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Abstract

This paper formulates an electricity market dominated by price-making hydro-
thermal generation. Generation companies optimize their unit commitment, schedul-
ing and bidding decisions simultaneously as a Mixed Integer Programming problem
and participate in a market under quantity competition, giving rise to a discontin-
uous Nash-Cournot game. Both hydropower and thermal units are considered as
price-makers. The market equilibrium under uncertainty is computed via time stage
decomposition and nesting of a Continuous Nash game into the original Discontin-
uous Nash game that can be solved via a search algorithm. To highlight applica-
bility of the proposed framework, a case study on the Scandinavian power market
is designed and suggests positive welfare effects of large scale storage, whereas the
implications on scheduling of conventional units are subsequently discussed. Re-
formulation allows computationally efficient scaling of the problem and possible
extensions to allow large scale applications are discussed.

Keywords: Hydropower, Hydro-Thermal, Cournot game, Nash equilibrium,
discrete game, electricity market

1. Introduction

1.1. Background

Larger integration of renewable resources increases the challenges on liberal elec-
tricity markets. Such means of generation are, compared to conventional forms
of generation, characterized by their low cost curves and uncertain capacity pro-
files. Higher shares of renewable generation could thus lead to increased supply side
volatility as well as increased gaps between peak and base prices. Those effects
will be eventually carried financially by the end consumer and, in interconnected
systems, might spread to otherwise unaffected nodes or areas[1]. Applying flex-
ible means of production mitigates this issue by applying the principle of ’peak
skimming’[2], where a producer strategically schedules generation for the periods
showing the highest market prices. Such flexible generation can come in form of
conventional plants or energy storage, whereas hydropower plants provide the most
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prevalent large-scale application for latter. Despite their negligibly small cost curves,
hydropower units with large enough storage capacities 1 compete with conventional
generation for peak loads rather than for base loads with other means of renewable
generation[3]. This paper addressed the issue of an electricity market dominated
by hydro-thermal generation as price makers. Differing from the existing works on
this topic, in this paper the hydropower producers simultaneously decide their unit
commitment and scheduling strategies under uncertainty.
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[*] refers to the model proposed in this paper

1.2. Related Works

In the literature, there are a multitude of examples given for analyzing the strate-
gic aspects of conventional means of generation[21]. In Ref.[4] nodal prices were

1In relation to their generation capacities, as a reservoir with large storage capacity and smaller
output capacity has higher flexibility regarding the time stages it chooses to feed into the system.
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derived through modeling transmission system operators and market operators as
players participating in a Cournot competition. Ref.[22] shows electricity market
applications of modeling market clearing through supply function equilibria, subse-
quently deriving Nash equilibria on the base of the cost functions of market par-
ticipants. Ref.[23] extends the concept of Stackelberg games to multi-leader games
and solves it through an Equilibrium Problem with Equilibrium Constraints(EPEC)
formulation. In the model presented in Ref.[5], demand sided players are presented
as strategic entities in a pool market.

Not considering technical specifications such as nonlinear efficiency curves, hy-
dropower shows two prominent characteristics that differentiate it from conventional
generation and make the above presented methodologies hard or impossible to apply:
negligibly small generation cost functions and uncertain, period-transferable capac-
ity in form of hydrological inventory. As a result, contrary to their conventional
counterparts, bidding models for hydropower units generally consider price-taker
approaches[24], leading to models for hydrothermal competition usually strictly sep-
arating between exercise of market power by conventional plants and efficient unit
commitment by hydrological plants. Game-theoretical applications that focus on
market clearing are found in Ref.[6, 7], whereas applications that focus on unit
commitment are given in Ref.[8, 9].

There is indication that anticipation of price-making storage operators can im-
pact market outcomes[10]. A few examples of literature analyze this topic: Ref.[11]
describes a Cournot market clearing based on a Nash equilibium convergence al-
gorithm through the Nikaido-Isoda function that has an active set method applied
to stepwise converge to an equilibrium with optimal storage. Ref.[12] extends this
concept to a deterministic multi-nodal Mixed-Integer market clearing problem and
finds the optimal unit schedules via branch-and-cut. In Ref.[13] two different ap-
proaches are considered to model Nash equilibria in hydro-thermal systems. As
the system is hydro-dominated focus is put on modeling uncertainty. Ref.[14] im-
plements hydrological storage through a capacity constraint connecting time stages
and thus otherwise individual models into a single market clearing model under
Cournot competition. Ref.[15] focuses on the scheduling decisions of the thermal
plants, ignoring inventory transfers through hydropower reservoirs and solving a
series of deterministic Mixed Integer Problems to converge towards a balance in
supply and demand to represent a cleared market. Despite the listed approaches,
no literature is found on a problem as shown in Fig.1: hydropower producers par-
ticipating in markets with changing access (on/off) for marginal (thermal) units,
i.e. a game with a time-dynamic set of participants. The reason herefore, as e.g.
listed in Ref.[25] is the difficulty of dealing with the duality gap created by such
integer decisions. The model presented in this paper however aims to connect ex-
ercise of market power in hydrothermal systems with optimal scheduling and unit
commitment, which has historically been focus of cost minimization[26]. This com-
petitive market is formulated as a Discrete game[27] and can be solved by commercial
solvers for its (potentially multiple) Nash equilibria, raising computational efficiency
through reformulation[28].
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Figure 1: Multi Period Hydro-Thermal Game
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1.3. Contributions

In the here presented paper the hydropower companies optimize their unit com-
mitment and bidding strategies simultaneously under the consideration of uncer-
tainty. The salient features of this paper are summarized as follows.

* Combination of scheduling and price-maker bidding: the presented
model provides a novel tool for both generation companies and system op-
erators to analyze the impact of storage capacities onto the network, thus
incorporating the change of market power over time.

* Model compactness: the nested problem of a continuous game under un-
certainty shows strong computational efficiency and thus has the potential to
itself be used as an analytic tool (without solving the scheduling problem).

