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Abstract—This paper deals with the class of discrete-time
linear dynamics affected by polytopic uncertainty in closed loop
with contractive piecewise affine (PWA) control law. Starting
from the hypothesis that the synthesis ensures a A-contractive
PWA control law for the nominal model, the objective is to
calculate the robustness margin guaranteeing the contractivity
(and consequently the asymptotic stability) of the closed loop
dynamics. The robustness margin is represented as a subset of
parameters within the set describing the polytopic uncertainty.
For all these parameters, the A-contractive behavior of the
trajectories can be certified. This set of parameters is then
compared to the set assuring the invariance of the contraction
property of the considered closed-loop PWA dynamics which
represents a limit case of the robustness study presented here.

I. INTRODUCTION

Model predictive control, possibly the most studied control
law besides the conventional controllers, has the ability to
handle constraints on inputs, states and outputs [7]. How-
ever, standard MPC can face computational difficulties for
calculating the optimal control inputs in an iterative fashion
especially when dealing with fast dynamics. To reduce the
computational complexity faced by MPC, researches have
come up with an Explicit MPC formulation [2], [1] in terms
of a PWA control law. The idea of the Explicit MPC is to
express the on-line quadratic problem in the control design into
a multi-parametric Quadratic Programming (mp-QP) problem
and to reduce the computation of the optimal control inputs
to a simple evaluation of a control law stored in a look-up
table. Such control laws can be easily implemented for real-
time system with fast dynamics and relative small state-space
models.

In the context of stability of the model predictive control,
a remarkable study on the control invariant characterization
of linear systems is proposed in [4]. In this reference, the
construction of successively tighter outer approximations for
controlled A-contractive set is obtained via an iterative algo-
rithm. This approach was further extended to construct a non-
iterative controlled contractive set based on some conservative
assumptions [5]. In this paper, we advocate the use of a
controlled A-contractive set that guarantees contractivity for
each time step of the closed loop.

Starting from this framework, from the analysis point of
view, it is important to commensurate the capacity of the
control law to cope with disturbances, neglected dynamics

or uncertain parameters. In the context of robustness anal-
ysis of PWA controllers, very few contributions have been
made. Some noticeable recent works include an analysis
procedure proposed in [8] and [11], which handles the ro-
bustness/fragility of the positive invariance for the dynamics
affected by uncertain parameters. On the other hand, the
robustness analysis can be connected to the works on the
robustification of the explicit controllers. The reference [10]
for example shows how to improve the robustness of the
controller by retuning.

It is worth to be mentioned that the analysis of a nominal
PWA control and its retuning is essentially different approach
from a robust control design. It is known that a robust
PWA control as for example robust explicit predictive control
synthesis [12] can account for uncertainties based on dynamic
programming approach but the associated computational com-
plexity is exponential with respect to the nominal case.

In this paper, a multi-parametric quadratic programming
problem is formulated in order to compute a PWA control
law which enforces contractivity for the class of linear
discrete-time systems. Starting from the A-contractive control
law, we present two robustness margins for the system
stabilized by a contractive piecewise affine control law. First,
the robustness margin for a discrete-time system affected by
polytopic uncertainty is presented. The robustness margin
denoted Q.5 and defined as a subset of the parametric
uncertainty set Q and is shown to take the form of polyhedral
set. For all the models belonging to the polyhedral set o5,
the contractivity of the state trajectories are guaranteed in the
presence of time-varying uncertainties. Second, we propose
a numerical method to compute a gain margin set for a
discrete-time system stabilized by a contractive PWA affine
control. The desired gain margin takes the form of a set
which characterizes admissible variations of system gains
preserving the contractive characteristics of the controller.

The paper is organized as follow: First the definition of
the basic notions on the explicit MPC is presented, and the
properties of the A-contractive explicit MPC are detailed. In
section IV the construction of the A-contractive controller
via multi-parametric programming problem is presented.
In section V the computation of robustness margin against
parametric uncertainties and the gain margin set for the
contractive piecewise affine controller are shown. Examples




presented in section VI illustrate the obtained robustness
margins.

