
Improving the mesoscopic modeling of DNA

denaturation dynamics

Marta Marty-Roda1,2, Oda Dahlen3, Titus S. van Erp3,4, and

Santiago Cuesta-López1,2
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Abstract. Although previously developed mesoscopic DNA models have successfully

reproduced thermodynamic denaturation data, recent studies show that these

overestimate the rate of denaturation by orders of magnitude. Using adapted Peyrard-

Bishop-Dauxois (PBD) models, we calculated the denaturation rates of several DNA

hairpins and made comparison with experimental data. We show that the addition of

a barrier at the onsite potential of the PBD model gives a more accurate description

of the unzipping dynamics of short DNA sequences. The new models provide a

refined theoretical insight on the dynamical mechanisms of unzipping which can have

implications for the understanding of transcription and replication processes. Still, this

class of adapted PBD models seems to have a fundamental limitation which implies

that it is not possible to get agreement with available experimental results on the

dynamics of long DNA sequences and at the same time maintain the good agreement

regarding its thermodynamics. The reason for this is that the denaturation rate of long

DNA chains is not dramatically lowered by the additional barrier as the base-pairs

that open are more likely to remain open, facilitating the opening of the full DNA

molecule. Some care has to be taken since experimental techniques capable to study

denaturation rates of long sequences seem not in agreement with other experimental

data on short DNA sequences. Further research, both theoretical and experimental,

is therefore needed to resolve these inconsistencies, which will be a starting point for

new minimalistic models that are able to describe both thermodynamics as well as

dynamics at a predictive level.
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1. Introduction

Understanding the physics of deoxyribonucleic acid (DNA) is a challenge since it

is a high-dimensional system with a complex structure. All-atom simulations are

not only computational intensive, but also difficult to analyze. Simple models of

DNA can, therefore, help to identify the essential features underlying its remarkable

properties [1]. Despite the fact that a half century has passed since the discovery

of the structure of the DNA double helix [2], major questions still remain regarding

its thermodynamic behavior and stability. Knowledge of the DNA structure alone is

generally not sufficient for understanding the biological processes [3, 4]. In addition

to the structural information, it is necessary to know how the structure affects the

equilibrium properties and the dynamics of the DNA molecule. One of the phenomena

that can be studied is the local opening of DNA, which is an intriguing phenomenon

from a statistical-physics point of view, but is also essential for its biological function.

For instance, the unwinding of the double helix and the formation of specific DNA

bubbles are prerequisites for both DNA replication and gene transcription [5].

In addition, understanding how base-pairs separate under thermal fluctuations, i.e

thermal denaturation of DNA, is of importance to many biotechnology applications,

including the design of probes for primers, in polymerase chain reaction, or molecular

beacons (DNA hairpins). Besides, DNA denaturation is becoming important for

nanotechnology [6–9] as DNA is now used for its self-assembly properties to create

nano-devices or to design molecular memories.

In the last decades, significant progress have been made in the development of Ising-

type models [10] which describe the state of a base pair by either 0 or 1 depending on

whether it is closed or open, respectively. Examples are nearest-neighbor models [11],

Poland-Scheraga models [12], and Benham’s model [13, 14]. Other integer-type models

are the zipper models [15, 16] that assume that the DNA strand can only open from

one side (neglecting the effect bubbles). In these models, the state of the molecule is

determined by a single integer variable: the number of open base-pairs. Models with

a more continuous character are the bead-spring rotating strands [17] and the Peyrard

Bishop Dauxois (PBD) model [18], that is used in the article [18]. In the latter, each

base-pair is described by a single variable describing the stretch between bases. It has

been shown that the PBD models can reproduce the equilibrium and thermodynamic

properties of DNA reasonably well [19–21].

For a long time, the study of DNA dynamics has been given very little attention.

One reason for this is the experimental difficulty to measure kinetic data such as rates of

opening or unwinding. As a result, there has been a lack of accurate experimental data

about DNA dynamics to which theoretical models can be compared. Another reason

is that most relevant dynamical processes, which can be compared with experiments,

require very long timescales. Even if highly coarse-grained models, like PBD, can

straightforwardly be used in molecular dynamics and are considerably faster than all-

atom models, the accessible timescale of the simulations is generally not long enough
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to observe the specific biological transitions such as DNA denaturation. As a result,

theoretical studies trying to analyze DNA dynamics have been focusing on biological

phenomena with very short life-times, such as the opening of individual base-pairs [21]

instead of the opening of large DNA bubbles or full molecules.

