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ABSTRACT 8 

The Finite Element Method (FEM) has been extensively applied to model failure of ice but suffers from 9 

mesh distortion especially when fracture or fragmentation is involved. The Smoothed Particle 10 

Hydrodynamics (SPH) method can avoid this class of problems and has been successfully applied to 11 

simulate fracture of solids. However, the associated computational cost is increased considerably for SPH 12 

simulations. Reducing the computational time without any significant decrease in accuracy is naturally 13 

quite critical for SPH to be considered as an efficient numerical tool to simulate failure. Thus, the focus 14 

of the present article was to investigate the feasibility of different approaches of domain decomposition, 15 

mass scaling, time scaling and coupled SPH-FEM techniques to improve the computational resource 16 

requirement. The accuracy, efficiency and limitations of each of these approaches were discussed and the 17 

results were compared with analytical solution and four- point beam bending experiments. The results 18 

drawn from the comparisons substantiate that domain decomposition, mass scaling and process time 19 

scaling can be adequately used for quasi-static cases to reduce the CPU requirements as long as the 20 

kinetic energy is constantly monitored to ensure that inertial effects are negligible. Furthermore, as the 21 

computational time primarily depends on the number of discrete particles in a simulation, coupled SPH-22 

FEM method was identified as a viable alternative to reduce the simulation time and the results from 23 

such coupled simulations seem to agree well with published experimental data. This study showed that 24 

the proposed methods were not only able to emulate the failure mechanisms observed during 25 

experimental investigations but also reduce the computational resource requirements associated with 26 

pure SPH simulations, without any significant reduction in numerical accuracy and stability. 27 
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INTRODUCTION 34 

Increasing exploratory and transportation activities in the Arctic and sub-Arctic regions have improved 35 

activity of vessels operating along the Northern Sea Route. These vessels are required to progress 36 

through level ice and this has consequently increased the demand of ice-capable ship designs. Also, 37 

ensuring adequate safety in the Arctic waters requires a thorough understanding of ice load and how ice 38 

deforms and fails. This knowledge is crucial to come up with efficient designs that will enable these 39 

vessels to operate competently in the harsh Arctic environment. As the ship’s bow comes in contact with 40 

ice, the ice is crushed locally until the contact area is wide enough to induce bending failure. The material 41 

properties affecting this failure behavior are site-specific and depend on many factors including 42 

temperature, grain structure, grain size, salinity, brine volume, loading rate and mechanism of loading 43 

(Timco and O.'Brien 1994). These factors are best determined by in-situ tests even though the tests are 44 

quite difficult to conduct. The severe conditions of the Arctic and sub-Arctic regions demand innovative 45 

solutions as conducting such in-situ tests can become dangerous and time-consuming considering the low 46 

temperatures, prevailing darkness and harsh weather.  Consequently, it would be advantageous to 47 

develop accurate numerical techniques that can not only predict the correct stresses and strains at failure 48 

but also simulate fracture patterns and fracture locations that correspond well with those reported in the 49 

literature. 50 

The Finite Element Method (FEM) has been the preferred approach to model the complex failure 51 

behaviour and progressive deformation of ice. Varsta (1983) was the first to present a non-linear bending 52 

failure model of an ice wedge in FEM using a simplified Tsai-Wu criterion. Since, this model was not 53 

thoroughly compared with experiments its accuracy could not be determined correctly. The Tsai-Wu 54 

failure surface has also been used much later by Liu et al. (2011) to implement a pressure-dependent 55 

material model for ship-iceberg collisions. The first significant contribution in the field of ice-structure 56 

interaction came from Derradji-Aouat (2003), who developed a multi-surface failure model of saline ice 57 

to capture the complex failure mechanisms associated with ship-ice interaction. This failure model, which 58 

takes into account the impact of temperature, strain rate and loading direction on the material properties 59 

of ice, has been implemented into an explicit finite element program by Wang and Derradji-Aouat 60 

(2009). The major challenge in simulating such interactions has been to model the continuous failure 61 

process of ice. Kolari et al. (2009) presented an anisotropic continuum damage mechanics model to 62 

predict this continuous failure process by using a model update technique that updated and refined the 63 

finite element mesh to capture the progressive fracture more accurately.  64 
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Although FEM is used for failure analysis of ice, it is not able to predict the continuous failure 65 

mechanism satisfactorily as this introduces numerical difficulties caused by severe element distortion and 66 

negative volume problems. The problem can be resolved by introducing an erosion criterion, where the 67 

distorted elements are removed from the system based on a predefined failure criteria such as pressure, 68 

stress, strain, damage and temperature (Swaddiwudhipong et al. 2010). Erosion is essentially a numerical 69 

technique used in conjunction with FEM to predict fracture pattern, and the erosion parameters are 70 

generally derived empirically or using an ad-hoc approach. Thus, the focus has been to opt for more 71 

robust numerical techniques and has naturally paved the way for more innovative solutions. Gürtner 72 

(2009) presented the cohesive element approach used with FEM to predict the dynamic fracture of ice. 73 

This model required the knowledge of energy release rates of different fracture modes, which were 74 

derived heuristically so as to attain good correspondence with experimental results. SPH is another 75 

method that can successfully avoid these pitfalls found in FEM. The SPH particles inherently follow 76 

deformation and offer a natural transition from a continuum to a fragmented state (Stansby and Ma 77 

2016). Anghileri et al. (2005) compared the applicability of three different numerical models of FEM, 78 

Arbitrary Lagrangian Eulerian (ALE) and SPH to simulate hailstone impact on aircrafts.  It was found 79 

that the FEM model could realistically simulate the phenomenon only when the mesh distortion was not 80 

high, but the SPH method was extremely useful and showed a good correlation between numerical and 81 

experimental investigations. Carney et al. (2006) also used SPH to present a phenomenological failure 82 

model for high strain rate behaviour of ice. This model took into account different yield strengths in 83 

tension and compression, and strain rate sensitivity of ice. Although the results showed good 84 

correspondence with experiments from Kim and Kedward (2000) and Kim et al. (2003), the model 85 

required an equation of state and certain parameters that had to be derived empirically to comply with 86 

experimental solutions. Using Carney’s material model, Keegan et al. (2013) simulated hailstone impact 87 

on the leading edge of a turbine blade with the SPH method. This work not only identified an accurate 88 

material model able to capture the phenomena but also a numerical tool capable of realistically 89 

simulating such an event. The SPH method is a viable alternative to traditional grid-based methods for 90 

simulating high-velocity impact problems, where distortions are quite high and using standard Lagrangian 91 

grids result in erroneous solutions. 92 

However, for low-velocity impact simulations the capability of SPH is not well documented. Some 93 

relevant literature is available for deformation and fracture behaviour in rocks. Ice, like rock, shows 94 

similar failure characteristics especially under compression. Both the materials exhibit brittle behaviour 95 
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under high strain rates and ductile behaviour under low strain rates (Renshaw and Schulson 2001). 96 

