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Abstract: A correct loop closure detection is an important component of a robust SLAM
(simultaneous localization and mapping) system. Loop closing refers to the process of correctly
asserting that a mobile robot has returned to a previous visited location. Failing to detect a
loop closure does in general not pose a threat to the positioning and mapping system of a
robot, but a wrong loop closure can lead to drift of the robot and can therefore jeopardize the
robot’s mission. In this paper a robust, highly parallelizable standalone algorithm for globally
detecting loop closures is proposed. The algorithm is purposely built with the goal of avoiding
false positives, while maintaining reasonable true positives performances. Tests conducted on
the KITTI and the Scott Reef 25 dataset show that when bag-of-words approaches perform
poorly, our presented approach is able to avoid wrong loop closures.
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1. INTRODUCTION

Loop closure detection is an important task linking to-
gether the localization and the mapping in the SLAM
process. Loop closure detection makes it possible to reduce
drift, perform relocalization when tracking is lost and
allows to reconstruct the true topology of the scene.

Loop closure detection for visual SLAM is currently mainly
based on bag-of-words models Engel et al. (2014) Mur-
Artal et al. (2015) Cummins and Newman (2011), these
have been proven to work very well in practice, but most
of the time these algorithms are employed in indoor or
urban environments. Early work in loop closure is linked
to EKF-SLAM and the use of a validation gate! for data
association Bailey and Durrant-Whyte (2006), which make
use of the state estimation and can easily result in a wrong
data association.

In this paper a method for loop closure that does rely only
on images is presented, in this way a global identification of
loop closures occurs, decoupling the drift in position esti-
mation from the performance of the loop closure detection
system. This method is independent from other compo-
nents of a general SLAM system, allowing it to be further
modified and plugged easily into a motion estimation and
mapping algorithm to generate a SLAM algorithm. As this
is an image-to-image method for loop closure detection
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1 After the prediction step in EKF-SLAM a prediction of the
measurement is performed, this yields to a value-range in sensor
space where to expect an observation. The area is called validation
gate and is used to narrow the search and exclude other potential
matches

that does not use any information about the estimated
position at the time images are received, this method does
suffer from the problem of perceptual aliasing, i.e. for equal
sensed images captured at different positions within the
environment (repetitive patterns in the environment), the
algorithm will relocalize to the coordinates where the first
image instance has been captured, thus indicating a wrong
loop closure.

2. RELATED WORK

Early attempts in the field of visual SLAM implemented
loop closing, but not in a global way. The keyframe based
SLAM method called PTAM Klein and Murray (2007)
does provide loop closing based on the correlation of
thumbnails of the keyframes, but this does not allow to
perform large loop closures. Another popular keyframe
based method for SLAM called ORB-SLAM Mur-Artal
et al. (2015) is able to perform global loop closure detec-
tion, but the process is quite complex and involves many
variables relative to the current state of the SLAM algo-
rithm. An equally notable large scale monocular SLAM
approach that provides global loop closure detection is
LSD-SLAM Engel et al. (2014), which similarly to ORB-
SLAM uses a bag-of-words approach for finding loop clo-
sure candidates.

One of the most notable works in appearance based local-
ization is FAB-MAP as presented in Cummins and New-
man (2008) Cummins and Newman (2011). The authors
propose a probabilistic approach for solving the problem
of recognizing places based on visual words and learn a
generative model of place appearance.

Current state-of-the-art monocular SLAM approaches
consist of depth prediction based methods exploiting con-
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volutional neural networks Tateno et al. (2017) Ummen-
hofer et al. (2017). Such approaches, thanks to the learned
priors about the shape of the objects, are able to provide
a dense 3D reconstruction, with very low noise. Notably
they are the first kind of monocular SLAM ? that work in
true scale?, but still they don’t provide any loop closure
detection mechanics.

Williams et al. (2009) compares several types of loop
closure detection for monocular SLAM: map-to-map,
where correspondences are sought between features in two
submaps, image-to-map where correspondences are sought
between the latest frame from the camera and the features
in the map and image-to-image, where correspondences are
sought between the latest image from the camera and the
previously seen images. They conclude that image-to-map
systems perform best because such methods use as much
information as possible, especially when combining image-
to-image information and image-to-map information, but
they have the problem of scalability. In a more recent
survey Lowry et al. (2016) concluded that it is still a long
way towards an universal place recognition system, but
deep learning based techniques are the most promising at
the current time.

3. APPROACH

The goal of this work is to build a standalone, global and
highly reliable loop closure detection algorithm for monoc-
ular SLAM applications. The term standalone indicates
the independence of the algorithm from other software and
hardware systems in the robot. With the term global we
indicate the ability to recover a loop closure independently
from time and current position estimation. The term reli-
able means that the loop closure detection has to be robust
and correct. For achieving a standalone algorithm only the
images captured by the camera (and eventually the camera
parameters) and the current single or multiple estimation
of the position are exploited.

