cylindrical projections are used to capture two different 111

characteristics of a 3D model’s surface; (i) the position of the 112
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(a) (b)

Fig. 1: (a) A projection cylinder for the acquisition of a 3D model’s panoramic
view and (b) the corresponding discretization of its lateral surface to the set of
points s(φu, yv)

model’s surface in 3D space, (referred to as Spatial Distri-1

bution Map or SDM), and (ii) the orientation of the model’s2

surface, (referred to as Normals’ Deviation Map or NDM).3

To capture these characteristics two kinds of cylindrical projec-4

tions s1(φu, yv) and s2(φu, yv) are used.5

To capture the position of the model’s surface, for each6

cross section at height yv, the distances from cv of the inter-7

sections of the model’s surface are computed with the rays at8

each direction φu. Let pos(φu, yv) denote the distance of the9

furthest from cv point of intersection between the ray emanat-10

ing from cv in the φu direction and the model’s surface; then11

s1(φu, yv) = pos(φu, yv). This value lies in the interval [0,R],12

where R is the radius of the cylinder.13

To capture the orientation of the model’s surface, for each14

cross section at height yv, the intersections of the model’s sur-15

face with the rays at each direction φu are computed and the16

angle between a ray and the normal vector of the triangle that is17

intersected is measured. The value stored in s2(φu, yv) is a func-18

tion of the cosine of the angle between the ray and the normal19

vector of the furthest from cv intersected triangle of the model’s20

surface. If ang(φu, yv) denotes the aforementioned angle, then21

s2(φu, yv) = | cos(ang(φu, yv))|n.22

The nth power of | cos(ang(φu, yv))| is taken, where n ≥ 2,23

since this setting enhances the contrast of the produced cylin-24

drical projection. It has been experimentally found that setting25

n to a value in the range [4, 6] gives the best results (Papadakis26

et al., 2010). Also, taking the absolute value of the cosine is27

necessary to deal with inconsistently oriented triangles along28

the model’s surface due to e.g. concavities.29

A cylindrical projection can be viewed as a 2D gray-scale im-30

age where pixels correspond to the (φu, yv) values normalized to31

[0, 1], in a manner reminiscent of cylindrical texture mapping.32

3.1.2. SYMPAN: PANORAMA-based Pose Normalization33

Pose normalization is performed using the SYMPAN34

method (Sfikas et al., 2014) which uses the SDM and the35

NDM extracted in PANORAMA. Pose normalization is signif-36

icant in order to maintain integrity between the corresponding37

panoramic view representations of the 3D models. The choice38

of SYMPAN as the pose normalization method is due to its39

close integration with the PANORAMA representation and the40

fact that the majority of CAD 3D models and 3D models of non-41
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Fig. 2: Sample 3D model with the corresponding panoramic view and symme-
try plane estimation, as these are employed in the SYMPAN pose normalization
method.

