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Abstract 16 

Premise of the research: Phenotypic traits that consistently mediate species’ responses to 17 

environmental variation (‘functional traits’) provide a promising approach towards 18 

generalizing ecological and evolutionary patterns, and thereby gaining insights into the 19 

processes generating them. In the plant functional ecology literature, most trait-based studies 20 

have focused on traits mediating either resource competition or responses to variation in the 21 

abiotic environment, while traits mediating reproductive interactions have often been 22 

neglected. 23 

Methodology: Here, I discuss the value of herkogamy (spatial separation of male and female 24 

functions in flowers) as a functional trait in plant reproductive biology and review the 25 

evidence relevant to the hypothesis that taxa exhibiting greater herkogamy have historically 26 

experienced more reliable pollination, and more outcrossed mating systems. 27 

Pivotal results: A large body of work in the field of plant reproductive biology has identified 28 

a set of nearly ubiquitous correlations between average herkogamy and features of plant 29 

mating systems, notably autofertility (seed set in the absence of pollinators), and outcrossing 30 

rate. Herkogamy often varies extensively among populations and species, and the adaptive 31 

interpretation is that herkogamy exhibits local adaptation to the reliability of the pollination 32 

environment. 33 

Conclusions: These results underline the value of herkogamy as a functional trait representing 34 

variation in mating histories. Many important insights are likely to emerge from studies 35 

leveraging herkogamy as an easily measured proxy of plant mating systems, as already 36 

demonstrated in comparative studies, and in studies of reproductive interactions. Going 37 

forward, greater consideration of herkogamy and other reproductive-function traits in studies 38 
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of species coexistence may provide a more complete understanding of community assembly 39 

processes. 40 

Introduction 41 

The dynamic complexity of biological systems has led to a focus in ecology on functional 42 

traits that consistently mediate species’ responses to environmental variation (Lavorel and 43 

Garnier 2002; McGill et al. 2006; Shipley et al. 2016). In the plant functional ecology 44 

literature, most trait-based studies have focused on traits mediating either resource 45 

competition (e.g. size) or plant responses to variation in the abiotic environment (e.g. specific 46 

leaf area). Because these traits are important determinants of species distributions and species 47 

interactions, they are often used as proxies of species’ ecological strategies in studies of 48 

species coexistence and community assembly (Adler et al. 2013). In parallel, a large body of 49 

work in the field of plant reproductive biology has identified traits important for reproductive 50 

interactions. Despite the dependence of most flowering plants on pollinators for sexual 51 

reproduction, traits mediating reproductive interactions have rarely been considered in studies 52 

of community assembly processes. In this essay I discuss the value of a functional trait 53 

mediating plant responses to variation in pollinator communities, an important aspect of the 54 

biotic environment. 55 

The astonishing diversity of flowers is to a large extent the outcome of interactions 56 

with pollinators (Grant and Grant 1965; Stebbins 1970; van der Niet et al. 2014). 57 

Consequently, the morphological architecture of flowers conveys much information about the 58 

reproductive biology of the species (Ornduff 1969). This is evident, for example, from the 59 

long history of grouping species into pollination ‘syndromes’ based on flower color, shape 60 

and reward chemistry (Fægri and van der Pijl 1979). By considering the size and shape of 61 

self-compatible flowers, it can often also be inferred whether the species rely strongly on 62 

animal pollinators for seed production or is capable of effective self-pollination. For example, 63 
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predominantly selfing species are typically characterized by a set of traits collectively referred 64 

to as the ‘selfing syndrome’ (Ornduff 1969; Sicard and Lenhard 2011), including small, short-65 

lived flowers, low pollen-to-ovule ratios, and reduced dichogamy and herkogamy. 66 

Herkogamy, the spatial separation of anthers and stigmas within flowers, is a key 67 

floral trait thought to promote outcrossing and/or the avoidance of interference between male 68 

and female sexual functions (Webb and Lloyd 1986). The functional importance of 69 

herkogamy is supported by studies reporting negative relationships between herkogamy and 70 

the rate of autofertility (self-fertilization in the absence of pollinators) and the rate of selfing 71 

among natural populations. In turn, several studies have demonstrated strong positive 72 

correlations between pollinator abundance and herkogamy (e.g. Moeller 2006; Opedal et al. 73 

2016a). These observations have led to the general acceptance that variation in herkogamy 74 

among populations and species represents adaptation of the mating system to variation in the 75 

local reproductive environment. 76 

Several functional and evolutionary aspects of herkogamy have been reviewed 77 

elsewhere. The foundational review of Webb and Lloyd (1986) includes extensive discussion 78 

of functional aspects of herkogamy, definitions of classes of herkogamy, and their distribution 79 

among taxa. Barrett (2002, 2003) offers further discussion of functional aspects related to 80 

mating strategies, and Opedal et al. (2017) synthesizes work on the quantitative genetics and 81 

evolvability of herkogamy. Here, I first outline the expected functional relationships between 82 

herkogamy and plant mating systems, and then review and synthesize evidence relevant to the 83 

hypothesis that, when two self-compatible taxa differ in average herkogamy, they also differ 84 

in their mating histories. I then go on to discuss the value of herkogamy as a mating-system 85 

proxy in comparative studies, and review examples of insights emerging from such studies. 86 