Cleary and Das (2008) initially looked into the potential of SPH to model fracture of rocks and 97 

demonstrated its accuracy and applicability by comparing elastic and elastoplastic deformation cases with 98 

FEM simulations. Therein, it was concluded that brittle fracture of rocks under compression during low 99 

impacts could be modelled with good accuracy using SPH. Ma et al. (2011) further investigated the 100 

compressive fracture and crack propagation of heterogeneous rocks under uniaxial and biaxial 101 

compression. The material heterogeneity of rock was successfully modelled using the Weibull 102 

distribution law (Deb and Pramanik 2013). Under quasi-static conditions SPH has been successfully used 103 

to model, rocks. For other rock-like materials, Tang et al. (2013) identified the factors influencing their 104 

quasi-static analysis and therein concluded that with a suitable choice of the particle approximation of 105 

momentum equation and smoothing length, the SPH method could favourably simulate progressive 106 

failure of similar solids under compressive loads. 107 

Das (2017) used the SPH method for simulating bending failure of ice. A parametric study was 108 

conducted to determine the correct formulation, particle density, smoothing length and scaling factor (to 109 

initial smoothing length) required for accurately simulating failure of ice using the SPH method. The 110 

article validated the SPH method for simulating linear elastic bending and was subsequently extended to 111 

model four-point bending failure of ice. However, the associated computational cost increased 112 

considerably. Based on the limitations within which the work was carried out, and the results, it was 113 

highlighted that reducing the computing time, without significantly affecting the accuracy was a salient 114 

criterion for SPH to be considered as an efficient tool for predicting failure. One way to improve the 115 

computational efficiency of SPH was to use a suitable alternative to the conventionally used Gaussian 116 

kernel function which is computationally expensive because of its infinite range.  Ito (2008) used a kernel 117 

function with only even-order terms to simulate hypervelocity axisymmetric impact problems more 118 

efficiently and accurately. Parallel computing algorithms have also proved to be computationally very 119 

efficient for large-scale SPH simulations (Nishiura et al. 2015). Furthermore, hybrid SPH method of 120 

coupling Lagrangian Finite Volume Method (FVM) and SPH was also proposed by Barcarolo (2013) to 121 

improve the convergence order, accuracy and efficiency of SPH. Similar to the coupling between FVM 122 

and SPH, the hybrid method of SPH-FEM has also been proven to improve computational efficiency 123 

and accuracy while mitigating the core disadvantages of FEM related to failure simulation. Most of the 124 

work that was carried out using coupled SPH and FEM has been limited to fluid-structure interactions, 125 

high-velocity impacts and metal-cutting problems. Such coupled approaches in the field of ice failure are 126 
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not very well documented. Only recently, Kim (2014) briefly mentioned the coupled SPH-FEM 127 

approach in the context of pressure area distribution during accidental collision of ice mass and steel 128 

structures. The different SPH-FEM coupling methods (Johnson 1994), domain decomposition 129 

(Lapoujade et al. 2014), time scaling (Villumsen and Fauerholdt 2008) and mass scaling (Olovsson and 130 

Simonsson 2006) techniques are investigated in this paper to present their computational advantages and 131 

capability to simulate bending failure accurately.  132 

METHODOLOGY 133 

SMOOTHED PARTICLE HYDRODYNAMICS 134 

Smoothed Particle Hydrodynamics (SPH) is a mesh-free Lagrangian method that was first developed by 135 

Gingold and Monaghan (1977) to study astrophysical phenomena. Since then the SPH method has 136 

evolved and diversified from the initial idea to reach the desired degree of maturity required to simulate 137 

complex engineering problems (Barreiro et al. 2016). Traditionally SPH has been applied for 138 

simulations related to computational fluid dynamics (Colagrossi and Landrini 2003), ocean and coastal 139 

engineering (Wei and Dalrymple 2016). In the field of solid mechanics Allahdadi et al. (1993) were the 140 

first to introduce a three dimensional SPH code predicting the dynamic material response under shock.  141 

The initial algorithm of SPH for strength of materials has been refined over the years to improve stability 142 

as well as convergence and resulted in more widespread application of the method. In the SPH method 143 

the problem domain is divided into a set of uniformly or randomly distributed discrete elements referred 144 

to as particles. These particles not only act as interpolation points but also possess material properties 145 

and interact with the external and internal forces. In the following section, the basic SPH formulations 146 

are discussed briefly. For a more comprehensive description of the method the reader is referred to  Liu 147 

and Liu (2003). 148 

Integral representation of a function 149 

The integral representation of a function f(x) is written as: 150 

   (1) 

where the problem domain is given by Ω and  is the Dirac delta function defined as: 151 

   (2) 

Kernel approximation of a function 152 

For the kernel estimate, the Dirac delta function is replaced by a smoothing function . 153 
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  (3) 

The smoothing function  has a compact support domain proportional to the smoothing length 154 

(h). The domain extends up to κh, where κ is a constant such that when  i.e. the 155 

smoothing function is equal to zero when the particle lies outside the domain. This is also known as the 156 

compact condition (Liu and Liu 2010). Consequently, the integration over the problem domain Ω can be 157 

reduced to κh, the support domain of the kernel function as shown in equation (4): 158 

  (4) 

Smoothing function 159 

A general expression for the smoothing function is written as: 160 

 

 

  (5) 

where h is the smoothing length, a depends on the number of space dimensions and x  is the location of 161 

the particle (Hallquist 2006) . 162 

Gingold and Monaghan (1977) in their first paper on SPH used a Gaussian kernel, which is given by: 163 

   (6) 

Here, C is the normalisation constant such that C = to satisfy the 164 

normalisation condition (Liu and Liu 2010); d = rij/h, rij is the distance between the particles i and j, h is 165 

the smoothing length. However using such a kernel is computationally less efficient considering its 166 

infinite range.  More traditionally, for SPH simulations a cubic spline having a narrower support, as 167 

shown in Figure 1, is often used. Such a function is defined by: 168 

   (7) 

For the cubic spline kernel C = 

 

169 
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       170 

 171 
 172 

Figure 1: 2D form of cubic spline and Gaussian kernel 173 

 174 

Particle approximation 175 

The particle approximation of any field variable at a particular SPH node is carried out by substituting 176 

the integral in the kernel approximation by a summation symbol which covers all the particles in the 177 

support domain of the SPH node weighted by the kernel function. Figure 2 shows the neighbouring 178 

particles in the support domain of particle i. The corresponding particle approximation of a field 179 

function f(x) at particle i is written as: 180 

 181 

   (8) 

where and  182 

 183 

 184 

 185 

 186 

 187 
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 189 

Figure 2: Particle approximation of particle i with support domain κh 190 

 The particle approximation of the spatial derivative of a function can be similarly expressed as 191 

   (9) 

Equation (9) shows that the SPH approximation of the gradient of a field function requires the absolute 192 

values of the function itself weighted by the gradient of the kernel function, which is shown in (10).  193 