artificial entities (e.g. furniture, vehicles, humans and animals, 42

etc) actually exhibit reflective symmetry, to a certain degree. 43

Methods that exploit symmetries have exhibited high perfor- 44

mance, both in terms of pose normalization and retrieval accu- 45

racy, see (Sfikas et al., 2011b; Kazhdan et al., 2002b; Chaouch 46

and Verroust-Blondet, 2009b). 47

Initially, a 3D model with arbitrary pose is normalized in 48

terms of translation and scaling. Translation normalization is 49

achieved though the extraction of the 3D model’s centroid and 50

the displacement of this centroid to the coordinate system ori- 51

gin. Consecutively, the 3D model is scaled so that it is inscribed 52

within the unit sphere. 53

The estimation of a plane of symmetry of a 3D model cor- 54

responds to the detection of a line of reflective symmetry in 55

its panoramic view. Since translation normalization has been 56

performed, the plane of symmetry of the 3D object will pass 57

through the origin of the coordinate system. The aim is to rotate 58

the symmetry plane so that it includes the axis of the cylindrical 59

projection (i.e. the z axis); then the plane of symmetry will be 60

detectable in the panoramic image. 61

Once a plane of symmetry is defined, the first principal axis 62

of the model is set to be the normal to that plane of symmetry 63

(see Fig. 2). The remaining two principal axes have yet to be 64

estimated. The 3D model can thus be rotated so that its sym- 65

metry plane coincides with one of the principal planes of space 66

(e.g. the XY plane). 67

To complete the rotation normalization task, the 3D model is 68

projected onto the surface of a projection cylinder whose axis is 69

one of the principal axes of space, perpendicular to the symme- 70

try plane’s normal. The 3D model is iteratively rotated around 71

the normal axis to the symmetry plane and the corresponding 72

SDM images are calculated. For each SDM image, the vari- 73

ance of its pixel values is computed and the rotation that mini- 74

mizes this variance, is defined as the rotation which aligns the 75

principal axis of the 3D model with the axis of the projection 76

cylinder. 77

3.2. Augmented Panoramic View Construction 78

In order to efficiently train an artificial neural network using 79

the PANORAMA representation, an augmented schema is em- 80

ployed based on the panoramic views produced with respect to 81

the three principal axes. 82



7

(a) 3D Model

X axis

Y axis

Z axis

(b) SDM Image (c) NDM Image (d) Magnitude of Gradient Im-
age

(e) 3-channel Augmented
Panoramic View Image

Fig. 3: Sample augmented panoramic view of a 3D model. (a) illustrates the original sample 3D model. (b) illustrates the SDM image for the three principal axes,
(c) illustrates the NDM image for the three principal axes, (d) illustrates the magnitude of the gradient image computed from NDM, (e) illustrates the combined
3-channel image that is used as input to the convolutional neural network. The principal axes order is (from top to bottom): X axis, Y axis, Z axis.

