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2Institut für Theoretische Physik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany.
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Domain walls naturally arise whenever a symmetry is spontaneously broken. They intercon-

nect regions with different realizations of the broken symmetry, promoting structure forma-

tion from cosmological length scales to the atomic level 1, 2. In ferroelectric and ferromagnetic

materials, domain walls with unique functionalities emerge, holding great promise for nano-

electronics and spintronics applications 3–5. These walls are usually either of Ising-, Bloch-,
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or Néel-type and separate homogeneously ordered domains. Here we demonstrate that a

wide variety of completely new domain walls occurs in the presence of spatially modulated

domain states. Using magnetic force microscopy and micromagnetic simulations, we show

three fundamental classes of domain walls to arise in the near-room-temperature helimag-

net iron germanium (FeGe). In contrast to conventional ferroics, the domain walls exhibit

a well-defined inner structure, which – analogous to cholesteric liquid crystals – consists of

topological disclination and dislocation defects. Similar to the magnetic skyrmions that form

in the same material 6, 7, the domain walls can carry a finite topological charge, permitting an

efficient coupling to spin currents and contributions to a topological Hall effect. Our study

establishes a new family of magnetic nano-objects with non-trivial topology, opening the door

to innovative device concepts based on helimagnetic domain walls.
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In chiral magnets the Dzyaloshinskii-Moriya interaction (DMI) twists the magnetization and

leads to a helimagnetic ground state. The magnetic moments periodically wind around a certain

axis, Q, with the wavelength λ determined by red a competition between the usual exchange

interaction and the DMI 8. The overall magnetization can be visualized as a stack of equidistant

sheets with uniformly oriented moments, where the orientation rotates from one sheet to the next,

see Fig. 1a,b. The lamellar morphology of the chiral spin texture is thus analogous to cholesteric

liquid crystals 9 and, to some extent, magnetic stripe domains 10. The involved length scales,

however, are strikingly different. In helimagnets, the characteristic periodicity is up to three orders

of magnitude smaller, with lamellae having nanoscopic dimensions.

Despite this difference in length scales, one may expect that these systems develop similar

type of defects 11, 12. Smooth spatial variations of the helix axis Q simply result in a curvature of

the lamellar spin structure 13. More pronounced variations, however, may break the periodicity

and induce vortices, i.e., disclinations (Fig. 1c,d). The strength of such vortices is parametrized

by the winding angle of the helix axis on a path encircling the vortex core. As the helix axis

is a director (Q = −Q), half integer vortices are possible with +π and −π rotations (Fig. 1c,d).

Furthermore, disclinations can pair up and form edge dislocations (Fig. 1e), with the Burgers vector

B quantifying the distance D between them.

We reveal the fundamental importance of disclination and dislocation defects for the forma-

tion and properties of domain walls in helimagnets, presenting such walls as a magnetic analog to

grain boundaries in liquid crystals. A wide variety of functional helimagnetic domain walls with
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non-trivial topology is observed, including the vortex domain walls recently suggested by Li et al.

14. Using magnetic force microscopy (MFM) we study domain walls in the near-room-temperature

chiral magnet FeGe (TN = 278 K). FeGe single crystals are grown by chemical vapour transport

and their phase purity (B20) is confirmed by powder X-ray diffraction (see Methods and Sup-

plementary Fig. S0 for details). For our MFM studies, (100)- and (110)-oriented samples with a

thickness of ≈ 500 µm are cut and chemo-mechanically polished with silica slurry, yielding flat

surfaces with a roughness of about 1 nm. MFM is sensitive to the out-of-plane component of the

magnetic stray field, and helimagnetic order manifests as a stripe-like pattern of bright and dark

lines in the MFM scans in Fig. 2a-c (corresponding topography images are presented in Supple-

mentary Fig. S4). The periodicity of the pattern is λ = 70 nm, matching with previous bulk data 15.

However, we find equivalent values of λ on (100) and (110)-oriented surfaces, which indicates that

Q preferentially lies within the surface plane. This orientation is different from the bulk, where

Q orients along the 〈100〉 direction. The MFM data thus reflects a surface-anchoring of Q im-

plying a surface reconstruction of magnetic order 16, i.e., formation of magnetic surface domains

with in-plane Q. Furthermore, the measured statistical orientational distribution of Q is almost flat

with a slight tendency to point along a 〈100〉 direction (if present) within the surface plane. The

observations indicate that the surface domains are largely independent of both the crystallographic

orientation and bulk magnetism.