  (10) 

where rij, is the distance between particles i and j 194 

Governing equations 195 

The balance laws of continuum mechanics, in the Lagrangian frame of reference, are given in equations 196 

[(11)-(13)].  In the following equations d / dt  indicates the total time derivative, α and β are the 197 

coordinate directions and components with repeated indices are summed over. 198 

 199 

i. The continuity equation: 200 

  

 

 (11) 

ii. The momentum equation: 201 

   (12) 

iii. The energy equation 202 

   (13) 

Here ρ is the density, v
α
 is the velocity in α direction, σαβ is the stress tensor, e represents the energy and 203 

P is the pressure. 204 

 205 

Particle approximation of the governing equations 206 

i. The continuity equation 207 
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For particle approximation of the continuity equation, the approximation is applied to the divergence 208 

component of equation (11). The particle approximation of the continuity equation is written as:  209 

  (14) 

It is also possible to derive various forms of particle approximation for the same conservation equation 210 

by considering different identities. An alternative expression for the continuity equation is given by: 211 

  (15) 

ii. The momentum equation 212 

The momentum equation in (12) can be re-written as:  213 

  (16) 

The particle approximation of this equation can be written as: 214 

  (17) 

Since the gradient of a cubic spline is antisymmetric i.e. A ij = -Aji we can write: 215 

  (18) 

iii. The Energy equation: 216 

The energy equation can be re-written in the form of the continuity equation: 217 

   (19) 

Subsequently, the particle approximation of this form of the energy equation can be written using 218 

equation (15): 219 

 

  

(20) 

In SPH, the particle approximation is carried out at each time step and depends on the current local 220 

distribution of the particles. However, it is necessary for computational reasons to keep the mass and 221 

number of particles inside the influence domain unchanged. Thus, if M denotes the total mass of the 222 

spherical influence domain, then to keep this total mass unchanged dM / dt  must be zero and the 223 
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conservation of mass in (11) will require that the smoothing length is calculated as a function of the 224 

divergence of velocity as shown in (21). This equation suggests that the number of neighbours inside the 225 

influence domain will increase during expansion and decrease during compression. Moreover, the 226 

number of particles inside the support domain has a direct consequence on the simulation result. If the 227 

number is too small, the simulation is unable to simulate the interaction between the particles realistically 228 

or if it is too large, the local properties of the particles are smoothed out thereby affecting accuracy. 229 

 

 

  (21) 

In spite of the advantages that the SPH method offers, it suffers from certain disadvantages like lack of 230 

consistency, tensile instability and reduced accuracy at the boundary. These inherent drawbacks can be 231 

resolved by a combination of corrective measures best described in Swegle et al. (1995), Liu (2003) and 232 

Lacome (2001). Apart from these drawbacks, the SPH is also less efficient computationally compared to 233 

other traditional numerical methods. However, since it is based on the Lagrangian approach it can be 234 

linked to a standard Lagrangian model like the FEM. Such linked (or coupled) models provide the 235 

capability to carry out simulations involving both fracture and structural response at a reduced 236 

computational cost (Johnson 1994).  237 

 238 

SPH-FEM COUPLING TECHNIQUES 239 

The FEM has been extensively used in the field of continuum mechanics for modelling continuous 240 

matter (such as solids, fluids etc.). However, one of the most challenging aspects of FEM is its inefficient 241 

handling of problems involving large deformation, fracture and fragmentation (Chen et al. 2013). If solid 242 

elements are used to predict progressive fracture or deformation, excessive mesh distortion results in 243 

zero or negative volume problems, which introduces numerical difficulties like premature termination. 244 

To resolve this, the mesh-free approach of SPH can be used. This method successfully mitigates the 245 

aforementioned disadvantages of FEM and is well suited for problems involving fracture or 246 

fragmentation. However, one major drawback of SPH is the increase in computational resource 247 

requirement. To optimize the computational cost, both SPH and FEM can be coupled.  The SPH 248 

method can be embedded within an existing FEM code by considering SPH particles as FEM nodes. In 249 

SPH-FEM coupling, SPH particles are used in regions where fracture or deformation is likely to be 250 

predominant, and FEM for discretizing the rest of the model. Such coupling not only helps in reducing 251 

the computation cost, by decreasing the number of active SPH particles, but also helps in accurately 252 
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simulating fracture without the numerical instability found in FEM. Furthermore, the accuracy of the 253 

analysis is also improved if the problem domain comprises solid elements tin addition to SPH particles 254 

(Swaddiwudhipong et al. 2010). 255 

An overview of the code structure for SPH and Lagrangian FEM provided in Johnson (1994) showed 256 

that the major differences between the two methods involve only the calculation of strains, strain rates 257 

and forces. Another important consideration is that the same material model can be used for both SPH 258 

particles and finite elements. Thus, it was possible to combine both the methods with appropriate 259 

conditions enforced at the SPH-FEM interface. At this SPH-FEM interface, the particles are constrained 260 

and moved with the elements. The interface also ensured continuous bonding between the two methods. 261 

In Figure 3 the particle ”i” includes both finite elements (marked in green) and SPH particles in its 262 

influence domain. Certain considerations are required in the way computations are carried out for 263 

particles at such interfaces. While determining the strain and strain rate at each SPH particle at the 264 

interface, only the SPH nodes within the support domain are considered, whereas while calculating the 265 

internal forces, contributions from both finite elements and particles inside the influence domain are 266 

required to be included Johnson (1994). This coupling can be done using a tied contact algorithm or 267 

using an adaptive coupling technique, both of which are discussed briefly in the following section. 268 

 

 

 

Figure 3: Coupling of SPH and FEM at the interface 269 

Tied contact 270 

A tied contact algorithm can be used to connect the SPH nodes with solid elements. Contact detection 271 

algorithm requires a set of nodes called the slave nodes, and a set of surface patches called the master 272 

surfaces to be defined (Attaway et al. 1994). During modelling, a node to surface contact was used with 273 

the SPH particles as the slave nodes, and FEM elements at the interface as the master surface. During 274 

initialization, all the slave nodes within the allowable standard projection from the master surface, was 275 

tied and moved to the master surface to ensure zero gaps between FEM and SPH particles. Furthermore, 276 

i

2h
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the displacement of the slave nodes was monitored throughout the calculation to check for penetration. 277 

If the slave nodes penetrated the master surface, a contact constraint was applied to push back the slave 278 

nodes on to the master surface. Instead of a tied contact, a tied offset contact could also be used. For 279 

such contact algorithms, the slave nodes were not directly linked to the master surface.  Rather, an offset 280 

vector was defined at a specific distance from the master segment, and the slave (SPH) nodes were 281 

connected to the end of this offset vector.  282 

 283 
Adaptive coupling method 284 

In FEM simulations fracture is often associated with numerical erosion of the failed element. This 285 

erosion function is not a material property, but a numerical technique and is a very useful way to simulate 286 

fracture. When an element is eroded its mass is either reduced to zero, which violates conservation of 287 

mass, or is redistributed to the corner nodes. Nevertheless, both the compressive strength and the 288 

internal energy of the eroded element are discarded (Kala et al., 2016). One way to solve this erosion 289 

problem is to use adaptive coupling where the SPH elements replace the solid parts once they fail. The 290 

activated SPH particle inherits all the mass, kinematic variables and constitutive properties of the failed 291 

element.  292 

In adaptive coupling, the SPH particles are included in the model from the beginning of a simulation. 293 