To achieve globality the information which can be obtained
from the camera must, at least partially, retained within a
database. Then the information or features coming from a
new image has to be matched with the information stored
previously in a database in order to detect a loop closure.
To achieve reliability we employed a multi-step process
where only images looking similar to each other were
processed exploiting a robust point-wise matcher, which
is robust regarding intensity changes.

A practical implementation of an algorithm would start by
selecting the input images that will be further processed,
since not every image contains useful information that
can be exploited for re-localization (for example images
where only a white wall is present). In addition, the image
information database benefits from maintaining only rele-
vant information, increasing its robustness and reducing
the time needed for search operations. The processing
then proceeds with an information extraction procedure
followed by a matching procedure for identifying loop
closure. After the matching attempt the obtained image

2 Except inertial sensors aided visual SLAM

3 The scale of the world cannot be observed and drifts over time in
monocular SLAM, being one of the major error sources Engel et al.
(2014)

information is also stored in the database, together with
the single or multiple position estimation at the time when
the image has been captured.

Considering related work, we can observe that feature
based image matching methods have proven to be robust
to scale, rotation, shift and illumination changes, but it’s
not computationally efficient to search for a similar image
in a large database. Visual word based methods, thanks
to the inverted index, provide a way to use features to
search for similar images in a large database in a much
more efficient way. However, one of the problems of visual
words methods is that they require the generation of a
vocabulary, which depends on the images supplied in the
training phase. Another problem is that a match based
only on features does not guarantee that the matched
images belong to the same scene, given that matching
features can be also present on partial and common
repetitive patterns in the images. The main contribution
of this paper is the use of a direct method that selects the
images to undergo a further analysis with direct features
matching, in order to avoid wrong image associations.

The direct method used is based on lossy image compres-
sion, which is achieved by reading the encoding layer of
a convolutional autoencoder (CAE). CAEs are a kind of
convolutional neural networks (CNN or ConvNet), which
are deep, feed-forward artificial neural networks that have
been used for feature extraction Masci et al. (2011) Geng
et al. (2015) and image denoising Gondara (2016) Stowell
and Turner (2015). The usage of a CAE still requires
a training phase on a selected database, but as it will
be shown, even a simple CAE is able to generalize very
well, and so this method is able to provide loop closure
candidates over very different types of images.

4. IMPLEMENTATION

In this section we describe the details of the implemen-
tation of the algorithm that was introduced above (sec.
3). In our implementation the images have been resized to
256 x 256 pixels. This choice was based on empirical tests
with a convolutional neural network, that required images
of fixed size as input. For higher resolutions the network
did not converge properly within the training phase.

Here the proposed mechanism starts with the analysis of
the output of a Canny edge detector applied to the resized
image and the amount of non-zero pixels is calculated.
The subsequent quality test consist in checking if the ratio
between non-zero pixels and the total pixels of the image
is larger than a threshold (4% in our implementation, the
threshold has been chosen in accordance to the results
of empirical tests, as it turned out that this threshold
helps to avoid the further processing of images without
enough information content). Images that have passed the
quality test are then forwarded to two different processing
stages: In the first SIFT (Lowe (2004)) is used to determine
keypoints long with a descriptor, the second one is the
convolutional autoencoder, which is used for generating
a compressed representation of the images . The output
of the most inner layer of the convolutional autoencoder

4 Machine learning problems are known to be sensible to the input
space dimension Keogh and Mueen (2017)
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(which in our implementation has a dimension of 4096)
is then stored in an array together with the current best
estimate of the position. Using a CUDA accelerated search
with cosine distance metric the first 10 nearest compressed
images are selected and their respective keypoint descrip-
tor is retrieved from the database. Searching efficiently for
similar data points in such high dimensions is an open
problem in computer science Aggarwal (2001)°. In high
dimensional spaces points essentially become uniformly
distant from each other Aggarwal et al. (2001) when the
Euclidean distance metric is used, and so different compar-
ison metrics have to be employed. Generally these metrics
do not have the strong and intuitive meaning that the
Euclidean distance has. Exhaustive search operations are
very inefficient on CPUs, as exhaustive search on CPU
is an O(n) operation, a CPU implementation is unlikely
to work with real time performance. Given the simplicity
and independence between each of the single operations
of exhaustive searching, a parallel implementation on a
modern GPU (that can run much more threads concur-
rently compared with a single CPU) keeps the observed
search operation time close to constant. The cosine dis-
tance metric is one of the few metrics that can be applied
in such a high dimensional space, and in this particular
application it has proven to be a reliable metric. The
keypoint descriptor of the current image is then compared
to the keypoint descriptors of the 10 retrieved candidate
images and finding 5 close descriptors indicate that the
scene part has been seen before.