* Practical applicability: future applications of the presented model have
a wide range. For example this could include analysis of capacity mecha-
nisms or the impact of maintenance and involuntary down-times, refinement
of hydropower-bidding through ability to model price impact, and analysis
of the interactions of strategic scheduling and strategic storage. The here
presented base model might be extended by additional dimensions (e.g. more
nodes, market types) and constraints (e.g. reserve provision) in a similar man-
ner to traditional equilibrium models[21] to enable it to cope with real-world
problems.

A direct comparison to models from literature can be found in Tab.1.

1.4. Organization

The rest of this paper is organized as follows. In Section 2, the hydro-thermal
model under consideration of uncertainty, periodic inflow and binary unit commit-
ment decisions is formulated. Section 3 specifies the solution techniques used to
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yield what is later defined as ’Nash tuples’. Case studies are presented in Section 4
with discussions on welfare effects. Section 5 concludes the paper.

Nomenclature
J players
Ij generation units of player j
IThj thermal units of player j

IHyj hydrological units of player j
T time periods
Ξ scenarios
N predefined schedules
Φ equilibrium tuples

Indexes
j player j ∈ J
i generation unit i ∈ Ij
t time period [h]
s inflow source period [h]
t2 inflow sink period [h]

Variables
qi,t generation level [MWh]
bi,t scheduling variable [binary]
qsi,t production from source period s used in period t [MWh]
q′i,t generation decisions of other players i /∈ Ij [MWh]
ni selected schedule ni ∈ R+

Parameters
ξ stochastic parameter ξ ∈ Ξ

q
i
, q̄i generation capacities [MW]
R̄i reservoir capacities [MW]
P ξ scenario probability [%]
k convergence parameter k ∈ R+

cfix,cavar,c
b
var cost function parameters

Functions
Πi,t profit function [AC]
Qs
i inflow in hour s [MWh/h]

pj,t price expectation of player j [ AC
MWh

]
ci,t cost function of unit i [AC]
dt demand function [MWh]
bi,t scheduling function [binary]

Dual variables
δi,t,δ̄i,t generation capacities
σi reservoir inflow
γi,t split representation
ψi,t reservoir capacity
µi,t non-negativity

ωp,ξi,t , ωQ,ξi stochastic - deterministic gap
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2. Model

2.1. Hydro-Thermal Generation

We assume a single area with a single pool market and competition in quantity.
All supply sided participants, further referred to as generation companies or players,
aim to solve a Mixed Integer profit maximization problem in the form of:

max
qi,t,qsi,t,bi,t

Πj =
∑
i∈Ij

∑
t∈T

Πi,t(ξ, qi,t, bi,t) (1a)

s.t. q
i
bi,t ≤ qi,t ≤ q̄ibi,t ∀i ∈ Ij, t ∈ T (1b)

max(T )∑
t=s

qsi,t ≤ Qs
i (ξ) ∀i ∈ IHyj , s ∈ T (1c)

t∑
s=1

qsi,t = qi,t ∀i ∈ IHyj , t ∈ T (1d)

t−1∑
s=1

max(T )∑
t2=t

qsi,t2 ≤ R̄i ∀i ∈ IHyj , (t > 1) ∈ T (1e)

qi,t ∈ R, qsi,t ∈ R+, bi,t ∈ [0, 1]

Objective function Eq.(1a) incorporates all generation units owned by the player.
The profit function of a single generation unit in a single time period, as shown
below in Eq.(2), depends on a stochastic parameter representing uncertainty, as well
as the chosen levels of generation and the scheduling variables. Each player might
hold both thermal and hydropower units. The generation capacities given in Eq.(1b)
depend on the unit schedules that define if the units are able to supply between their
given minimum and maximum generation limits in a certain period. This depends
on if the respective unit is running (i.e. bi,t = 1) or shut down (bi,t = 0). The
inflow consistency constraint Eq.(1c) ensures that the hydropower units only use
their given inflows, whereas s indicates the source period in which the inflow arrives
at the reservoir. Decision variable qsi,t represents how much of inflow from a source
period is used for generation in period t. Subsequently, Eq.(1d) ensures that the total
generation of those units matches this split representation. Physical capacities of
reservoirs are considered in Eq.(1e): transfers from a source period s < t into a sink
period t2 ≥ t count to the total inventory in period t which cannot exceed the upper
limit of the reservoir. The reason why it is conducted over (t > 1) ∈ T periods is that
for a number of max(T ) periods there are a number of max(T )−1 inventory transfers
between periods. For the sake of simplicity and similar to Ref.[14], no (mandatory)
end reservoir levels are assumed. Starting reservoir levels are determined by the
inflow in period 1.

The profit functions of the players are defined as:

Πi,t(ξ, qi,t, bi,t) = pj,t(ξ,
∑
i2∈Ij

qi2,t +
∑
i2 /∈Ij

q′i2,t)qi,t − ci,t(qi,t, bi,t) (2)

In Cournot competition, players calculate their individual profits based on assump-
tions representing decisions of other market participants, which are subsequently in
this paper marked by ′. As the model is aimed for short term applications, cost
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functions are assumed to be independent of uncertainty, thus limiting the profit
impact of the stochastic parameter ξ on the components2 of the price functions pj,t.
As hydropower cost components are generally considered to be negligible in short
to medium term applications, the respective cost functions ci,t can be omitted, sim-

plifying Πi,t(ξ, qi,t, bi,t)→ Πi,t(ξ, qi,t)∀i ∈ IHyj , t ∈ T . In addition, this removal of the
binary variables from the profit function also allows for a simplification of Eq.(1b)
- since, for hydropower units, there are now no (negative) profit effects caused by
the binary variables, they can be considered fixed as bi,t = 1∀i ∈ IHyj , t ∈ T . Fur-
thermore, depending on the form of price and cost curves of the thermal units, the
problem of a single player can take the form of a Mixed Integer Linear Program or
a Mixed Integer Quadratic Program.

