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Summary

The contributions of this thesis fall naturally into two main categories: Part I:
Feedback control of fluid flows, and; Part II: Modelling and control of marine
structures.

Main Contributions of Part I

Part T presents new results on stabilization (for the purpose of drag reduction or
vortex shedding suppression) and destabilization (for the purpose of mixing) of
channel, pipe and cylinder flows. In order to provide a stand-alone reference on
this topic, the thesis also contains a comprehensive review of the research carried
out in this field over the last decade or so, along with introductory chapters on fluid
mechanics and control theory. The review also serves the purpose of placing the
contributions by the author into the wider context of the field. The contributions
by the author are the following:

Section 4.3.1: A new boundary feedback control law for stabilization of the
parabolic equilibrium flow in 2D channel flow is derived using Lyapunov stability
theory. The controller uses pressure measurements taken on the channel wall, and
applies actuation in the form of wall transpiration, that is, suction and blowing of
fluid across the wall. Although the analysis is valid for small Reynolds numbers,
only, simulations indicate that the control is very efficient in stabilizing the flow at
Reynolds numbers several orders of magnitude higher. The pressure-based control
law performed much better than other Lyapunov-based control laws studied.

Section 4.3.3: The simple pressure-based control law derived in Section 4.3.1 is
generalized to the 3D pipe flow. As for the 2D channel flow, the analysis i1s valid
for small Reynolds numbers, only.

Section 4.3.4: The pressure-based feedback control law derived in Section 4.3.1
for the 2D channel flow results in flow transients with instantaneous drag far
lower than that of the corresponding laminar flow. In fact, for the first time,
instantaneous total drag in a constant-mass-flow 2D channel flow is driven to
negative levels. The physical mechanisms by which this phenomenon occur is
explained, and the possibility of achieving sustained drag reductions to below the
laminar level by initiating such low-drag transients on a periodic basis is explored.
The results add to the evidence that the laminar flow represents a fundamental
limit to the drag reduction achievable by wall transpiration.
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Section 4.4: A state feedback controller that achieves global asymptotic stabiliza-
tion of a nonlinear Ginzburg-Landau model of vortex shedding from bluff bodies
is designed using backstepping. Stabilization is obtained in two steps. First, the
upstream and downstream parts of the system are shown to exhibit the input-
to-state stability property with respect to certain boundary input terms governed
by the core flow in the vicinity of the bluff body. Second, a finite difference ap-
proximation of arbitrary order of the core flow is stabilized using the backstepping
method. Consequently, all the states in the core flow are driven to zero, includ-
ing the boundary input terms of the upstream and downstream subsystems. The
control design is valid for any Reynolds number, and simulations demonstrate its
performance.

Section 5.2: For the first time, active feedback control is used to enhance mixing
by exploiting the natural tendency in the flow to mix. By applying the pressure-
based feedback control law derived for stabilizing the 2D channel flow in Section
4.3.1, with the sign of the input reversed, enhanced instability of the parabolic
equilibrium flow is obtained, which leads rapidly to highly complex flow patterns.
The mixing enhancement is quantified using various diagnostic tools.

Section 5.3: A Lyapunov based boundary feedback controller for achieving mix-
ing in a 3D pipe flow governed by the Navier-Stokes equation is designed. It
is shown that the control law maximizes a measure of mixing that incorporates
stretching and folding of material elements, while at the same time minimizing the
control effort and the sensing effort. The penalty on sensing results in a static out-
pui-feedback control law (rather than full-state feedback). A lower bound on the
gain from the control effort to the mixing measure is also derived. For the open-
loop system, input/output-to-state stability properties are established, which show
a form of detectability of mixing in the interior of the pipe from the chosen outputs
on the wall. The effectiveness of the optimal control in achieving mixing enhance-
ment is demonstrated in numerical simulations. Simulation results also show that
the spatial changes in the control velocity are smooth and small, promising that
a low number of actuators will suffice in practice.

Section 5.4: Motivated by the mixing results for channels and pipes in Sections
5.2 and 5.3, a simulation study that investigates the feasibility of enhancing particle
dispersion in the wake of a circular cylinder is carried out. For a subcritical case,
vortex shedding is successfully provoked using feedback.

Main Contributions of Part IT

Part 1T deals with modelling and control of slender marine structures and marine
vessels.

Chapter 8: A new finite element model for a cable suspended in water is de-
veloped. Global existence and uniqueness of solutions of the truncated system is
shown for a slightly simplified equation describing the motion of a cable with neg-
ligible added mass and supported by fixed end-points. Based on this, along with
well known results on local existence and uniqueness of solutions for symmetriz-
able hyperbolic systems, a global result for the initial-boundary value problem
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is conjectured. The FEM model for the cable is assembled to give a model of a
multi-cable mooring system, which, in turn, is coupled to a rigid body model of the
floating vessel. The result is a coupled dynamical model of a moored vessel, which
can be applied to applications such as turret-based moored ships, or tension leg
platforms. As a simple application of the simulator, controlling the line tensions
dynamically as an additional means of station keeping is explored.

Chapter 9: Output feedback tracking control laws for a class of Euler-Lagrange
systems subject to nonlinear dissipative loads are designed. By imposing a mono-
tone damping condition on the nonlinearities of the unmeasured states, the com-
mon restriction that the nonlinearities be globally Lipschitz is removed. The
proposed observer-controller scheme renders the origin of the error dynamics uni-
formly globally asymptotically stable, in the general case. Under certain additional
assumptions, the result continue to hold for a simplified control law that is less
sensitive to noise and unmodeled phenomena.

Publications

The main results in this thesis have been accepted or submitted for publication in
international journals, as well as presented or submitted to international confer-
ences. The most important papers are:

e ”Finite element modelling of moored vessels,” Mathematical and Computer
Modelling of Dynamical Systems, vol. 7, no. 1, 2001, with T.I. Fossen.

e "Global output tracking control of a class of Euler-Lagrange systems with
monotonic nonlinearities in the velocities,” International Journal of Control,
vol. 74, no. 7, 2001, with M. Arcak, T.I. Fossen, and P.V. Kokotovié.

e ”Control of mixing by boundary feedback in 2d channel flow,” submitted to
Automatica, with M. Krsti¢ and T.R. Bewley.

e 70On the search for fundamental performance limitations in fluid-mechanical
systems,” Proceedings of the 2002 ASME Fluids Engineering Division Sum-
mer Meeting, Montreal, Quebec, Canada, with T.R. Bewley.

e ”Optimal mixing enhancement in 3d pipe flow,” submitted to TEFE Trans-
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Chapter 1

Introduction

1.1 Why Flow Control?

Flow control involves controlling a flow field using passive or active devices in order
to bring on desired changes in the behavior of the flow. For instance, laminar
flow, which is characterized by parallel layers of fluid moving in a very regular
and deterministic way, is associated with considerable less drag, or friction, at
wall-fluid interfaces, than its counterpart, turbulent flow, which is characterized
by small scale velocity components that appear to be stochastic in nature. On
the other hand, turbulent flow may exhibit better mixing properties than laminar
flows. Usually, laminar flows are unstable, and will unless controlled, evolve into
turbulent flows. Common control objectives include [47]:

e Delaying or advancing transition from laminar to turbulent flow;
e Suppressing or enhancing turbulence, and;

e Preventing or provoking separation.

The benefits that can be gained from these control objectives include drag reduc-
tion, lift enhancement, mixing enhancement, and flow-induced noise suppression.
For example, a turbulent pipe flow induces considerable drag, or friction, at the
bounding wall. It is the resulting overall drag force that the compressor has to
overcome in order to pump fluid through the pipe. Increasing the throughput
can be achieved by simply installing a more powerful compressor, but the re-
sult would be increased energy consumption. Since laminar flow induces much
less drag, designing a flow control system that relaminarizes the flow will permit
higher throughput without increasing energy consumption.

In flows past bluff bodies, the phenomenon of vortex shedding occurs. For flow
past a 2D circular cylinder, which is a prototype model flow for studying vortex
shedding, vortices are alternatively shed from the upper and lower sides of the
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cylinder, subjecting the cylinder to periodic forcing. In practice the periodic forc-
ing leads to structural vibrations, which are associated with penalties ranging from
passenger discomfort to structural damage or failure from fatigue. Consequently,
suppression of vortex shedding is of great importance in many engineering appli-
cations. By applying flow control, one may alter the behavior of the flow around
the structure in such a manner that vortex shedding is suppressed or dampened.

Mixing processes are encountered frequently in applications, and the quality of
the resulting mixture directly affects the quality of the end product. This is
the case, for instance, in combustion, where the quality of the fuel-air mixture is
essential for power generation, and in process industry, where the quality of various
mixtures affect chemical reaction rates and the purity of end products. Mixing is
usually obtained using ”brute-force” techniques, such as mechanical stirring, jet
injection and stirring valves. These methods, and all other methods for mixing,
are assoclated with a drag penalty. The application of flow control to mixing
problems seeks to minimize this penalty.

The feedback control laws designed for these problems are allowed to be dis-
tributed. That is, sensing and actuation may be applied at every point on the
boundary of the flow domain. While this may sound unrealistic, the micromachin-
ing technology that emerged in the 1980s, permits rapid sensing and actuation on
the micron scale, and thereby enables real-time distributed control of fluid flows.

It is clear from the examples mentioned above that the main objective in flow
control is to lower operational expenses. We conclude this motivational section
with a quote from [47]: ”The potential benefits of realizing efficient flow-control
systems range from saving billions of dollars in annual fuel costs for land, air,
and sea vehicles to achieving economically and environmentally more competitive
industrial processes involving fluid flows.”

1.2 Scope of this Report

The concept of flow control contains a wide variety of theoretical and technological
branches, as the previous section suggests. In this report the treatment is limited
to recent developments in two problem areas that have attracted much attention.
The first i1s stabilization of a selection of popular prototype flows, namely the
channel flow (2D or 3D), the pipe flow, and the cylinder flow (2D). The channel
flow is the flow contained between two parallel plates, the pipe flow is the flow
contained in the interior of a cylinder with circular cross section, and the cylinder
flow is the flow past a cylinder with circular cross section. The second problem
we will study, is mizing in flows. In the next two sections, recent efforts in these
areas are reviewed briefly. Then, selected works are treated in detail in Chapters 4
and 5. First, though, the equations of fluid mechanics are reviewed in Chapter 2,
and some control theoretic results are reviewed in Chapter 3. Following the core
chapters on stabilization and mixing, a review of the state-of-the-art in sensing
and actuation for fluid mechanical systems is presented in Chapter 6. The report
ends with some concluding remarks in Chapter 7.
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1.2.1 Stabilization

Incompressible fluid flow in a plane channel has been studied quite extensively,
and the wall sensing/actuation of this flow has become a standard benchmark
problem in the area of flow control, see, e.g., [21] and [46] for recent reviews.
In [70] stabilizing PT controllers for two-dimensional channel flow were designed
for a reduced-order model of the linearized Navier-Stokes equation, obtained by
a standard Galerkin procedure. The work was continued in [71], where LQG
design was applied in order to obtain optimal controllers for this reduced-order
model. LQG/LTR of the streamfunction formulation of the Navier-Stokes equa-
tion was also the focus of [37] and [36], where the latter reference reports the
remarkable result of drag reduction to 50% below the laminar level. In [73], a
reduced-order model of 3D perturbations (at a single wavenumber pair {k;, k. })
was developed, and LQG control design was applied to this model. Drag reduc-
tion by means of body forcing inside the domain applied through electromagnetic
forcing was suggested in [13], where an observer-based approach was applied to a
reduced order, linearized model. A nonlinear attempt was presented in [33], where
Galerkin’s method was used to derive a reduced-order model of the full, nonlinear,
two-dimensional Navier-Stokes equation. A nonlinear control law was given, along
with conditions under which closed-loop stability is obtained. The results were ap-
plied to Burger’s equation, which is the one-dimensional Navier-Stokes equation,
including the nonlinear advective term. In [20], LQG and H., control theories
were applied to the linearized three-dimensional channel flow. A major finding of
this paper was that properly-applied controls significantly reduce the nonorthog-
onality leading to energy amplification mechanisms in such systems. The three-
dimensional nonlinear problem was tackled by the application of optimal control
theory in a finite-horizon predictive setting (Model Predictive Control) in [23],
resulting in relaminarization of Re = 1700 turbulent channel flow. Optimal con-
trollers are generally not decentralized, but recent results on the structure of con-
trollers for spatially-invariant systems indicate that one can obtain localized con-
trollers arbitrarily close to optimal [17]. This result has been confirmed for plane
channel flow in [64], where the Fourier-space control problem formulated in [20] was
modified and successfully inverse-transformed to the physical domain, resulting in
well-resolved, spatially-localized convolution kernels with exponential decay far
from the origin. Such spatial localization is an important ingredient both in relax-
ing the nonphysical assumption of spatial periodicity in the controller formulation
and in facilitating decentralized control in massive arrays of sensors and actuators
(see discussion in [21]). The mathematical details of controllability and optimal
control theory applied to the Navier-Stokes equation, such as existence and unique-
ness of solutions, and proofs of convergence of proposed numerical algorithms, are

discussed in [7, 18, 19, 24, 34, 35, 40, 41, 43, 51, 52, 61, 65, 66, 82, 109, 110].

Global stabilization by boundary control of Burgers’ equation was achieved in [81].
For the 2D channel flow governed by the Navier-Stokes equation, globally stabiliz-
ing boundary control laws were presented in [15], where wall-tangential actuation
was used, and in [1], where wall-normal actuation was used. These control laws
were fully decentralized, and numerical simulations showed their ability to stabilize
flows at large Reynolds numbers, although the mathematical analysis was valid
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for small Reynolds numbers, only. As noted in [15] and [21], fully decentralized
controllers have an implementational advantage in that they can be embedded
into MEMS (Micro-Electro-Mechanical-Systems) hardware, minimizing the com-
munication requirements of centralized computations and facilitating scaling to
massive arrays of sensors and actuators. Using the wall-tangential control law,
Balogh (private communication) was able to relaminarize a simulated turbulent

3D channel flow at Re = 4000.

The flow past a 2D circular cylinder has been a popular model flow for study-
ing vortex suppression by means of open-loop or feedback control. For Reynolds
numbers slightly larger than the critical value for onset of vortex shedding (which
is approximately Re, = 47), several authors have successfully suppressed vortex
shedding in numerical simulations using various simple feedback control configura-
tions. In [99], a pair of suction/blowing slots positioned on the cylinder wall were
used for actuation, and shedding was suppressed for Re = 60, using proportional
feedback from a single velocity measurement taken some distance downstream of
the cylinder. For Re = 80, vortex shedding was reduced, but not completely
suppressed. In [53], the same actuation configuration was tried using feedback
from a pair of pressure sensors located on the cylinder wall for Re = 60. This
attempt was unsuccessful, but by adding a third actuation slot, shedding was re-
duced considerably, even at Re = 80. Although some success in controlling vortex
shedding has been achieved in numerical simulations, rigorous control designs are
scarce due to the complexity of designing controllers based on the Navier-Stokes
equation. A much simpler model, the Ginzburg-Landau equation with appropriate
coefficients, has been found to model well the dynamics of vortex shedding near
the critical value of the Reynolds number [63]. In [103], it was shown numerically
that the Ginzburg-Landau model for Reynolds numbers close to Re. can be sta-
bilized using proportional feedback from a single measurement downstream of the
cylinder, to local forcing at the location of the cylinder. In [83], using the model
from [103], stabilization was obtained in numerical simulations for Re = 100, with
an LQG controller designed for the linearized Ginzburg-Landau equation. In [4],
a controller that globally stabilized the equilibrium at zero of a finite difference
discretization of any order of the nonlinear Ginzburg-Landau model presented in
[103] was designed using backstepping. The design was valid for any Reynolds
number.

1.2.2 Mixing

In many engineering applications, the mixing of two or more fluids is essential
to obtaining good performance in some downstream process (a prime example
is the mixing of air and fuel in combustion engines [48, 10]). As a consequence,
mixing has been the focus of much research, but without reaching a unified theory,
either for the generation of flows that mix well due to external forcing, or for
the quantification of mixing in such flows. A thorough review is given in [96].
Approaches range from experimental design and testing to modern applications
of dynamical systems theory. The latter was initiated by Aref [11], who studied
chaotic advection in the setting of an incompressible, inviscid fluid contained in
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a (2D) circular domain, and agitated by a point vortex. This flow is commonly
called the blinking vortex flow. Ottino and coworkers studied a number of various
flows, examining mixing properties based on dynamical systems techniques [32,
75, 85, 111]. Later Rom-Kedar et al. [102] applied Melnikov’s method and KAM
(Kolmogorov-Arnold-Moser) theory to quantify transport in a flow governed by
an oscillating vortex pair. For general treatments of dynamical systems theory
and transport in dynamical systems, see [50, 116, 117]. An obvious shortcoming
of this theory is the requirement that the flow must be periodic, as such methods
rely on the existence of a Poincaré map for which some periodic orbit of the flow
induces a hyperbolic fixed point. Another shortcoming is that they can only handle
small perturbations from integrability, whereas effective mixing usually occurs
for large perturbations [97]. A third shortcoming is that traditional dynamical
systems theory is concerned with asymptotic, or long-time, behavior, rather than
quantifying rate processes which are of interest in mixing applications. In order
to overcome some of these shortcomings, recent advances in dynamical systems
theory have focused on finding coherent structures and invariant manifolds in
experimental datasets, which are finite in time and generally aperiodic. This
has led to the notions of finite-time hyperbolic trajectories with corresponding
finite-time stable and unstable manifolds [55, 56, 57, 58]. The results include
estimates for the transport of initial conditions across the boundaries of coherent
structures. In [101] these concepts were applied to a time-dependent velocity field
generated by a double-gyre ocean model, in order to study the fluid transport
between dynamic eddies and a jet stream. An application to meandering jets
was described in [93]. Another method for identifying regions in a flow that have
similar finite-time statistical properties based on ergodic theory was developed
and applied in [90, 88, 91]. The relationship between the two methods mentioned,
focusing on geometrical and statistical properties of particle motion, respectively,
was examined in [100].

As these developments have partly been motivated by applications in geophysical
flows, they are diagnostic in nature and lend little help to the problem of generating
a fluid flow that mixes well. The problem of generating effective mixing in a fluid
flow is usually approached by trial and error using various “brute force” open-loop
controls, such as mechanical stirring, jet injection or mixing valves. However, in
the recent papers [38, 39], control systems theory was used to rigorously derive the
mixing protocol that maximizes entropy among all the possible periodic sequences
composed of two shear flows orthogonal to each other. In [94], the optimal vortex
trajectory in the flow induced by a single vortex in a corner subject to a controlled
external strain field was found using tools from dynamical systems theory. The
resulting trajectory was stabilized using control theory.

In [1], feedback control was applied in order to enhance existing instability mech-
anisms in a 2D model of plane channel flow. By applying boundary control intelli-
gently in a feedback loop, mixing was considerably enhanced with relatively small
control effort. The control law was decentralized and designed using Lyapunov
stability analysis. These efforts have recently been extended successfully to 3D
pipe flow [16], where certain optimality properties were shown as well. Motivated
by these results [1, 16], a simulation study was carried out in [6], aiming at en-
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hancing particle dispersion in the wake of a 2D cylinder. For the subcritical case
of Re = 45, vortex shedding was successfully initiated using feedback control.



Chapter 2

Governing Equations

This introductory chapter on fluid mechanics is based on [27].

2.1 Kinematics

We will be studying the behavior of a fluid contained in the domain Q, as shown
schematically in Figure 2.1. Associated with the fluid is its density, p : QxR 1— R.
At every time instant ¢ > 0, and to every point p € €, we assign a vector valued
quantity which is the velocity, W, of the fluid at that point in time and space.
That is, we are interested in the evolution of a vector field W : Q xR — R" where
n 1s the dimension of the problem. Associated with the velocity field is a pressure
field, which is a scalar valued function P : Q@ x Ry — R. We will study problems in
2 and 3 dimensions (2D and 3D), using cartesian and cylindrical coordinates. In
cartesian coordinates, we denote a point p € Q with (z,y) in 2D and (2, y, z) in 3D.
In cylindrical coordinates, we denote a point p € Q with (r, 6, z). The two coordi-
nate systems are shown schematically in Figure 2.1. The velocity field is denoted
W(z,y,z,t)= (U(x,y,z,1),V(z,y,2z,t), W(x,y,z,1t)) in 3D cartesian coordinates,
where U, V and W are the velocity components in the z, y and z directions,
respectively (W(z,y,t) = (U(z,y,t), V(z,y,t)) in 2D). In cylindrical coordinates,
we denote the velocity field W(r, 0, z,t) = (Vi (z,y, 2,1), Va(z, y, 2, 1), Va (2, y, 2, 1)),
where V., Vp, and V, are the velocity components in the r, § and z directions, re-
spectively. The density, p, and the pressure, P, take the same arguments as the
velocity, but are scalar valued. Below we will derive the conservation equations in
cartesian coordinates, and state the corresponding equations in cylindrical coor-
dinates.

2.2 Conservation of Mass

Consider the stationary volume element in Figure 2.2. Writing a mass balance
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Figure 2.1: The domain in which the fluid is contained is denoted 2. Two coordi-
nate systems will be used in this report: cartesian coordinates, denoted (z,y, z),
and cylindrical coordinates, denoted (r, 6, z).

W|z+Az
T (x+Ax,y+Ay,z+Az)
v Vly+ay
/]
— > le U|X+AX

Figure 2.2: Control volume for derivation of the governing equations.
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over the volume, we have
rate of mass accumulation = rate of mass in — rate of mass out
where

rate of massin = (pU)|, AyAz + (pV)|, AzAz + (pW)|, AzAy

rate of mass out

Thus, we get

% ArAyAz =~ (o) a0 — (U)].) AyA:
~ ((PV)lysay = V)I,) AaAz = (W), 1a, = (PW)],) AyAz,

Dividing by the volume and letting Az, Ay, and Az approach zero, we get

Op _ 0(pU) 0(pV) 9 (pW)
ot Ox Oy 0z

We will be dealing exclusively with incompressible fluids, for which p is constant.
Consequently,

ou oV oW
—+ —+ —=0. 2.1
Oz + Oy + 0z 0 (2.1)

Equation (2.1) is referred to as the equation of continuity.

2.3 Conservation of Momentum

Again consider the stationary volume element in Figure 2.2. Writing a momentum
balance over the volume, we have

rate of momentum accumulation =
rate of momentum in — rate of momentum out

+ sum of forces acting on system.

So for the momentum in the z-direction, we have

rate of momentum in =

(pU?) |x AyAz + (pUV)|, AzAz + (pUW)|, AzAy

rate of momentum out =

(pU2) |I+AI AyAz + (pUV)|y+Ay AzAz + (pUW)|Z+AZ AzAy
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sum of forces acting on system =

+ (sz|z AzAy — T“;|Z+AZ) AzAy + (P|1r — P|£+Ax) AyAz

where 7;; denotes the viscous force (per unit area) acting in the direction of j on
a face normal to the i-direction, and P is the pressure (i.e. the pressure force per

unit area). We get

d(pU

—( y )A;rAyAz =— ((pU2) |x+AI — (pUz) |x) AyAz

o ((pUV)|y+Ay - (pUV)ly) AzAz — ((PUW)|Z+AZ - (pUW)L) A:EAy
(Toalpyar — Torly) AyAz — (Tyx|y+Ay - Tyxly) AzAz

- (Tzz|z+Az - T21‘|z) AZEAy— <P|5+Ax - Plx) AyAZ

Dividing by the volume and letting Az, Ay, and Az approach zero, we get

oP 6TM B aTyz _ aTzz

o(pUV)  0(pUW) _ 0P _
Ox Ox Ay 0z

d(pU) 9 (pU?
()  2(oU?)
ot Ox dy 0z

For constant density p, we get
oU oU oU oU oU

— A+ V—4+W— ) +pU |+ 5+ =
z ox Oy 0z

w, ov oW\
Por TP \" bz y d
oP 6TM aTyz _ asz

T 9r Oz Oy 0z

and using (2.1) yields

p@t p oz

oUu ou _ oP 6T1;I 8Tyz‘ 67—,21‘
+V3_y+W3_z>__8_m_ or Oy 0z

Similar derivations for the momentum in the y and z directions yield the complete

set of equations
0Tz

0P Ompe OTye
Pat T (U Oz 0y ) B

T dr  dy 0z

ov oV oV OV _ 9P Omy  Omyy 0Ty
+p<U v W@z)_ Jy oz Jy 0z

”E Oz Oy
ow ow ow owyN 0P  0r. 01y, 0T
PW“(UW”a—ywa—z)—‘a—z‘ or oy 0z

(2.2)

(2.3)

(2.4)



2.3 Conservation of Momentum

13

It remains to insert a constitutive equation relating the viscous forces 7;; to the
fluid motion W = (U, V, W). We will exclusively consider Newtonian fluids, which
in conjunction with incompressibility yield the following relations [27]

_oU av ow
Tex = _Zﬂa_ma Tyy = _Qﬂa_ya Tzz = _2#6—2
ou oV
Tey = Tyz = —H 6_y+873
ov. oW
e T T =\ G Ty
(W v
Tze = Tpz = —H Oz 92

(2.8)

where the coefficient y is called the viscosity of the fluid. Inserting (2.5)-(2.8) into

(2.2)-(2.4) yields

oU oU oU oU
Lop (90 U G0N o (0 oV ow
oz T H\ 922 oy 022 For \ oz Ay 0z
ov ov ov ov
Oy H\ 922 Oy? 022 H@y ox Oy 0z
ow ow ow ow
PW*P(UW”a—ywa—z) -
Lop, (PW oW FWN o (0 oV ow
8. T\ a2 Oy? 022 Ha. oz dy 0z
and using (2.1) we finally get
oU oU oU oU
oP 0*U  8*U  9*U )
_a_x“(ax? T T az2) (2.9)
ov ov ov ov
p 8*v 9’V 9%V
- — 2.1
ay T <am2 By az2> (2.10)
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ow ow 6W ow

oP (W OPW  0'W
_op <a$2 + M). (2.11)

Equation (2.9)-(2.11) is the celebrated Navier-Stokes equation. In vector form,
equations (2.1) and (2.9)-(2.11) can be written compactly as

div(W) =0

GV 4+ (W-V)W = —1VP+ LAW

where V denotes the gradient operator, A denotes the Laplace operator, and div
is short for divergence.

2.4 The Dimensionless Navier-Stokes Equation

2.4.1 Cartesian Coordinates

Given a flow geometry, the Navier-Stokes equation can be written in dimensionless
form by introducing a characteristic length and a characteristic velocity. Denoting
the characteristic length D, and the characteristic velocity V we can perform a
change of variables in such a way that the new variables are dimensionless

Uv w P 1%
(U*,V*,W*) = (VaV:V)aP*: ¥ ,t*:Tt
VvV pV?2 D
* x i " z
xr = v,y =, 2 = <.
pY T D
So we get
U _ outor v au
a ot ot D ot
U LOU*ox* VU
dr dx* Ox D Ozx*
0P _ oa0P"0x" _ pV? 0P
A P D Oxz*
*U 9 (Vour\oxr VU
0z2  — Ox* \ D ox* | Oxr = D2 Ox*2

and similarly for the other derivatives occurring in (2.1) and (2.9)-(2.11). Inserting
these relations into (2.1) and (2.9)—(2.11) yields
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oU oV oW

— = 2.12
Oz + Jy + Oz 0 ( )

oUu ouU ouU ouU
W+U8_'I+Va_y+wa_z_

6—P+L 62U+ 32U+32U (2.13)
dx ~ Re \ 0z2 = 9y* = 022 .

ov ov ov ov
E-FUa—I-FV&—y%-Wa—Z—

oP 1 [/8*V  8*V  9*V
% + Re <0I2 + oy + 322) (2.14)

ow ow ow ow
ot TV TV TV T
_oP 1 (W PW oW
0z  Re \ 0z2 oy 022

) (2.15)

where we have defined Re = plv)lv//,u, and skipped the superscript * for notational
convenience. Re is called the Reynolds number, and is the only parameter in
equations (2.13)-(2.15). In vector notation, equations (2.12) and (2.13)—(2.15)
become

div(W) =0

WL (W-V)W = -VP+4 AW |

2.4.2 Cylindrical Coordinates

In cylindrical coordinates, equations (2.12)-(2.15) become (see, for instance, [27]),

1o

1 Love v, _
r Or

—5g T 5. =0 (2.16)

(rVi)+

oV, | V. VadV, Vi . 9V,
A N A S
oP 1 (8 (10 102V, 20V, 0%V, )
( Ga“ﬂ R ﬁ%*&ﬂ 2.17)

o T Re

or
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aVy Ve VeV ViV Ve
I N R e

19P 1 /8 /10 10%V, 20V, 0’V o
‘WW%JEG%“@*W@*ﬁ%*@ﬂ (2.18)

oV, ov, Va oV, av,
a Vet tVee T
oP 1 (1 d < 6Vz) 1 9%V, 92V,

ror\"ar )T T azz)' (2.19)

9. TRe

2.5 Perturbations and the Linearized
Navier-Stokes Equation
2.5.1 Cartesian Coordinates

Suppose (ﬁ, v, VNV,ﬁ) is a steady state solution of (2.12) and (2.13)-(2.15), that
is

oUu 8V oW 8P o
(W’W’W’W) = (0,0,0,0) (220)
and
ouU oV oW
— t —+ — = 2.21
Oz + Jy + Oz 0 ( )
LU - 9U - AU oP 1 (82U 8 9% L
U8_5L‘+V6_y+W8_Z = _a_l‘_i—ﬁ (61‘2 + oy + (922) (2.22)
-0V L9V OV oP 1 [o*V 8V 9PV
o o = = TS5 T 5 2.2
U@:L°+V6y+W3z 8y+Re(6m2+8y2+6z2) (2.23)
SOW - OW - OW oP 1 [o*W W  8*W
- - - = = 41— (2.24
U@x+vﬁy+Wﬁz 82+Re(8m2+0y2+8z2>( )
Defining the perturbations w = (u, v, w) and p as
u 2 U-U
v 2 V-V
w 2 W-W
p 2 p_p

and inserting into (2.12) and (2.13)—-(2.15), yield

a_u+@+a_w+@+ﬂ+@—0
oxr dy 0z Ox Oy 9z
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a_u+@+uau uaﬁ+~au+ u  OU o 0u
ot ot Oz Oz Ox Jy Oy Oy

v OV . ov sov OV O OV 50
at ot 1o oz oz "0 E B
G vV . v av av av

op 9P 1 (Pw 0w 0w W W oW
8z Oz  Re \ dz?2  Oy* 022 Ox2 Hy? 822 |
In view of (2.20)-(2.24), we get the perturbation equations

a_u+a_v+%—0 (
dx Oy Oz ’

op 1 <82u 0?u 82u> (2.

“or TRe \922 T2 T 022

dp 1 [0%v 0% D% L
—%-FE(w-Fw-Fa?) (2.27)

ow v OW  sow  ow W  oow  Ow  OW o ow
ot Oz Oz Oz Oy Jy Oy 0z 0z 0z

dp 1(8210 8w *w

—a—z‘f‘ﬁ 8I2+W+87). (2.28)
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The linearized equations are now obtained by omitting terms that are second order
in the perturbations. Thus, we get

ou Ov Ow
P T T 2.2
oz + Oy + 0z 0 (2.29)

du U ~0u  OU ~du oU - du

O?u  0*u  9%u )
~ B + = <37 + 5 PN + 37) (2.30)

ov U@v ov ov Ov ov W@v

- - - _ V_ —_
ot Ve T ey T eyt e T s
COp L (0 v P
— 2.31
dy Re<02+6y2+8z2> (2.31)
dow AW  ~dw  OW -~ dw oW - dw
W_i— Br Ua— 6—y+Vay+wa—+Waz

Cop 1 (Pw  Pw  Pw o
e + Re (W + 9 + 822) . (2.32)

2.5.2 Cylindrical Coordinates

Suppose (f/r, Vo, Ve, f’) is a steady state solution of (2.16) and (2.17)—(2.19). Defin-
ing the perturbation

vy
vy
v,

p

(> 1> > >

we get the perturbation equations

lﬁ 10vy  Ov,
r@r(rvr)+ 06 + Oz

=0 (2.33)

ov, 8& v, - Ov,  we Ov, v OV, V, Ov,

ot o T YV e Y T e e T ad
_v_e__ b, Qo Ly Ve o
r Ve + 6z+v'z6z+vzaz_

Op 1 o (190 1 8%v, 2 dvg 07w, o
"o TR (a—r (Fartrm) + g~y +35) @3



2.6 Prototype Flows 19

81]9 8U9 6‘/ 809 Vg 8'09 Vg 8V9 Vg 8U9

Tt e Tt T e
X Ve  Viw 9 vy, -8

R AR AL L AL s
r r r 0z 0z Oz

10p 1 o (120 1 0%v, 2 Ov, 0% o
v T Re <3r <r8r( )) T T T az2> (2.35)

8vz+vaﬁ+v@+‘~/6@z v_gﬁvz+v_93f/2+@802
" " " r 08 r 00 r 00

ot or or or
P Xl
292 0z “ 0z

dp 1

18 8U 1 0%v z 6212 a <
~2: T Re <rar<ar>+_2a2+a°> (2.36)

and the linearized equations

10vg  Ov,

0 (rv,)+ —

1

v or v o0 ta: =0 (2.37)
A, v, v, vV,  VaOu, _vp- oV, - Ov,
G e T T e Ty g g =

Op 1 o (190 1 8%v, 2 dvg  O%v, )
ot (o (e )+ ) 3

Ovg Ve ~ Ove vadVy ViOvy vV Viug OVy  ~ Ovg

et e Ty Tyt Ty T TV T
10p 1 o (120 1 0%v, 2 Ov, 0% o
T a0 Re <8r< ar(r“9)>+ﬁae2 Y t ) 239

A, OV, -~ dv, v dV. Vv, v, - Ov.

S et e T e, T

3_Z+Re

Op 1 /190 Ov, 1 0%v, 0%v, )
- <FE (T ar ) T T ) - (240)

2.6 Prototype Flows

So far, the domain on which the Navier-Stokes equation is defined has not entered
the picture. In this report, the focus is on three prototype flows that have been
studied quite extensively in the literature: 1) channel flow, which is the flow
contained between two parallel plates; 2) pipe flow, which is the flow contained in
the interior of a cylinder with circular cross section, and; 3) cylinder flow, which
is the flow past a cylinder with circular cross section. The particularly simple
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y
: I —
/0
-l 7
z 0 Lx x

Figure 2.3: Geometry of the 3D channel flow.

geometries of these flows make the problems mathematically tractable, as well as
numerically feasible. In addition, the pipe is encountered frequently in practice,
so understanding how to control this flow i1s of great importance in engineering
applications.

2.6.1 3D Channel Flow

The domain in this case is the box Q@ = {(z,y,2) € [0, L) x (=1,1) x [0, L;)},
which is shown in Figure 2.3. The flow problem is completed by specifying bound-
ary conditions on the boundary of the box. In the streamwise (z) and spanwise
(z) directions, we use periodic boundary conditions. That is, we equate the flow
quantities at x = 0 and z = L, and at z = 0 and z = L,. At the walls, the
boundary conditions will eventually be specified by the result of some boundary
control design, but for the time being, we select no-slip boundary conditions, i.e.
U=V =W =0 at the walls (y = £1). Given the boundary conditions, we are
now in the position to solve (2.12)—(2.15) for a steady-state solution. In solving
the Navier-Stokes equations for a steady-state solution in channel flow with no-slip
boundary conditions at the walls, we assume that the velocity field is independent
of the streamwise and spanwise directions. Thus, setting the time derivatives and
the spatial derivatives with respect to z and z in (2.12)—(2.15) to zero, we get

ov
— = 2.41
aasy 1)
ou oP 1 02U o
Va—y = _6_:E+an2 (2.42)
ov oP 1 0°V o
Va—y = —%-f-ﬁa—lﬂ (2.43)

2

yw. _ 9P 1IOW (2.44)

Oy "9z | Re 0y?
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From (2.41) we have that V' = constant, and since we are employing no-slip
boundary conditions, we obtain ¥V = 0. So, from (2.42)—-(2.44) we have that

oP 1 02U

% = ma (2.45)
g_f; -0 (2.46)
oP 1 9*W

= = R (2.47)

From (2.46), we have that P = P(z,z), and since U = U(y) by assumption, we
get

opP 1 9°U
%~ TRy (248)
OP 1 0*°W
7 T R (2.49)

where ¢; and ¢q are constants. Thus, we can solve for each side of (2.48) and (2.49)
separately, to get

P=cix+eoz+c3

where c3 is a constant, and

c1 Re

Uly) = 12 Y 4 cay+cs
co Re

W(y) = 22 v + cey + c7

where c4, c5, cg and c; are constants. Since only the gradient of P enters the
Navier-Stokes equations, ¢3 may be arbitrarily chosen, so we set ¢3 = 0. By
employing no slip boundary conditions we obtain the set of equations

R
Cl_ e—C4—|—C5 = 0
2
R
61264—644—65 =0
R
62_6—(36—|—C7 = 0
2
co Re
— 4 c+cr = 0
so that
Cq4 = 66:0
c1 Re
Cy = — B
co Re
c7 = - .
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Without loss of generality we select the direction of flow along the positive z-axis,

and the center velocity, U(0) = 1. We get
2
Re

So we have the steady state solution

(0,7,W.P) = (1_

c1 = —

, =0, es =1, and e7 = 0.

