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Abstract—Phasor estimation has many application areas and
has therefore attracted significant research focus. Classical pha-
sor estimation proposed many years ago, considers the phasor
to be time independent which means constant amplitude and
phase. However, the dynamic phasor concept introduced recently,
improves the accuracy of the phasor estimation under a non-
stationary signal as is typically the case of low frequency
oscillations (LFO). However, more accurate estimates lead to
higher computation time. To achieve both low computation time
and more accurate estimates, an adaptive phasor estimation
concept based on both static and dynamic phasors is proposed in
this paper. A new method based on the Adaptive Prony algorithm
is presented, in which the Static Prony is employed under
steady state conditions and the Dynamic Prony under dynamic
conditions. To switch between these two algorithms, a Cumulative
Summation of the Phasor Estimation Error (CSPEE) is used.
Simulation results show the applicability of the proposed method
to achieve the most accurate estimates at the lowest computation
time. Total Vector Error (TV E) and Floating Point Operation
(FLOP ) are used to evaluate the proposed method.

I. INTRODUCTION

A dynamic phasor is a complex envelope of a sinusoidal
signal with variable amplitude and phase. It plays an increas-
ingly important role in the analysis of power systems under
non-steady state conditions. Power systems may operate close
to their stability limits where a disturbance can bring them
to a state characterized by low frequency oscillations (LFO).
The LFO is a phenomenon of large fluctuations in active
and reactive power flows between two areas of the power
system, resulting from severe disturbances like line faults, loss
of generating units or switching of heavy loads [1], [2]. In
the literature, a number of alternative analytical methods are
proposed to estimate the dynamic phasor [3]. In [4], a new
method based on an adaptive band-pass filter was proposed
while [5] introduced an angle-shifted energy operator to
extract the instantaneous amplitude. An integrated phasor
and frequency estimation using a fast recursive GaussNewton
algorithm was proposed in [6] and a method based on modified
Fourier Transform was presented in [7] to eliminate the DC
offset. A PLL-Taylor-Fourier method is proposed in [8]to
improve the accuracy of the estimates by using a Phase Lock
Loop (PLL) under off-nominal frequency conditions. A phasor
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estimation algorithm based on the least square curve fitting
was proposed in [9] to overcome the CT saturation effect.
In [10], an approach based on a recursive wavelet transform
was introduced to estimate the phasor parameters. In [11] the
phasor and frequency measurements under transient system
conditions were discussed. Maximally Flat Differentiators
(MFD) [12] and phasorlet [13] are also two other methods
for dynamic phasor estimation. The Taylor Fourier algorithm
proposed in [14] approximates the dynamic phasor using
the second-order Taylor Expansion and least square observer.
A Taylor Kalman method was used in [15] as a Kalman
observer to estimate the dynamic phasor without delay and
was enhanced in [16] by developing the state space under
harmonic conditions. The Shank method is another dynamic
phasor estimation algorithm that employs the least square and
consecutive delays of the unit response [17].
The Prony algorithm approximates the main signal by expo-
nentially damped sinusoidal signals. It is able to determine the
values of frequency, damping factor, amplitude and phase of
the main signal. Frequency and damping factor are calculated
in the first step and then the amplitude and phase are obtained
in the second step [18]. The Dynamic Prony based on the
second order Taylor expansion is proposed in [18], [19] and
compared with the classical Prony that estimates the static
phasor. It was shown that the accuracy of a dynamic phasor
is higher than a static phasor during LFO. However, the
computational burden of the dynamic phasor is larger since
there are more terms in the Taylor expansion. This fact is
the motivation for proposing an adaptive approach for the
phasor estimation to provide an accurate and fast algorithm.
The accuracy of the phasor estimation based on the static
phasor concept is as accurate as the dynamic concept under
the steady state conditions. On the other hand, LFO resulting
from a dynamic condition is a transient phenomenon in a
power system. Therefore, it is proposed to employ the static
phasor under steady state and the dynamic phasor under the
LFO conditions. To switch between the two concepts (static
or dynamic), an index based on Cumulative Summation of the
Phasor Estimation Error (CSPEE) is used. To summarize,
the main contribution of this paper is to propose an adaptive
concept for phasor estimation which may be employed to other
algorithms to make them more efficient.
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II. PHASOR ESTIMATION BASED ON Prony