Most interestingly, the MFM scans reveal helimagnetic domain walls with a complex, but

well-defined inner structure. Their structure crucially depends on the angle ∠(Q1,Q2) enclosed

between the helix axes of the adjacent domains as defined and summarized in Fig. 2. Based on our
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data we distinguish curvature walls (type I, Fig. 2a), zig-zag disclination walls (type II, Fig. 2b),

and dislocation walls (type III, Fig. 2c).

Walls of type I occur for the smallest angles (. 85◦) ∠(Q1,Q2) and exhibit a smooth, con-

tinuous rotation of the helix axis from Q1 to Q2 (Fig. 2a). Type II walls display a characteristic

zig-zag pattern of alternating ±π disclinations. They arise for intermediate ∠(Q1,Q2) (Fig. 2b)

and induce distortions in the helimagnetic spin structure that extend over micrometer-sized dis-

tances away from the wall. Type III walls form for large ∠(Q1,Q2), involving a rather abrupt

transformation from Q1 to Q2 (Fig. 2c). On a closer inspection, type III walls can be identified as

a chain of magnetic edge dislocations.

The length of domain walls (type I to III) can reach several micrometers, exceeding the char-

acteristic length scale of the helical structure, λ, by two orders of magnitude. Individual walls can

also change their type and thereby adapt to local variations of ∠(Q1,Q2). An example is seen in

Fig. 2c, where a dislocation wall (type III) turns into a curvature wall (type I). To evaluate pinning

effects, we image domain walls before and after heating above TN and also record their response

to magnetic fields as exemplified in Supplementary Fig. S3. The data show that domain walls

tend to appear in similar positions after cooling, which we attribute to the presence of structural

defects at the surface or in surface-near regions. The pinning is overcome by transiently applying

a moderate magnetic field (50 mT in Supplementary Fig. S3), reflecting that the effect is rather

weak. Most importantly, we observe that domain walls reappear with a different spin texture after

annealing. This change shows that defects act as pinning centers for domain walls, but they do
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not govern their magnetic structure. Furthermore, we observe an additional constant, non-dipolar

background in our MFM images wherever the helimagnetic spin structure is distorted (see bright

contrast in Fig. 2). Whether this background originates from, e.g., quadrupolar magnetic fields17

or other low-symmetry phenomena remains to be demonstrated.

Most importantly for this study, the observation of the three types of domain walls strik-

ingly corroborates the analogy between chiral magnets and cholesteric liquid crystals, where such

domain walls have been observed, too 18–20. This universality emphasizes that the domain wall for-

mation is governed by the inherent topology arising from the lamellar structure, being independent

of the involved length scales and microscopic properties.

Figure 2d presents a quantitative analysis of more than 90 measured domain walls. The

larger angle α enclosed by the domain wall and one of the helix axes Qi, measured within the

triangle defined by Q1 and Q2 (see Fig. 2a-c), is plotted as function of ∠(Q1,Q2). The data

shows that, at the surface, Q is oriented in all directions, resulting in a broad spectrum of angles

(0◦ ≤ ∠(Q1,Q2) ≤ 180◦). Type I walls dominate for angles . 85◦ (red dots), type II walls are

realized approximately between 85◦ and 140◦ (blue dots) and type III walls for angles & 140◦

(green dots). Figure 2d reflects that structure and orientation of the walls are interlinked. For

walls of type I and III, the angle α follows the bisecting line (α = 1
2
∠(Q1,Q2)). In contrast,

type II walls have a tendency to orient parallel to one of the Qi, so that α = 90◦. Close to the

transition regions around 85◦ and 140◦, we occasionally observe a special case of type II walls.

This subgroup of walls exhibits a minimal distance D = λ/2 between ±π disclinations (light-blue
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dots) was previously observed in Ref. 7 and discussed theoretically in Ref. 14. Bisecting domain

walls as well as zig-zag structures were also anticipated by Li et al.14.