2.2. Market Clearing

A system operator would aim to clear the market by calculating a periodical
demand, in the here presented framework with uniform pricing:

dt =
∑
i∈Ij

qi,t +
∑
i/∈Ij

q′i,t ∀j, t (3)

To allow derivation of a definite market price, symmetric information on price curves
has to be assumed:

pj1,t(·) = pj2,t(·) ∀j1 ∈ J, (j2 6= j1) ∈ J, t ∈ T (4)

As liberalized pool markets generally provide historical data publicly, such an as-
sumption can be considered valid in practical applications. Thus, Eq.(2) can be
simplified by:

pj,t(ξ,
∑
i2∈Ij

qi2,t +
∑
i2 /∈Ij

q′i2,t)→ pt(ξ, dt)∀j ∈ J, t ∈ T (5)

2.3. Model Limitations

As shown in Ref.[16], real-world hydropower short term unit commitment in-
cludes a large range of complicating factors such as interconnected inflows and tech-
nical characteristics (e.g. head and tail effects). In addition, due to increasing
uncertainty through intermittent generation such as wind, unit commitment prob-
lems might require advanced techniques to cope with their tasks[17]. As mentioned
below, in this paper however, uncertainty will be dealt with on an approximated
level - through addition of slack variables and minimizing their weighted distance
to a deterministic solution. Thus, the here presented problem gives a support tool
to show the interaction between unit commitment and equilibrium problems and
cannot replace optimal scheduling of units.

2In case of linear demand curves both slope and intercept would be subject to uncertainty.
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Figure 2: Solution Algorithm Flowchart (Discrete Game)

initialize:
bi,t and s

yield all
tuple Nash
Equilibria

yield
b∗i,t

fix
qsi,t
∀s 6= s

Market
Clearing

under
uncertainty

yield
q∗si,t
q∗i,t

yield
q∗si,t

adjust s

adjust bi,t

Continuous Game

3. Solution Approaches

Even though the previously listed assumptions and simplifications support effi-
cient solving of the model, several complications have still to be dealt with. Mainly,
the previously mentioned duality gap caused by the binary scheduling variables that
eliminates the possibility of straight-forward application of some of the conventional
techniques shown in the introduction to this paper. Furthermore, the ’curse of di-
mensionality’ related to problem size - i.e. amounts of scenarios, time stages, agents
- has to be approached to allow for practical applications of the proposed framework.
Thus, we propose a triple layer approach to derive multiple Nash Equilibria for the
player decisions as shown in Eq.(1).

Regarding annotation: below we will mark fixed variables/parameters as · and
optimal solutions of variables with ∗. The structure of the solution framework is
shown in Fig.2.

3.1. Market Clearing under Uncertainty (Continuous Game part I)

The core problem is represented by the Karush Kuhn Tucker conditions of Eq.(1),
with adjustments to cope with stochasticity and with initial presets for certain de-
cision variables. Namely, the schedules - i.e. the binary decision variables - are
given fixed values bi,t, and a specific inflow source period s is chosen, leading to all
quantity decisions that are not related to this inflow period being considered as fixed
parameters instead of variables, i.e. qsi,t := qsi,t∀(s 6= s) ∈ T with starting values of

qsi,t = 0.

As presented in Fig.3 this decomposes the model in a number of smaller equilib-
ria.

As with fixed schedules for thermal plants, price arbitrage between periods can
only happen through hydropower units, considering a specific inflow period s affects
only the following periods. Thus a new period set can be defined:

T s = {t|t ∈ T, t ≥ s} (6)
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Figure 3: Continuous Game - Decomposition
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This allows simplification and reformulation of Eq.(1):

max
qi,t,q

s
i,t

Πj =
∑
i∈Ij

∑
t∈T

Πi,t(ξ, qi,t, bi,t)

s.t. q
i
bi,t ≤ qi,t ≤ q̄ibi,t

∀i ∈ Ij,
t ∈ T s (δi,t, δ̄i,t)∑

t∈T s
qsi,t ≤ Qs

i (ξ) ∀i ∈ IHyj (σi)

t∑
s=1

{
qsi,t, if s = s
qsi,t, if s 6= s

= qi,t
∀i ∈ IHyj ,
t ∈ T s (γi,t)

t−1∑
s=1

max(T )∑
t2=t

{
qsi,t2 , if s = s
qsi,t2 , if s 6= s

≤ R̄i
∀i ∈ IHyj ,

(t > s) ∈ T s (ψi,t)

qsi,t ≥ 0
∀i ∈ IHyj ,
t ∈ T s (µi,t)

(7)

For a single scenario, taking the Karush Kuhn Tucker conditions of this problem
allows derivation of an equilibrium solution. To clear the problem under several
scenarios ξ ∈ Ξ with individual scenario probabilities we apply a similar approach
as found in Ref.[18], extending the model by two dual variables ωp,ξi,t and ωQ,ξi that
represent the shadow prices of a scenario deviating from a selected deterministic
solution, therefore minimizing the residuals between a deterministic solution and all
scenarios. Discussion on this approach is provided in Appendix A.

Subsequently, the Karush Kuhn Tucker conditions are formulated and provided
in Eq.(B.1) which can be found in Appendix B. The Lagrangians are shown in
Eq.(B.1a) to (B.1c), the feasibility and complementarity conditions are found in
Eq.(B.1d) to (B.1h). Eq.(B.1j) and (B.1k) respectively present the price and in-
flow consistency constraints that minimize the residuals between the different sce-
narios whose probability adjusted shadow prices can be found to affect Eq.(B.1a),
Eq.(B.1b), and Eq.(B.1f).
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3.2. Backwards Pass (Continuous Game part II)
As shown in Fig.2 and Fig.3, readjustment of the fixed inflow source period s is

required to accommodate for all inflow periods. By nesting the single period problem
into a backwards pass algorithm, the multi-period problem can be solved. After
choosing a value for the convergence parameter this algorithm can be implemented
in the following manner:

Algorithm 1.