Consider a general sinusoidal quantity given by:

s(t) = a(t)eαtcos(2πf1t+ φ(t)) (1)

where a(t) and φ(t) are the amplitude and phase angle of the
main signal s(t). f1 is the fundamental frequency and α is the
damping factor. p(t) is the phasor (complex envelope) defined:

p(t) = a(t)ejφ(t) (2)

By substituting (2) in (1), s(t) can be written as:

s(t) =
1

2
(p(t)e(α+j2πf1)t + p(t)∗e(α−j2πf1t)) (3)

The Taylor series of p(t) at t = 0 is:

p(t) = p0 + p1t+ p2t
2 + ...+ pkt

k (4)

p0 = p(t = 0), p1 =
dp

dt
(t = 0), ..., pk =

1

k!

dkp

dtk
(t = 0)

where the coefficients of the series (p0, p1, p2, , pk) are deriva-
tives of the phasor at the observation center. Based on the
number of Taylor coefficients, the two different Prony algo-
rithms are: the Static Prony and the Dynamic Prony. Detailed
descriptions of these methods are given in [18], [19]. Static
Prony is used as an alternative name for the zeroth-order
Taylor Prony while the Dynamic Prony is similar for the
second-order Taylor Prony.

A. Static Prony

The Static Prony is based on just the first component of the
Taylor expansion (zeroth-order Taylor series) presented in (4).
The estimated phasor by the Static Prony is called the static
phasor. According to the zeroth-order Taylor polynomial of
p(t) we have:

s(t) =
1

2
(p0.e

(α+j2πf1)t + p∗0e
(α−j2πf1)t) (5)

With N samples of s(t) we have:
s[0]

...
s[n]

...
s[N − 1]

 =
1

2


1 1
...

...
Zn1 Z1

−n

...
...

Z
(N−1)
1 Z1

−(N−1)


( p0
p∗0

)
(6)

S = J (0) P (0)

where Z1 = e(α+j2πf1)T and T is the sampling period.
The best estimate of the static phasor is (tr is the transpose
operator):

P
(0)
estimated = (J (0)trJ (0))−1J (0)trS (7)

The static phasor, estimated by the zeroth-order Taylor series,
is a time invariant parameter. In other words, the phasor is
modeled as a constant amplitude and phase quantity in the
estimation process. Therefore, this model fits the stationary
signal measured under steady state conditions. Accordingly,
the estimated phasor by the Static Prony is the most accurate
estimate under the steady state conditions.

B. Dynamic Prony

A phasor with time varying amplitude and phase is a
more accurate representation under dynamic conditions of a
power system as during Low Frequency Oscillations (LFO).
Therefore, the dynamic phasor concept is modelled using
a second-order Taylor series expansion. According to the
second-order Taylor polynomial of p(t), we have:

s(t) =
1

2
([p0 + p1t+ p2t

2].e(α+j2πf1)t

+ [p∗0 + p∗1t+ p∗2t
2]e(α−j2πf1)t) (8)

Presume that the signal s(t) is sampled by N samples per
cycle, and can be expressed as:

S = J (2) P (2) (9)

where its detailed representation (N ′ = N − 1) is shown at
the end of this page. The best estimate of the dynamic phasor,
is obtained as:

P
(2)
estimated = (J (2)trJ (2))−1J (2)trS (10)

The second order of the Taylor series helps to estimate
the time varying phasor under the non-stationary conditions
and therefore improves the accuracy of the phasor estimates.
This was the major difference between the Static Prony and
Dynamic Prony, except for these both algorithms are similar.
According to (6) or (9), the phasor is estimated based on the
root Z1 extracted from the roots of the characteristic equation.
This equation is in terms of the new parameters (a0, a1 and
a2) defined as:

F (z) = (z − Z1)(z − Z∗1 ) = a0z
2 + a1z + a2 (11)
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The coefficients of characteristic equation are found from:

s[0]
s[1]
s[2]

...
s[N − 1]

 =


s[−1] s[−2] s[−3]
s[0] s[−1] s[−2]
s[1] s[0] s[−1]

...
...