2
2
0,0, ——=z ).
y,UY, ReI)

Inserting (2.50) into the perturbation equations (2.25)-(2.28) yields

a_u + 6_1; + % =0
dxr Oy Oz
u  Ou  ~du  du U . du
E+u6_+U@_'I+U8_+ 8—-1- @_:
dp 1 [(0’u  O*u  O’u
"o T Re <a_ Tt a_>
v v~ 0v Ov ov
a—}-ua—x—}—Ua—I—kv%—}—wa—Z:
ap 1 (0% 9% 0%
"oy T Re <8;132 Tar T az2>
Ow ow  ~ 0w Ow ow
E-I—ua—x—l—Ua—I—}-va—}-wa—z—
dp 1 (8210 8w 82w)
- Zy— + .
0z Re \ 9z%2  OJy? 922
The linearized equations are
Ou Ov Ow
dx By | 9z
du  pou 00 - dp 1 (a% L Pu a%)
ot Or Oy dr  Re \0x? 0Oy? 022
v ~Ov op 1 (821; 8% 821;)
=+ = —+5 |75+
ot Ox Oy  Re \0z%2  0y? 922
8_w+60_w _ _@_p+i<82w+82w 8211;)
ot Oz 0z  Re \ 9z2 = 0Oy?> = 022

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
(2.57)

(2.58)

Choosing the channel half width (which is 1) as the characteristic length, and the
center velocity (which is 1) as the characteristic velocity, the Reynolds number is

simply Re = p/p.
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Figure 2.4: Geometry of the pipe flow.

2.6.2 3D Pipe Flow

The domain in this case is the cylinder Q@ = {(r,0,z) € [0,1) x [0, 27) x [0, L)},
which is shown in Figure 2.4. In the angular (6) direction the boundary conditions
are clearly periodic. In the streamwise (z) direction, we also use periodic boundary
conditions. That is, we equate the flow quantities at § = 0 and # = 2, and at
z = 0and z = L. In the radial direction (r) we impose the boundary conditions
that the velocity be finite at » = 0, and no-slip at the wall (r = 1). We are now
in the position to solve (2.16)—(2.19) for a steady-state solution, which we assume
is independent of the angular (f) and streamwise (z) directions with V, = V3 = 0.
Thus, we get

oP .

0= &= (2.59)
oP .

0= %5 (2.60)
apP 110 [ av. ,

From (2.59) and (2.60) we have that P = P(z), and since V, = V,(r) by assump-
tion, we get

opP 1190 ( 81/2) (2.62)

- T@'P

9z~ " Reror
where ¢ is a constant. The left hand side of (2.62) can be integrated to obtain
P=—cz+0c

and the right hand side of (2.62) is separable, so we can solve it to obtain

V.(r)= —64&7'2 +ecolnr +c3.

Imposing the boundary conditions in the radial direction, yields

c2:0and63:ﬁ

4
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and without loss of generality we select the center velocity, V.(0) = 1, so that

c= %. Thus, we have the steady state solution
(70,72, P) = (0.0,1= 72 L), (2.63)
bl ) ) bl bl bl Re
The perturbation equations are
10 10vg  Ov, _ )
Jv, Ov,  vg Ov, ’Ug ov, -~ Ov,
TR I A P G
Op 1 o (190 1 8%v, 2 dvg 07w, )
o T Re (a7 (m “’“”) Y “was T e) (269
Ovg Ovg vg Ovg Vg Ovg -~ Ovg
e Ty e Ty T TV e T
19p 1 o (120 1 9%vg 2 dv,  0%vg
e~ e el e o B T 2.
r 00 + Re <8r <r or (rvg)) + r? 06?2 + r? 06 + 0z? (2.66)
v, 4+ a&_}_l, avz +U_96UZ + v %4_‘7%_
ot " or " or r 0f © 0z “ 0z

dp 1 /10 Ov, 1 8%, H%v, )
“%: T Re (;a—r <a_) Traae a—) (2.67)

and the linearized equations are

10 lﬁﬂ Ov,

rar vt gyt =0 (2.68)
v, = Ove
ot +Vs 0z

Op 1 o (190 1 8%v, 2 dvg 07w, )

o T Re (a7 (mwf‘)) e T as T a2 ) (2.69)
81}9 ~ 61;9 _
e T

19p 1 o0 (120 1 9%vg 2 Ov,  0%vg o
~ 90 T Re <E (m“‘““) tage toas T ) 270

dv. Ve o Ovs _
ot UT@T 0z

Op 1 /10 Ov, 1 0%, 0%, )
_a_zJ“E(FE(Tar)Jrr_?aez + a) (2.71)
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Figure 2.5: Geometry of the 2D channel flow.

Choosing the pipe radius (which is 1) as the characteristic length, and the center
velocity (which is 1) as the characteristic velocity, the Reynolds number is simply

Re = p/p.

2.6.3 2D Channel/Pipe Flow

In 2D, channel and pipe flows have the same domain, which is shown in Figure 2.5.
The domain is in this case Q = {(z,y) € [0, L) x (=1, 1)}, and periodic boundary
conditions are employed in the streamwise (z) direction. With no-slip boundary
conditions at the wall, we have the steady-state solution

T B 2 2 5 e
(U,V,P) - (1 _y ,0,—Em) (2.72)
and the perturbation equations become
Oou Ov o
du  Ou  ~Ou  du AU ap 1 [(8%u 0%\ .
E+ua_'r+U3_'r+U%+va_y = —a—m%-E(w-f-w (2.74)
v ov = v v Op 1 (9% 9% o
The linearized equations are
Ou Ov
— 4 — = 2.7
p + 3y 0 (2.76)
du  ~Ou U dp 1 (0% 0%
— —trv— = ——+— | =+ = 2.77
ot +U3:E+L3y 6:B+Re <6m2+3y2) (2.77)
v =~ Ov ap 1 [(0%v 9%
il — = 4 — . 2.7
ot + U@m 0y  Re <3:L‘2 + 8y2> (2.78)

Choosing the channel half width (which is 1) as the characteristic length, and the
center velocity (which is 1) as the characteristic velocity, the Reynolds number is

simply Re = p/p.
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Figure 2.6: Geometry of the 2D cylinder flow.

2.6.4 2D Cylinder Flow

For the 2D cylinder flow, the domain is the entire plane, except for the unit disc
(see Figure 2.6). That is, @ = {(r,0) € (1,00) x [0,27)}. In the angular (f)
direction the boundary conditions are periodic, and in the radial (r) direction we
impose no-slip at the wall (r = 1), and uniform flow with unit amplitude at r = oo,
that is, V;(00,0) = cos(f) and Vy(o00,f) = —sin(f). Choosing the disc diameter
(which is 2) as the characteristic length, and the velocity at infinity (which is 1)
as the characteristic velocity, the Reynolds number is simply Re = 2p/u. In great
contrast to the previous cases, we are unable to solve for a steady-state solution of
the cylinder flow. Consequently, in what follows, this case is treated numerically,
only. However, a simplified model of vortex shedding, the Ginzburg-Landau model,
is presented and analyzed with respect to stability in Section 4.4.

2.7 Spatial Discretization

For simulation purposes, as well as some approaches to control design, one needs to
discretize the equations of motion both spatially and temporally. A general treat-
ment of discretization methods for the Navier-Stokes equation is given in [42]. In
this section, the treatment of this subject is restricted to the methods used in the
design of controllers in the next chapter. These are so-called spectral methods,
which lend themselves particularly well suited for the prototype flows that were
described in the previous section. In [31], an in-depth treatment of spectral meth-
ods applied to partial differential equations, including the two methods outlined
below, is given.
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2.7.1 Spectral Methods

Consider the evolution equation

Ou

— = A 2.79
= Aw) (279)
with the initial condition

u(z,0) = ug(z),

where u € X is the solution sought, and A is an operator containing the spatial
derivatives of u. The equation is defined on the spatial domain Q, which we will
assume is one-dimensional for simplicity, that 1s, z € @ C R. X is a Hilbert space
with scalar product

(u,v)y = /uﬁdQ

Q

and norm

1
lully = (u,u) .

The bar (v) denotes complex conjugation. In order to complete the problem, ap-
propriate boundary conditions must be supplied. Now, consider a series expansion
for the solution u, that is

u*(z,t) = Zak(t)%(l‘) (2.80)

k

where the ¢ are called the trial functions, and the ap are called the expansion
coefficients. The ¢ are assumed to constitute a complete basis for X', so that the
series (2.80) converges to u in X as k — co. The approximation of (2.80), of order
N, is defined as the truncated series

uN(:b,t) = Z ap(t)or(z),

kel

where I is a finite set of indices. Thus, u"Y € XN = span{éy |k € [} C X. Since

u® is an approximate solution of (2.79), the residual
o N
R(uV) = gt — A ")

will in general not vanish everywhere, but its projection onto the span of a set of
test functions, YN = span {3; |j € I}, is required to be zero. That is,

ouN duN - ]
< o —A(uN),qu) :/(W—A(UND P;dQ=0, jel. (2.81)
Q

X

Equation (2.81) results in N ordinary differential equation for the determination
of the expansion coefficients ay.
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2.7.2 The Fourier-Galerkin Method

The Galerkin method is characterized by the fact that the trial functions and the
test functions are the same, and that each test function satisfies the boundary
conditions. When the boundary conditions are periodic with period L, that is
Q = [0, L), a natural choice for the trial functions is

by = by =TT k=—N/2,..., N/2.

With this choice of test and trial functions, equation (2.81) is called the Fourier-
Galerkin method. The ¢; constitute an orthogonal basis for X'V, since

L

L
n i(j— rg LaJ:k
0 0

The main advantage of using trigonometric polynomials is the simplicity and ac-
curacy in calculating the derivatives

am 2mik\"™
— ¢ = . 2.82
dz™ o ( L ) o (2:82)

As an example, assume that the operator A is linear, and contains spatial deriva-
tives up to order M. In view of (2.82), the operator A acting on ¢ can be
represented as the finite sum

M

A(¢k) = Z ka¢k

m=0

where the ¢, are complex constants. From (2.81), keeping in mind that A is
linear and that the scalar product is bilinear, we get

5 N/2 N/2
En SToartgr | —A| D arter ], =
k=—N/2 k=—N/2 x
N/2 M M
day(t Oa;(t
> ( CUNINEDS cmk) (66,630 = ( 0y m) .
k=-N/2 m=0 m=0
Thus, the finite set of ordinary differential equations
M
dak(t) p p
— ak(t)mz_:o emr =0, for k=—N/2,...,N/2

determines the expansion coefficients ar. The initial condition is obtained by the
usual relation (Fourier transform)

ak(O) =

=~ =

L
/uo (z) e_ikzL_”“dm, k=—-N/2,..,N/2.
0
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2.7.3 The Chebyshev Collocation Method

The collocation method is characterized by the fact that the test functions are
shifted Dirac functions, ¢;(z) = é(z — ;), which are defined by

/5(33—$j)fd33=f(l‘j)~

Q
Thus, (2.81) reduces to

(2 ) = [ (2 an) i =

(% — Au” (Ij))) =0,j=1,23,.. N-1 (283

The boundary conditions are taken to be u™(—1,%) = u¥(xg,t), and u™V(1,t) =
uN(zn,t), and the initial condition is u™(z;,0) = u(x;,0), for j = 0,1,2,...,N.
Unlike the Galerkin method, which is implemented in terms of the expansion coef-
ficients, ay, the collocation method is implemented in terms of u at the collocation
points, z;. The expansion coefficients are used in the differentiation of uN. In the
Chebyshev collocation method, the trial functions are Chebyshev polynomials (or
a linear combination of Chebyshev polynomials), which are defined on @ = [—1, 1]
as

ér(z) = cos (kb), 0 = cos™? (z) for k=0,1,2,3, ...

The Chebyshev expansion of u is

o !
u*(z) = Zaquk(a:), ap = i/u(r)qﬁk(m)w(m)d:c (2.84)
E—0 7I'C]<,_1
where
_ 2, k=0
k= 1,k>0
1

The derivative of (2.84) is

which is computed most efficiently by deriving a recursive formula. For k > 1, we
have that

7‘1‘#’“[1—;(‘/”) = —(k—1)sin((k—1)0) %
dop1(z) df

= —(k+sin((k+1)6)

dz dx
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which, by standard trigonometric relationships, gives

1 dopga(e) 1 dépa() = —2cos (kf) sin () ﬁ

k+1 dx k—1 dx dz
Since
g 1 _ 1
dz V1i—2zZ  sin(0)
we obtain

1 dopqa(x) 1 dop_s(x)
k+1 dx k—1 dx

Thus, the derivative of the trial functions obeys the recursive formula

d ko déy_
¢;g(jm) T k-2 md;(m) + 2k¢p_1 (x), k> 2. (2.85)

Repeated use of (2.85) yields

20560 — 2k (91 (2) + Sua () + 615 (2) + -+ 55761 ()
Lo 1:{ 0 for k odd (2.86)

1 for k even

From d¢g (z) /dz = 0, d¢q () /dz = ¢o(z), we see that (2.86) is valid for all & > 0.
It follows from (2.86) that the expansion coefficients for du/dz, denoted af, are
given as

al = Z Mam (2.87)
m'odd

af = 2 > mam, k>1 (2.88)
m=k+1

m+k odd

The accuracy of the approximation is highly dependent on the choice of collocation
points, and a common choice is (Chebyshev-Gauss-Lobatto)

o
zj=—cos=2 j=0,1,2..,N. (2.89)
N
In the discrete case, the expansion of the approximation is the truncated series

N

u(z) =) ardi(z)

k=0

with the discrete expansion coefficients
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where
5y, for j=0,N

- x, fork=0,N dws — 3
T L for0<k< N T for0<j<N

Equations (2.87)—-(2.88) provide a recursive formula for the calculation of the

derivatives in Chebyshev space

d
akZN = 0
N
ai = 2 Z May, :2(k+1)ak+1—|—ag+2, k>1
m=k+1
m+k odd
- 1
ag = a1+ Z mam:a1+§ag.
m=3
m odd

As for the Fourier-Galerkin method, the result is a finite set of ordinary differential
equations, which are difficult to write in this case. The discrete derivative may

also be expressed as a matrix multiplication, that 1s

dquw = Z(DN)WN(IJ’)

where Dy 1s the N +1 x N 4+ 1 matrix

2 CU ¥
C; Tr—Tj
—ity 1<k=j<N-1
(DN)y; = dij = 4(12—%.) . (2.90)
2Nﬂ+1 k= ] -1
8]
_2N?41 k :,7 - N

Computationally, the Chebyshev transform is superior to matrix multiplication

for computing the derivative when N >~ 20.
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Chapter 3

Control Theoretic

Preliminaries

The following control theoretic preliminaries are based on the books [9, 45, 49,

119, 106].

3.1 Linear Time-Invariant Systems

Consider the following linear time-invariant system
t = Az+ Bu (3.1)
y = Cz+ Du (3.2)
with initial condition z(tg) = zg. The system transfer function for this system is
G(s)=C(sI — A)"'B+ D.

The fact that G(s) has the state-space realization (3.1)—(3.2) is denoted
oo (243

3.1.1 Classical Control

Here we will review one result from classical control theory, namely the Nyquist
stability criterion, which i1s based on the argument principle of complex analysis.
In short, the Nyquist stability criterion relates the open-loop frequency response to
the number of poles of the system in the right half of the complex plane. We study
the feedback configuration shown schematically in Figure 3.1, and for simplicity,
we assume that the controller is a simple proportional controller with constant
feedback gain. To determine stability of the closed loop system



34 Control Theoretic Preliminaries

ro— K G(s) —+-

Figure 3.1: Feedback configuration for application of the Nyquist stability crite-
rion.

. KG(s)
@) = T RGkH)

where G(s) is the plant transfer function, and K is the feedback gain, the Nyquist
stability criterion can be used in the following three-step procedure

1. Determine the number of unstable poles of G(s) and call that number P.

2. Plot the Nyquist plot of G(s) (which is simply the curve
(real(G(jw), imag(G(jw)) for w € R), and evaluate the number of times
the curve encircles —1/K in the clockwise direction. Call that number N.

3. The number of unstable closed-loop roots i1s 7 = N + P.

3.1.2 LQG Control

In LQG control (linear-quadratic-gaussian), the system (3.1)—(3.2) is assumed to
be subjected to disturbances entering additively in both equations. Thus, we have

z = Ax+4+ Bu+ wyg (3.3)
y = Cz+ Du+w,

where wy 1s a disturbance and w,, 1s measurement noise. wq and w,, are assumed
to be uncorrelated Gaussian stochastic processes with zero means and covariances

E{wd(t)wg(r)} = Wé({t—r7), and
Efwa (Ywy (1)} = Vé(t—1),

respectively, where W and V are constant matrices. F denotes the expectation
operator, and é denotes the delta function. The LQG control problem is to find
the controller K that minimizes the cost functional

T

.1
J=F Tler;of/(xTQm+uTRu) dt
to
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where @ and R are constant weighting matrices satisfying @ = Q7 > 0 and
R = RT > 0. This problem is solved by a three step procedure: 1) find the optimal
state feedback when the noise is ignored; 2) find the optimal state estimator; and
3) replace the state in 1) with its estimate. The fact that the state feedback law
and the estimator can be designed independently is referred to as the separation
theorem (or the certainty equivalence principle). The optimal state feedback is the
feedback u that minimizes the cost functional

T
J, = lim (I‘TQI‘ + uTRu) dt.

T—c0
to

If (A, B) is stabilizable, the problem has a unique solution given by
u(t) = —Fa(t),

where ' = R™'BTX and X = X7 > 0 uniquely solves the algebraic Riccati
equation

ATX + XA—-XBR'BTX4+Q=0.

The optimal state estimator, or the Kalman filter, having the structure
#=Aé+ Bu+ L(y—C#) (3.5)
is the one that minimizes the covariance of the estimation error
E{z—2)" (z-2)}.
If (A, C) is detectable, the problem has a unique solution given by
L=yc"v!

where Y = Y7 > 0 uniquely solves the algebraic Riccati equation

YAT + AY —YCTVTICY + W = 0.

In summary, the controller K is given as

A-BF—LC | L
0

K(s) = —F |

(3.6)

3.1.3 H; Control

The standard Hy problem considers the system shown in Figure 3.2, which can be

described by

(2] = ow[u]=[&0 GeO][4] e

u = K(s)y
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w z

K

Figure 3.2: Standard control system configuration.

with the state-space realization

A ‘ [ B By |
G(s) = c 0 Dis : (3.8)
Cs Doy 0
that is
z = Ax4 Biw+ Bou (3.9)
z = Cll‘ + Dlgu (310)
y = Csx+ Dyw (3.11)

where x 1s the n-dimensional state vector, u 1s an m-vector of control inputs, w is
an l-vector of external disturbance inputs, z 1s a p-vector of objectives, and y is a
g-vector of measurements. We wish to find the proper, real-rational controller K,
which stabilizes G internally, and minimizes

1 (o)
[|1T5w (5)|]5 £ oy / Trace {T}, (iw) Thy (iw)} dw,

which is referred to as the Hs-norm of T,,,. The transfer function T,,, which is
the transfer function from the external disturbances to the objectives, is given by

Tzw (8) = G11 (S) + G12 (8) K (S) (I - G22 (8) K (5))_1 GQl (S) . (312)
The problem has a unique solution provided that

1. (A, By) is stabilizable and (Cq, A) is detectable;

2. D15 and D3y have full rank;
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3 [ A—iwl By
’ Ch Dy

] has full column rank for all w;

4 [A—iw[ By

Cy Doy ] has full row rank for all w.

The optimal controller is given by

Kopt () = [—’7;{; _OLQ ]

where
Fy, = —(B3Xs+ Di,CY)
Ly = —(Y2C5 + B1D3,)
Ay = A4 ByFy+ LyCy

and X9 and Y3 uniquely solve the algebraic Riccati equations

(A— ByD3,C1)" Xo + Xo (A — By Do Ch)
— XQBQB;XQ + CfCl — CTD12DT201 = 07 and

(A= By D3,Cs)" Yo + Yy (A* — C3 Doy BY)
- Y20§CQY2 + BIBI — BngnglB’f = 0,

respectively. Note that the LQG control design of the previous section fits into
this framework by setting

z
0
L] = [ o]
Wy - 0 V3

where w is a white noise process of unit intensity. For this reason, the terms LQG
and Hs control are used interchangeably in the literature.

I
—
O
Wl
T o
ST
[ R
—
SIS
[ I

3.1.4 H. Control

Again, we consider the standard system (3.7) with the state-space realization (3.8)
(sketched in Figure 3.2). The sub-optimal Ho, control problem is to find all proper,
real-rational controllers K, which stabilize (3.8) internally, and satisfy

172w (5)lloo = $UP Omae (Tow () < ¥ (3.13)

for some prescribed 7, where omax(+) denotes the maximum singular value of its
argument. ||T.y ()., is referred to as the Hoo-norm of T,, and T, is given
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in (3.12). There is an optimal 5, denoted 7y, which is simply the infimum of
all v for which the sub-optimal problem is solvable. Unlike the Hy control case,
where we were able to explicitly write the unique optimal controller, the optimal
v must in this case be found iteratively. Returning to the sub-optimal problem, it
is solvable provided Assumptions 1-4 in the previous section hold, and in addition,
the following assumptions hold

5. X solves the algebraic Riccati equation
1
AT X o + Xoo A — X oo <B2B2T - —23le> Xeo +CTC1 =0
v

and X > 0.

6. Yoo solves the algebraic Riccati equation
1
AV + Yoo AT — Y, (c;cz - —?Cchl) Yoo + B1BT =0
~2

and Yo, > 0.

7. p(XeoVso) < y? (p denotes spectral radius).

Under these conditions, one admissible controller is given by

Aco | —Zoo Lo ] (3.14)

Ksup (S):[ Foo | O

where

1
Aco = A+ = B1B] Xoo + B2Fos + Zoo Lo Cs
-2

1 -1
Foo = —BY Xoo, Leo = —Yoo T, 7o, = <I— —QYOOXOO) :
v

Note that in the limit ¥ — oo, the controller (3.14) approaches the optimal Hs
controller of the previous section.

3.2 Nonlinear Systems

3.2.1 Stability in the Sense of Lyapunov

Consider the system
t = f(t,z). (3.15)

The following definitions are taken from [76, 79, 80].
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Definition 3.1 A continuous function o : Ry — Ry is said to be a class K
function if it is strictly increasing and «(0) = 0. If, in addition, a(r) — oo as
r — 00 it 1s said to be a class Ko function. A continuous function f: Ry xRy —
Ry is said to be a class KL function if, for each fized s, the mapping ((r,s) is
a class K function with respect to r and, for each fized v, the mapping B(r,s) is
decreasing with respect to s and B(r,s) — 0 as s — oo.

Definition 3.2 The solution x(t;zo,t0) of (3.15) is uniformly globally bounded
(UGB) if for each xq € R" there exists a constant b (independent of tg), such that

[zl < b(zo)

Definition 3.3 The equilibrium point x = 0 of (3.15) is uniformly globally asymp-
totically stable (UGAS) if

1. it is uniformly globally stable (UGS), that is, there exists ¥ € Koo such that,
for each (to,z0) € Ry x R™ and all t > to, we have

=@ < 7 (ll=oll) ;

2. for each pair of strictly positive real numbers € and r, there exists a positive
real number T such that

lz(t)]| <€, Vt>to+T(e,r), Y|z <7 (3.16)

Definition 3.4 The equilibrium point x = 0 of (3.15) is uniformly locally ezpo-
nentially stable (ULES) if there exist positive constants k, v and ¢ such that

@) < klle(to)l| e, ¥z to, V(o) <e  (3.17)

If (3.17) is satisfied for any initial state x(tg), then the equilibrium point is uni-
formly globally exponentially stable (UGES).

Definition 3.5 The system & = f(t,z,u) is inpui-to-state stable (ISS) if there
exist a class KL function B, and a class K function 7, such that for any initial
state z(tg), and any bounded input u(t), the solution x(t) exists and satisfies

()l < B (LGl £ — t0) + 7 ( sup u<r>) |

to<7<t

Definition 3.6 The system & = f(t,z,u) with oulpul y = h(z) is input-output-
to-state stable (I0SS) if there exist a class KL function B, and class K functions
Y1 and vz, such that for any initial state z(tg), and any bounded input u(t), the
solution x(t) exists and satisfies

e @l < max { el 6= t0) 1 s ur)) e (s, u(r)) |-

to<7<1 to<7<1
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Stability of solutions of system (3.15) is analyzed using Lyapunov stability theory
[76, Theorem 3.8, Corollary 3.3, and Corollary 3.4].

Theorem 3.1 Let = 0 be an equilibrium point for the system & = f(t,z) and
D CR™ be a domain containing x = 0. Let V : [0,00) x D — R be a continuously
differentiable function such that

Wi(e) < V(ta)<Wa(a)
oV oV
- 27 < —
ot + oz ft2) < Wa (@)
for allt > 0 and for all x € D where Wy (z), Wa(z), and Wz(z) are continuous
positive definite functions on D. Then , x = 0 is uniformly asymptotically stable.
Moreover, if

Wi (2) 2 by [l2]|°, Wa () < ka [lal|°, Wa (2) 2 k2]

for some positive constants k1, ko, k3, and ¢, then © = 0 is exponentially stable.
If D = R™, then x = 0 is globally uniformly asymptotically stable (respectively
globally ezponentially stable).

The function V in Theorem 3.1 is called a Lyapunov function, and is in general
not easy to find. A systematic method that in many cases simplifies the task of
finding a Lyapunov function, called backstepping, is now presented in its simplest
form (integrator backstepping).

3.2.2 Integrator Backstepping

Consider the system [80]

¢ = f(x)+g(x) F(0)=0 (3.18)
£ = u, (3.19)

where € R™ and &,u € R, and suppose there exist a continuously differentiable
function o : R” — R with «(0) = 0, and a smooth, positive definite, radially
unbounded function V' : R” — IR, such that

O @) +e@a@) < W@ <0
where W : R™ — R is positive definite. In other words, if £ 1s taken as the control
input in (3.18), called the wirtual control, then the control ¢ = a(z) renders
the equilibrium point z = 0 globally asymptotically stable. « is thus called a
stabilizing function. We now define the error variable z to be the deviation of &
from its desired value a (z), that is

z=¢—a(x).
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Augmenting V with a quadratic term in z, we get the Lyapunov function candidate
L,
Va = V + 52

whose time derivative along solutions of system (3.18)—(3.19) is

Vo = @) o@)e+ e
= U@+ E+a@+: (i @@ +10))
= L EE+e@a)
S @@= E @@+
< W@+ S @i+ F @U@ +ed]. G0

We are now in a position to select the control u in such a fashion that Va <
—Wa (z,2), with W, (2, z) positive definite. The most straight forward choice is
simply to cancel all terms in the bracket in (3.20), and add a term that ensures
positive definiteness of W,. So, defining the control

u(@) = (€~ 0 (@)~ (@) g (@) + e @ @) +a@E G2

we get Wy (z,2) = W () + cz?, which proves that the control (3.21) renders
(z,z) = (0,0) globally asymptotically stable, which in turn implies that (z,&) =
(0,0) is globally asymptotically stable. Tf system (3.18)-(3.19) were augmented
with more integrators, the backstepping procedure demonstrated above may be
applied repeatedly, defining new virtual controls, stabilizing functions and error
variables at each step. Such recursive designs are treated in detail in [80].
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Chapter 4

Stabilization

The steady-state solutions, or equilibrium velocity profiles, obtained for the pro-
totype flows of Section 2.6, are parabolic in shape in the streamwise direction,
and zero in the other directions. Thus, the flows consist of parallel layers of fluid
moving in a very regular and deterministic way. These are examples of so-called
laminar flows. For wall-bounded laminar flows, wall friction, or drag, is favorably
low, and these flows are therefore target flows in drag reduction applications. Un-
fortunately, they are rarely stable. In fact, stability is assured at small Reynolds
number, only. An unstable flow is characterized by the fact that small perturba-
tions from the equilibrium velocity profile will grow, and eventually cause the flow
to transition to turbulent flow. Turbulent flow is characterized by small scale, ap-
parently stochastic, velocity components, which lead to substantially higher drag
than what is present in laminar flow. Being able to relaminarize a turbulent flow
is therefore of great importance, and can be achieved in the prototype flows stud-
ied here, by stabilizing the parabolic equilibrium profile using boundary control.
Boundary control implies specifying the flow field dynamically on the boundary
of the domain, in this case on the channel or pipe walls, possibly based on val-
ues of flow variables taken at the boundary (boundary feedback). In this work,
we assume that there exist sensors that provide distributed flow information at
the wall, and actuators that can set prescribed distributed velocities. Chapter 6
reviews a selection of sensors and actuators that accomplish this task.

The problem of stabilizing the parabolic equilibrium profile of the channel flow
has been attacked from several different angles by a number of authors. Ap-
proaches range from discretizing the linearized Navier-Stokes equation and using
the tools available for stabilizing finite-dimensional linear time invariant systems,
to Lyapunov stability analysis of the full, nonlinear Navier-Stokes equation. In the
following sections, these efforts are summarized. Recent results on stabilization of
pipe flows and cylinder flows are also presented.
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no slip
Bulk flow
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Figure 4.1: Control system configuration for controlling 2D channel flow by wall
transpiration at the lower wall.

4.1 Linearization and Reduced Order Methods

This section summarizes the efforts on stabilization of the discretized, linearized
Navier-Stokes equations. Bringing the linearized Navier-Stokes equations on the
form of a linear time invariant system constitute a major part of the work involved
in these methods. Once the state-space model is constructed, any tool from linear
control theory can be applied in a fairly straight forward manner.

4.1.1 2D Channel Flow

In a series of papers [36, 37, 70, 71], stabilization of a reduced order model of
2D channel flow by classical and optimal control techniques is considered. The
shear (QU/dy) at a single point on the lower wall is taken as measurement, and
the rate of change in the intensity of fluid transpiration on the lower wall is the
control input. The actuator applies blowing and suction of fluid distributed as a
prescribed function of z along the lower wall. The control system setup is shown
schematically in Figure 4.1.

Reduced Order Model

The point of departure for obtaining a reduced order model on state space form is
the linearized Navier-Stokes equation for 2D channel flow, (2.76) and (2.77)—-(2.78).
Due to (2.76) there exists a single valued function ¥(z, y,t) such that

a/
u(z,y,t) = a—z(m,y,t) (4.1)

8/
oz, y,t) = _8—7;(x,y,t). (4.2)
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The function 1 is unique up to a constant, and is called the stream function due
to the fact that contours of constant i define streamlines of the flow. Inserting

(4.1)-(4.2) into (2.77)-(2.78) yields

%~ 9% AU dp 1 [ By Py .
5oy T Uoyee By or T or  Re <6y6m2 %) 0 (43
0%y 0% Op 1 /(0% 83
- - Ly == . (44
Otox U&CL‘2 + Oy + Re (83:3 83:63/2) 0 (44)

Taking the partial derivative of (4.3) with respect to y and subtracting the partial
derivative of (4.4) with respect to z yield

8 N & LD Py a2Ua_¢+ =Py
otoy: = otoxz> Ozdy?  0y® Ox Ox3
1 <841/) A %y

~ Re a?-f- 6m28y2+6y4>:0' (4.5)

Suppose boundary control is applied by imposing a boundary condition on the
lower wall of the form

Yz, y=—-1,1) = q)w(z)fly = —-1) (4.6)
while keeping no slip boundary conditions on the upper wall, that is

o o

8y(:':,y =g (@y=11

Restricting the boundary control to blowing and suction of fluid through the wall
at normal angle to the wall, that is u(z,y = —1,¢) = %(m, y=—1,t) =0, along
with the no slip condition on the upper wall, restrict the function f(y) in the
following manner

of
—(y==1) = 4.
Ly =+1=0 (@)
fy=1)=0. (4.8)
As in [70], we will use
_Llay Ll 2 3
fy) =gy + v -y —qy+l

although there are many other choices satisfying (4.7)—(4.8). When implementing
the boundary control law (4.6) in practice, the physical flow variables, U and V,
must be set such that the resulting stream function satisfies (4.6). In terms of the
physical flow variables U and V, the boundary control law is

U(:L‘,y: :l:l,t):o, V(I,y: 17t):0’
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V(I,y = _Lt) = U(Iay = —1,t) =

ey =10 = a0 22 ) Sy = 1),

In order to obtain homogeneous boundary conditions, we introduce the change of
variables

¢ (z,y,1) = ¢ (z,y,1) — g()w(z) f(y)
which substituted into (4.5) yields

il @ d2f L 00 didu 0, o dudf
otoy? 3t6m2 dt dz? 61‘6@/ iz dy?
207 a% L
o —2 d 3 ——/f

1 o* d*w d*wd o* d*
" Re ((3:Lj Tde 4f) (83325)3/2 +qda:2 dyf) + <8y¢ —+—qwd “{)) -
(4.9)

The boundary conditions in terms of ¢ are

d(x,y==x1,1)=0

9¢

@y(x yy==+1,t)=0.

The streamwise component of shear at a single point at the lower wall is used as
a measurement, that is

In terms of ¢, we have

52 52 d?
2(t) = 5 f(:m,y— —-1,t) = % (wi,y=—1,t) + q(t)w(-'m)d—yf(y ==1). (4.10)

A standard Fourier-Galerkin procedure is used to discretize the partial differential
equation in the streamwise direction, and a Chebyshev collocation method is used
in the wall-normal direction. Starting with the streamwise direction, we set

wz) = Y. waPu(z) (4.12)

where

P,(z) =€"T7, (4.13)
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The partial derivatives of ¢ and w with respect to z up to order four are

N

L(x,y,t) = n:X—:N Anian(y,t) P (z) %(m) = nj_\r:N anit, Py (z) (4.14)

e

N

2 2 N
2 e(x,y,t)=— ;Nazan(y,t)Pn(m) i (2)=— ;Nagwnpn(m) (4.15)

3 N . 30 N .

s (z,y,t) = — ZNa?;wn(y,t)Pn(r) s () = — ZNaizwnPn(r)
(4.16)

8%

N " N
ger(@, )= 3 anan(y,t)Pa(z) TF(2)= X ajuwaPa(z)  (4.17)
n=—N =-N

where a,, = 27n/L. The Gelerkin method provides the set of equations

@t@gr @ + gtdz? + dt dz? Ozdy? + i dy?