More specifically, for each principal axis, the SDM (Fig. 3b)1

and NDM (Fig. 3c) cylindrical view representations are com-2

puted. On the NDM cylindrical view representation the mag-3

nitude of the gradient image is also computed, augmenting the4

initial PANORAMA representation (Fig. 3d). It should be noted5

that taking the magnitude of the gradient image on the SDM6

also increased performance, however the NDM gradient mag-7

nitude gave significantly better results.8

Half of each panoramic view (in terms of width) is appended9

to its end. This, ensures a continuous representation with no10

‘wrap-around’ gaps.11

Thus, for each 3D model, the result is a total of three cylin-12

drical view representations (corresponding to the three princi-13

pal axes), each comprised of 3 separate channels (Fig. 3e). The14

three 3-channel representations are then stacked together in the15

following order: NDM(X) - SDM(X) - GradM(X), NDM(Y)16

- SDM(Y) - GradM(Y), NDM(Z) - SDM(Z) - GradM(Z) (see17

Fig. 3). This augmented representation defines the input of the18

convolutional neural network. The total size of a 3D model’s19

augmented representation is 1.5 * 720 = 1080 pixels width by20

360 * 3 = 1080 pixels height, for each channel.21

Once the augmented representation has been montaged, its22

size is reduced to 10% of its original size, namely 3-channels23

× 108 × 108 pixels using bicubic interpolation. Although an24

amount of detail of the original representation is lost, it has been25

experimentally found that the minimized representation is suf-26

ficient to achieve high performance on the classification task27

while maintaining feasible neural network training times (see28

Section 4).29

3.3. Convolutional Neural Network Architecture30

The convolutional neural network architecture selected in31

the proposed implementation is based on a standard scheme,32

namely an input layer followed by a set of convolutional lay-33

ers and finally by the fully connected layers of the output. The34

architecture proposed in (Krizhevsky et al., 2012) has been cho- 35

sen, which has demonstrated state-of-the-art performance in 36

image classification. 37

Three convolutional layers are used and the corresponding 38

feature maps are 64, 256 and 1024 respectively. The kernel size 39

is respectively set to 5, 5, 3 and the padding is set to 2 for all the 40

layers. After each convolutional layer both a ReLU and a 2 × 2 41

max-pooling layer are inserted. 42

The output of the architecture consists of two fully connected 43

layers, each composed of number of neurons equal to the num- 44

ber of image categories for the specific task. The two fully con- 45

nected layers are followed by a dropout layer, (Srivastava et al., 46

2014), used to reduce overfitting. Finally, a softmax layer out- 47

puts class probabilities for a given input 3D model. The class 48

with the highest probability is considered as the predicted class 49

for the 3D model. 50

The network is trained using the stochastic gradient descent 51

method (SGDM) with momentum set to 0.9. 52

3.4. Ensemble of CNNs 53

As many recent works have shown, the use of (convolutional) 54

neural network ensembles provides a significant boost to the 55

classification performance of a corresponding pipeline, (Rus- 56

sakovsky et al., 2015; Huang et al., 2016; Kumar et al., 2017). 57

Hence, the PANORAMA-NN network presented in (Sfikas 58

et al., 2017) is extended to an ensemble. The goal is to cre- 59

ate a branched pipeline that divides according to the 3 axes of 60

the panoramic views. To simplify the processing routine, each 61

Augmented Panoramic View is divided into 3 regions (each 62

consisting of 3-channels: one for SDM, one for NDM and one 63

for the magnitude of gradient image of the NDM) along the ver- 64

tical dimension and given as input to the corresponding pipeline 65

path. Region #1 for projection axis X, region #2 for projection 66

axis Y and region #3 for projection axis Z. 67

For the classification task the combined probability vector is 68

assembled by taking the mean of all three individual probability 69



8

PA
N

O
R

A
M

A

S
Y

M
PA

N

M
C

A
P

V

P
R

O
B

A
B

IL
IT

Y
 

V
E

C
T

O
R

co
n

v
1

(6
4

)

R
e

LU

m
a

x
P

o
o

l

co
n

v
1

(2
5

6
)

R
e

LU

m
a

x
P

o
o

l

co
n

v
1

(1
0

2
4

)

R
e

LU

m
a

x
P

o
o

l

fu
ll

C
o

n
n

_
2

d
ro

p
o

u
t

so
ft

M
a

x

fu
ll

C
o

n
n

_
1

co
n

v
1

(6
4

)

R
e

LU

m
a

x
P

o
o

l

co
n

v
1

(2
5

6
)

R
e

LU

m
a

x
P

o
o

l

co
n

v
1

(1
0

2
4

)

R
e

LU

m
a

x
P

o
o

l

fu
ll

C
o

n
n

_
2

d
ro

p
o

u
t

so
ft

M
a

x

fu
ll

C
o

n
n

_
1

co
n

v
1

(6
4

)

R
e

LU

m
a

x
P

o
o

l

co
n

v
1

(2
5

6
)

R
e

LU

m
a

x
P

o
o

l

co
n

v
1

(1
0

2
4

)

R
e

LU

m
a

x
P

o
o

l

fu
ll

C
o

n
n

_
2

d
ro

p
o

u
t

so
ft

M
a

x

fu
ll

C
o

n
n

_
1

x/

X

Y

Z

Fig. 4: Illustration of the proposed method pipeline, including the convolutional neural network architecture.