...
s[N − 2] s[N − 3] s[N − 4]


( a0
a1
a2

)

S = Q a (12)

a = (QtrQ)−1QtrS (13)

III. ADAPTIVE PRONY (PROPOSED METHOD)

According to the previous section, the static phasor is a
suitable representation under the steady state conditions. How-
ever, in non-stationary conditions as for example under low
frequency oscillations (LFO), the amplitude and phase are time
varying and require dynamic representations. Although the
accuracy of the Dynamic Prony is better than the Static Prony,
the computational burden of the dynamic phasor is larger.
According to the inherent characteristic of the LFO (being
temporary), an adaptive strategy is proposed in this section to
switch between the static and dynamic phasor concepts during
the phasor estimation. Therefore, the Static Prony is used
under the steady state conditions and the Dynamic Prony under
the dynamic conditions. To switch between these concepts, the
proposed index in [20], Cumulative Summation of the Phasor
Estimation Error(CSPPE), is used as:

t(n) = s(n)− sest(n), CSPEE(n) =

r∑
n=r−N

|t(n)| (14)

where s(n) is the main signal, sest(n) is the recomputed
signal using the estimated phasor while the phasor estimation
error t(n) is the difference between them. The CSPEE(n)
is calculated by cumulative summation of the t(n) over one
cycle. The concept of the adaptive phasor estimation is shown
in Fig.1. Firstly, the estimation process is started by the Static
Prony and the CSPEE is monitored continuously. If the
CSPEE is lower than a threshold value (TR), the signal is
under stationary conditions and the Static Prony is continued
to deliver the most accurate estimate. Once the LFO starts, the
amplitude and phase fluctuate and when CSPEE increases
beyond the threshold, the Dynamic Prony is replaced with the
Static Prony. Hence the adaptive strategy provides the most
accurate estimate using the least computational effort.

IV. ADAPTIVE PHASOR CONCEPT WITH LEAST SQUARE
AND KALMAN FILTER

The adaptive phasor concept presented in the previous
section, is a general concept that can be employed to any
other phasor estimation algorithm. In this section, this concept
is employed to the Least square and the Kalman filter. The
Taylor-least-square and Taylor-Kalman-filter are made adap-
tive in this section. Detailed descriptions of these methods

Fig. 1. Concept of adaptive phasor estimation

are presented in [14] and [15]. Static least square means
that the zeroth-order Taylor Fourier is used under steady state
conditions while the Dynamic least square means that the
second-order Taylor Fourier is used under dynamic conditions.
Finally, adaptive least square means a combination of two
mentioned methods using an adaptive procedure. The same
explanation can be done for the Kalman method.

A. Adaptive least square (zeroth-order Taylor Fourier under
steady state conditions and second-order Taylor Fourier under
dynamic conditions)

The least square algorithm uses a data window where an old
sample is removed when a new measured sample is inserted
into the window. Although the use of a window makes it
powerful in the transient periods, the window creates a delay
as long as the window length. The adaptive least square
proposed here is based on a switching between the static least
square (zeroth-order Taylor least square) and the dynamic least
square (second-order Taylor least square) by monitoring the
CSPEE. According to (3) and (4), the adaptive least square
switches between equations (15) and (16). Details are given
at the end of next page.
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where ω1 = 2π/N and Nh is the middle sample in the data
window.

B. Adaptive Kalman (zeroth-order Kalman under steady state
and second-order Kalman under dynamic conditions)

Kalman filter is an powerful method to compute the state
variables recursively and instantaneously. Contrary to the least



square, the Kalman filter is based on a state space model. The
state space is a complete model for analyzing a dynamic sys-
tem. In this model, the state value at each sample is calculated
from its previous value. The main advantage of the Kalman
filter is the property of instantaneous tracking. The adaptive
Kalman proposed in this paper is based on a switching between
the static Kalman (zeroth-order Taylor Kalman ) and the
dynamic Kalman (second-order Taylor Kalman) by monitoring
the CSPEE. According to the derivatives of the p(t), the
adaptive Kalman switches between state transition matrices
(17) and (18).

