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Hessian-based Robust Ray-Tracing of Implicit Surfaces on GPU

Figure 1: (Ray-Traced Cross-Cap Surface) Left to Right Algorithms: Taylor Test, Taylor Test with Mean Curvature, Taylor Test with Ap-
proximate Hessian, and Taylor Test with Exact Hessian. The lines are self-intersecting artifacts, which reduce significantly on using
Hessian.

Abstract1

In recent years, the Ray Tracing of Implicit Surfaces on a GPU has2

been studied by many researchers. However, the existing methods3

have challenges that mainly includes solving for self-intersecting4

surfaces. General solutions for Ray Tracing suffer from the problem5

of false roots, and robust solutions are hard to generalize. In this6

paper, we present a robust algorithm based on Extended Taylor-Test7

Adaptive Marching Points, which allows a robust rendering of Self-8

Intersecting Implicit Surfaces on a GPU. We are using the Second9

Order Taylor Series expansion to alleviate the problem of double-10

roots in Self-Intersecting Implicit Surfaces. Our approach is simple11

to implement and is based on the Hessian Matrix of the Implicit12

Surface that can be attributed to the Hessian Matrix can be used13

to obtain second-order Taylor Series expansion for the uni-variate14

ray-equation. We compare our results using the simulated ground-15

truth with the smallest step-size possible with proposed algorithm,16

and our proposed algorithm gives the best visual results as well as17

highest SSIM percentage than other approaches.18

1 Introduction19

Implicit Surfaces are an important category in Computer Graphics20

(CG) as they are compact and can be evaluated quickly. In general,21

an Implicit geometry is defined by an equation S(x, y, z) = 0 and22

different forms of S(x, y, z) are possible. For example, an alge-23

braic form which can be represented by a polynomial equation and24

transcendental for which uses trigonometric functions. The basic25

idea is to reduce the surface S(x, y, z) = 0 to the form an equation,26

Ff (t) = 0 by substituting the ray-equation in the implicit surface,27

which results in a uni-variate equation. The uni-variate equation28

needs to be solved fragment-wise. Each fragment can then solve29

for t and perform per-pixel lighting based on the point of inter-30

section and a normal at the point of intersection. The root-finding31

for ray-surface intersection is usually done in two steps, i.e., root-32

bracketing and root-isolation for General implicit surfaces [Hart33

1996; Singh and Narayanan 2010; Knoll et al. 2007]. The prob-34

lem becomes difficult when the implicit surface is self-intersecting,35

and then root bracketing becomes complex and might fail. In this36

paper, we specifically address the problem of the rendering of Self-37

Intersecting implicit surfaces on a GPU.38

In the rest of the paper, we discuss the Related Work in Section ??39

and specifically the method using Mean-Curvature in Section 1. We40

describe the details of the proposed method using the Hessian Ma-41

trix in Section 3. We finally discuss results and future-work in 4.42

2 Related Work43

In [Hart 1996] author has introduced a concept of Geometric dis-44

tance which is hard to compute and not easy to generalize. How-45

ever, it can help to obtain robust results as indicated in [Hart 1996].46

In [Knoll et al. 2007; Mitchell 1990] authors have proposed robust47

approaches which give better results, but the methods are computa-48

tionally expensive and hard to generalize. The approach discussed49

in [Mitchell 1990] isolates the root using repeated bisections till50

the interval in t contains a single root. Reliable interval-extensions,51

however, are difficult to compute for large intervals in the domain of52

complex functions. In [Singh and Narayanan 2010] authors present53

a Taylor Test for root bracketing which performs decently well and54

is easy to compute with some false roots. Furthermore, [Singh55

2017] uses a differential geometry concepts to alleviate the prob-56

lem of false roots as they use the sign of Mean Curvature to decide57

if more or less sampling needs to be done for the root bracketing.58

The authors chose the base step-size by dividing the ray into steps59

of ∆t and defined the base stepsize as 2.0/µ(S(t)). Further, the60

formulation for Mean Curvature is used from [Goldman 2005] as61
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3 PROPOSED APPROACH: HESSIAN-BASED ROBUST RAY-TRACING OF IMPLICIT SURFACES