BASIC NOTATIONS AND PRELIMINARIES

This section addresses some basic notations and definitions.
A vector is defined as z € R", z = [z}, 22, ,Zn)] and
a matrix as A € R"™™, A = [a;;]. An identity matrix
is represented by I,, where the subscript n denotes the
dimension of that matrix. The sets R, Ry, Z, N and Ny
denote set of real numbers, set of non-negative real numbers,
set of integers, set of non-negative integers, set of positive
integers respectively. We denote R™ a Euclidean space. Given
a set S, we denote by Card(S) its cardinal number.

A set S C R” is a proper C-set if it is convex, closed,
compact and contains the origin in its interior. A polyhedron
is the (convex) intersection of a finite number of open or
closed half-spaces and a polytope is a bounded and closed
polyhedron. A mapping function f : R™ — R™ is said to be
positively homogeneous of the first degree, if f(ax) = a.f(x),
V o € Ry and V 2 € R™. The set of vertices of a polytope M
C R™ is denoted V(M). The unit simplex in R” is defined as
Sy ={z € RE | 17 2 =1}. 1 s a vector with all its elements
equal to 1. For a N € N, Zyy denotes the set of integers,
Iy ={i €N |i< N} Let Pbe asymmetric convex
set in R", then a function M, (z) is a Minkowski function
of P, if My(z) = inf {y € Ry: z € yP}. Projr=Sis a
projection mapping of a set S onto a subset, S C R — R%
for ¢1 > ¢2 and will be considered to operate on the first ¢2
coordinates of R¢!. Finally, Conv denotes the convex hull.

II. BACKGROUND AND OBJECTIVES

Consider the discrete-time linear time-invariant system
given by,

Tpt1 = Azg + Buy €8
at all time instants k& > 0. Here, z; € R"™ is the state
vector, ux € R™ is the control vector, A € R™ " and
B € R™*™, The system states and inputs variables are subject
to constraints,

X, ={z: Hyx < hy, Hy € R™*" by e R™}
Uy = {u: Hyu < hy, Hy € R™*™ hy, € R™},

(2a)
(2b)

where the matrices H,, H, and the column vectors hz, hy

are assumed to be constant, and X, C R™ and U, C R™.
The state and input constraint sets X, and U, are polytopes
containing the origin in their interiors.

Definition 1: Consider a set Py(X) that is called the
polyhedral partition of the set X C R™, where Pn(X) = [A,
Xg XN],N (< N+ WlthXZ c R™if

) X =Uezy X

2) ink(X) # 0,

3) int(X; N X)) =0,V G, j) € T3, and @ # j.

The polyhedral X; C R™ are called critical regions or
components of the partition. Furthermore, two neighboring
regions X; and X share some vertices or facets [2].

Definition 2: A function
fowa : {R® > R™MAz+b;,Vz € X, i € In} (3

defined over the polyhedral partition of the set & is called a
piecewise affine function of the polyhedral partition.

The PWA solution is represented by a finite set of affine
functions defined over the polyhedral partition of the set X,

Upwe (@) = Fizp + gi, VT € A 4@

Definition 3: A closed and bounded set P C X is called
positively invariant with respect to the system (1) in closed
loop with the control law upye(xk) if for any zy € P, it
follows z € P, Vk € N.

Considering the class of PWA feedback laws, we are inter-
ested in defining the notion of A-contractiveness.

Definition 4: A C-set P C X is called controlled A-
contractive with contraction factor A € [0,1) if and only if
there exists an admissible control law upyqe (@) such that
Vo € aP then Azy + Bupye(zk) € AaP, Ya € [0,1] [5].

In this paper, we consider parametric uncertainty on the A
and B matrices of the system model (1). A set € is introduced
in the parameter space,

Q = Conv{[A1 B1]---[AL Bil]}. %)
The nominal system is given by a convex combination,
L
[A Bl = ¢4 B (6)
i=1
where ¢ = [(1,- - ,¢z]? € St and (; is a non-negative scalar.