However, utilizing the fact that the PBD model has only first-neighbor interactions,

the rate constants of DNA denaturation can be computed very accurately using the

approach of Refs. [6, 22, 23] that is used in this work and further discussed in Sec. 3

The same algorithmic technique has been used for the computation of denaturation

rates of double stranded DNA [6, 22] and DNA hairpins [23] based on the standard

PBD model. Since the latter process is easier accessible with experimental techniques,

there is significantly more experimental data available on the denaturation rate of DNA

hairpins compared to double stranded DNA.

DNA hairpins are made of short single strands of DNA with terminal regions

consisting of complementary base sequences. As a result, the two end-regions can self-

assemble in a short DNA double helix, called the stem, while the remaining central part

of the strand forms a loop. DNA hairpins have an important biological function since

they take part in many RNA configurations, are involved in key biological process like the

regulation of gene expression, DNA recombination, and regulation of the transcription

by binding proteins [24–26].

Several experimental studies have increased our knowledge about the kinetics of the

hairpin transitions by measuring the characteristic opening and closing rates [27–35].

Regarding theoretical studies, Hanne et al. [28] compared experimental single-molecule

measurements of the DNA hairpin opening rate under mechanical tension with

theoretical modeling using the PBD model. Denaturation rates of short hairpins were

computed in a qualitative manner using an artificial Monte Carlo type of dynamics. This

approach provided trends on the behavior of relative rates as function unzipping force

and other parameters like temperature and sequence content. Dahlen and van Erp [23]

were the first to report quantitative computations of hairpin denaturation rates using

the PBD-class specific reactive flux implementation described in Sec. 3. Their results

show that the PBD model, despite giving reasonable results regarding thermodynamic

properties, overestimate rates of unzipping by many orders of magnitude.

In this work, we will therefore examine the dynamical properties regarding hairpin

denaturation using a recent adaptation of the PBD model [21] which has shown to

give better agreement regarding base-pair lifetimes. In addition to the model itself, we

examined some variations of the model to explore the effect of some model parameters

on the behavior of denaturation rates as function of temperature and chain length.

2. Adapted PBD model

The PBD model describes the double stranded DNA molecule as a connected chain

of one-dimensional particles and condenses all the atomic coordinates of a base-pair

into a single number y, which describes the stretching of the bonds between the two
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bases [3, 18]. Despite its simplicity, the model successfully describes the sharp melting

transition of long DNA homopolymers [18], provides reasonable statistics on bubbles in

DNA sequences [36], and on the persistence length and DNA flexibility [37]. However,

the average time during which a base-pair stays closed between two opening fluctuations,

and the time during which it stays open after such a fluctuation are orders of magnitude

too small [21] in comparison to experimental values inferred from proton-deuterium

exchange experiments [38].

A way to increase the life-times of the open state and the closed state of individual

base-pairs is to add a barrier to the onsite potential. Several studies have argued that

such an adaptation gives a better physical description of DNA and have proposed to

replace the original onsite Morse potential in the PBD model by a potential that has

a true barrier in between the open and the closed state [21, 39, 40]. The suggested

adaptations [21,39,40] of the potential function differ with respect to their mathematical

formulations, but are rather similar in nature. Besides making it more difficult for the

base-pair to open, the modification also introduces a obstacle for the closing process.

Whereas in the original PBD model this transition is barrier-free, in the new models

an energy threshold needs to be overcome. This closing barrier is a result of the

hydrogen bonds that the bases make with the solvent that need to be broken to make the

transition [39, 41]. Besides enthalpic contributions, the closing barrier also reflects the

loss of degrees of freedom when the base-pair gets packed into the helical structure [21],

which has been quantified in all-atom free energy calculations [42]. As mesoscopic

models aim to include entropy by effective potentials of mean force, the decrease in

entropy is manifested by a higher potential value in the coarse-grained description.

This value goes rapidly down when bringing the bases closer together since the loss of

entropy and solvent interactions is more than compensated by the favorable energetic

interaction between the nearby opposite bases.

The inclusion of the barrier provides base-pair life-times that are considerably closer

to the experimental values [21]. Calculations on the melting transition of the A-form of

DNA using the adaptation of the PBD model [21] has also given a good agreement with

with calorimetry and neutron scattering experiments [43]. Yet, it is an open question

whether this improved model, possibly with slight variations in model parameters, is

able to give a correction description of the denaturation rate of DNA polymers and

hairpins. The denaturation process or the opening of the full DNA chain requires many

base-pair opening transitions. The opening of a single base-pair or the simultaneous

opening of a few consecutive base-pairs is generally not followed-up by the opening of

the full molecule. As long as the majority of base-pairs are in a closed state, it is much

more likely that the open base-pairs will be pulled back into the stack. The effect of

the barrier on the denaturation rate is, therefore, non-trivial and has not been studied

before.