H = -∇ · ∇S without division by magnitude of the normal as that62

does not change the sign of H, where H is used to decrease the step63

size by a factor of 0.5 when negative and increase by a factor of 264

when a positive sign is obtained. Finally, they use Taylor test for65

root bracketing [Singh 2017] without user-defined constants τ1 and66

τ2. This results in partial alleviation of the problem as the method67

still shows false-roots as we show in the results later.68

2.1 Related Work: Adaptive Marching Points Algo-69

rithm with Taylor Test Overview70

This section provides the detailed review of the method proposed71

by authors [Singh and Narayanan 2010] i.e., the Adaptive Marching72

Points Algorithm. The parametric form of 3D ray from a pixel or a73

fragment(f ) is p(t) = O+tDf , where t is the ray parameter,O the74

camera center, and Df the direction of the ray. Substituting the 3D75

coordinate x, y, z from the ray equation into the surface equation76

S(x, y, z) = 0, we obtain the Equation 1 given as:77

Ff (t) = 0. (1)

Furthermore, the authors are interested in computing the smallest78

positive t as the object which is considered opaque, and it is the79

point of intersection. Hence, each pixel needs to solve Equation 180

independently and find the corresponding root. Once, the root is81

found we need to do shading for which the normal is a gradient82

~∇S(x, y, z) and can be used for lighting and shadows. The follow-83

ing algorithm describes the steps involved in the related approach84

in [Singh and Narayanan 2010]:85

Algorithm 1 Adaptive Marching Points (f, b)
1: Find the intersections tnear and tfar of the ray for fragment f

with the near and far planes.
2: Initialize delta to the base step size b; t to starting point tnear

3: while t < tfar do
4: Set the stepsize δ using Equation 2.
5: if rootExistsIn (t, t+ δ) then
6: Goto step 11 with [t, t+ δ] as the isolated interval
7: end if
8: t = t+ δ
9: end while

10: If we have no interval as isolated, then we discard the pixel.
11: Perform 10 steps of Newton-bisections of the isolated interval.

Finally, the authors perform two kinds of adaptations on the base86

Algorithm 1:87

1. Distance Adaptation: The magnitude of |S(x, y, z)| is used88

as a proximity measure, further which is used as an approx-89

imation to algebraic distance. Furthermore, the base step-90

size is doubled when algebraic distance is greater than τ2 and91

halved when algebraic distance is less than τ1. The thresholds92

(τ1 and τ2) are defined as recommended by the authors.93

2. Silhouette Adaptation: Silhouettes are the regions close to94

the boundary of the surface and hence is important to increase95

the sampling rate as argued by the authors. They use the mag-96

nitude of the derivative F ′f (t) = ~∇S(x, y, z) · Df , which97

serves as horizon measure and is close to zero, near internal98

and external silhouettes of the even complex implicit surfaces.99

Thus, |F ′f (t)| ≤ τ3 is satisfied and they use it for further re-100

duction of the step-size.101

Combining the distance and silhouette adaptation, the authors fix102

the step size in each iteration using the formula given by Equation103

2:104

δ =


b/4 if |S(p(t))| ≤ τ1 and |~∇S(p(t)) ·Df | ≤ τ3
b/2 if |S(p(t))| ≤ τ1
2b if |S(p(t))| > τ2
b otherwise

(2)

where b is the base step-size and τ1, τ2 and τ3 are the user-defined105

thresholds. Once, the step-size is fixed one needs to do the root-106

containment test (Step 5, Algorithm 1). This is done by the authors107

in the following two ways:108

Sign test: This test is simple and root exists if the function109

changes sign between the end points of the step, i.e., if (S(p(ti)) ∗110

S(p(ti+1)) < 0). However, it can miss the roots and produce false-111

roots.112

Taylor test: The authors take first order Taylor series approxi-113

mation of the function at the mid-point of an interval, and eval-114

uated the series from both endpoints. It works well for mod-115

erate length of intervals. Furthermore, authors define the in-116

terval extension called Taylor-extension as follows: The exten-117

sion of F in the interval [ti, ti+1] is defined as F̃ ([ti, ti+1]) =118

[min {p, q, r, s}, max {p, q, r, s}], where119

q = F (ti) + F ′(ti)
(ti+1−ti)

2
, p = F (ti),

r = F (ti+1)− F ′(ti+1)
(ti+1−ti)

2
, s = F (ti+1)

(3)