96 dw Be  dBw 1 (0%  d*w
—WQ—N f) <a dsf)—R—(w+ Vit

+2< 846 N d2wd?_f)+a4¢+ d_f)}p( Ydz = 0. (4.18)

L
/{ 5 dq d&f e dqdzu)f+0( 36 dwd~f)
0

0x20y> 1 dz? dy? oyt

Inserting (4.11)-(4.12) and (4.14)—(4.17) into (4.18) yields

/Z d3a, dqd2_fw _a26an__f2
Otoy? t o dy2 " " ot "

2 d2 d? ~
+U ( a@ az + q#aniwn) —# (anian + qfaniw,)—U (agian + qfa?liwn)

1 2an
- — [aian—i—qfaflu’n—Q(aQa a +q f 2wn)

Re " Oy? dy
d*ay 4f =

By the orthogonality of the P, functions, that is

L

L L
0 0

0
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we get
&Bap  dq d2f zﬁak dg , ~ 0%ay d*f
—— - — U
ooy dtdr "t T Mo ap forwn+ U anizg AT 5 Wk
82 1
3 -7 (apiar + qfariwg) — (akzak + qfakzwk) ~ e [akak + qfakw
6 ar d f 84ak d4f
2< o, 5y - —}—qd 2akwk) —}—W—i—quk =02 FE, fork=—-N,.. N.
(4.19)
For the measurement (4.10), the Galerkin method yields
y
N
%a 5
)= > W’“ (y=—1,) Py(s) + Sw(zi)g. (4.20)
k=—N

An interesting property of the set of equations (4.19) is that the equations are
decoupled in terms of the wavenumber ay. This fact lets us study each wavenumber
individually. We now rewrite equation (4.19) in terms of af and al, where aff and
al are the real and imaginary parts of ay, respectively. Since real(a) = (a + a) /2

and imag(a) = (a — @) /2i, the equations for af and al are obtained by

1 _
5 (E+E)=0
2
and
1
E-FE
5 (F—E)=0
respectively. We have that
— &ay, dq d2f 5 Oay, dg , , ~ 9% ay, d2f
F— L e _ 7 . af .
otdy?  dt dy? kT Ty dt faiw <ak2 Oy? + qdy2 aklwk)

d2U . . ~ . . 1 _ _
+ —— (agiar + qfagiwg) + U (ajiay + qfaiwy) — Te [atar + qfaswy

dy
, 0%, dif d*ay  d'f
-2
( E oy +qd2kwk +ay4+qd4
so that
1 Baf  dqd’f daf*  dq
(E E k 4% J R 2Y%E 2 2. R
5 (E+E) = Gioy? T ddyE T Mgy T g Rk

97

- 32 d? d*U -
U ( by qdyf kw£> W (apaf + qfarwt) + U (afaj + qfajwyi)

6 2
1 0?al d’f 0*al d*f
— - [otal + apatuf -2 (a5 o L atul) + T8 4 Lt

=0
(4.21)
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and
1 - d3al dq d wl ,0al  dq I
5 (E-E)= atay T a e Tk g~ gy Jokw

~ 9%l
+U <a By +qd—2akwk akak +qfakwk) U(a%af—}—qfa%wf)

1 4T 4. I a?ak &*f 5 34’11« d*f I
_E[akak"i'lfakwk_z ka2 +qdy2akwk +6y4 +qd4 =0.
(4.22)

Next, we discretize the equation in the y-direction. For this, we use the Chebyshev
collocation method described in Section 2.7.3 on N 41 Chebyshev-Gauss-Labotto
points as defined in (2.89). Applying the differentiation matrix Dy, treating f
and U and their derivatives as known functions, yields

da daf dq 0, 9
D2 k R ( R4 ( ) R
NTq T Mg dt g dt

- ~ 1
— UJ(\,?) (akai + qu(\,)akwk) —Un (azai + qf(o)akwk) + e [akak + qf(o)akwk

-2 (akDNak + qf( )akwk) + Dyall + qu(\;l)ka] (4.23)

+ UN (akDNak + qf( )ozkwk)

dal dal  dg . 9 5
N Ty T dtf( o 7 el O <a’“DNa’“ + aty )a’“w’“)
~ 1
+ U](\,z) (akaf + qu(\,)akwk ) +Un (akak + qu(\?)aiwf) + e [a%ai + qf](\?)aiwi

-2 (aiDJ?Vai + qf(2)akwk) + Dyal + qu(\;l)wi] (4.24)

where af and ai denote the vectors

T
af = [ af(w) af(m) af(yv) |
aj, = [ af(w) a(n) at(yn) |
and
d"‘ 47U (o) 0 0 0
N 0 0 () 0 0
o = a (1) m=0,1,2... (4.25)
0 0 0
0 0 0 T (yw)
(m) " f ay dm f T .
7 = | Gewo) Fwln) - FElwn) |, m=012, ..

Above, (m) denotes the m'® order derivative with respect to y. It remains to
implement the boundary conditions. The Dirichlet boundary conditions are sat-
isfied by simply setting al(yo) = al(yo) = alf(yn) = al(yn) = 0, and omitting
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the differential equations for these variables. Satisfying the Neumann boundary
conditions is more involved. We start by noticing that the Neumann boundary
conditions imply that

N N
Zdojak(yj) = 0, and Zdeak(yj) =0 (426)

j=0 j=0

where the superscripts I and R are omitted since the following derivation is valid
for either one. The dj; constants in (4.26) are the elements of Dy as defined in
(2.90). From (4.26), we can solve for a;(y1) and a;(yn—1) to obtain

ag(y1) = l{a
tlk(yN—1) = lga
where we have defined
[ i ] _ _[ dor  do(n-1) ]_1[ dop  doz -+ dov-2)
17 dyvi dyv-1) dya dns -+ dnv-2)
and
T
a—= [ ak(y2) ak(ys) flk(yN—z) ] .
Thus, we have that
OT
17
ay= | In-3 |a2Z,a. (4.27)
lT
2
OT

Inserting (4.27) into (4.23)—(4.24), and keeping in mind that the equations for
ar(yo), ar(y1), ar(yn—1), and ax(yn) should be omitted since these variables are
determined by the boundary conditions, we obtain

1
~ Re
+ R (akﬁNDJQVIG — (akﬁ](\?) + a%UN) Ia) al

R (D% — aiT) Z,a" R (DNTa — 203D T, + ayZ,) a”

—|—UJ£R (akUNfJ(VQ) — (akU](\?) +Q2UN) f](\?)) q
wil

+Re

R (aﬁf](\?) — 2aifj(\,2) —}-fj(\;l)) q— wfR (fj(\?) — azf](\?)) q
R (DJ2V - aiI) Iaél =-R (akUND]Q\TIa - (Olkﬁj(\?) + aiUN) Ia) aff

1
Re
R (oDt — (o8 + 020 ) 19

+ —R(DNIo — 20iD4Z. + afZ,) a’

T
+ %R (a%fj(\?) —‘2azfj(\,2) +fj(\;1)) q—wiR (fj(\?) — azfj(\?)) q
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where R is a matrix that selects appropriate rows, defined as

R = [ O(N_3)><2 In_3 0(N—3)><2 ] .

Assuming the measurement is real, we redefine z as the real part of (4.20), so we
get

M
z(t) = Z {cos (agz;)s] Dy T.a® —sin (apz;) s Dy L.’} + gw(mi)q (4.28)
k=—M

where s; is a vector of compatible dimension with a 1 at the 4" position being
the only nonzero entry. Tt is clear that the measurement (4.28) is not decoupled
in terms of the wavenumber ay, but if we choose w appropriately, we may omit all
terms but one in (4.28). The reason for this will be discussed in the next section.
Finally we get the system on state space form

x = Ax+ Bu (4.29)
z = Cx+ Du (4.30)
where
T .
x=[af(y) - af(yv-2) af(y2) - af(ynv-2) a] ,u=4g
M-tAR p-tAL Mt (wiql + kaqg) —wlM~1b
A= | M~AE Mm-1AD M-t (—wfql + wiqg) , B = —w,ﬁM‘lb
0 0 0 1
C = [ cos (apz;) S%D?\,Ia —sin (apz;) S%vala gw(:ﬂi) ] , D=0

M = R(DY-aiI)Z,
AR = Al = %R (DNTa — 207 D3 Za + 0t Za)
A% = —A? =R (akUN’D?VIa — (OkuJ(\?) + a%UN) Ia)
q1 = R (akl?NfJ(Vz) — <akU](\,2) =+ aiU'N) fj(\?))
1
@ = R (aif) -2t + 1)

b = R(fﬁ)—aif](\?)), R=[Onv_zx2 In-3 Ov_z)x2 |.
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Figure 4.2: Poles (x) and zeros (o) for the system.

Classical Control

In the previous section we developed a state space representation of the discretized
2D linearized channel flow equations. Apart from the measurement equation, the
resulting system is decoupled in terms of the wave number. It turns out that
the system has one complex conjugate pair of eigenvalues in the right half of the
complex plane for k = 2. All other poles of the system are in the left half of the
complex plane (except for the pole at the origin, due to the boundary control input
configuration). Figure 4.2 shows poles and zeros for ¥ = 2 at Reynolds number
10000 and N = 150 (i.e. 151 collocation points), and with the shear measurement
taken at z; = 7, w(z) = sin(#m), and I = 4x. With this choice of w(z), (4, B)
is rendered uncontrollable for all wave numbers with £ # 2. Therefore, the fact
that the measurement does not decouple in terms of the wavenumber does not
present a problem, since the control will be unable to destabilize any pole of sub-
systems with £ # 2. Figure 4.3 shows the Nyquist plot. The Nyquist stability
criterion indicates that when —1/K € (—105,0) (approximately), no poles of the
closed loop system lie in the right half plane, which corresponds to K > 0.0095.
This result is confirmed by Figure 4.4, which shows the real component of the
system’s least stable eigenvalue as a function of feedback gain K.
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gain K.
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Figure 4.5: LQG synthesis: system poles for the open-loop system (top), the state
feedback closed-loop system (middle), and the output feedback closed-loop system
(bottom).

LQG Control

Assuming that (4.29)-(4.30) are subjected to additive disturbances, wq and wy,
that are uncorrelated Gaussian stochastic processes with zero means and covari-
ances W, and V| respectively, it is straight forward to apply LQG control theory.
For illustration, we select W =7 and V =1, and @ = I and R = 1, and construct
the controller according to (3.6). Figure 4.5 shows the result in terms of the sys-
tem poles for the open-loop system, the state feedback closed-loop system, and
the output feedback closed-loop system. Clearly, the open-loop unstable poles are
moved into the left half of the complex plane by the control.

Implementation

Although the state space model (4.29)-(4.30) takes the form of a single-input-
single-output (SISO) system, with input v = ¢(¢) and output z = du/dy (z;,—1,1),
the realization of the control system is distributed. This follows from the fact that
the actuation is blowing and suction of fluid distributed along the wall as a cosine
in z (dw/dz, where w is a sine in z), whose amplitude is altered with a speed given
by the control input u = ¢(¢). The control law is centralized since the control signal
must reach all actuators on the wall. Centralized versus decentralized control
schemes are discussed in more detail in Section 4.2.
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4.1.2 3D Channel Flow
Reduced Order Model

In [20] linear control is applied to the 3D channel flow. In this case, shear mea-
surements in two directions (0U/0y and W/Jy) are taken at every point on both
walls, and actuation is applied in the form of wall transpiration on both walls.
The point of departure is the linearized Navier-Stokes equations for 3D channel
flow (2.55)-(2.58), which may be rewritten in terms of the wall-normal velocity
component v, and the wall-normal vorticity component, denoted w (vorticity is
defined as w = curl(W)). Taking the Laplacian of (2.57) yields

o (0% O*v D% - v 0%v %
4 + 00— +

ot \ oz " 9y ' 922 Oz \9z2 ' 0y? | 022
P00 00 O __ 0 (Fp p O
dy? Ox Oy 0xdy Oy \ Oz = Oy? = 922
1 (0% 0% 9 _ 0 . 0t - 0% .
* e (37 T ot T o T aaye T ae Zayzazz) - (431)

Taking the divergence of (2.56)-(2.58) yields

o (bu v ow o0 (o ov ow)  dlon_
ot \oxr Oy Oz dz \0x Oy Oz dy 0z
8*p 0%p 9*p 1 < 52 <3u v 6w)

T2 9 92 T Re\oaz\oz Ty T o2

L0 (o v ou) B (ou o ow
oy: \dz 0Oy 0z 022 \dx 0Oy 0z

and using continuity (2.55), we obtain

) dU dv . 8%*p  9*p 9p )
TR i i o (4-32)

Inserting (4.32) into (4.31) yields the equation for the wall-normal velocity com-
ponent, v, as

O (Pu 0 BN o0 (B o o) PO
ot \9z2 = oy?  022) Or \ 9z Oy? 022 dy? Oz
1 (0% 0% 9%t  _ 0% . 0t G N
T Re (a_ T o T T 2oty T 20000 T Zayzazz) - (433)

The wall-normal component of vorticity is w = du/9z — dw/dz. Thus, taking the
partial derivative of (2.56) with respect to z and subtracting the partial derivative
of (2.58) with respect to z, yields

Ow dU Ov -~ Ow 1 <62w 9w 3%})

- 8x2+8y2+37

E——d—ya—z— 8_1‘—1_@ (4.34)
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The control is applied as an unsteady boundary condition on the wall-normal
velocity component v, and the no-slip condition in the z and z directions leads to
homogeneous Dirichlet boundary conditions for w, that is

w(z,y==+1,2,1)=0.

By continuity, dv/dy = 0 at the wall, so (4.33) is also subject to homogeneous
Neumann boundary conditions. Expanding v and w as

oz, o) = 0(ke,y ke t) SCEETHER)
ke k.

W@y, zt) = 3 G(ke,y ks, t) CTETHE)
ko ks

the Fourier-Galerkin method yields

25 25
g (—012{) + a_i) — azf;) = U <ZO[:;’(A) —_ Zaxa—v + ZO[xOlzf))

ot e Oy? Oy?
0. L 0 0%y, 0%
+ 8—312me + Re <axv + @ + a0 — 2a; By + 20,050 — 2a; @)
ol U - 1 9%
where

2wk,

oy =
L.
27k,

o, = .
Ly

As in Section 4.1.1 we discretize the wall-normal direction on N + 1 Chebyshev-
Gauss-Lobatto (2.89) points using the Chebyshev-collocation method. Applying
the differentiation matrix Dy, treating U and its derivatives as known functions,

yields

dv,

dt
7(2) 1 4 ‘ 2 2 2 2 242 ~
+0 o + (DN —2(a2+0a2) D% + (a? +a?) I) Va (4.35)

(D} — (a2 +a2) T) (08 (~iaaD} + (a2 +iaza?) 7)

0 5 5.+ <—U](\9)zax (D} (a2 +0?) z)) e (4.36)
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and [jvj(\,m) is defined as in (4.25). Since the time derivative of o(yo) and o(yw)
occur in (4.35)—(4.36), we let the time derivative of ©(yo) and ¢(yn) be the control
input. The Neumann boundary conditions on » imply that

N N
Zdojf’(yj) = 0, and Zde@(yj) =0. (437)
j=0 j=0

Solving (4.37) for 4(y1) and 6(yn—_1), yields

o(y) = IT'v (4.38)
iyn-1) = LY (4.39)
where we have defined
[l? _ _[dm do<N_1)]‘1[doo doy - dov-zy dov |, o
17 dnvi dy(v-1) dvo dna -+ dyv-2) dnN ]
- . . . R T
Vo= [o(w) v(y) o dlyv-2) d(uw) ]
Thus, we get
1y
Vo= | In_3 | ¥ 2T, % (4.40)
lT
3
S%—s
and, deﬁning@é[d}(yl) G(y2) - w(yv—1) ]T,the homogeneous Dirichlet
boundary conditions on w yields
OT
Ga= | In_1 | @ 2T.0. (4.41)
OT

Inserting (4.40) and (4.41) into (4.35)—(4.36), omitting the equations for (y1),
and 0(yn_1) (since they are determined by the homogeneous Neumann boundary
conditions), and omitting the equations for w(yg) and w(yn) (since they are zero
due to the homogeneous Dirichlet boundary conditions), we get

v - .
= MRy (0F) (—ia DY, + iapaT) + Ui
1
+o (DN — 2aD% + a2I)) I,% (4.42)
€
di 1y AW e i (0); L 2 (4.4
- = — My RoUp i, Ty + My "Ry | —Up 't + Te (DN — aI) Ty (4.43)
€
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where a = a2 + o2, and

My = R (D% - (a2+a))I)T,
My = R,
10 -0 0
R = 0 0 Iny-3 0 O
0 0 01
Ry = [0 Iy O]
The measurement Zz is the following
;%(%,y—l,az,t)
1 ¥ T :_17 zat
;}(az’az’t):R_ iy%a Yy 1CY t) ’
€ Aay (axay_ y Oz, )
?;; (axay__laafwt)

which is obtained physically by measuring the shear in two directions (0U/dy and
OW/dy) on the entire wall. From continuity (2.55) we have that

.0
U+ — +ta,w =0

dy

which, along with @ = ia,t — ia,w, yield

R N
U = aaxay—azw

R N R
w_aazay Qpw | .

So the measurement 1s

T 27 5 T 17 ~
—ast_}_lDNIuv + azsN+1DNIww

. 2) A N

Haw, aut) = 1 axs{Dg\,)Iuv — azs{D}VIww
= 2) . N
R aRe —azs%_HDg\,)L,v — axs%HD}VIMw

azstg\?)Ivff + axs{D}VIMQ

Finally, replacing the equations for ¢ (y5) and ¢ (yn ) in (4.42) by the control input,
we get the system on state space form

x = Ax+ Bu (4.44)
z = Cx+ Du (4.45)

where



4.1 Linearization and Reduced Order Methods 59

T 2 T 1
—ast_}_lDNIU azsN+1DNIw

C— ; axsTDg\?)Iv —azs?D}VIw D= 0409
Re (a? + a2) —azsﬁ_}_ng\?)Iu —axs%HD}VIw ’ X2
o, stg\:;)Iu axs{D}VIw

A = R3M1_1R1 ([7](\9) (—iozﬂ)]?\, + (iag + iaxag) I) + [7](\,2)2'6%

o (DY —2 (02 4+02) DY + (o +a§)2z)> I,
Agl = —M2_1R2 N](\fl)iazzv
Ays = MR (_U;VO)Z-% b (D - (a2 4 a) z)) 1.
€

I_[10 001"
b_
000 - 0 1,y

Rs = In-3

0O --- 0

Note that the rigorous derivation of the homogeneous Neumann boundary condi-
tions on v removes the spurious eigenvalues reported in [20], and thus removes the
need for redesigning the matrix A to damp out these modes, which is done in that
reference.

Control Strategies: A Comparative Study

In [20], two cases are studied in detail: 1) Reynolds number 10000, o, = 2, and
a, = 0; and 2) Reynolds number 5000, ay = 0, and a, = 2.044. In case 1, where
a; = 0, the equations for w decouples from the equation for v as well as from the
control input, and the problem becomes the same as that studied in the previ-
ous sections. Case 2) is a different problem in that it is subcritical, which means
that there are no unstable modes. The control problem is nevertheless interesting
because perturbations in laminar subcritical flows may lead to transition to tur-
bulence. Therefore, it is of interest to apply control in order to delay, or maybe
even prevent, transition to turbulence. The particular case chosen here is the pair
(ag, @) that gives the maximum transient energy growth, as shown in [29]. The
”worst-case” transient energy growth is defined as

E(t) =sup
zo  |lzoll,
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The state space model developed in the previous section is subjected to state
disturbances, wq, and measurement noise, ws, such that it can be written

r = Az+ Biw+ Bsu
y = CQ(E—i—DQlw

where

B,Cy=C,and Dy1 =[ 0 ol |.

w
w:[w;],Blz[I 0], By

The performance variable, z, is defined as

z = Cll‘ + Dlgu

/2
[ ) oee 1]

The system is now on the standard form (3.9)—(3.11), needed for application of
the Hs and Ho, control strategies. ), which shapes the dependence of the perfor-
mance upon the states, is chosen such that z*Qz is related to the energy of the
flow perturbations, which appears to be the best choice for delaying transition to
turbulence [21]. In [20], an extensive parametric study is carried out, quantifying
the performance of H2, He and proportional control strategies in terms of the sys-
tem norms ||Tpw ||y, [|[Towl|o and [|[Tuwl|, » where Ty is the transfer matrix from
the disturbance input w to the state x, and Ty, 1s the transfer matrix from the
disturbance input w to the control u. Thus, the norms are measures of the state
response to Gaussian disturbances, the state response to worst-case disturbances,
and the control used in response to Gaussian disturbances, respectively. For case
1, the results show that the proportional controllers are not nearly as effective as
the Hs and Hoo controllers. The best Ho, controller tested, is reported to per-
form better than all proportional controllers tested with respect to the response
of the state to both white noise disturbances and worst case disturbances, and use
significantly less control energy than the proportional controllers.

where

Turning now to case 2, Figure 4.6 shows the eleven least stable poles for this
case. Clearly, they are all in the left half plane. Figure 4.7 shows the eigenvectors
corresponding to the eleven least stable eigenvalues. The eigenvectors appear pair-
wise quite similar (except for the first eigenvector), implying that they are highly
non-orthogonal. The problem of large transient energy growth is connected with
this non-orthogonality, along with the magnitude of the corresponding eigenvalues.
This can be illustrated by the following example, involving the second order time
invariant system

: -1 0
I—AI—I: a _11]33,

with initial condition #z(0) = zg. The eigenvalues of A are Ay = —1 and Ay =
—11, that is, they are independent of a by the triangular structure of A. The
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Figure 4.6: The eleven least stable eigenvalues in case 2. All eigenvalues are real.

Figure 4.7: Eigenvectors corresponding to the eleven least stable eigenvalues.
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Figure 4.8: Energy growth in second order example system.

associated normalized eigenvectors of A are vy =[ 1 a/10 ]T/\/a2/100 + 1 and

vo=[0 1]7, respectively. The scalar product of the two eigenvectors is
a

va? + 100

which is maximized as @ — co. When a = 0 the eigenvectors are orthogonal, and
the energy decreases monotonically for all initial conditions, since the solution is
simply given by

v Vg =

et 0
z(t) = [ 0 e—11t | TO
in this case. However, if @ = 100, for instance, the solution is given by

et 0
z(t) = [ 10 (e—t _ 6—1173) e—11t ] o

so the (worst case) transient energy growth is

=10 (e_t — e_ut) ,

2

=g - [y ]

To ||'E 2

which is plotted in Figure 4.8. When this phenomenon occurs in a channel flow,
transition to turbulence is likely to occur, because the nonlinear terms in the
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Navier-Stokes equation come into play. Thus, it i1s an important property of any
control law for (4.44)—-(4.45), that the transient energy growth is suppressed. This
is the main point in [20] regarding case 2. The parametric study carried out in
[20], indicate that the Hy and Ho controllers act to make the set of eigenvectors
more orthogonal. The maximum transient energy growth of the system is reported
to be reduced effectively.

4.2 Spatial Invariance Yields Localized Control

In [37], an implementation of the control system for stabilizing the 2D channel
flow was suggested. Figure 4.9 shows schematically the setup, involving arrays
of sensors and actuators, and a central computing unit. Data from the entire
sensor array is fed into the computer, Fourier transformed, and then fed to the
control algorithm. The resulting control signal is inverse Fourier transformed and
output to the actuator array. The communication needs are tremendous, and so
is the computational load. It would be desirable to have localized control, that is,
actuation at a certain spatial position should depend on sensing in a neighborhood
of that location. Intuitively, flow variables far away from a certain actuation point
should be less important than flow variables that are closer. And indeed, this is the
case, as shown in [17]. The results are based on the notion of spatial invariance.
Loosely put, the system is spatially invariant with respect to the spatial variable
z if the system looks the same looking up and down the z-axis, regardless of
the point of reference. It is clear that the prototype flows studied here have this
property in the streamwise (and spanwise, in the 3D case) direction. In this case,
the optimal controllers derived above also are spatially invariant. Moreover, the
optimal state feedback u = K at a location x can be written as

u(et)= [ k= Ov Q) d (1.46)
R
where the convolution kernel k; decays exponentially, that 1s
ky(2)| < M2l

for some positive constants M and a. Similarly, an exponentially decaying con-
volution kernel, k., can be found for the estimation problem. Thus, one can
approximate the integral (4.46) to any desired degree of accuracy by truncating it
at some appropriate £ > 0, to obtain

ue )= [ ke =Ov©dc~ [ k(e — O () de.

It follows that one can design decentralized controllers that are arbitrarily close
to optimal. For the linearized Navier-Stokes equations for 3D channel flow, these
kernels have been calculated in [64]. Tmplementation of the control can be done
in terms of a lattice of identical tiles incorporating sensors, actuators and compu-
tation logic, as shown schematically in Figure 4.10. Each tile estimates the state
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All control Data from
inputs all sensors

Central
computer

Figure 4.9: Centralized control. Actuators and sensors are distributed over the
shaded face. All sensor data is sent to a central computer which calculates and
issues control signals to all actuators.

above itself, and the information is communicated to its neighbors. Based on
gathered information, each tile calculates its control. The choice of £ determines
the distance over which sensor information must be communicated.

The implications of the results presented in this section is that the optimal control
laws designed for channel flow in the previous sections, which require huge amounts
of wiring and a powerful central computer, can be approximated by localized
controllers.

4.3 Lyapunov Stability Approach

In this section, we use Lyapunov stability analysis to show stability of the parabolic
equilibrium profiles (2.72) and (2.63), for 2D channel flow and 3D pipe flow, re-
spectively. The results extend easily to 3D channel flow as well. The Navier-Stokes
equations are nonlinear, and the only way we can assure global stability of the feed-
back system is by nonlinear analysis. Note, though, that this does not necessarily
mean that the stabilizing feedback control law has to be nonlinear. Indeed, the
result of the analysis below, turns out to give astonishingly simple control laws,
that are linear and completely decentralized.
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Figure 4.10: Decentralized control. A lattice of identical tiles incorporating sen-
sors and actuators, and computation logic. Sensor information is communicated
between neighboring tiles, and each tile computes the control above itself.

4.3.1 2D Channel Flow
Lyapunov Stability Analysis

Boundary control laws for stabilization are sought such that the kinetic energy
of the system decays as a function of time. This 1s a standard Lyapunov-based
approach, in which the Lyapunov function is chosen as

E(w) = |lw|7, = //(u2—|—v2)dajdy. (4.47)

The Lyapunov analysis is performed in the perturbation variables, since the parabolic
equilibrium profile is moved to the origin in these variables. Moving the equilib-
rium point that is to be stabilized to the origin by means of a coordinate transfor-
mation is standard procedure in Lyapunov analysis. The time derivative of E(w)
along the trajectories of (2.74)—(2.75) is

1 L ~
) 1 (0%  O%u ou ~Ou  Ou dU 9p
J//“(E(@*@)‘“a—x‘%—x‘“@—“d—y—a)dmdﬂ
10
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Integration by parts, noticing that u2 3“ =
keeping in mind that all the variables are periodic in z, yields
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) L 5 y L
+ E/ [(% - Rp) y] . dr — / [(u® + v?) v];:_l dr. (4.49)
0 v= 0
Using continuity (2.73), we get
1 L L
() 2/// du\ 8u2+8v2 v\ 1
W)= —— — — — — T
Re Oz 0y Oz 0 Y
100
/ 9 flou ]’
: U
_2//uv—dmdy+ E/ I:@u]y__ldx
—1 0
L X L
2 v 9 9
+ — a——Rp v de — [(u +U)U]_1dx (4.50)
‘ 0 y=-1 0
Following [15, Lemma 6.2] (also in [14, Lemma 3.2]), we set
y
(z,y,t) = u(z,—1,1) / (4.51)
5

where the integration variable is denoted ~ for notational clarity. Squaring (4.51)

yields

(fvy,)—<fv—1t /y (2,7, )2§

y 2
2u(x, —1,1) + 2 (/ g—z(m,'y,t)d’y) )

1

By the Schwartz inequality,

(712—3(m,7,t)d7) (y+1) (jj( (z,7,t >2d’y)

1

so we have that

! 2
u?(z,y,t) < 2u(z,—1,t)+ 2 (y + 1) /< (z,y,t ) dy
2

(4.52)

(4.53)
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where we have set y = 1 in the integral. Therefore, we get

1L L
//u2dmdy§ 4/u2(x,—1,t)dmdy
Z10 0
1L 1
+2// (y+1) (/( (z,y,t ) dy)drdy
Z10 1
L L /1 1 2
:4/u2( dmdy—}—Z/ (/ y+1)d ) (/ —(z,y,1) dy) dx
0 0 1
L 1L ,
:4/u2( dmdy+4// <@_ (z y,t) dedy. (4.54)
Z10

o

() ()=
+/L Yz, =1, t)+v*(z,—1,t)) dz. (4.55)

Inserting (4.55) into (4.50) we get

E(w) < — R B(w) + i/ (u?(z, —1,t) + v*(z, —1,1)) dx

L L

1
du dv Ju
(<%> e ) )dmdy 2//uv—drdy+ /[&U ]y__ldm
0 0

g_:_Rp) U]l d:p—/[(u +o?) o], de. (4.56)

y=—1

(4.57)
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we finally get
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(4.58)

Notice that for Re < 1/4, E(w) decays exponentially with time even in the un-
controlled case (u(z,+1,t) = v(z,+1,¢) = 0). In other words, the fixed point
(U, V) is globally exponentially stable (in L) in this case, and the goal of ap-
plying boundary control is to enhance stability. The four last terms in (4.58) are
evaluated on the boundary, and are the means by which boundary control laws
are designed. Below, two control laws are presented: the first uses wall-tangential
actuation; and the second uses wall-normal actuation.

Wall-Tangential Distributed Actuation
The following boundary control was suggested in [15]:

u(z,—1,t) = kug—Z(:L‘,—l,t),u(m,l,t):—kug—z(m,l,t) (4.59)

v(e,—1,t) = wv(z,1,1)=0. (4.60)
Inserting (4.59)-(4.60) into (4.58) gives

E(w) < _% (% - 4) E(w) — % (ki - 1) ju2(x, —1,t)d=. (4.61)

Thus, for Re < 1/4 and &, € [0, 1], E(w) decays exponentially with time.

Wall-Normal Distributed Actuation

Actuation normal to the wall is another strategy of active interest. The inequality
(4.58) also suggests a control law structure for wall-normal control [1] (also in [2]).
Setting u(z,—1,t) = u(z,1,t) = 0, g—z is zero at the wall by continuity (2.73), so

we have
1 2 7
— 4 —/2:c—1t
Re R
0
L

2/ poli__,d /L[UB];:_ldx. (4.62)

0

- 1
E(w) < 3
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Now, by imposing v(z, —1,%) = v(z,1,t), the last term in (4.62) vanishes. Thus,
we propose the following control law

w(z,—1,t) = wu(z,1,t)=0 (4.63)
v(e,—1,t) = vz, 1,t) =k, (p(z,1,t) — p(z,—1,1)). (4.64)

Inserting (4.63)-(4.64) into (4.62) gives

E(w) < -5 <E - 4) E(w)—2 <ki - %) /Lv2(:n,—1,t)dx. (4.65)

Thus, for Re < 1/4 and k, € [0, Re], F(w) decays exponentially with time. Fur-
thermore, note that (4.64) ensures that the net mass flux through the walls be
7€ero.

Implementation

In order to implement the above controllers we have to express them in terms of
the actual flow variables; U, V and P. For the wall-tangential case, we get

Uz, —1,1) = ky (%(;p, 1) — (e, —1,t))

/ (4.66)
U, 1t) = —ky (520 1,8) = (2, 1,1)
Viz,—-1,t) = V(z,1,t) =0, (4.67)
and for the wall-normal case we get
Uz, -1,t) = U(z,1,t)=0 (4.68)
V(z,-1,t) = V(e,1,t)=ky,(P(z,1,t)— P(z,—1,1)). (4.69)

It is interesting to notice that the wall-normal control is independent of the phys-
ical parameters of the flow. This is an important property, since the physical
parameters of any real flow are subject to inaccuracy. In contrast, %(m, +1,1)

must be known for wall-tangential control.

Tt is also worth noting that the above control laws are of the Jurdjevie-Quinn [72]
type, with respect to the Lyapunov function F(w). This endows these control
laws with inverse optimality with respect to a meaningful cost functional, which
is in these cases complicated to write.

Numerical Demonstration

The theoretical results in this section are only valid for Reynolds numbers less
than 1/4, for which the parabolic equilibrium profile is globally exponentially
stable in the uncontrolled case. Thus, the analysis only tells us that the proposed
control laws maintain stability, and not necessarily enhance it. In fact, for wall-
normal control, simulations at Re = 0.1 show that for k, = 0.1, F(w) converges
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more slowly to 0 than in the uncontrolled case, whereas for &k, = —0.1, stability
is enhanced. Although this result was unexpected, it does not contradict the
theoretical results.

Being valid for small Reynolds numbers only, the theoretical results are of limited
practical value. However, they do suggest controller structures worth testing on
flows having higher Reynolds numbers. In [15], results from numerical simulations
with wall-tangential control were presented that show stabilization of channel flow
at Re = 15000. Here, we do a comparison of the performance of the two control
laws for flows at Re = 7500 and I = 4x.

The simulations are performed using a hybrid Fourier pseudospectral-finite differ-
ence discretization and the fractional step technique based on a hybrid Runge-
Kutta/Crank-Nicolson time discretization using the numerical method of [22].
This method is particularly well suited even for the cases with wall-normal ac-
tuation because of its implicit treatment of the wall-normal convective terms.
The wall-parallel direction is discretized using 128 Fourier-modes, while the wall-
normal direction is discretized using energy-conserving central finite differences on
a stretched staggered grid with 100 gridpoints. The gridpoints have hyperbolic
tangent distribution in the wall-normal direction in order to adequately resolve
the high-shear regions near the walls. A fixed flow-rate formulation is used, rather
than fixed average pressure gradient, since observations suggest that the approach
to equilibrium is faster in this case [69]. The difference between the two formu-
lations is discussed briefly in [104]. The time step is in the range 0.05 — 0.07 for
all simulations. In addition to reporting the time evolution of the energy, E(w),
we also consider the instantaneous control effort and drag force as measures of
performance. The control effort is defined as

L

C(w) = / (|w(m, —1,0 + |w(z, 1,t)|2) dz (4.70)

0

and the drag force as

D(w) = %/ (%—Z(JZ, —1,t)— %—Z(CL‘, 1,t)) dx (4.71)

(Notice that (4.71) is really the mean wall shear, which is related to the drag force
by the factor 1 L). For selected time instants, vorticity maps are also provided. The
vorticity, w, is defined using the actual flow variables (rather than the perturbation
variables) as

ov ou
w(z,y,t) = 8—m(m,y,t) — a—y(m, y,t). (4.72)

A total of six simulations are performed: wall-tangential control with k, € [0.05,
0.1, 0.2]; and wall-normal control with k, € [—0.125, —0.08, —0.05]. The parabolic
equilibrium profile is unstable for Re = 7500, so infinitesimal disturbances will
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Figure 4.11: Vorticity map for the fully established 2D channel flow (uncontrolled).

grow, but the flow eventually reaches a statistically steady state, which we call
fully established flow. For all simulations, the fully established flow, for which
FE(w) = 1.3, is chosen as the initial data. Figure 4.11 shows a vorticity map for
the fully established uncontrolled flow. It is similar to vorticity maps presented in
[69], and clearly shows the ejection of vorticity from the walls into the core of the
channel as described in [69].

Figure 4.12 compares wall-tangential and wall-normal control. It is clear that
stabilization is obtained for both controllers, in terms of the energy F(w). Fig-
ure 4.12 shows that F(w) decays faster for wall-normal control, and at much less
control effort (notice the different scales for C'(w) for the two cases in Figure 4.12).
The ratio of the peak kinetic energy of the control flow (wall-normal), versus the
perturbation kinetic energy in the uncontrolled case (drained out by the control),
C(w)?/E(w), is less than 0.25%. Also, reduction of drag is more efficient in the
wall-normal control case.!

Figure 4.13 shows vorticity maps at three different time instances for wall-normal
control with k, = —0.125. The removal of vortical structures is evident already
at ¢t = 30 (top graph), and at ¢ = 120 (bottom graph) the flow is nearly uniform.
Figure 4.14 shows the pressure field immediately after onset of wall-normal control
(ky = —0.125). Regions of low pressure coincide with regions of circulation cells,
as the velocity vectors in the intermediate zoom show. In the most detailed zoom,
we see that the controller applies suction in this region.