However, they remain inactive until failure occurs so that the computational requirement is not 294 

increased. Once failure occurs, the failed element is replaced by 1, 2 or 3 SPH particles. The inactive 295 

SPH particles, at the start of a simulation, are marked in grey in Figure 4. Here, only one SPH particle is 296 

placed at the centre of gravity of every element for representation. At the onset of failure, the failed 297 

element is replaced by one SPH particle, marked in red in Figure 4(b). A contact interface, shown in 298 

green, gets activated for the interaction between the undamaged FEM model and the activated SPH 299 

particles (Kala and Hušek 2016). 300 

 

(a) Finite element mesh with SPH particles in the 

background  

(b) SPH-FEM contact algorithm for adaptive 

coupling 

 301 
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Figure 4 302 

Although the SPH-FEM coupling is not entirely a new concept, the relevant literature on the efficiency 303 

and applicability of such methods to simulate quasi-static phenomena is very limited. The outcome from 304 

the numerical experiments are compared with the results of a series of four-point bending tests 305 

conducted by Kujala et al. (1990) at the Gulf of Finland near Porkkala pilot station and serves as the basis 306 

for comparing the efficiency and applicability of the numerical techniques presented in this article. The 307 

experiment had a loading rig that was set up to ensure that bending took place upwards to bring about 308 

tensile failure, which is the preferred mode of failure for ice going vessels. The loading rig had two 309 

moving supports, spaced 1m apart, and was used to bend the beam against two fixed supports, spaced 4m 310 

apart. A hydraulic cylinder, regulated by an electronically controlled pressure valve, produced the 311 

bending force, which was measured by a force gauge attached to the hydraulic cylinder and linear 312 

potentiometers measured deflection at each support and in the middle of the beam. The beams were 313 

sawn from sea ice cover by a chainsaw to get straight edges. Furthermore, before conducting the tests, 314 

surface temperature and dimensions of the beam were measured, and the loading rig was adjusted such 315 

that the fixed top support of the loading platform and the upper surface of ice beams were at the same 316 

level. The final deflection was calculated by subtracting the average displacement at the end supports 317 

from the net deflection, measured at the middle of the beam and was considered necessary as the top 318 

supports protruded slightly into the ice beam. The flexural strength values were about 24% higher 319 

compared to results from (Enkvist 1972) and 30% higher values compared to Maattanen (1975). Also, 320 

the elastic modulus determined from the experiments was found to be 5% to 20% greater than in 321 

cantilever tests. In this article, the results from four-point bending simulations are compared with 322 

experimental results from Kujala et al. (1990). 323 

NUMERICAL SIMULATION 324 

The numerical experiments are compared with the bending tests of natural sea ice conducted by Kujala 325 

et al. (1990). Table 1 lists the properties of ice measured from the experiments.  326 

Table 1: Material properties of Baltic Sea ice 327 
Elastic Modulus 

(E) 

 (GPa) 

Shear modulus (G) 

(GPa) 

Bulk modulus (K) 

(GPa) 

Density 

(ρ) 

(Kg/m
3

) 

Poisson’s ratio 

(ν) 

4.154 1.562 4.073 917.12 0.33 
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 328 

Kujala et al. (1990) also presented a sensitivity study to determine how the Young’s Modulus and the 329 

flexural strength varied with temperature through the thickness of the ice beam. He assumed a linear 330 

temperature gradient and constant salinity for the sensitivity study. Table 2 shows the calculated top (E
t

) 331 

and bottom elastic moduli (E
b

) and the bending strength at the top surface (S
t

). Here, F= load at failure, L 332 

= distance between top supports and δ is the deflection. 333 

Table 2: Calculated elastic moduli at top and bottom surface as well as bending strength 334 
E

t

 (GPa) α E
b 

(GPa) S
t 

(MPa) 

8.60 0.17 1.462 0.81 

 335 

The SPH model of an ice beam in four-point bending had three parts viz. the sea ice beam, upper and 336 

lower supports. The model is shown in Figure 5 where L, B and H denote the length, width and height 337 

of the beam respectively. The measurements were directly taken from the in-situ beam bending 338 

experiments. The SPH model had 702240 SPH nodes, and the supports were modelled as a rigid 339 

material with 352 shell elements having an edge length of 0.05m. A penalty contact was required to be 340 

defined to achieve contact between the rigid supports and the SPH ice beam (Hallquist 2006). The upper 341 

support was fixed and the lower support was allowed to move in the Z-direction. The different colours in 342 

Figure 5 indicate the different layers of the beam with varying material properties. A constant 343 

displacement velocity (δ) was applied to the lower supports in the positive z-direction and this velocity 344 

was calculated from full-scale test data. 345 

 346 

Figure 5: SPH model of an ice beam 347 

MATERIAL MODEL 348 

The experimental results showed only brittle elastic failure of the ice beams and consequently an elastic 349 

failure model was selected. This model required the values of seven material parameters viz. density (ρ), 350 

Shear Modulus (G), yield strength (σy), plastic hardening modulus (Ep), Bulk Modulus (K), pressure cut-351 
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off (pc) and failure strain (εf). Failure was specified either by the pressure cut-off (pc) or failure strain (εf). At 352 

the onset of failure, the deviatoric stress components were reduced to zero, and the material could only 353 

carry compressive loads (Hallquist 2006).  354 

The Von Mises yield criterion for the material is given by  355 

  (22) 

where J2 is the second stress invariant and can be defined in terms of deviatoric stress components as 356 

  (23) 

The yield stress (σyield) is a function of effective plastic strain ( ) and the plastic hardening modulus ( E
p
)
 

357 

  (24) 

The plastic hardening modulus (Ep) can be defined in terms of the tangent modulus (Et) as 358 

  (25) 

The effective plastic strain is defined as: 359 

  (26) 

The pressure is given by equation (27), where K is the Bulk Modulus and V is the volume 360 

  (27) 

The failure is assumed to occur if 361 

 or  (28) 

where p
c
and  are user defined parameters.  362 

In the experiment, the effective elastic modulus (Eeff) and bending strength were calculated from the 363 

deflection. The flexural strength and elastic modulus depends on the temperature that varied through the 364 

thickness of the beam. A linear temperature gradient and constant salinity was assumed Kujala et al., 365 