The strength of the algorithm is that the keypoint de-
scriptor comparison is performed only between descriptors
coming from images that are considered as similar by
the autoencoder, thereby allowing an independent second
verification of the scene similarity. In the current imple-
mentation the compressed image representation (obtained
by the convolutional autoencoder) is finally inserted in the
database.

In the following we describe the convolutional autoencoder
(CAE) structure and training: The CAE that generates a
compressed representation of the images, takes as input
a RGB image with 256 x 256 pixels using normalized
values in the interval [0, 1]. The encoding step starts with
a convolutional layer based on 32 filters of size 3x3x3, and
relu® as activation function, then max-pooling is executed
with a pool size of 2x2. The same set of operations is
repeated 3 times, each time with the output of the previous
set of operations, with the only difference that the last
convolution layer has only 16 filters, with the goal of
further reducing the dimensionality of the encoding layer.
To complete the autoencoder a decoding layer has to be
implemented. A first thought is to perform an inverse
operation of the pooling. Pooling is a sampling process
that involves loss of information, so inverting it can involve
zero-filling or interpolation, preventing such information
from being completely recovered. While there is a strong
consensus in the deep learning community about the supe-
rior performance of the max-pooling Scherer et al. (2010),
there seems to be not such consensus about how to per-

5 All current indexing techniques (based on space partitioning)
degrade to linear search for sufficiently high dimensions Datar et al.
(2004) Weber et al. (1998) Gionis et al. (1999)
6 Rectified linear unit: f(z) = 2+ = maxz(0,z)

form unpooling, so the strategy employed in this work is
just a simple resizing with nearest neighbor interpolation.
After the resizing layer a convolutional layer based on
32 filters of size 3x3x3 is in line, and relu as activation
function, then again another equal resizing layer. The final
structure of the network consists of a convolutional layer
as previously presented and another convolutional layer
where the numbers of filters is equal to the original image
dimensionality. In this convolutional layer the activation
function is a sigmoid function, that also represents the
output of the network for the training phase. A zero-
padding strategy is employed for every operation that
involves sliding window operations, like convolution and
pooling. At the start of the training procedure all the
weights are initialized by sampling from a zero mean
Gaussian distribution with standard deviation of 0.05. The
training procedure involves minimizing the error between
the target and the actual output of the network through
a sigmoid cross entropy given logits? function, which al-
lows the network to perform multi-class classification (see
Google Tensorflow documentation (2018)), to act as an
autoencoder. The optimization is done through a first-
order gradient descent method, based on adaptive esti-
mates of lower-order moments called ADAM Kingma and
Ba (2014), which has been found to be one of the most
successful optimization strategies by the deep learning
community Goodfellow et al. (2016). Even if ADAM is a
gradient descent method that is able to adjust the learning
rate, it still needs a reference parameter for it, which has
been set to 0.001. The dataset consists of 300 images of
indoor and outdoor environments captured from a hand-
held camera. The dataset was split in 70% training and
30% validation examples/images. The optimization was
performed on mini-batches of 32 images at the time for
5000 epochs. At every epoch the loss on the validation set
is calculated, finally the network weights which performs
best on the validation set represent the final outcome of
the training procedure.

5. EXPERIMENTS

Performance analysis in SLAM is a complex issue, espe-
cially when it comes to a stability analysis of the SLAM
algorithm. Therefore, they are often produced by simula-
tions or extended field tests. In order to benchmark the
SLAM algorithm a selection of the KITTI dataset Geiger
et al. (2013) is used, which contains large sequences of
images coming from front looking stereo cameras mounted
on a car. We tested our loop closure detection algorithm
on the KITTI dataset (sequences 00 and 02) using only
the left images. As we plan to use this loop closure de-
tection method for underwater SLAM, we tested it also
on an underwater SLAM dataset Scott Reef 25 from the
Australian Centre for Field Robotics mar (2009). Given
that the dataset is composed of stereo images, we choose
again to use the left images.

For comparison we tested the FAB-MAP Cummins and
Newman (2008) on the same datasets. There exists an
improved version of it called FAB-MAP 2.0 Cummins
and Newman (2011), but the implementation is not freely

7 Logits are functions that maps probabilities € [0,1] to R
y € (—00,00)
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available to the public. FAB-MAP has been run with
default parameters, both our algorithm and FAB-MAP
have been run by accepting as loop closure candidates
only frames that have at least 9 frames inbetween. As
FAB-MAP provides a probabilistic value for each couple
of frames to represent a loop closure, it’s needed to choose
a threshold for asserting which of the images represent a
loop closure, this threshold has been set to 99%. We used
for the tests an Intel Core i7-5820K with 32GB of RAM
and a Nvidia TITAN GPU with 6GB of GDDRS5.

T T T T
0 1000 2000 3000 4000
Image number

Fig. 1. Required time in seconds for processing a new image
plotted against the images of KITTI dataset sequence
00.