Definition 5: Consider a polytopic set €2, the robustness
margin problem is to compute the largest subset Qrop C €2
such that a given PWA control law upyq(zr) defined over
the polyhedral set X for the system model (1) is controlled
A-contractive.

III. PRELIMINARIES

In the following, we introduce few matrix notations which
will be used throughout the paper in relationship with the gen-
erators of the polytopic sets. Recall the polyhedral set X, and
its partition X=U;er, X;. The set X' and each of the regions
composing the partition X; are closed and bounded polyhedral
sets and can be described by the vertex representation,

X = Conv{vi,va, -+ ,VUpr} @)
X; = Conv{w;1, wiz, - , Wir, } ®)

where r and 7; denote the number of vertices for X' and &;
respectively.

The vertex representation of the polytope & with the
corresponding sets of vertices V(X) given in (7) define a finite
subset of R™. Consequently, these vertices can be stored as
columns of a matrix W € R™*".

W=['U1,'U27"' 7’UT‘]' (9)




The vertices associated with each polytope &; is referred as
V(X;). The vertices are arranged with a cardinal number p =
Card(V(X;)), thus avoiding the column wise redundancies,

V= [V(Xl)] = [wl,wg, e ,’U)p] (10)

here V € R™*P, Finally, the knowledge of an admissible input
for each vertex stored in the matrix V allows the construction
of a matrix U € R™*P,

szpwa(v) (11)

where the application of the function fpye(.) should be
interpreted column wise.

IV. CONTROL RE-DESIGN FOR A-CONTRACTIVENESS

In this section, we discuss control design based on the
nominal PWA control law, but with an additional A-contractive
constraint imposed on the problem formulation. To facilitate
an explicit control with controlled A-contractive, it is desirable
to compute an initial contractive set that does not violate the
original state constraints. The controlled contractive sets of the
shape specified in [5] are considered. To calculate an initial set,
let us consider the system (1) and the state constraints, with a
matrix A= VDV, 1 Here V4 and D4 denote the matrices
of eigenvectors and diagonal eigenvalues matrix corresponding
to the Jordan decomposition of matrix A. The obtained initial
set is symmetric and can be represented as,

VX b bft nxn n
P=qzx: _y- z < b VaeRY™™ b, e R .
A x

12)
The contractiveness does not inherently require the set to
be described in the form (12), it was just one approach to find
a particularly simple controlled contractive set. The quadratic
cost function for the controller stabilizing a linear discrete-time
system given by (1) subject to constraints (2) is formulated as,

N, Np—1
J@w, Uy =min ) |IQuesil3+ D [1Rursslls (132)
i=1 i=0
st. Tpy1 = Azp + Bug, k=0,--- ,N, =1 (13b)
zo = z(0) (13¢)
Vit be
Try1 < A (13d)
-v;t by
ug € Ug, k=0,--- ,N, =1 (13e)
2k € X, k=1,---,N, (13D

Here ) is a pre-defined contractive factor, A € [0,1) and @ €
[0,1] will be considered as a parameter. The weight matrices
Q = QT >0and R = RT > 0 define the performance
index of the optimization problem (13)[7]. In (13a) we use
an optimization criterion spanning over a multiple-time step
horizon, while the contraction is only imposed for the first time
step. Anyhow, the contractive set constraint in (1 3d) should be
designed to make (13f) redundant. Now, one has to transform
the problem (13) into multi-parametric programming problem

including the full vector of parameters. This complete mp-
QP problem is formulated for the state vector z and « as
an augmented parameter vector & = [z, a]T leading to the
compact cost formulation:

1 1
J(U*(&)) = min 5U*THU* + 2T ETU* + E@TY:;:. (14)

The constraints for the state and input variables can be
appended to the inequality constraint given below,

GU* < D+ S%. (15)

In (14) and (15), £ = 2. Subsequently, the initial contrac-
tive set given in (12) is also extended to & space, by setting the
bounds of « parameter between 0 and 1. This set is herewith
denoted as P € R™*1.