vectors.1

Figure 4 illustrates the complete ensemble convolutional neu-2

ral network pipeline, indicating how input data are divided to3

the pipeline paths and, correspondingly, how the probability4

vectors are combined for the final output.5

Another way of dividing the input data would be according6

to the input image channels (NDM, SGM, gradient) and/or in7

combination with the aforementioned division according to the8

axes. Since the input to the convolutional neural network is9

3-channel images, this can be considered to have been done10

implicitly by the input schema, since each channel is fed to dif-11

ferent input neurons.12

4. Experiments13

4.1. Datasets14

The datasets used for evaluating the proposed method are the15

Princeton ModelNet large scale 3D CAD model dataset, (Wu16

et al., 2015) and the ShapeNet Core55 subset of the ShapeNet17

dataset, (Chang et al., 2015).18

ModelNet is comprised of 127,915 CAD models split into19

662 object categories and is split into two subsets, ModelNet-20

10 and ModelNet-40, both of which contain training and test-21

ing partitions. ModelNet-10 comprises 4,899 CAD models split22

into 10 categories. The models have been manually cleaned and23

pose normalized in terms of translation and rotation. The train-24

ing and testing subsets of ModelNet-10 consist of 3,991 and25

908 models respectively. ModelNet-40 comprises 12,311 CAD26

models split into 40 categories. The models have been manually27

cleaned but are not pose normalized. The training and testing28

subsets of ModelNet-40 consist of 9,843 and 2,468 models re-29

spectively.30

ShapeNetCore is comprised of approximately 51,300 3D31

models made up of 55 common categories. Each category is32

divided into several subcategories. ShapeNetCore offers two 33

dataset versions: (a) consistently aligned 3D models and (b) 34

models that are perturbed by random rotations. From the com- 35

plete dataset are created three splits of 70%, 10% and 20% for 36

training, validation and testing respectively. 37

4.2. 3D Model Classification 38

The proposed method, PANORAMA-ENN, is evaluated on 39

the task of classification of the test subset of both ModelNet-10 40

and ModelNet-40. The performance is measured via the av- 41

erage binary categorical accuracy (a value of 1 corresponds to 42

the case where the category of the test 3D model is correctly 43

predicted, otherwise 0). 44

Participating in the comparison are the original Light 45

Field (Chen et al., 2003a) (LFD, 4,700 dimensions) and Spheri- 46

cal Harmonics (Kazhdan et al., 2003) (SPH, 544 dimensions) 47

descriptors that do not use machine learning in order to set 48

a baseline for the evaluation. Also included are recent meth- 49

ods that use machine learning: PANORAMA-NN (Sfikas et al., 50

2017), 3D ShapeNets (V) (Wu et al., 2015), the DeepPano de- 51

scriptor (Shi et al., 2015), Multi-view Convolutional Neural 52

Networks (V) (Su et al., 2015) (MVCNN) and the Geometry 53

Image descriptor (Sinha et al., 2016). In addition to the above 54

competing methods that were also reported in (Sfikas et al., 55

2017), the results are extended to include the following tech- 56

niques: GIFT (Bai et al., 2016), ORION (V) (Sedaghat et al., 57

2016), Set-convolution (Ravanbakhsh et al., 2016), 3D-GAN 58

(V) (Wu et al., 2016), VRN Ensemble (V) (Brock et al., 2016), 59

FusionNet (V) (Hegde and Zadeh, 2016), VoxNet (V) (Mat- 60

urana and Scherer, 2015), the PointNet method by (Garcia- 61

Garcia et al., 2016) (PointNet-Garcia), the PointNet method 62

by (Qi et al., 2016b) (PointNet-Qi), MVCNN-MultiRes (V) (Qi 63

et al., 2016a), FPNN (V) (Li et al., 2016), the method by Klokov 64

and Lempitsky (Klokov and Lempitsky, 2017) and the method 65
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Method ModelNet-10 ModelNet-40
PANORAMA-ENN 0.9685 0.9556
PANORAMA-NN 0.9112 0.9070
PANORAMA-NN + GradM 0.9345 0.9201
VRN Ensemble (V)* 0.9714 0.9554
Klokov & Lempitsky* 0.9400 0.9180
MVCNN-MultiRes (V)* N/A 0.9140
Fusion-Net (V)* 0.9311 0.9080
MVCNN (V) N/A 0.9010
Set-Convolution* N/A 0.9000
PointNet-Qi N/A 0.8920
FPNN (V)* N/A 0.8840
Geometry Image 0.8840 0.8390
3D-GAN (V)* 0.9100 0.8330
GIFT 0.9235 0.8310
VoxNet(V) 0.9200 0.8300
DeepPano 0.8866 0.8254
Xu & Todorovic (V)* 0.8800 0.8126
3D ShapeNets (V) 0.8354 0.7732
ORION (V)* 0.9380 N/A
PointNet-Garcia 0.7760 N/A
LFD (NON-ML) 0.7987 0.7547
SPH (NON-ML) 0.7979 0.6823

Table 3: Classification accuracies on the ModelNet-10 and ModelNet-40
datasets. Methods indicated by an (*) are arXiv versions, at the time of writing.
Methods that employ voxel representations are indicated by (V) while those
that do not involve machine learning are indicated by (NON-ML).

