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Abstract. This paper investigates the possibility for reduction of sample size for 

inspection of two-point diameters with a coordinate measuring machine, by use of 

statistical methods. The statistical methods implement the parametric and non-

parametric statistic. As confirmed by the simulation results it is possible to keep 

the 95% confidence level with a relatively small data sample. A low sample size 

would be especially important for an operative online dimension inspection with 

CNC machine and immediate correction of a suspected part.  
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1 Introduction 

The main goal of Geometrical Product Specifications (GPS) inspection is to 

verify that the geometry and the dimensions of a part are inside of the tolerance 

limits specified by the drawing requirements, with some given confidence level. 

One of the important parameters of a measuring strategy in a  coordinate measur-

ing machine (CMM) is the number of the measuring points [1]. On one hand, a 

large sample size provides a better accuracy. On the other hand, a large sample 

size increases costs and time consumption in CMM inspection. The necessary 

sample size depends on many factors such as tolerance type (form, dimension 

etc.), magnitude of deviation from the desired value, and its ratio to the tolerance 

interval. Thus, the proper choice of an optimal number of measuring points is a 

nontrivial task. 

Different approaches were suggested to discover the sample size problem. Par-

ametric statistic principles based on the normal distribution of the measured varia-

ble has been suggested [2, 3]. A fuzzy logic approach to reduce the number of 

measuring points with CMM was proposed by Cappetti et al. [4]. Other approach-
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es with genetic algorithms [5], adaptive sample strategy with Kriging models [6] 

and combinations of analytical methods with uncertainty simulations [7] has been 

applied to solve the measuring strategy problem. 

In a previous paper, the authors estimated the optimal sample size for detecting 

95% of the radius variation range (roundness form deviation of cylinder cross-

sections) with 95% confidence level [8]. 

In this paper, we have investigated reduction of number of measurements in 

two-point size verification of a circular feature. According to ISO 14405-1 [9], 

“the two point size is the distance between two opposite points on an extracted in-

tegral linear feature of size”. The two-point size of the cylinder is also called 

“two-point diameter”.  The two-point size of a circular feature is illustrated in 

Fig.1. 

 

 

Fig. 1. Two-point diameter: a-actual cylinder; a’- section profile; b, b’-Gauss associated cylin-

der; c, c’- axis of Gauss associated cylinder; d-cylinder median line; e- Gauss associated circle 

(of section); f- Gauss associated circle center of e; g-actual local size (two-point diameter), the 

straight line between two opposite points P1 and P2, which goes through the center f 

Research in the sample strategy field is generally focusing on the evaluation of 

geometrical form deviation (e.g. roundness, flatness) [5, 7, 8, 11]. In this paper: 

we consider the case when the diameter tolerance band is assumed to be larger 

than the variation of the two-point diameter in one single part. The parameters of 

interest in part inspection is the mean value and the variation of the two-point di-

ameter. 

2 Method and Material 

We use the statistical hypotheses test approach to analyse the measurement data 

from CMM. The data sets need to be standardized and estimated before they are 

further applied for simulation. The more detail description is given bellow. 

2.1 Experimental data 
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In this case study, we have inspected an internal cylinder of an aluminium 

workpiece with the internal diameter 60 mm and the length 130 mm. The meas-

urements have been performed in a Leitz PMM-C-600 coordinate measuring ma-

chine with an analogue probe. The least square cylinder method has been used to 

establish the cylinder axis, which is the z-axis in the coordinate system. Three 

cross sections (A, B, C) were measured, the first on the top, the second in the mid-

dle and the third on the bottom respectively. There are 500 measuring points in 

each cross-section, and 250 diameter values 
iD  were calculated: 

2 2

250 250( ) ( )i i i i iD x x y y     ,  i = 1...250 (1) 

For simplicity of presentation and further data processing, the array 
iD  has been 

transformed into ( ) 1000i iD D    , where D  is the mean value of the diameter 

in each cross-section. We make an assumption that all the lines, which connect the 

two opposite points agree with two-point diameter definition terms shown in 

Fig.1. 

In order to derive the distribution shape of probability density function (pdf) 

( )f   of standardized variable 
i , the kernel density estimator (KDE) has been 

used [12]: 
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We have applied the Epanechnikov kernel K , the default MATLAB bandwidth 

b , and the sample size n  with 250 variables 
i . The estimation results of pdf 

( ), ( ), ( )A B Cf f f    for all three cross-sections are shown in Fig.2. 

 

Fig. 2 The KDE ˆ ˆ ˆ( ), ( ), ( )A B Cf f f   based on 250 standardized diameter variables, and the 

adjusted normal distribution 

At this point, for further purposes, we need to adjust the standard deviation
0  of 

the normal distribution in such way that the six-sigma interval could cover any of 
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the cross-section variation ranges. In the same time, we want this value as small as 

possible to avoid an unnecessary reduction of the tolerance interval. In this partic-

ular case study, the standard deviation 
0 1.6   μm has been chosen. The pdf ob-

jects with estimated parameters will be further used in simulation for generating of 

random measurements of workpiece to evaluate the influence of the sample size 

on the two-point diameter verification. 