The state space partition obtained from the problem (14)
and (15) can be represented as 2 finite collection of regions in
the extended [z, o] space. This will be denoted next as

X =Uez, X (16)
The control law obtained from the mp-QP formulation is given
by,

Upwa(Er) = Filly + G5, € L. amn

In the following, we aim to reduce the extended vector [z,
a]-space to the initial z-space by preserving the piecewise
affine formulation. This can be done with a particular choice
of a which can be interpreted as an implicit function of x
using in practice the Minkowski function M, with respect to
the initial contractive set 7P. We recall here some of the basic
properties.

Lemma 1: Let P be a convex set containing O as an interior
point. Then the Minkowski function M, of P satisfies [13]:
1) Mop is continuous,

2) Mp is piecewise linear,
3) Mp(z1 + 22) < Mp(x1) + Mp(z2).

Now, introduce a subset H C R™*? defined as the graph of
the Minkowski function with respect to the set P C R™.

([ =

The PWA function (17) can be restricted to the subset HNX
and subsequently projected onto the original state space. This
results in an explicit PWA function:

(18)

upwa(sc;c) = Fixi + gi,t € In,for zp € &; (19)

defined over a partiion X, X = [J;cz, Ai. This design
procedure is resumed in Algorithm 1.




Algorithm 1 Algorithm for the control law in x space
Input: X € R™1, H € R, Fj € R™*"F1 g, € R™, ¢
Output: X € R”, F; € R™*", g; ¢ R™
Initialization : i = 0
1: Obtain the polyhedral regions,

X = UjEINXJ;, Xj € Rn-{—l
2 for j=1to N do
3: Pint = Xj ﬂ H.
4 Pyroj = Proj(Pini, 1: 1)
5. if (dim(P,y0; == n)) then
6: i=1+1
7: X = Piproj .
8: Fi:Fj(:,l:n)+Mp(x) ¥ j(t,’l’L"‘l)
9: gi = gy
10:  end if
11: end for

V. MAIN RESULTS
A. Robusiness margin for A-controlled contractive sets

The robustness margin for the projected polyhedral set X
can be constructed by using the vertex and half-space repre-
sentation. In this paper we focus on the vertex representation
and start by recalling the nominal system (1) subject to the
constraint (2) used for the design of a contractive piecewise
affine control law. The matrices [A B] belong to the polytopic
uncertain set ) as defined in (5). The robustness margin
problem [11] is to compute the subset Q.05 C € such that
the closed loop dynamics obtained with the PWA control law
defined over X is A-contractive, that is:

Trtr1 = (A + BFi)fL’k + Bg; € AaX (20)

and 7 € Zy.

Let us define few important matrices which will be used
in the following. Recall the matrix V' defined in (10) which
stores all the non-identical vertices of the X; with a cardinal
number p. The value of o parameter is computed for each
column vector in the matrix V,

ai('w,-) = M'p('wi),i (S Ip. 21
It is possible to express (20) as a convex combination of
the vertices of the polyhedral set &,
r
Z’Yjvjv'}' = [’Ylv T 77T]T € $T71T7 =1L
=1

Rewriting (20) we obtain:
(A+ BF;))z + Bg; = dafzy)Wr. (22)

Replacing (21) within (22) one can compute for each
column vector in the matrix V' with the corresponding vector

;. Storing the column vectors v;,¢ = 1,...,p, a matrix
I € R™*? will be obtained
I'= [al’}/l') QoY2," ", ap’yp}' (23)

Finally, after defining a matrix M € R"*" as a simple
scaling of the vertices of the feasible set M = AW one can
state the main result with respect to the robustness margin
characterization.

Theorem 1: Consider a discrete-time system (1) subject to
a polytopic uncertainty and subject to the states and input
constraints. The robustness margin for a given contractive
piecewise affine control law is given by

Qrob = PTOjSLT (24)
where 7 represents the polyhedral set,
{(¢,T) € S x R™PI1TT = [ay, -+ , ),
T= (25)

> i=1Gi(A;V + B;U) = MT}.

Proof: To prove the existence of robustness margin for
the polyhedral set X whose control law is associated with
controlled A-contractive set, let us consider the closed loop
formulation of the piecewise affine control law with the A-
contraction.