by Xu and Todorovic (V) (Xu and Todorovic, 2016). The scores1

of the aforementioned competing methods are those reported2

by the authors in the respective papers. Table 3 summarizes the3

scores of the above methods.4

The proposed method outperforms all aforementioned meth-5

ods in the challenging ModelNet-40 dataset while in ModelNet-6

10 it is only surpassed by the VRN Ensemble method (Brock7

et al., 2016) by a small margin. It is evident that methods8

employing voxel representations generally perform better than9

methods using image representations. This can be justified by10

the richer information contained in 3D volumetric data with re-11

spect to the 2D representations. However, the proposed method12

is able to successfully outperform previous methods despite the13

use of an image representation.14

In order to compare all key aspects of the extended approach15

to the original PANORAMA-NN (Sfikas et al., 2017), a ver-16

sion of the PANORAMA-NN that in addition to the SDM and17

NDM representation views, also includes the magnitude of the18

gradient image (but does not use the ensemble architecture) has19

also been added to Table 3 (referred as PANORAMA-NN +20

GradM). In this version the data for all three projection axes are21

fed to the same network. It appears that the addition of the new22

image and the ensemble architecture contributed to the gain in23

performance in similar portions.24

4.3. 3D Model Retrieval25

Another evaluation of the proposed method was performed26

on the task of 3D model retrieval.27

Method ModelNet-10 ModelNet-40
PANORAMA-ENN 0.9328 0.8634
PANORAMA-NN 0.8739 0.8345
GIFT 0.9112 0.8194
DeepPano 0.8418 0.7681
Geometry Image 0.7490 0.5130
3D ShapeNets 0.6826 0.4923
MVCNN N/A 0.7950
PANORAMA (NON-ML) 0.6032 0.4613
LFD (NON-ML) 0.4982 0.4091
SPH (NON-ML) 0.4405 0.3326

Table 4: Retrieval accuracies measured in mean Average Precision (mAP) on
the ModelNet-10 and ModelNet-40 datasets.

The performance of the proposed method was measured on 28

the ModelNet-10 and ModelNet-40 datasets, against the meth- 29

ods that offer retrieval results i.e., (Sfikas et al., 2017) and the 30

GIFT method (Bai et al., 2016). On the ShapeNetCore dataset, 31

the proposed method was compared against a number of meth- 32

ods that competed on the SHREC2016 and SHREC2017 Large- 33

scale 3D Shape Retrieval from ShapeNet Core55 tracks (Savva 34

et al., 2016, 2017). More specifically, RotationNet (Kanezaki, 35

2016), GIFT (Bai et al., 2016), ReVGG (Savva et al., 2017) 36

and DLAN (Furuya and Ohbuchi, 2016). Also the SHREC2016 37

versions of the GIFT (Bai et al., 2016) and MVCNN (Su et al., 38

2015) are included. Finally, we include the performance of the 39

original (non-ML) PANORAMA descriptor (Papadakis et al., 40

2010) The scores of the aforementioned competing methods are 41

those reported by the authors in the respective papers. 42

On the ModelNet datasets, retrieval accuracy is measured via 43

the mean Average Precision (mAP) metric and the Precision- 44

Recall plots. On the ShapeNetCore dataset, retrieval accuracy 45

is measured via the mAP metric, as well as the F-score and the 46

Normalized Discounted Cumulative Gain (NDCG) metrics, to 47

be directly comparable with the SHREC Large-scale 3D Shape 48

Retrieval from ShapeNet Core55 track results. 49

The descriptor for the retrieval task is composed of the ac- 50

tivations of the last fully connected layer of the convolutional 51

neural network. Each 3D model descriptor is compared against 52

the rest of the 3D model descriptors using the L1 distance met- 53

ric. L1 distance is used due to its linearity, which emphasizes 54

the difference between components of the descriptor vectors. 55

For the ModelNet datasets, Table 4 and Fig. 5 show the re- 56

sults of the retrieval experiment where the proposed method 57

outperforms the competition in both datasets. 58

Fig. 6 illustrates the confusion matrix for the 3D models of 59

the ModelNet-10 dataset. Lower values indicate higher similar- 60

ity between corresponding models. It is evident that higher sim- 61

ilarity is exhibited between 3D models that belong to the same 62

class than 3D models of different classes. Furthermore, it can 63

be seen that 3D models of different classes that, however, have 64

similar structure (i.e., night stand and dresser, or table 65

and desk) show higher similarity than classes of different struc- 66

ture (i.e., table and bathtub). The proposed method, able to 67

distinguish between different classes, is also capable of deter- 68

mining if two 3D models have similar structure in an efficient 69
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Fig. 5: Precision-Recall plots for ModelNet-10 (left) and ModelNet-40 (right) datasets. Illustrated are the proposed method (PANORAMA-ENN) compared to the
previous version of the method (PANORAMA-NN) and six other retrieval methods.
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manner.1