ϕ(0) =

(
ejθ1 0
0 e−jθ1

)
(17)

ϕ(2) =



ejθ1 τejθ1
τ2

2!
ejθ1 0 0 0

0 ejθ1 τejθ1 0 0 0
0 0 ejθ1 0 0 0

0 0 0 e−jθ1 τe−jθ1
τ2

2!
e−jθ1

0 0 0 0 e−jθ1 τe−jθ1

0 0 0 0 0 e−jθ1


(18)

where θ1 = 2π/N and τ is the sampling time. Since the
Kalman filter is an instantaneous estimator, switching between
the two state transition matrices creates a transient behavior
during the switching time. To overcome this problem, an
overlap concept is proposed. When the CSPEE increases, the
dynamic Kalman should be replaced with the static Kalman.
However, an overlap time is anticipated in the proposed
method to allow the Kalman gain to freeze to a new value. The
overlap prevents the considerable transient behaviour in the
estimates. However, the adaptive least square and the Adaptive
Prony do not need this strategy since they are data-window-
based algorithms.

V. SIMULATION RESULTS

The simulation results are organized in three subsections
where the first is to evaluate the performance of the Adaptive
Prony with a synthesized signal. The second is about the adap-
tive least square and the adaptive Kalman with a synthesized
signal, while the last shows the performance of the Adaptive
Prony with a measured signal from a three-machine system.

A. Adaptive Prony with synthesized signal

This subsection includes two parts. The first one is about
undamped LFO and the second one is about damped LFO.

1) Undamped LFO: Consider the test case as:

S(t) = a(t) cos(2πf1t+ φ(t)) (19)
a(t) = 1, φ(t) = 0 0 < t < 1.6s

a(t) = 1 + (0.2sin(4πt)), φ(t) = 0 1.6 < t < 3s

The main signal is sampled at 5kHz and there are 100 samples
per window. f1 = 50Hz is the fundamental frequency. The
signal is stationary in between 0 < t < 1.6 seconds and
non-stationary after t = 1.6 seconds (undamped LFO with
frequency 2Hz). The Adaptive Prony is used and the results
are shown in Fig.2. In Fig.2, the top subfigure is the main
signal, the middle subfigure is the real and estimated amplitude
and the last subfigure is the switch action that shows the
switching times between the static phasor (is numbered as
”1”) to the dynamic phasor (is numbered as ”2”). According
to the Fig.2, Adaptive Prony estimates the static phasor before
t = 1.6 seconds and the dynamic phasor after t = 1.6
seconds. This adaptive strategy is implemented by monitoring
the CSPEE. Since the signal is under stationary conditions
before t = 1.6 seconds, the static phasor delivers the most
accurate estimate at lowest computational cost. This condition
is detected by monitoring the CSPEE and comparing with
a threshold (1 × 10−5). The threshold is selected based on
analyzing many cases and obtaining maximum value of the
CSPEE during LFO. After t = 1.6 seconds, the CSPEE
increases and when it is higher than the threshold, the dynamic
phasor is activated.

2) Damped LFO: Consider the test case as:

S(t) = a(t) cos(2πf1t+ φ(t)) (20)
a(t) = 1, φ(t) = 0 0 < t < 1.6

a(t) = 1 + (0.2sin(4πt))e−t/0.3, φ(t) = 0 1.6 < t < 6

The main signal is stationary in between 0 < t < 1.6
seconds and the damped LFO is started at t = 1.6 seconds.
The main signal, the estimated amplitude by Adaptive Prony
and the switch action are shown in Fig.3. Similarly to the
previous subsection, the Adaptive Prony estimates the phasor
by the static concept before t = 1.6 seconds. As a result of
the LFO, the CSPEE increases and the dynamic concept is
replacing the static. When the CSPEE becomes smaller than
the threshold (1× 10−5), the static concept is triggered again.
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Fig. 2. Adaptive Prony with undamped LFO
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Fig. 3. Adaptive Prony with damped LFO

B. Adaptive Least square and adaptive Kalman Filter

In this section, the simulation results of the adaptive least
square and adaptive Kalman filter are presented. These two
methods are examined both in undamped and damped LFO.