(1990) to present the variation of Young’s modulus and flexural strength from the top to the bottom of 366 

the beam. The plastic hardening modulus in Table 3 was assumed to be slightly lower than the elastic 367 

modulus to differentiate between elastic and plastic behaviour. The yield strength was equal to the failure 368 

stress at the top of the beam as shown in Table 3. Since it was preferred to initiate failure based on tensile 369 
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pressure, the failure strain (εf) was assumed to have a large value to not let the beam fail due to strain 370 

criteria. The pressure cut-off value was taken from Soa (2011). 371 

Table 3: Input values for the material model 372 

ρ (kg/m3) 

G (GPa) 

σy (MPa) 

Ep (GPa) K (GPa) 

pc (MPa) 

Top Bottom Top Bottom Top Bottom 

917.12 3.233
 

0.550 0.81 8.428 1.433 8.431 1.433 -0.2645 

 373 

RESULTS AND DISCUSSION 374 

The results from a parametric study of an SPH bar identified the correct formulation, number of 375 

particles, smoothing length and scaling factor (to the initial smoothing length) required to simulate tensile 376 

and compressive behaviour accurately using the SPH method (Das, 2017). Since beam bending includes 377 

both tensile and compressive stresses on either side of the neutral axis, this study was naturally extended 378 

to simulate four-point bending failure of an ice beam using SPH. In this study, the material properties of 379 

ice presented in Table 3 were used to simulate a FEM model of the same beam in four-point bending. 380 

Although the FEM is one of the most extensively used numerical tools in the field of solid mechanics, it 381 

suffers from a few limitations while simulating fracture or fragmentation. One such challenge is element 382 

distortion and a way to resolve this is through numerical erosion of solid elements. However, the 383 

capability of the finite element model to simulate the physical phenomena accurately depends on the 384 

correlation between the discretization length and the solid elements. Thus, such deletion of elements (or 385 

drop in mass) is a direct violation of the conservation of mass and is not preferred (Das et al., 2014). 386 

Besides, in an SPH analysis, no particles are removed from the problem domain at failure, and the mass 387 

remains constant throughout the simulation (as only the inter-particle connections fail and the particles 388 

are not removed from the problem domain). This is considered to be a notable advantage of SPH over 389 

FEM, especially in simulations where fracture processes play a dominant role. Furthermore, the 390 

comparisons of the FEM results with SPH also showed that the breaking location was similar in both the 391 

models. However, the fracture pattern from the SPH simulation appear more realistic because SPH 392 

offers a natural transition from a continuum state to a fragmented state at the point of failure (Stansby and 393 

Ma 2016). Once failure occurred, the deviatoric stresses in the SPH particles were reduced to zero and 394 

the particles only carried stresses in compression, displaying fluid-like behaviour.  Such a solid-to-fluid 395 
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transition of the SPH particles was regarded as failure. In contrast, for FEM, such a transition state could 396 

only be simulated by physically removing the elements from the model (erosion).   397 

Table 4: Comparison of SPH and FEM results 398 

METHOD Failure load (kN) Failure time (sec) Deflection (mm) 
CPU time 

(hrs) 

Experiment
1 

5.69 0.34 1.07 − 

SPH
 

5.98 0.34 1.16 27.10 

FEM 5.56 0.34 1.16 2.500 
1 (Kujala et al. 1990) 399 

While these advantages of particle methods over traditional FEM for predicting fracture is quite clear, 400 

one cannot overlook the computational demand of SPH considering that the FEM model was 401 

significantly faster than SPH (Table 4). Therefore, this study looked into the different methods that could 402 

be applied to reduce the CPU costs associated with an SPH simulation. The applicability of domain 403 

decomposition, time scaling, mass scaling and SPH-FEM coupling techniques to improve the 404 

computational efficiency were investigated. The results were compared with the experiments to 405 

determine the error and the improvement in computational resource requirement. A satisfactory way to 406 

present the accuracy of the investigated results were taken from Villumsen et al. (2008), where the 407 

percentage differences in failure and displacement outputs were compared with experimental data. 408 

However, it was not possible to formulate a generic answer for the acceptable percentage difference. It 409 

was important to keep this as low as possible, but taking into consideration, the extreme conditions 410 

prevalent in the Arctic, the measuring uncertainty of the mechanical properties of ice, and the accuracy of 411 

the experimental setup, an error percentage of less than ten was considered to be satisfactory for the 412 

present study. 413 

 414 

DOMAIN DECOMPOSITION 415 

The size of numerical models has been continually increasing in recent times, and it is now quite 416 

common to handle models with several millions of elements/particles (computational nodes). 417 

Consequently, there has been a growing demand for parallel and scalable computations through Shared 418 

Memory Parallel (SMP) or Massively Parallel Processing (MPP). The SMP provides a parallel 419 

architecture where a model is solved using multiple processors on the same machine. Naturally, the 420 

processors share the hardware resources and operating system, and communicate through shared 421 

memory. However, the SMP shows limited scalability for more than eight processors. For larger 422 

problems, a more favourable option is the MPP that is a synchronized handling of a task by several 423 

processors having their own set of hardware resources. The MPP capability of LS-DYNA uses a data-424 
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partitioning algorithm that divides a given model into subdomains, each of which is assigned to a 425 

particular processor. Every processor independently advances the solution for its subdomain until the 426 

end of the time step after which the processors communicate through a Message Passing Interface (MPI). 427 

For FEM, this communication only happens while updating the nodal displacements and forces. 428 

Contrary to this, for SPH, the processors are additionally required to communicate with each other. 429 

Firstly, during particle sorting, which determines the neighbour list in the sphere of influence of each 430 

SPH particle. Secondly, during calculating strain rates. And thirdly while computing internal forces on 431 

each SPH particle and its neighbours. Furthermore, in Lagrangian FEM, only the nodes that are located 432 

at the boundary between decomposition subdomains govern the communication between processors. 433 

However, for SPH, any particle having a neighbour in another subdomain will affect the communication 434 

requirements. This means that the processors are required to communicate for every particle that is 435 

located at a distance less than twice the smoothing length. Consequently, the communication 436 

requirements for SPH are not only more frequent, but also the volume of data transferred between 437 

processors is higher. Thus, the data partitioning algorithms of MPP can significantly affect the efficiency 438 

of a given problem Lapoujade et al. (2014). In the present study, three different domain decomposition 439 

methods were investigated by dividing the model along one of the three coordinate axes, viz. SLICE X, 440 

SLICE Y and SLICE Z (Figure 6), to determine the most efficient partitioning algorithm for the problem 441 

at hand. 442 

 

 

SLICE X 

 

 

 

SLICE Y 

 

 

SLICE Z 

Figure 6: Different domain decomposition techniques 443 

The load deformation response and fracture location for all the three decomposition techniques 444 
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correlated quite well. However, the computational efficiency for the three decomposition schemes 445 

differed. Table 5 summarizes the results from the different decomposition schemes. SLICE X was 446 

computationally most efficient and was 1.18 times faster than SLICE Y and 1.13 times faster than SLICE 447 

Z.  SLICE X has been used for all the numerical experiments presented hereafter in this article. 448 

Table 5: Comparison of results for different decomposition schemes 449 

Decomposition Scheme 
Deviations in output at failure (%) 