2.2 Statistical method and simulation 

In order to estimate the influence of the sample size, we are apply the sta-

tistical hypotheses test with a test statistic criteria and pre-specified significance 

level [13]. First of all this method tests the sample strategy, which was exploited 

for the CMM inspection. By other words, we establish the statistical method to 

evaluate if the chosen sample size are sufficient or not. Next, we consider if such 

method can be applied for verification of the two-point diameter. We are applying 

the conventional two-sample hypotheses test for solving of a nonstandard problem 

with some small modifications. The principle of these modifications is illustrated 

in Fig. 3. An example of unknown non-normal distribution of the workpiece di-

ameter variable are depicted as 5, 6, and 7. As long as we do not know in which 

direction from the nominal size the deviation of the workpiece size can occur in 

advanced, then the two independent hypothesis tests must be prepared. However 

only one of them will be carried out for each single case.  

 

Fig. 3 Statistical hypothesis tests for verification of two-point diameter: 1-lower tolerance limit; 

2-upper tolerance limit; 3-upper Gauss (null hypothesis); 4-lower Gauss (null hypothesis); 5-

KDE object with large deviation; 6-KDE object with medium deviation; 7-KDE object with 

small deviation; 8-lower boundary of the statistical test; 9-upper boundary of the statistical test 
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The mean values of both normal distributions are located in such way that the dis-

tance between one of the means and one of the tolerance limits (1 – lower, 2 – up-

per) equals to 
03  on each side as shown in Fig.3. The cases when the sample 

mean is below or above the mean of the Gauss curves (Fig. 3) correspond to the 

null hypotheses 0 0

L UH or H . When one of the null hypotheses is accepted then the 

special procedure with large number of points will be suggested. Thereby, the 

method does not reject a part, but it recommends larger sample size when it is 

necessary. 

As it was recently noticed, we need to test only one of the two hypotheses 

at the same time either for the lower tolerance (LTL) or for the upper tolerance 

limit (UTL). We consider the tolerance H7 for 60 mm diameter hole as an exam-

ple, according to ISO 286-1 ( 0, 30EI ES    μm) [14]. As long as the diameter 

variable 
iD has been transformed, it has simplified a calculation of the tolerance 

limits: LTL EI  and UTL ES . Then the theoretical mean values are: 

0 03L LTL    for the null hypothesis 0

LH and 0 03U UTL    for 0

UH (the 

lower and the upper tolerance limits respectively). Thereby the tested hypotheses 

0

LH  or 0

UH  are formulated in this way: the sample mean of measurements is 

equal to the one of theoretical means of the normal distributions 0 0( , / )LN n  , 

0 0( , / )UN n    either 0

L

S   (for 0

LH  ) or 0

U

S     (for 0

UH ), hence the al-

ternative hypotheses 1

LH or 1

UH  are 0

L

S   or 0

U

S   respectively. We use the 

sample mean 
1

1
n

i

i
n

 


   (to estimate S ) as the test statistic. The sample mean 

is computed from the sample data generated by KDE, which has unknown non-

normal distribution ( , )S SK   . The alternative hypotheses 1 1,L UH H  assume that 

the variation range of the sample data is inside of the critical range
kV . Then the 

critical range is defined with the lower bound 
L

k  for the LTL and the upper 

bound 
U

k  for UTL respectively by: 

2

1 0 0/L L

k u n     ,    (3) 

2

0 0/U U

k u n     ,    (4) 

where u and 
1u   are the quantiles of levels  , 1   respectively for (0,1)N , 

and n  is the number of observations. We have used the level of significance 

0.05   in the statistical simulation (i.e. 
0.05 1.645u    and

0.95 1.645u  ). 

3 Simulation Results 
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By using two-sample tests of hypotheses, we must be aware of the significant 

tolerance interval reduction especially for the small sample sizes. The computed 

results for the boundaries and the critical range  (Eq. 3 and 4) are shown in the Ta-

ble 1. 