Finally, I outline the value and promise of increasingly integrating herkogamy and other 87 

reproductive-function traits into studies of species cooccurrence and community assembly. 88 
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 89 

Notes on the measurement of herkogamy 90 

Before we can proceed, a brief discussion of measurements is required. Herkogamy is broadly 91 

defined as the spatial separation of stigmas (x♀) and anthers (x♂) within flowers or flower-like 92 

inflorescences. Webb and Lloyd (1986) defined several classes of herkogamy, differing 93 

among other things in the degree of ‘order’ in which pollinators contact floral organs. Species 94 

exhibiting ordered herkogamy can be further classified into those in which stigmas are 95 

contacted first by a visiting pollinator (approach herkogamy, x♀>x♂; stigmas positioned above 96 

or protruding beyond the anthers), and those in which anthers are contacted first (reverse 97 

herkogamy, x♀<x♂; stigmas positioned below or behind the anthers). Still others exhibit 98 

reciprocal herkogamy, with stigmas and anthers placed in complementary positions in two or 99 

more floral morphs. In self-compatible species approach herkogamy is by far the most 100 

common and is often associated with pollination by a limited number of pollinator species or 101 

functional groups. 102 

 How to measure herkogamy depends on the functional question to be addressed. If the 103 

aim is to quantify the effect of herkogamy on the probability of self-pollination, for example, 104 

the relevant measure in normally the shortest distance separating stigmatic surfaces from 105 

dehiscing anthers. In other cases, such as studies of constraints on the evolution of herkogamy 106 

arising from genetic covariance between pistil and stamen lengths (Opedal et al. 2017), 107 

quantifying herkogamy as the difference between pistil and stamen lengths may be more 108 

appropriate. Because anthers and stigmatic surfaces are often elongated, the absolute value of 109 

these measures will tend to differ. Furthermore, herkogamy in many species is not constant 110 

but changes during flower development due e.g. to curling of stigmatic lobes or differential 111 

rates of elongation of male and female sexual organs (see Goodwillie and Weber 2018 for 112 

review). For these reasons, great care must be taken to standardize measurements taken for 113 
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comparative analyses, typically by measuring flowers at similar developmental stages. In 114 

some cases, emergent traits such as the timing of change in herkogamy may also be of key 115 

interest (e.g. Armbruster et al. 2002). 116 

Different kinds of measurements places herkogamy on different scale types. When 117 

quantified as the difference between pistil length and stamen length, x♀ - x♂, with negative 118 

values assigned to reverse herkogamous flowers, herkogamy is on what Houle et al. (2011) 119 

referred to as a signed ratio scale. When measured as the absolute distance between stigmas 120 

and anthers, |x♀ - x♂|, herkogamy is on a true ratio scale. Finally, herkogamy is sometimes 121 

divided into distinct classes, and is then on an ordinal scale. For quantitative comparative 122 

studies, these disparate scale types would represent a serious challenge (see discussion in 123 

Opedal et al. 2017), and I urge researchers to carefully consider the consequences of their 124 

choice of measurement scale in studies of herkogamy. In the following review my focus is on 125 

qualitative relationships between herkogamy and mating-system parameters, and I hence 126 

considered studies using any of the measurements of herkogamy outlined above. 127 

 128 

The functional relationships among herkogamy, autofertility, and outcrossing 129 

The expected negative effect of herkogamy on autofertility follows intuitively from the 130 

reduced probability of pollen transfer over longer distances. In the absence of pollinators, 131 

herkogamy-autofertility relationships are purely ‘physical’, and replicate studies of 132 

individuals, populations, or species under standardized conditions are expected to yield 133 

quantitatively similar results (Table 1). Under field conditions, some variation might 134 

nevertheless be expected due to environmental factors such as wind speed, rainfall, or 135 

variation in the resource level of maternal plants affecting seed production. 136 

Herkogamy-autofertility relationships are always expected to be negative, yet their 137 

shapes may vary. Autofertility rates are bounded between 0 and 1 and will almost inevitably 138 
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decline towards zero as herkogamy increases (Fig. 1). Furthermore, herkogamy-autofertility 139 

relationships may often be nonlinear, taking shapes ranging from negatively exponential 140 

(‘Type I’ herkogamy-autofertility relationship; Fig. 1, solid line) to logistic (‘Type II’ 141 

herkogamy-autofertility relationship; Fig. 1, dashed line). In both cases, studies comparing 142 

individuals, populations, or species at the upper end of the curve may fail to detect any 143 

relationship. In the Type II case (dashed line), the same would be true for comparisons at the 144 

lower end (see Opedal et al. 2015 for an empirical example). Note that linear herkogamy-145 

autofertility relationships falls within the expected range between these extremes. 146 