CPU time (hrs) 
Failure load Displacement 

SLICE X 5.10 8.41 27.10 

SLICE Y 5.10 8.41 31.88 

SLICE Z 5.10 8.41 30.45 

 450 

It is not surprising that the runtimes differ when the way a model is decomposed is changed. Each 451 

processor, apart from the communication between them, also has to perform specific operations. If more 452 

particles or computationally more expensive elements (due to material non-linearities or element 453 

formulations) end up in one processor, it has to work harder. At the same time the remaining processors 454 

have to wait till the end of each time cycle. There are a lot of different factors to consider when dividing 455 

the problem into domains and it is challenging to determine, before the simulation is run, what the 456 

optimal decomposition would look like since the deformation will affect the computational cost. Thus, 457 

although the MPP takes advantage of better scaling and parallel capabilities through domain 458 

decomposition and MPI, it is important to ensure that each processor has a good load balance between 459 

them such that they are assigned at least several thousands of particles. Otherwise, the benefits of using 460 

the MPP version will be quickly overshadowed by the communication requirements. 461 

 462 

TIME SCALING 463 

Time scaling is a technique that is used to reduce the simulation time by applying the given load more 464 

quickly than in a quasi-static experiment. The study is applicable as long as the inertial effects are low and 465 

the material behaviour is only slightly influenced by the corresponding strain rates. Two analyses, with 466 

different time scaling factors of 2.5 and 5.0, were carried out to study its effect on the failure output.  467 

For simulating the bending experiments, velocity boundary conditions were applied to the lower 468 

supports. The velocities of the lower supports for each test were calculated from full-scale test data. For 469 

time scaling, this applied velocity was artificially increased by factors of 2.5 and 5.0. The velocity profile 470 

was defined by a half sine function curve that was gradually ramped up to the final scaled velocity. The 471 

minimum ramp up time was set around 1.5-2.0 times the average period of the system to avoid inertial 472 
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effects that could change the response of the system (Hallquist 2006). The study was first conducted for a 473 

linear elastic case for different time scaling factors of 2.5 and 5.0. The Normalised Root Mean Square 474 

Error (NRMSE) was determined between the simulated forces and theory. For time scaling factors of 2.5 475 

and 5.0, the NRMSE between the computed forces and analytical solution was 3.23% and 6.17% 476 

respectively for linear elastic bending. The error percentage being within reasonable limits (below 10% 477 

error is considered to be acceptable here), the study was subsequently applied to simulate four-point 478 

bending failure of ice.  479 

As shown in Table 6, using the time scaling technique significantly reduced the computation time. For 480 

the analysis with a time scaling factor (TSF) of 2.5, the deviation in the load and displacement at the onset 481 

of failure, compared to experimental results, were 4.39 and 7.48% respectively. At the same time the 482 

CPU cost was reduced by 59%.  The computation time was further reduced when the time scaling factor 483 

(TSF) was increased to 5.0, and the corresponding difference in force and displacement outputs at failure 484 

with experiments were 2.64% and 5.61% respectively. However, inertia effects slowly came into play as 485 

evident from the abrupt spikes in the load-deformation curve for TSF = 5.0 (Figure 7). The abrupt 486 

changes or fluctuations in the reaction forces (Figure 7) were caused because of the increasing loading 487 

velocity, which caused higher reaction forces and possible penetrations at the contact interface between 488 

the indenter (lower support) and the SPH ice beam, due to faster movement of the lower 489 

supports/indenters. In this study, a penalty-based contact was defined between the supports and the 490 

beam. For such contact definition, if a penetration was found (in this case the lower support penetrated 491 

into the ice beam because of the higher velocity), a force directly proportional to the penetration depth 492 

was applied to resist and eventually eliminate the penetration. Such elimination often caused oscillations 493 

in contact responses, and is primarily responsible for the fluctuations in the load-deformation curve. A 494 

damping coefficient can reduce such oscillations form penalty contacts. However, contact damping was 495 

not used in the present study to ensure that the contact definition for all the numerical experiments 496 

presented here was consistent. It can also be seen in Table 6 that the deviations in the output at failure 497 

decreased, when compared to experiments, as the time scaling factor was increased. That said, with the 498 

increase in time scaling, inertial effects caused higher reaction forces and stresses (pressure) within the 499 

beam. Since a pressure-based failure criterion was used, the time-scaled models (TSF = 2.5 and TSF = 500 

5.0) failed earlier and at a lower load and displacement levels than the SPH model with no time scaling 501 

(TSF = 1).  Thus, as the SPH model with TSF =1 gave higher failure results (about 5%) compared to 502 

experiments, the failure outputs for the time-scaled models appear to be more accurate and closer to the 503 
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experimental investigations in Table 6. A better basis of comparison for the time scaling study would 504 

have been the reference model of SPH-40 with no time scaling (TSF = 1), which would have showed that 505 

the accuracy decreased with the increase in TSF. However, this was not done to be consistent with the 506 

other results presented in the manuscript. 507 

Table 6: Comparison of results for different time scaling factors 508 

Time scaling factor (TSF) 
 Deviations in output at failure (%) 

CPU time (hrs) 
Failure load Displacement 

TSF = 1.0 5.10 8.41 27.10 

TSF = 2.5 4.39 7.48 11.24 

TSF = 5.0 2.64 5.61 5.080 

 509 

 510 

Figure 7: Force versus deflection plots for different values of process time scaling 511 

Considering the computational demand of an SPH simulation and the improvement offered by 512 

increasing the loading velocity, invoking time scaling was an efficient way to determine the results within a 513 

reasonable timeframe. However, in a quasi-static experiment the load is applied very slowly such that the 514 

structure deforms at a very low strain rate, and consequently the inertial forces can be ignored. 515 

Therefore, if time scaling was used for a quasi-static case, it was important to check that the inertial effects 516 

were minimal. To ensure this, the total kinetic energy had to be small compared to the total internal 517 

energy of the system, during the simulation (for the models presented here, the total kinetic energy was 518 

about 1% of the total internal energy, at the onset of failure). Also, the force-displacement response had 519 
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to be independent of the applied velocity. Based on the results from the numerical experiments, a time-520 

scaling factor of 2.5 was recommended to adequately simulate the four-point bending failure of an ice 521 

beam without any significant instability and inertial effects. 522 

 523 

MASS SCALING 524 

Mass scaling refers to a technique of reducing the computational cost in an explicit analysis by adding a 525 

non-physical mass to the structure that increases the critical time step. In standard FEM, mass scaling is 526 

often applied to reduce the computational cost for explicit quasi-static simulations Prior (1994). In such 527 

an analysis, the time step is calculated internally not only to maintain numerical stability but also to 528 

ensure that the stress waves cannot propagate more than the minimum element dimension in one time 529 

step. This is referred to as the Courant condition and is expressed in (29) 530 

   (29) 

The time step (δt) is a function of the particle spacing (h), sound speed (c), and a stability constant CCFL 531 