Fig. 7 illustrates qualitative retrieval results for 10 sample2

query models. The first column indicates the query and the re-3

maining columns (left-to-right in retrieval order) indicate the4

top 10 retrieved 3D models from the ModelNet-10 dataset.5

Note that the first retrieved 3D model is the query model it-6

self while all the retrieved 3D models belong to the same class7

as the query.8

Table 5 and Table 6 show the results of the retrieval exper-9

iment on the ShapeNetCore dataset, respectively for the pose10

normalized and perturbed versions. The methods compared are11

those that exhibited higher performance in terms of retrieval12

accuracy, in the SHREC2016 and SHREC2017 Large-scale 3D13

Shape Retrieval from ShapeNet Core55 tracks. Also, for ref-14

erence purposes, the PANORAMA-NN method, (Sfikas et al.,15

2017), is also included.16

Macro-averaged versions of the metrics are used to give an17

unweighted average over the entire dataset. The retrieval scores18

for all the models are averaged with equal weights. In the19

micro-averaged versions, each query and retrieval results are20

treated equally across classes, and therefore the results are av-21

eraged without reweighting based on category size. This gives22

a representative performance metric average across categories,23

see (Savva et al., 2017). The micro- and macro- averaged ver- 24

sions of the metrics have been computed using the evaluation 25

code of the SHREC2017 track. 26

On the normalized 3D models dataset, the proposed method 27

outperforms the other methods on the F-score and mAP metric 28

on the Macro-averaged version, while being surpassed only by 29

a small margin on the NDCG metric. On the Micro-averaged 30

version the proposed method can be placed among the best 31

methods, based on the aforementioned metrics, surpassed by 32

a small margin. On the perturbed 3D models dataset, the pro- 33

posed method outperforms the other methods on the F-score 34

of the Macro-averaged version and on the mAP metric of the 35

Micro-averaged version. It is always very close to the best re- 36

sults on this dataset. 37

4.4. Failure Cases 38

Fig. 8 qualitatively illustrates four of the worst retrieval fail- 39

ure cases. The first column indicates the query and the remain- 40

ing columns (left-to-right in retrieval order) indicate the top 4 41

retrieved 3D models from the ModelNet-10 dataset. As can be 42

seen, although the retrieved models do not belong to the same 43

class as the query model, their structure is highly similar. In the 44

second row the query is from the desk class and the results from 45

the table class, while in the fourth row, the query originates 46

from the dresser class and the results from the night stand 47

class. These classes contain models whose structure is very 48

similar, but are separate classes mainly due to utilitarian rea- 49

sons and are hard to distinguish purely on geometric grounds. 50

One insight that can be gained from the failure cases is that 51

when the objects exhibit similarities or patterns along one or 52

more of their principal axes they are less distinguishable by the 53

proposed method. 54

4.5. Implementation 55

The proposed method was tested on an Intel (R) Core (TM) 56

i7 @ 3.60GHz CPU system, with 32GB of RAM and a discrete 57

NVIDIA (R) TITAN X GPU with 12GB RAM. The system run 58

Matlab R2016b. The PANORAMA representation extraction 59

method was developed in a hybrid Matlab/C++/OpenGL archi- 60

tecture while the pose normalization procedure was developed 61
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Fig. 7: Retrieval examples for the proposed method on the ModelNet-10 dataset. First column illustrates the queries while the remaining columns illustrate the
corresponding retrieved models in rank order. Note that the first retrieved model is the query model in all cases.