In addition to taxon-specific shapes of herkogamy-autofertility relationships (Type I 147 

vs. Type II vs. intermediate), the x-axis of Fig. 1 is unitless on purpose. This is because the 148 

decline in autofertility per unit (e.g. mm) increase in herkogamy may depend on the relative 149 

positions of anthers and stigmas within flowers. For example, autofertility may decline more 150 

rapidly with increasing herkogamy in approach herkogamous species than in reverse 151 

herkogamous species, and we can speculate that the relationship is often closer to Type I 152 

(solid line) for approach herkogamy, and closer to Type II (dashed line) for reverse 153 

herkogamy. Thus, in cases where herkogamy (measured as x♀ - x♂) ranges from negative to 154 

positive, the fitness consequences of changing herkogamy by one unit may be asymmetric 155 

around zero. The rate of decay in autofertility with increasing herkogamy may also depend on 156 

the relative orientation of anthers and stigmas. For example, species of Dalechampia vines 157 

diverge in the angle between male and female flowers (Armbruster et al. 2009), and 158 

populations of Arabis alpina differ in the orientation of the anthers towards or away from the 159 

stigmas (Toräng et al. 2017). 160 

The relationship between herkogamy and outcrossing rate is more complex, not least 161 

because it depends on interactions with pollinators. At the species and population level, 162 

positive herkogamy-outcrossing relationships are expected to arise due to selection for self-163 



8 
 

pollination as a mechanism of reproductive assurance when cross-pollination is unreliable, 164 

and selection for avoidance of self-pollination and/or sexual interference when cross-165 

pollination is reliable (e.g. Moeller 2006; Opedal et al. 2016a; but see Koski et al. 2017). 166 

Two observations help to delimit the likely shapes of herkogamy-outcrossing 167 

relationships. First, when anthers and stigmas are in direct contact (zero herkogamy), 168 

outcrossing rates will tend to be low. Second, when herkogamy becomes so large that 169 

autogamous selfing is unlikely (lower asymptote in Fig. 1), outcrossing rates should tend to 170 

stabilize at a rate close to 1 - SG - SB, where SG is the rate of geitonogamy, and SB is the rate of 171 

biparental inbreeding (Fig. 2). Between these extremes, the shapes of herkogamy-outcrossing 172 

relationships are likely to vary depending on specific aspects of floral biology. For example, 173 

outcrossing rates depend not only on the amount of self vs. cross-pollen deposited onto 174 

stigmas, but also on the timing of pollen deposition (e.g. Sorin et al. 2016). Therefore, 175 

herkogamy-outcrossing relationships may differ, for example, between those species where a 176 

female phase precedes a bisexual phase (incomplete protogyny), and those where a bisexual 177 

phase precedes a female phase (incomplete protandry) (Fig. 2). While low herkogamy 178 

combined with incomplete protandry will tend to favor selfing regardless of the reliability of 179 

pollination, incomplete protogyny will favor outcrossing during the female phase when 180 

pollination is reliable. 181 

Importantly, while population-mean herkogamy is expected to correlate with the long-182 

term reliability of pollination, there are several reasons why the expected relationship would 183 

not be detected in all studies. First, because outcrossing rates are bounded between 0 and 1, 184 

asymptotes are expected at least at the upper limit (Fig. 2) and comparisons among 185 

populations or species at the upper end may fail to detect differences. Second, one or more 186 

populations may experience an unusual year, and thus a mismatch between average 187 

herkogamy and current pollination reliability. In such situations, outcrossing rates will often 188 
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be better predicted by current pollination reliability than by mean herkogamy. This 189 

‘stochastic’ variation is one of the reasons why single-year estimates of outcrossing rates are 190 

not necessarily very good measures of the long-term mating system (see further discussion 191 

below). If all populations experience proportional increases or decreases in pollination 192 

reliability across taxa, regions, or years, this would be predicted to shift the intercept and/or 193 

slope of the herkogamy-outcrossing relationship (Fig. 2). Specifically, the solid lines in Fig. 2 194 

might represent a ‘good’ year in terms of pollination reliability (many and/or efficient 195 

pollinators), while the dashed lines might represent a ‘bad’ year (few and/or inefficient 196 

pollinators). Similarly, variation in pollination reliability among populations will tend to add 197 

noise to herkogamy-outcrossing relationships, thus reducing the variance in current 198 

outcrossing rates explained by herkogamy. Some empirical data suggest that the impact of 199 

variation in pollination reliability on outcrossing rates is greater in more herkogamous 200 

populations (Eckert et al. 2009), but the generality of this pattern remains unknown, and is 201 

likely to depend on aspects of floral biology. Overall, more variable patterns should be 202 

expected among studies assessing herkogamy-outcrossing relationships, than among those 203 

assessing herkogamy-autofertility relationships (Table 1). While the range of patterns 204 

illustrated in Fig. 2 will probably fit a good number of species, they are unlikely to fit all. 205 