The Hamiltonian for DNA chain with N base-pairs in the adapted PBD model is
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the following:

H =
N∑
n=1

p2n
2m

+W (yn, yn−1) + V (yn), with pn = m
dyn
dt

(1)

where W (yn, yn−1) for n > 1 is an anharmonic potential which describes the interaction

between adjacent bases along the DNA molecule. V (y) is the Morse potential with its

modification, describing the repulsive interaction due to the hydrogen bonds between

the two bases of a base-pair on opposite strands

W (yn, yn−1) =
1

2
K(1 + ρe−κ(yn+yn−1)(yn − yn−1)2 (2)

V (y) = D(e−αy − 1)2 + θ(y)
by3

cosh2[c(αy − d ln 2)]
(3)

Table 1. Potential parameters used in the model

Case D(eV) α(Å
−1

)b(eV)c(Å
−1

)d K( eV
Å

2 )ρ κ(Å
−1

)

mI: Morse, parameters [19]
AT → 0.05000 4.2 0 \ \

0.025 2 0.35
GC → 0.07500 6.9 0 \ \

mII: Morse+barrier [21]
AT → 0.09075 3.0 4 0.74 0.2

0.004 25 0.8
GC → 0.09900 3.4 6 0.74 0.2

mIII: barrier 1.5×Ref. [21]
AT → 0.09075 3.0 6 0.74 0.2

0.004 25 0.8
GC → 0.09900 3.4 9 0.74 0.2

mIV: barrier 2×Ref. [21]
AT → 0.09075 3.0 8 0.74 0.2

0.004 25 0.8
GC → 0.09900 3.4 12 0.74 0.2

mV: Ref. [21] with deep Morse
AT → 0.1255 3.0 4 0.74 0.2

0.004 25 0.8
GC → 0.1455 3.4 6 0.74 0.2

Here, θ(·) is the Heaviside step-function and the original PBD model is reobtained

by setting b = 0 in the above equation. The heterogeneity of the genetic sequence is

taken into account by giving different values to the parameters of the Morse potential

for adenine-thymine (AT) or guanine-cytosine (GC) base-pairs. The PBD model does,

however, not distinguish between A- and T- nor between G- and C-bases. The additional

barrier introduces 3 extra parameters b, c, and d that determine the height, the width,

and the position of the added barrier. Together with the original PBD parameters

(DAT, DGC, αAT, αGC, K, ρ, κ), the new model is based on 10 parameters in total. Note

that this is still significantly less than what is used to fit Poland-Scheraga models. For

instance, Ref. [44] reports 31 fitted parameters.

In adapted PBD model, the physically acceptable ranges for values of the width

and position of the added barrier are rather narrow. Moreover, since it describes

configuration space that is not frequently visited, these two parameters have no dramatic

effect on both dynamics and thermodynamics. In our analysis, the c and the d variables
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have, therefore, been fixed to the values of Ref. [21] in this work. Moreover, rather

than finding a best possible fit to experimental results using a least-square approach,

in this work we rather focus on the different characteristics of the different models and

investigate whether such a small modification of the PBD model actually allows the

accurate description of both dynamics and thermodynamics.

The different sets of parameters that we studied are listed in Table 1. Among these

are the parameter set of Campa and Giansanti [19, 20] based on the standard PBD

model, the original parameters of Ref. [21], and three adaptations of this set. The last

three models were studied to detect some trends in the denaturation rate when the

shape of the added barrier and the Morse potential is varied and were not a result of

intensive parameter fitting. Fig. 1 depicts onsite potentials used in this work.
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Figure 1. Morse potential used in this work for the models listed in Table 1. The

potentials are drawed for an homogenoeus AT sequence.

Like in Refs. [23,28], the modeling of the DNA hairpin within the PBD framework

describes the stem as a double stranded DNA molecule except for the last base-pair

before the loop. This terminal base-pair is confined such that its separation y cannot

extend a limiting value mimicking the stretch of the loop. In specific, we applied the

confining potential of Ref. [23] with a maximum separation for the terminal base-pair of

10 Å. In other words, the loop is not explicitly described but only defines the maximum

of the terminal base-pair. It was shown that denaturation curves were not very sensitive

to the maximum extension of the last base-pair [23]. In fact, the denaturation curves

resemble closely that of double stranded DNA, i.e. without confining the terminal base-

pair [23].