4.3.2 3D Channel Flow

It is recognized that channel flow instability mechanisms are inherently 3D. Ef-
forts that study the stabilization problem only in 2D are thus inconclusive about
physical flows, for which 3D effects are quite significant. However, the “model
problem” of 2D channel flow stabilization is a useful testbed for techniques that
can eventually be extended to 3D flows. The Lyapunov stability analysis presented
in the previous section can be extended to the 3D channel flow in a straight for-
ward manner, and similar boundary control laws can be derived. Balogh (private

11t is interesting to note (see Figure 4.12) that, when the control is applied to the 2D flow,
a transient ensues in which the drag dips below the laminar level and then asymptotes towards
the laminar state. This transient, however, is dependent on the initial flow state being that of
the fully established 2D flow, which has a drag which is significantly higher than laminar. Thus,
this transient result does not disprove the conjecture stated in [21], as discussed in Section 4.3.4.
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Figure 4.12: Energy F(w) (top row), control effort C(w), and drag D(w) (bottom
row), as functions of time for wall-tangential actuation (left column) and wall-
normal actuation (right column).
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Figure 4.13: Vorticity maps for wall-normal actuation at ¢ = 30 (top figure),
t = 60, and ¢t = 120 (bottom figure). The feedback gain is k, = —0.125.

Figure 4.14: Pressure (perturbation only, i.e. p) immediately after onset of wall-
normal actuation. Zoom shows velocity vectors in a region with low pressure.
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Figure 4.15: Perturbation energy (square root of) as a function of time for uncon-
trolled and controlled 3D channel flow at Re = 4000.

communication) reports that, in numerical simulations, the very simple, and fully
decentralized boundary control law

Ulz,—1,z,t) = k(%—g(m,—l,z,t)—g—g(—l))

Uz, 1,2z,8) = —k (%—U(m,l,z,t)—@(l))

y dy
Viz,—-1,z,t) = V(z,1,2,t)=0
W(z,—1,z,t) = W(z,1,2,t)=0

with k& > 0, relaminarizes a turbulent 3D channel flow at Re = 4000. Figure 4.15
shows the perturbation energy as a function of time. The perturbation energy is
in this case

L. 1L,
E(w) = /// (u2 + 0?2 —|—w2) dxdydz
0 -10
and the channel dimensions are L, = 67 and L, = 3w. The plots in Figure

4.16 show places where the discriminant? has values larger than 0.9 at ¢t = 4000,
indicating locations of vortical structures, and the plots in Figure 4.17 show the

2The discriminant of the velocity gradient tensor is a scalar quantity that is commonly used
in visualizations to pinpoint vortex-type motions in the flow. The following definition of the
discrimant is taken from [23]: D = (27/4) R? — Q?, where Q and R are the second and third

invariants of the velocity gradient tensor A, defined by Q = % {trace (A)2 — trace (A2) }, and
R = —det (A), respectively.
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Figure 4.16: Places where the discriminant has values larger than 0.9 at £ = 4000,
for uncontrolled (upper) and controlled (lower) 3D channel flow at Re = 4000.

spanwise vorticity at ¢ = 5000. It is interesting to notice that the perturbation
energy is still large at these points in time (see Figure 4.15), but the control has
clearly influenced the vortical structures in the flow. Figure 4.18 shows drag as
a function of time. Drag is reduced to below laminar level (which is 4) almost
instantly, and then gradually approaches the laminar level. This is the same
result as obtained in the 2D case. Notice that drag reduction is not explicitly
the objective of the control, stabilization of the parabolic equilibrium profile is.
Reduction of drag to laminar level is therefore expected in the limit as ¢ — oo,
but the striking result of immediate drag reduction is obtained!

4.3.3 3D Pipe Flow

In this section we show that the Lyapunov analysis that was developed for 2D and
3D channel flow, can be modified to apply for the 3D pipe flow as well.

Lyapunov Stability Analysis

Consider the following Lyapunov function candidate

27

Lo2r 1
1
E(w )—hmE é 5///(1}3—}-7@—}-1}3) rdrdfdz
00

€
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Figure 4.17: Spanwise vorticity at ¢ = 5000 for uncontrolled (upper) and controlled
(lower) 3D channel flow at Re = 4000.
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Figure 4.18: Drag as a function of time for uncontrolled and controlled 3D channel

flow at Re = 4000.
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which is simply the perturbation energy of the flow. Its time derivative along
trajectories of (2.65)-(2.67) is

27

L
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h o o 0
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dp 1 o (190 v 0%v, v, 81}9
—rV = + — <rvr— <;E(M,«)) + T e T » drdfdz
L 1 5 5 3
-1-///[—(7“1161),«%—}—1;35:—1—@vg—}—rv v, +V 52 )
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0 1 o (10 9 07 2vg Ovy
_Ug_p 4+ — <T"Ug— <;5 (T‘Ug)) + 176 3;29 + :9 59 T‘Ug )] drdfdz

1
/(vri)r + vgtg + v, 0;) rdrdfdz =

o0 e or
T 9 (v, + V) dv, 0
v, +V, vy
+/// —(rvzvrT+vzvs 59 + rv, (vz+V) az)
0 0 =

ap 1 d [ v, 1 6%v, d%v, .
5t & <y25 (Tﬁ> + Vs - Gar + ru, 67)] drdfdz. (4.73)

Integration by parts of the first integral in (4.73) yields

1
a) 81},. 9 6@ 8p
R
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Integration by parts of the second integral in (4.73) yields
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Integration by parts of the third integral in (4.73) yields

(ot s oy ) - 2

1 9 ( 0v, 19%v, 0*v,
+—6 <025 (T’ ar ) +UZ;W +rvza7)] drdfdz

27T L 27 1

/[—rvar]ldé’d'z‘f‘ 1///1;36(“”)(#(19(12
€ 2 or
0

0 0 ¢




80 Stabilization

27

/]

1 L
/rv Vp —— V drd9d2+ %/

1
2 19(rv,)  10vg  Ov,
2 \2 2 z LU\Yr) 10y
/(U,« +vp +v;+ pp) (r o Tyt o, rdrdfidz

=0 by incompressibility

L 27 1 1 L 27 1 L 27 5 1
+ / [—irvf] ) dfdz + // [—rvrp]i dfdz + e // [UTE (rvr)] ) dfdz
00 00 00
L 27 L 27 1 L 27
+1//[ v 1)2]1dt9dz+i// vﬁ(rv) d9dz—|—l//[ rvv] dfdz
2 rve R€ [ 67" [’ . 2 r
00 00 00
27 L 27 -~ 27

1
2 Ovy
/ SV 2a —drdfdz




4.3 Lyapunov Stability Approach 81

Since
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Now, we write

1

vr(r,0,2,t) = v, (1,0, 2,1) —/ %vr dr
7

so that

1
Ovy

d
37’r

vy (r,0,2,1) = vr(l,f),z,t)—/%“rdr < 202 (1,0, 2,t)+ 2
r

By the Schwartz inequality,

2

1 1
1 dv, Ov, 2
- - < —

/\/;\/;aTdr - lnr/r<3'ﬁ) dr

r

so we have that

1
2
2 000,50) <202 (10,20 =201 [ r(22)

r
€

where we have set » = £ in the lower integral limit. We now get
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Analogous derivations for vg, and v,, yield
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Inserting this result into (4.74), and letting £ — 0, gives
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where we have used
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n (4.75), all but the first term on the right hand side of the inequality are eval-
uated on the boundary. These are the terms by which boundary control laws are
designed. Below, a pressure-based control law is presented.

Boundary Control

We propose the following control law

vr(1,0,2,t) = k(p(1,0,2,8) — p(1,0 + 7, 2, 1))
vg(1,0,2,1) =0 (4.76)
vy (1,0,2,t) = 0.
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Inserting into (4.75), yields
L 27
E(w) < —2 2y 1 (1,0,z,t)dod
w) < e )2, z
00
1 L 27 L 27
E//U (1,0, z,t)dfdz — / (4.77)
00 0

/ (1,0,z,t)p(1,6,2,t)dbdz
0

For n odd, we get
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and by a change of variables in the first integral (8* = —f), we get
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0 0 0

which proves that the net mass flow through the wall is zero, and that

by setting n = 1 and n = 3, respectively. Since
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T 2
1 2 1 2
= 1,0,2,4)d0 = — 1,0,2,t)d0
L[ =g [
0 0
we obtain
L 27
. 9 , i
BEw)<—2(—=——1)E R v2(1,0,2,1)dod 4.
ws-2(m-1)pn- (-5 ) [ [0 @
0 0

Thus, we have shown that the equilibrium profile is globally exponentially stable
in Ly for sufficiently small Re and for appropriately selected feedback gain k.
Note that the control law is decentralized and has a symmetrical structure similar
to that of the pressure-based control designed for the 2D channel flow case (see

equations (4.63)-(4.64)).

4.3.4 Drag Reduction Below Laminar Flow

The simple pressure-based feedback control strategy for wall-transpiration control
of incompressible unsteady 2D channel flow proposed in Section 4.3.1, leads to
flow transients with instantaneous drag far lower than that of the corresponding
laminar flow (see lower right graph in Figure 4.12). This touches at the common
belief that the laminar flow constitutes a fundamental limit to the drag reduction
that is possible to obtain, which is stated in [21] as the following conjecture

Conjecture 4.1 The lowest sustainable drag of an incompressible constant mass-
fluz channel flow in either 2D or 3D, when controlled via a distribution of zero-net
mass-fluz blowing/suction over the channel walls, is exactly that of the laminar

flow.

We denote the drag of the laminar flow Dr. By sustainable drag, D, we mean
the time average (denoted D(t)) of the instantaneous drag, D(t), as the averaging
time T approaches infinity, i.e.,

with the instantaneous drag given as in (4.71), multiplied by the factor yL. In
[25] the mechanisms that initiate the D(¢) < Dp transient are investigated, and an
attempt at sustaining the drag below that of laminar flow is made. A simulation
of a constant mass-flux 2D channel flow at Re = 7500, using a box length 60
times the channel half width serves as an illustration. The flow at ¢ = 0~

Figure 4.19, a fully established unsteady flow in a 2D channel (see, e.g., [69]),
has extensive regions of backflow near the walls. This appears to be the key to
initiating a D(¢) < Dr, transient. A scatter plot of the local control ¢ as a function
of the local value of (—udU/0n) at t = 5 (shortly after the control is turned on)
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Figure 4.19: History of drag. Simulation initiated from fully established unsteady
2D flow at Re = 7500. Stabilizing pressure-based feedback control strategy with
k = —0.125 turned on at ¢ = 0.
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Figure 4.20: Scatterplot of ¢ versus (—pudU/dn) at t = 5.

is shown in Figure 4.20, demonstrating correlation of blowing with local regions
of positive drag and suction with local regions of negative drag using the present
strategy (76% of the samples are in the first and third quadrants). By generally
applying suction at the walls in regions of negative drag, and applying blowing
in regions of large positive drag, the negative drag regions are intensified (locally,
more negative drag) and the high positive drag regions are moderated (locally,
less positive drag), as illustrated in Figure 4.21. In terms of reducing the total
instantaneous drag D(t) integrated over the walls at time ¢ = 5, both effects are
beneficial, and thus the control application results, for a brief amount of time,
in a “win-win” situation, facilitating a drastic transient reduction in skin-friction
drag to well below laminar levels. Unfortunately, the wall suction quickly acts to
remove the backflow from the flow domain entirely, after which the instantaneous
drag D(t) asymptotes back to the laminar level, Dr,.

A metric which quantifies the degree of backflow present at any instant in a par-

ticular flow is given by
1 1/p
b, = |— U|PdQ
s

where Q7 1s the subset of the channel flow domain  which is characterized by
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Figure 4.21: Win-win mechanism at { = 5: intensification of local regions of

negative drag by suction in low pressure regions and moderation of positive drag
by blowing in high pressure regions. Shown are contours of pressure in 1/6 of the
computational domain (top) and selected velocity profiles (bottom)
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Figure 4.22: Elimination of backflow after control is turned on, as measured by

bl(t) and bz (t)

regions of flow with negative streamwise velocity, z.e., Q=™ = {Q(z, y)|U(z,y) < 0},
and A is the volume of the entire channel domain . For the simulation depicted
in Figures 4.19-4.21, plots of the history of b; and by are shown in Figure 4.22.
Note that, by both measures, the backflow is quickly eliminated after the control
is initiated; flow visualizations such as Figure 4.21 demonstrate clearly that the
backflowing fluid in Q~ is simply removed from the channel by the control suction.

As a “standard” problem to test the utility of a given control strategy for reducing
time-averaged drag to below laminar levels, a series of controlled 2D channel flow
simulations at Re = 7500 were initialized from small (random) perturbations to a
laminar flow profile. The control producing the D(¢) < Dy transients was cycled
off and on periodically, with the “running average” of the drag, D(t) = fol D(t")dt',
computed as the flow evolved to quantify progress towards sustained drag reduc-
tion. A large variety of different periods, duty cycles, and control amplitudes were
explored; Table 1 summarizes specific cases examined in detail.

Cases 1-5 reported in Table 4.1 were executed at a cycle time of T, .. = 3000 for
a variety of duty cycles with relatively strong stabilizing feedback applied during
the second segment of each cycle. Cases 6-8 were similar, but applied relatively
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Case Tcycle T1 T2 k‘l ]CQ
1 3000 2600 400 0 0.125
2 3000 2700 300 0 0.125
3 3000 2800 200 0 0.125
4 3000 2900 100 0 0.125
5 3000 2950 50 0 0.125
6 3000 2000 1000 0 0.031
7 3000 2500 500 0 0.031
8 3000 2800 200 0 0.031
9 2000 1600 400 0 0.125
10 2000 1700 300 0 0.125
11 2000 1800 200 0 0.125
12 2000 1900 100 0 0.125
13 2000 1950 50 0 0.125

14 1000 250 750  —0.031 0.031
15 1000 350 650  —0.031 0.031
16 1000 500 500  —=0.031 0.031

Table 4.1: Forcing schedules explored during parametric study: T¢y.;. indicates
the period of the cycle used, 77 denotes the duration of the first segment of the
cycle, 75 denotes the duration of the second segment, ki denotes the feedback
coefficient used during the first segment, and ks denotes the feedback coefficient
during the second segment.

weak stabilizing feedback. Cases 9-13 returned to the relatively strong stabilizing
feedback, but investigated a shorter cycle time. Finally, cases 14-16 were executed
with destabilizing feedback applied during the first segment of each cycle, and
stabilizing feedback applied during the second segment of each cycle; this was done
to accelerate the formation of the backflow regions. Histories of the L, energy, the
instantaneous and “running time-averaged” drag D(¢) and D(t), and the backflow
measures by and by are illustrated in Figure 4.23 for four representative cases.

It was found in cases 1, 2, 9, 10, and 14, with 75 relatively large, that the stabiliza-
tion provided by the control during the second segment of each cycle was sufficient
to stabilize the entire channel flow back to the parabolic profile; to illustrate, case
14 1s plotted in Figure 4.23c. These cases imply that 75 must be a sufficiently
small fraction of T¢y.. in order to allow a quasi-periodic behavior to establish.

It was found in cases 5, 8, 13, and 16, with 75 relatively small, that the uncontrolled
(or, in case 16, destabilized) evolution of the flow during the first segment of each
cycle was sufficient to drive the time-averaged drag to heightened levels.

A trade-off is thus identified: decrease T5 and there will be more backflow to exploit
during each cycle (so the transient will be more effective at reducing drag), but by
allowing the 2D unsteady flow to evolve for a longer time uncontrolled or desta-
bilized, the mean drag is pulled up higher above the laminar level. Intermediate
values of 75 were sought for a variety of cycle times and forcing amplitudes over a
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Figure 4.23a: Case 3: T¢ye. = 3000,
no feedback for 77 = 2600, relatively
strong stabilizing feedback for 75 =
400.

x10°

il L

=
Laminar

Backflow

0 1000 2000 3000 4000 5000 6000
Time

Figure 4.23c: Case 14: T,,.. = 1000,
destabilizing feedback for 77 = 325,
stabilizing feedback for 75 = 675.
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Figure 4.23b: Case 6: Teyere = 3000,
no feedback for 77 = 2000, relatively
weak stabilizing feedback for T, =
1000.
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Figure 4.23d: Case 15: Tgyc. = 1000,
destabilizing feedback for 77 = 350,
stabilizing feedback for Ty = 650.

Figure 4.23: Energy, drag and backflow for cases 3, 6, 14 and 15.
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parametric study of several simulations, some of which are reported here. Over all
these simulations, this trade-off was evident, and not once did the running average,
D(t), dip below the laminar value when the simulations were initiated from the
perturbed laminar state. These results indicate that it is always necessary to pay a
more expensive price (in terms of the time-averaged drag) to obtain the backflow
than the benefit (in terms of the time-averaged drag) that can be obtained by
applying suction to the backflow regions. Therefore, it appears that the parabolic
equilibrium profile represents a fundamental limit to the drag reduction possible
when applying control based on wall transpiration with zero-net mass flow.

The objective of the control strategies above has been to stabilize the parabolic
equilibrium profile. Although not explicitly stated in the objective, drag reduction
is obtained indirectly using this strategy. For wall normal actuation, with zero-net
mass flow, the objective of stabilizing the parabolic profile is equivalent to mini-
mizing drag, due to Conjecture 4.1. However, it is clear that drag can be reduced
further if actuation is directed in the streamwise direction, and in particular if it 1s
allowed a steady-state offset. This calls for new actuators that allow slip boundary
conditions at rigid walls. Advancements in this direction based on conveyer belts
as actuators, allowing slip boundary conditions, are currently being pursued [26].

4.4 Suppression of Vortex Shedding

4.4.1 Simulations of the Controlled Navier-Stokes Equation

The flow past a 2D circular cylinder has been a popular model flow for study-
ing vortex shedding suppression by means of open-loop or feedback control. For
Reynolds numbers slightly larger than the critical value for onset of vortex shedding
(which is approximately Re. = 47), several authors have successfully suppressed
vortex shedding in numerical simulations using various simple feedback control
configurations. In [99], a pair of suction/blowing slots positioned on the cylinder
wall were used for actuation, and shedding was suppressed for Re = 60, using
proportional feedback from a single velocity measurement taken some distance
downstream of the cylinder.

Using FLUENT?, this result has been reproduced on a grid of approximately 4000
nodes shown in Figure 4.24. The initial condition for the simulations is obtained
by starting from a perturbed velocity field and running the simulation for 500 time
units. The result is a periodic steady state, as indicated in Figure 4.25 in terms
of the lift coefficient, which is the normalized force acting on the cylinder in the
vertical direction. The vorticity field at the end of this initial run is shown in
Figure 4.26, where the von Karman vortex street is clearly visible.

For the controlled flow, starting from the initial data from Figure 4.26, the time
evolutions of the lift coefficient is shown in Figure 4.27, and the control effort is
shown in Figure 4.28. They indicate that the vortex shedding is weakened, which

3FLUENT is a commercial computational fluid dynamics (CFD) package available from Fluent
Inc.
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Figure 4.24: Computational grid, and zoom showing slots for blowing and suction,
and locations at which pressure measurements are taken.

is confirmed by the nearly symmetric (about the streamwise axis) vorticity map at
t = 750 shown in Figure 4.29. The controlled velocity field continues to oscillate a
little, though. In terms of the lift coefficient, it continues to vary between & £0.02

beyond the time interval shown in Figure 4.27, which is about 10% of its amplitude
in the uncontrolled case.

For Re = 80, vortex shedding was reduced, but substantially less than for the Re =
60 case. In [53], the same actuation configuration was tried for Re = 60, using
feedback from a pair of pressure sensors located on the cylinder wall. This attempt
was unsuccessful, but by adding a third actuation slot, shedding was reduced
considerably, even at Re = 80. In [6], simulations showed that stabilization at
Re = 60 is also possible by adding more pressure sensors instead of adding an
additional actuation slot.

Although some success in controlling vortex shedding has been achieved in nu-
merical simulations, rigorous control designs are scarce due to the complexity of
designing controllers based on the Navier-Stokes equation. A much simpler model,
the Ginzburg-Landau equation with appropriate coefficients, has been found to
model well the dynamics of vortex shedding near the critical value of the Reynolds
number [63]. In [103], it was shown numerically that the Ginzburg-Landau model
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Figure 4.25: Lift coefficient for initial simulation at Re = 60.
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Figure 4.26: Vorticity field at ¢ = 500 for Re = 60.
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Figure 4.28: Control input for stabilizing control at Re = 60. Feedback from
velocity measurement.
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Figure 4.29: Vorticity field at ¢ = 750 for stabilizing control at Re = 60. Feedback
from velocity measurement.

for Reynolds numbers close to Re. can be stabilized using proportional feedback
from a single measurement downstream of the cylinder, to local forcing at the
location of the cylinder. In [83], using the model from [103], stabilization was
obtained in numerical simulations for Re = 100, with an LQG controller designed
for the linearized Ginzburg-Landau equation.

In the following sections, we present a controller designed using backstepping,
that is shown to globally stabilize the equilibrium at zero of a finite difference
discretization of any order of the nonlinear Ginzburg-Landau model presented in
[103]. These sections are based on [4] (also in [5]), and the method is similar to the
work presented in [28]. The design is valid for any Reynolds number. Numerical
simulations are provided in order to demonstrate the performance of the controller,
along with the potential of using low order discretizations for the control design,
and thereby reducing the number of sensors needed for implementation.

4.4.2 The Ginzburg-Landau Equation

The Ginzburg-Landau equation in the notation of [103] is given by

0A 0A 9%2A 9
E:_al(m)a_m_GQW_a4(x)A+a5|A| A+é(z—zq)u (4.79)

wherez € R, A R xRy — C, a1,a4 : R — C, and a2, a5 € C. 6 denotes the Dirac
distribution and u : Ry — C is the control input. Thus, control input is in the
form of local forcing at z,. The boundary conditions are A (x — +o00,t) = 0, that
is, homogeneous Dirichlet boundary conditions. We now rewrite the equation to
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obtain two coupled partial differential equations in real variables and coefficients
by defining

1 - 1 -
P2 S(A+A), 12 (A= 1) (4.80)
1 1
ag, = §(aj+aj):aljéﬂ(aj_&j)’jzl’zll’f) (4.81)
1 1
up =2 §(u+ﬂ),u1é2—.(u—ﬂ) (4.82)
i

where i denotes the imaginary unit and denotes complex conjugation. With these
definitions we obtain

op _ L(0A_ 04
ot 2\ Ot ot

1 ) dp .0 ) a?p 0%
= 3 (— (ag, + tar,) <6_13 28_1’) — (ag, + tar,) <W —}—zw)

—(ar, +iar,) (p+1it) + (ar, +iar,) [A]* (p+ i)
+é(z — zq) (up + tur)

— (ag, —iar,) dp _ .00 — (ag, —iaz,) 82_/)_'62L
W =)\ Gy TPy ) TR D100\ Gz T g2

—(ap, —iar,) (p — it) + (ag, —iar,) |A]* (p — it)
+ 6 (z — zq) (ur — iur))

0 ot H? 8%
= —am, (x)a_,g+a11 (m)a?_aRza%‘xg+afzw

—aR, (ZE) p+ ar, (SL‘) L+ |14|2 AR5 P — |f4|2 arst +6 (ZE - Ia) URr (483)

and

1 ) Jp .0 ) 0%p 0%
- Z <_ (aRl + ZaIl) <a? + 26_:1@) - (aRz + 2(112) <w + Z@)

—(an, +iar,) (p+i1) + (ar, +iar,) |A]* (p + i)

+é(x — zq) (up + tur) (4.84)
. 0 .0 ) 82 .0

+(aR1 _ZaIl) <a_i_laf;) —|—((IR2—Z(1[2) < L_ L)

oz 'oa?

+ (aR4 - ia[zl) (P - “) - (aRs - iaIs) |f4|2 (P - “) (485)
—é(z—z4) (ur — iurg))
ot ap 5% 8%p

= —apR, (33)873 —ar, (z) or a&w _afzw

—ap, (x)e—ar, (&) p+ AP apoe + |A] ar.p+ 6 (x — xa) us.  (4.86)
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Figure 4.30: Vortex shedding from a cylinder visualized by passive tracer particles.
The figure also shows the proposed control system configuration for suppression
of vortex shedding.

Rearranging the terms, the equations become

o _

0 o?
02 =~ (am, 0) o+ amsiy + am, (2) = o, (7 417) )

oz

0 52
+ <a11 (2) . +(1[2w +ar, (z) —ary, (p2 +L2)> t+é6(x—x.)up (4.87)

1l 0 H?
& () b o @) —an, () 5

2

0
_ <GR1 () Em + “RQ@ +ag, (z) —ag, (p2 —|—L2)) t+6(x—xq)ur (4.88)

with boundary conditions p(z — +o00,t) = 0 and ¢ (z — +o00,t) = 0.

Equations (4.87)—(4.88), with numerical values as given in [103, Appendix A] (re-
produced in Appendix A), have been found to model well the dynamics of vortex
shedding from a circular cylinder at Reynolds numbers near the critical Reynolds
number, Re.. Our objective is to design a state feedback controller that stabi-
lizes the equilibrium (p, ) = 0 of (4.87)-(4.88). Figure 4.30 shows a sketch of the
control system, superimposed on a visualization of vortex shedding. Based on the
numerical values given in [103, Appendix A] (reproduced in Appendix A), we state
the following assumptions which are assumed to hold throughout the analysis that
follows.

Assumption 4.1 ay € (—00,0) and Re(a5) € (0,00), that is, ap, <0, ar, = 0,
and ap, > 0.

Assumption 4.2 For |z| > 0,
L,
—a
4CLR I

2

(z) + ag, (z) ~ 2% (4.89)
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The basic idea of the control design is to divide the domain into three separate
parts; the upstream subsystem, the core, and the downstream subsystem, for which
the following two facts are shown:

1. The upstream and downstream subsystems are input-to-state stable (in Ls
norm) with respect to certain boundary input terms.

2. A finite-difference approximation of any order of the core can be stabilized by
state feedback, driving all the states to zero, including the boundary input
terms of the upstream and downstream subsystems.

These two facts are treated in detail in Sections 4.4.3 and 4.4.4, respectively.

4.4.3 Energy Analysis

Lemma 4.1 There exist real constants x, < 0 and x4 > 0 such that solutions of

system ({.87)-(4.88) satisfy

1 o)) < =2l DN o

~ (om @)+ ) 2mm, (o 50)) | aon
10D war) < =10 DI
+ <a31( ) (p* +¢7) + 2ag, (g p+§ )) . (4.91)

for some positive constant c.

Proof. The time derivative of ||(p, L)||i2(ayb) along solutions of (4.87)—(4.88) is

b
d
= (1001 ) =2 / pp+1i) d

b
0 H?
=2 [ |- (o 0§+ am 55 + an, (21— 14F anp) 5

L 0 52
+ (ah (‘/E) 8_1‘ + aIzW) p— <El]1 (‘/E) 8_5 + aIzT;) L

0 9?
— <GR1 () 3_; + aR28—mg +ag, (x)1—|A]? CLRSL) L:| dzx, (4.92)
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where a < b are arbitrary constants. Integration by parts yields
/ 0 0
—2/1131 (2) Lpdz = —[an, (2 / 2P 2 de (4.93)
ox
/ 0 0
—Z/CIRI( ) aide = —[ag, (z / LR (4.94)
oz
[ ap 1" ap\*
_Q/GREwpdl‘ = -2 I:(leg—Ip]a +2/GR2 (8_,13) dx (495)
b b
2 b 2
—2/&32%@1‘ = -2 [aRzg—;L]a —|—2/a32 (%) de. (4.96)

Inserting (4.93)—(4.96) into (4.92), keeping in mind that a;, = 0 and apr, < 0

(Assumption 4.1), yields
d 9 dp ot b
7 (100 u) < [0 ) (0 +2) = 200, (G 50|

b
) a\’ Ot Oag, 9
+a f [am (5) +an @ 5o (-2 4 an (@) s

ap\? d 9
son (G8) -ou 0 5= (Fptson0) ]

Now, consider the integrand in (4.97). We have that
ot ot 8(1}21 2
AR, <8_I‘) +ar, ( ) al‘p - <_ Oz + ag, (‘E)) P

ap\> Jp Jap,
+ag, (6_33> —ar, () 8_;EL — <— 3§ + ag, (.13)) 22

2

(4.97)

< an|gt] +lan @[5 = (52 4 an, @)
+ar, g—g " an ()] ‘g_i‘ o] - <—ag??1 +ar, (x)) 2
= an (|2 e @) (et - 2 )
o (| 2]+ g ton, 1) (e, )~ 2 o )
< - ( 4;& af, (x) - ag? +ar, (¢ )) (P ++)
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Core
Upstream Downstream_>
j=0 Jj= Jj=2N
------- —------= +—tt------—=4tt-------
u xd Z.Xd-.xu

Point of actuation

Figure 4.31: The system 1s discretized only in the core, which is the interval
[Zu, 224 — 2,], using a uniform grid with cell size h.

where we have used the fact that ap, < 0 (Assumption 4.1). Inserting (4.98) into
(4.97) we obtain

i 2 2,2y ap ar \1°
P (H(P, L)||L2(a,b)) < [—GRl (z) (p* +¢*) — 2ag, (6_:Ep+ ] a

b
¢ 1 2 ) 0aRl ’ 9 ) ‘
_ 2/ <4“R2 ay, (z) — 5, TR (13)) (p* +1%) dz. (4.99)

By Assumption 4.2 there exist positive constants z, < 0 and x4 > 0 such that

1
a%l (z) — 6;? +ap, (2) >0, for z € (—o0, 24) U (24,00), (4.100)

4(132

and consequently, there exists a positive constant ¢, such that

<4alR2 CL% (z) — 6;;21 + ag, (l)) > %c, for z € (—oo, zy) U (2q,00). (4.101)

Inserting (4.101) into (4.99), (4.90) and (4.91) now follow by picking (a,b) =

(=00, zy) and (a,b) = (24, 00), respectively, and applying the boundary conditions
at x = +oo.

4.4.4 Stabilization by State Feedback

Discretization

Having determined the two constants z, and z4, which exist by Lemma 4.1,
we discretize (4.87)—(4.88) using finite difference approximations on the interval
[Zu,224— x,] as shown schematically in Figure 4.31. We define the finite difference
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approximations
ap . PG+ h)=p(h) 4 1 ! .
5 Uh) = b = L Pitl = 3P (4.102)
Pp o G+ 1)h)—2p(jh) +p((G—1)h)
ox? h?
P+l P | Pi-1
s Lt_of b (4.103)
o, ((f+1Dh)—1(jh) 5 1 1
UG+ h) =2 Gh) +e((G=Dh)
ox? "~ h?
P R R
£ - ﬁ+ 3 (4.105)
where h is the grid cell size, and to simplify notation we set
r1; = 4ag, (:L’]) (4106)
i = ar (%) (4.107)
Py = “;z (4.108)
rsj = hag, (%) (4.109)
isj = har, (z;) (4.110)
rs = hag, (4.111)
ia = hay,. (4.112)

Inserting (4.102)-(4.112) into (4.87)-(4.88) we obtain the set of ordinary differen-
tial equations

hp; = —rapj—1 + (rij+2ra = rag +ra (pf +45)) pj = (115 +72) pja
+ (=ivg +isg —da (pf +15)) 15 +in041 + Sojup  (4.113)

hij = (i1 — s +ia (7 +13)) pj — i1 jpjr1 — r2tj1
+ (g 2re = s+ ra(pf +145)) 15— (rj +r2) 41 + o jur (4.114)

for j =0,1,2,...,2N + 2, where z; 2 hj+ 2, and 6;,; denotes the Kronecker delta
function. In (4.113)—(4.114) we have set the point of actuation to z, = z,, and
used the fact that ay, = 0. Inserting (4.102)—(4.112) into (4.90) and (4.91) we
obtain

R (P00 PR =0 [
— 710 (P +10) = 2r2((p1 — po) po + (11 — 10) 00)  (4.115)
and
d 2 2
= (16,011 s ) < =€l 00

+rin (px +o8) + 272 ((pve1 — pn) o + (tvgs —ev)en),  (4.116)
which are the semi-discrete versions of (4.90)—(4.91).
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Control design

The following Theorem summarizes our control design.