Within populations, more herkogamous flowers may also be more outcrossed. Such 206 

relationships may be causal, driven for example by reduced interference between male and 207 

female functions in more herkogamous flowers (Webb and Lloyd 1986). Indeed, Webb and 208 

Lloyd (1986) proposed avoidance of sexual interference as a primary function of herkogamy, 209 

at least in self-incompatible taxa. Specifically, reduced herkogamy may restrict pollinator 210 

access to stigmas, and increase autonomous and pollinator-facilitated self-pollen deposition 211 

onto stigmas. This can in turn cause ‘stigma clogging’ and intensify competition between self- 212 

and cross-pollen. Thus, assuming that the rate of self-fertilization increases with self-213 
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pollination (Holsinger 1991), more herkogamous flowers are expected to be more outcrossed. 214 

More herkogamous flowers may also receive more cross-pollen, if herkogamy correlates 215 

positively with traits involved in pollinator attraction (reward or advertisement). In the latter 216 

case, the herkogamy-outcrossing relationship would be non-causal. 217 

Finally, herkogamy-outcrossing relationships (at all levels) are complicated by the fact 218 

that realized selfing rates in natural populations represent the sum of within-flower selfing 219 

(autogamy), between-flower selfing (geitonogamy), and biparental inbreeding. Among these, 220 

only the autogamous component is directly related to variation in herkogamy (Herlihy and 221 

Eckert 2004, and see below). Relationships with other components could arise indirectly if 222 

herkogamy affects, for example, the amount of pollen available for cross-pollination 223 

(including geitonogamy and biparental inbreeding). 224 

 225 

Summary of empirical herkogamy-autofertility and herkogamy-outcrossing 226 

relationships 227 

To evaluate the hypothesis that more herkogamous taxa have historically experienced more 228 

reliable pollination, and more outcrossed mating systems, I surveyed the literature for studies 229 

reporting empirical herkogamy-autofertility and herkogamy-outcrossing relationships. With a 230 

few exceptions, studies that have assessed herkogamy-autofertility and/or herkogamy-231 

outcrossing relationships have detected the expected patterns: more herkogamous individuals, 232 

populations and species tend to exhibit reduced autofertility, and to be more outcrossed (Table 233 

2). The generality of these patterns is supported by the wide geographic and taxonomic range 234 

of the focal taxa, and the diversity of growth forms and life histories represented among them. 235 

For example, Table 2 includes species from 17 families, whose habitats range from the 236 

lowland tropics (e.g. Turnera ulmifolia, Eichhornia paniculata) to high-alpine meadows in 237 

the Alps (Primula halleri) and Rocky Mountains (Aquilegia caerulea). Similarly, life histories 238 
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range from annuals (Clarkia xantiana) to long-lived woody vines (Dalechampia spp.) and 239 

trees (Nicotiana glauca). 240 

 As expected, negative herkogamy-autofertility relationships were more consistent than 241 

were positive herkogamy-outcrossing relationships (Table 2). Interestingly, in most of the 242 

studies where results deviated from expectations, the authors offered biologically meaningful 243 

explanations. These include differences in pollinator foraging behaviour on Aquilegia 244 

caerulea flowers (Brunet and Sweet 2006), and strong correlations with dichogamy rather 245 

than herkogamy in Gilia achilleifolia (Schoen 1982) and Campanula americana (Koski et al. 246 

2018). Other examples are discussed in more detail below. 247 

 248 

Correlates of herkogamy beyond autofertility and outcrossing rate 249 

The focus above has been on relationships among herkogamy, autofertility, and outcrossing 250 

rate, as these are the most frequently assessed. If variation in herkogamy reflects variation in 251 

the reproductive environment, we also expect correlations with other features of plant 252 

pollination and mating systems (Table 1). For example, it follows logically that individual 253 

herkogamy should correlate negatively with the number of autogamous (within-flower) pollen 254 

grains deposited onto stigmas. Such relationships have been demonstrated, for example, in 255 

Erythronium grandiflorum (Thomson and Stratton 1985), and in several species of 256 

Dalechampia (Bolstad et al. 2010; Pérez-Barrales et al. 2013), and Ipomoea (Murcia 1990; 257 

Parra-Tabla and Bullock 2005). 258 

For allogamous (between-flower) pollen loads (including geitonogamous self-pollen), 259 

the opposite relationship should be expected, although with more variation among studies 260 