3. Rate constant calculation

The reactive flux (RF) approach [45,46] is a way to compute rate constants of processes

that occur at a time-scale that is beyond the accessible time-scale of MD. The method
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consists of two independent calculations, a free energy calculation and the calculation

of the transmission coefficient. The free energy calculation reveals the free energy

profile F (λ) as function of a well chosen reaction coordinate λ. In general, the reaction

coordinate can be any non-linear function of the particles’ coordinates and its value

reflects a measure of the progress of the reaction. Hence, in the PBD model, where

coordinates are projected on the base-pair separations yn:

λ = λ(yN) with yN = {y1, y2, . . . yN} (4)

A low value of the reaction coordinate (λ(yN) < λA) corresponds to reactant state and

a high value (λ(yN) > λB) corresponds to the product state. In between, the transition

state surface corresponds to the configurations yN with a single value of the reaction

coordinate λ(yN) = λTST that is a local maximum of the free energy profile.

The reaction constant within the reactive flux approach can be written as [45]:

kAB = κ
√
kBT

2πm

e−βF (λ∗)∫ λ∗
−∞ e

−βF (λ)dλ
(5)

where m is the mass that corresponds the motion of the reaction coordinate and

β = 1/(kBT ) with kB the Boltzmann constant and T the temperature. κ is the

transmission coefficient which is a number between 0 and 1. The transition state theory

(TST) approximation is obtained for κ = 1 and λ∗ = λTST.

TST assumes that each time that the transition state surface is crossed heading

towards the product state, it will always reach that state without recrossing the

transition state surface another time. The calculation of the transmission coefficient

κ (which is explained below) corrects this generally invalid assumption (for the PBD

model, the final rate constant is typically a factor 40 lower than than the uncorrected

TST expression [6]). The reactive flux method is, therefore, exact and independent of

the choice of reaction coordinate or the exact location of the surface λ∗. This is generally

set close but not necessarily equal to λTST.

The free energy F (λ′) is related to the probability density % by

F (λ′) = −kBT ln [%(λ′)/%0] (6)

where %0 is an arbitrary reference density to make the argument of the logarithm

dimensionless. The probability density follows from an ensemble average

%(λ′) =
〈
δ
(
λ(yN)− λ′

)〉
=

∫
dyN δ

(
λ(yN)− λ′

)
exp

(
−β
[∑N

n=1W (yn, yn−1) + V (yn)
])

∫
dyN exp

(
−β
[∑N

n=1W (yn, yn−1) + V (yn)
]) (7)

where δ(·) is the Dirac delta function.

To simplify Eq.5 we can introduce the conditional probability density

%(λ∗|λ ≤ λ∗) =

〈
δ
(
λ(yN)− λ∗

)〉
〈θ (λ(yN)− λ∗)〉

=
e−βF (λ∗)∫ λ∗

−∞ e
−βF (λ)dλ

(8)
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=

∫
dyN δ

(
λ(yN)− λ∗

)
exp

(
−β
[∑N

n=1W (yn, yn−1) + V (yn)
])

∫
dyN θ (λ(yN)− λ∗) exp

(
−β
[∑N

n=1W (yn, yn−1) + V (yn)
])

which can be used to substitute the exponential expressions in Eq. 5. The term

after the first equals sign is generally the starting point for most common numerical

approaches based on molecular dynamics or Monte Carlo. If computational time is not

an issue, it can simply be determined by running any of those two simulations and just

count how often the reaction coordinate λ(yN) takes a value within a small interval

[λ∗ : λ∗ + dλ]. This number must then be divided by the number of counts that the

reaction coordinate was less or equal to λ∗ and the width of the interval dλ. However,

since [λ∗ : λ∗+ dλ] interval will be rarely visited or possibly not visited at all during the

whole simulation, this small probability must be determined using importance sampling

methods like umbrella sampling or thermodynamic integration [45]. Despite being orders

of magnitude more efficient than brute-force simulations, these approaches are often still

computational intensive as they require the convergence of many different simulations

that cover relatively small parts of configuration space.