1) Undamped LFO: To examine the performance of the
adaptive least square and adaptive Kalman, undamped LFO
presented in (20) is used. Adaptive least square uses the
static concept of phasor before t = 1.6s and the dynamic
concept of phasor after t = 1.6s. Additionally, the adap-
tive Kalman uses the static state transition matrix during
0 < t < 1.6s and the dynamic state transition matrix during
1.6s < t < 3s. To compare all the six methods, Total Vector
Error (TV E = |pr − pe|/|pr|, where pr is the real phasor
and pe is the estimated phasor) index and number of Floating
Points (FLOPs) are tabulated in Table III. According the table,
the accuracy of the dynamic phasor is higher than the static
phasor while the computational burden (FLOPs) of the static
phasor is lower. However, the proposed adaptive phasor is
accurate and its computational burden is efficient (’-’ is put in
table because it depends on which concept that is used in the
adaptive method). For example, for calculating 100 samples
of one cycle by adaptive Kalman, the number of FLOPs is
(50× 130) + (50× 1436).

2) Damped LFO: Consider the test case presented in (20).
Similar to the previous subsection, adaptive least square es-
timates the static phasor during the stationary condition and
the dynamic phasor during non-stationary condition. The same
strategy is also employed for the adaptive Kalman and the
results are tabulated in Table IV. According to table IV, the

TABLE I
LEAST SQUARE AND KALMAN WITH UNDAMPED LFO

ine Method TVE (%) FlOPs per sample
Static least square 0.1495 4042

Dynamic least square 0.0228 31799
Adaptive least square 0.0228 -

Static Kalman 0.1629 130
Dynamic Kalman 0.0227 1436
Adaptive Kalman 0.0227 -

TABLE II
LEAST SQUARE AND KALMAN WITH DAMPED LFO

Method TVE (%) FlOPs per sample
Static least square 0.0240 4042

Dynamic least square 0.0067 31799
Adaptive least square 0.0067 -

Static Kalman 0.0245 130
Dynamic Kalman 0.0071 1436
Adaptive Kalman 0.0071 -
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Fig. 4. Three-machine power system

adaptive strategy provides both suitable accuracy and efficient
computational burden.

C. Adaptive Prony in a three-machine power system

To examine the proposed Adaptive Prony in a more realistic
setting, a three-machine power system shown in Fig.4 is
modeled and simulated using SIMULINK [21]. Fundamental
frequency is 60Hz and there are 512 samples per cycle. A
three-phase fault is simulated at 90% of the line connecting
bus 5 and bus 1. The fault occurs at t = 1 second and is
cleared after 0.03 seconds. This event causes a LFO and is
observed by a distance relay (R) at transmission line L5.
The measured current (Fig.5) is under stationary condition in

between 0 < t < 1 seconds and then low frequency oscillation
is started after t = 1 second. The measured current by the
distance relay, the estimated amplitude by the Adaptive Prony
and the switching action are shown in Fig.5. The Adaptive
Prony estimates phasor by the static concept (is numbered as
’1’ in the bottom subfigure of Fig.5) from t = 0 till t = 1.0
seconds. Then CSPEE increases and the proposed method
triggers the Dynamic Prony (is numbered as ’2’).
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Fig. 5. Adaptive Prony with measured signal in three-machine power system

VI. CONCLUSION

The assumption of constant amplitude and phase in the
phasor estimation procedure, imposes strong restrictions on
the monitoring and control of power systems. Therefore, the
concept of dynamic phasors has attracted significant attention.
However, it is demonstrated that the dynamic phasor estima-
tion methods increase the computational burden. It is therefore
a trade-off between reduced accuracy of the static phasor
estimation methods compared to higher computational cost of
the dynamic approaches for non-stationary signals appearing
for example from Low Frequency Oscillations. In this paper, it
is shown that an adaptive strategy of phasor estimation is more
appropriate. An index named Cumulative Summation of Pha-
sor Estimation Error (CSPEE) is used to detect the change
in accuracy of the phasor estimate for employing the adaptive
strategy. According to the proposed method, CSPEE is
monitored continuously and the appropriate method of each
condition (static or dynamic) is adopted based on the value
of CSPEE. The static version of the phasor estimation
algorithms is used under static conditions and the dynamic
version is used under dynamic conditions. Simulation results
reveal the capabilities of the proposed method to reduce the

computational burden while keeping an acceptable accuracy
under different conditions. As a future research direction,
an effective strategy for time-varying sampling would further
improve the efficiency of the phasor estimation algorithms.
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