(Table 1). This follows from the same logic that average herkogamy should represent 261 

variation in the long-term reliability of pollination, and hence the level of outcrossing. For 262 

example, Opedal et al. (2016a) reported a strong positive correlation between population-263 
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mean cross-pollen loads and average herkogamy in Dalechampia scandens populations. At 264 

the individual level, allogamous pollen loads are unlikely to correlate with herkogamy, unless 265 

herkogamy is correlated with pollinator-attraction traits. If stigmatic pollen loads are limited 266 

by the size of the stigmatic surface relative to the size of pollen grains, a positive association 267 

could also arise if greater self-pollen loads of less herkogamous flowers precludes subsequent 268 

deposition of cross-pollen. 269 

As discussed briefly above, herkogamy may not uniformly affect all functional 270 

components of selfing. A clear demonstration of this has emerged from studies of the North-271 

American columbine Aquilegia canadensis. Herlihy and Eckert (2004) used floral-272 

emasculation experiments combined with genetic analyses to disentangle the contributions of 273 

autogamy, geitonogamy, and biparental inbreeding to realized selfing rates in natural 274 

populations. As expected, only the autogamous component of selfing correlated strongly and 275 

negatively with herkogamy, while rates of geitonogamy and biparental inbreeding were 276 

instead explained by variation in ecological factors such as plant density and canopy cover. 277 

Medrano et al. (2005, 2012) reported an interesting exception from the usual 278 

herkogamy-outcrossing relationship in the daffodil Narcissus longipathus. While the authors 279 

failed to detect the expected difference in outcrossing rate between plants exhibiting low, 280 

medium, and high herkogamy (Table 2), they found that the average number of fathers siring 281 

offspring in fruits increased in more herkogamous plants. Such relationships might indeed be 282 

expected to be common, and perhaps ubiquitous in species with granular pollen and where 283 

pollinators visit multiple plants per foraging bout. 284 

Finally, plant mating systems strongly affect the population-genetic structure of 285 

populations, and herkogamy is therefore also expected to correlate positively with measures 286 

of genetic diversity within populations (e.g. Barrett and Husband 1990; Opedal et al. 2016a), 287 

and with genetic differentiation among populations as measured by FST or related metrics 288 
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(Hamrick and Godt 1996; Duminil et al. 2007). The latter relationship could arise among 289 

species, or among regions in widespread species. 290 

 291 

On the use of herkogamy as a mating-system proxy 292 

The consistent relationships among herkogamy, autofertility and outcrossing rates reviewed in 293 

Table 2 provides strong support for the hypothesis that when two self-compatible populations 294 

or species differ in average herkogamy, they also differ in their mating systems. An important 295 

consequence of this ‘herkogamy rule’ is that variation in population-mean herkogamy can be 296 

used as a reliable proxy of variation in mating systems. A key advantage of using mean 297 

herkogamy as a proxy of the mating system is that it is likely to reflect the mating history of a 298 

population (i.e. the long-term mean outcrossing rate) rather than the mating system in a given 299 

year or season. Indeed, outcrossing rates are known to vary from year to year within 300 

populations (Eckert et al. 2009), and even within a single season (Yin et al. 2016). Thus, using 301 

single estimates of outcrossing rates as a measure of the mating system could run the risk of 302 

interpreting an unusual year as the long-term trend, and hence bias the conclusion of 303 

comparative studies. Because measuring herkogamy is fast and can be done at essentially no 304 

cost, this provides ideal opportunities for comparative studies. In many systems, herkogamy 305 

also exhibit only limited environmental variation (Opedal et al. 2016b and references therein). 306 

 For example, herkogamy has been repeatedly used as a mating-system proxy in 307 

comparative studies of inbreeding depression, testing the hypothesis that more inbred 308 

populations or families are subject to purging of deleterious alleles and hence experience less 309 

intense inbreeding depression than do less inbred populations or families (Carr et al. 1997; 310 

Byers and Waller 1999; Chang and Rausher 1999; Takebayashi and Delph 2000; Stone and 311 

Motten 2002; Herlihy and Eckert 2004; Weber et al. 2012; Opedal et al. 2015). Other 312 

examples include comparative studies of mating-system effects on geographical range size 313 
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(Grossenbacher et al. 2015), range overlap (Grossenbacher et al. 2016), and sexual conflict 314 

over seed provisioning (A. Raunsgard et al., manuscript in revision). 315 

Herkogamy has also been used as a mating-system proxy in studies of the evolution of 316 

the mating system itself (Armbruster 1993). Here caution must obviously be exercised, as the 317 

argument might become circular (mating-system changes are assumed to lead to evolutionary 318 

shifts in herkogamy, and mating-system shifts are then inferred from these shifts). As should 319 

be clear from the arguments of this essay, however, herkogamy-mating-system relationships 320 

are consistent enough, at least for many groups, to place some trust in such analyses. 321 

 322 

Reproductive-function traits and the structure of plant communities 323 

Consistent correlations between herkogamy and mating systems also suggest that herkogamy 324 

can be informative about processes structuring natural plant communities. The role of 325 

functional traits in shaping species assemblages is a hot topic in community ecology (e.g. 326 