The alternative is to use the last expression of Eq. 8, but that would require to

numerically solve the high-dimensional integrals which is generally unfeasible. The

number of grid points, that need to be evaluated, increases exponentially with N and

the inverse integration step. However, as shown in Ref. [36], the number of required

evaluations can be reduced dramatically using an iterative approach whenever the

integrands can be written as product of N − 1 two-dimensional functions ai which only

depend on the variables yi and yi−1, in other words, whenever the integrands are of the

form: aN(yN , yN−1)× aN−1(yN−1, yN−2)× aN−2(yN−2, yN−3) . . .× a3(y3, y2)× a2(y2, y1).
It is henceforth important to chose a reaction coordinate that can both be used to

measure the progress of the reaction and will provide the favorable integral expressions.

The choice made in Ref. [22] and that we use as well is

λ(yN) = min(y1, y2, . . . , yN) (9)

or the base pair separation of the least open base pair. Using this reaction coordinate

Eq. 8 can be written as [22]

%(λ∗|λ ≤ λ∗) = (10)∑
i

∫
dyNδ(λ(yi)− λ∗)

(∏
j 6=i θ(yj − λ∗)

)∏
n exp (−β [W (yn, yn−1) + V (yn)])∫

dyN(1−
∏

k θ(yk − λ∗))
∏

n exp (−β [W (yn, yn−1) + V (yn)])

Both the nominator and the denominator of the above expression can be written as

a sum of integrals that all have the favorable product form and can, hence, be solved

using Simpson’s rule and the efficient iterative integration method.

The second calculation is to determine the transmission coefficient κ, which requires

the release of many molecular dynamics trajectories with starting points picked from

a equilibrium distribution at the surface λ(yN) = λ∗. The description above is generic

for any reactive flux approach, but there are still some variations based on equivalent

mathematical formulations of κ [47].
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It is most convenient to introduce the unnormalized transmission coefficient R

R = κ
√
kBT

2πm
(11)

So that Eq. 5 is a simple product

kAB = R%(λ∗|λ ≤ λ∗) (12)

Now, as discussed in Ref. [47] the different expressions for R can all be written as

R =

〈
λ̇χ(yN , pN)δ

(
λ(yN)− λ∗

)〉
〈δ (λ(yN)− λ∗)〉

=
〈
λ̇χ(yN , pN)

〉
λ∗

(13)

where the subscript λ∗ at the bracket implies that the ensemble average has to be taken

over configurations with λ(yN) = λ∗. λ̇ is the time-derivative of λ or the velocity along

the reaction coordinate of the phase point (yN , pN) that is at the surface λ∗. The function

χ(yN , pN) has usually two possible outcomes, 0 or 1, and its value is determined by a

short MD trajectory starting from the phase point (yN , pN). Like in Ref. [27], we used

the effective positive flux formalism which requires to go both forward and backward in

time. The later is achieved by simply reverting the momenta. The expression for χ in

this formalism is

χ(yN , pN) =


1 if the MD trajectory starting from (yN , pN) hits λB

before λA and if the MD trajectory starting from

(yN ,−pN) hits λA before λ∗.

0 otherwise.

(14)

Note that whenever λ̇ < 0 the backward trajectory cannot cross λA before crossing λ∗.

Hence, χ can be assigned 0 without actually running an MD trajectory in that case. If

λ̇ > 0, the backward trajectory is performed first and then the forward trajectory only

if λA was reached before λ∗. Hence, if the backward movement crosses λ∗, χ is directly

assigned 0 saving the need of many additional MD steps.

The effective positive flux expression does not only reduce the number of MD steps

per χ-evaluation, it also reduces the number of evaluations needed. Since λ̇χ is always

greater or equal to zero for any phase point, the effective positive flux expression also

converges faster than other expressions where λ̇χ can be both positive and negative [47].

Note that if the TST assumption is valid Eq. 14 reduces to χ = θ(λ̇) and Eq. 13 can be

solved analytically resulting in R =
√
kBT/2πm as expected from Eq. 11.

Another algorithmic trick [22] that optimally utilizes specific characteristics of PBD-

class models allows the effective generation of uncorrelated starting points (yN , pN)

at the λ∗ surface. This trick is based on the fact that the statistical ensemble with

Hamiltonian H of Eq. 1 that is constrained to the surface λ(yN) = λ∗ is equivalent to

that of a freely moving chain on a translational invariant Hamiltonian H ′ which relates

to the true Hamiltonian H via

H ′(yN , pN) = H(yN − λ(yN) + λ∗, pN) (15)

Henceforth, the generation of surface points can be done by running an unconstrained

MD simulation using Hamiltonian H ′ and store the generated phase point every Mth
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time step, where M is chosen large enough to reduce correlations. Then, each stored

point is first shifted by adding a single constant to all yi values such that its minimum

as at λ∗, and then MD trajectories are generated with the correct Hamiltonian H in

order to compute χ of that point.