0. initialize s := max(T ), run := 1, Π0
j := −∞ ∀j ∈ J

1. solve KKT conditions

2. update: qsi,t := q∗si,t ∀j ∈ J, i ∈ I
hy
j , t ∈ T, s = s

and Πrun
j := Π∗j ∀j ∈ J

3. if s > 1: s := s− 1 and back to 1.

4. if
∑
j∈J
|Πrun−1

j − Πrun
j | > k : run := run+ 1 and back to 1.

5. converged: q∗si,t = qsi,t ∀j ∈ J, i ∈ I
hy
j , t ∈ T, s ∈ T

As mentioned in Ref.[13], such an equilibrium will only show one potential schedule
for the hydropower units. Even with a convergence parameter of k = 0(as in the
latter presented case study) and therefore requiring a global optimum, other sched-
ules might result in similar profits making the optimum non-unique. Discussion on
this matter can be found in Appendix C. However, as the derivation of the discon-
tinuous Nash equilibrium only uses the information on objective values of the player
problems (which are constant over all equilibria) and not the specific generation
decisions (which might diverge), validity of the results still holds.

3.3. Discontinuous Nash Equilibrium (Discrete Game)
As displayed in Fig.2 the Backwards Pass algorithm determines optimal genera-

tion in the equilibrium, considering that unit commitment is predefined. Such fixed
ramping schedules as utilized e.g. in Ref.[19, 20] which assume that binary sched-
ules of the units are pre-established and treated as input parameters to the problem.
However, as the here presented model aims to give the thermal plants the possibility
to react to hydropower decisions (i.e. withdraw from time stages with peaks low-
ered through storage arbitrage). Fixing the ramping schedules and thus the binary
variables bi,t eliminates those actions by the thermal players, thus weakening their
model strategies in relation to their options in reality and thus distorting the model
results and subsequently displaying a skewed representation of the equilibrium.

On the contrary to fixed schedules, all potential iterations of the binary variables

would amount to a number of 2

∑
j∈J
|Ithj |×max(T )

. Each of those iterations would in turn
represent a ’Nash tuple’, that is an equilibrium solution derived by the Continuous
game as shown above.

Thus, fixing schedules to a single outcome might not represent the reality ad-
equately, whilst keeping all iterations in the game introduces the problems tra-
ditionally related to Mixed Integer Programming: increasing complexity and the
possibility of ending up in local maximums.
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To adequately address this issue, we apply an approach that can be consid-
ered a middle course between those mentioned. By using a reformulation similar
to Ref.[28], we are able to reduce computational complexity whilst still keeping the
core strategies of the players intact: instead of solving for the binary decision vari-
able, we replace bi,t → bi,t(ni). The function bi,t(ni) represents preselected schedules
indexed by the decision variable ni ∈ Ni. This reduces complexity to a new number

of iterations: iter = 1 ≤ 2

∑
j∈J

∑
i∈Ith

j

|Ni|

≤ 2

∑
j∈J
|Ithj |×max(T )

. Even though this refor-
mulation of the scheduling decisions results in a computationally less demanding
problem setup, it still is of NP-hard nature[29]. Modern techniques usually tend to
work with various branch-and-cut approaches to derive solutions for such discontin-
uous problems[30]. However, comparing and evaluating different outcomes for Nash
equilibria in their ”validity” itself poses a problem that is not straightforward[27].
Furthermore, Nash equilibria are not necessarily globally optimal for the players,
as demonstrated by famous examples such as the prisoners’ dilemma. As a result,
instead of applying an approach using bounds and risking jeopardizing potential
viable equilibria, pre-selection of an adequately sized number of predefined sched-
ules to enable brute-forcing all equilibrium tuples was conducted. This is made
possible as every tuple (if feasible) can be solved for an equilibrium that defines
profits for each player, allowing to determine dominant strategies (i.e. scheduling
decisions). By defining a player j’s assumption on other generation units’ schedules
as n′i2 ∀i2 ∈ Ij2 6=j a Nash tuple equilibrium can be defined as:

Φ = 〈q∗i,t, q∗si,t, bi,t(n∗i )〉
where
Π∗j = max

ni

∑
i∈Ij

∑
t∈T

Πi,t(ξ, q
∗
i,t/q

′∗
i2,t
, bi,t(ni)/bi2,t(n

′
i2

)) ∀j ∈ J
(8)

As each iteration can potentially represent an equilibrium, the number of tuple
equilibria |Φ| will range within 0 ≤ |Φ| ≤ iter.

To derive the equilibria a search algorithm, e.g. in the following form, can be
used:

Algorithm 2.

0. initialize φ(ni) := {0|N
∏
i∈Ij

Ni

, j ∈ J}
1. for j ∈ J :
2. initialize N ′j = {ni2 |ni2 ∈ Ni2 , i2 ∈ Ij2 6=j}
3. while N ′j 6= {∅}:
4. choose any n′i2 ∈ N

′
j

5. solve Π∗j
6. increment φ(ni/n

′
i2

) := φ(ni/n
′
i2

) + 1

7. remove n′i2 from N ′j
8. for all ni where φ(ni) = max(J): ni = n∗i

This algorithm builds on the requirement of a computationally feasible set of
available schedules. Adding more sophistication in terms of a larger set of unit
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Figure 4: Obtaining Scenarios through Lattice Separation
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schedules would require application of additional techniques, i.e. branch-and-bound
or branch-and-cut as demonstrated in e.g. Ref.[31]. However, as the here presented
model aims to focus on short term time frames, it is reasonable to assume that a
range of potential unit commitment schedules is already established. As mentioned
before, literature traditionally assumes a single such schedule, whereas we relax this
by providing a set of potential schedules to our players to choose from.

4. Case Study

To validate the proposed model and methods, a test case representing the Scan-
dinavian power system was designed to represent a late spring scenario in Southern
Sweden. The aim of the case study is to provide a showcase of the capabilities of
the demonstrated model framework.