Table 1 shows the results of the experiments. We observe
a superior performance in terms of correctness of the
identified loop closures on all the datasets, while FAB-
MAP performs better in terms of computation time. The
low performance of FAB-MAP on the underwater dataset
is probably due to the fact that the used vocabulary is not
adequate for the environment. Tests with different values
for the main parameter of FAB-MAP (the true positive
rate p(z = 1lle = 1), that represent the probability of
observing a feature given the existence of that feature)
show little to no effect on the performance. Figure 1
shows a plot of the computation time for the images
present in the sequence 00 of the KITTI dataset. The
computation time of our solution can be approximated
as a constant. Currently the algorithm may detect wrong
loop closures candidates, like shown in figure 2 based on
the observation and detection of single similar images
in the video stream/sequence. This perceptual aliasing
can be reduced or avoided if we also consider temporary
information in the algorithm performing an additional
consistency check for identified loop closure candidates.

Regarding the memory consumption of the algorithm, it
is notable that each stored image occupies 16384 bytes
(4094 32bit floats), assuming a frame rate of 30 frames
per seconds and that every image pass the test of infor-
mation content, the algorithm will allocate around 1.65
GB/hour of GPU memory. Newer GPUs support 16 bit
float natively Ho and Wong (2017), which will immediately
halve the memory consumption without any measurable
performance impact on the algorithm.

FAB-MAP FAB-MAP

FAB-MAP
P

prec., time, loops

Autoencoder
described params
prec., time, loops
99.7%, 1782s, 848
100%, 2189s, 302

0.45

P:

prec., time, loops

0.39

P:

prec., time, loops
99.4%, 12265, 344

0.35

Images size No. of images

Dataset

4541

1241x376
1241x376
1360x1024

KITTI, sequence 00

94.5%, 12225, 73

21.1%, 74465, 119 23.4%, 7403s, 111

4661

KITTI, sequence 02

22.7%, 7873s, 119

100%, 8825s, 15

9831

Scott Reef 25

1lle = 1) in FAB-MAP, that corresponds to the

P is p(z

Table 1. The table shows the results of the loop closure detection experiments.

P_OBSERVE_GIVEN_EXISTS parameter in the FAB-MAP configuration file.
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Fig. 2. Sub-optimal loop closure detection due to percep-
tual aliasing.

6. IMPROVEMENTS AND TAILORING

In this first implementation the memory on GPU is allo-
cated and deallocated everytime a set of similar images has
to be retrieved. This does take most of the computation
time required for this operation. A more efficient solution
would be to just add to the GPU memory the new images
compressed by the autoencoder.

The convolutional autoencoder has great potential for
improvements and further research must be conducted
for finding an optimal network architecture for encoding
images. Especially from a training point of view, for
instance a multi step training would be beneficial, because
even ADAM does still suffer from the vanishing gradient
problem. Further parallelism can be achieved by splitting
the image in multiple patches in order to run in parallel
multiple instances of a single autoencoder that, due to the
lower input dimensionality, would be easier to train.

Feeding inertial measurements to a Kalman Filter can
provide a state covariance with a guaranteed physical
meaning of state uncertainty (as the measurement error
is bounded within a certain time period), so restricting
the search of potential matches using the state covariance
can improve robustness and speed up the search process.

As previously stated in the current implementation, at
the end of the algorithm the compressed representation
of the current image is added to the database. A more
efficient solution would be to store a measure of the
position state/keyframe uncertainty (a measure could be
the magnitude of the state covariance matrix if an EKF
is used for position estimation). And, after a loop closure,
eventually replace the matched image in the dataset if the
state uncertainty that comes with the new image is lower
than the matched image currently in the dataset.

It has to be noted that together with position estimation
also attitude could be stored, but current research in non-
linear observer theory has produced globally exponential
stable estimators for attitude estimation Grip et al. (2015)
and as IMUs today are very cheap, very small, and present
in almost every electronic device, attitude estimation using
computer vision is, for most of the applications, no longer
necessary.

7. CONCLUSION

In this paper a global, standalone loop closure detector for
monocular SLAM has been presented. Tests conducted on

relevant datasets known to the SLAM community show
very good performances in correct loop closure detection,
with comparable computation time given parallelization
on GPU.

Using compressed image representations for selecting
which images attempt to match with direct features does
indeed guard the loop closure detection algorithm from
matching images given features that lie on repetitive pat-
terns, and also provide a way to match directly feature
descriptors instead of using visual words.

It has to be noted that our approach does not allow to
detect loop closures with a large variance of the view
points, but is exact where other loop closure detection
systems are more likely to fail.

This work follows the direction of analyzing the use of
deep learning for SLAM purposes, given that the SLAM
community has found deep learning techniques to be
currently irreplaceable for complex SLAM operations.
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