To understand the relation between the orientation of a wall and its topological magnetic

structure, we perform 2D micromagnetic simulations (see also Supplementary Information). We

determine the energy density for various domain walls as function of ∠(Q1,Q2) on a finite size

system extending up to a cut-off distance L = 12λ away from the wall (Fig. 3). The calculations

reveal that type I walls (Fig. 3a) are lowest in energy for small angles ∠(Q1,Q2) (red line in Fig. 3).

Type II walls with α = 90◦ (Fig. 3b) become energetically favourable as ∠(Q1,Q2) exceeds 85◦,

which is in excellent agreement with the experimental data (Fig. 2d).

Blue lines in Fig. 3 correspond to the energies of type II walls with varying distance D

between ±π disclinations. The energy of a pair of π and −π disclinations grows logarithmically

with D (Ref. 9) so that for an angle ∠(Q1,Q2) = 90◦ the energy per length of the type II domain

wall scales as logD/D. As a consequence, domain walls with large D are in principle preferred

energetically (see Supplementary Information). In order to account for the finite D observed in the

MFM images, we consider a finite cut-off length L in our simulations (L = 12λ, i.e., D = 9λ/2 in

Fig. 3). For angles ∠(Q1,Q2) that deviate from 90◦, the arrangement of disclinations is elastically

distorted with an energy cost that grows quadratically with the deviation ∠(Q1,Q2) − 90◦, but

linearly with D. As the angle ∠(Q1,Q2) increases, type II walls with smaller D are therefore

energetically favoured until a defect distance of D = 4λ/2 is reached, which markes the transition

from type II to type III walls. Type II walls with minimal defect distance (D = λ/2, Fig. 3c) are
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more costly than other configurations. Their high energy cost are in agreement with their rareness

in our MFM data and their tendency to occur in transition regions (light blue dots in Fig. 2d).

At around 145◦ walls of type III become energetically less costly than type II walls (D =

3λ/2). Different micromagnetic wall structures are possible, all with similar energy (Fig. 3d-g).

Within our numerical accuracy, a chain of serially aligned edge dislocations, first with Burgers

vector B = 3λ (see Supplementary Information) and then with B = 2λ (Fig. 3d), is lowest

in energy. Towards larger angles, type III walls with B = 2λ and B = λ (Fig. 3e) become

almost degenerate. In addition, more complex domain wall structures with slightly higher energy

arise (Fig. 3f,g). Consistent with the small energy difference, a large variety of type III walls

is observed experimentally (see also Supplementary Figure S2), and the micromagnetic structure

frequently changes along the wall (see Fig. 2c).

Aside from their intriguing magnetic textures, the domain walls may also carry a topological

skyrmion number, which fundamentally distinguishes them from classical magnetic stripe domains

and other lamellar structures. In general, the topology of a magnetic structure is identified via the

topological charge density ρtop = 1
4π
M(∂xM × ∂yM) for the unit vector field of the magneti-

zation M defined within the (x, y) plane 21. A single skyrmion with the magnetization pointing

downwards at its centre and a topological charge W =
∫
dxdyρtop = −1 is depicted in Fig. 4a.

The same charge is obtained if the structure is embedded in a topologically trivial helimagnetic

background as illustrated in Fig. 4b. This embedded skyrmion however is equivalent to a pair of

edge dislocations with Burgers vector B = λ (Fig. 4c,d). The dislocation with B = λ can thus
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be interpreted as a single meron, i.e., a half-skyrmion, which carries charge W = −1
2
. The sign

reflects the orientation of the magnetization at the meron core. Straightforward generalization of

this argument (see Supplementary Information for details) yields a general relation between the

topological charge of a dislocation and its Burgers vector

Wdisloc. =
s

2
mod2

(B
λ

)
(1)

where mod2 is the modulo 2 operation, and the sign, s = ±1, is determined by the orientation of

M at the dislocation center.

In order to obtain the topological charge for domain walls, one has to add the charges of

dislocations or, alternatively, pairs of ±π disclinations contained within the wall. This leads to

the conclusion that type I and type III walls with continuous stripes have zero topological charge

(Fig. 3a,d,e). The type III walls of Fig. 3f,g with broken stripes, however, have a finite charge W .