Adler et al. 2013; Kohli et al. 2018), and while most studies have focused on traits involved in 327 

abiotic resource competition or in response to abiotic environmental variables (‘vegetative 328 

processes’), further consideration of traits mediating reproductive interactions may provide 329 

more complete insights into the processes shaping natural plant assemblages (Armbruster 330 

1995; Sargent and Ackerly 2008; Pauw 2013; Briscoe Runquist et al. 2016). Herkogamy and 331 

the component traits (positions of stigmas and anthers) can affect reproductive interactions 332 

through shared pollinators in several ways. First, the positions of the sexual organs can affect 333 

the position of pollen placement on the bodies of pollinators, and hence divergence in these 334 

traits can reduce interspecific pollination (e.g. Armbruster et al. 1994; Kay 2006; Keller et al. 335 

2016). Because the position of pollen placement depends on the absolute rather than relative 336 

positions of anthers and stigmas, this process may be independent of mean herkogamy (which 337 

is defined by the relative positions of the sexual organs). The relevance of herkogamy for 338 
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reproductive interactions arises from its effect on the mating system and the dynamics of 339 

pollen transfer. In selfing species with low herkogamy, large autonomous pollen loads may 340 

reduce the fitness consequences of subsequent heterospecific pollen deposition, thus 341 

providing a buffer against the negative effects of pollinator sharing. For example, Ipomoea 342 

purpurea and I. hederacea commonly occur in sympatry, and share bumblebee pollinators. 343 

Smith and Rausher (2007, 2008) have demonstrated experimentally that reduced herkogamy 344 

in I. hederacea acts as a ‘shield’ reducing interspecific pollination and thus increasing fitness. 345 

A role of mating-system divergence mediated by herkogamy has also been invoked to explain 346 

species coexistence in other systems, including Arenaria (Fishman and Wyatt 1999), Mimulus 347 

(Grossenbacher and Whittall 2011; Briscoe Runquist et al. 2016), and Centaurium (Brys et al. 348 

2014; Brys et al. 2016; Schouppe et al. 2017). Taken together, these observations suggest that 349 

the probability of coexistence is greater for species pairs that share pollinators if they differ in 350 

mean herkogamy, and the effect would be stronger if one of the species exhibit very low 351 

herkogamy. Similarly, pairs of highly selfing species with very low average herkogamy might 352 

be more likely to coexist, because reproductive interactions through shared pollinators are 353 

unlikely in such species. The kind of mating-system-related structure of plant communities 354 

described above may result from ecological ‘sorting’ of species into communities, or at least 355 

in part be caused by selection for reproductive character displacement among sympatric 356 

species (Brown and Wilson 1956; Armbruster and Muchhala 2009). 357 

Recent methodological developments of joint species distribution models are 358 

beginning to consider species traits as predictors of species cooccurrences (e.g. Abrego et al. 359 

2017). While traits mediating vegetative processes are likely to be informative about 360 

cooccurrence explained by shared or contrasting responses to the abiotic environment, 361 

herkogamy and other traits mediating reproductive interactions may increase the net 362 

explanatory power by explaining patterns of variation unexplained by vegetative processes. 363 
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Thus, increased consideration of ‘reproductive-function traits’ will allow us to move beyond 364 

purely vegetative processes in predictive models of community assembly. 365 

 366 

Concluding remarks 367 

Here, I have compiled a large body of evidence supporting the hypothesis that, when a pair of 368 

self-compatible taxa differ in their average anther-stigma separation (herkogamy), they will 369 

also differ predictably in their mating systems. This nearly ubiquitous pattern provides a 370 

valuable tool for a wide range of comparative studies, and have already provided important 371 

insights into the ecological, genetical, and evolutionary causes and consequences of variation 372 

and evolution of plant mating systems. Going forward, increased use of herkogamy as a 373 

functional trait in studies of community structure and assembly might yield new and 374 

important insights allowing us to predict the consequences of changes in the reproductive 375 

environment. 376 
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Figure legends 624 

Fig. 1. Range of expected functional relationships between herkogamy (anther-stigma 625 

distance) and autofertility (autonomous seed-set in the absence of pollinators). The solid line 626 

represents a ‘Type I’ herkogamy-autofertility relationship, and the dashed line a ‘Type II’ 627 

herkogamy-autofertility relationship. The units on the x-axis are expected to be taxon-specific 628 

and are therefore not shown. 629 

 630 

Fig. 2. Examples of expected functional relationships between herkogamy (anther-stigma 631 

distance) and outcrossing rate for species exhibiting incomplete protandry (a) and incomplete 632 

protogyny (b). The dotted lines indicate the patterns expected in the absence of geitonogamy 633 

(SG) and biparental inbreeding (SB), and the solid and dashed lines indicate the patterns 634 

expected in the presence of geitonogamy and biparental inbreeding under conditions of high 635 

(solid line) and low (dashed line) pollination reliability. The units on the x-axis are expected 636 

to be taxon-specific and are therefore not shown.  637 

 638 

  639 
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 640 

641 

Table 1. Expected correlates of herkogamy (anther-stigma distance) at the level of individuals (I), populations 

(S), and species (S). The ‘Variance’ column indicates whether relationships are expected to be stable or variable 

across different studies. See text for details. 