(Hallquist 2006).The sound speed (c) depends on the element type and in its simplest form can be 532 

written as c = (E/ρ)
 ½

, where E is the Young’s’ Modulus and ρ is the material density. The internally 533 

calculated time step for SPH method is slightly modified and takes into account the particle velocity (v), 534 

as reflected in (30). 535 

  (30) 

Amongst all the factors controlling the internally calculated time step in an SPH simulation, there are 536 

three parameters that can be changed to improve the time step. Firstly, it follows directly from (30) that 537 

increasing the mesh size or the element length (h) will increase the time step. This should affect the 538 

accuracy, and a convergence study must be conducted prior to determine the optimal mesh size for a 539 

given problem. Secondly, Young’s Modulus is changed thus directly altering the stiffness of the model 540 

and thereby affecting the accuracy. Thirdly, the density of certain critical elements, responsible for 541 

bringing down the time step in a simulation, is increased. This is also referred to as mass scaling where a 542 

minimum time step size is specified. If an element or particle is responsible for bringing down the time 543 

step below the specified minimum value, its density is increased to meet the minimum time step 544 

requirements. In this study mass scaling was applied with the expectation to increase the critical time step 545 

and consequently reduce the run time 546 
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An accurate SPH solution requires uniform distribution of particles Lacome (2001). Naturally, for such a 547 

uniform discretization there is no specific particle controlling the time step. Villumsen et al. (2008) 548 

indirectly invoked mass scaling of SPH particles in a metal-cutting simulation by directly increasing the 549 

density of particles to examine the effect on the final result. In this study, mass scaling was similarly 550 

introduced by scaling the density of each particle by ratios of 1.05 and 1.10. Similar to the previous 551 

numerical experiment on time scaling, mass scaling was first applied to an elastic four-point bending case. 552 

The NRMSE from the analytical solution was 6.06% and 12.71% for mass scaling factors of 1.05 and 553 

1.10 respectively. At the same time, the computation time was reduced by 8.34% and 15.24% 554 

respectively. The simulations were subsequently extended to the four-point bending failure analysis. The 555 

deviations of the results from experiments are presented in Table 7. It can be seen that for a mass scaling 556 

factor of 1.05 the force and displacement outputs at failure deviated by 4.22% and 1.87% respectively, 557 

and calculation time was reduced by 9%. From the results, it is evident that further increasing the mass 558 

scaling factor would reduce both the CPU requirements and the accuracy. Considering a below 10% 559 

deviation in output as satisfactory, a mass scaling factor of 1.05 can be adequately used to simulate the 560 

overall behavior of the numerical model within a reasonable timeframe. In a quasi-static analysis, mass 561 

scaling has been similarly used to increase the critical time step and consequently reduce the run time 562 

(Olovsson and Simonsson 2006) Still, the kinetic energy of the system was required to be monitored 563 

regularly to ensure that it remained quite small compared to the internal energy, and that inertial effects 564 

did not come into play. 565 

Table 7: Comparison of percentage difference in results for different values of mass scaling 566 

Mass Scaling Factor (MSF) 
Deviations in output at failure (%) 

CPU time (hrs) 
Failure load Displacement 

MSF = 1.00 5.10 8.41 27.10 

MSF = 1.05 4.22 1.87 24.84 

MSF = 1.10 9.84 2.80 22.97 

 567 

SPH-FEM COUPLING 568 

The computational time in an SPH simulation primarily depends on the number of discrete particles 569 

present in the model. Thus, a viable alternative to reduce the simulation time was to reduce the number 570 

of active SPH particles in a simulation. This was achieved by coupling the Lagrangian methods of SPH 571 

and FEM. SPH-FEM coupling could be done either by using the adaptive transformation of failed solid 572 

elements into SPH particles or by using an offset tied contact to connect the SPH and FEM parts. In 573 

adaptive transformation, the new particles assumed the properties of the original finite elements and 574 
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similar to using a tied contact improved the computational times by reducing the number of active SPH 575 

particles in the model.  576 

However, it was important to determine the most appropriate SPH and FEM models to couple together 577 

and the discretisation error had to be calculated a priori, both for the FEM and SPH parts. The 578 

appropriate models were selected from the results of a convergence study conducted for both SPH and 579 

FEM beams under four-point bending. The convergence study for SPH was already presented in Das 580 

(2017). Therein it was concluded that the height of the SPH beam if discretized using 40 particles (SPH-581 

40) and consequently assigning this inter-particle distance (to ensure uniform particle distribution) for the 582 

entire model, the Normalized Root Mean Square Error (NRMSE) was found to be less than 4%. A 583 

similar convergence study for FEM indicated that the NRMSE for FEM-20 (the height of the beam was 584 

discretized using 20 elements) was around 2.4%, and further reducing the element size to FEM-40 only 585 

reduced the error to 2.2%. However, this small improvement in accuracy of FEM-40, compared to FEM-586 

20, came at a significant increase in computational requirements (Table 8). Thus, considering both the 587 

CPU resource requirements and accuracy, FEM-20 and SPH-40 were considered to be the most 588 

appropriate models to couple together.  589 

Table 8: Comparison of NRMSE and CPU costs for different FEM models 590 

METHOD 
Output at t = 0.4 s 

NRMSE (%) CPU time (hrs) 
Load (KN) Displacement (mm) 

FEM-5 5.25 1.14 16.6 0.04 

FEM-10 6.68 1.33 3.40 0.10 

FEM-20 6.81 1.34 2.40 1.75 

FEM-40 6.90 1.35 2.20 14.0 
FEM-X indicates that the height of the beam is discretised using “X” number of elements. For instance, FEM-20 denotes that the 591 
height of the beam is discretized using 20 elements 592 
 593 

The coupled SPH-FEM methods were first validated for linear elastic four-point bending, by comparing 594 

the contact force histories and deflection results with analytical solution and then extended to simulate 595 

four-point bending failure of an ice beam. Two different coupled models are discussed in this article and 596 

shown in Figure 8.  The adaptive model had 11600 elements modelled using eight-noded solid elements 597 

and 742400 SPH nodes that are shown in blue colour. Each FEM element was replaced by two SPH 598 

particles at the onset of failure, to keep the inter-particle distance in the adaptive model consistent with 599 

the pure SPH model. For the tied model, SPH was used for the middle part of the beam where fracture 600 

was likely to occur and FEM for the rest of the beam. An offset contact was used to tie the FEM and 601 

SPH parts. Such a contact allowed the SPH particles to be tied to the end point of a vector, offset at a 602 

specified distance from the master segment of FEM.  603 
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In Figure 8, both the adaptive model and tied SPH-FEM models are shown. The SPH-FEM models 604 

were first validated for a linear elastic bending case that ensured the applicability of the coupled models 605 

to simulate bending. Thereafter, the SPH-FEM models were applied to simulate the flexural behaviour 606 

of ice in four-point bending. 607 

 608 
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Figure 8: SPH-FEM coupling models 609 