Test System. Three oligopolistic players - respectively holding a hydropower, ther-
mal and mixed generation portfolio, were considered competing over 7 periods. Out
of the five thermal plants three heterogeneous plant types (Gas/Coal/Oil) were in-
troduced, whereas units of a specific type were modeled in homogeneous manner in
regards to generation capacities, up-/down-time limits and cost curves. The thermal
units were given quadratic cost functions in the form of:

ci,t(ni, qi,t) = cfixbi,t(ni) + cavarqi,t + cbvar(qi,t)
2 (9)

For the sake of simplicity in demonstration, ramp-up and -down cost were replaced
with fixed rates for up-time.

The five hydropower units were modeled heterogeneous in regards to generation
capacities, reservoir sizes, degree of regulation (relation of generation to reservoir
size, where generally a low value can be used to represent a run-of-river unit and
a large value a long term storage unit), inflow (base level, variability and trend).
This can be observed in Fig.5 which shows the scenarios for latter3. The total

3The size of the outer rings and strength of the connection lines display the likelihood of the
scenario.
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Figure 5: Inflow Scenarios for the Hydropower Units3

starting period inventory:
unit i = 6: high
unit i = 7, 8, 9: medium
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Figure 6: Nash Tuples

(a) Nash Tuple Hydro-Thermal Case (b) Nash Tuple Thermal-dominated Case

generation capacities for the thermal and hydropower plants were 1300MW and
280MW respectively.

Solvers. The model was coded in Python, using the multi solver interface Pyomo[32].
This interface provides nonlinear transformations for complementarity problems
with continuous variables[33] based on a constrained optimization technique from
Ref.[34], enabling the usage of freeware tools such as the nonlinear interior-point
solver IPOPT[35]. Performance on an Intel i7-5600U was an average of 80.5 seconds
to yield a tuple solution in each case, i.e. to solve the Continuous Game, for both
cases running in parallel.

Base Case (Hydro-thermal competition). In the case study, the chosen form of rep-
resenting uncertainty was using Markov processes transformed into samples. Tech-
niques to obtain such scenario lattices that adequately represent the distribution
exist plenty in literature, i.e. Ref.[36]. Therefore, we will assume that an adequate
discrete representation of price and inflow distributions are given and can be trans-
formed into scenarios as Fig.4 shows for a three period example. Historical price data
was obtained from the public database of Scandinavian market operator Nordpool,
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Figure 7: Welfare Distribution

(a) Demand Side (b) Supplier Side

Figure 8: Price Scenarios for Nash Tuples3

(a) Hydro-Thermal Case (b) Thermal-dominated Case

whereas the elasticity of the linear price curves was extrapolated based on volume
data4. 100 uniformly distributed initial scenarios were obtained and reduced to 15
normally distributed scenarios per time period.

162 schedule iterations(/tuples) of the thermal units were realized, whereas the
per-period profits of every iteration as well as the tuple representing the (single)
Nash equilibrium in schedules can be found in Fig.6a.

Thermal-dominated competition. For the second case analyzed, the hydropower player
holding four out of five units (and thus holding a quasi-monopoly on storage, apart
from unit i = 6) was removed, leading to a thermal dominated game between two
players with a total capacity of 1350MW resulting in a different Nash equilibrium
tuple found in Fig.6b.

Fig.7 shows that removing the hydropower player has a higher impact on the
supply side welfare than the demand side, whereas this effect is amplified in periods

4The elasticity was adjusted accordingly for the thermal-dominated case presented below.
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Figure 9: Expected Utilizations of Maximum Unit Capacity

(a) Hydro-Thermal Case (b) Thermal-dominated Case

with lower variance in prices. This suggests that peak skimming has not only strong
positive effects on customer welfare but also benefits the generators, even though the
introduction of additional storage shows dampening effects over the whole spectrum
of price scenarios, as Fig.8 illustrates. Paradoxically, as seen in Fig.7b this drop
of prices through addition of storage creates positive welfare effects on the supplier
side. The reason herein lies in that the hydropower producer holds close to 3

4
of

the supplier profits by being able to generate at infinitesimally low cost. Further,
this positive impact on the supplier side seems to be of greater extend than on
the demand side, indicating that suppliers profit more from the cost savings of
introducing storage technology. This can partially be explained by low elasticities
of the price curves, as characteristic for electricity markets[21], but also is a result of
the here presented model being able to accurately capture costs related to schedules.

Especially in period 3, another negative effect for the players holding thermal
plants can be observed: due to plants aiming to schedule for upcoming high price
periods, certain periods shows welfare potentially taking negative values, i.e. gen-
erators supplying under loss. In systems with storage inflow from the market (e.g.
pumped hydro storage), capacity could be taken and transferred to later stages.
In systems like in the here analyzed cases, no such possibility for moving capacity
directly exists. Thus the thermal producers are given only two options: reduce the
outputs with current schedule or change schedule. Either way, the thermal produc-
ers are forced away from their optimal point and punished for inflexibility. Thus,
in systems with a large share of storage facilities with natural inflow (traditional
hydropower plants) inflexible thermal units might see adverse effects of inflexibility
amplified, whereas in systems with market inflow (e.g. pumped hydro storage), such
effects might be dampened.

This change in schedule can be observed in Fig.9, which shows the adjustments in
the output quantities of player j = 1 holding units i = 1, 2 and player j = 2 holding
units i = 3, 4, 5, 6. All units apart from i = 5 react with slight adjustments of their
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Table 3: Fixed Cost cfixbi,t(ni) [AC]

case unit t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
i = 1 500 500 500 500 500 500 500
i = 2 2000 2000 2000 2000 2000 2000 2000
i = 3 0 500 500 500 500 500 0
i = 4 0 0 0 0 2000 2000 2000
i = 5 850 850 0 0 0 0 0

H
y
d
ro

-T
h
er

m
al

5∑
i=1

3350 3850 3000 3000 5000 5000 4500

i = 1 500 500 500 500 500 500 500
i = 2 2000 2000 2000 2000 2000 2000 2000
i = 3 0 500 500 500 500 500 0
i = 4 0 0 0 0 2000 2000 2000
i = 5 850 850 850 850 850 850 850T

h
er

m
al

5∑
i=1

3350 3850 3850 3850 5850 5850 5350

Table 4: System Marginal Cost of Capacity

case t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
marginal

unit
i = 3 i = 4 i = 5 i = 5 i = 5 i = 5 i = 3

H
y.