We applied this method using a numerical integration step of dy = .05 Å for the

numerical free energy calculation. Integration boundaries were set according to Ref. [6]

using a tolerance of ε = 10−40, which implies that contributions with Boltzmann weight

e−βH lower than this value are neglected. The phase points on the surface were generated

using Hamiltonian H ′ and saving every M = 1000th step. For each rate calculation, we

generated 106 surface points which were used to calculate χ based on λA = 0, λ∗ = 0.75,

and λB = 2.5 Å. Both for the generation of points using H ′ and the evaluation of χ

using H the dynamics were influenced by a heat-bath with the requested temperature

via a Langevin thermosthat using a time step of 1 fs and a base-pair mass m of 300

amu. The Langevin friction was set to 50 ps−1 which is considered to give accurate

dynamics for biomolecules in water [48]. For friction coefficients larger than 10 ps−1,

the transmission coefficient and the rate constant of the standard PBD model become

inversely proportional to the friction [6]. This agrees well with Kramer’s theory in

the high-friction regime [49]. Hence, for a friction of 50 ps−1 it seems well justified

to rely on overdamped Langevin dynamics (Brownian dynamics) in which the inertia

terms are ignored. Brownian dynamics could provide a more efficient way to evolve

the time evolution of the system, but it is not compatible with the standard approach

for calculating transmission coefficients [50]. It is therefore that we use underdamped

Langevin equations of motion, even if the friction is relatively high. For an extended

discussion about the friction parameter ranges used in PBD models we refer to Ref. [51].

4. Results and discussion

Fig. 2 shows the results obtained from the methodology of Refs. [6,22,23] and the model

of Eqs. 1- 2 of the calculated hairpin denaturation rate constants for a set of different

sequences for which experimental values are available.

Table 2 show the sequences and temperatures of the different data points in Fig. 2

together with their experimental reference. Table 1 shows the parameter sets used in

Eq. 2. Each parameter set defines a case model, notated as mI-mV. In Fig. 2, only

the models mI and mII have been shown corresponding to, respectively, the original

PBD model [18] with parameters from Campa and Giansanti [19] and the model with

the additional barrier of Ref. [21]. Note that the model parameters of Ref. [21] were

fitted to experimental data on base-pair life-times and not to denaturation rates while

Ref. [19] was fitted to thermodynamic data alone.

Clearly, the adapted PBD model (mII) shows considerably better agreement with

the experimental results than the original barrierless PBD model(mI). Whereas the

latter is three till five orders of magnitude too high, the adapted model (mII) is either

on top of the results for the short sequences (5 base-pair stem) or maximally two orders



Impproving the mesoscopic modeling of DNA denaturation dynamics 11

 

R
at

e
 c

o
n

st
an

t 
th

e
rm

al
 u

n
fo

ld
in

g
  (

1/
s)

1

100

10,000

1e+06

1e+08

 

Stem length (bp)
5 6 7 8 9

Experimental
m I
m II

S1

S1

S1

S2

S3

S4

S3

S4

S4

S5

S5

S6

S6

S7

S7

S7

S5

S2

S2

S6

Figure 2. Thermal opening rates of hairpins from Refs. [27,29,30,32–34]. Shown are

the results of the original barrierless PBD model (mI) and PBD model with barrier

(mII) compared with the experimental results for sequences listed in Table 2. Statistical

errors of the simulations are within symbol size.

Table 2. a) Sequences and temperatures of thermal unfolding hairpins. b) Sequences

of hairpins used in optical tweezer experiments.

a) Thermal denaturation exp. Ref. [27,29,30,32–34]

Label Stem Loop Temp.(◦C) Ref.

S1 AAGGG T21 25 [29]

S2 GGGAA Tn=4;A30 23 [27,33]

S3 AAGGAA T4 54 [30]

S4 GGAAAA T4 23 [31]

S5 GGGAAAA T8 36 [32]

S6 GAGAAGA A40 25 [34]

S7 GAGAAGAGA A40 25 [34]

b) Optical tweezer exp. Ref. [35]

Length Stem Temp.= 23 ◦C

6 GAGGAA

8 GAGAGGAA

10 GAGAGAGGAA

15 GAGAGGAGGAAGGAA

20 GAGAGAAGGAGAGGAAGGAA

25 GAGAGAAGGAAGAGGGAGGAAGGAA

30 GAGAGAAGGAAGAGAAGAGGGAGGAAGGAA

of magnitude off for the longer ones (9 base-pair). It is important to realize that also the

experimental data show huge variations for sequences having the same stem length and
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same GC content. This can be due to the differences in loop length or sequence, or due to

variations in the temperatures under which the experiments were performed. However, it

is also not unthinkable that the different experimental measurement techniques perturb

the dynamics and, therefore, possibly won’t provide the same rates. We come back to

this when we compare our results with that of another experimental study based on

optical tweezers [35].