in Matlab. The artificial neural network was implemented us-1

ing the Matlab Deep Neural Network toolbox and accelerated2

via the CUDA instruction set on the GPU.3

The approximate PANORAMA representation extraction for4

a 10,000 face 3D model is 350 ms. The approximate pose nor-5

malization time for the same typical model is 1,850ms. The6

artificial neural network training procedure requires approxi-7

mately 16 minutes to converge. When image representations8

of higher resolution were used (reduction to 20% of the origi-9

nal size, i.e. 216 × 216 pixels, instead of reduction to 10%) the10

performance gain was considered insignificant (approximately11

+0.005%) while the training process doubled in time (to ap-12

proximately 30 minutes).13

Note that although the architecture of the proposed method14

has been extended to an ensemble of convolutional neural15

networks, the three pipeline paths can easily be parallelized16

with minimum overhead for data division (one I/O read for all17

pipeline paths for each 3D model, as this is performed in mem-18

ory) and results combination (one simple addition of memory19

values). 20

5. Conclusions and Future Work 21

A novel convolutional neural network based method for the 22

creation of 3D model descriptors has been proposed. A com- 23

plete pipeline is given, defining the input representation as well 24

as the parameters and structure of the CNN employed. Ini- 25

tially, the 3D models of the dataset are pose normalized using 26

the SYMPAN algorithm. This is a crucial step since not all 27

dataset 3D models are guaranteed to be pose normalized (e.g. 28

the ModelNet-40 and ShapeNetCore perturbed datasets are not 29

pose normalized). Next, for each 3D model, an augmented 30

panoramic representation is extracted consisting of 9 parts (3 31

for the major axes times 3 for the data contents). This repre- 32

sentation is then resized to 10% if its original size and used as 33

input to a convolutional neural network ensemble; the ensemble 34

divides the input into 3 parts based on the major axes. 35
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Micro-averaged Macro-averaged
Method F-score mAP NDCG F-score mAP NDCG
PANORAMA-ENN 0.789 0.739 0.845 0.591 0.588 0.656
PANORAMA-NN 0.776 0.723 0.815 0.580 0.557 0.630
RotationNet* 0.798 0.722 0.865 0.590 0.583 0.656
ReVGG 0.772 0.749 0.828 0.519 0.496 0.559
GIFT 0.767 0.722 0.827 0.581 0.575 0.657
DLAN 0.712 0.663 0.762 0.505 0.477 0.563
SHREC 2016 GIFT 0.689 0.640 0.765 0.454 0.447 0.548
SHREC 2016 MVCNN* 0.764 0.735 0.815 0.575 0.566 0.640

Table 5: Retrieval accuracies measured by F-score, mean Average Precision (mAP) and Normalized Discounted Cumulative Gain (NDCG) on the normalized 3D
models ShapeNetCore dataset. Methods indicated by an (*) are arXiv versions, at the time of writing

Micro-averaged Macro-averaged
Method F-score mAP NDCG F-score mAP NDCG
PANORAMA-ENN 0.715 0.703 0.759 0.510 0.462 0.554
PANORAMA-NN 0.701 0.687 0.720 0.476 0.447 0.522
RotationNet* 0.636 0.606 0.702 0.333 0.327 0.407
ReVGG 0.719 0.696 0.783 0.434 0.418 0.479
GIFT 0.643 0.567 0.701 0.437 0.406 0.513
DLAN 0.706 0.656 0.754 0.503 0.476 0.560
SHREC 2016 GIFT 0.661 0.607 0.735 0.423 0.412 0.518
SHREC 2016 MVCNN* 0.612 0.535 0.653 0.416 0.367 0.459

Table 6: Retrieval accuracies measured by F-score, mean Average Precision (mAP) and Normalized Discounted Cumulative Gain (NDCG) on the perturbed 3D
models ShapeNetCore dataset. Methods indicated by an (*) are arXiv versions, at the time of writing

Fig. 8: Sample retrieval failure cases for the proposed method. First column
illustrates the queries while the remaining columns illustrate the corresponding
retrieved models in rank order.

PANORAMA, in addition to being a good shape descriptor,1

bridges the gap between the initial 3D model representation and2

the 2D input that is typically more suitable for convolutional3

neural networks. The SYMPAN pose normalization method4

works with reflective symmetries and this could partially ex-5

plain the high accuracy achieved on both the ModelNet and6

ShapeNetCore datasets. These datasets consist of both CAD7

and ‘real-life’ entities that contain several such symmetries. 8

The ModelNet-10 and ModelNet-40 as well as the ShapeNet- 9

Core datasets used for evaluation were specifically designed for 10

deep neural network classification applications. 11

The descriptors created by the proposed method were com- 12

pared against a number of published works on the tasks of 13

3D model classification and retrieval and achieve performance 14

above or comparable to the state-of-the-art. The superiority 15

of the proposed method compared to the competitive ones is 16

that its data representation preserves feature continuity of the 17

3D models, whereas other image representation techniques (i.e. 18

planar projections) do not. 19

Future work should include the exploration of additional 20

channels of information regarding the 2D image representation. 21

The 3-channel scheme could be extended, e.g, by surface color 22

information. Unfortunately, none of the datasets that we ex- 23

perimented with possessed such information and the training of 24

deep networks is dependent on the existence of suitable large 25

training datasets. 26
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