-T
h
.

mccap
t [AC/MW ] 6.67 14.29 14.17 14.17 14.17 14.17 6.67
marginal

unit
i = 3 i = 4 i = 4 i = 4 - - i = 3

T
h
.

mccap
t [AC/MW ] 6.67 14.29 14.29 14.29 ∞ ∞ 6.67

∞ relates to no available capacity

output levels, withholding a minor amount of output in the thermal-dominated case
and thus causing the price increase mentioned above. Reducing the amount of play-
ers leading to resuming players withholding quantity is an expected characteristic
of Cournot models. However, in our presented model this effect is reduced by unit
i = 5 switching the schedule in the thermal case in order to produce on maximum
generation level. This leads to the conclusion that giving players the option to enter
or leave a Cournot game (in our model through scheduling units for the respective
time periods) dampens the effects of exercising market power. The impact on the
total fixed cost in the system can be found in Tab.3.

This gives the possibility to formulate the system marginal cost of additional
capacity by finding the minimum cost for adding an additional MW to the system:

mccap
t = min

i

∂ci,t(qi,t,bi,t)

∂bi,t
/q

i
· (1− bi,t(ni)) +∞ · bi,t(ni) (10)

The results of this for both cases can be found in Tab.4 which show an increase in
cost for the case where more thermal capacity is procured.
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Table 5: Marginal Cost of Energy[AC/MWh]

case unit t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
i = 1 41.95 36.48 34.42 37.24 37.6 37.15 39.14
i = 2 37.95 33.61 32.00 34.37 34.72 34.09 36.14
i = 3 10 36.48 34.42 37.24 37.6 37.15 10
i = 4 15 15 15 15 34.72 34.09 36.14
i = 5 ∞ ∞ 23 23 23 23 23

H
y
d
ro

-T
h
er

m
al

system 37.95 33.61 32.00 34.37 34.72 34.09 36.14
i = 1 43.99 37.09 32.78 36.17 36.82 36.57 40.36
i = 2 39.62 34.10 30.63 33.48 34.06 33.61 37.17
i = 3 10 37.09 32.78 36.17 36.82 36.57 10
i = 4 15 15 15 15 34.06 33.61 37.17
i = 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞T

h
er

m
al

system 39.62 34.10 30.63 33.48 34.06 33.61 37.17
∞ relates to no available capacity

Further, the marginal costs of energy can be derived from Eq.(9):

pj,t(ξ,
∑
i2∈Ij

qi2,t +
∑
i2 /∈Ij

q′i2,t)→ pt(ξ, dt)∀j ∈ J, t ∈ T (11)

The results, presented in Fig.5 show that the cost effects of additional storage
can not necessarily be found in reduction of cost, as the average marginal cost
over all time periods is with 34.70AC/MWh in fact slightly higher in the hydro-
thermal case than the 34.67AC/MWh in the thermal-dominated case. In addition,
a flattening effect of storage can be observed. In traditional economic models that
do not consider start-up and shut-down decisions, the system marginal costs would
be given by i = 4, 5 in the hydrothermal case and by i = 4 in the thermal case. In
the here presented model however, those units are not participating in the market,
as they are either not started in the first period (unit i = 4) or actively decide
to withdraw from the market (unit i = 5 in the hydrothermal case). Thus, our
model is able to capture both the indirect impact of changing capacity costs on
energy prices as well as on marginal cost of energy. This plays a role regarding the
modeling of otherwise homogeneous units. Units i = 1, 3 as well as units i = 2, 4
are assumed to be of similar types regarding cost curves and capacities. However,
with different initial states (units i = 1, 2 running from the start of the time frame
and units i = 3, 4 being off) and different proposed schedules, the unit commitment
and scheduling decisions differ vastly in the Nash equilibrium tuples of both cases,
as shown in Fig.9.

These scheduling tuples being Nash equilibria can also be supported by the
results of the individual players. Fig.10 shows that player j = 2 has an economic
incentive to switch the schedule on unit i = 5, with the chosen optimal schedules
(taken from the Nash equilibrium tuple) showing a more beneficial outcome for a
risk-neutral player.

The case studies indicate, that in a system relying on an energy only market,
the increasing fixed cost from changes in schedule as presented in Fig.3 and thus the
cost of optimal generation capacity are carried by both suppliers and generators.

17 of 26

DOI: 10.1016/j.energy.2018.08.162



Figure 10: Profit Distributions of Player j = 2 in Thermal-dominated Case (probability distribu-
tions indicated in blue)

(a) Optimal Schedules (b) Schedules from Hydro-Thermal Case

Even in the here presented monopolistic cases, both suppliers and generators share
the loss of welfare after losing flexibility (by removing the storage provider from the
system).

However, adding additional capacities would require a payment in height of the
marginal values presented in Tab.4. The derived marginal costs in the here presented
case studies however lie significantly below the observed prices of regulating power in
the analyzed area of Nordpool (commonly close to equal to energy prices), indicating
high potential profit margins for participants in this market type. However, technical
simplifications such as assuming a fixed cost rate instead of start-ups and shutdowns
might play a role and thus we advise further research on this topic.

Model Discussion. The proposed approach presents a novelty in literature: solving
an equilibrium model with two groups of agents that either actively choose to partic-
ipate depending on the period or are able to distribute inventory over the time frame.
This gives the possibility to quantify the impact of scheduling on market equilibria
and thus allow to derive marginal cost of capacity, even for an energy-only market
as the example of the case study demonstrates.