(A + BF))z + Bg; € AaX (26)

where )\ denotes the contractive factor and the parameter
a(z) = Mp(z). We recall that V(A, B) € Qrop, ¥z € A,
Vi € I and considering the polytopic uncertainty set §) we
can show that Q,., C Q. And clearly, (26) can be written as
L
> " ¢(A; + BiFi)z + (;Bjg; € dakX.
j=1

@7n

Now, simply the state vector, x € Aj;, can be expressed as a
convex combination of the vertices, z = 3,2, Bywg for 3,7,
B =1, with ¢; the elements of a vector ¢ € Sg, Vi € Zn and
vlieZ,,.

Subsequently replacing = with w;;, the o parameter for the
vertex w;; is computed by a;; = Mp(wy). Equivalently (27)
is followed by,

L
Z Cj(Aj + B]-Fi)w,-l + Cijgi € oy X.
j=1

(28)

Moreover, the inclusion can be explicitly described by the
existence of y;; € Aa; X such that:

L
> " ¢i(Aj + BiFiywa + (;Bjgi = Y- 29)
j=1

The vector y;; € R™ can be expressed as,
yir = dag[V(X)va  for vu €S, (30

Substituting (30) in (29) and introducing a matrix M €
R"*" where M = A\W we obtain,

L
Z G (Aj + BjFi)wy + (jBjgi = Moy

j=1
From (31) it can be stated that if it holds VI € Z,,,
consequently it will hold for all the columns of the matrix

@D




V as given in (10). Exploiting the admissible input mapping
of the columns of V as in U leads to the matrix formulation,

L
> GAV +(;B;U = MT. (32)

j=1
It can be noticed that y;; € S, that is, each column of
matrix T is restricted to the simplex S, multiplied by o, Vi €
T,. Further the polyhedral set 7 is projected on the simplex
function Sy [}

B. Gain margin for \-controlled contractive sets

In the following, we describe an analysis of the gain margin
set for the system (1) stabilized with the help of a state
feedback contractive PWA control law. The construction of the
gain margin is similar with the one presented in the previous
section and the proofs will be omitted.

Definition 6: Consider a discrete time linear system (1) with
a continuous contractive PWA control law, such that the state
space set X is controlled A-contractive. The Gain Margin is
represented by the set K C R™, such that zp11 = Azy +
B(Im + diag(&K))qua(:ck) € X,Vz, € X and dg € K,
ox € R™.

The set £ € R™ is a set which contains the input channels
gain variations dx such that for any point inside the set C,
the A-contractive characteristics of the set X is preserved.

Theorem 2: Consider a discrete-time linear system (1) with
a contractive piecewise affine state feedback control. The gain
margin K of the controller is defined by the set,

K=nt_ Ky (33)

where K represents the gain margin set and /C, the local gain
margin for the vertex wg for some q € Z,,.

Ky={z€R™Fue Aldy, Mz=u} 34)

with

AUy = {u |Hyu < hy} (35)

where I:Iu € Ré«*™ and iLu € R%, AU, represents the set
of admissible input variation for the vertex w, preserving the
contractivity.

The collection of sets K, are independent for each vertex
of the set in X; and the intersection of these independent set
gives the global set K. In order to compute K, we first need
to compute explicitly the sets Ald.

Theorem 3: Consider a linear discrete-time system (1)
stabilized by a contractive piecewise affine control law. The
set AU, of admissible input variations at the vertex wg is
obtained by

AU, = Projy,H, (36)

U, € R™ denotes the input constraint set. The polyhedral set
H, is described by:

(64,7) € R™ xR, and [A B {

Tk
Hy = Upwa (Tk)
+Bd, = AaWy

€0)

V1. EXAMPLES
A. Robustness Margin

Consider a discrete-time linear system constructed from the
uncertainty set described by:

0.4546 —0.0913 0.0849
[A1 B] = 0.1836 0.5389  0.0064

0.7326 —0.0767 0.0609

Q=conv { [42 Bo] = |0y 557 09009  0.0114
Ay By = 1.0866 —0.0861 0.0823

352317 10,1722 1.4323  0.0076

with the nominal model chosen to be: zgx+1 = Az + Bug,
with A = 0.34; + 0.245 + 0.543 and B = 0.3B; + 0.2B; +
0.5Bs.