Table 1. Reduction of 60mm H7 tolerance interval (
00.05, 1.6    ) 

Sample 

size 

Lower bound, 

μm 

Upper bound, 

μm 

Critical 

range, μm 

Tolerance 

reduction,% 

5 6.0 24.0 18.0 40.00 

10 5.6 24.4 18.8 37.33 

15 5.5 24.5 19.0 36.67 

20 5.4 24.6 19.2 36.00 

30 5.3 24.7 19.4 35.33 

40 5.2 24.8 19.6 34.67 

50 5.2 24.8 19.6 34.67 

60 5.1 24.9 19.8 34.00 

After the boundaries of the critical range are established, we can proceed with 

simulation. A number of N = 510 iterations have been simulated for each sample 

size in . We consider the deviation of the mean 
S to the LTL as denoted with 5 

and 6 in Fig.3. Then three different kernel distributions have been simulated for 

the mean difference L

j with the following values 1 0

L  , 2 00.5L   , and 

3 0L   such that 0

L L

S j    . The sample mean  was comparing with either 

the low bound 
L

k  or the upper bound 
U

k  Table 1. When the conditions of 

L

k   or 
U

k   are fulfilled, the iteration assigned as 1 (0 otherwise) and 

summed up as the counters 0

LC or 0

UC , then the rejecting rates 0

L  or 0

U were cal-

culated as 0 /LC N  or 0 /UC N  respectively. The simulation results for each cross-

section A, B and C are presented in Table 2, 3 and 4 (simulation results for the 

opposite side UTL are similar and not presented in the paper). 

Table 2 Rejecting rates 
L

0η of the sample mean location for the Section A 

Mean 

difference, 
L

j
  

Sample size, n  

5 10 15 20 30 40 50 

1 0

L
   0.78 0.98 1 1 1 1 1 

2 0
0.5

L
    0.22 0.46 0.65 0.79 0.93 0.98 1 

3
0

L
   0.02 0.02 0.02 0.02 0.02 0.02 0.02 
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Table 3 Rejecting rates 
L

0η  of the sample mean location for the Section B 

Mean 

difference, 
L

j
  

Sample size, n   

5 10 15 20 30 40 50 

1 0

L
   0.82 0.99 1 1 1 1 1 

2 0
0.5

L
    0.21 0.46 0.66 0.82 0.95 0.99 1 

3
0

L
   0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Table 4 Rejecting rates 
L

0η of the sample mean location for the Section C 

Mean 

difference, 
L

j
  

Sample size, n   

5 10 15 20 30 40 50 60 65 

1 0

L
   0.75 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

2 0
0.5

L
    0.29 0.47 0.63 0.75 0.88 0.95 0.98 0.99 1.00 

3
0

L
   0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

4 Discussion of results 

There are four important categories of the measurements regarding to the simula-

tion results of the data mean
S location. The first category G  (good parts) corre-

sponds to the intersection of two subsets   0 0 0 0

L U

S S           . The 

second category T  (transitional parts) includes the subsets  0 0 0

L L

S     

and 0 0 0

U U

S      , and the third category S (suspected parts) belongs to

 0

L

S  and  0

U

S  , which equivalents (according to the terms in section 

2.2) with the fourth category F (fail parts) of subsets  S LTL   and 

 S UTL  . Obviously, all the boundaries are fuzzy but they help to clarify the 

simulation results. For illustrational purposes, we presume a uniform distribution 

(0,30)U  of the manufacturing process over a long time period. The tolerance in-

terval can be illustrated as follows in Fig.4. Thus, the content of each region (

, ,S T G  respectively) can be easily evaluated: 

0 0 0 0

0 0 0

3 4

0 3

1 1 1
0.16, 0.05, 0.57

30 30 30

U

L

du du du

   

  





      (5, 6, 7) 
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A correct decision about the data mean location 
S  for the S category can be de-

fined at least with 95% probability (the accepting rate 01 L , 3 0L  ) even with 

the five-observation sample size. Moreover, the solution is independent on the 

sample size. 

Fig. 4 The dimension tolerance interval based on the uniform distribution assumption 

 

Similar for the G category, the correct conclusion about a low deviation of the 

mean value can be done at least with 95% probability (the rejecting rate 0

L ,

1 0

L  ) for the ten-observation sample size. 

According to Table 2, 3, 4 ( 2 00.5L   ), for the transitional category T , the 

large sample over 40 observations might be required to confirm the compliance of 

the size with the tolerance limits with 95% CL. Nevertheless, the T  regions are 

only 10% regarding to (6) relative to whole the uniform distribution (Fig. 4). Even 

by using the 10 observations sample (corresponds to 20 measuring points for the 

two-point diameter), we are still able to make the right decision in about 45% of 

the cases. Namely, the total percentage will be below 10% of all possible issues. 

5 Conclusion 

In this paper, we have investigated the number of required points in measurement 

of two-point diameter, and performed a case study on a part with 60 mm diameter 

and H7 tolerance. The reliability of the method strongly depends on the proper 

choice of the six-sigma range. The method reduces to some degree the tolerance 

interval size (acceptance interval), but it is compensated by the significant mini-

mization of the sample size, more than in 4 times relative to [8] (for approximately 

89% cases estimated with (5) and (7) with the assumption of the uniform distribu-

tion of the process, Fig. 4). Such reduction of the sample strategy will be in high 

demand for online inspection with CNC machine, where the suspected part can be 

corrected immediately. 
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