Theorem 4.1 The control law defined recursively by the scheme

QNEﬂNEO (4117)

aN_1 (PN, PN41, LN+1)

1 3 .
= [(57’1,1\7 —r3 N+ CN) PN —T1 NPN+1 + 21,N5N+1:| (4.118)
2

BNt (PN41,IN, IN41)

1 . 3
= - [_ZI,NPN+1 + <§7’1,N —Tr3 N+ CN) IN — TI,NLN+1:| (4.119)
2

. 1
an—i(pj,tjJEN—k+1,N+k]) = ™ [en—(h—1) (PN—(k=1) — AN—(h=1))

+ (7’1,N—(k—1) +2r2 —r3 N_(k-1) T T4 (P?v_(k_m + LJZV—(k—1))) PN—(k-1)
— (ri,N—(b=1) + 272) pPN_(k-2)
+ (—i1,N—(k_1) + i3 N-_(k-1) — 14 (P?V_(k_l) + L?V_(k_l))) IN=(k=1)

+ i N (k—1)N—(k—2) T T2ON_(k—2)
Ntk-1

dan_ (k-

- Z 70”\5 (% D (=rapj_14 (r1; +2rs —raj+ 74 (pf + Lf)) Pj

F=N—k+2 Pi

= (r1j +r2) pis + (=in +isj —ia (pf +15)) 15 +i1j1541)
J J

NEEot dan_(k-1) /. ) R .
- > . ((i1j — s +ia (p] + 7)) pi —i1pj41 — Tatjm1

F=N—k+2 7

+(r1j+2ra—raj+ra(pf +15)) 15— (r1j +r2)ej4)]  (4.120)

. 1
Bn-k (pj,tj:JEN—k+1,N+k])= ™ len—b=1) (bN—(b=1) = Bn=(r=-1))

+ (i1,N—(k—1) — I3 N_(k—1) T 14 (P?V_(k_l) + 412\7_(1«—1))) PN—(k-1)
— 11 N (k=1)PN—(k—2)
+ (T1,N—(k—1) +2ry —r3 N_(k—1) T T4 (P?v_(k_l) + L?V_(k_l))) LN—(k=1)
— (P, N—(h=1) + 272) tN—(5—2) + T2 BN (5—2)
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N+k-1

BN (k-
- Z % (—rapj—1+ (1 +2ra—rsj+ra (pf +13)) pj
F=N—k+2 P

= (r1j +r2) pir + (i +isg —ia (p] +45)) 15 +i14j11)
N+k-1

O8N _(1—
=Y O (G iy i () = g — ot
F=N—k+2 7

F(rg+2ra =+ ra(p] +47)) 5 — (ry+r)ya)],  (4121)
fork=2,3,4,....N, and
ur(pj, 1 j € [-1,2N +1])
=—[eo(po — an) — rap—1 + (r1,0+ 2ra — r30 + 74 (p3 +13)) po
—(r1,0+2r2) p1 + (—i1,0 + i3,0 — ia (p3 + 7)) to + 11,001 + P20
2N da
- Z 6—p; (—szj—1 + (ﬁ,j +2ry— 713+ 714 (pjz + L;)) Pj
ji=1
= (1 +r2) pir + (=i +isg —ia (p] +45)) 15 +i14541)
2N 5
-> aT; (i1 —isj +ia (p] +43)) pj —i1,4pj41 — Patj—
j=1
+ (rlyj +2ry—r3; +ra (pJZ + L?)) v —(r; + 7°2)Lj+1)] (4.122)
ur (pj,tj 0 j € [=1,2N + 1))
= - [Co (to — Bo) + (i1,0 — 130+ i4 (Pg + Lg)) Po — 11,0p1
—Tol_1+ (7“1,0 +2ry —r30+ 14 (pg + Lg)) to — (104 2r2) 1 + ra2fh

2N 66
- Z 6—: (=rapj—1+ (rj +2ra—rsj+ra(p] +13)) pj
j=1 "
= (rij 4 r2) pir + (=in sy —ia (] +15)) 4 + i j41)
2N 3ﬁ
-3 aTO (1 = isj +ia (p] +43)) pj — i1,3pj+1 — T2
j=1

+ (rlyj +2ry—r3; + a4 (p]2 + L?)) v —(r; + rg)Lj_H)] (4.123)

renders (po, to, p1, 41, ..., PN, tN) = 0 globally asymptotically stable. Moreover, so-
lutions of system ({.87)—-(4.88) satisfy

1P, [T coay = O (4.124)

1P )IZ a0 00) = O (4.125)

ast — oo.
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Proof. Consider the Lyapunov function candidate

%Z[ i =030+ (15 = B3]+ 5 10Dl oy - (4.126)

The time derivative of (4.126) along solutions of the system is

N-—
[ i — ;) (hpj = hay) + (5 = Bj) (hij - hﬁj)]
j=0
. . 1d ) _
+ (b +uvhin) + 52 (100,01 ] (4.127)

where we have used the fact that ay = Sy = 0. Inserting (4.118)—(4.119) into
(4.127), yields

2
N

Vo< [(Pj —aj) (hpj = haj) + (4 = Bj) (hi]» - hﬁj)]

.
1l

—ropn (pN—1 — an—1) —roen (en—1 — P2 fN—1)
—(en = 72) (P} + 1%)

9 2 c 2
+7r4 (p})\f + L?\I) 3 ll(p, L)HLz(fdyOO)

=

IN

[(05 = ) (his = i) + (15 = 85) (i — sy )

0

.
I

—rapn (pN—1 — an—1) — ratn (eno1 — Bn—1) — (en — 72) (px + ¢%)
c 2 ¢
=5 102 )z 24,00 (4.128)

where we have used the fact that r4 < 0 (Assumption 4.1) in the last step. Next,
we insert (4.113)-(4.114) into (4.128), and obtain
1% < (po — aq) [—7“2P—1 + (7“1,0 +2ry —r30+ 1 (pg + Lg)) po—(ri0+r2) ;1
+ (—i1,0 + i3,0 — ia (pg + ¢3)) to + 11,001 + up — hy]
+ (10— Bo) [(i1,0 — 33,0 +ia (p5 +13)) po — i1,0p1 — T2t—1
+ (7’1 0o+ 2rg—7r30+rTa (pg + Lg)) to— (r0+r2) e +ur— hﬂlo]

N-— 1

+ —rapj—1 + (11 +2ra — i+ ra (] +17)) pj
ji=1

—(rig 4 r2) pir + (=inj +iag —ia (g +17)) 4 + 10501 — hay)
+ (15 = B5) (i1 —dsj +1ia (] +13)) pj — i1jpjpr — Patj—1
+(r1j+2ra—raj+ra(pf +15)) 15— (r1; +r2) i — hﬁ])]
—rapN (pN—1 — an—1) — ratn (en—1 — Bn—1) — (en — 72) (px + ¢%)

[#4 2 p
- 5 ||(P, L)||L2(xd,oo) : (4129)
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At this point, we observe that the two summations in (4.120) in fact equal the
time derivative of the previous a multiplied by h, that is hay_(x-1). Similarly, the
two summations in (4.121) equal the time derivative of the previous § multiplied

by h, that is hBN_(k_l). Therefore, from (4.120)—(4.121) we have

hay = ¢j(pj —aj) —raaj_1+ (r1j +2ra —raj +ra(p] +143)) pj
—(r1j 4 2r3) p1 + (—in g + iz —1a (] +15)) 4
+i1 jtj41 + rocga, (4.130)
W3 = ¢ (i = Bj) —raBio1 + (i — iz +ia (0] +13)) pj
—ivipia1+ (rij+2ra—ray+ra (7 +13)) 45
—(r1; + 2r2) 441 + 24, (4.131)

for j = 1,..., N — 1. Furthermore, the two summations in (4.122) equal héy, and
the two summations in (4.123) equal hfy. Keeping this in mind, and inserting

(4.130)-(4.131) and (4.122)—(4.123) into (4.129), we get

vV < (po — ag) (—co(po — o) + rep1 — racxy)

+ (20 = Bo) (—co (to — Bo) + r2t1 — r2f31)
N-1

+ D pi — i) (=rapj—1 — ¢j (pj — @j) + racj1 + r2pjy1 — rajpa)

i=1
+ (15 = Bi) (=ratj—1 — ¢ (1j = B;) + r2Bj—1 + ratj1 — T2fj41)]
—rapn (pN—1 — an—1) — ratn (tn—1 — Bn=1) — (en —72) (P + X))

C
=5 100 D2 0 - (4.132)

After rearranging the terms, we get

N-1
: 2 2
Vo< =) ¢ ((pj—a]») +(Lj—ﬁj))
j=0
+75 (po — o) (p1 — 1) + 72 (0o — fo) (11 — B1)
N-1
+ [(Pj - aj) (—rapj—1 4+ racj_1 + ropj41 — ratjy1)
ji=1

+ (4 — Bj) (—ratj_1 +rafj_1 + ratj1 — r2f41)]
—rapN (pPN—1 — an—1) — PatN (eN—1 — ON—1)

C Z 9
= (en = 72) (P& +18) = 5 102, IIE g 00) - (4.133)

By splitting up the summation and changing summation indices, we obtain

N-1

Vo< —Z:Cj ((Pj—%)2+(tj—ﬂj)2)

+75 (po — an) (p1 — 1) + 72 (eo — Po) (11 — Br)
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N-2

—r3(p1 — a1) (po —a0) =72 Y (pi+1 — @jp1) (pj — )
ji=1
N-2
+ra (pn—1 —an_1) (v —an) +712 ) (p) ) (pj+1 — @j41)
j=1
—ra (L1—/7’1)(L0—/7’0 —722 L]+1—ﬂy+1 ( ﬂj)
j=1
N-2
+7ro (eno1 — Bno1) (ev — On) + 72 ) (441 — Bj+1)
]:1
—rapN (pN—1 —an—1) — Patn (tN—1 — ON=1)
C 2 <
—(en —72) (PX +13) — o) (o, 75 (24,000 - (4.134)

and after cancellation of terms, we have
2 2
& (0 — @)’ + (55— 5)°)

C = <
(CN =72) Pk + 1) = 5 102, 17 00 00) - (4.135)

N-1

“M

In the last step we used the fact that ay = Gy = 0. It now follows from standard
results [80], that the equilibrium point (pg, tg, p1,¢1, ..., pN,en) = 0 is globally
asymptotically stable, and that

(P2 )17y 0,00y — 0 2 £ — 00. (4.136)

Having established that pg,t0,p1,41 — 0 as t — oo, it follows from (4.90) in
Lemma 4.1, and its semi-discrete version (4.115), that

17, 12 s oo ) — 0 85 1 = 00, (4.137)

4.4.5 Simulation Study

In order to demonstrate the performance of our backstepping controller, we present
a simulation example. We set the Reynolds number to Re = 50, and discretize
(4.87)—(4.88) on the domain z € [—5,15] using 21 nodes. Homogeneous Dirichlet
boundary conditions are enforced at # = —5 and z = 15. Next, we plot the
expression (4.101), that is

1 0 .
at, (2) = S+ an, (v), (4.138)

4&32

on our chosen domain. The result is shown in Figure 4.32. By inspection of the
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45

3.5

+ag, (v)

da Ry
ox

aj, (@) = =
&

4dap,

0.5

-0.5
-5

Figure 4.32: Graphical determination of the constants z, and z4 for R = 50 using
the numerical coefficients in [103].

j=0 j=N
X 223 X

X ® ® X ® X W X ® xXx ® %X ® x ® x x X

ensor reported

Figure 4.33: Locations of the grid points (x), sensors (o), and [z, 4] (+). Only
every second node is used for feedback, requiring three steps of backstepping in
this case.

graph, we pick z, = —1.32 and z4 = 3.85. The nodes of the discretization, along
with z, and z4, are plotted in Figure 4.33. As the Figure shows, applying Theorem
4.1 at this point requires six backstepping steps. Instead, we use a discretization
that is coarser for the control design, removing every other node. The remaining
nodes, which are sensors, are shown in Figure 4.33 as circles. Now, only three
steps of backstepping are required. The controller is generated using the symbolic
toolbox in MATLAB, and is too complicated to write here. Figure 4.34 shows the
values of (p,¢), represented by a vector originating at every node, for three time
instances: ¢ = 200, which is just before control is turned on, ¢t = 250 and ¢ = 300.
As the Figure shows, the vectors alternate in direction and length indicating spatial
unsteadiness reminiscent of vortex shedding. As time passes, the vectors become
shorter, and eventually, all the states are driven to zero. Figure 4.35 shows the
performance of the controller in terms of the output (p,¢) from one of the sensors
(identified in Figure 4.33). As the Figure shows, the system is in the state of
natural shedding for a couple of cycles, and then, at ¢ = 200, the control is turned
on. The measured state is effectively driven to zero.
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=200
xR “gxxxxxxxxxxx
=250

!l/ ilxxxxxxxxxx-

=300

X ot o, o ® X X X X X X X X x X x x X

Figure 4.34: Nodal values of (p,¢) at three time instances: ¢t = 200 (just before
control is turned on), ¢ = 250, and ¢ = 300.
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Figure 4.35: Time evolution of (p,+) at sensor location number 4. Feedback is
turned on at ¢ = 200.



Chapter 5
Mixing

A number of inherently different processes constitute what is called mixing. Ottino
[96] distinguishes between three sub-problems of mixing: (i) mixing of a single fluid
(or similar fluids) governed by the stretching and folding of material elements; (ii)
mixing governed by diffusion or chemical reactions; and (iii) mixing of different
fluids governed by the breakup and coalescence of material elements. Of course, all
processes may be present simultaneously. In the first sub-problem, the interfaces
between the fluids are passive [12], and the mixing may be determined by studying
the movement of a passive tracer, or dye, in a homogeneous fluid flow. This is the
problem we are interested in here.

In the following sections, we will review selected results on diagnostics of mix-
ing based on dynamical systems theory, and then present new results on mixing
enhancement using feedback control.

5.1 Dynamical Systems Approach

5.1.1 Chaotic Advection in the Blinking Vortex Flow

The application of dynamical systems theory to problems in mixing was initiated
by Aref [11], who studied advection of passive tracer particles in the setting of an
incompressible, inviscid fluid, contained in a 2D circular domain. It was shown
in that reference, that a simple-looking, deterministic Eulerian velocity field may
produce an essentially stochastic response in the Lagrangian advection character-
istics of a passive tracer. This behavior is referred to as chaotic advection. The
flow is driven by a point vortex, whose motion in a circular domain of radius a,
is denoted z(t), and it’s strength is denoted T'. The function z(#) is referred to as
the stirring protocol. A point in the domain is denoted (, so that { = x + iy. The
flow is represented by a complex valued function f((), such that

w=f(()=9¢+i
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where ¢ is the potential function and 1 is the stream function. A point vortex at
the origin with strength T is given by

= —Inc
w=gnme

If the point vortex is allowed to move according to z(t), we get

w= Lln((—z).

2w

For a circular domain with radius a, we superpose the image of the point vortex
at z(t) to obtain

r r a’ r (—z
w_%ln(c—z)—l—(—%ln(C—?))_%ln(c_az_z)

Consider a particle p, placed into the domain. We denote it’s position by

Cp=x+1y.

The velocity of the particle is given by

g:u—iv—a—(b+i%—a—w—r< Lo ) (5.1)

Oz dr  Or 2@ \(—z (- GZ;
By solving (5.1) for an array of particles, we can now visualize the mixing proper-
ties of the flow for various stirring protocols. In [11], the particular case when

b fornT<t<(n+1)T o )
0= W e 6
is studied in detail. b is a constant (possibly complex) contained in the domain,
and T is a positive real constant specifying the period of z(¢). The flow resulting
from the stirring protocol (5.2) is called the blinking vortex flow. The evolution
governed by (5.1) induces a mapping of the disk || < a onto itself, defined by
M :¢(t) — ¢(t+T). The mapping M is referred to as a Poincaré map. Denoting
an initial set of points as Py, and applying the map iteratively to obtain the sets

Py =M(Po_y), n=1,2,3, ...

we define the set of visited points after IV iterations as

Py = U P,.

0<n<N

Figure 5.1 shows Psggg for b = 0.5, Py = [-0.35, —0.2, —0.05, 0.1, 0.2¢, ..., 0.81,
0.94, 0.05, 0.2, 0.35], and for 9 different periods (T € [0.05, 0.1, 0.125, 0.15, 0.20,
0.35, 0.5, 1, 1.5]). For T' = 0.05, Pagoo appears very regular, and the points visit a
very small area of the total domain. This suggests that a blob of tracer material
put into this flow, would be contained in a limited area given by the lines in the
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Figure 5.2: Initial configuration of particles for studying the mixing properties of
the blinking vortex flow. The position of the point vortex is indicated by the two
crosses (X).

figure. As T is increased, regions of chaotic behavior appear, and the size of these
regions increase with increasing 7. When T' = 1.5, no trace of regularity can be
seen.

Next, we consider the kind of stirring experiment which would be carried out in
a real device. This is done by introducing a blob of tracer material into the fluid
at t = 0, and watch it evolve with time. Figure 5.2 shows the initial configuration
of particles representing a square blob for the study of the mixing properties of
(5.2). 10000 particles are evenly distributed in the box [—0.125,0.125] x [0,0.25].
The position of the point vortex is again chosen as b = 0.5. Figure 5.3 shows
the configuration of particles for 4 different time instances (¢ € [3,6,9,12]) for 3
different periods (7" € [0.1, 1, 3]). As anticipated in Figure 5.1, the blob is contained
in a very limited area for 7' = 0.1, and the shape of the area is easily recognized to
be formed by the lines appearing in Figure 5.1. Thus, it is shown how the study
of a dynamical system can be reduced to the study of a map, for which redundant
dynamics are filtered out so that emphasis is put on the underlying structures that
govern mixing and transport.

5.1.2 Particle Transport in the Mixing Region of the Oscil-
lating Vortex Pair Flow

The Oscillating Vortex Pair Flow

In [102] dynamical systems theory is applied in a mathematically rigorous manner
in order to study the mixing properties in a 2D model flow governed by a vortex
pair in the presence of an oscillating external strain-rate field. The vortices have
strength +I", and are initially separated by a distance 2d in the y direction. The
stream function for the flow in a frame moving with the average velocity of the
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Figure 5.3: Configuration of particles in the blinking vortex flow for 4 different
time instances (¢ € [3,6,9,12]) for 3 different periods (T € [0.1, 1, 3]).
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vortices 1s
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¥ =——/Jog — Voy + exysin (wt),
(z—20)" + (y + yv)2}

where (24 (), yy(t)) and (24 (t), —yy (1)) are the vortex positions, € is the strain
rate and V, is the average velocity of the vortex pair. For ¢ = 0, z,(t) = 0,
Y (1) = d and V,, = T'/4wd. Introducing appropriate scaling of the variables, and
defining v = I'/27wd? and v, = 27dV, /T, we obtain the dimensionless equations
for particle motion

dz _ Y= B v+
dt (z—z)’+W—w) (2—2,)"+@y+um)

— vy + %sin(t/'y) (5.3)

d_y (r—r)( 1 — 1 )
di T\e-n) - w)  @-2) @t w)’
—;—ysin(t/'y). (5.4)

The vortex positions are governed by

dz, 1 €X, |

= -+ t
7 oy, Vet sin(/)
dyy v

(Z = —%sm(t/y).

This flow approximates the motion in the vicinity of a vortex pair moving in a
wavy-walled channel. In the perturbation analysis that follows, € is assumed to be
small. The right hand side of (5.3)-(5.4) can be expanded in powers of € to obtain

fi(2,y) +eg1 (z,y,t/7;7) + O (€°) (5.5)
y = fa(z,y)+ega(z,yt/v7)+0 ()

z

where

’ _oy—=1 y+1 1 ’ o 1 1
fl (Iay)_ I_ + I+ 21 fQ(Iay)_‘r
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\Pu
Figure 5.4: Streamlines of the unperturbed vortex pair flow.
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The streamlines of the unperturbed flow (e = 0) are shown in Figure 5.4. For this
case, there are two hyperbolic fixed points, p_ and p4, connected by the limiting
streamlines defined by

U U(2,y)] =0, |2 < VB, y<0
Ty : U(z,y)|_o=0, |2|]<V3, y=0
Uy : U(2,9)|—=0, |2[<V3 y>0

The particle motions on the interior of the limiting streamlines ¥;U¥,Up_Up, are
qualitatively different from those on the exterior. Also, since streamlines cannot
cross (for € = 0), there is no transport between the interior and the exterior of
the limiting streamlines. We are interested in analyzing how this picture changes
when the strain rate field is applied (e # 0).

The Poincaré Map

We may rewrite the time-varying system (5.5)-(5.6) as an equivalent time-invariant
system by introducing the state # = ¢/y mod 2x. Thus, the system (5.5)—(5.6)
can be written as
& o= fi(z,y)+eg (29,67 +0 ()
y = [z, y)+ega(z,y,0,7) + 0 (%)
= 1/y (5.9)
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which is now a three-dimensional time-invariant system. A two-dimensional global
cross section of the three-dimensional state space of (5.7)—(5.9) can be defined by

Yy = {(fv,y,f))lf) =fe [0,27)}

on which we define the Poincaré map

S — %
2m

OO -l i) OO

In the unperturbed case, the orbits of the Poincaré map are sequences of discrete
points lying on the streamlines shown in Figure 5.4. Thus, the streamlines are
invariant manifolds of the map. Orbits starting on ¥;, ¥, and ¥, are heteroclinic
orbits, and the points p_ and p4 are fixed points of the map. Orbits on ¥; and ¥,
approach py in positive time, and ¥; U ¥, Up, is therefore the stable manifold of
p4, denoted Wi . Similarly, ¥; U ¥, U p_ is the unstable manifold of p_, denoted
W*. The unstable manifold of p,., denoted WZ, is { (z,y)|z < V3,y=0}, and
the stable manifold of p_, denoted W? | is { (z,y)|z > —/3, y= 0} . Clearly, W
and W intersect along ¥; and ¥, creating a barrier to transport between the
interior and exterior of the limiting streamlines. For sufficiently small €, p; and
p— persist as fixed points of the Poincaré map (5.10), denoted p, . and p_ ,
respectively. Their stable and unstable manifolds, Wi, W? 6 Wi, and W also
persist to become the stable and unstable manifolds of py . and p_ .. They are
denoted W3 ., W2 ., Wi, and WX , respectively. Due to symmetry about the
z-axis, y = 0 is an invariant manifold for all ¢, which implies that the stable
manifold of p_ . and the unstable manifold of p; . always coincide on the line
connecting the two fixed points. Wj . and WX ., on the other hand, may not
coincide in the perturbed case. It is possible for I/V+ c and W _ to intersect at an
isolated point, which implies, by invariance of Wi ., and Wt , that they must also
intersect at every iterate of the Poincaré map and it’s inverse. Thus, W} . and
W . may intersect at infinitely many discrete points, leading to a geometry like
the one shown in Figure 5.5. If this is the case, the barrier that is present in the
unperturbed case splits open, and transport of fluid across it becomes possible.
This behavior of the stable and unstable manifolds is also reminiscent of chaotic
particle motion.

Melnikov’s Method

The existence of an isolated point of intersection of W} . and W , can be estab-
lished by Melnikov’s method [116], which relates the signed distance between the
two manifolds to the so-called Melnikov function according to

M(to)
1/ (gu(=t0))ll

where ¢, (%) is the heteroclinic particle trajectory of the unperturbed velocity field,
coinciding with ¥, of Figure 5.4, to parametrizes distance along ¥,,, and

1 F(qu(=to)|] = V/f1(qu(=10))% + falqu(—t0))2.

d(to,e) = ¢ +0 (),
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Figure 5.5: A Poincaré section of the oscillating vortex pair flow, showing the
unstable (solid line) and stable (dashed line) manifolds of the two hyperbolic fixed
points. Due to the tangling of the manifolds, this image is also referred to as the
homoclinic tangle.

M (ty) is the Melnikov function defined as

M(to) = / {f1(qu(t))g2(qu(t),t +to) — folqu(t))g1(qu(t),t + o)} dt.

— 00

The result of Melnikov states that simple zeros of M(tg) imply simple zeros of
d(to, €) (for sufficiently small €). In [102], the Melnikov function for the system at
hand is computed numerically to obtain

M(t0) = “Dinio )

with F(y) plotted in Figure 5.6. For any fixed ¥ # v*, M (o) has an infinite
number of simple zeros, corresponding to transverse intersections of Wi . and
W .. This confirms the geometry shown in Figure 5.5. Studying the dynamics
associated with the tangling of the stable and unstable manifolds of p; . and p_ .,
can further quantify the particle transport taking place. This involves the motion
of so-called lobes, and the area of these lobes quantifies transport. Again, for
sufficiently small ¢, the Melnikov function is a measure of the area of the lobes.
We will not pursue this here, but refer the reader to [102] for further details.
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F(y)

Figure 5.6: Graph of F(y) appearing in the Melnikov function.

5.1.3 Diagnostic Tools for Finite-Time Mixing

In time-periodic advection models, 1t 1s enough to know the velocity for finite times
(e.g. for one period) to reproduce its infinite-time history. As a result, transport
can be studied through the lobe dynamics of stable and unstable manifolds of
appropriate Poincaré maps, as was demonstrated in the previous sections. How-
ever, for real flows, which in general are not periodic, one would have to know the
velocity field for infinite times in order to define stable and unstable manifolds.
This fact rules out the study of experimental datasets, both those consisting of
measurements of actual flows, as well as those produced in a computer simulation.
In a series of papers [55, 100, 101, 56, 57, 58], Haller and coworkers introduced and
applied the notions of finite-time stable and unstable manifolds. The essentials of
this new theory are outlined below.

Coherent Structures

A real flow will contain regions having different dynamical behavior. These regions
are referred to as Lagrangian coherent structures. In Section 5.1.2 we encountered
two fundamentally different dynamical behaviors in the oscillating vortex pair
flow. One was the rotational motion occurring in the interior of the separating
streamlines ¥; and ¥,,, and the other was the translational motion occurring in the
exterior of the separating streamlines. Thus, the regions in the interior and exterior
of the separating streamlines are examples of coherent structures. The stable and
unstable manifolds of the two fixed points coincided on the separating streamlines
in the unperturbed case. In the perturbed case, however, they did not coincide,
but intersected transversely at an infinite number of discrete points, leading to the
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Figure 5.7: Stretching across a coherent structure boundary.

o

Figure 5.8: Stretching along a coherent structure boundary leading to folding.

formation of lobes whose dynamics 1s the mechanism by which transport between
the interior and the exterior of the boundaries occurs. Such boundaries between
coherent structures in the flow appear to be the locations in the flow where material
blobs are stretched and folded most extensively. Extensive stretching and folding
are reminiscent of effective mixing. Blobs of particles that travel together in the
vicinity of coherent structure boundaries will in certain cases suddenly depart in
opposite directions leading to local stretching across the boundary, as illustrated
in Figure 5.7. In other cases the blob will become thinner and thinner as it is
stretched along the coherent structure boundary leading, eventually, to folding
due to the global geometry of the boundary, as illustrated in Figure 5.8. For these
reasons, 1t is of interest to be able to localize the boundaries of coherent structures
in a given finite-time dataset. A method that achieves this is presented next.

Material Lines and Surfaces

Consider the two-dimensional velocity field, u(z,t), with the corresponding particle
motion

& = u(z,t) (5.11)

on some finite-time interval [t_1,%;]. Given a curve of initial conditions, T's,, on
the state space, later images of T'y; under the motion (5.11), denoted Ty, are called
material lines. Augmenting the state space with the time variable, the evolving
curve, T'y, spans a two-dimensional surface in the extended state space (z,t). This
surface is called a material surface, denoted M, and sketched in Figure 5.9. In
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0

X1

I'y

Figure 5.9: A material surface M spanned out by the material line T.

order to study the stability of M, we need to linearize the extended flow map, F7,
along M. The extended flow map is given by

]:'T . < Zg ) — < $(t0+7’;t0,$0) )
to to—‘rT

We denote the linearized extended flow map by DF7.

Stability Properties of Material Surfaces

M is called an unstable material surface on the time interval I, if there is a positive
exponent A, such that for any sufficiently close initial condition p(7) = (2(7), 7)
and for any small time step h > 0, with 7 € I,, and 7+ h € I,, we have

dist(p (T + h), M) > dist(p(r), M)er=".

So, if N(p,t) is a unit normal to M at the point (p,t) in the extended state space,
then M 1s an unstable material surface over I, if for all 7,7+ h € I, and for all
initial conditions (zg,7) € M, we have

|V (2(r + h),t + h) - DF"(20)N (2o, 7)| > e**", (5.12)

where (z(7 + h), 7 + h) is the trajectory passing through (zo, 7) in the extended
state space. Figure 5.10 shows a sketch of an unstable material surface over the
time interval I,,. N is called a stable material surface if it is an unstable material
surface in the sense of (5.12) backwards in time. An unstable (respectively, stable)
material line with instability interval I, (respectively, stability interval I;) is a
curve Ty which generates an unstable (respectively, stable) material surface in the
extended state space. Unstable and stable material lines and surfaces are referred
to as hyperbolic material ines and hyperbolic material surfaces, respectively. Their
associated intervals I, and I are referred to as hyperbolicity intervals. Hyperbolic
material surfaces are never unique on a finite-time interval. However, if they
are unstable for a sufficiently long time interval, they will appear unique up to
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Domain of
instability

X1

Figure 5.10: An unstable material surface repelling nearby trajectories..

numerically unresolvable errors. Thus, stable and unstable material surfaces will
be used in the definition of coherent structure boundaries given below. The results
outlined above have also been extended to the 3D setting [58].

Detecting Coherent Structure Boundaries
For any initial condition zq at time ¢y € [t—1,%1], consider the maximal open set,

Zyu(zg), within [tg,?1] on which the instability condition (5.12) is satisfied. The
instability time Ty (zg, to) associated with zg over the time interval [¢q,#1] is defined

as
1
[ a
t1 —to

Zu(zo)

Tu(zo,t0) =

That is, T}, is the fraction of the time t; — g, for which the instability condition
(5.12) holds. Similarly, the maximal open set, Zs(zq), within [tg,?_1], on which
the instability condition (5.12) is satisfied in backward time, defines the stability
time Ty (2o,t0) associated with zg over the backward time interval [tg,_1] as

1
Ts(m07t0):m / dt.
Zs(zo)

Tu(o,t0) and Ty(zo,t0) are called the hyperbolicity times associated with zg at
to. With these definitions, coherent structure boundaries at ¢ = £y are given by
stable and unstable material lines along which T or 7T, attains local extrema. In
the next section, the fields Ty and T, are plotted for studying mixing properties in
controlled 2D channel flow. It is interesting to note, that for time periodic velocity
fields, the coherent structure boundaries defined above coincide with the stable and
unstable manifolds of hyperbolic fixed points of the corresponding Poincaré map.
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5.2 Destabilization of 2D Channel Flow

5.2.1 Numerical Simulations

Mixing is commonly induced by means of open loop methods such as mechanical
stirring, jet injection or mixing valves. These methods may use excessive amounts
of energy, which in certain cases is undesirable. In [1], it is proposed to use active
feedback control on the boundary of a 2D channel flow, in order to exploit the
natural tendency in the flow to mix. The results of Section 4.3.1 show that the
control law (4.63)—(4.64) has a significant stabilizing influence on the 2D channel
flow. In this section, we explore the behavior of the flow when k, is chosen such
that this feedback destabilizes the flow rather than stabilizes it. The conjecture
is that the flow will develop a complicated pattern in which mixing will occur.
2D simulations are performed at R = 6000, for which the parabolic equilibrium
profile is unstable. The vorticity map for the fully established flow (uncontrolled)
at this Reynolds number is shown in the topmost graph in Figure 5.11. This is the
initial data for the simulations. Some mixing might be expected in this flow, as it
periodically ejects vorticity into the core of the channel. The objective, however,
is to enhance the mixing process by boundary control, which we impose by setting
ky = 0.11in (4.64). The vorticity maps in Figure 5.11 suggest that the flow pattern
becomes considerably more complicated as a result of the control. The upper-left
and upper-right graphs in Figure 5.12 show the perturbation energy, E(w), and
enstrophy as functions of time. The former increases by a factor of 5, while the
latter is doubled. It is interesting to notice that the control leading to such an
agitated flow is small (see lower-left graph in Figure 5.12). The maximum value
of the control flow kinetic energy is less than 0.7% of the perturbation kinetic
energy of the uncontrolled flow, and only about 0.1% of the fully developed, mixed
(controlled) flow! Next, we will quantify the mixing in a more rigorous way, by
studying the movement of passive tracer particles, representing dye blobs.

The location of the dye as a function of time completely describes the mixing,
but in a flow that mixes well, the length of the interface between the dye and the
fluid increases exponentially with time. Thus, calculating the location of the dye
for large times is not feasible within the restrictions of modest computer resources
[44]. We do, nevertheless, attempt this for small times, and supplement the results
with less accurate, but computationally feasible, calculations for larger times. A
particle-line method, loosely based on [112] and [78], is used to track the dye
interface. In short, this method represents the interface as a number of particles
connected by straight lines. The positions of the particles are governed by the
equation dX/dt = (U(X,t),V(X,t)), where X is a vector of particle positions.
At the beginning of each time step, new particles are added such that at the end
of the time step, a prescribed resolution, given in terms of the maximum length
between neighboring particles, is maintained. The fact that we are working with a
single fluid representing multiple miscible fluids, ensures that dye surfaces remain
connected [97]. At ¢ = 50, when the perturbation energy is about tripled in the
controlled case (Figure 5.12), eighteen blobs are distributed along the centerline
of the channel as shown in Figure 5.13. They cover 25% of the total domain.
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Figure 5.11: Vorticity map for the fully established, uncontrolled, channel flow
at Re = 6000 (top), and for the controlled case at ¢ = 50 (middle) and ¢ = 80
(bottom).
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Figure 5.12: Energy F(w) (top left), enstropy (top right), control effort C'(w)
(bottom left), and dye surface length (bottom right), as functions of time.
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Figure 5.13: Initial distribution of dye blobs (at ¢t = 50).

Figure 5.14: Dye distribution for uncontrolled flow (left column) versus controlled
flow (right column) at ¢ = 55, 60, 65, 75 and 85 (from top towards bottom).

Figure 5.14 compares the configuration of the dye in the uncontrolled and con-
trolled cases for 5 time instances. The difference in complexity is clear, however,
large regions are poorly mixed even at ¢t = 85. The lower-right graph in Figure 5.12
shows the total length of the surface of the dye. The length appears to grow lin-
early with time in the uncontrolled case, whereas for the controlled case, it grows
much faster, reaching values an order of magnitude larger than in the uncontrolled
case. In order to approximate the dye distribution for large time, a fixed num-
ber of particles are uniformly distributed throughout the domain, distinguishing
between particles placed on the inside (black particles) and on the outside (white
particles) of regions occupied by dye. Figure 5.15 shows the distribution of black
particles at ¢ = 85 (for comparison with Figure 5.14), 100, 125 and 150. The
particle distribution becomes increasingly uniform.

In order to quantify the mixing further, we ask the following question: given a
box of size £, what is the probability, P, of the fluid inside being well mized? An
appropriate choice of ¢, and what is considered well mixed, are application specific
parameters, and are usually given by requirements of some downstream process.
In our case, the blobs initially cover 25% of the domain, so we will define well
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Figure 5.15: Particle distribution for controlled flow at ¢ = 85, 100, 125 and 150
(from top towards bottom).

mized to mean that the dye covers between 20% and 30% of the area of the box.
The size € of the boxes will be given in terms of pixels along one side of the box,
so that the box covers £? pixels out of a total of 2415 x 419 pixels for the entire
domain. On this canvas, the box may be placed in (419 — (¢ — 1)) x 2415 different
locations. The fraction of area covered by dye inside box 7 of size ¢, is for small
times calculated according to

.

n

where n,, is the number of pixels covered by dye, and for large times according to

=2 (5.14)

Ny + N

)
Ce

where n; and n, denote the number of black and white particles, respectively,
contained in the box. P , which depends on ¢, is calculated as follows

1< ,
P. == 102 <c <0 1
nZeva(O < <0.3) (5.15)

i=1

where n is the total number of boxes. The expression in the summation evaluates to
1 when 0.2 < ¢l < 0.3 and 0 otherwise. For small timesn = (419 — (¢ — 1)) x 2415,
whereas for large times n may be smaller as we choose to ignore boxes containing
less than 25 particles. Figures 5.16 and 5.17 show P. as a function of time for
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Figure 5.16: Probability of well mixedness for the uncontrolled case (o) and con-

trolled case (*).
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Figure 5.17: Probability of well mixedness for the controlled case based on uniform

particle distribution.
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Uncontrolled flow, forward time (7Ty(2o,%0))

Figure 5.18: Hyperboliticy times for uncontrolled (upper two graphs) and con-
trolled (lower two graphs) channel flow at ¢, = 100.

¢ € [15,30,45,60]. For all cases, the probability of the contents of the box being
well mixed increases with time. In Figure 5.18, the hyperbolicity times of a grid
of uniformly distributed initial conditions at ¢; = 100 are shown (see Section 5.1.3
for the definition of hyperbolicity time). The geometry of the coherent structure
boundaries become considerable more complex in the controlled case, indicating
extensive stretching and folding of material elements in the flow.

In conclusion, we have achieved substantial mixing enhancement using relatively
small control effort, by exploiting instability mechanisms inherent in the flow.

5.3 Optimal Mixing in 3D Pipe Flow

Recently, the results of the previous section have been generalized to 3D pipe flow
[16] (also in [3]). Using a control law similar to that designed for the stabilizing
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Figure 5.19: Actuation is symmetric about the pipe centerline.

case in (4.76), enhanced instability of the parabolic equilibrium profile is achieved,
and the control law is shown to exhibit optimality properties. This will be made
clear in the following derivations, originating from the Navier-Stokes equation for

3D pipe flow stated in (2.64) and (2.65)—(2.67).

5.3.1 Sensing and Actuation

As mentioned in the previous section, the boundary conditions on the wall of
the pipe incorporate our actuation. The fluid velocity at the wall is restricted
to be normal to the wall, that is, we take v,._, as the control input, and set
Vg_w = Vs_y = 0, where we have defined, for notational convenience, the variables
on the wall as

Ve_w (0,2,1) 2w (1,60,2,1), vg_y (0,2,1) 2 ve(1,0,2,), and
vo_w (0,2,8) = v, (1,0,2,1).
We also impose on the control input that it satisfies

Vp—w (0,2,8) = —vp_y (0 + 7, 2,1), (5.16)

which states that if suction is applied at a point (,z) on the pipe wall, then
an equal amount of blowing is applied at the opposite point (6 + 7, z). This is
illustrated in Figure 5.19. Tt is clear that condition (5.16) ensures a zero net mass
flux across the pipe wall, and therefore it is a natural condition to impose from
a mass balance point of view. The measurement available is the pressure drop,
denoted Ap, from any point (, z) on the pipe wall to the opposite point (6 + =, z).
That is,

Ap(0,2,t) 2 p(1,0,2,1) —p (1,0 + 7, 2,1). (5.17)
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5.3.2 Measures of Mixing
There are two key ingredients to effective mixing. The fluid flow field must inflict
extensive stretching to material elements, and the stretching should be accom-

panied by folding. In this work, we define two measures of the fluid flow field
that are instrumental to our development below. One is the kinetic energy of the
2T

perturbation, defined as
/L /
00

and the other is a measure of spatial velocity gradients, defined as

1
/ (v2 + vj +v?) rdrdfdz, (5.18)

&€

E(w) 2 lim E.( é lim
e—0 &—

l\JI»—k

L 27 1 9 9 5
A /// 3vr Ovg n Ov, n 131}2 + Ov,
o 0z or r 00 0z
00 0
Ov, Ovg v, 1 0vg vg 1 0v, 2
+(3r) + <W) + <—+r aa) + <7—; ae) ]rdrd@dz. (5.19)

The latter measure, (5.19), appears to be stronger connected to mixing. While
it is clear that stretching of material elements is explicit in a measure of spatial
gradients of the flow field, folding is implicit in the measure due to the boundedness
of the flow domain, and the fact that w satisfies the Navier-Stokes equation. Thus,
our objective becomes that of designing a feedback control law, in terms of suction
and blowing of fluid normally to the pipe wall, that is optimal with respect to some
meaningful cost functional related to m(w).