Correlate Definition Sign of correlation Level Variance 

Autofertility (a) Seed set in absence of pollinators  Negative I, P, S Low 

Outcrossing rate (t) Proportion of seeds outcrossed Positive I, P, S High 

Autogamous pollen load (PS) Number of self-pollen grains on stigma Negative I, P, S Low 

Allogamous pollen load (PC) Number of cross-pollen grains on stigma Positive P, S High 

Genetic diversity (e.g. HE) Among-individual allelic variation Positive P, S High 

Genetic differentiation (FST) Proportion of genetic diversity among 

populations 

Negative S High 

Sire number Number of sires per fruit Positive I, P, S High 
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Table 2. List of studies testing for relationships between herkogamy and autofertility (a) or outcrossing rate (t) among individuals, populations, or species. + and – 

indicate strong relationships, (+) and (-) indicate weaker relationships, and 0 indicate no detectable relationship. 

Species Family Level a t Evidence Reference 

Amsinckia spectabilis Boraginaceae Population 
 

+ Positive relationship between herkogamy and 

outcrossing rate among 10 populations, including 

heterostylous, homostylous and mixed populations. 

Ganders et al. 1985 

Aquilegia caerulea Ranunculaceae Individual - + Herkogamy negatively correlated with autofertility, 

and positively with outcrossing rate, among three 

groups within a population. 

Brunet and Eckert 1998 

  
Population 

 
(-) Weak negative relationship between herkogamy and 

outcrossing rate across 10 population-year 

combinations. 

Brunet and Sweet 2006 

Aquilegia canadensis Ranunculaceae Individual -  Negative relationship between individual herkogamy 

and autofertility among plants from two populations. 

Eckert and Schaefer 1998 

  Population 
 

(+) Weak positive relationship between herkogamy and 

outcrossing rate among 10 populations. Negative 

relationship with autogamous selfing in isolation. 

Herlihy and Eckert 2004 

  Population 
 

0 No detectable difference in mating system between 

central and northern population despite difference in 

average herkogamy. 

Herlihy and Eckert 2005 

  Individual   + Greater outcrossing rate of high vs. low herkogamy 

groups of plants in 13/19 populations. 

Herlihy and Eckert 2007 

  Population 
 

+ Outcrossing rate increases with increasing herkogamy 

among 18 populations. Positive relationship between 

herkogamy and between-year variation in outcrossing 

rates. 

Eckert et al 2009 

Arabis alpina Brassicaceae Population   + Reduced herkogamy in three selfing populations 

compared to three more outcrossing populations. 

Tedder et al. 2015 

Blackstonia perfoliata Gentianaceae Population - 
 

Greater autofertility in pollinator-poor environment 

with smaller flowers and reduced herkogamy. 

Brys et al. 2013 

Camissoniopsis 

cheiranthifolia 

Onagraceae Population - + Positive relationship between herkogamy and 

outcrossing rate among 16 populations. 

Dart et al. 2012 

Campanula americana Campanulaceae Population 0 
 

No detectable relationship between herkogamy and 

autofertility among 24 populations. Autofertility 

explained by dichogamy. 

Koski et al. 2018 
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Centaurium erythraea Gentianaceae Population -   Greater autofertility in pollinator-poor environment 

with smaller flowers and reduced herkogamy. 

Brys and Jacquemyn 2012 

Centaurium Gentianaceae Species - 
 

Negative relationship between herkogamy and 

autofertility across three species. 

Brys and Jacquemyn 2011  

(and see Schouppe et al. 2017) 

Clarkia parviflora Onagraceae Population -   Negative relationship between herkogamy and 

autofertility among 15 populations. 

Moeller 2006 

Clarkia tembloriensis Onagraceae Population 
 

+ Positive relationship between herkogamy and 

outcrossing rate among eight populations. Herkogamy 

positively correlated with dichogamy. 

Holtsford and Ellstrand 1992 

Clarkia xantiana Onagraceae Population -   Negative relationship between herkogamy and 

autofertility among 15 populations. 

Moeller 2006 

Dalechampia scandens Euphorbiaceae Individual, 

Population 

- 
 

Negative relationship between herkogamy and 

autofertility rate within and among four populations. 

Opedal et al. 2015 

  Population, 

Species 

-   Negative relationship between herkogamy and 

autofertility across two populations of each of two 

species. 

Opedal et al. 2016a 

  Population 
 

+ Positive relationship between herkogamy and 

outcrossing rate among four populations. 

Opedal et al. 2016b 

Dalechampia Euphorbiaceae Species -   Negative relationship between herkogamy and 

autofertility across nine species. 