Initial tests hint that scalability of the model for larger applications in dimensions
of time, player size and scenarios is of satisfying performance, especially considering
the original problem isNP-hard. The strictly disconnected nature of the Continuous
and the Discrete Game also allows for partial adjustments of the model. Examples
for former would be additional nodes and related transfer flows, more than a single
energy markets or other uncertain parameters as the ones already considered. Ex-
amples for latter would be addition of capacity mechanisms or consideration of unit
maintenance. As an extension of the model, we propose further discussion and re-
search on replacing the Continuous Game by a Non-Convex Game and the resulting
conditions to keep the Nash tuple equilibria yielded by the Discrete Game valid.

5. Conclusion

The presented base model shows a novel problem setup: players optimizing
unit commitment and bidding simultaneously (in form of a Mixed Integer Lin-
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ear/Quadratic Problem) whilst competing against each other in a multi-period
Cournot market under uncertainty. A nested equilibrium approach is proposed,
first finding the Nash equilibria within a decomposed Continuous Game and subse-
quently comparing the resulting discrete decision tuples to yield what we refer to as
Nash tuple equilibria.

Both the proposed Continuous and Discrete Game are complete novelties in liter-
ature and allow for a wide range of applications and adaptions. One such application
is presented in form of a case study on the Scandinavian power market, where the
quantitative influence of removing hydropower storage capacity is analyzed. With-
out having the hydropower generator in the system, sufficient capacities to conduct
’peak-skimming’ are missing, leading to additional thermal unit start-ups. The wel-
fare effects of those are observed and indicate that apart from the demand side also
the supplier side is influenced negatively by a lack of storage. In addition, the effects
on marginal cost on both continuous and discontinuous variables is calculated, which
allows for derivation of a system marginal cost of capacity, even in the presented
energy-only market. This allows for a variety of practical applications. In the here
presented case study this is shown by being able to analyze the welfare losses of
withdrawing flexible (storage) capacity. The results indicate that a loss of flexibility
is shared by both suppliers and generators. However, increasing flexibility through
additional dispatch over the point of optimal capacity has to be carried by the sup-
ply side (as e.g. through capacity or reserve payments to generators). In addition,
through the possibility of deriving ’marginal cost of capacity’ our results indicate
that the approximate 1:1 relation of reserve and spot/intraday prices in Nordpool
might be an overestimate in favor of reserve providers.
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Appendix A. Market Equilibria under Uncertainty

In order to elaborate on the method used to deal with uncertainty, we will make
use of an adjusted one-period example of the previously presented problem. In this
example players maximize profits under uncertain output capacities:

max
qi

∑
i∈Ij

p(ξ,
∑
j∈J

∑
i2∈Ij

qi2)qi − ci(qi)

s.t. 0 ≤ qi ≤ q̄i(ξ) (δi, δ̄i)
(A.1)

The reader might notice that this resembles the bidding problem of a renewable
energy producer such as wind or solar closer than the hydro-thermal example of this
paper. This however is intended as the displayed example provides a problem under
two different equations - an objective function and an inequality constraint - both
under uncertainty. It also has to be noted that the market clearing condition under
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symmetric information is already included in the price function by using the other
players actual bids qi instead of using an assumption q′i.

Assuming the players have symmetric information on the outcome of the un-
certain parameter, thus fixing ξ as ξ allows to formulate the KKT conditions as:

∂L
∂qi

= −
∂p(ξ,

∑
j∈J

∑
i2∈Ij

qi2 )

∂qi
qi

−p(ξ,
∑
j∈J

∑
i2∈Ij

qi2)

+∂ci(qi)
∂qi
− δi + δ̄i = 0

∀j ∈ J, i ∈ Ij

0 ≤ δi ⊥ −qi ≤ 0 ∀j ∈ J, i ∈ Ij
0 ≤ δ̄i ⊥ qi − q̄i(ξ) ≤ 0 ∀j ∈ J, i ∈ Ij

(A.2)

Using uncertainty in form of scenarios ξ ∈ Ξ however might result in complications,
especially related to the objective function (which might be caused to not be able to
clear). To deal with this issue, Ref.[18] propose introduction of a slack variable into
the complementarity conditions. By denoting this variables as ω ∈ Ri and assuming
two scenarios ξ1 and ξ2 the uncertain generation maximum capacity constraint from
the previous example can be reformulated as:

0 ≤ δ̄i ⊥ qi − q̄i(ξ1) + ωi ≤ 0 ∀j ∈ J, i ∈ Ij
0 ≤ δ̄i ⊥ qi − q̄i(ξ2)− ωi ≤ 0 ∀j ∈ J, i ∈ Ij

(A.3)

This shows that the slack variable finds a single solution qi that minimizes the
residuals between the two different scenarios. Reformulation for an open number of
scenarios leads to a similar formulation as in Ref.[18]:

0 ≤ δ̄i ⊥ qi − q̄i(ξ) + ωξi ≤ 0 ∀j ∈ J, i ∈ Ij, ξ ∈ Ξ∑
ξ∈Ξ

ωξi = 0 ∀j ∈ J, i ∈ Ij (A.4)

Below, we extend this formulation by two characteristics.

Appendix A.1. Consideration of Probability Distributions

The original formulation does not explicitly consider probability distributions.
Arguably, this could lead to distortions as outlier scenarios would be considered
with similar priority as more likely outcomes. In theory, this can be circumvented
by adding latter scenarios with a higher rate (i.e. scenario 2 is x times as likely as
scenario 1, so add 1 scenario 1 and x scenario 2). In practical applications however,
this would lead to an increase in model complexity, as every single additional scenario
represents an additional complementarity constraint for each constraint affected by
the uncertainty. Thus in this paper we decided to use the probabilities as weighting

parameters to replace ωξi with
ωξi
P ξ

. Thus, the higher the likelihood of an outcome,
the lesser the impact of the slack variable on diverging from that scenario. As a
result, the solution will be closer to the scenario with higher likelihood and deviate
more from the scenario with lower likelihood. It has to be noted, that the proposed
formulation does not consider any risk preferences, making all participants risk-
neutral players.
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Appendix A.2. Extension to Lagrangians