The input constraint is given by —2 < ui < 2 and the state
constraints are -100 < [0 1]z < 100. The contractive factor
X chosen is 0.99. Unity weights are applied on the inputs and
states penalties and the prediction horizon chosen is 2 within
a Model Predictive Control framework leading to an explicit
PWA control law. Multi-Parametric Toolbox is used to obtain
the state space partition [9].

Projected state space x,, X

State space partition

o8 588

20}
<0t
00|
90

-100

@ 40 20 0 20 40
X,

(a) State space partition with ¢ as (p) Projected state space partition
parameter Fy.. B

Fig. 1: State space partitions

Fig. 1 (a), shows the state space partition of the above
system and it has 11 regions. Fig. 1 (b), shows the regions
of the initial contractive set with the projected states [z1, z2].
The projection is done using the proposed algorithm in section
V.

Robustness Margin

CIsimplex function
linvariant set
B Contractive set

Fig. 2: Robustness margin for contractive and invariant set in
the plane of (1, (a.

Fig. 2, shows the robustness margin €05 for the controlled
A-contractive set presented by the blue polytope and robustness
margin for the controlled positively invariant set by the green
polytope. The red dot denotes the considered nominal system




Fig. 3: Trajectories for different nominal systems for the same
initial state.

where ¢; = 0.3 and { = 0.2. For simplicity, the simplex
function is presented only for ¢; and ¢, such that (5 =1 -
(1 - {o. It is observed that the given control law guarantees
the contractivity of the feasible region X’ only if the system
is inside the blue polytope. Similarly, the control law cannot
guarantee either the positive invariance or contractivity of X
if the system is away from the blue and green polytopes. For
system inside the green polytope and outside the blue polytope
the control law guarantees the invariance of the operating
region X. Fig. 3, shows the state trajectories for the same
initial state zo = [—70 98]7 for different nominal systems.

B. Gain Margin

Consider a discrete-time linear system,

By = [0.9 0.5] 2 4 [1.0} w
0.2 0.8 0.2] "

The input constraint is given by —2 < ug < 2 and state
constraint by —5 < [0 1]zx < 5. The prediction horizon
chosen is 2 and unity weights are applied on the inputs and
states penalties . The contraction factor A = 0.98 is considered.

The gain margin set K in (33) is computed for the PWA
control law assuring the contractivity characteristics of the
controller. As a term of comparison, with respect to the
invariance, the value of d lies between [—0.524, 1.554] while
for the contractive controller, the value of dx lies between
[-0.467, 1.445]. Fig. 4 shows the projected state partition on
the z—plane with state simulations in closed loop for an initial
state o = [0.355 5.0]T for different dx values.

oty n-04

8,20 1
——3 =14

*2

b bbb ho e e s ow

Fig. 4: Projected state space partition with state trajectories
for different dx values.

State trajectories, control inputs and « values are simulated
in closed loop for an initial state zo = [0.355 5.0]7 with differ-
ent 8 values, such that z1 = Azg + B(1 + 0k ) Upwa ()

" \‘_aK--u
—3 =0

s m14
Ty
o M
0
]
L 1 L
B 0 15 FJ 25 30
e Moo RS ]
: |
5

k: 5 10 3y 20 el

Fig. 5: Simulation for state trajectories, control input and o
for different 0x values.

for the contractive controller and it is shown in Fig. 5. It is
observed that the trajectories are A-contractive thus confirming
the theoretical result.

VII. CONCLUSIONS

In this work the robustness margin assuring the contractivity
of trajectories for a linear uncertain system controlled by a
piecewise affine control law has been deduced. Starting with
a nominal contractive PWA control law, this robustness margin
consists in a subset of the uncertain polytopic description
of the plant. For all the systems described in this set the
trajectories are contractive. Moreover a gain robustness margin
have also been computed.
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