Armbruster 1988 

Datura stramonium Solanaceae Individual 
 

+ Positive relationship between herkogamy and 

outcrossing rate among plants within two populations. 

Motten and Stone 2000  

(and see Motten and 

Antonovics 1992) 

Datura wrightii Solanaceae Individual - + Positive relationship between herkogamy and 

outcrossing rate in a field experiment, and negative 

relationship between herkogamy and autofertility in a 

greenhouse experiment. 

Elle and Hare 2002 

Eichhornia paniculata Pontederiaceae Population 
 

+ Positive relationship between "frequency of selfing 

variants" and outcrossing rate among 32 populations. 

Barrett and Husband 1990 

Epimedium Berberidaceae 

Species 

-   Greater autofertility in two low-herkogamy species 

compared to two high-herkogamy species. 

Li et al. 2013 

Gentianella campestris Gentianaceae Individual (-) 
 

Greater autofertility in 'iso-stigmatic' and 'hypo-

stigmatic' groups than in 'hyper-stigmatic groups'. 

Lennartsson et al. 2000 

Gesneria citrina Gesneriaceae Individual -   Negative relationship between herkogamy and 

autofertility within a population. 

Chen et al. 2009 
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Gilia achilleifolia Polemoniaceae Individual 
 

+ Higher outcrossing rate within a population for the 

group of plants with greater herkogamy. 

Takebayashi et al. 2006 

  Individual -   Negative relationship between herkogamy and 

autofertility within a population. 

Takebayashi and Delph 2000 

  Population 
 

0 Dichogamy, but not herkogamy, positively correlated 

with outcrossing rate among six populations. 

Autofertility correlated with outcrossing rate. 

Schoen 1982 

Ipomoea cordatotriloba/ 

Ipomoea lacunosa 

Convolvulaceae Species, 

Population 

  + Positive relationship between herkogamy and selfing 

rate between, and to some extent within, species. 

Duncan and Rausher 2013 

Ipomoea purpurea Convolvulaceae Individual - 
 

Negative relationship between herkogamy and 

autofertility within a population. 

Ennos 1981 

  Individual   + Positive relationship between herkogamy and 

outcrossing among individuals in a population. 

Epperson and Clegg 1987 

  Individual 
 

+ Higher outcrossing rate of high-herkogamy group in 

experimental arrays. 

Chang and Rausher 1998 

Leptosiphon jepsonii Polemoniaceae Population   + Positive relationship between herkogamy and 'SI 

index' among 17 populations. Outcrossing rate 

correlated with SI index in four populations. 

Goodwillie and Ness 2005  

(and see Weber and Goodwillie 

2009) 

Lycopersicon 

pimpinellifolium 

Solanaceae Population 
 

+ Positive relationships between anther length, stigma 

exsertion and outcrossing rate among 43 populations. 

Rick et al. 1977, 1978 

Mimulus Phrymaceae Species   + Positive relationship between herkogamy and 

'outcrossing indicators' across eight species. 

Ritland and Ritland 1989 

  Population, 

Species 

- 
 

Negative relationship between herkogamy and 

autofertility among 10 populations of three species, 

and among five populations of M. guttatus. 

Dole 1992 

Mimulus guttatus Phrymaceae Individual (-)   Weak negative relationship between herkogamy and 

autofertility among families within a population. 

Carr and Fenster 1994 

Mimulus ringens Phrymaceae Individual 
 

+ Positive relationship between herkogamy and 

outcrossing rate among genets in two populations. 

Karron et al. 1997 

Myosotis Boraginaceae Species -   Reduced autofertility in 'always herkogamous' species 

compared to 'initially herkogamous' and 'never 

herkogamous' species. 

Robertson and Lloyd 1991 

Narcissus longipathus Amaryllidaceae Individual 
 

0 No detectable relationship between herkogamy-class 

and outcrossing rate within a population. 

Medrano et al. 2005  

(but see Medrano et al. 2012) 
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Nicotiana glauca Solanaceae Individual, 

Population 

-   Negative relationship between herkogamy and 

autofertility among sites and plants. 

Schueller 2004  

(and see Ollerton et al. 2012) 

Nicotiana rustica Solanaceae Individual  + Positive relationship between ‘heterostathmy’ 

(=herkogamy) and outcrossing in experimental array. 

Breese 1959 

Primula halleri Primulaceae Individual - 
 

Negative relationship between herkogamy-class and 

seed set following pollinator exclusion in three 

populations. 

de Vos et al. 2012 

  Individual   (+) Weak positive relationship between herkogamy-class 

and family-level outcrossing rates, averaged over four 

populations. 

de Vos et al. 2018 

Turnera ulmifolia Turneraceae Population   + Positive relationship between herkogamy and 

outcrossing rate among 13 populations. 

Belaoussoff and Shore 1995 

(and see Barrett and Shore 

1987) 
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