5.3.3 Energy Analysis

Before giving the main result on controller design and optimality, we state two key
lemmas that are needed frequently in what follows. The first lemma is a Lyapunov
type result and it relates the time derivative of E (w (t)) to m (w (t)). The second
lemma provides a bound on a crossterm in the streamwise (v,) and radial (v,)
velocities, originating from the nonlinear convective terms in the Navier-Stokes
equations.

Lemma 5.1 If vg_y and v,_y, are zero, and v,_,, satisfies (5.16), then

L 27 2T

L
1 1 2
__E// Vp—w Apdfdz — R—//vr_wdﬁdz
00

27

oy

|
D\h

1 N
/rvzvr —2drdfdz (5.20)
0

along solutions of system (2.64)-(2.67).
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Proof. The time derivative of E. (w) along trajectories of (2.64)—(2.67) was cal-
culated in Section 4.3.3 and the result was

L 27 1 L 27 1 L 27 a 1
:// |:——r1:3] dﬂdz—}—//[ rUrp). Ldedz + // I:ruri] dfdz
2 or |,
00 0 00
1 L 27 1 L 27 6 1 L 27
+ —// rvrv dﬂdz—i— —// T’Ugﬁ d9dz—|— —/ rv dﬂdz
2 e or 2
0 0 00 00

0 &
L 27 1 9 L 27 1 5
—i///r@”’") drdedz—i///r@ﬁ) drdfdz
e z e 0z
0 0 e 0 0 ¢
1 L 27 1 a 9 1 L27r11 a 9
v, v,
__e///r(ﬁr) dd@dz—E///;<69) drdfdz
0 0 ¢ 0 0 ¢
1 L 27 1 a 9 1 L 27 1 a 9
——///r ks ddedz——///r U ) drdfd:
e z Re or
0 0 ¢ 0 0 e
1 L 27 1 8 5 1 L27r11 a
——///r % drdadz——///— v+ 28 drddz
e r e r loll}
0 0 ¢ 0 0 ¢
271'/1

1 A\’ .
;(U@— 39) drdfdz. (5.21)

2 0 7
/vf_wdﬂ = /vf_wdﬂ—}-/v:f_wdﬁ
0 e 0
0 ™
= —/ vp_y (= 6,2,t)d0—|—/ w (B,2,1)d0
e 0

and by a change of variables in the first integral (§* = —#), we get

K ™

2
/U:L_wdg = —/U:L_w (Q*’z’t) do* + /U;L—w (H,Z,t) di = 0.
0

0 0
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This proves that the net mass flow through the wall is zero, and that

/u;?_wda =0 (5.22)

by setting n = 1 and n = 3, respectively. Furthermore, we have

27 T 27
/ [Uf'p]rzl df = / [Urp]rzl dd + / [Uf'p]rzl do
0 0 T
= /[Urp]rzl dﬁ—/vr_w 0,z,)p(1,0 + 7, z,t)d
0 0
T 27
1
= /vr_w (0,z,t) Apdf = §/vr_w (0,z,t) Apdf (5.23)
0 0

and, since vg_y and v,_,, are zero, (2.64) yields

aa”r (1,0,2,) = —v, (1,0, 2,1). (5.24)
By inserting vg_q (#,2,1) = vy—y (8,2,¢) = 0 and (5.22)—(5.24) into (5.21), and
letting e — 0, we obtain (5.20). ]

Lemma 5.2 If v,_, is zero, then solutions of system (2.64)-(2.67) satisfy

27 1 27

L L
/ / / v vr rdrdedz % (14 b) / / v, dodz
0 0 0 0

1 L 27 1 @ 1 L 27 1 a

a Uy Uy f;

+ 1 <1 + E) /// ( ) rdrdfdz + E/// < ) rdrdfdz (5.25)
00 0 00 0

for arbitrary positive constants a and b.

Proof. Since supg ‘%‘ = 2, we have
L 27 1 - L 27 1
/ /v vr—rdrdﬂdz < 2/// |vs] |ve| Pdr
0 0 ¢ 0 ¢
27 1 2m

Q| —

1
/vfrdrdﬁdz. (5.26)

0

L L
///vfrdrd&dz—}— /
0 0 €

€
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We write

so that

v (r0,2,t) = (v 6v ) (1+b)v2 +<1+%>(

By the Schwartz inequality,

1 2 1
1 ov, Ov, 2
(/Wﬁardr) S—lnr/r(ar) dr

r

so we have that

! 2
1 N\
rof (r,0,2,t) < (14 b)rv}_, — (1'1'5)7”11&7“/7“(8; ) 0
r

€

where we have set » = ¢ in the lower integral limit. We now get
2m

/i

Ufrdrdﬁdz <

"t~

so we get

1

1 2
o= [ L) <o [o(2)
v; (r,0,2,1) = (/ \/F\/; o dr| <—Inr [r B dr.

r

(5.27)
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and, finally
L 27 1 L 27 1
9 31}2
vyrdrdfdz < —rlnr drdrd&dz
0 0 ¢ 0 0 ¢ a
1 L 27 1 P
=3 (1—¢*+2¢%Ine) /// ( “Z) drdfdz. (5.28)
0 0 =
Inserting (5.27) and (5.28) into (5.26), and letting ¢ — 0, yield (5.25). ]

The conditions of Lemma 5.1 and 5.2 are assumed to hold throughout the analysis
that follows, that is: vg_y = v,_y = 0, and; v,_,, satisfies (5.16).

5.3.4 Optimality
The following theorem incorporates the control design and optimality result.
Theorem 5.1 The control

Vp_y = —kAp, (5.29)

with k € (0, %) and Re arbitrary, mazimizes the cost functional

J(vr—w) = tlir& 20FE (w (1)) + / h(w(7))dr (5.30)
where
2k
(=
and

27

h(w)zzfim(wwzﬂjoj
L 27

_<§)2<1+%[:) //Ap2d6dz /L/u,?_wdadz. (5.31)
0 0

Moreover, solutions of system (2.64)-(2.67) satisfy

1 -
/vz vy —=rdrdidz
0

L 27

L
h(w) <eym(w) — cz//AdeHdz - %//vf_wdﬁdz (5.32)
0 00

0
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for arbitrary values of the control v._,, and with

. 2
e = %i + max (%,2ﬁ2) >0 and cy = <ﬁ> <1 + ﬁ) > 0. (5.33)

Proof. By Lemma 5.1, we can write (5.31) as

L 27

h(w)=—28E(w ﬁ// Vr—w Apddz — R_ﬁo/LZ 2, dodz
[7) 5 2[)) _1 L 27 , L , .
- <§> <1+ E) O/O/Ap dﬁdz—O/b/vr_wdez. (5.34)

Inserting (5.34) into (5.30) we get

J (o) = lim [M (w (1)) + / ((-28E(w ()

L 27

L
—ﬂ//vr_wApdﬁdz—ﬁ//
Re
00 0 0
1 L 27 L 27
— <—) (1—1— —) //AdeGdz— //vf_wdé’dz) dT:|
00 00

t
= tlim |:2ﬂE (w(t)) — Zﬂ/ ))dr

t 27

B[ <—>
<§>2<1+—5> Ap2) dezdr]
=25 w(o)-(1+22) i / / i

2
23\~
/ (vr wt o (1 + —ﬂ) Ap) dfdzdr.
Re
0
The maximum of (5.30) is achieved when the integral in (5.35) is zero. Thus,

(5.35)
(5.29) is the optimal control. Inequality (5.32) is obtained by applying Lemma 5.2
with a = ﬁ and b =1, to (5.31). |

The objective of applying the control input (5.29) is to increase the value of m(w).
That this objective is targeted in the cost functional (5.30), is clear from inequality
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(5.32), which gives an upper bound on h(w) in terms of m(w). Thus, h(w)
cannot be made large without making m (w) large, so the cost functional (5.30) is
meaningful with respect to our objective. The cost functional also puts penalty on
the output. Since the output is fed back to the control input, the output penalty
works in conjunction with the input penalty to minimize control effort.

The next theorem writes the result of Theorem 5.1 on a form that puts emphasis
on signal gains.

Theorem 5.2 For all Re and t > 0, solutions of system (2.64)—(2.67) satisfy

20E (w(t))+ [g(w(7))dr
. 0
max. g lim T AT
E(w(0)#0 2BE(w(0)+co [ [ [ Ap*dOdzdr + % [ [ [ v2_,dfdzdr

000 000

=1, (5.36)
where

g(w) < eim(w). (5.37)

Furthermore, the mazimum is achieved with the optimal conirol (5.29), for which
solutions of the closed—loop system satisfy

20F (w (1)) + cljm(w (1)) dr > 2BE (w (0)) + G + %Z) ]/L/u,?_wdadzdr.

(5.38)

2T

Proof. Consider the function

27

L
g(w)éh(w)—i—cz//Ap2d6dz—|—_
00

27

L
//u,?_wdadz. (5.39)
0 0

Integration of (5.39) with respect to time, and adding 28F (w (t)) to each side,
gives

N | —

t

238 (w () + [ g (w () dr

= 20 (w (t))—|—/h(w (r))dr+C2//L/Ap2dedsz+_

0

27

N | —

L 27
//vf_wdﬁdzdr.
0 0

(5.40)

/
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The two first terms on the right hand side of (5.40) is J (v, ) (without the limit),
so inserting (5.35) we get

i

295 (w (1) + [ g (w(r)dr

Dividing both sides of (5.41) by

t L 27

20F (w (0))+Cg/ /AdeHdsz—}-%/t
0 0

0 0

assuming E (w (0)) # 0, taking the limit as ¢ — oo, and then taking the maximum
value over v,_,,, we obtain

E(w(0)) # 0
t L2« —1 2
(1+2)//7 <v,_w +5(1+ %) Ap) dbdzdr
=1~ lim i — (5.42)

o 1L 1L
28E (w(0)) + ¢z [ [ [ Ap?dodzdr + % [ [ [ v2_,dOdzdr
000 000

B (w(0)) # 0

Since the numerator of the last term in (5.42) is non-negative, and the denominator
is strictly positive, the maximum on the right hand side of (5.42) is attained when
the numerator is zero, which is for the optimal control (5.29). Thus, we obtain
(5.36). Inequality (5.37) follows from (5.39) and (5.32). Inserting the optimal
control into (5.41) by writing Ap in terms of v,_,, using (5.29), we obtain

t

265 (w (1) + [ 9 (w (1) dr = 265 (w (0)

0
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5 5 5 5 L 27 1 t L 27
+ ¢ <E) <1+R_[);) ///vf_wdﬁdzdr—i— 5///03_wd6dzdr. (5.43)
000 000
Inserting for ¢5, as defined in (5.33), and using (5.37), we get (5.38). ]

The result (5.36) was inspired by the work on optimal destabilization of linear
systems reported in [92]. In view of (5.37), by maximizing the ratio in the curly
brackets of (5.36), we make sure that the input and output signals are small
compared to the internal states. This is equivalent to obtaining a large closed-
loop gain. In addition, the theorem gives a lower bound on the states in terms
of the control input for system (2.64)-(2.67) in closed loop with (5.29). Thus,
it establishes the fact that the states cannot be small without the control input
being small, and the control input cannot be made large without making the states
large. As we shall see in our simulation study, this will lead to good mixing with
low control effort.

5.3.5 Detectability of Mixing

Achieving optimality with static output feedback of Ap is remarkable. In this
section we explain why this special output is strongly related to mixing and allows
its enhancement. The next theorem establishes an open-loop property of system
(2.64)-(2.67) that is reminiscent of an integral variant of input/output-to-state-
stability (TOSS) for finite dimensional nonlinear systems.

Theorem 5.3 If Re € (0,4), then solutions of system (2.64)-(2.67) satisfy

63/m(w (T)dr < 2BE(w(0))

L
//Ap2d9dzd7'
00

L
//vf_wdﬁdzdr, (5.44)
00

for allt > 0 and for arbitrary values of the control v,._,,, with

8 (4— Re 44 Re
= = d =1 .
c3 1 Re >0 an C4q +ﬂ 1_ Re >0




138 Mixing

Proof. From (5.30), (5.31) and (5.35), we get for all t > 0:

208 (w (1) + [ Do (w () dr

t L 1 ~
< 2BE(w —Zﬁ////v Ur—rdrdﬁdzdr
0 0 0 0
4 t Lo t L 2m
+<§> <1+—) ///Ap2d9dzdr+/// v?_,dfdzdr. (5.45)
0 0 0O 0 0 0

Using Lemma 5.2 | we obtain
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Rearranging the terms, we obtain
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1 27

L
+ (14 Ba(1+ b))///yf_wdﬁdsz,
000
which is (5.44) fora =1 and b =2 (4§e

) .

The significance of inequality (5.44) is that it provides a notion of detectability of
internal states from the output Ap. In particular, if m(w) is large, Ap must be
large as well, or if Ap is small, so is m(w). This is reminiscent of an integral variant
of the TOSS property for finite-dimensional nonlinear systems, as presented in [79]
(and motivated by earlier results in [107, 108]). In the case of (5.44) we have an
integral-to-integral property (iilOSS) with m(w) as a measure of the states, so the
“energy” of the states is bounded above by the “energy” of the input and output
signals. With F (w) as a measure of the states, we can also find a uniform upper
bound (as opposed to an “energy” upper bound) in terms of the input and output
signals. That is, system (2.64)-(2.67) has the TOSS property, as stated formally
in the next theorem.

Theorem 5.4 For Re € (0,4), solutions of system (2.64)-(2.67) satisfy
E(w (1))
L 27

27
< E(w(0))e " + sup //Ap dfdz —}—C—sup // v2_, dfdz
0

465 [0,4] €5 [0,¢]

(5.46)

for allt > 0 and for arbitrary values of the control v,._,,, with

_, 4 4=Re\_ . L1, BRe—4 \_
T A 3R T V4T Re and ce = max t Re(@= Re) ‘

Proof. From (5.27), (5.28) and a similar derivation for vg, we have

T () () () () e 0

2F (w) < %(1 + b)//vf_wdﬂdz + % <1 + %) m(w). (5.48)
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From Lemma 5.1 and (5.48) we get

B <=2 (- (145) 1) B

27

]

27

L
-1
Vp_ wAdedz—}— / / v2_, dfdz,
0

so that
4 b
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E(w) < 2< e<1+b> 1)E(w)
1 L 27 1 L 27
+Z//(v§_w+Ap)d9dz+—// 2 ,ddz.

00 00

Setting
1 2Re
b=max| —,
(2 4—Re)
we obtain
1 L 27 L 27
E(w) < —csE(w +Z/ Ap2d5d2+c6/ v2_, dodz (5.49)
00 0 0

with

_, 4 4—Re : 11+ 5Re — 4
5= AMAX\3Re T a4 Re ) Mo TmAX Re (4 — Re)

Inequality (5.46) now follows from the comparison principle [80, Lemma C.5] (and
the triangle inequality applied to the two last terms in (5.49)). ]

In Theorem 5.4, the notation supyg ;; denotes the essential supremum taken over
the finite time interval [0,¢]. The detectability properties stated in Theorems 5.3
and 5.4 indicate that our choice of sensing, Ap, is appropriate.

5.3.6 Numerical Simulations
The Computational scheme

The simulations are performed using a flow solver that is based on a second-
order staggered grid discretization, second-order time advancement, and a Poisson
equation for pressure, based on a scheme designed by Akselvoll and P. Moin [8].
The length of the cylinder is L = 37 and the radiusis R = 1. The grid is structured,
single-block with cylindrical coordinates. It is uniform and periodic in z and 6 with
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Figure 5.20: Perturbation energy and enstrophy.

Fourier-modes 64 and 128 respectively, and linearly spaced with ratio 8 : 1 in the
radial direction in order to achieve high resolution at the wall. The adaptive time
step was in the range of 0.06-0.08 with constant CFL number 0.5 and constant 1
volume flux per unit span. The Reynolds number we used was Re = 2100 which
is slightly higher than the limiting number Re = 2000 for nonlinear stability.
We ran both the controlled and the uncontrolled case for about 110 time units
starting from a statistically steady state flow field with control gain k = 0.1 in the
controlled case. The initial flow field was obtained from a random perturbation of
the parabolic profile over a large time interval using the uncontrolled case.

Measuring mixing

Figure 5.20 shows that our control results in an approximately 50% increase in
the perturbation energy and 92% almost instantaneous increase in the enstrophy.
While comparison based on perturbation energy is important as it is the part of
the cost functional (5.30), enstrophy provides us with a measurement that is more
closely related to mixing.

The instantaneous streamwise vorticity along a cross section of the pipe (Figure
5.21) also shows some promise for increased mixing with higher values of vorticity
and more complex vortex structures in the controlled case than in the uncontrolled
case. Vorticity is increased not only near the wall but everywhere in the pipe.

The method we use to quantify and visualize mixing is the tracking of dye in the
flow. We consider the problem of mixing of a single fluid (or similar fluids) governed
by the stretching and folding of material elements. We introduce passive tracer
dye along the center of the pipe represented by a set of 100 particles, as shown in
Figure 5.22. We trace the position of these particles using a particle-line method
[78, 112]. The distance between neighboring particles is kept less than 0.1 by
introducing new particles to halve the distance if necessary to obtain a connected
dye surface at all time. As shown in Figure 5.23, the number of particles, that is,
the length of the dye, increases in the controlled case at a much higher rate than
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Uncontrolled Controlled

Figure 5.21: Streamwise vorticity.

Figure 5.22: Initial particle distribution.

in the uncontrolled case. Adding particles is not feasible computationally for an
extended period of time. We stopped adding particles when their number reached
two million (¢ = 4 in the controlled case and ¢ = 8 in the uncontrolled case), but
we continued tracing them. Figure 5.24 shows the distribution of particles inside
the pipe. In the controlled case we obtain more uniform particle distribution even
for smaller time.

Actuator distribution and bandwidth

Figure 5.25 shows the instantaneous pressure field in a cross section of the pipe
along with the boundary velocity that is magnified 500 times for visualization. The
control “blows in” when wall pressure is high and “sucks out” when wall pressure
is low. Spatial changes in the control velocity are smooth and small, promising
that a low number of actuators will suffice in practice. In order to investigate the
density and bandwidth of sensors and actuators needed we calculate the power
spectral densities of the control. The spectral plots alongside with the original
signals are shown in Figure 5.26. Figures 5.26(a,b) show that only about 10-15
actuators/sensors are needed along the pipe length. Similarly, Figures 5.26(c,d)
show that we need at most 15-20 actuators/sensors in the angular direction. That
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Figure 5.23: Length of dye as a function of time.

Uncontrolled, ¢ = 38

Figure 5.24: Particle distribution.
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Figure 5.25: Instantaneous pressure field with controlled velocity (magnified) in a
cross section of the pipe.

results in approximately 200 micro-actuators/sensors for the whole pipe surface.
The time-frequency analysis in Figures 5.26(e,f) shows a bandwidth required for
sensing/actuation of only 1.5Hz.
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5.4 Feedback Control of Particle Dispersion in
Bluff Body Wakes

Motivated by the results in Sections 5.2 and 5.3, a simulation study was carried
out in [6] investigating the feasibility of enhancing particle dispersion in the wake
of a circular cylinder (2D) using similar, pressure-based, feedback control laws.
The simulations were performed with FLUENT on the grid shown in Figure 4.24.
For Reynolds numbers less than the critical Reynolds number Re. = 47, the
steady-state flow is symmetric about the streamwise axis. The objective is to
initiate vortex shedding for a slightly subcritical case (Re = 45), causing increased
particle dispersion in the wake.

The initial condition for the simulations is obtained by running FLUENT for 500
time units starting from a perturbed velocity field. In this case, which is subcritical,
the disturbances are dampened out, as suggested by the time evolution of the lift
coefficient, and confirmed by the high degree of symmetry in the vorticity map at
t = 500, shown in Figure 5.27. The initial condition for the runs with feedback
control is thus a slightly perturbed velocity field.

| — B o

-1o 1.0

Figure 5.27: Lift coefficient for initial simulation (left graph), and vorticity field at
the end of the initial simulation (right graph). The Reynolds number is Re = 45.

The feedback law has the form
7=k (a1Ap1 + a2 Apa + azAps) (5.50)

where k, a1, a2, and a3 are constants, and Ap; = p;»" —p;, for i = 1,2,3 (see
Figure 4.24 for the locations of the pressure sensors; actuation is applied through
slot #2). Simulations are performed for three different values of the feedback gain
k, as well as for the uncontrolled case.

The lift coefficient plots of Figure 5.28 show that in the uncontrolled case, the
lift continues to decrease, while in the controlled cases, the lift coefficients increase
and eventually reach a state at which the amplitude remains constant. Figure 5.29
shows the corresponding control signals, and Figure 5.30 shows vorticity plots. The
plots consistently show stronger vortices with increased feedback gain. In order
to visualize particle dispersion, six strips of massless dye are put into the flow
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Uncontrolled k=-1

ol N 10

Figure 5.30: Vorticity field for Re = 45 at ¢t = 800.

some distance upstream of the cylinder, and passively advected with the flow. A
snapshot of the result is shown in Figure 5.31. It is clear that vortex shedding is
initiated by our feedback control. Furthermore, the particles are dispersed more
widely with increasing feedback gain.
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Figure 5.31: Particle distribution for Re = 45 at ¢ = 800.
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Chapter 6

Sensors and Actuators

6.1 Controlling Small-Scale Features

The theoretical and simulation results reviewed in this report are based on the
ability to perform real-time distributed control. Distributed control is necessary
due to the nature of drag increasing structures in the flow. In [30], high skin friction
regions in turbulent flows are reported to occur near streamwise counter-rotating
vortex pairs as illustrated in Figure 6.1. These vortex pairs bring high velocity
fluid closer to the walls and thereby create local regions of high shear stress that
significantly increase the total drag. In order to be able to control the appearance
of such structures, we need to be able to sense and actuate at the same length
scale, which decreases with increasing Reynolds number. The following example
is presented in [30]. For an airflow at Reynolds number 10000, typical vortex pair
streaks have width about 1 millimeter and length about 2 centimeters, appear at
an approximate frequency of 100 Hertz, and has a life-time of about 1 millisecond.
Thus, to have control authority over these structures, the sensors and actuators
must have sizes in the order of a few hundred micrometers. The technology to
manufacture such small-scale sensors and actuators exists, and selected devices
are reviewed in the next section.

Wall-normal

Streamwise

Spanwise
Region with high shear stress

Figure 6.1: Counter-rotating vortex pair producing high shear stress regions.
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Figure 6.2: Magnetic micromotor fabricated in nickel. Reproduced by courtesy of
the University of Wisconsin, Madison.

6.2 Micro-Electro-Mechanical-Systems (MEMS)

6.2.1 General Properties of MEMS

The micromachining technology that was developed over the past decade or two,
opens for fabrication of sensors and actuators on the micron scale. As an example
of a micromachine, Figure 6.2 shows a photograph of a micromotor. Its rotor has
a diameter of about the size of a human hair. This new technology is compati-
ble with the integrated circuit (IC) technology, so that sensors and actuators can
be integrated with controller logic into devices that can perform sensing, signal
processing and actuation. Thus, for decentralized control strategies, the entire
detection-decision-actuation process takes place locally, minimizing the need for
wiring and data communication. By integrating a large number of such devices
onto one chip, real-time distributed control can be realized. These systems are
referred to as micro-electro-mechanical systems (MEMS). Typical micromachined
devices are on the order of 100 microns, which is one or more orders of mag-
nitude smaller than conventional sensors and actuators [59, 60]. The small size
of the devices not only allows for high spatial resolution sensing and actuation, it
also permits substantially faster actuation due to the increased frequency response
that follows from decreased inertia. Although technology that permits distributed
control of turbulent fluid flows exists, as documented through a number of suc-
cessful prototype lab experiments [54, 115], commercial off-the-shelf systems are
not available at this point. Nevertheless, the impressing progress in the field of
MEMS manufacturing has been a driving force for modern flow control research.
In the following sections, we will review some of the devices that are designed for
flow control.
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Figure 6.3: Upper picture: Flexible shear stress sensor array containing about
100 sensors. Its dimension is 1 x 3em?. Left picture: single shear stress sensor
(200 x 200um?). Right picture: The flexible skin resting on a conic object. The
bending is caused by gravitation. All pictures are taken from [68] and shown by
courtesy of Dr. Tai of Caltech, USA.

6.2.2 Micro Sensors

Pressure Sensors

Micro pressure sensors represent the most mature application of MEMS devices
[60]. [86] describes the development and testing of an array of pressure sensors for
obtaining the pressure distribution in a gaseous microchannel flow. Each individual
sensor has a size of 250 x 250um?. For the purpose of measuring intravascular
blood pressure, even smaller devices have been manufactured [89], having a size

of 100 x 150um?.

Shear Stress Sensors

Shear stress sensors have been fabricated in sizes of 200 x 200um? [62, 87]. Such
sensors have been integrated in large numbers on single chips to provide shear
stress images of two-dimensional surfaces [67, 77]. They have also been integrated
in flexible skins that can be glued on to curved surfaces [68], as shown in Figure

6.3.
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Figure 6.4: A magnetic flap for drag reduction in turbulent flows. Its dimension
is 300 x 300um?. The picture is taken from [114] and shown by courtesy of Dr.
Tsao of Caltech, USA.

6.2.3 Micro Actuators
Pumps

For applying wall transpiration by means of suction and blowing of fluid through
tiny holes in the wall, micro pumps are needed. A number of micro pumps have
been developed using a wide range of actuation principles (see [113, 118] for ex-
amples). Many of them consist of a cavity, with a diaphragm that seals the cavity,
and inlets and outlets which are controlled by micro valves [105]. The size of these
devices vary, but are at this point in the millimeter range.

Flaps

In [114], the use of micro flaps is suggested for pushing areas of high shear stress
away from the wall in order to minimize overall drag. The size of this device, shown
in Figure 6.4, is 300 x 300um?. An experiment using this device, in conjunction
with shear stress sensors, was conducted in [54], leading to a 2.5% reduction in
skin friction.

Rotating Discs

An actuation method based on rotating discs was proposed in [74]. Due to the
no-slip boundary condition, small rotating discs are capable of prescribing wall
normal vorticity at the wall. Thus, in conjunction with wall normal transpiration,
one obtains a two-component actuation device that completely specifies the near-
wall flow field in the case of incompressible flow.
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6.3 Concluding Remarks

The examples of micro sensors and actuators presented above suggest that dis-
tributed control at turbulent scales will be realizable in the near future. This will
provide us with a means of testing the control laws reviewed in this report in the
laboratory, and will pave the road towards developing commercial flow control
systems.
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Chapter 7

Conclusions

The field of flow control has picked up pace over the past decade or so, on the
promise of real-time distributed control on turbulent scales being realizable in the
near future. This promise is due to the micromachining technology that emerged
in the 1980s, and developed at an amazing speed through the 1990s. In lab exper-
iments, so called micro-electro-mechanical systems (MEMS) that incorporate the
entire detection-decision-actuation process on a single chip, have been batch pro-
cessed 1n large numbers and assembled into flexible skins for gluing onto body-fluid
interfaces for drag reduction purposes.

Control of fluid flows spans a wide variety of specialities. In this report, we have
focused on two specific problems, related to flows in channels and pipes, and flows
around bluff bodies: 1) Stabilization for the purpose of drag reduction or vortex
shedding suppression, and; 2) Diagnostics of mixing and mixing enhancement by

feedback.

Stabilization for the purpose of drag reduction or vortex shedding sup-
pression. The control strategies used for stabilization of flows in channels and
pipes include classical control, based on the Nyquist criteria, and various optimal
control techniques (Ha, M), as well as applications of Lyapunov stability theory.
The linear approaches are clearly restrictive in that they only provide local sta-
bility results. The nonlinear approaches give global stability results, but impose
serious restrictions on the Reynolds number. Thus, the problem of stabilizing the
parabolic equilibrium profile of channel flow in general, remains open. Neverthe-
less, stabilization is achieved for large Reynolds numbers in simulations.

A number of authors have studied the flow past a circular cylinder (2D) numer-
ically, and achieved vortex shedding suppression for Reynolds numbers close the
critical one, using various, quite simple, control strategies. Despite this success in
simulations of the controlled Navier-Stokes equation, rigorous control designs are
carried out for simplified models, such as the Ginzburg-Landau model of vortex
shedding. A controller based on backstepping was shown to stabilize the Ginzburg-
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Landau model for any Reynolds number.

Diagnostics of mixing and mixing enhancement by feedback. Diagnostic
tools from dynamical systems theory have been presented that enable detection
and quantification of chaotic transport in periodically perturbed systems. How-
ever, real systems are generally not periodic, and available measurements or simu-
lations are finite in time. A method for quantifying mixing in finite-time velocity
fields has been discussed, and applied to data obtained from simulations of the 2D
controlled channel flow. Mixing has traditionally been brought on by open-loop
control strategies, such as stirring, jet injection or mixing valves. Applications of
active feedback to mixing problems are scarce in the literature, but the idea is
currently drawing attention from various research groups. Feedback laws for the
purpose of mixing enhancement in 2D and 3D pipe flow have been presented, and
simulations show that they induce strong mixing.

Contributions by the author. A new boundary feedback control law for sta-
bilization of the parabolic equilibrium flow in 2D channel flow was derived using
Lyapunov stability theory. The control law feeds back from pressure measurements
on the wall, to actuation in the form of wall transpiration, that is, suction and
blowing of fluid across the wall. Although the analysis was valid for small Reynolds
numbers, only, simulations indicate that the control is very efficient in stabilizing
the flow at Reynolds numbers several orders of magnitude higher. The pressure
based control law performed much better than other Lyapunov-based control laws
studied.

The simple pressure-based control law derived for the 2D channel flow was gen-
eralized to the 3D pipe flow. As for the 2D channel flow, the analysis is valid for
small Reynolds numbers, only. Whether or not stabilization can be obtained for
higher Reynolds numbers in simulations, has not been established for this flow.

The pressure-based feedback control law derived for the 2D channel flow results in
flow transients with instantaneous drag far lower than that of the corresponding
laminar flow. In fact, for the first time, instantaneous total drag in a constant-
mass-flow 2D channel flow has been driven to negative levels. The physical mech-
anisms by which this phenomenon occur was explained, and the possibility of
achieving sustained drag reductions to below the laminar level by initiating such
low-drag transients on a periodic basis was explored. The results add to the evi-
dence that the laminar flow represents a fundamental limit to the drag reduction
achievable by wall transpiration.

A state feedback controller that achieves global asymptotic stabilization of a non-
linear Ginzburg-Landau model of vortex shedding from bluff bodies was designed
using backstepping. Stabilization was obtained in two steps. First, the upstream
and downstream parts of the system were shown to exhibit the input-to-state sta-
bility property with respect to certain boundary input terms governed by the core
flow in the vicinity of the bluff body. Second, a finite difference approximation
of arbitrary order of the core flow was stabilized using the backstepping method.
Consequently, all the states in the core flow were driven to zero, including the
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boundary input terms of the upstream and downstream subsystems. The con-
trol design is valid for any Reynolds number, and simulations demonstrated its
performance.

For the first time, active feedback control was used to enhance mixing by exploiting
the natural tendency in the flow to mix. By applying the pressure-based feedback
control law derived for stabilizing the 2D channel flow, with the sign of the in-
put reversed, enhanced instability of the parabolic equilibrium flow was obtained,
which led rapidly to highly complex flow patterns. The mixing enhancement was
quantified using various diagnostic tools.

A Lyapunov based boundary feedback controller for achieving mixing in a 3D pipe
flow governed by the Navier-Stokes equation was designed. It was shown that
the control law maximizes a measure of mixing that incorporates stretching and
folding of material elements, while at the same time minimizing the control effort
and the sensing effort. The penalty on sensing resulted in a static output-feedback
control law, rather than full-state feedback. A lower bound on the gain from the
control effort to the mixing measure was also derived. For the open-loop system,
input/output-to-state stability properties were established, which show a form of
detectability of mixing in the interior of the pipe from the chosen outputs on the
wall. The effectiveness of the optimal control in achieving mixing enhancement
was demonstrated in numerical simulations. Simulation results also showed that
the spatial changes in the control velocity were smooth and small, promising that
a low number of actuators will suffice in practice.

Motivated by the mixing results in channels and pipes, a simulation study that
investigated the feasibility of enhancing particle dispersion in the wake of a circular
cylinder was carried out. For a subcritical case, vortex shedding was successfully
provoked using feedback.
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Chapter 8

Modelling and Control of
Moored Vessels

8.1 Introduction

Position mooring systems (PM) have been commercially available since the late
1980’s, and have proven to be a cost-effective alternative to permanent platforms
for offshore o1l production. The current research on PM systems is based on the
experience obtained from research on dynamic positioning (DP) systems since the
1970’s [14]. DP systems based on optimal control theory and Kalman-filtering were
proposed in [7], and extended in [8, 9, 24, 25, 26, 44, 45]. In recent years, nonlinear
controllers have been developed for DP systems based on integrator backstepping
techniques, see [4, 20, 22, 43].

PM systems differ from DP systems in that thruster assistance i1s used mainly for
damping the surge, sway and yaw motions and for keeping the desired heading,
whereas the position is kept within an acceptable region by the mooring lines [48].
Thus, fuel consumption is kept to a minimum in normal weather conditions. In
rough weather conditions, thruster assistance may be needed for position keeping
in order to avoid line tensions rising above safety limits. In [46], a model for
the mooring system based on line characteristics found by solving the catenary
equations is presented and the optimal controller derived in [45] is extended for
this system. In the last few years, more advanced controllers, based on observer
backstepping and locally optimal backstepping have been developed in [48, 47].

In traditional testing of the performance of PM systems by means of computer
simulations, tabulated static solutions of the cable equation have been coupled
to the vessel dynamics. This approach is adequate for shallow waters. However,
in deeper waters, dynamic interactions between the vessel and mooring system
renders such a quasi-static approach inaccurate [39].

Models and software packages that solve the cable equation by means of the finite
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element method (FEM) are readily available (see for instance [11, 32, 37]). How-
ever, such general purpose FEM packages are not suited for control system design,
and usually slower than software tailored for a given application. Moreover, the
theoretical aspects, such as existence and uniqueness of solutions, are often taken
for granted. In fact, FEM tools were developed and used, for instance in structural
engineering, decades before a sound theoretical foundation was established [49].

In this chapter, a new finite element model of a cable suspended in water is derived.
The hydrodynamic loads on the cable are modelled according to Morison’s equation
(see for instance [18]), and are assumed to dominate internal damping, or friction.
In other applications, such as space tether systems, where there is practically no
external damping involved, internal damping may be important [10]. Furthermore,
bending and torsional stiffness are assumed to be negligible. Several authors,
dealing with other applications, include bending stiffness in order to avoid the
numerical singularity that occurs for zero tension (see for instance [15, 16, 27]).
Since mooring cables are pretensioned to avoid the occurrence of zero tension,
including bending and torsional stiffness in the model would only serve to increase
implementation complexity and computation time.

For a slightly simplified equation describing the motion of a cable having negligible
added mass and supported by fixed end-points, we show global existence and
uniqueness of solutions of the truncated system, and conjecture a global result for
the initial-boundary value problem. The FEM model for the cable is assembled to
give a model of a multi-cable mooring system, which, in turn, is coupled to a rigid
body model of the floating vessel. The result is a coupled dynamical model of a
moored vessel, which can be applied to applications such as turret-based moored
ships, or tension leg platforms.

We end this chapter with simulations demonstrating the importance of a full dy-
namical analysis, as opposed to a quasi-steady approach, for a turret-based moored
oil production ship operating in deep waters. The simulations are in agreement
with the conclusions in [39]. As a simple application of the simulator, controlling
the line tensions dynamically is investigated as an additional means of station
keeping.

This chapter is based on [1, 2].