In Fig. 3 we examined the denaturation rate as function of temperature.

Experimental results were taken from Ref. [27] by Bonnet et al. who investigated two

hairpins with identical five base-pair stem GGGAA but with loops either consisting of

21 A-bases or 21 T-bases. Note that these two systems have identical descriptions in

our models, not only because it doesn’t distinguish between A and T bases, but also

because the loop itself is not explicitly described as explained above. In Fig. 3-a) we

use models mI and mII of table 2 which do not involve any parameter fitting. The

results indicate that the original PBD model deviates from the experimental results

by five and three orders of magnitude at low (ca. 280 K) and high temperatures (ca.

315 K), respectively. The model with additional barrier shows for the whole range of

temperatures results that are within one order of magnitude of the experimental values.

From the slope and the intersection of the straight fitted lines, we obtained the Arrhenius

parameters, the activation energy Ea and the pre-exponential factor A, which are shown

in Fig. 3-c). It shows that the mismatch between theory and experiment is largely due

the pre-exponential factor.

Overall, this shows that model proposed in Ref. [21] considerably improves the

dynamics of DNA and, especially for short DNA sequences, reproduces the experimental

denaturation rate constants reasonably well. Fig. 3-b) shows the same experimental

results again together with the models mIII-mIV. Model mIII is nearly as good as mII

with the difference that mIII gives rate constant that are lower than the experimental

results, while the mII results higher. On the logarithmic scale, the curves of the rate

constants as function of the inverse temperature have nearly the same slopes.

On the other hand, if we compare the rate versus stem length we see a different

behavior. Fig. 4 shows for different stem length the denaturation rate of seven

experimental DNA hairpins. The stem sequences are given in Table 2-b) and contain an

50% GC base-pairs and a 4T loop sequence at a temperature of 23 ◦C. The experimental

denaturation rates are taken from the data of unloaded (in absence of external force)

optical tweezer experiments [35] which show a steep exponential decay as function of

chain length. The PBD models mI and mII produce a much weaker decay as function

of chain length which has as a consequence that the deviation between the model and

the experimental results increase beyond 15 orders of magnitude for the longest chain

in this data set (30 base-pairs). The model with barrier (Ref. [21]) is around 5 orders

of magnitude lower than the original PBD model for all sequences, i.e. closer to the

experimental results, but it fails to reproduce the same slope in the ln k versus chain

length plot. To investigate whether the shape of the barrier could be adjusted to

reproduce the same experimental trend we looked at the models mIII and mIV (See
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Figure 3. Opening constant of hairpins with stem GGGAA and loop of T21 and A21

as a function of the inverse temperature (from Ref. [27]) and comparison with our model

with different sets of parameters. a) Experimental data compared with theoretical

results from the original PBD model (mI) with parameters from Refs. [19, 20] and

the adapted PBD model (mII) with parameters from Ref. [21]. b) Comparison of the

same experimental data with the theoretical results of the adapted PBD model with

parameter variations (models mIII-mV of table 1)

Table 1) in which we increase the barrier height by a factor 1.5 and 2, respectively.

Clearly, the barrier increase gives an overall shift in the logarithmic plot but hardly

changes the slope. The reason for this is that this increase has two opposing effects:

Not only will it slow down the rate of individual base-pairs to open, it also makes it

more difficult for this base-pair to reclose. The latter effect increases the denaturation

rate of the whole DNA sequence and is the reason for the decay being independent of

the barrier height (parameter b in Eq. 2). In order to get qualitatively correct behavior

of the denaturation rate versus chain length, there is no other option than to change

the relative probabilities between the open and closed states for the individual base-

pairs. Equivalently, the barrier of opening should be increased without increasing the
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Figure 4. Rate constant of denaturation measured by unloaded optical tweezer

experiments [35] and calculated by thermal denaturation simulation using the models

mI-mV of Table 1.

closure barrier with the same amount. To do this, we changed the depth of the Morse

potential (or equivalently, as the minimum is set at zero, we increased the height of

the plateau) which lead to model mV which can quantitatively reproduce the optical

tweezer experiments at all lengths.