The Lagrangians can be relaxed in similar manner to the complimentarity con-
straints, yielding single solutions for the decision variables that allow clearing the
market for objective functions under uncertainty. For the previously defined example
this would result in the following KKT conditions:

∂L
∂qi

= −
∂p(ξ,

∑
j∈J

∑
i2∈Ij

qi2 )

∂qi
qi

−p(ξ,
∑
j∈J

∑
i2∈Ij

qi2)

+∂ci(qi)
∂qi
− δi + δ̄i +

ωp,ξi
P ξ

= 0

∀j ∈ J, i ∈ Ij,
ξ ∈ Ξ

0 ≤ δi ⊥ −qi ≤ 0 ∀j ∈ J, i ∈ Ij
0 ≤ δ̄i ⊥ qi − q̄i(ξ) +

ωq̄,ξi
P ξ
≤ 0

∀j ∈ J, i ∈ Ij,
ξ ∈ Ξ∑

ξ∈Ξ

ωp,ξi = 0 ∀j ∈ J, i ∈ Ij∑
ξ∈Ξ

ωq̄,ξi = 0 ∀j ∈ J, i ∈ Ij

(A.5)

Again, this yields a single solution for the quantity decision of every generation unit
and thus allows clearing the market similar to traditional (in this case: Cournot)
clearing procedures.
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Appendix B. Karush Kuhn Tucker(KKT)-Conditions

The KKT-conditions in extend form are:

∂L
∂qi,t

= −
∂pt(ξ,

∑
j∈J

∑
i2∈Ij

qi2,t)

∂qi,t
qi,t − pt(ξ,

∑
j∈J

∑
i2∈Ij

qi2,t)

+
∂ci,t(qi,t,bi,t)

∂qi,t
− δi,t + δ̄i,t +

ωp,ξi,t
P ξ

= 0

∀j ∈ J, i ∈ IThj ,
t ∈ T s, ξ ∈ Ξ

(B.1a)

∂L
∂qi,t

= −
∂pt(ξ,

∑
j∈J

∑
i2∈Ij

qi2,t)

∂qi,t
qi,t − pt(ξ,

∑
j∈J

∑
i2∈Ij

qi2,t)

−δi,t + δ̄i,t − γi,t +
ωp,ξi,t
P ξ

= 0

∀j ∈ J, i ∈ IHyj ,
t ∈ T s, ξ ∈ Ξ

(B.1b)

∂L

∂q
s
i,t

= σi + γi,t +
t∑

t2=s+1

ψi,t2 − µi,t = 0
∀j ∈ J, i ∈ IHyj ,

t ∈ T s (B.1c)

0 ≤ δi,t ⊥ q
i
bi,t − qi,t ≤ 0

∀j ∈ J, i ∈ Ij,
t ∈ T s (B.1d)

0 ≤ δ̄i,t ⊥ qi,t − q̄ibi,t ≤ 0
∀j ∈ J, i ∈ Ij,

t ∈ T s (B.1e)

0 ≤ σi ⊥
∑
t∈T s

qsi,t −Q
s
i (ξ) +

ωQ,ξi

P ξ
≤ 0

∀j ∈ J, i ∈ IHyj ,
ξ ∈ Ξ

(B.1f)

t∑
s=1

{
qsi,t, if s = s
qsi,t, if s 6= s

− qi,t = 0
∀j ∈ J, i ∈ IHyj ,

t ∈ T s (B.1g)

0 ≤ ψi,t ⊥
t−1∑
s=1

max(T )∑
t2=t

{
qsi,t2 , if s = s
qsi,t2 , if s 6= s

− R̄i ≤ 0
∀j ∈ J, i ∈ IHyj ,

(t > s) ∈ T s (B.1h)

0 ≤ µi,t ⊥ −qsi,t ≤ 0
∀j ∈ J, i ∈ IHyj ,

t ∈ T s (B.1i)∑
ξ∈Ξ

ωp,ξi,t = 0
∀j ∈ J, i ∈ Ij,

t ∈ T s (B.1j)

∑
ξ∈Ξ

ωQ,ξi = 0
∀j ∈ J, i ∈ IHyj ,

t ∈ T s (B.1k)

Appendix C. Multiple Solutions for Hydropower Commitment

Assumed be a game in two periods t = 1, 2 yields a player j holding two hy-
dropower units i = 1, 2 an optimal profit of Π∗j for clearing prices p∗1 and p∗2. As
mentioned above, hydropower units are assumed to operate cost-neutral, thus the
optimal profits cannot be decreased by changing commitment decisions as long as
pt(q1,t + q2,t +

∑
i2 /∈Ij q

′
i2,t

) = pt(d
∗
t ) = p∗t holds for both time periods and additional

constraints such as reservoir and generation capacities are fulfilled. Assumed there
is only a single deterministic inflow in period 1, denoted as Qi and no end reservoir
values are required (thus, the full inflow will be used in the two time periods), the
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previous condition can be reformulated as:

q1,t + q2,t = d∗t −
∑

i2 /∈Ij q
′
i2,t
∀t = 1, 2

Qi ≥ qi,1 + qi,2 ≥ 0 ∀i = 1, 2
(C.1)

Assuming constant quantities provided by other players, player j can choose i as
either 1 or 2 and freely select any quantities qi,t as long as they fulfill:

0 ≤ qi,t ≤ d∗t −
∑

i2 /∈Ij q
′
i2,t

∀t = 1, 2

qii,t = d∗t −
∑

i2 /∈Ij q
′
i2,t
− qi,t ∀ii 6= i, t = 1, 2

Qi ≥ qi,1 + qi,2 ≥ 0 ∀t = 1, 2
Qii ≥ qii,1 + qii,2 ≥ 0 ∀ii 6= i, t = 1, 2

(C.2)

There is a range of potential commitment solutions that fulfill these conditions.
They differ in reservoir held over the time stage as well as the periodical utilization
of the generation units but yield the same (i.e. the optimal) profits for the player
and end up in similar end reservoir values (here = 0).
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