8.2 Mathematical Modelling

8.2.1 Vessel Kinematics
Two reference frames are defined as follows, see Figure 8.1:

e The Earth-fixed frame, denoted XgYgrZg, is placed so that the XgYg plane
coincides with the water surface, and the Zg axis is positive downwards. In
vessel positioning applications, the Xg axis is usually chosen to point along
the desired heading of the vessel, and the origin is usually placed at the
desired position of the vessel.
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Earth-fixed

Figure 8.1: Earth-fixed (XgYrZg) and body-fixed (XY Z) reference frames.

e The body-fixed frame, denoted XY 7, is fixed to the vessel body, usually in
such a way that the origin coincides with the center of gravity. In the case of
turret-moored ships, 1t is common to place the origin at the center of turret,
with the X axis directed from aft to fore along the longitudinal axis of the
vessel, and the Y axis directed to starboard.

The vessel position and orientation in the Earth-fixed frame are defined by the
vectors, mE [z y z]T €R3and ;2 [[ ¢ 0 o ]]T € S respectively (R?
is the Euclidean space of dimension three, and S? is the torus of dimension three).
The body-fixed surge, sway and heave translational velocities are defined by the
vector i=[ u v w ]T € R3 and the body-fixed roll, pitch and yaw angular
velocities are defined by the vector v»2[ p ¢ = ]T € R3. The body-fixed ve-
locities are transformed to the Earth-fixed frame by means of the transformation
matrices, J1(n2) and Ja(n2), that is

m = Ji(n)na
N2 = Ja(na)va
J1(n2) is a rotation matrix, given by
Ji(n2) = CzT,w CZ,eCf,¢ € 50(3)

where the matrix C,  is the rotation of « radians about the a-axis (SO(3) is the
proper orthogonal group of transformations on R3). The matrix J2(n2) is given

by

1 singtanf cos¢gtand
Jo(ma) =1 0 cos ¢ —sin ¢ , cosf #0
0 sing/cosf cosp/cos
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8.2.2 Vessel Dynamics

The motion of a free-floating vessel in 6 degrees of freedom, can be described by

[19]:

Mv + C(v)v+D(v)v + g(n) = Ty +7E+T (8.1)

= Jnv

where we have defined

ala] e [n) [0,

M is the inertia matrix, including hydrodynamic added inertia, C is the Coriolis
and centripetal matrix, D is the damping matrix, and g(7) is the restoring forces
and torques. Tg constitutes environmental forces and torques, inflicted from winds,
currents and waves, T3s is mooring forces and torques, and 7 is propulsion forces
and torques.

8.2.3 PDE for the Cable Dynamics

The equation of motion of a cable with negligible bending and torsional stiffness
is given by, see for instance [52]:

po T _ O s )i, 5)) + Bt 5)(1 4 e(t.5)

where ¢ is the time variable, and s € [0, L], ¥ :[to, 00) x [0, L] — R? and ¢ :[to, 00) x
[0, L] — R3 are distance along the unstretched cable, velocity and tangential vec-
tor, respectively. L is the length of the unstretched cable, pg is mass per unit length
of unstretched cable, T : [tg, 00) x [0, L] — TR is tension, e : [tg,00) x [0, L] — R
is strain and f : [to,00) x [0, L] — R3 is the sum of external forces (per unit
length of unstreched cable) acting on the cable. By introducing the position vec-

tor T :[tg, 00) x [0, L] — R3, we get t = ﬁg—g such that

po 2~ s

8*fr 0 T or -
<1+6$> +f(1—‘r6)

Applying Hooke’s law yields

%7 d e Or -
Pow—a@flo—uea—s) f1+e)

where F is Young’s modulus and Ag is the cross-sectional area of the unstretched
cable.
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External forces

In addition to gravity, a submerged cable is subject to hydrostatic and hydrody-
namic forces, 1.e.

f= f(hg) + f'(dt) + f'(dn) + F(mn)

where f(hg) constitutes the buoyancy (gravity and hydrostatic) force per unit length
of unstretched cable, f'(dt) and f_:(dn) are tangential and normal hydrodynamic drag,

respectively, per unit length of unstretched cable and f'(mn) is the hydrodynamic
inertia force per unit length of unstretched cable.

Gravity and hydrostatic forces Tt is assumed that we can regard each element
of the cable as completely surrounded by water so that

Pec— Puw

fing) = po atep. e)pcg

where g € R3 is the gravitational acceleration, p. is density of the cable and p,, is
density of the ambient water.

Hydrodynamic forces From Morison’s equation, we get the following expres-
sion for hydrodynamic drag per unit length of unstretched cable

, 1 - Hoe npo L AL
f(dt) = —ECDTde ‘V t‘ (V . t)t = §CDTde |Vt|Vt

1
2

- =

I PP 1 o=
Cpndpy ‘v - (v~t)t‘ (V—(¥V-t)t) = —§CDNdpw |Vn| Va

fan)

where Cpr and Cpy are tangential and normal drag coefficients for the cable,
respectively, and d is the cable diameter. The hydrodynamic added inertia force
per unit length of unstretched cable is given by

2 2

fn) = ~Crn o = (8- D) = ~Car o pu
where Cyrn is a hydrodynamic mass coefficient and a : [tg, 00) x [0, L] — R? is the
acceleration. The subscripts n and ¢ on v and a denote decompositions into the
normal and tangential directions, respectively. The motion of slender structures,
such as the mooring lines we are considering here, is drag-force dominated, as
illustrated in Figure 8.2, taken from [18, page 11]. The diameter of a mooring line
is in the order of 10 ¢m, so for wave heights larger than 1 m, Figure 8.2 shows that
viscous forces dominate. However, mooring systems for ships operating in deep
waters may consist of cables of light materials, sometimes not much heavier than
water. In this case, added mass is important. Thus, we will keep the added mass
term in the following derivations, but remark that it may be neglected in certain
applications, as shown in Figure 8.2.
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Figure 8.2: Relative importance of mass, viscous drag and diffraction forces on
marine structures. Taken from [18, page 11].

Formulation of the initial-boundary value problem We have the following
initial-boundary value problem

9t 8(EA e O

PO5E " Bs T e 8_5> —(1+¢€) (f(hg) + f(ary + £(an) + f(mn)) =0 (8.2

with boundary conditions
¥(t,0) = 1¥o(0), ¥(t, L) =7To(L), forallt >tg
and initial conditions
¥(to,s) = To(s), V(to,s) = Vo(s)
Here, ¥ : [0,L] — R3 and v : [0, L] — R3 are initial cable configuration and

initial cable velocity, respectively.

8.2.4 Discretization into Finite Elements

Discretization of the initial-boundary value problem is performed using the Galerkin
method and finite elements. This method consists of the following steps

1. The initial-boundary value problem (8.2) is transformed into the correspond-
ing generalized problem. This is done by multiplying the equation by the
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functions w €V, and then integrating by parts over [0, L]. V is a suitable
space of functions in which to search for a solution.

2. Restriction of ¥ and W to appropriate finite-dimensional subspaces of V,
yields the Galerkin method.

3. Choosing the finite-dimensional subspaces such that they are spanned by
bases consisting of so-called finite elements, yields a particularly simple set
of ordinary differential equations. This is the finite element method.

Generalized problem

We seek a function ¥ €V such that

L
o*’r 0 e OF 2 . -
0

Integrating the second term in (8.3) by parts yields

L
821_" . e or ow
[}

- L
e Or
EA -W = t>1 W 4
[ 01+68 WO 01V_01 VWEV (8)

Equation (8.4) is the generalized problem.

Galerkin projection

The cable is uniformly partitioned into n segments of length [ = L/n, and the nodal
points are enumerated from 0 to n, as shown in Figure 8.3. Thus, the endpoints of
element & are the nodes £ —1 and k. Let V,, be a 3 x (n+ 1)-dimensional subspace
of V. Using the Galerkin principle, we seek a function ¥, : [to,00) x [0, L] — R3
such that 7, € V,, and satisfies

L
e Or, Ow
/(’00 iz W B T R L W)ds_
0
e Or L
Il -~ — > = )
[ T e 0s w0 0, Vt>ty, Yw eV, (8.5)

Let (e1,es,e3) be an orthonormal basis for R3, and define ¢; : [0, L] — [0,1] as
follows, see Figure 8.4:

0 s<(i—1)
1 . . .
a_ ) os—(-1) i—Di<s<il . .
pils) = —lstit1 il<s<(i+1)l " 1=0,1,2,...n

0 (i+1)I<s
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Figure 8.3: Cable configuration with nodal and element indexing.

We now define V), as the span of {¢;;} = {pie;}, i=0,1,2,..,n, j=1,2,3, ¢;:
[0, L] — R3. Note that ¢;; L ¢gm when j # mor |i —k| > 1. Thus, {¢;;} is an
almost orthogonal basis for V,,, with non-zero inner product for adjacent elements
only. The unknown solution can now be expanded in terms of the basis functions

3 n n

Faltys) = 3 S (i) - e)dii(s) = S rmi(B)i(s) (8.6)

j=14¢=0 =0

It follows from the particular choice of basis that the unknown parameters, r;(¢) :
[to,00) — R, in (8.6) are exactly the value of the unknown solution, ¥, (¢, s), at
the nodes, i.e., they are nodal position vectors. Since every trial function w €V,
is a linear combination of the basis functions, and, since rq(¢) and r,(¢) are given
by the boundary conditions, it suffices to apply Galerkin’s principle to the basis
functions {¢rm}, for k =1,2,3,...,n— 1 and m = 1,2, 3. This yields

L

a@za¢k )
/ [ <P0 52 L pion + EAor—— <8s B )) - (1+6)30kf)] ds
0

n

€ 6¢i
—FA r; =0, k=1,2,...,n—1 .
oZ[He‘ 55 “”“] 0 " 8.7

=0

Using orthogonality of the basis functions, and noting that the last term in (8.7)
vanishes, we get

L

k+1 T F e Opi O
L pionds + BEAgr; | —— [ 22 22E ) g 8.8
at2/g0g0k5+ 01/1—}-6(85 65)8 (8.8)
0
L

0

/f 14+ e)erds, k=1,2,...,n—1
0
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0 1 i-1 i i+1 n-1 n

Figure 8.4: The shape of the g-functions yields an almost orthogonal basis.

For the strain, e(?, s), we have the following

23 wilt)eits)

fors € ((k—1DLk], k=1,2,..,n

e(t,s) = —1= %|rk(t)—rk_1(t)|—1éek(t)

which shows that the strain is constant within each element. Evaluation of the
integrals in (8.8) gives the following set of 3x (n—1) 2nd-order ordinary differential
equations, called the Galerkin equation

L. .
p%( Fp_1 + 4 + Try1) + EAg [6—klk _ Gkl 1k+1] =
Ek Ek41
L
/ (f<hg) + far) + fan) +f<mn>) (14 ¢)prds (8.9)
0
k=1,2,..,n—1
where
I, = rp—rp_
1 1
€L = 7|1‘k—1‘k_1|—1:%—1
gy = l(1+€k):|1k|
L
c c — Pw T
/f(hg)(1+@)30kd8 = lpo%[ 00 g]
0 c
and
i 1
/f(dt)(l + e)prds = _§CDpow {
0
ki

1 ) ) ) )
I / |(Fro1ok—1 +Trer) - Lol [(Fro19p—1 + Tror) - L] lrprds
i

(k—1)1



182 Modelling and Control of Moored Vessels

(E+1)1
1 . .
T |(tror + Try19p41) - Ligal
k11
kl
[(Frpr + Trp190p41) - Lota] Ley1prds}
and
L
= 1
/f(dn)(l +e)prds = —5Cpndpu {
0
ki ) ) |
671« / Tr_1Pk—1 + Trior — (101 ;Hksok) =l
€
(E—1)1
. . T 19r—1+ 1T -1
<1‘k—1s'0k—1 + rrpr — (Fe-1n 162 323 klk) prds
k
(k+1)1
3 . . r + 1 -1
n kl+1 Fr o + Fhpt Chpt — ( kP k;1$0k+1) k+11k+1
€kt
ki
. . r + 1 -1
(rksﬁk + 1 Pp1 — ( il k-;1$0k+1) k+11k+1) gok_Hds}
k41
and
L -
- rd?

0

1 “ . w
6 [Extr-1 + 2(ck + er41)Tk + epp1Fr41] —

L [(Fr-1 + 28%) - 1x]1p — L (2F% + Fr41) - loya] 1k+1}
66k 6€k+1

Here, g is the length of the gravitational acceleration vector. The subscripts (hg),
(dt), (dn) and (mn) stand for hydrostatic and gravity forces, tangential drag forces,
normal drag forces, and hydrodynamic inertia forces, respectively. Note that in
this form, algebraic expressions for the drag forces cannot be found. However, in
Section 8.2.6, approximations are introduced that eliminate the need for numerical

integration of these terms.

8.2.5 Existence and Uniqueness of Solutions

In this section we show existence and uniqueness of solutions for a slightly simpli-
fied equation under the assumption of strictly positive strain.

Assumption 8.1 There exists a constant ¢ > 0, such that

i) e(t,s)>c forse|0,L] and for allt > tqo, and;
it) ep(t)>c fork=1,2,...n and for allt > t,.
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Neglecting the added mass term f_:(,.,m), which means that we assume drag domi-
nated behavior, and considering a damping term in the form

- 1 .
fa) = —iCdew |V| ¥

yield the following slightly modified initial-boundary value problem

o5 _pa 0
otz pg Os

e Or Pe— Pw 1 o _
— —g——/1 Cpdpy 8.10
(T ) + Ao - o+ 0 19 (8.10)

with boundary conditions
r(t,0) =1o(0), ¥(t,L)=7o(L), V1 >1g
and initial conditions
T(to,s) = To(s), V(to,s) = vo(s)

Our goal is to apply Proposition 2.1 in [50, page 370], which states local existence
and uniqueness of solutions for symmetrizable hyperbolic systems. Thus, we need
to show that (8.10) is symmetrizable. Define u(t, s) as follows

g ]_.“

_ A oF
ut,s)=| w | = %
us %

Carrying out the differentiation in the first term on the right hand side of (8.10),
the equation, in terms of u, can be written as

ou ou
ou _ , ou 8.11
TR P (810
where
F 1 0 0
_ EAq ( miu] e
Ao(t,s,u) = 0 o ((1+e)3 + 1+eI) 0
. O 0 I
"0 0 0
EA, ulu? e
Ai(t,s,u) = 0 8 po ((1+€)3 ml)
EAq ( w11y _e
L 0 Po ((1+e)3 + 1+€I 0
- s
g(t,s,u) = 0
| 25teg — 5 (14 ¢)Cpdpy [uz]uy

In (8.11), we have multiplied the equation by the matrix Ag, which is symmetric
positive definite for s € [0, L] and for all ¢ > tg under Assumption 8.1 (in fact,
there exists a constant ¢, such that Ag > ¢I >0, s € [0,L], Vt > tg). Notice that
the matrix Aq is rendered symmetric, by means of the symmetrizer Ag. Thus,
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Proposition 2.1 in [50, page 370], provides local existence of a unique solution to
(8.11). However, based on the following arguments, we will conjecture that the
solution can be continued for all time. The Galerkin equation corresponding to

(8.10) is given by

pol
6

—(Fp—1 + 48 + Fry1) + FAg [_lk -

/

k41

f(hg) + f(d) (1 -+ e)gokds

k=12 .. n—1
Defining vy, = t,r = [ 3 1‘5 1{_1 ]T’ and v 2 [ vlT vl vg_l ]T
we have
r _ fl(V) o 1c
2= ] @1
where
fi(v) = v
_ L )
Ba (21— 21) + [(1+ e)pr (g + ) ds
0
L — -
Bdo (21— 21) + [(1+ e)ps (fng) + ) ds
0
fo(r,v) = I\/I,_L1 .
EAg (5:111k+1 — _lk) f(l + e)gok (f(hg) + f(d)) ds
e L. = -
Edo (21, = 2221,1) + [(1+ O)panr (Fng) +F0)) ds
L 0 i
[ 41543 Isxs i
I3y 4I3xs  Iszxs
M, — pol I3y 4I3x3 Izxs
6 .
Isxs 41343  Izxs
L Isxs  4I3x3 |

I5«3 is the 3 x 3 identity matrix. M,, is symmetric positive definite, and, under
Assumption 8.1, f; and f5 are locally Lipschitz in (r,v). The Lipschitz condition
yields local existence of solutions of (8.12), but we can prove more by exploiting
the dissipativity of the drag term.

Theorem 8.1 Foranyn € {2,3,4,...}, let the initial state (x(to), v(to)) = (ro, Vo)
be given. If Assumption 8.1 holds, then there exists a unique solution of (8.12) for
all t > to.



8.2 Mathematical Modelling 185

Proof. Consider the energy function

I e T o V| ~o, Lor
E(1,V)_—17T;(1k +1k_1)~g+§lEA0];ek+§v M, v

Tts time derivative along trajectories of (8.12) is

E = VTM,L\'I +lFE A E eper — ,‘iZ_OPc;icpw E (Vk —|—Vk_1) g
k=1 k=1
n—1 n
€L41 €k .7
= —FA —1; — 1 + EA —1; (v — vp_
01;21 <€k rit k+1) 0];:1 o 5 (Vi k1)

n—1
_lpOMka 1P0Pc PU (vo + vn) - &
c —

Pe

L
+/ 1+e) Zg@kvk f(d)ds
0 :

In view of the boundary conditions, vg = 0 and v, = 0, we get

L
E= /1+e Eg@kvk f(d)ds
. =

Looking at the integral between s = jl and s = jl 4+ 1/2, we have that

jl41/2 — Jl+i/2 ne1
/ (1+e) Zpkvk f(d)ds— ——C’dew / (1+6)Zgok |V| v - Vds
jl k=1 ! k=1
(8.13)
Inserting

into (8.13), and noticing that for s € [j{, (j + 1)!{], only ¢; and ;41 are nonzero,
we get

jl+/2 i
(1 + 6) Z gokvg ~f(d)d8 =
jl k=1
) G+01, 4
3
— 5Cpdpy (U +e)vigs +Vipipinl ds <0

jl k=1
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so that
E <0, Vt>1t,
Therefore, the solution (r(t),v(t)) of (8.12) with (xr(¢g),v(te)) = (ro,vo) stays
forever in the set
W= {(x,v) | E(x,v) < E(ro,vo)}

By continuity of E, W is closed. Since rq and r,, are fixed (boundary conditions),
and M,, > 0, it follows that £ — oo as |(r,v)] — oo. Thus, F is bounded
below (by continuity of E), and consequently, W is bounded. Since W C R6(n—1)
is closed and bounded, it is compact. The theorem now follows from standard
results [29, Theorem 2.4]. ]

Theorem 8.1 implies that u,, € H*([0, L]), for t > to, where H*([0, L]) denotes the
Sobolev space defined by

H:([0,L]) = {u erL?([o, L)) ‘ % € L3([0,L]), 0<1< k}

with the natural norm
=k

||‘1||Hk([o,L]) = Z

=0

o
Os!

L2([o,L])

and u, is given in terms of the finite element basis defined in Section 8.2.4, that
is
o [ reis)
u,(t,s) = | mi(r)2ell (8.14)
i=0 | vi(t)pi(s)
In fact, Theorem 8.1 implies that there exists a constant ¢, independent of £ and
n, such that

HunHHk([O,L]) <e, Vit>tg, n=2,3, ..

Based on the above considerations, along with the results of Chapter 16, Sections
1 and 2 in [50, pages 359-372], we conjecture the following.

Conjecture 8.1 Suppose Assumption 8.1 holds, and that u(0,s) € H*([0, L]),
with k > 2. Then there exists a unique solution u € C([tg,00), H*([0, L])), to the
initial-boundary value problem (8.11). Moreover, the sequence of solutions u, (as
given in (8.14)) of the Galerkin equation (8.12), converges to u in the following
sense

[ —wnllgx o,y = 0 as n — oo

Remark 8.1 We stress the fact that since Theorem 8.1 and Conjecture 8.1 are
stated under Assumption 8.1, global solutions are not guaranteed for all initial
conditions. The problem of finding conditions on the wnitial data under which
Assumption 8.1 holds (for allt > tq), is outside the scope of this work.
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8.2.6 Implementation

Tt is desirable to apply certain approximations to the terms of (8.9) in order to
simplify implementation. Looking at the k' node, we see by inspection of (8.9),
that it takes an advantageous form if the following approximations are applied

]'.‘k_l ~ i‘k, i~k+1zi~k (815)
i;k—l ~ i:k, i;k-}-l%i;k 816)

These approximations are to be taken locally, in the sense that they do not prop-
agate throughout the cable setting all nodal velocities and accelerations equal.
In other words, they represent lumping of the mass onto the nodes. With the
approximations (8.15)—(8.16), (8.9) reduces to the following:

C C 1,17 1,417 .
pol + —_1 (ex +€rt1) ) Inxs — —_1 LI AL I =
2 2 €k Ek41

fk(hg)+fk(dt)+fk(dn)+fk(r)7 k=1,2,..,n—1 (817)
where
fo,, = EAo |2y, -2y,
€k+1 €k
Pec — Pw T
froy = o= [0 0 g]
Cz . lle . 1k+11{+1 .
fr,0 = —— | B L = 4 B Lpgn | — | i
) 2 [ €F 41
C LT . 1,17
fr, = —73 [Ek <13x3— sz)l‘k <13><3— zik>
14117 . | P A .
+erg1 || Isxaz — % rg| | Isxs — % Ty
€r41 €ra1
wd? 1 1
c; = CMNTPw, Cy = §CDTde, C3 = §CDNde

The subscript (r) stands for internal reaction forces. Clearly, in the limit as
n — 00, (8.9) and (8.17) are identical. However, simulations suggest that (8.16)
imposes fundamental restrictions on the accuracy of the model, so (8.16) may be
an undesirable approximation in certain applications. The effect of omitting (8.16)
is a fuller mass matrix, that requires more computations to invert.

8.2.7 Comparison With Exact Solutions of the Elastic Cate-
nary Equations

A simple test of the model is performed by comparing the static solution (&3 =0
and ¥; = 0 for all £) to the exact solution of the elastic catenary given in [52,
Section 1.6]. In this test, L, F, and Ao are chosen to be 2400 m, 2.55 x 10°
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N/m?, and 0.0079 m?, respectively. Figure 8.5 clearly suggests that the finite
element solutions converge to the exact solution as the number of elements is
increased.

8.2.8 Multi-Cable Mooring System

Modelling a mooring system consisting of several mooring lines is now a matter of
assembling the equations from the previous section. For completeness, we will do
this exercise for an m-cable mooring system, where the cables may have individual
characteristics. As before, each cable is uniformly partitioned into n segments, and
the nodal points are enumerated from 0 to n. Let r} € R3 denote the position
vector in Earth-fixed coordinates for the kth nodal pomt of the j** cable, and
define the relative velocity v = ik v(r}) where v.(r}) € R? is the ambient
fluid velocity at the node. The boundary conditions are as follows:

1. The first nodal point 1‘{) 1s fixed for j = 1,2,...,m
2. The last nodal point r/, is connected to a fixed point on the vessel, p/. Thus,

p’ for j =1,2,...,m, are constant vectors given in the body-fixed frame.

This leads to the following set of ordinary differential equations:

MV 4+ DIvi 4k +gl = 0, k=1,2,..,n—1, j=1,2,...,m (8.18)
M/ v, +Dlvl +kl+g, = 0, j=12..m (8.19)
where Mj R3x%3, DJ R3X3, k] € R3 and gk € R3. By defining Ek € R and
IJ € R3 analogous to the previous section, and defining PJ ER3X3 a5
R
1

j
€%

j A
P, =

the terms of (8.18) are given by:

. Cj C]
My = |polj + 2 (e + €hpr)| Taxa — 7 (Ekch + 5k+1Pk+1)
DI = C_é[‘vj.p‘PjJr‘vj.lj ‘Pj ]+
T kYR [ SRRy W]
cior. o .
- || (s - Pi)vi‘ (Taxa — Py)+
hi1 ‘(stg Pk+1)vk‘ (Tsxa = PLyy)|
K = Ej Ao, 6;« — ¥ — €g€+1 lj R
L 1 ik j k+1
ol & Cr41
i j p]c

8 = —YPo— 5 [0 0 ]T
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Figure 8.5: Solutions with 2, 3, 4, 5, 7 and 10 elements (solid line) compared to
the exact solution (dashed line) of the elastic catenary.
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Since the last node of a cable is connected to just one element, the force-terms
with subscript & + 1 vanish from the equations for this particular node. Keeping
this in mind, the terms of (8.19) are given by

M, = (polj + Clel)Isxs — C{el P,
D) = Cg |V£L 1¥L| P/ + Cg@gl |(13><3 - P%)VH (Isxs — Pi)
| Ej A, 5{1 - lj ¥
! lj e, "
i 1 P]c — Puw T
gh = —ghm=——[0 0 g]
Pe

where the constants are defined in the obvious way

nd? N o1
JPUM C% = §C£depw7 C[]«} = =

Ci=cd 17
1 MN 4 9

C{)Ndj Puw

C%T and C%N are tangential and normal drag coefficients for the j!* cable, re-
spectively, and C, y is a hydrodynamic mass coefficient for the gt cable. l; is the
length of each element in the j** cable. All forces are expressed in the Earth-fixed
frame. The position and velocity of the last nodal points are given by

r‘; = 771+J1(772)pj7 .]: 1,2,...,771 (820)
. d .
vi = Ji(n2)vi + 7 (Ji(m2))p’, 7=1,2,....m (8.21)

8.2.9 Coupled Vessel-Mooring Dynamics

When coupling the mooring cables to the vessel, we can safely ignore the inertia,
drag, and hydrostatic and gravity effects in (8.19), that is, the terms involving
MJ,, D/, and g/, since the effect of these terms will be negligible when compared
to the mass, damping and restoring forces of the vessel. Thus, the mooring forces
acting on the vessel will be given by ki , for j = 1,2,3, ..., m, as follows

where we have defined
T 2 [ Ty ] (8.22)
M

Inserting (8.22) into (8.1) yields the following complete equations of motion for
the moored vessel

M7 + C(v)v + D(v)v + g(n)+ [ :ix ] —rp4T (8.23)
= J(n)v (8.24)

M,v,+D,v,+k,+g,=0 (8.25)

M ™M MM
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where we have defined, for notational simplicity, the following quantities for the
n — 1 first nodes

r 1 T r 1 T r 1 T r 1 T
ry Vi ky g1
L1 1 1 1
rn_1 Va1 kn—l gn-1
ry = y Vu = : ) kM = y 8 =
m m m m
ry Vi kf g1
m m m m
L Tp—1 L Vo1 L kn—l d L 8n—-1 U
_ . 1 1 m m
M, = diag{Mj,...M,_;,...M", .. M ,}
_ . 1 1 m m
D, = diag{D;,...,D,_,,.., D" ... D"}

8.3 Simulations of the Coupled System

The following simulation example, using the ABB Integrated Vessel Simulator,
aims to demonstrate the importance of a coupled dynamic analysis of moored
vessels in deep waters as opposed to quasi-static analyses. For simplicity, we will
consider a vessel in three degrees of freedom, that is, the horizontal motion of the
vessel. We assume that the ship has a turret-based mooring system, and that all
cables are connected to the center of turret. The origin of the body-fixed reference
frame is also placed in the center of turret. Furthermore, we assume linear viscous
damping and negligible Coriolis and centripetal forces for the vessel. These are
low speed assumptions, which are common in positioning applications. With these
simplifications, equations (8.23)-(8.25) are reduced to the following

Mo+Dv+ Ik, =T +7 (8.26)
n=Jw (8.27)
MM‘-’M + DMVM + kM +8u = 0 (828)

wheren=[z y ¢ T, v=[u v r]’, MeR™ DeR¥™ and

costp —sinyy 0
J) = siny cosyp 0
0 0 1

ko= 3w [ 0] Eu
ji=1

Open loop simulations (that is, no thruster action is applied) have been performed
in order to compare ship movements in two different cases:

1. Coupled dynamics, that is, the finite element model is coupled to the vessel

dynamics as described by (8.26)—(8.28).
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2000

Figure 8.6: Initial condition for simulation.

2. Quasi-static analysis, that is, the finite element model is replaced by a look-
up table of catenary solutions as a function of ship position.

The input parameters to the model are stated in Table 8.1, and the initial config-
uration of the system is sketched in Figure 8.6.

Figure 8.7 shows that the distance between trajectories in the two simulation cases
exceeds 40 m during the 60 minute simulation. The overall displacement of the
ship is about 160 m, which yields a considerable relative error. The difference in
heading, shown in Figure 8.8, has a maximum of about 20 degrees, but over a short
period of time. Figures 8.9 and 8.10, which show total environmental forces and
torques (7g) for the quasi-static case, and dynamic case, respectively, are included
such that the simulations may be reproduced.

8.4 Controlling Line Tension

The design of a controller for dynamic line tensioning is based on the following
two basic assumptions:

1. A DP system has already been designed for the vessel.

2. The mooring line tensions are measured continuously.
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Table 8.1: Parameters used in the simulation

Vessel parameters

9.6 x 107 0 0
M= 0 1.3x 108 —5.3x 10°
0 —5.3x10° 5 x 10
9.2 x 10° 0 0
D= 0 24 %105  —9.7 x 107
0 —9.7%x 107 1.3 x 10°

Mooring system parameters

L; = 2250
Chp =03
Ciy=1
Ciy=15
pi = 5500 je[l,2,3,4]
ph =27.6
d; = 0.08
Ej Ao, = 230 x 10°
I = 1125 J
vi=1[1950 0 1000 ]"
v2=1[0 1950 1000 |
v3=1]-1950 0 1000 ]"
vi=[0 —1950 1000 ]"

Environmental parameters

Wind velocity: 8m/s, wind direction: 45deg (w.r.t. Earth-fixed z-axis)
Significant wave height: 2m, wave period: 5s

Current velocity: 0.5m/s, current direction: 45deg

Density of water: p,, = 1025kg/m3
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Figure 8.7: Ship movement in the zy-plane for the dynamic case (solid line) and
quasi-static case (dashed line).
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Figure 8.8: Ship heading for the dynamic case (solid line) and quasi-static case

(dashed line).
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Figure 8.9:
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vessel

dp q o ‘ thruster %

—| system q ‘allocation

tension | | mooring ‘
controller| | system ‘ [

Figure 8.11: Block diagram of the moored vessel, with the dynamic line tensioning
system emphasized.

Denoting the commanded force from the DP controller 7., and the mooring force
projected onto the horizontal plane 7,,, we define the thruster force (see Fig-
ure 8.11):

Tthr= Te — Tm

Thus, the performance of the thruster assisted mooring system is exactly that of
the DP system alone. The objective of the dynamic line tensioning controller is
to track 7., such that as little as possible of the commanded force is passed on to
the thrusters. Formally, the control problem is

Problem 8.1 Consider the initial-boundary-value problem

ov 0 e Or
"o Bs (EAreﬂ *

(£hg) + £y + £an) + Emn)) (L+€), s €[0,L] (8.29)

ic:r(0)=ro, r(L)=0, v(L)=][l+e(L)]Lt(L) = ut(L)
where the control input u is related to the cable length L according to

dL_ u
dt 1+e(L)’

and the measurement output is
y= EAge(L) =T(L).
Given a reference tension T,.r, find u(t) such that y(t) regulates to T,.;.
In the problem formulation above, r(L) = 0, which is to say that the DP-system is

assumed to be perfect in the analysis. Deviation from the desired vessel position
is considered noise.
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Criterion 8.1 (Well Posedness) T,.; lies within ¢ certain interval given by the
static line characteristic. Formally; there exists L* € [Lmin, Lmaz], r™(s) (and
thereby e*(s)) such that

0 e* oOr* .
&(EAl—}- o B3 )+f(hg)(1+6)—0, SE[O,L]
r'(0) =ro, r*(L*)=0

is satisfied, and T,.; = EAge*(L*).

Moving the added mass term in equation (8.29) to the left hand side yields:
\‘/t g( € ﬁ)
Js °T+¢0s
(£hg)+Ean)+E(an)) (1 + €)
where

Po 0

M, = rd?
[ 0 po+Cun™py(l+e)

Assumption 8.2 The inertia matriz including hydrodynamic added inertia is
constant, that is: M, =

Proposition 8.1 Under Assumption 8.2, the mapping from u to y is (stale stricily)
passive.

Proof. Take the storage function

Lomax Lmax

1
/ vIM,vds + §EA0 / e2ds
0 0

The derivative of V' with respect to time is:

l\)l»—k

V(v,e) =

L(1)

. 0 e Or
Vo= / Pt T
0

L(1)

/ v - fing) (1 +e)ds +

1
Edpw / (CDT [vi|* + Cpn |Vn|3) (1+e)ds+
0
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Lt Lomax )
% / deg’;)‘ ds (8.30)
0 L(t)
Consider the first term in equation (8.30):
L(t)
86 (EAoliegl)d

L )
[v EAg—— al] /a_v [oy AL

1+e0s Os 14+e¢e0s
0
L(t)
(ar) e Or
= - -EA —ds
b / dt T+ eos
0
L(t)

= /d (L +e)t EAOetds
0

L(t)
d(et
= uy- EAO / E; )etds

L(f)
= uy——EAO / —ds (8.31)

Now, consider the second term in equation (8.30):

L(1)

/ v -fing) (1 +e)ds

d .
= po—=" E/1‘~gds—r(L)~gL =0 (8.32)
0

Now, consider the third term in equation (8.30):

Lmax
VT(S)MC(L)\.I(L)dS
L(t)
e(L) Or Emax

- [v(s).EAoil_i_e(L)&(L) o _
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Lmax
1 de(L)?
= ——EAO/ (L) 4 (8.33)

Inserting (8.31), (8.32) and (8.33) into (8.30) yields:
uy > V(v, e)+ py(v)
where p € [0, 1] and

L(t)

1
U(w) = 5dpy / (CDT lve® + Con |vn|3) (1+ e)ds
Q
| ]

Therefore, a passive controller will ensure stability. For dynamically positioned
and moored vessels the inertia matrix will be slowly-varying compared to the
dynamics of the closed-loop system. Hence, time scale separation suggests that
M.=0isa good approximation (Assumption 8.2). In general, the inertia matrix
will depend on the frequency of the incoming waves, speed of the vessel and strain.
These effects are, however, negligible in an industrial control system [19].

8.5 Simulation of Line Tension Control

A simple simulation has been performed in order to demonstrate the potential
for energy reduction when using dynamic line tensioning. The simulation is sim-
ple in the sense that tidal current is the only disturbance considered. The vessel
parameters are the same as in the previous simulation example (see Table 8.1),
and Table 8.2 summarizes the mooring system parameters and the specified tidal
current. The DP-system described in [21, Section 2.2.3] is used, giving the com-
manded force 7, to the tension controller. The mooring-system consists of m = 4
cables, with anchor points distributed evenly on a circle of radius 2km about the
origin. The commanded force is distributed to the cables in such a way that two
cables having their anchor points opposite each other with respect to the origin
are wound, respectively unwound, at the same speed. This strategy leads to the
following P-controller:

u=—k.B(r. — ™)

where k. is the controller gain, 7. is the commanded force and 7,,, is the measured
mooring force. B is an m x 3 configuration matrix given by the anchor points:

B=[p: p2 - Pm
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Table 8.2: Parameters used in the simulation

I; = 2250 )
Chyp =03
Chy =1
Cliy =1 RS
. 1,2,3,4
pl = 5500 i€l ]
ph =276
d; = 0.08
EjAg, =230 x 10°
— cos(t/6875)
vo(z,t) = | sin(t/6875) = € [0,1000]
0
pw = 1025
rj=1[2000 0 1000 ]"
r7=[0 2000 1000 "
3= —2000 0 1000 ]"
4=[0 —2000 1000 ]"
2

Figure 8.12 shows commanded force from the DP-system compared with the
thruster force. As expected, the thruster force is very small, which means that the
tension controller follows the commanded force quite closely. Figure 8.13 shows
the length of the cables with anchor points on the positive z-axis and positive
y-axis. The length of the remaining two cables are in exact opposite phase to the
ones shown.