Changing the height of the Morse potential comes with a prize as can be seen in

Fig. 5 where we show the denaturation curves of long (400 base-pairs) homopolymers

which shows the typical phase transition behavior [18]. Experimentally this transition

occurs around 70 ◦C for pure GC sequences [52] (with variations depending on the ion

concentration), but model mV gives melting transitions for AT and GC chains that are

beyond the boiling temperature of water. Hence, this shows that it is impossible to

get both the thermodynamics and dynamics correct at the same time using a single

unified mesoscopic model. Improvements might lie in the replacement of the flat

horizontal Morse plateau with a function having negative slope to describe entropic

effects yet unconsidered such as rotational degrees of freedom and the possibility for

open regions to curl up. Ideally, the development of such a model should be derived

from full atomistic simulations but the computational expense for simulating long DNA

sequences in explicit water is yet too large. The alternative is to use a more complex

model and fit it to experimental data. This should be done on both thermodynamic and

dynamical data. Unfortunately, the experimental uncertainties regarding denaturation

rates are still very large which makes it difficult to decide which characteristics the

theoretical models should have. The deviation in experimental results is obvious from

Fig. 2. The discrepancy is even larger if we compare those results with the results of

the optical tweezer experiments with zero load [35] of Fig. 4 for the short sequences.

This comparison shows that the optical tweezer experiments give results 2 till 3 orders

of magnitude lower compared to the thermal denaturation experiments for short chain

lengths. For stem lengths of 6 base-pairs, the optical tweezer experiment gives results
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close to that of models mIII, mIV, mV (Fig. 4) However, for longer stem lengths, only

the model with the deep Morse potential can reproduce the optical tweezer experiments.
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pairs) homopolymers calculated using the approach of Ref. [5] with models mI-mV of

Table 1

.

5. Conclusion

We showed that a recently adaptation [21] of the PBD model with an additional barrier

to the Morse potential improves the agreement of the denaturation rate for DNA

hairpins in comparison with experimental results. For short sequences, this agreement

is relatively good, but the magnitude of the exponential decay of the rate as function of

chain length does not correspond to those measured by optical tweezer experiments [35].

As a results, the overestimation of denaturation rates of the model in comparison to

experiments increases with increasing chain length. As we show, it is possible to change

the model parameters such that they reproduce the right decay, but this increases the

melting temperature of the long homopolymers to unrealistic values. Therefore, a more

complex model should ideally be fitted to both thermodynamic and dynamical data,

especially since the latter are much more sensitive to model parameters. The data could

be denaturation rates, but also other dynamical properties could be used for fitting

like thermal conductance [9]. Possibly a slightly more complex helicoidal model [53]

that more explicitly includes the effects of bending, torsional energies, and unwinding,

would be more successful in describing both dynamics and thermodynamics at the same

time. Another possibility that could resolve the mismatch between thermodynamics and

dynamics is to let the model parameters be temperature dependent. However, fitting

such a model, while maintaining some kind of physical justification, is far from trivial.
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An essential condition for establishing better models is an increase in both quantity

and quality of experimental data on dynamics. Rate constants are more difficult to

measure in comparison with thermodynamic properties and, correspondingly, error-

bars are typically a few order orders of magnitude. For a long time, rate constants

from computer simulations were equally inaccurate, but due to the increasing computer

power and algorithmic innovations this has changed. Especially for first-neighbor type

of models, rate constants can be obtained with very low statistical errors using the

method described in this article. Therefore, a similar improvement in the experimental

accuracy would be very welcome and allow for a more reliable parameter fitting of

theoretical models.

More disturbing from a theoretician’s point of view is that experimental rate

constants based on different experimental techniques do not always agree, even when

considering the large error-bars. This field would therefore benefit from more systematic

or automated experimental approaches. Defining a few standardized reference conditions

related to ion concentrations and temperature would facilitate the comparison of results

by different experimental groups. High-throughput screening could eliminate human

factors in e.g. sample preparation and reduced error-bars due to an increase of repetitive

identical measurements. In addition to this, it would be good to find estimates about the

effect of the experimental probe on the results, and on the validity of some theoretical

assumptions, like the infinite dilution limit which neglects interactions between different

DNA molecules. Finally, the design of theoretical models would be highly facilitated

by an increase of experimental data on synthetically created ’simple’ DNA sequences,

like homogeneous A- or G-sequences of different length, alternating (AGAGAG. . . )

sequences, and the ones reported in Refs. [6,23]. We therefore hope that our results will

inspire both experimentalists and theoreticians to study dynamical transitions of DNA.
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