Validation of SPH-FEM coupling techniques to simulate linear elastic bending 610 

The linear elastic bending results from the coupled SPH-FEM models were compared with FEM and a 611 

pure SPH simulation of the same beam. For FEM analysis, the beam was modeled using the default 612 

eight-noded solid element and the outcome from FEM was first matched with the analytical solution of 613 

beam deflection under linear elastic bending. NRMSE further quantified the accuracy between the 614 

numerical results and FEM. Although this normalised error percentage was least for the SPH method, 615 

the adaptive model was the most efficient computationally (Table 9). Also, the NRMSE for the adaptive 616 

model was only 0.47% more than the SPH method. This decrease was quite acceptable, especially 617 

considering the significant improvement in efficiency. 618 

Table 9: Comparison of linear elastic bending results between SPH and SPH-FEM models 619 

METHOD 

Output at t=0.4 s 

NRMSE (%) CPU time (hrs) 
Load (KN) 

Displacement 

(mm) 

SPH-40 7.03 1.369 2.41 22.08 

TIED 6.38 1.376 4.76 13.90 

ADAPTIVE 6.79 1.354 2.88 2.170 

 620 

Furthermore, the comparison of deflection (Figure 9) and load versus deformation plots (Figure 10) 621 

between the coupled models, SPH and FEM, show good correlation between the different approaches 622 

thereby contributing to the validation of the coupled models to simulate elastic bending behavior of ice.  623 

 624 
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Figure 9: Comparison of deflection at t = 0.40 s 626 

 627 
Figure 10: Comparison of force-displacement plots between SPH and SPH-FEM models 628 

 629 

Application of SPH-FEM coupling to simulate four-point bending failure of ice 630 

The different coupling models were then used to simulate flexural failure of an ice beam under four-631 

point bending. The outcomes from the numerical experiments are compared in Table 10. Both the 632 

adaptive and the SPH models agreed well with experimental results, particularly with respect to failure 633 

load, deflection and failure time. The force-displacement plots are compared in Figure 11. It can be 634 

observed that the tied contact model reached the tensile failure stress earlier than other numerical 635 

models. This is understandable because a tied contact connects two different domains and a discontinuity 636 

exists at the SPH-FEM boundary. The response in a tied contact was quite accurate initially. As the 637 
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deformation progressed, the stiffness, displacement, pressure and other key functionals started to be 638 

different in the SPH and FEM parts leading to a dissimilar distribution around the tied interface. Prior to 639 

failure, the distribution of tensile pressure in a few SPH elements at the tied interface was about twice the 640 

surrounding solid elements and consequently led to premature failure there. Hence, a suitable solution 641 

was to use the adaptive transformation of failed finite elements into SPH particles. For adaptive coupling, 642 

such premature failure was not observed, and the failure results were found to be in good agreement with 643 

experimental observations. 644 

 645 
Figure 11: Comparison of force-displacement plots for SPH and SPH-FEM models 646 

Table 10: Comparison of numerical results with experiment 647 

METHOD 
Deviations in output at failure (%) 

Failure time (sec) CPU time (hrs) 
Failure load Displacement 

SPH-40 5.10 8.41 0.34 27.10 

TIED 7.73 0.93 0.32 13.77 

ADAPTIVE 2.46 8.41 0.34 4.730 
1 (Kujala et al. 1990) 648 

The time requirement for the bending simulation can be substantially reduced if SPH-FEM coupling is 649 

used instead of a pure SPH simulation. In fact, it can be seen from Table 10 that the tied model was two 650 

times faster than SPH-40. However, variations in pressure distribution at the SPH-FEM boundary 651 

initiated failure around the tied interface (Figure 12). The adaptive coupling model was almost six times 652 
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faster than a pure SPH simulation and the simulated failure load, time and displacement agreed well with 653 

published experimental data.  654 

 655 
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Figure 12: Breaking location and fracture pattern for SPH-FEM models 656 

 657 

Table 11 reviews the different techniques studied in this paper and quantifies the reduction in 658 

computational resource requirement and the associated error percentage compared to a pure SPH 659 

model. The adaptive transformation of failed solid elements into SPH particles was computationally 660 

most efficient. A combination of the described techniques can also be investigated to study the feasibility 661 

of using them to improve the efficiency even more.  662 

Table 11: Summary of results from domain decomposition, scaling techniques and SPH-FEM models 663 

METHODS 

Deviations in output at failure 

(%) 

 

CPU time (hrs) 

Failure load  
Failure 

displacement  

Domain 

Decomposition 

SLICE X 5.10 8.41 27.10 

SLICE Y 5.10 8.41 31.88 

SLICE Z 5.10 8.41 30.45 

Time scaling 

TSF = 2.5 4.39 7.48 11.24 

TSF = 5.0 2.64 5.61 5.080 

Mass scaling 

MSF = 1.05 4.22 1.87 24.84 

MSF = 1.10 9.84 2.80 22.97 

SPH-FEM 

TIED 7.73 0.93 13.77 

ADAPTIVE 2.46 8.41 4.730 

 664 

 665 

 666 

  667 
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CONCLUSION 668 

The SPH method, since its inception to simulate astrophysical phenomena, has gradually developed and 669 

diversified to become one of the best numerical methods to simulate fracture in brittle solids (Monaghan 670 

2005). However, the computational requirements associated with SPH are significantly higher than 671 

conventional grid-based methods. Thus, several key ways to improve the computation time were 672 

investigated and their corresponding accuracy, ability to simulate failure, and limitations were compared. 673 

Of the key techniques investigated, domain decomposition, time scaling and mass scaling were found to 674 

be significantly useful to compute the results within a desired time limit.  For quasi-static cases, these 675 

methods could be effectively used to reduce the CPU requirements by at least 59% for time scaling and 676 

8% for mass scaling. At the same time, the corresponding deviations in output were less than 5% for 677 

failure load and 7.5% for failure displacement, when compared to experiments. These methods could 678 

provide valuable insights into the overall behaviour of a simulation as long as the kinetic energy was 679 

constantly monitored to ensure that inertial effects were negligible. The SPH-FEM models were also 680 

identified as viable alternative to significantly reduce the computational demand. If a tied contact was 681 

used to couple the SPH and FEM parts, the CPU requirements were reduced by almost 50%. However, 682 

the breaking location could not be simulated accurately in tied contacts as the discontinuity between the 683 

SPH and FEM parts resulted in premature failure at the contact interface. A suitable solution was to use 684 

adaptive transformation of failed finite elements into SPH particles. These new particles assumed the 685 

properties of the finite elements at failure, and not only improved the computational time by 83% but 686 

also the overall accuracy by 3%. The satisfactory correspondence of the simulation results with the 687 

experimental outcomes, especially with respect to failure load and displacement, confirm the accuracy 688 

and credibility of the different approaches presented in this paper. Future research should explore the 689 

application of these approaches in the context of combined bending and crushing failure of ice during 690 

ice-structure interactions. 691 
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