Similarly, type II walls can have a finite or zero charge W (see also Fig. 4e). An odd dimension-

less distance 2D/λ between ±π disclinations leads to W 6= 0 and an even distance to W = 0.

Such topological textures with a finite charge W 6= 0 are in general expected 21, 22 to give rise to

an emergent electrodynamics for electrons and magnons and to contribute to a topological Hall

effect 23–26.

Our results reveal a new class of magnetic spin textures with non-trivial topology and estab-

lish a striking analogy between topological domain walls in chiral magnets and defect networks

in mesoscopic liquid crystals. The walls naturally arise when cooling the sample below TN as

domains nucleate and grow, and it can be expected that they also profoundly influence macro-
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scopic properties. Enabled by their chiral magnetic microstructure, the walls can carry a finite

charge and, hence, couple efficiently to spin currents, which is to be demonstrated in future ex-

periments. The walls and their building blocks, the magnetic disclinations and dislocations, are

likely associated with long lifetimes that play a key role for the ac susceptibility and general re-

laxation dynamics in helimagnets 27, 28. In particular, they might be crucial for previously observed

melting processes 29, 30 and the pressure-induced non-Fermi liquid behavior 31–33. The observations

apply to chiral magnets in general and reveal a large variety of topologically non-trivial magnetic

nano-objects – beyond skyrmions 21, 34, 35 – extending the field of topology-based spintronics into

the realm of helimagnetic domain walls.

Methods

Sample growth: FeGe single crystals were grown by chemical vapour transport from FeGe B35

powder with I2 (20 mg) in an evacuated quartz tube. The tube was mounted in a heated three-zone

furnace for 1 month with a thermal gradient of 560◦ C to 500◦ C. This leads to the growth of

0.5× 1× 1 mm3 large B20 FeGe crystals at the lower temperature side. The B20 crystal structure

was confirmed by powder X-ray diffraction (see Supplementary Fig. S???) and surfaces for MFM

imaging were oriented using Laue diffraction.

The data that support the plots within this paper and other findings of this study are available from

the corresponding authors upon request.
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Figure 1

Helimagnetic order and defect structures. a, Right-handed magnetic helix. b, Magnetic

moments form periodic layers (black arrows) orthogonal to the helix axis Q. Bright and

dark areas corresponds to stray fields pointing in and out of the plane, respectively. c,

π disclination. d, −π disclination. e, Edge dislocation formed by a pair of π and −π

disclinations at distance D. The Burgers vector, B = 2D, is given by an integer multiple

of the helix wavelength, B = nλ (here, n = 2).

Figure 2

Helimagnetic domain walls in FeGe. a, Curvature wall (type I). b, Zig-zag disclination wall

(type II). c, Dislocation wall (type III). The MFM data is obtained at 260-273 K. d, Quanti-

tative analysis of the domain wall angle α (see a-c) as function of the angle between Q1

and Q2 (∠(Q1,Q2), defined in a). The plot reveals three distinct stability regimes for type

I (red), type II (blue), and type III (green) walls. Special type II walls (light-blue) occur in

the transition regions (see inset images) as explained in detail in the main text. Within the

marked region in c (white dashed contour) the wall changes from type III to type I.

Figure 3

Micromagnetic domain wall simulations. Energy per length of a, type I,b,c, type II, and

c-g, type III walls, where A is the exchange energy. The graph shows that type I walls are

lowest in energy density for small angles ∠(Q1,Q2). Type II walls stabilize for intermediate

angles. As ∠(Q1,Q2) increases, type II walls with smaller defect distance D become
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energetically favourable (blue, numbers in units of λ/2). For larger angles, type III walls

with continuous stripes (B = 3λ (dark green line), 2λ (d) and λ (e) are most stable. The

associated Burgers vector varies with ∠(Q1,Q2) (green, numbers in units of λ).

Figure 4

Magnetic edge dislocation with nonzero skyrmion charge. a, Magnetic skyrmion with topo-

logical charge W = −1, b, Cartoon of a skyrmion embedded in a helimagnetic back-

ground, c, d, Cartoon and spin configuration of an edge dislocation with Burgers vector

B = λ, i.e., a meron with W = −1
2
. e, Illustration of the spin structure of a type II domain

wall with D = 3λ/2.
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