However, this test is slower than the sign test as more computations120

are required for obtaining the derivatives. Further, it can produce121

false-roots too.122

3 Proposed Approach: Hessian-based Ro-123

bust Ray-Tracing of Implicit Surfaces124

In this section, we describe the proposed approach based on the125

Hessian-based Taylor-Test for Robust Ray-Tracing of an Implicit126

Surface on the GPU. This, when compared to Mean-Curvature127

based approach from [Singh 2017] results in much cleaner for-128

mulation and results, are considerably better.129

The definition of Hessian Matrix for an Implicit Surface S(x,y,z) is
:

H =


∂2S
∂2x

∂2S
∂1x∂1y

∂2S
∂1x∂1z

∂2S
∂1y∂1x

∂2x
∂2y

∂2S
∂1y∂1z

∂2S
∂1z∂1x

∂2S
∂1z∂1y

∂2S
∂2z


The Extended-Taylor extension of F in the inter-130

val [ti, ti+1] is defined as follows F̃ ([ti, ti+1]) =131

[min {p, q, r, s}, max {p, q, r, s}], where132

p = F (ti),

q = F (ti) + F ′(ti)
(ti+1−ti)

2
+ F ′′(ti)

(ti+1−ti)
2

2
,

r = F (ti+1)− F ′(ti+1)
(ti+1−ti)

2
+ F ′′(ti)

(ti+1−ti)
2

2
,

s = F (ti+1),
F ′(ti) = 5S(x, y, z)•Df

F ′′(ti) = (̇Df , (H(O + ti ∗Df )?D′f ))

(4)

A sign-change in the proposed Hessian-based Taylor-Test will show133

the presence of the roots. This results in a simpler formulation134

and provides a better Interval Extension as compared to Mean-135

Curvature based approach [Singh 2017].136
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4 RESULTS & FUTURE WORK

Figure 2: (Ray-Traced Surfaces) Left to Right Algorithms: Taylor Test, Taylor Test with Mean Curvature, Taylor Test with Approximate
Hessian, and Taylor Test with Exact Hessian. The lines are self-intersecting artifacts, which reduce significantly on using Hessian except
for Steiner.

4 Results & Future Work137

We present our result on the three Self-Intersecting Implicit Sur-138

faces which are Steiner Surface, Cross-Cap Surface and Miter Sur-139

face whose equations are given by the Equation 5, 6 and 7 respec-140

tively. Table 1 shows comparative results on NVidia Quadro P5000141

system with our technique. We are using GLSL for the implemen-142

tation. We just need additional computation of Hessian Matrix and143

we get state-of-the-art results using it. Figure 2 and Figure 1 show144

results where we get the fewest false-roots against compared algo-145

rithms.146

We compute simulated Ground Truth by increasing the num-147

ber of steps and reducing the step-size to smallest possible with148

the Hessian-based approach. Ground-Truth was computed by149

Hessian-based approach because Mean-Curvature and Taylor-Test150

approaches were still giving false-roots even at very small step-151

sizes.152

Since the Hessian Matrix is defined for General Implicit Surfaces153

except for the non-differentiable ones. We would like to check the154

generalization on differentiable Implicit Surfaces as part of future155

work.156

Following are the equations of the Implicit Surfaces used in this157

work:158

Steiner Surface159

x2y2 − x2z2 + y2z2 − xyz = 0. (5)

Cross-Cap Surface160

4x2(x2 + y2 + z2 + z) + y2(y2 + z2 − 1) = 0. (6)

Miter Surface161

4x2(x2 + y2 + z2)− y2(1− y2 − z2) = 0. (7)
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REFERENCES REFERENCES

Surface Taylor Test Mean Curvature Hessian Approximate Hessian Exact
Cross-Cap[4] 592(96.28%) 150(99.64%) 152(99.91%) 23

Miter [4] 580(95.74%) 154(99.57%) 158(99.91%) 24
Steiner [4] 416(92.14%) 151(96.67%) 88(98.78%) 25

Table 1: Frame rates for self-intersecting Implicit Surfaces for a 1024×1024 window on an NVidia Quadro P5000. The order of algebraic
surfaces appears within square brackets. The step size for Taylor Test, Mean Curvature, and Approximate Hessian is 0.01, and Exact Hessian
is 0.002. τ1 = τ2 = τ3 = 0.01.
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