8.6 Conclusions

In this chapter, we have developed a new finite element model for a cable suspended
in water. Global existence and uniqueness of solutions of the truncated system is
shown for a slightly simplified equation describing the motion of a cable having
negligible added mass and supported by fixed end-points. Based on this, along with
well known results on local existence and uniqueness of solutions for symmetrizable
hyperbolic systems, we conjecture a global result for the initial-boundary value
problem. The FEM model for the cable is assembled to give a model of a multi-
cable mooring system, which, in turn, is coupled to a rigid body model of the
floating vessel. The result is a coupled dynamical model of a moored vessel, which
can be applied to applications such as turret-based moored ships, or tension leg
platforms. By showing that the mapping from winding velocity of the cable to
the upper end tension is passive, we conclude that passive controllers may be
used for dynamic line tensioning in a mooring system. Numerical simulations
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Figure 8.12: Commanded (dotted) and thruster forces (solid) in the z-direction
(upper graph) and y-direction (lower graph).
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Figure 8.13: Length of cables with anchor point at positive z-axis (dotted) and
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emphasize the importance of having a coupled dynamical model as opposed to
using static cable models, and also demonstrate the potential for lowering fuel
consumption by letting the mooring system compensate for constant and slowly
varying environmental forces. Compensation of fast disturbances should be left to
the thrusters, as tear and wear on the mooring cables will be a limitation on the
actuation allowed from the tension controller.
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(A-LCY' P+ P(A—LC) = —Q. Raghavan and Hedrick [41], and later Rajamani
[42], provided systematic approaches to finding an observer gain matrix L that
satisfies this condition. In two recent papers [5, 6], Arcak and Kokotovi¢ remove
the global Lipschitz condition on f, and instead require a monotonic damping
property to hold. As we will demonstrate, this damping property is of interest in
offshore applications.

The papers by Arcak and Kokotovié, and a recent paper by Loria and Pante-
ley [36], are the main sources of motivation for this work. In [36], the authors
present a separation principle for fully actuated Euler-Lagrange systems that can
be transformed, via a global change of coordinates, into the following form

= J(gv
Mv+wv(q) = 7

where ¢ and v are n-dimensional vectors of generalized positions and velocities,
respectively, M 1s a symmetric positive definite and constant matrix, 7 is the
control input, and J is an n X n matrix as a function of q. In contrast to the nu-
merous references made to ship dynamics in [36], the class of systems described by
equations (9.1) and (9.2) does not include systems where v depends on v. Clearly,
this fact excludes offshore structures and ships from the class, since they will be
subject to Coriolis and centripetal forces, as well as hydrodynamic drag. In gen-
eral, these terms are nonlinear functions of the velocities. As already mentioned,
nonlinearities in the unmeasured states are not trivial to include in the analysis,
and the global output feedback tracking control problem has not been solved for
general Euler-Lagrange systems (the global set-point regulation problem has been
solved, though [12]). In the special case of one degree-of-freedom systems, Loria
[33] presented the first explicit global solution to the problem. In [13], a more
elegant solution to the one degree-of-freedom problem was presented. For higher
order systems, a semi-global result has been achieved in [34].

We extend the class of systems considered in [36] by adding a term, nonlinear in
the unmeasured states, that satisfies the monotone damping property employed
for observer design in [6]. Although this property allows the unmeasured states to
be raised to any power, it ensures that the unboundedness observability property of
Mazenc et al. [38] holds. The observer-controller scheme proposed in this paper,
renders the origin of the error dynamics uniformly globally asymptotically stable
(UGAS). In a separate result, positive definiteness of the linear damping term, or
alternatively, an additional assumption on the matrix J(q), is exploited to obtain
UGAS by means of a simplified control law.

This chapter is based on [3].

9.2 Problem Statement

In the Lyapunov analysis that follows, we will require a monotone damping prop-
erty to hold for the function of the unmeasured states (denoted d in (9.6) below).
More precisely, we require that the function d : R™ — R™ is locally Lipschitz and
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satisfies
(z—y)" P(d(z) —d(y)) >0, Vz,yeR" (9:3)

where P = PT > (. For the special case when d is continuously differentiable, the
following lemma provides a test for this property [40].

Lemma 9.1 (monotone damping property) Suppose d : R® — R" satisfies

ad ad” .

where P = PT > 0. Then, (9.3) holds for d.

We consider systems in the following form
¢ = J(qw (9.5)
Mv+Dv+dv)+v(q) = 7 (9.6)
where ¢, v € R?, M and D are constant matrices satisfying M = M7 > 0 and

D+ DT > 0, respectively, and d(v) satisfies (9.3) with P = I. As in [36] we will
assume that J : R® — R™*™ has the following properties

Property 9.1 J(q) is invertible and satisfies 0 < k; < ||J(q)|| < ks for all ¢ €
R™.

Property 9.2 %J(q) = J(q,q) 1s globally Lipschitz in ¢, uniformly in q, with
Lipschitz constant L ;.

Problem 9.1 (global output feedback tracking control) Consider the sys-
tem given by equations (9.5)-(9.6). Let a desired trajectory, qq : [to, 00) — R", be
given, that has continuous first and second derivatives whose norms are bounded
above by Bq. Find a controller

( = f(t,¢9
T = h(t,(,q)

such that ¢ — qq4, and ¢ — qq, as t — oo.

9.3 Main Results

9.3.1 Observer Design

Copying equations (9.5)—(9.6) and adding output injection terms yield the follow-
ing observer

@ = J(@)p+ Ko (9.7)
Mv + Db + d(2) + v(q) T+ MK,,(¢)§ (9.8)



Chapter 9

Global Output Tracking
Control of Ships

9.1 Introduction

In contrast to the well developed theory of linear systems, results for nonlinear
systems do not apply in general, but are restricted to classes of systems for which
certain structural properties can be exploited. For instance, when only a subset
of the states are available for measurement, simple algebraic tests are available for
linear systems, that, if confirmative, ensure that the problem of output feedback
tracking is solvable by means of an observer in conjunction with a state feedback
control law. Moreover, the observer and the control law can be designed indepen-
dently, a fact which is referred to as the separation principle for linear systems.
For nonlinear systems in general, even an estimate that converges exponentially
fast to the actual state, does not guarantee stability of the closed loop system
when used in a state feedback control law.

Among the first papers on observer design for systems with nonlinearities in the
unmeasured states was one by Thau [51], whose results were later generalized by
Kou et al. [30]. They considered systems in the form

t = Av+gt,u,y)+ f(t,u,z)
y = Cx

where f is assumed to be globally Lipschitz in z with Lipschitz constant 4. They
went on to construct an observer as follows

2= A+ g(t,u,y) + f(t,u,2) + Ly — C&)

where L is the observer gain matrix. Their main result stated that the estimate z
will converge to the true state z, provided that v < Amin(Q)/2Amax(P), where P
and ) are symmetric positive definite matrices satisfying the Lyapunov equation
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with error dynamics, in terms of § £ ¢ — § and # = v — v, as follows

= —Koq+J(q)v (9.9)
= —Ko,(q)§ — M~ [Dv 4 d(v)—d(v))] (9.10)

" Wy

The error dynamics (9.9)-(9.10) are time-varying, since the measurement ¢ is
time-varying. Now, consider the Lyapunov function candidate given by

1

V(t,q,0) = 5 (§" PG+ 0" MD) (9.11)

where P, = PI > 0. Setting K,,(q) = M~1J(q)T P,, the time derivative of V,
along the trajectories of (9.9)—(9.10) is

o 1 . . L -
Volt,q, ) = —EqT(POI&ol + KIP)g+q" P, J(q)v
1
T MK,,(q)§ - 5;7T (D+DT) i — " [d(v)—d(9)]
Since d satisfies (9.3) with P = T, we get

V,(t, 4, ) < —%q“T(POKOI +KIP)i— o7 (D+D")w (9.12)
Clearly, for D + DT positive definite, the origin (§,7) = (0,0) of (9.9)~(9.10) is
UGES, provided that K,, is chosen such that P,K,, + KOT1 P, is positive definite.
Now, what happens if the damping and friction forces cannot be represented by a
positive definite D+ DT | that is, D+ D7 is only positive semi-definite? This is, for
instance, the case for offshore vessels and structures for which the hydrodynamic
drag is modelled by Morison’s equation, and for ships not possessing straight-line
stability. In [36], UGAS and ULES of the origin (¢,7) = (0,0) of (9.9)—(9.10)
is shown by using Theorem 1 in [23] (also in [35]), under the assumption that
the trajectories of (9.5)—(9.6) are uniformly bounded. The idea of this theorem
is to decompose the system into one part, for which the origin is ULES, plus a
perturbation whose norm is bounded, on any compact subset of the state space,
by a linear function of [|§||. Direct application of this theorem requires a global
Lipschitz condition to hold for d, but in our case, d is only locally Lipschitz. A
small modification of the theorem, taking (9.3) into account, resolves this problem.

Proposition 9.1 Let P, = PT > 0, and suppose the observer gain matrices are
chosen according to

0 < PK, +K.P,
Koy(q) = M7'J(9)"P,
If the trajectories v(t) are uniformly globally bounded, then the origin of (9.9)-
(9.10) is uniformly globally asymptotically stable (UGAS) and uniformly locally

exponentially stable (ULES). Moreover, if D+ DT > 0 then it is uniformly globally
exponentially stable (UGES).
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Proof. The UGES part of the proposition is clear from equations (9.11) and
(9.12). We prove the UGAS/ULES part. In reference to Definition 3.3, we need
to prove uniform global stability (UGS) and uniform attractivity. From equations
(9.11) and (9.12), and by the positive definiteness of P,K,, + KOT1 P,, there exists
a strictly positive constant ¢, such that

Vo(ta Qa I;) S —C1 ||q||2 S 0 (913)

So the origin is UGS, which means that there exists a class Ko function, 7, such
that ||z(t)|| < v(||z(t0)||), where we have defined = £ (§,7) to simplify notation.
In order to prove uniform attractivity, we rewrite the system (9.9)-(9.10) as

= f(t,z)+g(t, z) (9.14)
where
B -4+ J(q)v
f(t, =) = [ M) — M1 Do - M [d(v)—d()] ]
and

_1{01§+§ :|
t, = _ - _ -
9(t,2) [—M (g7 Pog + M= ()7

We start by proving that, for any r > 0, the origin of # = f(¢,2) is ULES

for initial states belonging to B,. Define w £ 5(r) and consider the Lyapunov
function candidate V3 : [tg, 00) x B, — R defined by

(" G+ 0" MD) —eq" T(q)P (9.15)

N | —

Vg(t, :L‘) =

Since M = MT > 0, there exist constants ¢, and ¢;, with ¢, > ¢p, such that
e ||2]|* = ed" T(q)p < Va(t,z) < ca||z])” — 4" T (q)7
0, by imposing ¢ < ¢;/kj, we have that
c 3eq
Dol < Valtr) < S0l (L2 € o) x Be  (9.16)

The time derivative of V5(¢, z) along trajectories of & = f(t,z) is

Va(t,z) < = G+ed QM I() G+ J(@M ™" [d(v)—d()]
+eq" J(Q)M ™ Do — T T (q,9)0 + 0T T(9)T G — evT T (q)T T(q)P
< =l - ek} 1117 + ek (| M4 (11> + ek | M| [|d(v)—d(@)]] 1|4

+ (ks M= 1DI + & | (0, )| + 2k ) 1l 151
Notice that since d is locally Lipschitz, we can find a Lipschitz constant, L4, for

d on the compact set B,. Thus, [|d(v)—d(?)|| < La, ||7||. Furthermore, since v(t)
is assumed to be UGB, there exists a constant, b(||v(¢0)|]), such that [|v(#)]] <
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b(|Jlv(to)|]). Thus, using Properties 9.1 and 9.2, we get the following bound on

T(q,9)
|70 < 2i 17wl < Liksb (v(to)l) 2 5,
Defining ¢ = ky HM‘1H La, +ky ||M_1H [|D|| + B + ks, we get

1 1\ 1, . ek?
Vatt, ) < - (5 = k3 101" ) 1 - 5 1 - 532 1ol

= [ L ] [l ]
e ()]

Va(t, z) < —eq |2 (9.17)

. lech?
cz=min | 7, —

Tt remains to show uniform attractivity of the full system (9.14). Consider the Lya-
punov function candidate V : [tg, 00) x B, — Ry defined by V(¢,z) £ uV,(t, ) +
Va(t, z) where p > 0 is to be specified later. From equations (9.11) and (9.16), it
is clear that there exist constants ¢, and ¢}, with ¢, > ¢}, such that

o |
SACNII

If we pick £ such that

then

with

¢ llz)1* < V(t,2) < ¢ [|=||” (9.18)
From equations (9.13), (9.14), and (9.17) we have

- oV
V() < el - e el + | G240

llg(t, 2)Il (9.19)

Using Property 9.1 we can find a positive constant cs, such that

llg(a, v, )l < esllqll (9.20)
Let j;(¢) denote the i column of J(q), that is

()= 1] jile) jo(@) - n(9) ]

The Jacobian of j;(g), %gq), is bounded uniformly in ¢, otherwise Property 9.2

would not hold. Thus, we can find a constant, 3s;, such that

dji(q)
< ; R™
H 94 < Baj, Vg€
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The Jacobian of Va(t, z) is

oy he) = | e G+ PTM =i I(g)
(jrah(qﬂ)

~T .]2(‘1+‘1
= g —ev? | J(g)T + . T M —eq" J(q)

~T 3jr;{q~+<i!
q 37
By noticing that

qTf?h(qH)

QT ]2!q+42
aq ~
o < \V/nBa; 1] < VnpPsjw

Q’Tajf;éq;+4)
and, by using Property 9.1, we get
< (L4 R3) 1l + 2¢ (ks 1M1+ (ks + v/nBojw)) 11711 [17]

2\ ||~
+ (UM + € (ks + V/nBaje)”) 1211
Thus, we can find a positive constant cg4, such that

oV,
‘ 5 (z,1)

Inserting the bounds (9.20) and (9.21), into (9.19), we get

‘ < ey ||| (9.21)

V(t,z) < —61#||<i||2—62||33||2+6364||33||||d||
~ (6364) C3C4
= —aplldl] - II 1+ —=——1ldlI* - ( II II—\/——II qlly?
(6364) C2 2 o
< - (cm— ldl* - 5 Il (9.22)

Thus, for sufficiently large p, V(t, z) is negative definite on [tg, 00) x B,. From
equation (9.18), and the last term in equation (9.22), we conclude that the origin
z = 0 of (9.14) is ULES, that is, there exist strictly positive constants & and 73
such that

()] < k ||z (to)|| e 2 (= 10)

for all t >ty and z(¢g) € B,. Now, given € > 0 (recall that r > 0 is already given),
we have that (3.16) holds with 7'=In (%) /7a. |

Under an additional assumption on J(g), and by following the lines of [5], we can
find an observer that renders the error dynamics UGES, even in the case of only
positive semi-definite D + DT .
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Assumption 9.1 A locally Lipschitz function, ¢ : R™ — R"™, is known, such that

g—j(Q)J(Q)+ (g—j(q)J(q)) >el, YqeR"

for some ¢ > 0.

We will use the knowledge of such a function to perform a change of variables.
Define the new variable as follows

y=v—o(q)

where ¢ satisfies Assumption 9.1. Writing the system (9.5)-(9.6) in terms of ¢ and
y, we obtain

¢ = J(y+ J(0)e(q)
i o= =MD )+l 8(0) + (0 = ) - 5 U@ + T @6(0)
Now, consider the observer
i = T@i+ T@60) + Ko (929
i = =MD+ 6(0) + di+ 6(a)) +1(a) - 7)
~ 52 @i+ T6) + Ko (0)d (920

with error dynamics, in terms of § 2 ¢ — § and § 2 y — ¢, as follows

q = —Ko i+ J(q)7 (9.25)
Zj = _1{02 (q)(i
—M™'Dj— M~ [d(y + ¢(q)) — d(i+ ¢(9))] — g—jJ(q)ﬂ (9.26)

Proposition 9.2 Suppose the observer gain matrices in (9.23)-(9.24) are chosen
as in Proposition 9.1. If Assumption 9.1 holds, then the origin of (9.25)-(9.26) is
uniformly globally exponentially stable (UGES).

Proof. Using the Lyapunov function candidate V,(¢,4, %) = % (QTPocj—l— ;L]TMQ),

and setting K,,(q) = M~1J(q)T P,, the time derivative of V, along the trajectories
of (9.25)(9.26) is

. o 1~ R R 5 y N » N
Vo(t,4,9) = —§qT(PoI&ol + KL PG+ §" PoJ ()i — 57 T(a)T Poi

— 5 (D4 D7) = iy + 6(a)~d( + 6(a))

L (g—jﬂq) +(Srw) ) j
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Since d satisfies (9.3) with P = I, we get

1
i (P, Ko, + KL Po)g— =3

.0t1~7~ < -
Vo(t,q,7) < 5

N| = —_

09 06\ -

T

—J —J

(aq w+(570) )i

In view of Assumption 9.1, UGES of the origin (¢, %) = 0 of (9.25)-(9.26) follows
from standard results [29, Corollary 3.4]. |

9.3.2 Controller Design

Now, moving on to controller design, we define the virtual tracking error as
22 J(Q)0 — qa+ Kpqe
where ¢, £ ¢ — ¢4 and K, + KPT > 0. Then,
o = —Fpto + 2 + T(a)0 (9.27)
and
£ = (g, )i+ J@M™ (7 + MK, (0)i — Do — d(5) - o(q))
—qa+ Kp (J(g)v — 4a)  (9.28)

The theorem below covers the general case, that is, when D+ DT is only positive
semi-definite, and we cannot find a ¢ that satisfies Assumption 9.1. In this case,
we achieve UGAS of the origin of the error dynamics.

Theorem 9.1 Let P, = PI > 0, and set K,, = M~1J(q)T P,. Suppose that the
matrices K,,, K,, and K4, are chosen such that
P, Ko + KL P, > 0
K, = Kl >0
Kgy = K; >0

Then, the nonlinear output feedback tracking controller
r=MJ(@) " {0 = (Kat el T+ 17 T) 2 + G + Kpda

Ky (q)0 = J(q, T(@)0)v }
+v(q) + Do+ d(&) (9.29)

renders the origin & = (§,V,q.,2) = 0 of the error dynamics (9.9)-(9.10) and
(9.27)-(9.28) uniformly globally asymptotically stable (UGAS).

Proof. Inserting the control law (9.29) into (9.28), we obtain
Po= g (Kat lgelP T+ 1207 7) 2

+I @M~ (@) Poii+ [T (a, T (@) = (g, T (0)9)] &
+K,J(q) (9.30)
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The derivative of V. (¢, g., 2) = % ||q€||2 +1 ||2||2 along the trajectories of (9.27) and
(9.30) is

Vet qe,2) = —q! Kpge — 27 Kaz — ||| 121° = 120)*
+2TJ(q)M ™I (q)" Pog + 27 [J(q, J(q)v) = J(g, T(q)p)| ¥
+2T K, I ()0 + ¢ T(q)9 (9.31)

Using Properties 9.1 and 9.2, we get
7 (g, J(ow) = J(a, T09)] o < Lks 120171 111 (9.32)
and, since J(¢)0 = z + ¢4 — Kpq., we get

2l < kg [I2]] + k= | + k-1 Ba (9.33)

where kj-1 is an upper bound on ||J(q)_1H (which exists by Property 9.1). In-
equalities (9.32) and (9.33) imply

T (o) - j(%J(Q)f?)] v < Likrky- (|12 Il + Ba) [zl ]2]]
(9.34)
Substitution of inequality (9.34), along with the inequalities
FIOM T T(@ Poq < kT [ M7 (|Poll[12]] ] (9.35)
TAP ()0 < ky 7| (9.36)
cJr < krllell|7] (9.37)

into equation (9.31), yields

: 1 1 1 ) . -
YA TR T TEANE)
+ (= N2t + Lksky |12 ||u||)
+ (= el 1207 + Lk sk NENED)
1
+ (= o () el + B 17
1 A~
+( PAmin(Ka) 217 + (L jkakg-1Ba + ks >||z||||u||)

where Amin (K+7) denotes the smallest eigenvalue of the matrix K». Upon comple-
tion of squares, one can find a constant ¢ such that

1 1
V(t Qe  2) < —iqe prqe — Ez TRz + e|l(q, )||r) (9.38)

which proves, using standard results [29, Theorem 5.2], that the (g, Z)-subsystem
is ISS with input (¢,7). From the proof of Proposition 9.1, ||(7,7)]] is UGB, so
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it follows from (9.38) that ¢. and z are UGB. Therefore, v is UGB. The theorem
now follows from [29, Lemma 5.6] along with Proposition 9.1. ]

In the control law (9.29) of Theorem 9.1, the variables ¢, and Z are raised to the
third power in order to dominate the estimation error. This may be undesirable
due to practical issues such as measurement noise, saturation in the actuators,
and unmodelled actuator dynamics. The next result covers the case when an
exponentially convergent observer is available, in which case we can achieve UGAS
of the origin of the overall system with less control effort. Moreover, we achieve
exponential convergence to any e-neighborhood of the origin. Before we state the
theorem, we need the following lemma.

Lemma 9.2 Let x = 0 be an equilibrium point for the nonlinear system
t=f(t,z), =2(to) ==z (9.39)

where f : [tg,00) x R™ — R™ is piecewise continuous in t and locally Lipschiiz in
z. LetV :[tg,00) x R — R, be a continuously differentiable function such that

kllz]|* <Vt 2) < ka2 (9.40)
v oV c
o T fhr) < —ksllell" +g(lzl) o (lz(to)ll £ =t0)  (9:41)

YVt > 1o, Yo € R?, where k1, ko, k3, and ¢, are strictly positive constants, g : Ry —
R is continuous, and o is a class KL function satisfying

o0

/a (r,s)ds < ooor (9.42)

to

for some constant 0o,. Suppose that there exist constanis k > 0, and r > 0 such
that k||z||° > g (||lz|]), Y||z|| > r. Then, the equilibrium point x = 0 of (9.39) is
uniformly globally asymptotically stable (UGAS).

Proof. First we show that solutions can be continued for all time. From (9.40)
and (9.41), we get

t

. Ve, V(to, 1 /.
@) < A2 Yoz 1 [t aar (9.43)
k1 k1 k1
to
k 1 ;
< Pl + 5 [alal) o (laoll £ 10)dr
kq kq

to

Define

Br = sup g(||z[))
el <r
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By continuity of ¢ on Ry, 3, is finite. We then get

t

t=t0)+ [ S el dr

to

el < 22 ol + 22

where we have set 0o = o (||z0]|,0), and used the fact that & ||z]| > ¢ (||z||) for
sufficiently large ||z||. Using Gronwall’s inequality [29, Lemma 2.1], it follows that

/87‘0

(t —to)
+’“ﬂ(—n o (¢ 1) + 22 (1 1))

which shows that solutions exist for all £ > #3. We proceed to show that the
solutions are in fact bounded. Since o € KL there exists a time ¢, > %y, dependent
on the initial state, such that o (||zol|, 1« — t0) < 12“—2 Thus, we get

kg (Jz1)
<=2l

c k? c
@I < 2= lloll” +

V < —ksllz]° + ©o Vel >, V>t

Again we have used the fact that k||z||° > g (||z||) for sufficiently large ||z||. This
shows that the set § = {z :||z|| < r} is globally attractive, that is, the distance
between x and S tends to 0 as t — oo, for all initial states zg. Thus, boundedness
of solutions follows. We finish the proof by showing uniform attractivity. Since
the solutions are bounded, given 8, there exists 85 > 0, such that for all ||z¢|| < 5,
[|z(t)]| < Bp for all t > t;. Now, define

By = sup g (|lz]])
=)l <

By continuity of ¢ on Ry, B, is finite. From (9.40)-(9.41), and (9.43), we get

ook [k o
el < g llall+ [ [=E 1N+ o Qe (laoll, 7= )] ar
ks o [k :
< ol + [ =221 + 2o (ool - 10)] ar
b, BaoeeB [ [Lksy e
< g b=l [12 o]

where we have used (9.42) in the last step. Using Gronwall’s inequality, it follows
that

||$(t)||c < < ﬂc ﬁgo'ooﬂ> i’(f—t@)
1
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and finally that

letol < (2o + 7=l oo (9.44)
1 1

Theorem 9.2 Let P, = P > 0 be a symmetric, positive definite matriz, and
set Ko, = M~1J(q)T P,. Suppose that the matrices K,,, K,, and Kg, are chosen
such that

P,K,, +KIP, > 0
K, = KI'>0
Ki = K; >0
If Assumption 9.1 holds (respectively, D + DT is positive definite), then, the non-
linear output feedback tracking controller
r=MJ(g)"" {—qe — Kai + g+ Kpda — KpJ ()i — J (g, J(q)z)):?}
+v(q) + Dv+d(p) (9.45)

renders the origin & = (4,9,q.,%2) = 0 (respectively, & = (§,V,q.,%2) = 0) of the
error dynamics (9.25)-(9.26) (respectively, (9.9)-(9.10)) and (9.27)-(9.28) uni-
formly globally asymptotically stable (UGAS).

Proof. Inserting the control law (9.45) into (9.28), we obtain

i=—q.— Koz + J(@M T ()" Pog + | T(q, T(@)v) — T(q, J(@)9)| & + K, (q)7
(9.46)

The derivative of V. (¢, q., ) = % ||q€||2 —+—% ||2||2 along the trajectories of (9.27) and
(9.46) is
Vilt,qe,2) = —q Kpqo— 2T Kaz + 2T J(q)M = ()T Pog

+27 | T(q, T(a)v) = T(q, T(0)?) | &

+2T K, J ()9 + ¢ T(q)7 (9.47)

Asin the proof of Theorem 9.1, substitution of inequalities (9.34), and (9.35)-(9.37)
into equation (9.47), and noticing that ||z|| < ||¢]| and ||g|| < [|€]], yields

Ve <~ Kpge — 27 Kaz + (c1 €]+ ea lIEIP) 11 21

where we have defined

(>

ky (]{7] ||M_1H ||P0|| —|—Lj]{7J—1,Bd—|—|
9 ij]k]—1(1+|f{p )

c1 K| +1)

(>

Ca
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In view of Proposition 9.2 (respectively, the UGES part of Proposition 9.1), the
positive definiteness of K, and Kg, ensures the existence of a strictly positive
constant ¢, such that the time derivative of V' = V, 4+ V. is bounded above as
follows

V< =cllell + (e Il + ez 1117 11 D)

Proposition 9.2 (respectively, the UGES part of Proposition 9.1) provides the
following bound on ||(¢, 7)]|

(@ 2)I| < Fu ll(d(to), B(to)) ™" <k [J€(ta)]| 77"
where kq and v are strictly positive constants. Thus, we get
V < —clléll” + g(lélolié o)l t = to)
where we have defined
9(p) Z cip+eap®
and
o (p,7) 2 kipe”

Clearly, o is integrable in its second argument on R4. Also, if we pick r = 1 and
ks = ¢1 + co, we have g(p) < kop?, for all p > r. Thus, we can apply Lemma 9.2
to conclude that the origin £ = 0 is UGAS. ]

Remark 9.1 Notice from (9.44), that for any ¢ > 0, we can find a constant k.,
such that

k

2()]] < ke [lz(to)]| e ) v [le(t)]| > e

In other words, we have exponential convergence of the trajectories of (9.25)—(9.26)
(respectively, (9.9)-(9.10)) and (9.27)-(9.28) to any e-neighborhood of the origin.

Remark 9.2 Notice that in both theorems above, a separation principle holds in
the sense that the proposed controller, which clearly stabilizes the system when the
full state is available, in conjunction with the proposed observer, renders the origin
of the overall system UGAS. In addition, the controller gains and the observer
gains can be chosen independently of each other.

9.4 Examples

Example 9.1 Consider the mass-spring-damper system

mi +dyz +dy |2 +ds 2|’ 2+ dy |22 2+ -+ d 277 2+ k(z)z = u (9.48)
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where m > 0, dy, da, ds,...,d, > 0, n € N, k(z) is a spring constant (possibly
nonlinear), and u is the control inpul. Defining v = 2, and q = z, (9.48) can be

written in the form (9.5)-(9.6) with

J@)=1, M=m, D=d,
dv)=dy|vlv+dsv)*v+dalvf v+ -+ do v v, v(q) = k(q)g, and T =u

It is clear that J(q) satisfies Properties 9.1 and 9.2, and since d/du(|y|i v) =
i+ 1))y >0 for allv € R and for all i € 1,2,...,n, d(v) satisfies (9.3) by
Lemma 9.1. Thus, Theorem 9.1 s applicable. Clearly, if di > 0 then Theorem 9.2

1s also applicable. In fact, Theorem 9.2, is applicable for dy = 0 as well, since
Assumption 9.1 holds (pick ¢(q) = q).

Example 9.2 (omni-directional intelligent navigator (ODIN)) ODIN is a
spherical autonomous underwater vehicle developed at the Autonomous Systems
Laboratory at the University of Hawaii [17]. Motion on a horizontal plane (con-
stant depth) is governed by [28]

ME+COE+DE)E =

o= Jnk
where
[2m 0 0 0 0 —2mv
M = 0 2m 0 , C&) = 0 0 2mu
| 0 0 %waE‘ 2mv  —2mu 0
[ di |(u, v)] 0 0 ey —sy 0
D) = 0 dy |(u, v)| 0 , Jm)=| s ep 0
L 0 0 dy[r| + da 0o 0 1
E=[u v r]T is the velocity in body-fired coordinates, n = [z y ¥ |7

1s the position and orientation in earth-fived coordinates, and T is the control
mput. sy and cip denote the sine of ¢ and cosine of 1, respectively. M 1is the
mass matriz including hydrodynamic added mass, C' is the Coriolis and centripetal
matriz including hydrodynamic added mass, and D is the hydrodynamic damping
matriz. m and R are the mass and radius of the ODIN, respectively. d:, di and
dy are positive constants for the hydrodynamic damping forces, and p is the water
density. This system fits directly into the form of (9.5)-(9.6) by settingq =n, v =
& v(q) =0, and d(v) = (C(v) + D(v))v. J(n) is orthogonal, and clearly satisfies
Properties 1 and 2. However, d(€) does not satisfy the condition of Lemma 9.1,
and in particular, it can be shown that (9.3) does not hold. This problem is resolved
by transforming the equation of motion into earth-fized coordinates as follows

My = JW)MIT(¢) =M
0 2m1/.) —2my

J(W) [C&) = MIT(O)T)| T (W) = | —2myp 0 oImz
2my  —2mz 0

Cy (1)
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Dy (n,9) = J(¢) [DE)] T ()
cpdy lul + s*Pdy [v| sy Ju| — speypdy vl 0
= | svepdy |u] — spepdy [v] sPdy |u] + cPopdy [ 0
0 0 i |4 + ds
where we have kept u = zcyp + ysy and v = —xsp + ycip in the expression for D,

for notational simplicity. Defining ¢ = 1, and v = 1), the elements of (9.5)-(9.6)
become

2m 0 0 0 0 0
J@ = I, M=| 0 2m 0 . D=]00 0
0 0 18—57rpR5 0 0 ds
edy |ulu — sdy |v| v
d(q,v) = [Cyw)+ Dy (g, v)]v = | ¥delulutcidilofv | gy =0
dy ||

The fact that q appears in the expression for d, does not present a problem, since q
is measured. In order to apply Lemma 9.1, we need the Jacobian of d (with respect
to v) which is

2c2apdy |u)| + 25%d, [v]  2svpeipdy [u] — 2svpepd, |v] 0

9d _ | 2syeridy |u| — 2sctpdy Jo]  2579dy u] + 2¢7yd, Jol 0
v 0 0 24, M
so we get

od] , [2d]"
v v
detipdy [u| + 4s%9dy v dspepdy |u| — dsipepdy |v| 0

dsperpdy |u| — dsperpdy [v|  4sZpdy [ul 4+ detapdy |v| 0 (9.49)
0 0 4d, M

Since all the principal submatrices of (9.49) have nonnegative determinants, (9.49)
is positive semi-definite for all (z,y,v) € R3 (and for all ). Therefore, by
Lemma 9.1, (9.3) holds for d with P = 1. We can now apply Theorem 9.1.
D is not positive definite, but Assumption 9.1 holds (simply choose ¢ equal to the
identity on R3). Thus, we can also apply Theorem 9.2. Based on Theorem 9.2,
we construct the following controller

[ ]
q

N Koy +1 0 0 0] qa
M='P,—2] —K - K4K, I+K4K, K I || qa
qd

2
—
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Figure 9.1: Simulation of output tracking of the ODIN. The desired trajectory
(dashed line) is constant velocity of 1.5m/s on a circle with radius 5m, starting
in the location (z,y) = (5,0) at t = 0. The desired heading is in the direction of
travel. Trajectories of the ODIN are shown for three different initial conditions:
1) (Iay; 1/}) = (_10;0;0); 2) (Iayal/}) = (0,0,0); and 3) (:an; "/)) = (10;0;0) The
initial velocity is zero in all cases. The initial condition of the observer is zero
position and zero velocity. A box is plotted at the desired position for seven time
instances. At the same time instances, circles with arrows are plotted indicating
the position and heading of the ODIN.

T=d(y+q)+(D—- MK)y
q

+[ D-M({I+K+KiK,) M{+KsK,) MK M ] gd
d

qa

where K = Kp,+ Kq4. Sitmulations (see figure 9.1) confirm that tracking is obtained
for this test case. The numerical values used in the simulations are summarized
below (the physical parameters for the ODIN model are taken from [28]).

R=0.3m, m=150kg, p= lkg/m?,
2
d; = 48N ( ) , di = 80Ns%/m, and dy = 30N,

s
m

K, =1, P,=1, K,=10I, K4=05I
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9.5 Conclusions

In this chapter, we have addressed the problem of output feedback tracking con-
trol of a class of FEuler-Lagrange systems subject to nonlinear dissipative loads.
By imposing a monotone damping condition on the nonlinearities of the unmea-
sured states, the common restriction that the nonlinearities be globally Lipschitz
is removed. The proposed observer-controller scheme renders the origin of the er-
ror dynamics uniformly globally asymptotically stable, in the general case. Under
certain additional assumptions, the result continue to hold for a simplified control
law that is less sensitive to noise and unmodelled phenomena.
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Appendix A

Coefficients for the
Ginzburg-Landau Equation

The numerical coefficients below are taken from [103, Appendix A], with modifi-
cations given by [84].

Re, = 47 (A1)
' = 1.183—0.031: (A.2)
wi = 0.690 4+ 0.080i + (—0.00159 4 0.004477)( Re — Re.) (A.3)
kb = 1.452—0.844i 4 (0.00341 4 0.0117)( Re — Re.) (A.4)
wh, = —0.292i (A.D)
Wi = 0.108—0.057: (A.6)
kL = 0.164 —0.006: (A7)
1
wo(z) = wh+ Ew;x (z— mt)2 (A.8)
ko(z) = kb+kL (CL‘ — :Et) (A.9)
ar(z) = —wjyko(x) (A.10)
1
ay = —iiwik (A.11)
az = —0.638+0.191i4 (0.0132 — 0.00399¢) (Re — Re.) (A.12)
1
as (z) = <w0 + §wtkkk8 (.r)) i (A.13)
as = —0.0225+ 0.0671:. (A.14)
Based on these parameters, we obtain
ag, (r) = 0.24289—0.003212 (Re — Re.) + 1.752 x 1073z (A.15)

ar, (z) = 0.36739+0.00099572 (Re — Re,) +4.7888 x 1072z (A.16)
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Coefficients for the Ginzburg-Landau Equation

(l32
ar
a33
ar

AR, (I)

ar, (z)

aR,

ar

—0.146
0

—0.638 + 0.0132 (Re — Re,)

0.191 — 0.00399 (Re — Re.)

9.3917 x 1072 —5.4541 x 107* (Re — Re.)
—1.5968 x 107° (Re — Re.)* — 1.198 5 x 10~ %
+1.8257 x 107* (Re — Re.) x + 3.2422 x 10~ %2?
0.45783 +1.6230 x 1072 (Re — Re.)

+1.0953 x 107° (Re — Re,)* — 0.168 04
+5.2079 x 107* (Re — Re.)z + 5.3713 x 107 %z?

—0.0255
0.0671.

(A.17)
(A.18)
(A.19)
(A.20)

(A.21)

(A.22)
(A.23)
(A.24)



